WO2013094299A1 - Photovoltaic apparatus - Google Patents

Photovoltaic apparatus Download PDF

Info

Publication number
WO2013094299A1
WO2013094299A1 PCT/JP2012/076970 JP2012076970W WO2013094299A1 WO 2013094299 A1 WO2013094299 A1 WO 2013094299A1 JP 2012076970 W JP2012076970 W JP 2012076970W WO 2013094299 A1 WO2013094299 A1 WO 2013094299A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoelectric conversion
spacer
glass plate
wiring
Prior art date
Application number
PCT/JP2012/076970
Other languages
French (fr)
Japanese (ja)
Inventor
悟 小笠原
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013094299A1 publication Critical patent/WO2013094299A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic device.
  • a photovoltaic device in which semiconductor thin films such as amorphous and microcrystals are stacked is used.
  • the structure which sealed the back surface on the opposite side to a light-receiving surface with a glass plate may be employ
  • a configuration is adopted in which the current collector wiring of the photovoltaic device is drawn from the opening of the glass plate (see, for example, Patent Document 1).
  • FIG. 9 shows a structure for taking out the current collecting wiring on the back surface of the conventional photovoltaic device 100.
  • the back surface of the photovoltaic device 100 is sealed with a glass plate 10, and current collecting wiring 12 for taking out the electromotive force from the photovoltaic device 100 is drawn out from an opening 10 a provided in the glass plate 10.
  • the opening 10a is sealed with a hot melt material so as not to allow moisture or the like to enter from the outside.
  • a bending stress is applied to the glass plate 10 with the extending direction of the current collecting wiring 12 as a ridge line, and if the opening 10a exists on the ridge line, the bending stress is concentrated. 10 may be broken.
  • bending occurs in the vertical direction in the drawing with the extending direction of the current collecting wiring 12 as a ridge, and a crack Z is likely to occur in the glass plate 10 from the end of the opening 10 a.
  • One aspect of the present invention is a photovoltaic device, which is provided on a photoelectric conversion unit, an insulating coating material provided on the photoelectric conversion unit, and an insulating coating material to extract electric power from the photoelectric conversion unit.
  • a spacer made of a material different from the filler provided so that the height from the photoelectric conversion unit is higher than that of the insulating coating material at the periphery of the opening.
  • the present invention it is possible to prevent breakage of the glass plate that seals the back surface of the photovoltaic device, and to improve the reliability of the photovoltaic device.
  • FIG. 1 is a plan view of the photovoltaic device 200 as viewed from the back surface opposite to the light receiving surface.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • FIG. 4 is a cross-sectional view taken along line CC in FIG.
  • FIG. 1 in order to clearly show the configuration of the photovoltaic device 200, components that are actually overlapped and cannot be seen are shown by solid lines. Also, in FIGS. 1 to 4, the dimensions of each part are shown different from actual ones in order to clearly show the configuration.
  • the photovoltaic device 200 includes a substrate 20, a transparent electrode layer 22, a photoelectric conversion layer 24, a back electrode 26, a first current collector wiring 28, a first insulating coating material 30, a second
  • the current collector wiring 32, the second insulating coating material 34, the glass plate 36, the filler 38, the end sealing resin 40, the terminal box 42, the opening sealing material 44, and the spacer 46 are configured.
  • the 1st insulation coating material 30 and the 2nd insulation coating material 34 are tape shape, a sheet form, and a film form.
  • the substrate 20 is a member that mechanically supports the photoelectric conversion panel of the photovoltaic device 200. Since the photovoltaic device 200 is configured to generate power by making light incident from the substrate 20 side, the substrate 20 is made of a material having transparency in at least a visible light wavelength region, such as a glass substrate or a plastic substrate. .
  • a transparent electrode layer 22 is formed on the substrate 20.
  • the transparent electrode layer 22 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) is preferable because it has high translucency, low resistivity, and excellent plasma resistance.
  • the transparent electrode layer 22 can be formed by a sputtering method or a CVD method.
  • the transparent electrode layer 22 is divided into strips by patterning.
  • the first slit S1 is formed and divided in the transparent electrode layer 22 along the vertical direction of FIG.
  • the transparent electrode layer 22 is divided
  • the second slit S2 is formed and divided in the transparent electrode layer 22 along the left-right direction of FIG.
  • the transparent electrode layer 22 can be patterned using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
  • a photoelectric conversion layer 24 is formed by sequentially laminating a p-type layer, an i-type layer, and an n-type silicon thin film on the transparent electrode layer 22.
  • the photoelectric conversion layer 24 can be a thin film photoelectric conversion layer such as an amorphous silicon thin film photoelectric conversion layer or a microcrystalline silicon thin film photoelectric conversion layer. Alternatively, a tandem or triple photoelectric conversion layer in which these photoelectric conversion layers are stacked may be used.
  • Amorphous silicon thin film photoelectric conversion layer and microcrystalline silicon thin film photoelectric conversion layer are made of silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), methane (CH 4 ), etc.
  • a mixed gas obtained by mixing a carbon-containing gas, a p-type dopant-containing gas such as diborane (B 2 H 6 ), an n-type dopant-containing gas such as phosphine (PH 3 ), and a diluent gas such as hydrogen (H 2 ) is converted into plasma. It can be formed by a plasma chemical vapor deposition method (CVD method) in which a film is formed.
  • CVD method for example, a 13.56 MHz parallel plate RF plasma CVD method is preferably applied.
  • the photoelectric conversion layer 24 is divided into strips by patterning.
  • the YAG laser is irradiated to a position 50 ⁇ m lateral from the first slit S1 dividing the transparent electrode layer 22 to form the third slit S3, and the photoelectric conversion layer 24 is patterned into a strip shape.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
  • a back electrode 26 is formed on the photoelectric conversion layer 24.
  • the back electrode 26 preferably has a structure in which a transparent conductive oxide (TCO) and a reflective metal are laminated in this order.
  • a transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or these transparent conductive oxides
  • TCO transparent conductive oxide
  • a material (TCO) doped with impurities is used.
  • zinc oxide (ZnO) doped with aluminum (Al) as an impurity may be used.
  • metals such as silver (Ag) and aluminum (Al), are used.
  • the transparent conductive oxide (TCO) and the reflective metal can be formed by, for example, a sputtering method or a CVD method. It is preferable that at least one of the transparent conductive oxide (TCO) and the reflective metal is provided with unevenness for enhancing the light confinement effect.
  • the back electrode 26 is divided into strips by patterning.
  • a YAG laser is irradiated to a position 50 ⁇ m lateral from the position of the third slit S3 for patterning the photoelectric conversion layer 24 to form a fourth slit S4, and the back electrode 26 is patterned into a strip shape.
  • the photoelectric conversion layer 24 is divided in parallel, the photoelectric conversion layer 24 formed in the second slit S2 dividing the transparent electrode layer 22 and the fifth slit S5 dividing the back electrode 26 are formed. And split.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
  • the transparent electrode layer 22, the photoelectric conversion layer 24, and the back electrode 26 are laminated on the substrate 20 to form the photoelectric conversion cell 202.
  • the first current collecting wiring 28 and the second current collecting wiring 32 are formed in order to take out the electric power generated by the photoelectric conversion cell 202.
  • the first current collecting wiring 28 is a wiring for collecting current from the photoelectric conversion cells 202 divided in parallel, and the second current collecting wiring 32 connects the first current collecting wiring 28 to the terminal box 42. Wiring.
  • the first current collecting wiring 28 is extended on the back electrode 26 of the photoelectric conversion cell 202.
  • the first current collector wiring 28 is formed to connect the positive electrodes and the negative electrodes of the photoelectric conversion layer 24 divided in parallel near the end of the photovoltaic device 200. Therefore, the first current collection wiring 28 extends along a direction orthogonal to the parallel division direction of the photoelectric conversion layer 24. That is, as shown in FIGS. 1 and 3, the photoelectric conversion cells 202 divided in parallel by the second slit S2 and the fifth slit S5 are straddled across the second slit S2 and the fifth slit S5 so as to be connected in parallel. Is extended on the back electrode 26.
  • the 1st current collection wiring 28 is extended along the up-and-down direction at the right and left end sides in FIG. However, in the vicinity of the upper and lower edges shown in FIG. 1, the photoelectric conversion layer that does not have a photoelectric conversion function does not straddle the second slit S ⁇ b> 2 and the fifth slit S ⁇ b> 5 near the edge.
  • the first current collector wiring 28 is electrically connected to the back electrode 26 by ultrasonic soldering or the like. Thereby, the positive electrodes and the negative electrodes of the photoelectric conversion cells 202 connected in series are connected in parallel.
  • the first insulating covering material 30 is disposed.
  • the first insulating covering material 30 is a terminal box located near the first current collector wiring 28 provided along the left and right edges of the photovoltaic device 200. It extends along the direction orthogonal to the serial division direction on the back electrode 26 across the fourth slit S4 to the arrangement position of 42.
  • the first insulating covering material 30 extends in the left-right direction from the vicinity of the left and right first current collecting wires 28 toward the terminal box 42.
  • the first insulating coating material 30 is preferably made of an insulating material having a resistivity of 10 16 ( ⁇ cm) or more.
  • polyester polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride and the like are suitable.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyimide polyvinyl fluoride and the like.
  • the 1st insulating coating material 30 by which the adhesive material was apply
  • the second current collecting wiring 32 extends from the left and right first current collecting wirings 28 to the center of the photovoltaic device 200 along the first insulating covering material 30. It is extended toward.
  • the second current collecting wiring 32 has a width of 4 mm and a thickness of 110 ⁇ m.
  • the first insulating coating material 30 is sandwiched between the second current collector wiring 32 and the back electrode 26 so that there is no direct electrical contact between the second current collector wiring 32 and the back electrode 26.
  • one end of the second current collecting wiring 32 extends to the first current collecting wiring 28 and is electrically connected to the first current collecting wiring 28.
  • the second current collecting wiring 32 is preferably electrically connected to the first current collecting wiring 28 by ultrasonic soldering or the like. As shown in FIGS. 1 and 2, the other end of the second current collecting wiring 32 is drawn out from the opening 36 a of the glass plate 36. The other end of the second current collector wiring 32 is connected to an electrode terminal (not shown) in the terminal box 42. Thereby, the electric power generated by the photoelectric conversion cell 202 is taken out of the photovoltaic device 200.
  • the 1st insulating coating material 30 in common with respect to several 2nd current collection wiring 32.
  • the first insulation coating material 30 is integrated so that the first insulation coating material 30 includes the terminal box 42 portion from the vicinity of the left first current collection wiring 28 to the vicinity of the right first current collection wiring 28. It may be formed.
  • a spacer 46 is disposed around the end of the second current collector wiring 32 on the terminal box 42 side.
  • the spacer 46 is provided in order to suppress cracks from the opening 36 a provided in the glass plate 36.
  • a suitable material, shape, arrangement, and the like of the spacer 46 will be described later.
  • the second insulating coating material 34 is provided so as to cover at least a part of the transparent electrode layer 22, the photoelectric conversion layer 24, the back electrode 26, and the first current collector wiring 28 located in the vicinity of the end sealing resin 40 described later. .
  • at least a part of the transparent electrode layer 22, the photoelectric conversion layer 24, the back electrode 26, and the first current collector wiring 28 facing the end sealing resin 40 (the transparent electrode layer 22, the photoelectric conversion layer 24, the back surface It is preferable to provide the electrode 26 and the first current collector wiring 28 so as to cover the end surfaces thereof.
  • the second insulating coating material 34 covers the transparent electrode layer 22, the photoelectric conversion layer 24, the back electrode 26, and the first current collector wiring 28,
  • the photoelectric conversion layer 24 extends along a direction orthogonal to the parallel division direction so as not to reach the end of the first insulating coating material 30.
  • the second insulating coating material 34 may extend so as to cover the end portion of the first insulating coating material 30.
  • the second insulating covering material 34 is preferably composed of an insulating material having a resistivity of 10 16 ( ⁇ cm) or more.
  • an insulating material having a resistivity of 10 16 ( ⁇ cm) or more for example, polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride and the like are suitable.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyimide polyvinyl fluoride and the like are suitable.
  • the end sealing resin 40 is disposed.
  • the end sealing resin 40 is disposed in a portion (width of about 7 mm to 15 mm) around the end of the photovoltaic device 200 where the photoelectric conversion cell 202 is not formed.
  • the transparent electrode layer 22, the photoelectric conversion layer 24, and the back electrode 26 are not formed when the photoelectric conversion cell 202 is formed.
  • the frame member may be used to mask the periphery of the substrate 20, and the photoelectric conversion cell around the edge of the photovoltaic device 200 may be formed by laser, sandblasting or etching after the photoelectric conversion cell 202 is formed. 202 may be removed.
  • the end sealing resin 40 is provided by applying to the portion around the end of the photovoltaic device 200 formed in this way where the photoelectric conversion cell 202 is not formed.
  • the end sealing resin 40 is an insulating material having a resistivity of 10 10 ( ⁇ cm) or more. Further, the end sealing resin 40 is preferably made of a material having low moisture permeability in order to prevent moisture from entering from the end of the photovoltaic device 200. In particular, the end sealing resin 40 is preferably made of a material having a moisture permeability lower than that of the filler 38. Furthermore, it is preferable to have elasticity to relieve stress generated in the photovoltaic device 200 when a mechanical force is applied to the end portion of the photovoltaic device 200. For example, the end sealing resin 40 is preferably an epoxy resin or a butyl resin, and for example, it is preferable to apply hot melt butyl which is easy to apply and adhere at high temperatures.
  • the end sealing resin 40 has a width of about 6 mm to 10 mm and a thickness of about 0.05 mm to 0.2 mm thicker than the thickness of the filler 38. After the laminating process is performed, the thickness of the end sealing resin 40 is substantially the same as that of the filler 38.
  • the filler 38 is an insulating resin.
  • the filler 38 is preferably an insulating material having a resistivity of about 10 14 ( ⁇ cm), for example, ethylene vinyl acetate copolymer resin (EVA) or polyvinyl bratil (PVB). It is.
  • the back surface of the photovoltaic device 200 is covered with the glass plate 36.
  • the glass plate 36 is disposed in a state in which the end of the second current collecting wiring 32 is drawn out through the opening 36 a for drawing out the second current collecting wiring 32 provided on the glass plate 36.
  • the glass plate 36 is heated while being pressed toward the photoelectric conversion cell 202, and vacuum lamination is performed.
  • the heat treatment is performed at about 150 ° C., for example. Thereby, the back surface of the photovoltaic device 200 is sealed by the glass plate 36.
  • the opening 36 a and the inside of the terminal box 42 are sealed with an opening sealing material 44.
  • a chip made of a sealing material is placed in the opening 36a and the terminal box 42, and the chip is softened by heating and then cooled and cured.
  • the opening sealing member 44 for example, hot melt butyl is preferably applied.
  • a potting material made of a sealing material is placed in the terminal box 42 including the opening 36a and cured. In this case, it is preferable to apply silicone to the potting material.
  • the spacer 46 will be described.
  • the spacer 46 is disposed on the photoelectric conversion cell 202 around the first insulating coating material 30 and the second current collector wiring 32.
  • the width of the first insulating coating material 30 may be widened, and the spacer 46 may be disposed on the first insulating coating material 30 around the second current collector wiring 32.
  • the spacer 46 may be arranged so as to straddle from the first insulating coating material 30 to the photoelectric conversion cell 202.
  • the spacer 46 is a space between the photoelectric conversion cell 202 and the glass plate 36 so as to relieve stress applied to the glass plate 36 from the conventional case when the glass plate 36 is bent in the peripheral region of the opening 36a of the glass plate 36.
  • the thickness should be maintained. That is, the spacer 46 is set so that the height from the photoelectric conversion unit 202 is at least equal to or higher than the first insulating coating material 30 in the peripheral portion of the opening 36a.
  • the spacer 46 has a thickness that maintains the distance between the photoelectric conversion cell 202 and the glass plate 36 so that the second current collecting wiring 32 does not contact the glass plate 36 in the peripheral region of the opening 36 a of the glass plate 36. To do. That is, it is more preferable that the spacer 46 has a height from the photoelectric conversion unit 202 equal to or higher than the height of the second current collector wiring 32 in the peripheral portion of the opening 36a.
  • the height from the photoelectric conversion unit 202 to the upper end of the spacer 46 is set to 160 ⁇ m or more. It is preferable.
  • the spacer 46 In the conventional configuration in which the spacer 46 is not provided, only the filler 38 is filled between the glass plate 36 and the photoelectric conversion unit 202 around the opening 36a, and bending stress is concentrated around the opening 36a. It becomes easy to do.
  • the gap between the glass plate 36 and the photoelectric conversion unit 202 is filled by the spacer 46, and the bending stress around the opening 36a is alleviated. Thereby, generation
  • the spacer 46 has an electrical insulating property and is made of a material different from the filler 38.
  • the spacer 46 is preferably made of an insulating material having a resistivity of 10 16 ( ⁇ cm) or more.
  • the spacer 46 may be comprised with the material which has electroconductivity, and may be comprised with the material which has insulation.
  • a spacer 46 is provided. Is preferably made of a material having higher elasticity than the filler 38.
  • the spacer 46 is preferably made of polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride, or the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyimide polyvinyl fluoride
  • the spacer 46 is preferably made of polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride, or the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyimide polyvinyl fluoride
  • the spacer 46 may be disposed in a region excluding the extension region and the lead-out region of the second current collector wiring 32 so as to surround the opening 36 a. Is preferred.
  • the spacer 46 is provided so as to be in contact with the edge of the opening 36a or to the inside of the opening 36a so that bending stress is not concentrated in the vicinity of the opening 36a.
  • the outer peripheral shape of the spacer 46 is preferably an arc so that bending stress is not concentrated on the glass plate 36 in a part of the outer peripheral portion of the spacer 46 when the glass plate 36 is pressed against the outer edge of the spacer 46. It is.
  • the spacer 46 may extend on both sides so as to sandwich the second current collector wiring 32 along the direction in which the second current collector wiring 32 extends.
  • the second current collecting wirings 32 may not be arranged on a straight line, but may be staggered in the parallel connection direction of the photoelectric conversion cells 202, and the spacers 46 may be arranged on both sides thereof. .
  • FIGS. 10 to 12 are diagrams showing the configuration of the photovoltaic device 300 according to the second embodiment.
  • FIG. 10 is a plan view of the photovoltaic device 300 as viewed from the back surface, which is the side opposite to the light receiving surface.
  • FIG. 11 is a cross-sectional view taken along line DD in FIG. 12 is a cross-sectional view taken along line EE of FIG.
  • FIG. 10 in order to clearly show the configuration of the photovoltaic device 300, components that are not actually seen overlapping are also shown by solid lines.
  • FIGS. 10 to 12 the dimensions of each part are shown different from actual ones in order to clearly show the configuration.
  • the photovoltaic device 300 includes a plurality of photoelectric conversion cells 301.
  • the photoelectric conversion cell 301 includes a passivation layer 56, a base layer 54, a first conductivity type layer 52, an insulating layer 60, an i-type layer 62, a second conductivity type layer 64, and a transparent electrode layer. 66 and a metal layer 68 (first electrode 68n, second electrode 68p).
  • the photoelectric conversion cell 301 is a back junction type (back contact type) photovoltaic device, and no electrode is provided on the light receiving surface, and an electrode is provided only on the back side.
  • the base layer 54 as a power generation layer of the photoelectric conversion cell 301 is a crystalline semiconductor layer.
  • the base layer 54 is an n-type crystalline silicon layer to which an n-type dopant is added.
  • the doping concentration of the base layer 54 is, for example, about 10 16 / cm 3 .
  • the thickness of the base layer 54 is preferably set to a thickness that can generate carriers sufficiently as the power generation layer, and may be, for example, 1 ⁇ m or more and 100 ⁇ m or less. Note that the crystalline includes not only a single crystal but also a polycrystal in which a large number of crystal grains are aggregated.
  • the passivation layer 56 is provided between the translucent member 58 and the base layer 54.
  • the passivation layer 56 plays a role of terminating dangling bonds (dangling bonds) on the surface of Si included in the base layer 54, and suppresses carrier recombination on the surface of the base layer 54.
  • the passivation layer 56 may include, for example, a silicon nitride layer (SiN), and more preferably has a stacked structure of a silicon oxide layer (SiOx) and a silicon nitride layer.
  • SiN silicon nitride layer
  • SiOx silicon oxide layer
  • a silicon nitride layer a structure in which a silicon oxide layer and a silicon nitride layer are sequentially stacked with a thickness of 30 nm and 40 nm, respectively, may be used.
  • the translucent member 58 and the passivation layer 56 are structured to be directly joined without using an adhesive.
  • anodic bonding in which a voltage is applied between the light transmissive member 58 and the passivation layer 56 and bonding is performed by ion beam in a high vacuum.
  • room-temperature bonding may be used in which the surfaces of the light-transmitting member 58 and the passivation layer 56 are bonded to each other.
  • the translucent member 58 and the passivation layer 56 may not be directly bonded, but may be bonded by an adhesive that transmits light in a wavelength band used for power generation in the photovoltaic device 300.
  • the adhesive material include EVA, PVB, silicone, various olefin resins, and the like.
  • the first conductivity type layer 52 is a crystalline semiconductor layer.
  • the first conductivity type layer 52 is an n-type crystalline silicon layer to which an n-type dopant is added.
  • the first conductivity type layer 52 is a layer bonded to the metal layer 68 (first electrode 68 n), and has a higher doping concentration than the base layer 54.
  • the doping concentration of the first conductivity type layer 52 may be about 10 19 / cm 3 .
  • the film thickness of the first conductivity type layer 52 is preferably as thin as possible within a range where the contact resistance with the metal can be sufficiently lowered, and may be, for example, 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the base layer 54 and the first conductivity type layer 52 form a first conductivity type contact region C1 in which the crystalline materials are homo-joined.
  • the first conductivity type contact region C1 is formed, for example, in a comb shape including fingers and bus bars on the surface of the photoelectric conversion cell 301.
  • the area of the first conductivity type contact region C ⁇ b> 1 means the area of a region that is homojunction with the first conductivity type layer 52 on the main surface of the base layer 54.
  • the insulating layer 60 is used to electrically insulate the first conductivity type layer 52 from an i-type layer 62 and a second conductivity type layer 64 described later, and a mask for etching the first conductivity type layer 52. Also used as.
  • the insulating layer 60 is made of an electrically insulating material, and may be silicon nitride (SiN), for example.
  • the film thickness of the insulating layer 60 may be about 100 nm, for example.
  • the i-type layer 62 and the second conductivity type layer 64 are amorphous semiconductor layers. Note that the amorphous system includes an amorphous phase or a microcrystalline phase in which minute crystal grains are precipitated in the amorphous phase.
  • the i-type layer 62 and the second conductivity type layer 64 are amorphous silicon containing hydrogen.
  • the i-type layer 62 is a substantially intrinsic amorphous silicon layer.
  • the second conductivity type layer 64 is an amorphous silicon layer to which a p-type dopant is added.
  • the second conductivity type layer 64 is a semiconductor layer having a higher doping concentration than the i-type layer 62.
  • the i-type layer 62 is not intentionally doped, and the doping concentration of the second conductivity type layer 64 may be about 10 18 / cm 3 .
  • the thickness of the i-type layer 62 is made thin so that light absorption can be suppressed as much as possible, while it is made thick enough that the surface of the base layer 54 is sufficiently passivated. Specifically, it may be 1 nm or more and 50 nm or less, for example, 10 nm.
  • the film thickness of the second conductivity type layer 64 is made thin so that light absorption can be suppressed as much as possible, while it is made so thick that the open circuit voltage of the photovoltaic element becomes sufficiently high.
  • the thickness may be 1 nm or more and 50 nm or less, for example, 10 nm.
  • the transparent electrode layer 66 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) has advantages such as high translucency and low resistivity.
  • the film thickness of the transparent electrode layer 66 may be 10 nm or more and 500 nm or less, for example, 100 nm.
  • the base layer 54, the i-type layer 62, and the second conductivity type layer 64 form a second conductivity type contact region C2 in which crystalline and amorphous are heterojunctioned.
  • the second conductivity type contact region C2 includes, for example, fingers and bus bars on the surface of the photoelectric conversion cell 301, and is formed in a comb shape combined with the first conductivity type contact region C1.
  • the area of the second conductivity type contact region C ⁇ b> 2 means the area of a region heterojunction with the i-type layer 62 and the second conductivity type layer 64 on the main surface of the base layer 54.
  • the metal layer 68 is a layer serving as an electrode provided on the back side of the photovoltaic element.
  • the metal layer 68 is made of a conductive material such as metal, and is made of, for example, a material containing copper (Cu) or aluminum (Al).
  • the metal layer 68 includes a first electrode 68 n connected to the first conductivity type layer 52 and a second electrode 68 p connected to the second conductivity type layer 64.
  • the metal layer 68 may further include an electrolytic plating layer such as copper (Cu) or tin (Sn). However, it is not limited to this, It is good also as other metals, such as gold
  • 14A to 14J are schematic cross-sectional views showing a method for manufacturing the photoelectric conversion cell 301.
  • a porous layer (brittle layer) 50a is formed on one main surface of the substrate 50 (FIG. 14A).
  • the substrate 50 is made of a crystalline semiconductor material.
  • a semiconductor substrate such as silicon, polycrystalline silicon, gallium arsenide (GaAs), or indium phosphide (InP) is used.
  • GaAs gallium arsenide
  • InP indium phosphide
  • a single crystal silicon substrate is used as the substrate 50, and the first conductivity type layer 52, the base layer 54, the i-type layer 62, and the second conductivity type layer 64 are also silicon layers.
  • the substrate 50 may be made of a material other than silicon, and these layers may be made of materials other than the silicon layer.
  • the porous layer 50a can be formed by anodic oxidation or the like.
  • the electrolyte used for anodization can be, for example, a mixed liquid of hydrofluoric acid and ethanol, or a mixed liquid of hydrofluoric acid and hydrogen peroxide.
  • the current density of the anodization 5 mA / cm 2 or more, may be a 600 mA / cm 2 or less, for example, 10 mA / cm 2 approximately.
  • the thickness of the porous layer 50a may be 0.01 ⁇ m or more and 30 ⁇ m or less, for example, about 10 ⁇ m.
  • the pore diameter of the porous layer 50a may be 0.002 ⁇ m or more and 5 ⁇ m or less, for example, about 0.01 ⁇ m.
  • the porosity of the porous layer 50a may be 10% or more and 70% or less, for example, about 20%.
  • a first conductivity type layer 52 and a base layer 54 are formed on the porous layer 50a of the substrate 50 (FIG. 14B).
  • the first conductivity type layer 52 and the base layer 54 can be formed by chemical vapor deposition (CVD).
  • the first conductivity type layer 52 and the base layer 54 are formed by epitaxial growth using the porous layer 50a as a seed layer, and form a homojunction region in which crystalline semiconductor layers are joined to each other.
  • the film can be formed by heating the substrate 50 to 950 ° C. and supplying dichlorosilane (SiH 2 Cl 2 ) diluted with hydrogen (H 2 ) as a source gas.
  • the flow rates of hydrogen (H 2 ) and dichlorosilane (SiH 2 Cl 2 ) are, for example, 0.5 (l / min) and 180 (l / min), respectively. If necessary, phosphine (PH 3 ) is added as a doping gas.
  • a passivation layer 56 is formed on the base layer 54 (FIG. 14C).
  • the passivation layer 56 is silicon nitride (SiN)
  • PECVD plasma enhanced chemical vapor deposition
  • O 2 oxygen
  • N 2 nitrogen
  • SiH 4 silane
  • a plurality of substrates 50 formed up to the passivation layer 56 are prepared, and the passivation layers 56 of the respective substrates 50 are directly bonded to the translucent member 58 made of a glass plate (FIG. 14D).
  • a plurality of passivation layers 56 are directly bonded on the light-transmitting member 58.
  • FIG. 10 shows an example in which 20 substrates 50 are bonded to one translucent member 58 to form a module.
  • the translucent member 58 mechanically supports the photovoltaic element and protects the semiconductor layer included in the photovoltaic element from the external environment. Further, since the translucent member 58 is disposed on the light receiving surface side of the photovoltaic element, it transmits light in a wavelength band used for power generation by the photovoltaic element, and mechanically transmits each layer such as the base layer 54. It is considered as a material that can be supported.
  • anodic bonding in which a voltage is applied between the light transmissive member 58 and the passivation layer 56 and bonding is performed by ion beam in a high vacuum.
  • room-temperature bonding in which the surfaces of the light-transmitting member 58 and the passivation layer 56 are bonded to each other can be used.
  • the translucent member 58 and the passivation layer 56 can be bonded by applying a voltage of several hundred volts or more at 200 to 400 ° C.
  • the translucent member 58 to be used is preferably glass that contains an alkali component and has a linear expansion coefficient close to that of the substrate to be bonded.
  • borosilicate glass is suitable.
  • the outermost Si on the bonding surface side of the light-transmitting member 58 such as a crow plate or the passivation layer 56 such as SiN by Ar ion beam in a high vacuum of 10 ⁇ 6 Pa or less at room temperature. Remove the molecule that is bonded to the atom. That is, bonding can be performed in a short time by performing bonding in a state where a bond (dangling bond) is on the outermost surface.
  • the translucent member 58 can be bonded without an alkali component, and alkali-free glass can also be used.
  • the translucent member 58 may be bonded to the passivation layer 56 with an adhesive or the like.
  • an adhesive a material that transmits light in a wavelength band used for power generation in the photovoltaic device 300 is suitable. Examples of the adhesive material include EVA, PVB, silicone, various olefin resins, and the like.
  • FIGS. 14A to 14C are shown upside down in FIGS. 14A to 14C for easy understanding.
  • a mask is provided so that a film is not formed in a region between a plurality of photoelectric conversion elements, or the film is formed and then removed by etching or the like. Good.
  • the substrate 50 is separated using the porous layer 50a (FIG. 14E).
  • the substrate 50 can be separated by mechanical processing.
  • the substrate 50 and the translucent member 58 are adsorbed by a vacuum chuck, and the substrate 50 can be separated from the porous layer 50a portion by pulling both of them apart.
  • the substrate 50 can be separated from the porous layer 50a portion by spraying a water jet from the side surface of the substrate 50 onto the porous layer 50a. If a part of the porous layer 50a remains on the first conductivity type layer 52 side, the first layer is etched by hydrofluoric acid mixed with hydrofluoric acid (HF) and nitric acid (HNO 3 ).
  • HF hydrofluoric acid
  • HNO 3 nitric acid
  • an insulating layer 60 is formed on the first conductivity type layer 52, and the first conductivity type layer 52 is patterned (FIG. 14F).
  • the insulating layer 60 can be formed by plasma enhanced chemical vapor deposition (PECVD) in which a source gas in which nitrogen (N 2 ) is mixed with silane (SiH 4 ) is converted into plasma.
  • PECVD plasma enhanced chemical vapor deposition
  • Patterning can be performed using an etching paste.
  • the first conductive type layer 52 is removed together with the insulating layer 60 by applying an etching paste containing phosphoric acid in a desired pattern by a screen printing method or the like.
  • the insulating layer 60 may be removed by dry etching so that a desired pattern is obtained, and the first conductivity type layer 52 may be removed by dry etching or wet etching using the insulating layer 60 as a mask.
  • RIE reactive ion etching
  • CF 4 carbon tetrafluoride
  • RIE reactive ion etching
  • SF 6 sulfur hexafluoride
  • An etchant containing hydrofluoric acid may be used for wet etching of the first conductivity type layer 52.
  • the insulating layer 60 and the first conductivity type layer 52 are preferably patterned so that power can be collected as evenly as possible from the back surface of the photoelectric conversion cell 301.
  • a comb-shaped pattern including fingers and bus bars generally applied to the photoelectric conversion cell 301 is preferable.
  • the i-type layer 62 and the second conductivity type layer 64 can be formed by PECVD of a silicon-containing gas such as silane (SiH 4 ). While supplying a silicon-containing gas such as silane (SiH 4 ) and supplying a high-frequency power from a high-frequency power source to a high-frequency electrode, plasma of the source gas is generated, and the source material is supplied from the plasma onto the base layer 54 and the insulating layer 60. Thus, a silicon thin film is formed. The source gas is mixed with a dopant-containing gas such as boron (B 2 H 6 ) as necessary.
  • the transparent electrode layer 66 can be formed using a sputtering method or the like.
  • the i-type layer 62, the second conductivity type layer 64, the transparent electrode layer 66, and the insulating layer 60 formed on the entire surface are patterned (FIG. 14H). Patterning can be performed using an etching paste.
  • the i-type layer 62, the second conductivity type layer 64, the transparent electrode layer 66, and the insulating layer 60 are removed by applying an etching paste containing phosphoric acid in a desired pattern by screen printing or the like.
  • the region other than the region where the i-type layer 62 is in direct contact with the base layer 54 that is, the i-type on the first conductivity type contact region C1 where the insulating layer 60 and the first conductivity type layer 52 are left.
  • the layer 62, the second conductivity type layer 64, the transparent electrode layer 66 and the insulating layer 60 are removed and patterned.
  • the pattern is set so that power can be collected as evenly as possible from the back surface of the photovoltaic element.
  • a comb pattern that is alternately combined with the comb pattern of the first conductivity type layer 52 is preferable.
  • a metal layer 68 is formed on the patterned surface (FIG. 14I).
  • the metal layer 68 can be formed by a thin film formation method such as sputtering or plasma enhanced chemical vapor deposition (PECVD).
  • I-type layer 62, second conductivity type layer 64, transparent electrode layer 66, and metal layer 68 are partially removed (FIG. 14J). Thereby, the metal layer 68 is divided, and the first electrode 68n connected to the first conductivity type layer 52 and the second electrode 68p connected to the transparent electrode layer 66 are formed.
  • the i-type layer 62, the second conductivity type layer 64, the transparent electrode layer 66, and the metal layer 68 can be removed by laser etching. Further, a resist is applied by screen printing or the like to form a patterned mask, and the i-type layer 62, the second conductivity type layer 64, the transparent electrode layer 66, and the metal layer 68 are separately etched using the mask. May be. If the metal layer 68 is copper (Cu), ferric chloride may be used as an etchant, and if the metal layer 68 is aluminum (Al), phosphoric acid may be used as an etchant. In addition, an etchant containing hydrochloric acid (HCl) may be used for etching the transparent electrode layer 66. An etchant containing hydrofluoric acid (HF) may be used for etching the i-type layer 62 and the second conductivity type layer 64.
  • Cu copper
  • ferric chloride may be used as an etchant
  • Al aluminum
  • the i-type layer 62 and the second conductive layer are formed so that the first electrode 68n connected to the first conductive type layer 52 and the second electrode 68p connected to the second conductive type layer 64 are electrically separated.
  • the mold layer 64, the transparent electrode layer 66, and the metal layer 68 are removed.
  • the i-type layer 62, the second conductivity-type layer 64, the transparent electrode layer 66, and the metal layer 68 on the region of the insulating layer 60 left on the first conductivity-type layer 52 are removed.
  • a metal layer may be further laminated on the first electrode 68n and the second electrode 68p by electrolytic plating or the like.
  • electrolytic plating For example, copper (Cu) or tin (Sn) is formed by electrolytic plating.
  • Cu copper
  • Sn tin
  • the metal layer is laminated only on the region where the first electrode 68n and the second electrode 68p are left.
  • the translucent member 58 is on the light receiving surface side, and the first electrode 68n and the second electrode 68p are both on the back surface side.
  • a plurality of back surface junction type photoelectric conversion cells 301 are formed on the translucent member 58.
  • the plurality of photoelectric conversion cells 301 are arranged in a matrix on the translucent member 58, as shown in FIG.
  • the plurality of photoelectric conversion cells 301 are connected in series via first current collecting wirings 80a and 80b that connect the first electrode 68n and the second electrode 68p of the photoelectric conversion cells 301 adjacent to each other.
  • 20 photoelectric conversion cells 301 are connected in series.
  • a first current collecting wiring 80 c is provided in order to take out the generated electric power to the terminal box 90 at the extreme end of the photoelectric conversion cells 301 connected in series.
  • the second current collecting wiring 84 is arranged from the first current collecting wiring 80c to the terminal box 90.
  • the second current collecting wiring 84 is disposed with the insulating coating material 82 interposed therebetween in order to provide electrical insulation from the photoelectric conversion cell 301.
  • the insulating coating material 82 is preferably made of an insulating material having a resistivity of 10 16 ( ⁇ cm) or more.
  • polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride and the like are suitable.
  • the insulating covering material 82 and the second current collecting wiring 84 are extended on the first electrode 68 n and the second electrode 68 p of the photoelectric conversion cell 301 to the position of the opening 72 a provided in the back glass plate 72.
  • One insulating covering material 82 may be provided in common for the plurality of second current collecting wires 84.
  • the second current collector wiring 84 has a width of 4 mm and a thickness of 400 ⁇ m.
  • the other end of the second current collector wiring 84 is connected to an electrode terminal (not shown) in the terminal box 90. Thereby, the electric power generated in the photoelectric conversion cell 301 is taken out of the photovoltaic device 300.
  • a spacer 86 is disposed around the end of the second current collector wiring 84 on the terminal box 90 side.
  • the spacer 86 is provided in order to suppress cracks from the opening 72 a provided in the back glass plate 72.
  • a suitable material, shape and arrangement of the spacer 86 will be described later.
  • the back surface of the photovoltaic device 300 is sealed with the back glass plate 72.
  • a liquid filler 70 is applied or a sheet-like filler 70 is placed on the photoelectric conversion cell 301, the first current collector wirings 80a, 80b, 80c, the second current collector wiring 84, and the like.
  • the filler 70 is an insulating resin.
  • the filler 70 is preferably an insulating material having a resistivity of about 10 14 ( ⁇ cm), for example, ethylene vinyl acetate copolymer resin (EVA) or polyvinyl bratil (PVB). It is. Thereafter, the back surface of the photoelectric conversion cell 301 is covered with the back glass plate 72.
  • the back glass plate 72 is arranged in a state in which the end of the second current collection wiring 84 is drawn out through the opening 72 a for drawing out the second current collection wiring 84 provided on the back glass plate 72.
  • the back glass plate 72 is heated while being pressed toward the photoelectric conversion cell 301 side to perform a vacuum laminating process.
  • the opening 72a and the terminal box 90 are sealed with an opening sealing material 92.
  • a chip made of a sealing material is placed in the opening 72a and the terminal box 90, and the chip is softened by heating and then cooled and cured.
  • the opening sealing material 92 for example, hot melt butyl is preferably used.
  • a potting material made of a sealing material is placed in the terminal box 90 including the opening 72a and cured. In this case, it is preferable to apply silicone to the potting material.
  • the spacer 86 is disposed on the photoelectric conversion cell 301 around the insulating coating material 82 and the second current collection wiring 84.
  • the width of the insulating covering material 82 may be widened and the spacer 86 may be disposed on the insulating covering material 82 around the second current collector wiring 84.
  • the spacer 86 may be arranged so as to extend from the insulating coating material 82 to the photoelectric conversion cell 301.
  • the spacer 86 is preferably made of the same material as in the first embodiment.
  • the spacer 86 includes a photoelectric conversion cell 301 and a back glass plate 72 so as to relieve stress applied to the back glass plate 72 when the back glass plate 72 is bent in the peripheral region of the opening 72 a of the back glass plate 72.
  • the thickness is maintained so as to maintain the interval. That is, the spacer 86 is set so that the height from the photoelectric conversion cell 301 is at least equal to or greater than the insulating coating material 82 in the peripheral portion of the opening 72a. More preferably, the spacer 86 maintains an interval between the photoelectric conversion cell 301 and the back glass plate 72 so that the second current collecting wiring 84 does not contact the back glass plate 72 in the peripheral region of the opening 72 a of the back glass plate 72. Thickness. That is, it is more preferable that the spacer 86 has a height from the photoelectric conversion cell 301 equal to or higher than the height of the second current collector wiring 84 in the peripheral portion of the opening 72a.
  • the planar shape of the spacer 86 is a shape that is disposed in a region excluding the extension region and the lead-out region of the second current collector wiring 84 so as to surround the opening 72a.
  • the spacer 86 is provided in contact with the edge of the opening 72a or inside the opening 72a so that bending stress does not concentrate in the vicinity of the opening 72a when the back glass plate 72 is pressed against the inner edge of the spacer 86.
  • the outer peripheral shape of the spacer 86 is an arc so that bending stress is not concentrated on the rear glass plate 72 in a part of the outer peripheral portion of the spacer 86 when the rear glass plate 72 is pressed against the outer edge of the spacer 86.
  • the spacer 86 may extend on both sides so as to sandwich the second current collector wiring 84 along the direction in which the second current collector wiring 84 extends.
  • the second current collecting wiring 84 may not be arranged on a straight line, but may be staggered in the parallel connection direction of the photoelectric conversion cells 301, and the spacers 86 may be arranged on both sides thereof.
  • the spacer 86 has a wiring other than the second current collecting wiring 84, for example, a wiring 88 for connecting to a bypass diode as shown in FIG. 15, a spacer 86a is provided separately on both sides of the wiring 88. Also good.
  • the spacer 86 along the second current collector wiring 84, the curvature of bending generated in the vicinity of the opening 72a of the back glass plate 72 is relieved, and the back glass plate 72 in the vicinity of the opening 72a is relaxed. Generation of cracks can be suppressed. That is, the bending curvature is increased when the back glass plate 72 is bent with the extended region of the spacer 86 as a ridge, and the stress concentration on the back glass plate 72 is alleviated.
  • the application range of the technique which relieves the stress to the sealing member using the spacer is not limited to the above embodiment, and is applicable to any solar cell having a structure provided with a sealing material having an opening. It becomes a range.
  • a spacer may be provided around the opening of the back glass plate serving as a lead-out portion for the collecting electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This photovoltaic apparatus is provided with: a photoelectric conversion unit; a first insulating film material, which is provided on the photoelectric conversion unit; second current collecting wiring, which is provided on the first insulating film material for the purpose of taking power from the photoelectric conversion unit; a glass board, which covers the photoelectric conversion unit, the first insulating film material, and the second current collecting wiring, and which is provided with an opening for leading out the second current collecting wiring; and a spacer, which is provided such that, at the periphery of the opening, a height from the photoelectric conversion unit is more than a height of the first insulating film material, and is composed of a material different from a filling material.

Description

光起電力装置Photovoltaic device
 本発明は、光起電力装置に関する。 The present invention relates to a photovoltaic device.
 太陽光を利用した発電システムとして、アモルファスや微結晶等の半導体薄膜を積層した光起電力装置が用いられている。このような光起電力装置では、受光面と反対側の裏面をガラス板で封止した構成を採用することがある。このように裏面をガラス板で封止した場合、ガラス板の開口部から光起電力装置の集電配線を引き出した構成が採られる(例えば、特許文献1参照)。 As a power generation system using sunlight, a photovoltaic device in which semiconductor thin films such as amorphous and microcrystals are stacked is used. In such a photovoltaic device, the structure which sealed the back surface on the opposite side to a light-receiving surface with a glass plate may be employ | adopted. When the back surface is sealed with a glass plate in this way, a configuration is adopted in which the current collector wiring of the photovoltaic device is drawn from the opening of the glass plate (see, for example, Patent Document 1).
 図9は、従来の光起電力装置100の裏面の集電配線の取り出し構造を示す。光起電力装置100の裏面はガラス板10によって封止され、ガラス板10に設けられた開口部10aから光起電力装置100からの起電力を取り出すための集電配線12が引き出される。開口部10aは、外部から水分等を浸入させないようにするためにホットメルト材によって封止される。 FIG. 9 shows a structure for taking out the current collecting wiring on the back surface of the conventional photovoltaic device 100. The back surface of the photovoltaic device 100 is sealed with a glass plate 10, and current collecting wiring 12 for taking out the electromotive force from the photovoltaic device 100 is drawn out from an opening 10 a provided in the glass plate 10. The opening 10a is sealed with a hot melt material so as not to allow moisture or the like to enter from the outside.
特開2011-124435公報JP 2011-124435 A
 ところで、集電配線12の厚さによってガラス板10には集電配線12の延設方向を稜線とした曲げ応力が掛かり、その稜線上に開口部10aが存在すると曲げ応力が集中してガラス板10が割れてしまうおそれがある。例えば、図9に示す構成の場合、集電配線12の延設方向を尾根として図の上下方向に撓みが発生し、開口部10aの端部からガラス板10に割れZが発生し易い。 By the way, depending on the thickness of the current collecting wiring 12, a bending stress is applied to the glass plate 10 with the extending direction of the current collecting wiring 12 as a ridge line, and if the opening 10a exists on the ridge line, the bending stress is concentrated. 10 may be broken. For example, in the case of the configuration shown in FIG. 9, bending occurs in the vertical direction in the drawing with the extending direction of the current collecting wiring 12 as a ridge, and a crack Z is likely to occur in the glass plate 10 from the end of the opening 10 a.
 本発明の1つの態様は、光起電力装置であって、光電変換ユニットと、光電変換ユニット上に設けられた絶縁被覆材と、絶縁被覆材上に設けられ、光電変換ユニットから電力を取り出すための集電配線と、光電変換ユニット、絶縁被覆材及び集電配線を覆い、集電配線を引き出すための開口部が設けられたガラス板と、光電変換ユニットとガラス板との間を充填する充填材と、開口部の周辺部において光電変換ユニットからの高さが絶縁被覆材より高くなるように設けられ、充填材と異なる材質のスペーサと、を備える。 One aspect of the present invention is a photovoltaic device, which is provided on a photoelectric conversion unit, an insulating coating material provided on the photoelectric conversion unit, and an insulating coating material to extract electric power from the photoelectric conversion unit. Current collecting wiring, a photoelectric conversion unit, an insulating coating material and a current collecting wiring, a glass plate provided with an opening for drawing out the current collecting wiring, and filling between the photoelectric conversion unit and the glass plate And a spacer made of a material different from the filler, provided so that the height from the photoelectric conversion unit is higher than that of the insulating coating material at the periphery of the opening.
 本発明によれば、光起電力装置の裏面を封止するガラス板の割れを防ぎ、光起電力装置の信頼性を高めることができる。 According to the present invention, it is possible to prevent breakage of the glass plate that seals the back surface of the photovoltaic device, and to improve the reliability of the photovoltaic device.
第1の実施の形態における光起電力装置の構造を示す平面図である。It is a top view which shows the structure of the photovoltaic apparatus in 1st Embodiment. 第1の実施の形態における光起電力装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photovoltaic apparatus in 1st Embodiment. 第1の実施の形態における光起電力装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photovoltaic apparatus in 1st Embodiment. 第1の実施の形態における光起電力装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photovoltaic apparatus in 1st Embodiment. 第1の実施の形態における光起電力装置の構造の別例を示す断面図である。It is sectional drawing which shows another example of the structure of the photovoltaic apparatus in 1st Embodiment. 第1の実施の形態における光起電力装置の構造の別例を示す断面図である。It is sectional drawing which shows another example of the structure of the photovoltaic apparatus in 1st Embodiment. 第1の実施の形態における光起電力装置の構造の別例を示す平面図である。It is a top view which shows another example of the structure of the photovoltaic apparatus in 1st Embodiment. 第1の実施の形態における光起電力装置の構造の別例を示す平面図である。It is a top view which shows another example of the structure of the photovoltaic apparatus in 1st Embodiment. 従来の光起電力装置の構造を示す平面図である。It is a top view which shows the structure of the conventional photovoltaic apparatus. 第2の実施の形態における光起電力装置の構成を示す平面図である。It is a top view which shows the structure of the photovoltaic apparatus in 2nd Embodiment. 第2の実施の形態における光起電力装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photovoltaic apparatus in 2nd Embodiment. 第2の実施の形態における光起電力装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photovoltaic apparatus in 2nd Embodiment. 第2の実施の形態における光電変換セルの構造を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion cell in 2nd Embodiment. 第2の実施の形態における光電変換セルの製造方法を示す図である。It is a figure which shows the manufacturing method of the photoelectric conversion cell in 2nd Embodiment. 第2の実施の形態における光電変換セルの製造方法を示す図である。It is a figure which shows the manufacturing method of the photoelectric conversion cell in 2nd Embodiment. 第2の実施の形態における光電変換セルの製造方法を示す図である。It is a figure which shows the manufacturing method of the photoelectric conversion cell in 2nd Embodiment. 第2の実施の形態における光電変換セルの製造方法を示す図である。It is a figure which shows the manufacturing method of the photoelectric conversion cell in 2nd Embodiment. 第2の実施の形態における光電変換セルの製造方法を示す図である。It is a figure which shows the manufacturing method of the photoelectric conversion cell in 2nd Embodiment. 第2の実施の形態における光電変換セルの製造方法を示す図である。It is a figure which shows the manufacturing method of the photoelectric conversion cell in 2nd Embodiment. 第2の実施の形態における光電変換セルの製造方法を示す図である。It is a figure which shows the manufacturing method of the photoelectric conversion cell in 2nd Embodiment. 第2の実施の形態における光電変換セルの製造方法を示す図である。It is a figure which shows the manufacturing method of the photoelectric conversion cell in 2nd Embodiment. 第2の実施の形態における光電変換セルの製造方法を示す図である。It is a figure which shows the manufacturing method of the photoelectric conversion cell in 2nd Embodiment. 第2の実施の形態における光電変換セルの製造方法を示す図である。It is a figure which shows the manufacturing method of the photoelectric conversion cell in 2nd Embodiment. 第2の実施の形態における光起電力装置の構造の別例を示す平面図である。It is a top view which shows another example of the structure of the photovoltaic apparatus in 2nd Embodiment.
<第1の実施の形態>
 図1~図4は、第1の実施の形態における光起電力装置200の構成を示す図である。図1は、光起電力装置200を受光面とは反対側である裏面からみた平面図である。図2は、図1のラインA-Aに沿った断面図である。図3は、図1のラインB-Bに沿った断面図である。図4は、図1のラインC-Cに沿った断面図である。なお、図1では、光起電力装置200の構成を明確に示すために実際には重なり合って見えない構成部分についても実線で示している。また、図1~図4では、構成を明確に示すために各部の寸法を実際のものとは変えて示している。
<First Embodiment>
1 to 4 are diagrams showing the configuration of the photovoltaic device 200 according to the first embodiment. FIG. 1 is a plan view of the photovoltaic device 200 as viewed from the back surface opposite to the light receiving surface. FIG. 2 is a cross-sectional view taken along line AA in FIG. FIG. 3 is a sectional view taken along line BB in FIG. FIG. 4 is a cross-sectional view taken along line CC in FIG. In FIG. 1, in order to clearly show the configuration of the photovoltaic device 200, components that are actually overlapped and cannot be seen are shown by solid lines. Also, in FIGS. 1 to 4, the dimensions of each part are shown different from actual ones in order to clearly show the configuration.
 光起電力装置200は、図1~図4に示すように、基板20、透明電極層22、光電変換層24、裏面電極26、第1集電配線28、第1絶縁被覆材30、第2集電配線32、第2絶縁被覆材34、ガラス板36、充填材38、端部封止樹脂40、端子ボックス42、開口部封止材44及びスペーサ46を含んで構成される。なお、第1絶縁被覆材30及び第2絶縁被覆材34は、テープ状、シート状、フィルム状である。 As shown in FIGS. 1 to 4, the photovoltaic device 200 includes a substrate 20, a transparent electrode layer 22, a photoelectric conversion layer 24, a back electrode 26, a first current collector wiring 28, a first insulating coating material 30, a second The current collector wiring 32, the second insulating coating material 34, the glass plate 36, the filler 38, the end sealing resin 40, the terminal box 42, the opening sealing material 44, and the spacer 46 are configured. In addition, the 1st insulation coating material 30 and the 2nd insulation coating material 34 are tape shape, a sheet form, and a film form.
 基板20は、光起電力装置200の光電変換パネルを機械的に支持する部材である。光起電力装置200では基板20側から光を入射させて発電を行う構成であるので、基板20は、例えば、ガラス基板、プラスチック基板等の少なくとも可視光波長領域において透過性を有する材料を適用する。 The substrate 20 is a member that mechanically supports the photoelectric conversion panel of the photovoltaic device 200. Since the photovoltaic device 200 is configured to generate power by making light incident from the substrate 20 side, the substrate 20 is made of a material having transparency in at least a visible light wavelength region, such as a glass substrate or a plastic substrate. .
 基板20上には透明電極層22が形成される。透明電極層22は、酸化錫(SnO2)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種を組み合わせて用いることが好適である。特に、酸化亜鉛(ZnO)は、透光性が高く、抵抗率が低く、耐プラズマ特性にも優れているので好適である。透明電極層22はスパッタリング法又はCVD法で形成することができる。 A transparent electrode layer 22 is formed on the substrate 20. The transparent electrode layer 22 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) is preferable because it has high translucency, low resistivity, and excellent plasma resistance. The transparent electrode layer 22 can be formed by a sputtering method or a CVD method.
 光電変換層24を複数直列に接続した構成とする場合、透明電極層22を短冊状にパターニングして分割する。本実施の形態では、図1の上下方向に沿って透明電極層22に第1スリットS1を形成して分割する。また、光電変換層24を並列に分割した構成とする場合、上記直列接続を形成するための第1スリットS1に直交する方向に短冊状にパターンニングして透明電極層22を分割する。本実施の形態では、図1の左右方向に沿って透明電極層22に第2スリットS2を形成して分割する。例えば、波長1064nm、エネルギー密度13J/cm2、パルス周波数3kHzのYAGレーザを用いて透明電極層22をパターニングすることができる。 In the case where a plurality of photoelectric conversion layers 24 are connected in series, the transparent electrode layer 22 is divided into strips by patterning. In the present embodiment, the first slit S1 is formed and divided in the transparent electrode layer 22 along the vertical direction of FIG. Moreover, when it is set as the structure which divided | segmented the photoelectric converting layer 24 in parallel, it patterns in a strip shape in the direction orthogonal to 1st slit S1 for forming the said serial connection, and the transparent electrode layer 22 is divided | segmented. In the present embodiment, the second slit S2 is formed and divided in the transparent electrode layer 22 along the left-right direction of FIG. For example, the transparent electrode layer 22 can be patterned using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
 透明電極層22上に、p型層、i型層、n型層のシリコン系薄膜を順に積層して光電変換層24を形成する。光電変換層24は、アモルファスシリコン薄膜光電変換層や微結晶シリコン薄膜光電変換層等の薄膜系光電変換層とすることができる。また、これらの光電変換層を積層したタンデム型やトリプル型の光電変換層としてもよい。 A photoelectric conversion layer 24 is formed by sequentially laminating a p-type layer, an i-type layer, and an n-type silicon thin film on the transparent electrode layer 22. The photoelectric conversion layer 24 can be a thin film photoelectric conversion layer such as an amorphous silicon thin film photoelectric conversion layer or a microcrystalline silicon thin film photoelectric conversion layer. Alternatively, a tandem or triple photoelectric conversion layer in which these photoelectric conversion layers are stacked may be used.
 アモルファスシリコン薄膜光電変換層や微結晶シリコン薄膜光電変換層は、シラン(SiH4)、ジシラン(Si26)、ジクロルシラン(SiH2Cl2)等のシリコン含有ガス、メタン(CH4)等の炭素含有ガス、ジボラン(B26)等のp型ドーパント含有ガス、フォスフィン(PH3)等のn型ドーパント含有ガス及び水素(H2)等の希釈ガスを混合した混合ガスをプラズマ化して成膜を行うプラズマ化学気相成長法(CVD法)により形成することができる。プラズマCVD法は、例えば、13.56MHzの平行平板型RFプラズマCVD法を適用することが好適である。 Amorphous silicon thin film photoelectric conversion layer and microcrystalline silicon thin film photoelectric conversion layer are made of silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), methane (CH 4 ), etc. A mixed gas obtained by mixing a carbon-containing gas, a p-type dopant-containing gas such as diborane (B 2 H 6 ), an n-type dopant-containing gas such as phosphine (PH 3 ), and a diluent gas such as hydrogen (H 2 ) is converted into plasma. It can be formed by a plasma chemical vapor deposition method (CVD method) in which a film is formed. As the plasma CVD method, for example, a 13.56 MHz parallel plate RF plasma CVD method is preferably applied.
 複数のセルを直列接続する場合、光電変換層24を短冊状にパターニングして分割する。例えば、透明電極層22を分割する第1スリットS1から50μm横の位置にYAGレーザを照射して第3スリットS3を形成して光電変換層24を短冊状にパターニングする。YAGレーザは、例えば、エネルギー密度0.7J/cm2、パルス周波数3kHzのものを用いることが好適である。 When a plurality of cells are connected in series, the photoelectric conversion layer 24 is divided into strips by patterning. For example, the YAG laser is irradiated to a position 50 μm lateral from the first slit S1 dividing the transparent electrode layer 22 to form the third slit S3, and the photoelectric conversion layer 24 is patterned into a strip shape. For example, a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
 光電変換層24上に、裏面電極26を形成する。裏面電極26は、透明導電性酸化物(TCO)と反射性金属とをこの順に積層した構造とすることが好適である。透明導電性酸化物(TCO)としては、酸化錫(SnO2)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等の透明導電性酸化物(TCO)、又は、これらの透明導電性酸化物(TCO)に不純物をドープしたものが用いられる。例えば、酸化亜鉛(ZnO)にアルミニウム(Al)を不純物としてドープしたものでもよい。また、反射性金属としては、銀(Ag)、アルミニウム(Al)等の金属が用いられる。透明導電性酸化物(TCO)及び反射性金属は、例えば、スパッタリング法又はCVD法等により形成することができる。透明導電性酸化物(TCO)と反射性金属の少なくとも一方には、光閉じ込め効果を高めるための凹凸を設けることが好適である。 A back electrode 26 is formed on the photoelectric conversion layer 24. The back electrode 26 preferably has a structure in which a transparent conductive oxide (TCO) and a reflective metal are laminated in this order. As the transparent conductive oxide (TCO), a transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or these transparent conductive oxides A material (TCO) doped with impurities is used. For example, zinc oxide (ZnO) doped with aluminum (Al) as an impurity may be used. Moreover, as a reflective metal, metals, such as silver (Ag) and aluminum (Al), are used. The transparent conductive oxide (TCO) and the reflective metal can be formed by, for example, a sputtering method or a CVD method. It is preferable that at least one of the transparent conductive oxide (TCO) and the reflective metal is provided with unevenness for enhancing the light confinement effect.
 複数の光電変換層24を直列接続する場合、裏面電極26を短冊状にパターニングして分割する。光電変換層24をパターンニングする第3スリットS3の位置から50μm横の位置にYAGレーザを照射して第4スリットS4を形成して裏面電極26を短冊状にパターニングする。さらに、光電変換層24を並列に分割した構成とする場合、透明電極層22を分割する第2スリットS2内に形成された光電変換層24及び裏面電極26を分割する第5スリットS5を形成して分割する。YAGレーザは、エネルギー密度0.7J/cm2、パルス周波数4kHzのものを用いることが好適である。 When a plurality of photoelectric conversion layers 24 are connected in series, the back electrode 26 is divided into strips by patterning. A YAG laser is irradiated to a position 50 μm lateral from the position of the third slit S3 for patterning the photoelectric conversion layer 24 to form a fourth slit S4, and the back electrode 26 is patterned into a strip shape. Further, when the photoelectric conversion layer 24 is divided in parallel, the photoelectric conversion layer 24 formed in the second slit S2 dividing the transparent electrode layer 22 and the fifth slit S5 dividing the back electrode 26 are formed. And split. A YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
 このように基板20上に透明電極層22、光電変換層24及び裏面電極26を積層して光電変換セル202が形成される。続いて、光電変換セル202で発電された電力を取り出すために第1集電配線28及び第2集電配線32が形成される。第1集電配線28は、並列に分割された光電変換セル202から集電を行うための配線であり、第2集電配線32は、第1集電配線28から端子ボックス42までを接続する配線である。 In this way, the transparent electrode layer 22, the photoelectric conversion layer 24, and the back electrode 26 are laminated on the substrate 20 to form the photoelectric conversion cell 202. Subsequently, the first current collecting wiring 28 and the second current collecting wiring 32 are formed in order to take out the electric power generated by the photoelectric conversion cell 202. The first current collecting wiring 28 is a wiring for collecting current from the photoelectric conversion cells 202 divided in parallel, and the second current collecting wiring 32 connects the first current collecting wiring 28 to the terminal box 42. Wiring.
 まず、光電変換セル202の裏面電極26上に第1集電配線28が延設される。第1集電配線28は、光起電力装置200の端辺付近において並列に分割された光電変換層24の正電極同士及び負電極同士を接続するために形成される。したがって、第1集電配線28は、光電変換層24の並列分割方向に直交する方向に沿って延設される。すなわち、図1及び図3に示すように、第2スリットS2及び第5スリットS5によって並列に分割された光電変換セル202を並列に接続するように、第2スリットS2及び第5スリットS5を跨いで裏面電極26上に延設される。ここでは、第1集電配線28は、図1における左右の端辺に上下方向に沿って延設される。ただし、図1に示される上下の端辺近傍において、光電変換機能を有さない光電変換層と、その端辺近傍の第2スリットS2及び第5スリットS5とは跨がない。第1集電配線28は、超音波はんだ等によって裏面電極26に電気的に接続される。これによって、直列接続された光電変換セル202の正電極同士及び負電極同士が並列に接続される。 First, the first current collecting wiring 28 is extended on the back electrode 26 of the photoelectric conversion cell 202. The first current collector wiring 28 is formed to connect the positive electrodes and the negative electrodes of the photoelectric conversion layer 24 divided in parallel near the end of the photovoltaic device 200. Therefore, the first current collection wiring 28 extends along a direction orthogonal to the parallel division direction of the photoelectric conversion layer 24. That is, as shown in FIGS. 1 and 3, the photoelectric conversion cells 202 divided in parallel by the second slit S2 and the fifth slit S5 are straddled across the second slit S2 and the fifth slit S5 so as to be connected in parallel. Is extended on the back electrode 26. Here, the 1st current collection wiring 28 is extended along the up-and-down direction at the right and left end sides in FIG. However, in the vicinity of the upper and lower edges shown in FIG. 1, the photoelectric conversion layer that does not have a photoelectric conversion function does not straddle the second slit S <b> 2 and the fifth slit S <b> 5 near the edge. The first current collector wiring 28 is electrically connected to the back electrode 26 by ultrasonic soldering or the like. Thereby, the positive electrodes and the negative electrodes of the photoelectric conversion cells 202 connected in series are connected in parallel.
 次に、第2集電配線32と裏面電極26との間の電気的な絶縁を形成するために第1絶縁被覆材30を配設する。第1絶縁被覆材30は、図1,図2及び図4に示すように、光起電力装置200の左右の端辺に沿って設けられた第1集電配線28近傍から中央部の端子ボックス42の配置位置まで、第4スリットS4を跨いで裏面電極26上に直列分割方向に直交する方向に沿って延設される。ここでは、図1に示すように、第1絶縁被覆材30は、左右の第1集電配線28の近傍から端子ボックス42に向けて左右方向に沿って延設される。第1絶縁被覆材30は、抵抗率が1016(Ωcm)以上の絶縁性の材料で構成することが好適である。例えば、ポリエステル(PE)、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリフッ化ビニル等とすることが好適である。また、第1絶縁被覆材30は、裏面にシール状に接着材が塗布されたものを用いることが好適である。これにより、第1絶縁被覆材30を配設する際の手間が軽減される。 Next, in order to form electrical insulation between the second current collecting wiring 32 and the back electrode 26, the first insulating covering material 30 is disposed. As shown in FIGS. 1, 2, and 4, the first insulating covering material 30 is a terminal box located near the first current collector wiring 28 provided along the left and right edges of the photovoltaic device 200. It extends along the direction orthogonal to the serial division direction on the back electrode 26 across the fourth slit S4 to the arrangement position of 42. Here, as shown in FIG. 1, the first insulating covering material 30 extends in the left-right direction from the vicinity of the left and right first current collecting wires 28 toward the terminal box 42. The first insulating coating material 30 is preferably made of an insulating material having a resistivity of 10 16 (Ωcm) or more. For example, polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride and the like are suitable. Moreover, it is suitable to use the 1st insulating coating material 30 by which the adhesive material was apply | coated to the back surface in the seal form. Thereby, the trouble at the time of arrange | positioning the 1st insulating coating | covering material 30 is reduced.
 第2集電配線32は、図1,図2及び図4に示すように、左右の第1集電配線28上から第1絶縁被覆材30上に沿って光起電力装置200の中央部へ向けて延設される。例えば、第2集電配線32の幅は4mm及び厚さは110μmとされる。第2集電配線32と裏面電極26との間に第1絶縁被覆材30が挟み込まれ、第2集電配線32と裏面電極26との直接的な電気的な接触がないようにされる。一方、第2集電配線32の一端は第1集電配線28上まで延設され、第1集電配線28に電気的に接続される。例えば、第2集電配線32は超音波はんだ等によって第1集電配線28に電気的に接続することが好適である。第2集電配線32の他端は、図1及び図2に示すように、ガラス板36の開口部36aから引き出される。第2集電配線32の他端は、端子ボックス42内の電極端子(図示しない)に接続される。これにより、光電変換セル202で発電された電力が光起電力装置200の外部へ取り出される。 As shown in FIGS. 1, 2, and 4, the second current collecting wiring 32 extends from the left and right first current collecting wirings 28 to the center of the photovoltaic device 200 along the first insulating covering material 30. It is extended toward. For example, the second current collecting wiring 32 has a width of 4 mm and a thickness of 110 μm. The first insulating coating material 30 is sandwiched between the second current collector wiring 32 and the back electrode 26 so that there is no direct electrical contact between the second current collector wiring 32 and the back electrode 26. On the other hand, one end of the second current collecting wiring 32 extends to the first current collecting wiring 28 and is electrically connected to the first current collecting wiring 28. For example, the second current collecting wiring 32 is preferably electrically connected to the first current collecting wiring 28 by ultrasonic soldering or the like. As shown in FIGS. 1 and 2, the other end of the second current collecting wiring 32 is drawn out from the opening 36 a of the glass plate 36. The other end of the second current collector wiring 32 is connected to an electrode terminal (not shown) in the terminal box 42. Thereby, the electric power generated by the photoelectric conversion cell 202 is taken out of the photovoltaic device 200.
 なお、複数の第2集電配線32に対して1つの第1絶縁被覆材30を共通に設けてもよい。例えば、第1絶縁被覆材30は、第1絶縁被覆材30が左側の第1集電配線28の近傍から右側の第1集電配線28の近傍まで、端子ボックス42部分を含むように一体に形成されていてもよい。 In addition, you may provide the 1st insulating coating material 30 in common with respect to several 2nd current collection wiring 32. As shown in FIG. For example, the first insulation coating material 30 is integrated so that the first insulation coating material 30 includes the terminal box 42 portion from the vicinity of the left first current collection wiring 28 to the vicinity of the right first current collection wiring 28. It may be formed.
 第2集電配線32の端子ボックス42側の端部の周辺にはスペーサ46が配置される。スペーサ46は、ガラス板36に設けられた開口部36aからの割れを抑制するために設けられる。スペーサ46の好適な材料、形状及び配置等については後述する。 A spacer 46 is disposed around the end of the second current collector wiring 32 on the terminal box 42 side. The spacer 46 is provided in order to suppress cracks from the opening 36 a provided in the glass plate 36. A suitable material, shape, arrangement, and the like of the spacer 46 will be described later.
 第2絶縁被覆材34は、少なくとも後述する端部封止樹脂40の近傍に位置する透明電極層22、光電変換層24、裏面電極26及び第1集電配線28の一部を覆うように設ける。特に、透明電極層22、光電変換層24、裏面電極26及び第1集電配線28の、端部封止樹脂40に対向する部分の少なくとも一部(透明電極層22、光電変換層24、裏面電極26及び第1集電配線28の端面)を覆うように設けることが好適である。 The second insulating coating material 34 is provided so as to cover at least a part of the transparent electrode layer 22, the photoelectric conversion layer 24, the back electrode 26, and the first current collector wiring 28 located in the vicinity of the end sealing resin 40 described later. . In particular, at least a part of the transparent electrode layer 22, the photoelectric conversion layer 24, the back electrode 26, and the first current collector wiring 28 facing the end sealing resin 40 (the transparent electrode layer 22, the photoelectric conversion layer 24, the back surface It is preferable to provide the electrode 26 and the first current collector wiring 28 so as to cover the end surfaces thereof.
 本実施の形態では、第2絶縁被覆材34は、図1及び図3に示すように、透明電極層22、光電変換層24、裏面電極26及び第1集電配線28の端部を覆い、第1絶縁被覆材30の端部まで到達しないように光電変換層24の並列分割方向に直交する方向に沿って延設している。なお、第2絶縁被覆材34は、第1絶縁被覆材30の端部を被覆するように延設してもよい。 In the present embodiment, as shown in FIGS. 1 and 3, the second insulating coating material 34 covers the transparent electrode layer 22, the photoelectric conversion layer 24, the back electrode 26, and the first current collector wiring 28, The photoelectric conversion layer 24 extends along a direction orthogonal to the parallel division direction so as not to reach the end of the first insulating coating material 30. The second insulating coating material 34 may extend so as to cover the end portion of the first insulating coating material 30.
 第2絶縁被覆材34は、抵抗率が1016(Ωcm)以上の絶縁性の材料で構成することが好適である。例えば、ポリエステル(PE)、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリフッ化ビニル等とすることが好適である。また、第2絶縁被覆材34は、裏面にシール状に接着剤が塗布されたものを用いることが好適である。これにより、第2絶縁被覆材34を配設する際の手間が軽減される。 The second insulating covering material 34 is preferably composed of an insulating material having a resistivity of 10 16 (Ωcm) or more. For example, polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride and the like are suitable. In addition, it is preferable to use the second insulating coating material 34 in which an adhesive is applied to the back surface in a sealing manner. Thereby, the trouble at the time of arrange | positioning the 2nd insulation coating material 34 is reduced.
 続いて、端部封止樹脂40を配設する。端部封止樹脂40は、光起電力装置200の端部周辺の光電変換セル202を形成していない部分(幅7mm~15mm程度)に配設する。光起電力装置200の端部周辺において光電変換セル202を形成していない部分を設けるには、光電変換セル202を形成する際に透明電極層22、光電変換層24及び裏面電極26が形成されないよう枠部材を用いて基板20の周囲をマスクして成膜処理を行ってもよいし、光電変換セル202を形成後にレーザ、サンドブラスト又はエッチングによって光起電力装置200の端部周辺の光電変換セル202を除去してもよい。端部封止樹脂40は、このようにして形成された光起電力装置200の端部周辺の光電変換セル202を形成していない部分に塗布することによって設けられる。 Subsequently, the end sealing resin 40 is disposed. The end sealing resin 40 is disposed in a portion (width of about 7 mm to 15 mm) around the end of the photovoltaic device 200 where the photoelectric conversion cell 202 is not formed. In order to provide a portion where the photoelectric conversion cell 202 is not formed around the edge of the photovoltaic device 200, the transparent electrode layer 22, the photoelectric conversion layer 24, and the back electrode 26 are not formed when the photoelectric conversion cell 202 is formed. The frame member may be used to mask the periphery of the substrate 20, and the photoelectric conversion cell around the edge of the photovoltaic device 200 may be formed by laser, sandblasting or etching after the photoelectric conversion cell 202 is formed. 202 may be removed. The end sealing resin 40 is provided by applying to the portion around the end of the photovoltaic device 200 formed in this way where the photoelectric conversion cell 202 is not formed.
 端部封止樹脂40は、抵抗率が1010(Ωcm)以上の絶縁材料とする。また、端部封止樹脂40は、光起電力装置200の端部からの水分の浸入を防ぐために水分の透過性の低い材料とすることが好適である。特に、端部封止樹脂40は、充填材38よりも水分の透過性の低い材料とすることが好適である。さらに、光起電力装置200の端部に機械的な力が加えられた場合に、光起電力装置200に発生する応力を緩和するための弾性を有することが好適である。例えば、端部封止樹脂40は、エポキシ系樹脂やブチル系樹脂とすることが好適であり、例えば、高温での塗布及び接着が容易なホットメルトブチルを適用することが好適である。なお、端部封止樹脂40は、その幅は6mm~10mm程度であり、厚さは充填材38の厚さよりも0.05mm~0.2mm程度厚くする。ラミネート処理を施した後には、端部封止樹脂40の厚さは充填材38とほぼ同等の厚さとなる。 The end sealing resin 40 is an insulating material having a resistivity of 10 10 (Ωcm) or more. Further, the end sealing resin 40 is preferably made of a material having low moisture permeability in order to prevent moisture from entering from the end of the photovoltaic device 200. In particular, the end sealing resin 40 is preferably made of a material having a moisture permeability lower than that of the filler 38. Furthermore, it is preferable to have elasticity to relieve stress generated in the photovoltaic device 200 when a mechanical force is applied to the end portion of the photovoltaic device 200. For example, the end sealing resin 40 is preferably an epoxy resin or a butyl resin, and for example, it is preferable to apply hot melt butyl which is easy to apply and adhere at high temperatures. The end sealing resin 40 has a width of about 6 mm to 10 mm and a thickness of about 0.05 mm to 0.2 mm thicker than the thickness of the filler 38. After the laminating process is performed, the thickness of the end sealing resin 40 is substantially the same as that of the filler 38.
 端部封止樹脂40を塗布した後、ガラス板36によって光起電力装置200の裏面を封止する。光電変換セル202、第1集電配線28及び第2集電配線32等の上に液状の充填材38を塗布又はシート状の充填材38を設置する。充填材38は、絶縁樹脂とする。例えば、充填材38は、抵抗率が1014(Ωcm)程度の絶縁材料とすることが好適であり、例えば、エチレン酢酸ビニル共重合樹脂(EVA)やポリビニルブラチール(PVB)とすることが好適である。 After the end sealing resin 40 is applied, the back surface of the photovoltaic device 200 is sealed with the glass plate 36. A liquid filler 38 is applied or a sheet-like filler 38 is placed on the photoelectric conversion cell 202, the first current collector wiring 28, the second current collector wiring 32, and the like. The filler 38 is an insulating resin. For example, the filler 38 is preferably an insulating material having a resistivity of about 10 14 (Ωcm), for example, ethylene vinyl acetate copolymer resin (EVA) or polyvinyl bratil (PVB). It is.
 次に、ガラス板36で光起電力装置200の裏面が覆われる。このとき、ガラス板36に設けられた第2集電配線32を引き出すための開口部36aを通して第2集電配線32の端部を外部へ引き出した状態でガラス板36を配置する。 Next, the back surface of the photovoltaic device 200 is covered with the glass plate 36. At this time, the glass plate 36 is disposed in a state in which the end of the second current collecting wiring 32 is drawn out through the opening 36 a for drawing out the second current collecting wiring 32 provided on the glass plate 36.
 このような状態において、ガラス板36を光電変換セル202側へ押圧しながら加熱して真空ラミネート処理を施す。加熱処理は、例えば、150℃程度で行う。これにより、ガラス板36によって光起電力装置200の裏面が封止される。 In such a state, the glass plate 36 is heated while being pressed toward the photoelectric conversion cell 202, and vacuum lamination is performed. The heat treatment is performed at about 150 ° C., for example. Thereby, the back surface of the photovoltaic device 200 is sealed by the glass plate 36.
 また、図2及び図4に示すように、開口部36a及び端子ボックス42内は、開口部封止材44によって封止される。例えば、開口部36a及び端子ボックス42内に封止材料からなるチップを入れ、加熱によりチップを軟化させた後に冷却して硬化させる。開口部封止材44は、例えば、ホットメルトブチルを適用することが好適である。あるいは、端子ボックス42の固着後に、開口部36aを含む端子ボックス42内に封止材料からなるポッティング材を入れて硬化させる。この場合、ポッティング材にはシリコーンを適用することが好適である。 Further, as shown in FIGS. 2 and 4, the opening 36 a and the inside of the terminal box 42 are sealed with an opening sealing material 44. For example, a chip made of a sealing material is placed in the opening 36a and the terminal box 42, and the chip is softened by heating and then cooled and cured. As the opening sealing member 44, for example, hot melt butyl is preferably applied. Alternatively, after the terminal box 42 is fixed, a potting material made of a sealing material is placed in the terminal box 42 including the opening 36a and cured. In this case, it is preferable to apply silicone to the potting material.
 このように、ガラス板36によって光起電力装置200の裏面を封止することによって、裏面から光電変換層24への水分や腐食性物質が浸入することを防ぐことができ、光起電力装置200の耐環境性を高めることができる。 Thus, by sealing the back surface of the photovoltaic device 200 with the glass plate 36, it is possible to prevent moisture and corrosive substances from entering the photoelectric conversion layer 24 from the back surface, and the photovoltaic device 200. Can improve the environmental resistance.
 次に、スペーサ46について説明する。例えば、スペーサ46は、図1の平面図及び図4の断面図に示すように、第1絶縁被覆材30及び第2集電配線32の周囲の光電変換セル202上に配置される。または、図5の断面図に示すように、第1絶縁被覆材30の幅を広くし、スペーサ46を第2集電配線32の周辺の第1絶縁被覆材30上に配置した構成としてもよい。さらに、図6の断面図に示すように、スペーサ46を第1絶縁被覆材30上から光電変換セル202上へと跨って配置した構成としてもよい。 Next, the spacer 46 will be described. For example, as shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 4, the spacer 46 is disposed on the photoelectric conversion cell 202 around the first insulating coating material 30 and the second current collector wiring 32. Alternatively, as shown in the cross-sectional view of FIG. 5, the width of the first insulating coating material 30 may be widened, and the spacer 46 may be disposed on the first insulating coating material 30 around the second current collector wiring 32. . Further, as shown in the cross-sectional view of FIG. 6, the spacer 46 may be arranged so as to straddle from the first insulating coating material 30 to the photoelectric conversion cell 202.
 スペーサ46は、ガラス板36の開口部36aの周辺領域においてガラス板36に撓みが発生した際に、ガラス板36に掛かる応力を従来より緩和するように光電変換セル202とガラス板36との間隔を維持する厚さとする。すなわち、スペーサ46は、開口部36aの周辺部において、光電変換ユニット202からの高さが少なくとも第1絶縁被覆材30以上となるようにする。 The spacer 46 is a space between the photoelectric conversion cell 202 and the glass plate 36 so as to relieve stress applied to the glass plate 36 from the conventional case when the glass plate 36 is bent in the peripheral region of the opening 36a of the glass plate 36. The thickness should be maintained. That is, the spacer 46 is set so that the height from the photoelectric conversion unit 202 is at least equal to or higher than the first insulating coating material 30 in the peripheral portion of the opening 36a.
 より好ましくは、スペーサ46は、ガラス板36の開口部36aの周辺領域において第2集電配線32がガラス板36に接触しないように光電変換セル202とガラス板36との間隔を維持する厚さとする。すなわち、スペーサ46は、開口部36aの周辺部において、光電変換ユニット202からの高さが第2集電配線32の高さ以上となるようにすることがより好ましい。 More preferably, the spacer 46 has a thickness that maintains the distance between the photoelectric conversion cell 202 and the glass plate 36 so that the second current collecting wiring 32 does not contact the glass plate 36 in the peripheral region of the opening 36 a of the glass plate 36. To do. That is, it is more preferable that the spacer 46 has a height from the photoelectric conversion unit 202 equal to or higher than the height of the second current collector wiring 32 in the peripheral portion of the opening 36a.
 例えば、第1絶縁被覆材30の厚さが50μm程度、第2集電配線32の厚さが110μm程度であったとすると、光電変換ユニット202からスペーサ46の上端までの高さを160μm以上とすることが好ましい。 For example, assuming that the thickness of the first insulating coating material 30 is about 50 μm and the thickness of the second current collector wiring 32 is about 110 μm, the height from the photoelectric conversion unit 202 to the upper end of the spacer 46 is set to 160 μm or more. It is preferable.
 スペーサ46が設けられていない従来の構成では、開口部36a周辺においてガラス板36と光電変換ユニット202との間に充填材38が充填されているだけであり、開口部36a周辺に曲げ応力が集中し易くなる。一方、本実施の形態では、スペーサ46によって、ガラス板36と光電変換ユニット202との隙間が埋められており、開口部36a周辺への曲げ応力が緩和される。これにより、開口部36a周辺での割れの発生を抑制できる。 In the conventional configuration in which the spacer 46 is not provided, only the filler 38 is filled between the glass plate 36 and the photoelectric conversion unit 202 around the opening 36a, and bending stress is concentrated around the opening 36a. It becomes easy to do. On the other hand, in the present embodiment, the gap between the glass plate 36 and the photoelectric conversion unit 202 is filled by the spacer 46, and the bending stress around the opening 36a is alleviated. Thereby, generation | occurrence | production of the crack in the opening part 36a periphery can be suppressed.
 光電変換セル202上に配置する場合、スペーサ46は、電気的な絶縁性を有し、充填材38と異なる材質とする。例えば、スペーサ46は、抵抗率が1016(Ωcm)以上の絶縁性の材料で構成することが好適である。また、第1絶縁被覆材30上に配置する場合、スペーサ46は導電性を有する材料で構成してもよいし、絶縁性を有する材料で構成してもよい。 In the case of being arranged on the photoelectric conversion cell 202, the spacer 46 has an electrical insulating property and is made of a material different from the filler 38. For example, the spacer 46 is preferably made of an insulating material having a resistivity of 10 16 (Ωcm) or more. Moreover, when arrange | positioning on the 1st insulating coating | covering material 30, the spacer 46 may be comprised with the material which has electroconductivity, and may be comprised with the material which has insulation.
 また、ガラス板36を光電変換セル202側へ押し付けた際に第2集電配線32がガラス板36に接触しないように光電変換セル202とガラス板36との間隔を確保するために、スペーサ46は充填材38より弾性が高い材質とすることが好適である。 Further, in order to ensure a space between the photoelectric conversion cell 202 and the glass plate 36 so that the second current collecting wiring 32 does not contact the glass plate 36 when the glass plate 36 is pressed to the photoelectric conversion cell 202 side, a spacer 46 is provided. Is preferably made of a material having higher elasticity than the filler 38.
 具体的には、スペーサ46は、ポリエステル(PE)、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリフッ化ビニル等とすることが好適である。また、スペーサ46は、第1絶縁被覆材30と同様に、裏面にシール状に接着材が塗布されたものを用いることが好適である。 Specifically, the spacer 46 is preferably made of polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride, or the like. In addition, like the first insulating coating material 30, it is preferable to use a spacer 46 having an adhesive applied to the back surface in a seal shape.
 次に、スペーサ46の平面形状について説明する。スペーサ46は、例えば、図1の平面図に示すように、開口部36aの周囲を取り囲むように、第2集電配線32の延設領域及び引き出し領域を除く領域にスペーサ46を配置することが好適である。 Next, the planar shape of the spacer 46 will be described. For example, as shown in the plan view of FIG. 1, the spacer 46 may be disposed in a region excluding the extension region and the lead-out region of the second current collector wiring 32 so as to surround the opening 36 a. Is preferred.
 このとき、スペーサ46の内縁にガラス板36が押し付けられた際に開口部36a近傍に曲げ応力が集中しないように、開口部36aの縁に接する又は開口部36aより内側までスペーサ46を設けることが好適である。また、スペーサ46の外縁にガラス板36が押し付けられた際にスペーサ46の外周部分の一部においてガラス板36に曲げ応力が集中しないように、スペーサ46の外周形状は円弧状とすることが好適である。 At this time, when the glass plate 36 is pressed against the inner edge of the spacer 46, the spacer 46 is provided so as to be in contact with the edge of the opening 36a or to the inside of the opening 36a so that bending stress is not concentrated in the vicinity of the opening 36a. Is preferred. Further, the outer peripheral shape of the spacer 46 is preferably an arc so that bending stress is not concentrated on the glass plate 36 in a part of the outer peripheral portion of the spacer 46 when the glass plate 36 is pressed against the outer edge of the spacer 46. It is.
 また、スペーサ46は、図7の平面図に示すように、第2集電配線32の延設方向に沿って、第2集電配線32を挟むように両側に延設してもよい。また、図8に示すように、第2集電配線32を直線上に配置せず、光電変換セル202の並列接続方向に互い違いにずらして配置し、その両側にスペーサ46を配置してもよい。 Further, as shown in the plan view of FIG. 7, the spacer 46 may extend on both sides so as to sandwich the second current collector wiring 32 along the direction in which the second current collector wiring 32 extends. Further, as shown in FIG. 8, the second current collecting wirings 32 may not be arranged on a straight line, but may be staggered in the parallel connection direction of the photoelectric conversion cells 202, and the spacers 46 may be arranged on both sides thereof. .
 このように、スペーサ46を第2集電配線32に沿って両側に配置することによって、ガラス板36の開口部36a付近に発生する撓みの曲率が緩和され、開口部36a近傍におけるガラス板36の割れの発生を抑制することができる。すなわち、スペーサ46を複数並置させることによって、スペーサ46の延設領域を尾根としてガラス板36に撓みが発生したときの曲げ曲率が大きくなり、ガラス板36への応力集中が緩和される。 In this manner, by arranging the spacers 46 on both sides along the second current collecting wiring 32, the curvature of bending generated in the vicinity of the opening 36a of the glass plate 36 is reduced, and the glass plate 36 in the vicinity of the opening 36a is relaxed. Generation of cracks can be suppressed. That is, by arranging a plurality of spacers 46 in parallel, the bending curvature when the glass plate 36 is bent with the extended region of the spacer 46 as a ridge increases, and the stress concentration on the glass plate 36 is alleviated.
 なお、図7及び図8は例示であり、開口部36aへの導入部分においてスペーサ46が並置された構成であれば同様の効果が得られる。 7 and 8 are examples, and the same effect can be obtained if the spacers 46 are juxtaposed in the introduction portion to the opening 36a.
 また、図7及び図8のスペーサ46の平面形状においても、図5及び図6に示したようにスペーサ46の全部又は一部が第1絶縁被覆材30上に配置される構成を採用することもできる。 In addition, in the planar shape of the spacer 46 in FIGS. 7 and 8, a configuration in which all or a part of the spacer 46 is disposed on the first insulating coating material 30 as shown in FIGS. 5 and 6 is adopted. You can also.
<第2の実施の形態>
 図10~図12は、第2の実施の形態における光起電力装置300の構成を示す図である。図10は、光起電力装置300を受光面とは反対側である裏面からみた平面図である。図11は、図10のラインD-Dに沿った断面図である。図12は、図10のラインE-Eに沿った断面図である。なお、図10では、光起電力装置300の構成を明確に示すために実際には重なり合って見えない構成部分についても実線で示している。また、図10~図12では、構成を明確に示すために各部の寸法を実際のものとは変えて示している。本実施の形態では、光起電力装置300は、複数の光電変換セル301を含んで構成される。
<Second Embodiment>
10 to 12 are diagrams showing the configuration of the photovoltaic device 300 according to the second embodiment. FIG. 10 is a plan view of the photovoltaic device 300 as viewed from the back surface, which is the side opposite to the light receiving surface. FIG. 11 is a cross-sectional view taken along line DD in FIG. 12 is a cross-sectional view taken along line EE of FIG. In FIG. 10, in order to clearly show the configuration of the photovoltaic device 300, components that are not actually seen overlapping are also shown by solid lines. In FIGS. 10 to 12, the dimensions of each part are shown different from actual ones in order to clearly show the configuration. In the present embodiment, the photovoltaic device 300 includes a plurality of photoelectric conversion cells 301.
 光電変換セル301は、図13の断面図に示すように、パッシベーション層56、ベース層54、第1導電型層52、絶縁層60、i型層62、第2導電型層64、透明電極層66及び金属層68(第1電極68n、第2電極68p)を含んで構成される。光電変換セル301は、裏面接合型(バックコンタクト型)の光起電力装置であり、受光面には電極が設けられず、裏面側のみに電極が設けられている。 As shown in the sectional view of FIG. 13, the photoelectric conversion cell 301 includes a passivation layer 56, a base layer 54, a first conductivity type layer 52, an insulating layer 60, an i-type layer 62, a second conductivity type layer 64, and a transparent electrode layer. 66 and a metal layer 68 (first electrode 68n, second electrode 68p). The photoelectric conversion cell 301 is a back junction type (back contact type) photovoltaic device, and no electrode is provided on the light receiving surface, and an electrode is provided only on the back side.
 光電変換セル301の発電層としてのベース層54は、結晶質の半導体層である。ベース層54は、n型のドーパントが添加されたn型結晶質シリコン層とする。ベース層54のドーピング濃度は、例えば、1016/cm3程度である。ベース層54の膜厚は、発電層として十分にキャリアを発生できる膜厚とすることが好ましく、例えば、1μm以上、100μm以下とすればよい。なお、結晶質とは、単結晶のみならず、多数の結晶粒が集合した多結晶も含むものとする。 The base layer 54 as a power generation layer of the photoelectric conversion cell 301 is a crystalline semiconductor layer. The base layer 54 is an n-type crystalline silicon layer to which an n-type dopant is added. The doping concentration of the base layer 54 is, for example, about 10 16 / cm 3 . The thickness of the base layer 54 is preferably set to a thickness that can generate carriers sufficiently as the power generation layer, and may be, for example, 1 μm or more and 100 μm or less. Note that the crystalline includes not only a single crystal but also a polycrystal in which a large number of crystal grains are aggregated.
 パッシベーション層56は、透光性部材58とベース層54との間に設けられる。パッシベーション層56は、ベース層54に含まれるSiの表面の未結合手(ダングリングボンド)を終端させる等の役割を果し、ベース層54の表面におけるキャリアの再結合を抑制する。パッシベーション層56を設けることによって、光起電力素子の受光面側においてベース層54の表面でのキャリアの再結合による損失を抑制することができる。パッシベーション層56は、例えば、窒化シリコン層(SiN)を含むようにすればよく、酸化シリコン層(SiOx)と窒化シリコン層との積層構造とすることがより好ましい。例えば、酸化シリコン層及び窒化シリコン層をそれぞれ30nm及び40nmの膜厚で順に積層した構造とすればよい。 The passivation layer 56 is provided between the translucent member 58 and the base layer 54. The passivation layer 56 plays a role of terminating dangling bonds (dangling bonds) on the surface of Si included in the base layer 54, and suppresses carrier recombination on the surface of the base layer 54. By providing the passivation layer 56, loss due to carrier recombination on the surface of the base layer 54 on the light receiving surface side of the photovoltaic element can be suppressed. The passivation layer 56 may include, for example, a silicon nitride layer (SiN), and more preferably has a stacked structure of a silicon oxide layer (SiOx) and a silicon nitride layer. For example, a structure in which a silicon oxide layer and a silicon nitride layer are sequentially stacked with a thickness of 30 nm and 40 nm, respectively, may be used.
 透光性部材58とパッシベーション層56とは、接着材を介さずに、直接接合した構造とする。透光性部材58とパッシベーション層56とを直接接合する方法としては、透光性部材58とパッシベーション層56との間に電圧を印加して張り合わせる陽極接合や、高真空中でイオンビームにより改質された透光性部材58とパッシベーション層56のそれぞれの表面を張り合わせる常温接合等が挙げられる。なお、透光性部材58とパッシベーション層56とを直接接合するのではなく、光起電力装置300で発電に利用される波長帯域の光を透過する接着材により接着してもよい。接着材料としては、例えば、EVA、PVB、シリコーン、各種オレフィン系樹脂等が挙げられる。 The translucent member 58 and the passivation layer 56 are structured to be directly joined without using an adhesive. As a method for directly joining the light transmissive member 58 and the passivation layer 56, anodic bonding in which a voltage is applied between the light transmissive member 58 and the passivation layer 56 and bonding is performed by ion beam in a high vacuum. For example, room-temperature bonding may be used in which the surfaces of the light-transmitting member 58 and the passivation layer 56 are bonded to each other. Note that the translucent member 58 and the passivation layer 56 may not be directly bonded, but may be bonded by an adhesive that transmits light in a wavelength band used for power generation in the photovoltaic device 300. Examples of the adhesive material include EVA, PVB, silicone, various olefin resins, and the like.
 第1導電型層52は、結晶質の半導体層である。第1導電型層52は、n型のドーパントが添加されたn型結晶質シリコン層とする。第1導電型層52は、金属層68(第1電極68n)と接合される層であり、ベース層54よりも高いドーピング濃度とされる。第1導電型層52のドーピング濃度は1019/cm3程度とすればよい。第1導電型層52の膜厚は、金属との接触抵抗を十分に低くできる範囲でできるだけ薄くすることが好ましく、例えば0.1μm以上、2μm以下とすればよい。 The first conductivity type layer 52 is a crystalline semiconductor layer. The first conductivity type layer 52 is an n-type crystalline silicon layer to which an n-type dopant is added. The first conductivity type layer 52 is a layer bonded to the metal layer 68 (first electrode 68 n), and has a higher doping concentration than the base layer 54. The doping concentration of the first conductivity type layer 52 may be about 10 19 / cm 3 . The film thickness of the first conductivity type layer 52 is preferably as thin as possible within a range where the contact resistance with the metal can be sufficiently lowered, and may be, for example, 0.1 μm or more and 2 μm or less.
 ベース層54と第1導電型層52とは結晶質同士がホモ接合された第1導電型コンタクト領域C1を形成する。第1導電型コンタクト領域C1は、例えば、光電変換セル301の面上内においてフィンガー及びバスバーを含む櫛形に形成される。第1導電型コンタクト領域C1の面積は、ベース層54の主面上において、第1導電型層52とホモ接合されている領域の面積を意味する。 The base layer 54 and the first conductivity type layer 52 form a first conductivity type contact region C1 in which the crystalline materials are homo-joined. The first conductivity type contact region C1 is formed, for example, in a comb shape including fingers and bus bars on the surface of the photoelectric conversion cell 301. The area of the first conductivity type contact region C <b> 1 means the area of a region that is homojunction with the first conductivity type layer 52 on the main surface of the base layer 54.
 絶縁層60は、第1導電型層52と後述するi型層62及び第2導電型層64とを電気的に絶縁するために用いられると共に、第1導電型層52をエッチングするためのマスクとしても利用される。絶縁層60は、電気的に絶縁性を有する材料から構成されており、例えば、窒化シリコン(SiN)とすればよい。絶縁層60の膜厚は、例えば100nm程度とすればよい。 The insulating layer 60 is used to electrically insulate the first conductivity type layer 52 from an i-type layer 62 and a second conductivity type layer 64 described later, and a mask for etching the first conductivity type layer 52. Also used as. The insulating layer 60 is made of an electrically insulating material, and may be silicon nitride (SiN), for example. The film thickness of the insulating layer 60 may be about 100 nm, for example.
 i型層62及び第2導電型層64は、非晶質系の半導体層とされる。なお、非晶質系とは、アモルファス相又はアモルファス相内に微少な結晶粒が析出している微結晶相を含む。本実施の形態では、i型層62及び第2導電型層64は、水素を含有するアモルファスシリコンとする。i型層62は、実質的に真性のアモルファスシリコン層とされる。第2導電型層64は、p型のドーパントが添加されたアモルファスシリコン層とされる。第2導電型層64は、i型層62よりもドーピング濃度が高い半導体層とされる。 The i-type layer 62 and the second conductivity type layer 64 are amorphous semiconductor layers. Note that the amorphous system includes an amorphous phase or a microcrystalline phase in which minute crystal grains are precipitated in the amorphous phase. In the present embodiment, the i-type layer 62 and the second conductivity type layer 64 are amorphous silicon containing hydrogen. The i-type layer 62 is a substantially intrinsic amorphous silicon layer. The second conductivity type layer 64 is an amorphous silicon layer to which a p-type dopant is added. The second conductivity type layer 64 is a semiconductor layer having a higher doping concentration than the i-type layer 62.
 例えば、i型層62には意図的にドーピングを行わず、第2導電型層64のドーピング濃度は1018/cm3程度とすればよい。i型層62の膜厚は、光の吸収をできるだけ抑えられるように薄くし、一方でベース層54の表面が十分にパッシベーションされる程度に厚くする。具体的には、1nm以上、50nm以下とすればよく、例えば10nmとする。また、第2導電型層64の膜厚は、光の吸収をできるだけ抑えられるように薄くし、一方で光起電力素子の開放電圧が十分に高くなるような程度に厚くする。例えば、1nm以上、50nm以下とすればよく、例えば10nmとする。 For example, the i-type layer 62 is not intentionally doped, and the doping concentration of the second conductivity type layer 64 may be about 10 18 / cm 3 . The thickness of the i-type layer 62 is made thin so that light absorption can be suppressed as much as possible, while it is made thick enough that the surface of the base layer 54 is sufficiently passivated. Specifically, it may be 1 nm or more and 50 nm or less, for example, 10 nm. The film thickness of the second conductivity type layer 64 is made thin so that light absorption can be suppressed as much as possible, while it is made so thick that the open circuit voltage of the photovoltaic element becomes sufficiently high. For example, the thickness may be 1 nm or more and 50 nm or less, for example, 10 nm.
 透明電極層66は、酸化錫(SnO2)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種を組み合わせて用いることが好適である。特に、酸化亜鉛(ZnO)は、透光性が高く、抵抗率が低い等の利点を有している。透明電極層66の膜厚は、10nm以上、500nm以下とすればよく、例えば100nmとする。 The transparent electrode layer 66 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) has advantages such as high translucency and low resistivity. The film thickness of the transparent electrode layer 66 may be 10 nm or more and 500 nm or less, for example, 100 nm.
 ベース層54とi型層62及び第2導電型層64とは結晶質と非晶質とがヘテロ接合された第2導電型コンタクト領域C2を形成する。第2導電型コンタクト領域C2は、例えば、光電変換セル301の面上内においてフィンガー及びバスバーを含み、第1導電型コンタクト領域C1と組み合わされた櫛形に形成される。第2導電型コンタクト領域C2の面積は、ベース層54の主面上においてi型層62及び第2導電型層64とヘテロ接合されている領域の面積を意味する。ここで、第1導電型コンタクト領域C1の面積を第2導電型コンタクト領域C2の面積より小さくするようにパターンを形成することが好適である。 The base layer 54, the i-type layer 62, and the second conductivity type layer 64 form a second conductivity type contact region C2 in which crystalline and amorphous are heterojunctioned. The second conductivity type contact region C2 includes, for example, fingers and bus bars on the surface of the photoelectric conversion cell 301, and is formed in a comb shape combined with the first conductivity type contact region C1. The area of the second conductivity type contact region C <b> 2 means the area of a region heterojunction with the i-type layer 62 and the second conductivity type layer 64 on the main surface of the base layer 54. Here, it is preferable to form a pattern so that the area of the first conductivity type contact region C1 is smaller than the area of the second conductivity type contact region C2.
 金属層68は、光起電力素子の裏面側に設けられる電極となる層である。金属層68は、金属等の導電性の材料から構成され、例えば、銅(Cu)やアルミニウム(Al)を含む材料とする。金属層68は、第1導電型層52に接続される第1電極68nと第2導電型層64に接続される第2電極68pとを含む。金属層68は、さらに銅(Cu)や錫(Sn)等の電解メッキ層を含んでもよい。ただし、これに限定されるものでなく、金、銀等の他の金属、他の導電性材料、又はそれらの組み合わせとしてもよい。 The metal layer 68 is a layer serving as an electrode provided on the back side of the photovoltaic element. The metal layer 68 is made of a conductive material such as metal, and is made of, for example, a material containing copper (Cu) or aluminum (Al). The metal layer 68 includes a first electrode 68 n connected to the first conductivity type layer 52 and a second electrode 68 p connected to the second conductivity type layer 64. The metal layer 68 may further include an electrolytic plating layer such as copper (Cu) or tin (Sn). However, it is not limited to this, It is good also as other metals, such as gold | metal | money and silver, another electroconductive material, or those combinations.
 次に、光電変換セル301の製造方法について説明する。図14A~図14Jは、光電変換セル301の製造方法を示す概略断面図である。 Next, a method for manufacturing the photoelectric conversion cell 301 will be described. 14A to 14J are schematic cross-sectional views showing a method for manufacturing the photoelectric conversion cell 301.
 基板50の一主面にはポーラス層(脆化層)50aが形成される(図14A)。基板50は、結晶質の半導体材料からなる。例えば、シリコン、多結晶シリコン、砒化ガリウム(GaAs)、インジウム燐(InP)等の半導体基板とする。本実施の形態では、基板50として単結晶シリコン基板を用い、第1導電型層52、ベース層54、i型層62及び第2導電型層64もシリコン層とする。ただし、基板50をシリコン以外の材料としてもよく、これらの層もシリコン層以外の材料としてもよい。ポーラス層50aは、陽極酸化処理等によって形成することができる。陽極酸化に用いる電解質は、例えば、フッ化水素酸及びエタノールの混合液、又は、フッ化水素酸及び過酸化水素水の混合液とすることができる。陽極酸化の電流密度は、5mA/cm2以上、600mA/cm2以下とすればよく、例えば10mA/cm2程度とする。 A porous layer (brittle layer) 50a is formed on one main surface of the substrate 50 (FIG. 14A). The substrate 50 is made of a crystalline semiconductor material. For example, a semiconductor substrate such as silicon, polycrystalline silicon, gallium arsenide (GaAs), or indium phosphide (InP) is used. In the present embodiment, a single crystal silicon substrate is used as the substrate 50, and the first conductivity type layer 52, the base layer 54, the i-type layer 62, and the second conductivity type layer 64 are also silicon layers. However, the substrate 50 may be made of a material other than silicon, and these layers may be made of materials other than the silicon layer. The porous layer 50a can be formed by anodic oxidation or the like. The electrolyte used for anodization can be, for example, a mixed liquid of hydrofluoric acid and ethanol, or a mixed liquid of hydrofluoric acid and hydrogen peroxide. The current density of the anodization, 5 mA / cm 2 or more, may be a 600 mA / cm 2 or less, for example, 10 mA / cm 2 approximately.
 ポーラス層50aの厚さは、0.01μm以上、30μm以下とすればよく、例えば10μm程度とする。ポーラス層50aの空孔径は、0.002μm以上、5μm以下とすればよく、例えば0.01μm程度とする。ポーラス層50aの空孔率は、10%以上70%以下とすればよく、例えば20%程度とする。 The thickness of the porous layer 50a may be 0.01 μm or more and 30 μm or less, for example, about 10 μm. The pore diameter of the porous layer 50a may be 0.002 μm or more and 5 μm or less, for example, about 0.01 μm. The porosity of the porous layer 50a may be 10% or more and 70% or less, for example, about 20%.
 基板50のポーラス層50a上に第1導電型層52、ベース層54が形成される(図14B)。第1導電型層52及びベース層54は、化学気相成長法(CVD)で形成することができる。第1導電型層52及びベース層54は、ポーラス層50aをシード層としたエピタキシャル成長により形成され、結晶質の半導体層同士が接合されたホモ接合領域を形成する。例えば、基板50を950℃に加熱し、水素(H2)で希釈されたジクロロシラン(SiH2Cl2)を原料ガスとして供給することにより成膜することができる。水素(H2)とジクロロシラン(SiH2Cl2)の流量は、例えばそれぞれ0.5(l/min)及び180(l/min)とする。また、必要に応じてホスフィン(PH3)をドーピングガスとして添加する。 A first conductivity type layer 52 and a base layer 54 are formed on the porous layer 50a of the substrate 50 (FIG. 14B). The first conductivity type layer 52 and the base layer 54 can be formed by chemical vapor deposition (CVD). The first conductivity type layer 52 and the base layer 54 are formed by epitaxial growth using the porous layer 50a as a seed layer, and form a homojunction region in which crystalline semiconductor layers are joined to each other. For example, the film can be formed by heating the substrate 50 to 950 ° C. and supplying dichlorosilane (SiH 2 Cl 2 ) diluted with hydrogen (H 2 ) as a source gas. The flow rates of hydrogen (H 2 ) and dichlorosilane (SiH 2 Cl 2 ) are, for example, 0.5 (l / min) and 180 (l / min), respectively. If necessary, phosphine (PH 3 ) is added as a doping gas.
 ベース層54上にパッシベーション層56が形成される(図14C)。パッシベーション層56が窒化シリコン(SiN)の場合、シラン(SiH4)に酸素(O2)及び/又は窒素(N2)を混合した原料ガスをプラズマ化して供給するプラズマ化学気相成長法(PECVD)によりパッシベーション層56を形成することができる。 A passivation layer 56 is formed on the base layer 54 (FIG. 14C). When the passivation layer 56 is silicon nitride (SiN), plasma enhanced chemical vapor deposition (PECVD) is performed by supplying a raw material gas obtained by mixing oxygen (O 2 ) and / or nitrogen (N 2 ) with silane (SiH 4 ) into a plasma. ) To form the passivation layer 56.
 パッシベーション層56まで形成された基板50が複数用意され、ガラス板からなる透光性部材58に各基板50のパッシベーション層56がそれぞれ直接接合される(図14D)。特に図示しないが、この工程において、透光性部材58上に複数のパッシベーション層56(パッシベーション層56まで形成された複数の基板50)が直接接合された状態となる。なお、図10は、20枚の基板50を1枚の透光性部材58に接着してモジュール化した例を示している。 A plurality of substrates 50 formed up to the passivation layer 56 are prepared, and the passivation layers 56 of the respective substrates 50 are directly bonded to the translucent member 58 made of a glass plate (FIG. 14D). Although not particularly illustrated, in this step, a plurality of passivation layers 56 (a plurality of substrates 50 formed up to the passivation layer 56) are directly bonded on the light-transmitting member 58. FIG. 10 shows an example in which 20 substrates 50 are bonded to one translucent member 58 to form a module.
 なお、透光性部材58は、光起電力素子を機械的に支持すると共に、光起電力素子に含まれる半導体層を外部環境から保護する。また、透光性部材58は、光起電力素子の受光面側に配置されるので、光起電力素子で発電に利用される波長帯域の光を透過し、ベース層54等の各層を機械的に支持できる材料とされる。 The translucent member 58 mechanically supports the photovoltaic element and protects the semiconductor layer included in the photovoltaic element from the external environment. Further, since the translucent member 58 is disposed on the light receiving surface side of the photovoltaic element, it transmits light in a wavelength band used for power generation by the photovoltaic element, and mechanically transmits each layer such as the base layer 54. It is considered as a material that can be supported.
 透光性部材58とパッシベーション層56とを直接接合する方法としては、透光性部材58とパッシベーション層56との間に電圧を印加して張り合わせる陽極接合や、高真空中でイオンビームにより改質された、透光性部材58及びパッシベーション層56それぞれの表面を張り合わせる常温接合等が挙げられる。 As a method for directly joining the light transmissive member 58 and the passivation layer 56, anodic bonding in which a voltage is applied between the light transmissive member 58 and the passivation layer 56 and bonding is performed by ion beam in a high vacuum. For example, room-temperature bonding, in which the surfaces of the light-transmitting member 58 and the passivation layer 56 are bonded to each other can be used.
 陽極接合の場合は、例えば、200~400℃で、数100V以上の電圧を印加するこにより、透光性部材58とパッシベーション層56とを接合することができる。使用する透光性部材58は、アルカリ成分を含み、接着する基板と線膨張係数が近いガラスが好ましい。例えば、Si基板の場合には、ホウケイ酸ガラスが適する。 In the case of anodic bonding, for example, the translucent member 58 and the passivation layer 56 can be bonded by applying a voltage of several hundred volts or more at 200 to 400 ° C. The translucent member 58 to be used is preferably glass that contains an alkali component and has a linear expansion coefficient close to that of the substrate to be bonded. For example, in the case of a Si substrate, borosilicate glass is suitable.
 常温接合の場合は、室温、10-6Pa以下の高真空中で、Arイオンビームにより、カラス板等の透光性部材58やSiN等のパッシベーション層56の張り合わせ面側の、最表面のSiの原子に結合している分子を除去する。つまり、結合手(ダングリングボンド)が最表面にある状態で、張り合わせを行うことにより、短時間で接合することができる。常温接合の場合は、透光性部材58中にアルカリ成分がなくても接着可能であるで、無アルカリガラスを使用することもできる。 In the case of room temperature bonding, the outermost Si on the bonding surface side of the light-transmitting member 58 such as a crow plate or the passivation layer 56 such as SiN by Ar ion beam in a high vacuum of 10 −6 Pa or less at room temperature. Remove the molecule that is bonded to the atom. That is, bonding can be performed in a short time by performing bonding in a state where a bond (dangling bond) is on the outermost surface. In the case of room temperature bonding, the translucent member 58 can be bonded without an alkali component, and alkali-free glass can also be used.
 また、透光性部材58は、接着剤等によりパッシベーション層56に接着されてもよい。接着剤は、光起電力装置300で発電に利用される波長帯域の光を透過する材料が好適である。接着材料としては、例えば、EVA、PVB、シリコーン、各種オレフィン系樹脂等が挙げられる。 Further, the translucent member 58 may be bonded to the passivation layer 56 with an adhesive or the like. As the adhesive, a material that transmits light in a wavelength band used for power generation in the photovoltaic device 300 is suitable. Examples of the adhesive material include EVA, PVB, silicone, various olefin resins, and the like.
 なお、図14D~図14Jでは、説明を分かり易くするために図14A~図14Cとは図の上下を逆にして示す。なお、以下の各膜の成膜時において、複数の光電変換素子の間の領域には膜が形成されないようにマスクを施しておいたり、膜が形成された後にエッチング等で除去したりすればよい。 14D to 14J are shown upside down in FIGS. 14A to 14C for easy understanding. In addition, when forming each film below, a mask is provided so that a film is not formed in a region between a plurality of photoelectric conversion elements, or the film is formed and then removed by etching or the like. Good.
 次に、ポーラス層50aを利用して基板50が分離される(図14E)。基板50は、機械的な処理により分離することができる。例えば、基板50及び透光性部材58を真空チャックで吸着し、双方を引き離すように引っ張ることによって、ポーラス層50a部分から基板50を切り離すことができる。また、基板50の側面からポーラス層50aにウォータージェットを吹き付けることによって、ポーラス層50a部分から基板50を切り離すことができる。もし、第1導電型層52側にポーラス層50aの一部が残留している場合には、フッ化水素酸(HF)と硝酸(HNO3)とを混合したフッ硝酸によるエッチング等で第1導電型層52上のポーラス層50aを除去してもよい。 Next, the substrate 50 is separated using the porous layer 50a (FIG. 14E). The substrate 50 can be separated by mechanical processing. For example, the substrate 50 and the translucent member 58 are adsorbed by a vacuum chuck, and the substrate 50 can be separated from the porous layer 50a portion by pulling both of them apart. Further, the substrate 50 can be separated from the porous layer 50a portion by spraying a water jet from the side surface of the substrate 50 onto the porous layer 50a. If a part of the porous layer 50a remains on the first conductivity type layer 52 side, the first layer is etched by hydrofluoric acid mixed with hydrofluoric acid (HF) and nitric acid (HNO 3 ). The porous layer 50a on the conductive type layer 52 may be removed.
 基板50から切り離された後、第1導電型層52上に絶縁層60が形成されると共に、第1導電型層52がパターニングされる(図14F)。絶縁層60は、シラン(SiH4)に窒素(N2)を混合した原料ガスをプラズマ化して供給するプラズマ化学気相成長法(PECVD)により形成することができる。 After being separated from the substrate 50, an insulating layer 60 is formed on the first conductivity type layer 52, and the first conductivity type layer 52 is patterned (FIG. 14F). The insulating layer 60 can be formed by plasma enhanced chemical vapor deposition (PECVD) in which a source gas in which nitrogen (N 2 ) is mixed with silane (SiH 4 ) is converted into plasma.
 パターニングは、エッチングペーストを用いて行うことができる。燐酸を含むエッチングペーストをスクリーン印刷法等により所望のパターンに塗布することによって、絶縁層60と共に第1導電型層52を除去する。また、所望のパターンとなるように絶縁層60をドライエッチングで除去し、絶縁層60をマスクとして第1導電型層52をドライエッチング又はウエットエッチングにより除去してもよい。絶縁層60のドライエッチングには、四フッ化炭素(CF4)を用いた反応性イオンエッチング(RIE)を適用すればよい。また、第1導電型層52のドライエッチングには、六フッ化硫黄(SF6)を用いた反応イオンエッチング(RIE)を適用すればよい。第1導電型層52のウエットエッチングには、フッ化水素酸を含むエッチャントを用いればよい。 Patterning can be performed using an etching paste. The first conductive type layer 52 is removed together with the insulating layer 60 by applying an etching paste containing phosphoric acid in a desired pattern by a screen printing method or the like. Alternatively, the insulating layer 60 may be removed by dry etching so that a desired pattern is obtained, and the first conductivity type layer 52 may be removed by dry etching or wet etching using the insulating layer 60 as a mask. For dry etching of the insulating layer 60, reactive ion etching (RIE) using carbon tetrafluoride (CF 4 ) may be applied. In addition, reactive ion etching (RIE) using sulfur hexafluoride (SF 6 ) may be applied to dry etching of the first conductivity type layer 52. An etchant containing hydrofluoric acid may be used for wet etching of the first conductivity type layer 52.
 絶縁層60及び第1導電型層52は、光電変換セル301の裏面からできるだけ均等に電力を集電できるようにパターニングすることが好ましい。例えば、光電変換セル301に一般的に適用されているフィンガー及びバスバーを含む櫛形のパターンとすることが好ましい。ここで、第1導電型コンタクト領域C1の面積を第2導電型コンタクト領域C2の面積より小さくするようにパターンを形成することが好適である。 The insulating layer 60 and the first conductivity type layer 52 are preferably patterned so that power can be collected as evenly as possible from the back surface of the photoelectric conversion cell 301. For example, a comb-shaped pattern including fingers and bus bars generally applied to the photoelectric conversion cell 301 is preferable. Here, it is preferable to form a pattern so that the area of the first conductivity type contact region C1 is smaller than the area of the second conductivity type contact region C2.
 パターニングによって露出されたベース層54及び絶縁層60上にi型層62、第2導電型層64及び透明電極層66が形成される(図14G)。i型層62及び第2導電型層64は、シラン(SiH4)等のケイ素含有ガスのPECVDにより形成することができる。シラン(SiH4)等のケイ素含有ガスを供給しつつ、高周波電源から高周波電極へ高周波電力を供給することによって原料ガスのプラズマが生成され、プラズマからベース層54及び絶縁層60上に原料が供給されてシリコン薄膜が形成される。原料ガスには、必要に応じてボロン(B26)等のドーパント含有ガスを混合する。透明電極層66は、スパッタリング法等を用いて形成することができる。 An i-type layer 62, a second conductivity type layer 64, and a transparent electrode layer 66 are formed on the base layer 54 and the insulating layer 60 exposed by patterning (FIG. 14G). The i-type layer 62 and the second conductivity type layer 64 can be formed by PECVD of a silicon-containing gas such as silane (SiH 4 ). While supplying a silicon-containing gas such as silane (SiH 4 ) and supplying a high-frequency power from a high-frequency power source to a high-frequency electrode, plasma of the source gas is generated, and the source material is supplied from the plasma onto the base layer 54 and the insulating layer 60. Thus, a silicon thin film is formed. The source gas is mixed with a dopant-containing gas such as boron (B 2 H 6 ) as necessary. The transparent electrode layer 66 can be formed using a sputtering method or the like.
 次に、全面に形成されたi型層62、第2導電型層64、透明電極層66及び絶縁層60がパターニングされる(図14H)。パターニングは、エッチングペーストを用いて行うことができる。燐酸を含むエッチングペーストをスクリーン印刷法等により所望のパターンに塗布することによって、i型層62、第2導電型層64、透明電極層66及び絶縁層60を除去する。 Next, the i-type layer 62, the second conductivity type layer 64, the transparent electrode layer 66, and the insulating layer 60 formed on the entire surface are patterned (FIG. 14H). Patterning can be performed using an etching paste. The i-type layer 62, the second conductivity type layer 64, the transparent electrode layer 66, and the insulating layer 60 are removed by applying an etching paste containing phosphoric acid in a desired pattern by screen printing or the like.
 ここでは、i型層62がベース層54に直接接触している領域以外の領域、すなわち、絶縁層60及び第1導電型層52が残されている第1導電型コンタクト領域C1上のi型層62、第2導電型層64、透明電極層66及び絶縁層60を除去してパターニングする。パターンは、光起電力素子の裏面からできるだけ均等に電力を集電できるように設定する。例えば、第1導電型層52の櫛形のパターンと交互に組み合わされる櫛形のパターンとすることが好ましい。 Here, the region other than the region where the i-type layer 62 is in direct contact with the base layer 54, that is, the i-type on the first conductivity type contact region C1 where the insulating layer 60 and the first conductivity type layer 52 are left. The layer 62, the second conductivity type layer 64, the transparent electrode layer 66 and the insulating layer 60 are removed and patterned. The pattern is set so that power can be collected as evenly as possible from the back surface of the photovoltaic element. For example, a comb pattern that is alternately combined with the comb pattern of the first conductivity type layer 52 is preferable.
 パターニングされた表面上に金属層68が形成される(図14I)。金属層68は、スパッタリング法又はプラズマ化学気相成長法(PECVD)等の薄膜形成方法で形成することができる。 A metal layer 68 is formed on the patterned surface (FIG. 14I). The metal layer 68 can be formed by a thin film formation method such as sputtering or plasma enhanced chemical vapor deposition (PECVD).
 i型層62、第2導電型層64、透明電極層66及び金属層68の一部が除去される(図14J)。これにより、金属層68が分断され、第1導電型層52に接続される第1電極68nと、透明電極層66に接続される第2電極68pと、が形成される。 I-type layer 62, second conductivity type layer 64, transparent electrode layer 66, and metal layer 68 are partially removed (FIG. 14J). Thereby, the metal layer 68 is divided, and the first electrode 68n connected to the first conductivity type layer 52 and the second electrode 68p connected to the transparent electrode layer 66 are formed.
 i型層62、第2導電型層64、透明電極層66及び金属層68は、レーザーエッチングにより除去することができる。また、スクリーン印刷法等でレジストを塗布してパターニングされたマスクを形成し、マスクを利用してi型層62、第2導電型層64、透明電極層66及び金属層68をそれぞれ別々にエッチングしてもよい。金属層68が銅(Cu)であれば塩化第二鉄をエッチャントとし、金属層68がアルミニウム(Al)であれば燐酸をエッチャントとすればよい。また、透明電極層66のエッチングには、塩酸(HCl)を含むエッチャントを用いればよい。また、i型層62及び第2導電型層64のエッチングには、フッ化水素酸(HF)を含むエッチャントを用いればよい。 The i-type layer 62, the second conductivity type layer 64, the transparent electrode layer 66, and the metal layer 68 can be removed by laser etching. Further, a resist is applied by screen printing or the like to form a patterned mask, and the i-type layer 62, the second conductivity type layer 64, the transparent electrode layer 66, and the metal layer 68 are separately etched using the mask. May be. If the metal layer 68 is copper (Cu), ferric chloride may be used as an etchant, and if the metal layer 68 is aluminum (Al), phosphoric acid may be used as an etchant. In addition, an etchant containing hydrochloric acid (HCl) may be used for etching the transparent electrode layer 66. An etchant containing hydrofluoric acid (HF) may be used for etching the i-type layer 62 and the second conductivity type layer 64.
 このとき、第1導電型層52に接続される第1電極68nと第2導電型層64に接続される第2電極68pとが電気的に分離されるようにi型層62、第2導電型層64、透明電極層66及び金属層68を除去する。本実施の形態では、第1導電型層52上に残された絶縁層60の領域上のi型層62、第2導電型層64、透明電極層66及び金属層68を除去している。 At this time, the i-type layer 62 and the second conductive layer are formed so that the first electrode 68n connected to the first conductive type layer 52 and the second electrode 68p connected to the second conductive type layer 64 are electrically separated. The mold layer 64, the transparent electrode layer 66, and the metal layer 68 are removed. In the present embodiment, the i-type layer 62, the second conductivity-type layer 64, the transparent electrode layer 66, and the metal layer 68 on the region of the insulating layer 60 left on the first conductivity-type layer 52 are removed.
 また、第1電極68n及び第2電極68pにさらに電解メッキ等で金属層を積層してもよい。例えば、銅(Cu)や錫(Sn)を電解メッキにより形成する。第1電極68n及び第2電極68pに電位を印加しつつ電解メッキ法で適用することにより、第1電極68n及び第2電極68pが残された領域上のみに金属層が積層される。 Further, a metal layer may be further laminated on the first electrode 68n and the second electrode 68p by electrolytic plating or the like. For example, copper (Cu) or tin (Sn) is formed by electrolytic plating. By applying an electroplating method while applying a potential to the first electrode 68n and the second electrode 68p, the metal layer is laminated only on the region where the first electrode 68n and the second electrode 68p are left.
 このようにして、光電変換セル301では、透光性部材58が受光面側となり、第1電極68n及び第2電極68pの両方が裏面側に設けられた裏面接合型となる。 In this way, in the photoelectric conversion cell 301, the translucent member 58 is on the light receiving surface side, and the first electrode 68n and the second electrode 68p are both on the back surface side.
 このように透光性部材58上に裏面接合型の複数の光電変換セル301が形成される。複数の光電変換セル301は、図10に示すように、透光性部材58上にマトリクス状に配置される。複数の光電変換セル301は、互いに隣接する光電変換セル301の第1電極68nと第2電極68pとを接続する第1集電配線80a、80bを介して直列に接続される。図10の例では、20個の光電変換セル301が直列に接続されている。直列接続された光電変換セル301の最端部には発電された電力を端子ボックス90まで取り出すために第1集電配線80cが設けられる。 Thus, a plurality of back surface junction type photoelectric conversion cells 301 are formed on the translucent member 58. The plurality of photoelectric conversion cells 301 are arranged in a matrix on the translucent member 58, as shown in FIG. The plurality of photoelectric conversion cells 301 are connected in series via first current collecting wirings 80a and 80b that connect the first electrode 68n and the second electrode 68p of the photoelectric conversion cells 301 adjacent to each other. In the example of FIG. 10, 20 photoelectric conversion cells 301 are connected in series. In order to take out the generated electric power to the terminal box 90 at the extreme end of the photoelectric conversion cells 301 connected in series, a first current collecting wiring 80 c is provided.
 第2集電配線84は、第1集電配線80cから端子ボックス90まで配置される。第2集電配線84は、光電変換セル301との電気的な絶縁を設けるために絶縁被覆材82を挟んで配置される。絶縁被覆材82は、第1の実施の形態と同様に、抵抗率が1016(Ωcm)以上の絶縁性の材料で構成することが好適である。例えば、ポリエステル(PE)、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリフッ化ビニル等とすることが好適である。また、絶縁被覆材82は、裏面にシール状に接着材が塗布されたものを用いることが好適である。これにより、第1絶縁被覆材82を配設する際の手間が軽減される。絶縁被覆材82及び第2集電配線84は、裏面ガラス板72に設けられる開口部72aの位置まで光電変換セル301の第1電極68n及び第2電極68p上に延設される。複数の第2集電配線84に対して1つの絶縁被覆材82を共通に設けてもよい。 The second current collecting wiring 84 is arranged from the first current collecting wiring 80c to the terminal box 90. The second current collecting wiring 84 is disposed with the insulating coating material 82 interposed therebetween in order to provide electrical insulation from the photoelectric conversion cell 301. As in the first embodiment, the insulating coating material 82 is preferably made of an insulating material having a resistivity of 10 16 (Ωcm) or more. For example, polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride and the like are suitable. Moreover, it is preferable to use the insulating coating material 82 having a back surface coated with an adhesive in a sealing manner. Thereby, the trouble at the time of arrange | positioning the 1st insulation coating material 82 is reduced. The insulating covering material 82 and the second current collecting wiring 84 are extended on the first electrode 68 n and the second electrode 68 p of the photoelectric conversion cell 301 to the position of the opening 72 a provided in the back glass plate 72. One insulating covering material 82 may be provided in common for the plurality of second current collecting wires 84.
 例えば、第2集電配線84の幅は4mm及び厚さは400μmとされる。第2集電配線84の他端は、端子ボックス90内の電極端子(図示しない)に接続される。これにより、光電変換セル301で発電された電力が光起電力装置300の外部へ取り出される。 For example, the second current collector wiring 84 has a width of 4 mm and a thickness of 400 μm. The other end of the second current collector wiring 84 is connected to an electrode terminal (not shown) in the terminal box 90. Thereby, the electric power generated in the photoelectric conversion cell 301 is taken out of the photovoltaic device 300.
 第2集電配線84の端子ボックス90側の端部の周辺にはスペーサ86が配置される。スペーサ86は、裏面ガラス板72に設けられた開口部72aからの割れを抑制するために設けられる。スペーサ86の好適な材料、形状及び配置等については後述する。 A spacer 86 is disposed around the end of the second current collector wiring 84 on the terminal box 90 side. The spacer 86 is provided in order to suppress cracks from the opening 72 a provided in the back glass plate 72. A suitable material, shape and arrangement of the spacer 86 will be described later.
 裏面ガラス板72によって光起電力装置300の裏面を封止する。光電変換セル301、第1集電配線80a、80b、80c、第2集電配線84等の上に液状の充填材70を塗布又はシート状の充填材70を設置する。充填材70は、絶縁樹脂とする。例えば、充填材70は、抵抗率が1014(Ωcm)程度の絶縁材料とすることが好適であり、例えば、エチレン酢酸ビニル共重合樹脂(EVA)やポリビニルブラチール(PVB)とすることが好適である。その後、裏面ガラス板72で光電変換セル301の裏面が覆われる。このとき、裏面ガラス板72に設けられた第2集電配線84を引き出すための開口部72aを通して第2集電配線84の端部を外部へ引き出した状態で裏面ガラス板72を配置する。このような状態において、裏面ガラス板72を光電変換セル301側へ押圧しながら加熱して真空ラミネート処理を施す。 The back surface of the photovoltaic device 300 is sealed with the back glass plate 72. A liquid filler 70 is applied or a sheet-like filler 70 is placed on the photoelectric conversion cell 301, the first current collector wirings 80a, 80b, 80c, the second current collector wiring 84, and the like. The filler 70 is an insulating resin. For example, the filler 70 is preferably an insulating material having a resistivity of about 10 14 (Ωcm), for example, ethylene vinyl acetate copolymer resin (EVA) or polyvinyl bratil (PVB). It is. Thereafter, the back surface of the photoelectric conversion cell 301 is covered with the back glass plate 72. At this time, the back glass plate 72 is arranged in a state in which the end of the second current collection wiring 84 is drawn out through the opening 72 a for drawing out the second current collection wiring 84 provided on the back glass plate 72. In such a state, the back glass plate 72 is heated while being pressed toward the photoelectric conversion cell 301 side to perform a vacuum laminating process.
 また、図11及び図12に示すように、開口部72a及び端子ボックス90内は、開口部封止材92によって封止される。例えば、開口部72a及び端子ボックス90内に封止材料からなるチップを入れ、加熱によりチップを軟化させた後に冷却して硬化させる。開口部封止材92は、例えば、ホットメルトブチルを適用することが好適である。あるいは、端子ボックス90の固着後に、開口部72aを含む端子ボックス90内に封止材料からなるポッティング材を入れて硬化させる。この場合、ポッティング材にはシリコーンを適用することが好適である。 Further, as shown in FIGS. 11 and 12, the opening 72a and the terminal box 90 are sealed with an opening sealing material 92. For example, a chip made of a sealing material is placed in the opening 72a and the terminal box 90, and the chip is softened by heating and then cooled and cured. For the opening sealing material 92, for example, hot melt butyl is preferably used. Alternatively, after the terminal box 90 is fixed, a potting material made of a sealing material is placed in the terminal box 90 including the opening 72a and cured. In this case, it is preferable to apply silicone to the potting material.
 スペーサ86は、図10の平面図及び図12の断面図に示すように、絶縁被覆材82及び第2集電配線84の周囲の光電変換セル301上に配置される。または、絶縁被覆材82の幅を広くし、スペーサ86を第2集電配線84の周辺の絶縁被覆材82上に配置した構成としてもよい。さらに、スペーサ86を絶縁被覆材82上から光電変換セル301上へと跨って配置した構成としてもよい。スペーサ86は、第1の実施の形態と同様の材質とすることが好ましい。 As shown in the plan view of FIG. 10 and the cross-sectional view of FIG. 12, the spacer 86 is disposed on the photoelectric conversion cell 301 around the insulating coating material 82 and the second current collection wiring 84. Alternatively, the width of the insulating covering material 82 may be widened and the spacer 86 may be disposed on the insulating covering material 82 around the second current collector wiring 84. Further, the spacer 86 may be arranged so as to extend from the insulating coating material 82 to the photoelectric conversion cell 301. The spacer 86 is preferably made of the same material as in the first embodiment.
 スペーサ86は、裏面ガラス板72の開口部72aの周辺領域において裏面ガラス板72に撓みが発生した際に、裏面ガラス板72に掛かる応力を緩和するように光電変換セル301と裏面ガラス板72との間隔を維持する厚さとする。すなわち、スペーサ86は、開口部72aの周辺部において、光電変換セル301からの高さが少なくとも絶縁被覆材82以上となるようにする。より好ましくは、スペーサ86は、裏面ガラス板72の開口部72aの周辺領域において第2集電配線84が裏面ガラス板72に接触しないように光電変換セル301と裏面ガラス板72との間隔を維持する厚さとする。すなわち、スペーサ86は、開口部72aの周辺部において、光電変換セル301からの高さが第2集電配線84の高さ以上となるようにすることがより好ましい。 The spacer 86 includes a photoelectric conversion cell 301 and a back glass plate 72 so as to relieve stress applied to the back glass plate 72 when the back glass plate 72 is bent in the peripheral region of the opening 72 a of the back glass plate 72. The thickness is maintained so as to maintain the interval. That is, the spacer 86 is set so that the height from the photoelectric conversion cell 301 is at least equal to or greater than the insulating coating material 82 in the peripheral portion of the opening 72a. More preferably, the spacer 86 maintains an interval between the photoelectric conversion cell 301 and the back glass plate 72 so that the second current collecting wiring 84 does not contact the back glass plate 72 in the peripheral region of the opening 72 a of the back glass plate 72. Thickness. That is, it is more preferable that the spacer 86 has a height from the photoelectric conversion cell 301 equal to or higher than the height of the second current collector wiring 84 in the peripheral portion of the opening 72a.
 スペーサ86の平面形状は、第1の実施の形態と同様に、開口部72aの周囲を取り囲むように、第2集電配線84の延設領域及び引き出し領域を除く領域に配置される形状とすることが好適である。このとき、スペーサ86の内縁に裏面ガラス板72が押し付けられた際に開口部72a近傍に曲げ応力が集中しないように、開口部72aの縁に接する又は開口部72aより内側までスペーサ86を設けることが好適である。また、スペーサ86の外縁に裏面ガラス板72が押し付けられた際にスペーサ86の外周部分の一部において裏面ガラス板72に曲げ応力が集中しないように、スペーサ86の外周形状は円弧状とすることが好適である。スペーサ86は、第2集電配線84の延設方向に沿って、第2集電配線84を挟むように両側に延設してもよい。また、第2集電配線84を直線上に配置せず、光電変換セル301の並列接続方向に互い違いにずらして配置し、その両側にスペーサ86を配置してもよい。 As in the first embodiment, the planar shape of the spacer 86 is a shape that is disposed in a region excluding the extension region and the lead-out region of the second current collector wiring 84 so as to surround the opening 72a. Is preferred. At this time, the spacer 86 is provided in contact with the edge of the opening 72a or inside the opening 72a so that bending stress does not concentrate in the vicinity of the opening 72a when the back glass plate 72 is pressed against the inner edge of the spacer 86. Is preferred. Further, the outer peripheral shape of the spacer 86 is an arc so that bending stress is not concentrated on the rear glass plate 72 in a part of the outer peripheral portion of the spacer 86 when the rear glass plate 72 is pressed against the outer edge of the spacer 86. Is preferred. The spacer 86 may extend on both sides so as to sandwich the second current collector wiring 84 along the direction in which the second current collector wiring 84 extends. In addition, the second current collecting wiring 84 may not be arranged on a straight line, but may be staggered in the parallel connection direction of the photoelectric conversion cells 301, and the spacers 86 may be arranged on both sides thereof.
 また、スペーサ86は、第2集電配線84以外の配線、例えば、図15に示すように、バイパスダイオードに接続するための配線88がある場合、配線88の両側にスペーサ86aを分けて設けてもよい。 In addition, when the spacer 86 has a wiring other than the second current collecting wiring 84, for example, a wiring 88 for connecting to a bypass diode as shown in FIG. 15, a spacer 86a is provided separately on both sides of the wiring 88. Also good.
 このように、スペーサ86を第2集電配線84に沿って配置することによって、裏面ガラス板72の開口部72a付近に発生する撓みの曲率が緩和され、開口部72a近傍における裏面ガラス板72の割れの発生を抑制することができる。すなわち、スペーサ86の延設領域を尾根として裏面ガラス板72に撓みが発生したときの曲げ曲率が大きくなり、裏面ガラス板72への応力集中が緩和される。 As described above, by arranging the spacer 86 along the second current collector wiring 84, the curvature of bending generated in the vicinity of the opening 72a of the back glass plate 72 is relieved, and the back glass plate 72 in the vicinity of the opening 72a is relaxed. Generation of cracks can be suppressed. That is, the bending curvature is increased when the back glass plate 72 is bent with the extended region of the spacer 86 as a ridge, and the stress concentration on the back glass plate 72 is alleviated.
 なお、スペーサを用いて封止部材への応力を緩和する技術の適用範囲は上記実施形態に限定されるものではなく、開口部を有する封止材を設けた構造を有する太陽電池であれば適用範囲となる。例えば、受光面と裏面とに集電極であるフィンガー及びバスバーを備えた光電変換セルを並置した太陽電池においても集電極の引き出し部となる裏面ガラス板の開口部周辺にスペーサを設ければよい。 In addition, the application range of the technique which relieves the stress to the sealing member using the spacer is not limited to the above embodiment, and is applicable to any solar cell having a structure provided with a sealing material having an opening. It becomes a range. For example, even in a solar cell in which photoelectric conversion cells including fingers and bus bars serving as collecting electrodes are arranged on the light receiving surface and the back surface, a spacer may be provided around the opening of the back glass plate serving as a lead-out portion for the collecting electrode.
 10 ガラス板、10a 開口部、12 集電配線、20 基板、22 透明電極層、24 光電変換層、26 裏面電極、28 第1集電配線、30 第1絶縁被覆材、32 第2集電配線、34 第2絶縁被覆材、36 ガラス板、36a 開口部、38 充填材、40 端部封止樹脂、42 端子ボックス、44 開口部封止材、46 スペーサ、50 基板、50a ポーラス層、52 第1導電型層、54 ベース層、56 パッシベーション層、58 透光性部材、60 絶縁層、62 i型層、64 第2導電型層、66 透明電極層、68 金属層、68n 第1電極、68p 第2電極、70 充填材、72 裏面ガラス板、72a 開口部、80a、80b、80c 第1集電配線、82 絶縁被覆材、84 第2集電配線、86(86a) スペーサ、88 配線、90 端子ボックス、92 開口部封止材、100,200,300 光起電力装置、202,301 光電変換セル。 10 glass plate, 10a opening, 12 current collecting wiring, 20 substrate, 22 transparent electrode layer, 24 photoelectric conversion layer, 26 back electrode, 28 first current collecting wiring, 30 first insulating covering material, 32 second current collecting wiring , 34 2nd insulation coating material, 36 glass plate, 36a opening, 38 filler, 40 end sealing resin, 42 terminal box, 44 opening sealing material, 46 spacer, 50 substrate, 50a porous layer, 52nd 1 conductivity type layer, 54 base layer, 56 passivation layer, 58 translucent member, 60 insulating layer, 62 i type layer, 64 second conductivity type layer, 66 transparent electrode layer, 68 metal layer, 68n first electrode, 68p Second electrode, 70 filler, 72 back glass plate, 72a opening, 80a, 80b, 80c first current collector wiring, 82 insulation coating, 84 second collection Wires, 86 (86a) spacers, 88 wiring, 90 terminal box, 92 opening sealing member, 100, 200, 300 photovoltaic device, 202,301 photovoltaic cell.

Claims (5)

  1.  光起電力装置であって、
     光電変換ユニットと、
     前記光電変換ユニット上に設けられた絶縁被覆材と、
     前記絶縁被覆材上に設けられ、前記光電変換ユニットから電力を取り出すための集電配線と、
     前記光電変換ユニット、前記絶縁被覆材及び前記集電配線を覆い、前記集電配線を引き出すための開口部が設けられたガラス板と、
     前記光電変換ユニットと前記ガラス板との間を充填する絶縁性の充填材と、
     前記開口部の周辺部において前記光電変換ユニットからの高さが前記絶縁被覆材より高くなるように設けられ、前記充填材と異なる材質のスペーサと、
    を備える。
    A photovoltaic device,
    A photoelectric conversion unit;
    An insulation coating provided on the photoelectric conversion unit;
    Current collection wiring provided on the insulating coating material, for taking out power from the photoelectric conversion unit,
    A glass plate that covers the photoelectric conversion unit, the insulating coating material and the current collector wiring, and is provided with an opening for drawing out the current collector wiring;
    An insulating filler for filling between the photoelectric conversion unit and the glass plate;
    A spacer made of a material different from the filler is provided so that a height from the photoelectric conversion unit is higher than the insulating coating material in a peripheral portion of the opening,
    Is provided.
  2.  請求項1に記載の光起電力装置であって、
     前記スペーサは、前記絶縁被覆材上に設けられている。
    The photovoltaic device according to claim 1,
    The spacer is provided on the insulating coating material.
  3.  請求項1に記載の光起電力装置であって、
     前記スペーサは、前記絶縁被覆材を介さず前記光電変換ユニット上に設けられている。
    The photovoltaic device according to claim 1,
    The spacer is provided on the photoelectric conversion unit without the insulating coating material interposed therebetween.
  4.  請求項1に記載の光起電力装置であって、
     前記スペーサは、前記光電変換ユニットからの高さが前記集電配線より高い。
    The photovoltaic device according to claim 1,
    The spacer is higher in height from the photoelectric conversion unit than the current collecting wiring.
  5.  請求項1に記載に光起電力装置であって、
     前記スペーサは、前記充填層よりも弾性が高い。
    The photovoltaic device according to claim 1,
    The spacer is more elastic than the filling layer.
PCT/JP2012/076970 2011-12-21 2012-10-18 Photovoltaic apparatus WO2013094299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011279477 2011-12-21
JP2011-279477 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013094299A1 true WO2013094299A1 (en) 2013-06-27

Family

ID=48668200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076970 WO2013094299A1 (en) 2011-12-21 2012-10-18 Photovoltaic apparatus

Country Status (1)

Country Link
WO (1) WO2013094299A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335346A (en) * 2000-05-24 2001-12-04 Nippon Sheet Glass Co Ltd Glass panel
JP2003264308A (en) * 2002-03-08 2003-09-19 Fuji Electric Co Ltd Thin film solar cell module and its manufacturing method
JP2004111952A (en) * 2002-08-29 2004-04-08 Nippon Sheet Glass Co Ltd Laminated glass and method of manufacturing the same
JP2011066292A (en) * 2009-09-18 2011-03-31 Mitsubishi Heavy Ind Ltd Solar cell panel
JP2011124435A (en) * 2009-12-11 2011-06-23 Kaneka Corp Thin film type solar cell module and method of manufacturing thin film type solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335346A (en) * 2000-05-24 2001-12-04 Nippon Sheet Glass Co Ltd Glass panel
JP2003264308A (en) * 2002-03-08 2003-09-19 Fuji Electric Co Ltd Thin film solar cell module and its manufacturing method
JP2004111952A (en) * 2002-08-29 2004-04-08 Nippon Sheet Glass Co Ltd Laminated glass and method of manufacturing the same
JP2011066292A (en) * 2009-09-18 2011-03-31 Mitsubishi Heavy Ind Ltd Solar cell panel
JP2011124435A (en) * 2009-12-11 2011-06-23 Kaneka Corp Thin film type solar cell module and method of manufacturing thin film type solar cell module

Similar Documents

Publication Publication Date Title
US20150194552A1 (en) Solar cell module and method for manufacturing the solar cell module
TWI413266B (en) Photovoltaic module
US9196776B2 (en) Solar cell module
WO2011021655A1 (en) Solar battery, solar battery module and solar battery system
JP5710024B2 (en) Manufacturing method of solar cell
JP5927437B2 (en) Solar cell module
WO2012029651A1 (en) Photoelectric conversion device and method for producing same
JP2017139267A (en) Solar cell element and solar cell module
WO2016158299A1 (en) Solar cell, method for manufacturing same, solar cell module and wiring sheet
WO2014050193A1 (en) Photoelectric conversion module
WO2013094299A1 (en) Photovoltaic apparatus
US20130154047A1 (en) Photoelectric conversion device and method for fabricating the photoelectric conversion device
JP6163027B2 (en) Solar cell module and manufacturing method thereof
US20140261684A1 (en) Solar cell module
JP5100216B2 (en) Solar cell group and manufacturing method thereof, solar cell module including solar cell group and manufacturing method thereof
WO2011114781A1 (en) Photoelectric conversion device and process for production thereof
JP2014072276A (en) Photovoltaic system
JP2015046470A (en) Photoelectric conversion module
JP2013030627A (en) Photoelectric conversion device
WO2011105167A1 (en) Photoelectric conversion device
JP2013128026A (en) Photovoltaic device
WO2012029668A1 (en) Photoelectric conversion device
WO2013047468A1 (en) Photovoltaic power device
WO2012017661A1 (en) Method for producing photovoltaic device
KR101130965B1 (en) Solar Cell and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP