WO2012029668A1 - Photoelectric conversion device - Google Patents

Photoelectric conversion device Download PDF

Info

Publication number
WO2012029668A1
WO2012029668A1 PCT/JP2011/069335 JP2011069335W WO2012029668A1 WO 2012029668 A1 WO2012029668 A1 WO 2012029668A1 JP 2011069335 W JP2011069335 W JP 2011069335W WO 2012029668 A1 WO2012029668 A1 WO 2012029668A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
wiring
conversion device
electrode layer
layer
Prior art date
Application number
PCT/JP2011/069335
Other languages
French (fr)
Japanese (ja)
Inventor
聡生 柳浦
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012029668A1 publication Critical patent/WO2012029668A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photoelectric conversion device.
  • a photoelectric conversion device in which semiconductor thin films such as amorphous and microcrystals are stacked is used.
  • FIG. 7 shows a cross-sectional view of the basic configuration of a conventional photoelectric conversion device 100.
  • FIG. 7 is a cross-sectional view of an end portion of the photoelectric conversion device 100.
  • the photoelectric conversion device 100 includes a photoelectric conversion cell 102 in which a transparent electrode layer 12, a photoelectric conversion layer 14, and a back electrode 16 are formed on a glass substrate 10 on the light receiving surface side, and the photoelectric conversion device 100.
  • a first current collecting wiring 18 that extends along both ends and collects the electric power generated by the photoelectric conversion cell 102, and a second current collecting wiring that is wired from the first current collecting wiring 18 to the terminal box.
  • an insulating coating material 20 that prevents direct contact between the second current collector wiring 22 and the photoelectric conversion cell 102, and an end sealing resin 24 that is disposed so as to surround the periphery of the photoelectric conversion cell 102.
  • a back glass 26 that seals the back surface of the photoelectric conversion cell 102, the first current collecting wiring 18 and the second current collecting wiring 22, and a filler 28 (between the photoelectric conversion cell 102 and the back glass 26 ( EVA).
  • One embodiment of the present invention includes a plurality of first electrode layers formed on a substrate, a photoelectric conversion layer formed on the first electrode layer, and a second electrode layer formed on the photoelectric conversion layer.
  • a plurality of photoelectric conversion cells connected in parallel, and the current collection wiring is disposed on the periphery of the substrate and is formed so as to cover the end of the first electrode layer. It is a photoelectric conversion device.
  • the power generation efficiency and reliability of the photoelectric conversion device can be improved.
  • FIG. 1 is a plan view of the photoelectric conversion device 200 as viewed from the back side opposite to the light receiving surface.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • FIG. 1 in order to clearly show the configuration of the photoelectric conversion device 200, components that are not actually seen overlapping are also shown by solid lines.
  • FIGS. 1 to 3 the dimensions of each part are shown different from actual ones in order to clearly show the configuration.
  • the photoelectric conversion device 200 includes a glass substrate 30, a transparent electrode layer 32, a photoelectric conversion layer 34, a back electrode 36, a first current collector wiring 38, a first insulating coating material 40, a second electrode.
  • the current collector wiring 42 is configured to include a back surface protective material 46, a filler 48, an end sealing resin 50, and a terminal box 52.
  • the glass substrate 30 is a member that mechanically supports the photoelectric conversion panel of the photoelectric conversion device 200.
  • a transparent electrode layer 32 is formed on the glass substrate 30.
  • the transparent electrode layer 32 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) is preferable because it has high translucency, low resistivity, and excellent plasma resistance.
  • the transparent electrode layer 32 can be formed by a sputtering method or a CVD method.
  • the transparent electrode layer 32 is divided into strips by patterning.
  • the first slit S1 is formed in the transparent electrode layer 32 along the vertical direction in FIG.
  • the transparent electrode layer 32 is divided
  • the second slit S2 is formed and divided in the transparent electrode layer 32 along the horizontal direction of FIG.
  • the transparent electrode layer 32 can be patterned using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
  • a photoelectric conversion layer 34 is formed by sequentially laminating a p-type layer, an i-type layer, and an n-type silicon thin film on the transparent electrode layer 32.
  • the photoelectric conversion layer 34 can be a thin film photoelectric conversion layer such as an amorphous silicon thin film photoelectric conversion layer or a microcrystalline silicon thin film photoelectric conversion layer.
  • a tandem or triple photoelectric conversion layer in which these photoelectric conversion layers are stacked may be used.
  • an intermediate layer may be sandwiched.
  • the intermediate layer is preferably a transparent conductive oxide (TCO).
  • TCO transparent conductive oxide
  • ZnO zinc oxide
  • Mg magnesium
  • Amorphous silicon thin film photoelectric conversion layer and microcrystalline silicon thin film photoelectric conversion layer are made of silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), methane (CH 4 ), etc.
  • a mixed gas obtained by mixing a carbon-containing gas, a p-type dopant-containing gas such as diborane (B 2 H 6 ), an n-type dopant-containing gas such as phosphine (PH 3 ), and a diluent gas such as hydrogen (H 2 ) is converted into plasma. It can be formed by a plasma chemical vapor deposition method (CVD method) in which a film is formed.
  • CVD method for example, a 13.56 MHz parallel plate RF plasma CVD method is preferably applied.
  • the photoelectric conversion layer 34 is divided into strips by patterning.
  • a YAG laser is irradiated to a position 50 ⁇ m lateral from the first slit S1 dividing the transparent electrode layer 32 to form a third slit S3, and the photoelectric conversion layer 34 is patterned into a strip shape.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
  • a back electrode 36 is formed on the photoelectric conversion layer 34.
  • the back electrode 36 preferably has a structure in which a transparent conductive oxide (TCO) and a reflective metal are laminated in this order.
  • a transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or these transparent conductive oxides
  • TCO transparent conductive oxide
  • a material (TCO) doped with impurities is used.
  • zinc oxide (ZnO) doped with aluminum (Al) as an impurity may be used.
  • metals such as silver (Ag) and aluminum (Al), are used.
  • the transparent conductive oxide (TCO) and the reflective metal can be formed by, for example, a sputtering method or a CVD method. It is preferable that at least one of the transparent conductive oxide (TCO) and the reflective metal is provided with unevenness for enhancing the light confinement effect.
  • the back electrode 36 is divided into strips by patterning.
  • a YAG laser is irradiated to a position 50 ⁇ m lateral from the position of the third slit S3 for patterning the photoelectric conversion layer 34 to form a fourth slit S4, and the back electrode 36 is patterned into a strip shape.
  • the photoelectric conversion layer 34 is divided in parallel, the photoelectric conversion layer 34 formed in the second slit S2 dividing the transparent electrode layer 32 and the fifth slit S5 dividing the back electrode 36 are formed. And split.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
  • the transparent electrode layer 32, the photoelectric conversion layer 34, and the back electrode 36 are laminated on the glass substrate 30 to form the photoelectric conversion cell 202.
  • the first current collecting wiring 38 and the second current collecting wiring 42 are formed in order to take out the electric power generated by the photoelectric conversion cell 202.
  • the first current collecting wiring 38 is a wiring for collecting current from the photoelectric conversion cells 202 divided in parallel, and the second current collecting wiring 42 connects the first current collecting wiring 38 to the terminal box 52. Wiring.
  • the first current collecting wiring 38 is formed to connect the positive electrodes and the negative electrodes of the photoelectric conversion layer 34 divided in parallel near the end of the photoelectric conversion device 200. Therefore, the first current collection wiring 38 extends along a direction orthogonal to the parallel division direction of the photoelectric conversion layer 34.
  • the 1st current collection wiring 38 is extended along the up-and-down direction on the right-and-left end sides in FIG. However, it is not connected to the photoelectric conversion layer that does not have the photoelectric conversion function in the vicinity of the upper and lower edges shown in FIG.
  • the first current collecting wiring 38 is not formed on the photoelectric conversion cell 202 but extends around the end of the photoelectric conversion cell 202. As shown in FIGS. 2 and 3, the removal region X from which the back electrode 36, the photoelectric conversion layer 34 and the transparent electrode layer 32 are removed, and the back electrode 36 and the photoelectric conversion layer 34 are removed, leaving the transparent electrode layer 32. The removal region Y is formed, and the first current collection wiring 38 is extended so as to straddle the removal regions X and Y.
  • the back electrode 36 and the photoelectric conversion layer 34 in the removal regions X and Y are removed by laser processing.
  • the back electrode 36 and the photoelectric conversion layer 34 formed in the removal regions X and Y can be removed and formed using a YAG laser (wavelength 532 nm).
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
  • the transparent electrode layer 32 in the removal region X is removed by laser processing.
  • the back electrode 36 and the photoelectric conversion layer 34 formed in the removal region X are removed using a YAG laser (wavelength 532 nm).
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
  • the width of the removal region X is not limited to this, but is preferably about 10 mm to 12 mm. Further, the width of the removal region Y is not limited to this, but is preferably 100 ⁇ m or more and 400 ⁇ m or less.
  • the first current collecting wiring 38 is formed.
  • the first current collector wiring 38 is formed so as to straddle the removal regions X and Y. That is, the first current collecting wiring 38 is formed on the removal region Y from the position away from the end of the photoelectric conversion cell 202 over the removal region X. More specifically, it extends from the position of 50 ⁇ m to 200 ⁇ m from the end of the photoelectric conversion cell 202 on the removal region Y to the position of about 10 mm to 12 mm from the end of the substrate 30 on the removal region X. Thus, the first current collector wiring 38 is disposed. Further, the first current collector wiring 38 is disposed so as not to physically contact the photoelectric conversion layer 34.
  • the first current collecting wiring 38 is a conductive tape or sheet. Specifically, the first current collector wiring 38 is preferably a tape or sheet made of a metal material containing 50% or more of aluminum. After the first current collector wiring 38 is disposed, the first current collector wiring 38 and at least one of the transparent electrode layer 32 and the glass substrate 30 are 0.5 J / mm by ultrasonic treatment in at least one of the removal regions X and Y. Melt-bond at about 2 strength. In the ultrasonic treatment, melt bonding is performed by applying ultrasonic waves in a state where the head of the ultrasonic treatment device is pressed against the first current collecting wiring 38 on the removal region X. This ultrasonic treatment corresponds to the ultrasonic welding method. Thereby, the positive electrodes and the negative electrodes of the photoelectric conversion cells 202 connected in series are connected in parallel.
  • the first current collecting wiring 38 is preferably 99.999% or more aluminum wiring, 4 to 6 mm wide and 110 ⁇ m thick.
  • the incidence of light on the photoelectric conversion cell 202 is not hindered, and the power generation efficiency in the photoelectric conversion device 200 is increased. be able to.
  • the reliability of the photoelectric conversion device 200 can be improved, such that the first current collector wiring 38 is hardly peeled off.
  • welding it is possible to more reliably prevent moisture from entering through the interface between the first current collector wiring 38 and the glass substrate 30.
  • a first insulating covering material 40 is provided. As shown in FIGS. 1, 2, and 3, the first insulating covering material 40 is connected to the terminal box 52 in the center from the vicinity of the first current collector wiring 38 provided along the left and right edges of the photoelectric conversion device 200. Is extended along the direction orthogonal to the serial division direction on the back electrode 36 across the slit S4 up to the arrangement position.
  • the first insulating covering material 40 extends in the left-right direction from the vicinity of the left and right first current collecting wires 38 toward the terminal box 52.
  • the first insulating coating material 40 is preferably composed of an insulating material having a resistivity of 10 16 ( ⁇ cm) or more.
  • an insulating material having a resistivity of 10 16 ( ⁇ cm) or more for example, polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride and the like are suitable.
  • PET polyethylene terephthalate
  • PET polyethylene naphthalate
  • polyvinyl fluoride and the like are suitable.
  • the second current collecting wiring 42 extends from the left and right first current collecting wirings 38 toward the center of the photoelectric conversion device 200 along the first insulating coating material 40. It is extended.
  • the second current collecting wiring 42 may be the same as the first current collecting wiring 38, or may be a copper wiring whose surface is covered with solder.
  • the first insulating coating material 40 is sandwiched between the second current collector wiring 42 and the back electrode 36 so that there is no direct electrical contact between the second current collector wiring 42 and the back electrode 36.
  • one end of the second current collector wiring 42 extends to the side surface of the first current collector wiring 38 and is electrically connected to the side surface of the first current collector wiring 38 as shown in FIGS.
  • the end of the second current collector wiring 42 is electrically welded to the side surface of the first current collector wiring 38 by ultrasonic treatment or the like.
  • the other end of the second current collecting wiring 42 is drawn from the opening of the back glass 46.
  • the other end of the second current collector wiring 42 is connected to the electrode terminal in the terminal box 52. Thereby, the electric power generated by the photoelectric conversion cell 202 is taken out of the photoelectric conversion device 200.
  • the end sealing resin 50 is disposed.
  • the end sealing resin 50 is formed in a region where the first current collection wiring 38 is not disposed in the removal region X around the end of the photoelectric conversion device 200.
  • the end sealing resin 50 is formed so as to be adjacent to the first current collector wiring 38.
  • the end sealing resin 50 has a width of about 6 mm to 10 mm and a thickness of about 0.05 mm to 0.2 mm thicker than the thickness of the filler 48. After the laminating process is finished, the thickness of the end sealing resin 50 becomes substantially the same as that of the filler 48.
  • the end sealing resin 50 is an insulating material having a resistivity of 10 10 ( ⁇ cm) or more.
  • the end sealing resin 50 is preferably made of a material with low moisture permeability in order to prevent moisture from entering from the end of the photoelectric conversion device 200.
  • the end sealing resin 50 is preferably made of a material having a moisture permeability lower than that of the filler 48.
  • the end sealing resin 50 is preferably an epoxy resin or a butyl resin, and more specifically, it is preferable to apply hot melt butyl which is easy to apply and adhere at high temperatures. is there.
  • the end sealing resin 50 it is possible to suppress the intrusion of moisture from the end of the photoelectric conversion device 200, and to improve the reliability of the photoelectric conversion device 200. Furthermore, by forming the 1st current collection wiring 38 adjacent to the edge part sealing resin 50, waterproofness can further be improved and the reliability of the photoelectric conversion apparatus 200 can be improved more. In particular, by forming the first current collector wiring 38 so as to extend from the substrate 30 to the back surface protective material 46, it is possible to enhance the effect of preventing moisture from entering from the end of the photoelectric conversion device 200.
  • the back surface of the photoelectric conversion device 200 is sealed using a back surface protection material 46.
  • a sheet-like filler 48 is disposed on the photoelectric conversion cell 202, the first current collecting wiring 38, the second current collecting wiring 42, and the like.
  • the filler 48 is an insulating resin. More specifically, an insulating material having a resistivity of about 10 14 ( ⁇ cm) is preferable. For example, ethylene vinyl acetate copolymer resin (EVA) or polyvinyl bratil (PVB) is preferable. is there. Further, the back surface of the photoelectric conversion device 200 is covered with the back surface protective material 46.
  • the back surface protective material 46 is arranged in a state where the end portion of the second current collecting wiring 42 is pulled out through the opening provided in the back surface protective material 46.
  • the back surface protective material 46 is preferably made of a material having electrical insulation, low moisture permeability, and high corrosion resistance.
  • the back surface protective material 46 is preferably a glass plate, for example.
  • the back surface protective material 46 is heated while being pressed toward the photoelectric conversion cell 202 side to perform a vacuum laminating process.
  • the heat treatment is performed at about 150 ° C., for example.
  • the back surface of the photoelectric conversion device 200 is sealed by the back surface protection material 46.
  • EVA ethylene vinyl acetate copolymer resin
  • the photoelectric conversion device 200 may be heated in a curing furnace to perform the curing process.
  • the heat treatment in the curing process is preferably performed at 150 ° C. for about 30 minutes, for example.
  • a terminal box 52 is attached in the vicinity of the end of the second current collecting wiring 42 drawn out from the back surface protective material 46 that seals the photoelectric conversion device 200.
  • the terminal box 52 can be attached by bonding using silicone or the like.
  • the end of the second current collecting wiring 42 is electrically connected to the terminal electrode in the terminal box 52 by soldering or the like, and the space in the terminal box 52 is filled with an insulating resin such as silicone and covered.
  • the photoelectric conversion device 200 according to this embodiment is formed.
  • the removal region X when the transparent electrode layer 32, the photoelectric conversion layer 34, and the back electrode 36 are formed, a mask member is used to mask the periphery of the glass substrate 30 and perform a film forming process. Also good. Further, in order to form the removal region Y, when the photoelectric conversion layer 34 and the back electrode 36 are formed, the periphery of the glass substrate 30 may be masked using a mask member to perform a film forming process. Further, after forming the photoelectric conversion cell 202, the transparent electrode layer 32, the photoelectric conversion layer 34, and the back electrode 36 around the end of the photoelectric conversion device 200 may be removed by sandblasting or etching.
  • the height of the first current collecting wiring 38 may be lowered to the same level as the height of the bent portion of the second current collecting wiring 42.
  • the end sealing resin 50 is formed, it is preferable that the end sealing resin 50 is formed so as to cover the first current collector wiring 38.
  • the wiring 42 may be configured to extend up to the first current collecting wiring 38.
  • the end sealing resin 50 is formed, it is preferable that the end sealing resin 50 is formed so as to cover the second current collecting wiring 42 overlapping the first current collecting wiring 38. .
  • the first current collector wiring 38 is formed from the transparent electrode layer 32 to the substrate 30.
  • the first current collector wiring 38 may be formed from the back electrode 36 to the substrate 30 by covering with the back electrode 36.
  • the transparent electrode layer 38 at the end of the substrate 30 is removed when forming the first slit S1, the photoelectric conversion layer 34 is formed on the removal region, and the removal region when forming the third slit S3.
  • the semiconductor conversion layer 34 formed above and the photoelectric conversion layer 34 formed on the transparent electrode layer 38 adjacent to the removal region are removed.
  • a region where the transparent electrode layer 38 is exposed and a region where the substrate 30 is exposed are formed at the end of the substrate 30, and then the back electrode 36 is formed.
  • the photoelectric conversion layer 34 formed on the transparent electrode layer 30 and a part of the photoelectric conversion layer 34 formed on the subsequent substrate 30 are left so as to remain.
  • the back electrode 36 formed at the end is removed.
  • the end of the transparent electrode layer 32 is also covered with the back electrode 36 at the opposite end of the photoelectric conversion device 200, and the first current collector wiring 38 can be formed from the back electrode 36 to the substrate 30.
  • the first current collector wiring is formed from the back electrode 36 to the substrate 30 so as to cover the end of the transparent electrode layer 32 with the back electrode 36 and further cover the end of the back electrode 36 with the back electrode 36 interposed therebetween.
  • the effect of preventing moisture from entering from the end of the photoelectric conversion device 200 can be further enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This photoelectric conversion device comprises: a plurality of photoelectric conversion cells (202) constituted of a transparent electrode (32) formed on a substrate (30), a photoelectric conversion layer (34) and an underside electrode (36); and first current collector wiring (38) connecting the plurality of photoelectric conversion cells (202) in parallel. The first current collector wiring (38) is formed so as to cover an end part of the transparent electrode layer (32) at the periphery of the substrate (30).

Description

光電変換装置Photoelectric conversion device
 本発明は、光電変換装置に関する。 The present invention relates to a photoelectric conversion device.
 太陽光を利用した発電システムとして、アモルファスや微結晶等の半導体薄膜を積層した光電変換装置が用いられている。 As a power generation system using sunlight, a photoelectric conversion device in which semiconductor thin films such as amorphous and microcrystals are stacked is used.
 図7に、従来の光電変換装置100の基本構成の断面図を示す。図7は、光電変換装置100の端部の断面図を示している。図7に示すように、光電変換装置100は、受光面側のガラス基板10上に透明電極層12、光電変換層14、裏面電極16が形成された光電変換セル102と、光電変換装置100の両端部に沿って延設されて光電変換セル102で発電された電力を集電するための第1集電配線18と、第1集電配線18から端子ボックスまで配線される第2集電配線22と、第2集電配線22と光電変換セル102との間の直接的な接触を防ぐ絶縁被覆材20と、光電変換セル102の周囲を囲むように配設される端部封止樹脂24と、光電変換セル102の裏面,第1集電配線18及び第2集電配線22を封止する裏面ガラス26と、光電変換セル102と裏面ガラス26との間に充填される充填材28(EVA)とを含んで構成される。 FIG. 7 shows a cross-sectional view of the basic configuration of a conventional photoelectric conversion device 100. FIG. 7 is a cross-sectional view of an end portion of the photoelectric conversion device 100. As illustrated in FIG. 7, the photoelectric conversion device 100 includes a photoelectric conversion cell 102 in which a transparent electrode layer 12, a photoelectric conversion layer 14, and a back electrode 16 are formed on a glass substrate 10 on the light receiving surface side, and the photoelectric conversion device 100. A first current collecting wiring 18 that extends along both ends and collects the electric power generated by the photoelectric conversion cell 102, and a second current collecting wiring that is wired from the first current collecting wiring 18 to the terminal box. 22, an insulating coating material 20 that prevents direct contact between the second current collector wiring 22 and the photoelectric conversion cell 102, and an end sealing resin 24 that is disposed so as to surround the periphery of the photoelectric conversion cell 102. And a back glass 26 that seals the back surface of the photoelectric conversion cell 102, the first current collecting wiring 18 and the second current collecting wiring 22, and a filler 28 (between the photoelectric conversion cell 102 and the back glass 26 ( EVA).
 ところで、図7のように、第1集電配線18全体を光電変換装置100の端部の光電変換セル102上に形成した場合、第1集電配線18で覆われた領域での発電が行われず、光電変換セル102の有効面積を低下させる原因となっている。 Incidentally, as shown in FIG. 7, when the entire first current collector wiring 18 is formed on the photoelectric conversion cell 102 at the end of the photoelectric conversion device 100, power generation is performed in a region covered with the first current collector wiring 18. Thus, the effective area of the photoelectric conversion cell 102 is reduced.
 また、光電変換装置100の端部からの水分の浸入は端部封止部材24によって防がれているが、光電変換装置100の長期的な信頼性を向上させるためにさらに高い防水性を得ることが望まれている。 In addition, the ingress of moisture from the end portion of the photoelectric conversion device 100 is prevented by the end sealing member 24. However, in order to improve the long-term reliability of the photoelectric conversion device 100, higher waterproofness is obtained. It is hoped that.
 本発明の1つの態様は、基板上に形成された第1電極層、第1電極層上に形成された光電変換層、及び光電変換層上に形成された第2電極層によって構成される複数の光電変換セルと、複数の光電変換セルを並列に接続する集電配線と、を備え、集電配線は、基板の周辺部に配置され、第1電極層の端部を覆うように形成されている、光電変換装置である。 One embodiment of the present invention includes a plurality of first electrode layers formed on a substrate, a photoelectric conversion layer formed on the first electrode layer, and a second electrode layer formed on the photoelectric conversion layer. A plurality of photoelectric conversion cells connected in parallel, and the current collection wiring is disposed on the periphery of the substrate and is formed so as to cover the end of the first electrode layer. It is a photoelectric conversion device.
 本発明によれば、光電変換装置の発電効率及び信頼性を向上させることができる。 According to the present invention, the power generation efficiency and reliability of the photoelectric conversion device can be improved.
本発明の実施の形態における光電変換装置の構造を示す平面図である。It is a top view which shows the structure of the photoelectric conversion apparatus in embodiment of this invention. 本発明の実施の形態における光電変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion apparatus in embodiment of this invention. 本発明の実施の形態における光電変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion apparatus in embodiment of this invention. 本発明の実施の形態における光電変換装置の構造の別例を示す断面図である。It is sectional drawing which shows another example of the structure of the photoelectric conversion apparatus in embodiment of this invention. 本発明の実施の形態における光電変換装置の構造の別例を示す断面図である。It is sectional drawing which shows another example of the structure of the photoelectric conversion apparatus in embodiment of this invention. 本発明の実施の形態における光電変換装置の構造の別例を示す断面図である。It is sectional drawing which shows another example of the structure of the photoelectric conversion apparatus in embodiment of this invention. 従来の光電変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional photoelectric conversion apparatus.
 図1~図3は、本発明の実施の形態における光電変換装置200の構成を示す。図1は、光電変換装置200を受光面とは反対側である裏面からみた平面図である。図2は、図1のラインA-Aに沿った断面図である。図3は、図1のラインB-Bに沿った断面図である。なお、図1では、光電変換装置200の構成を明確に示すために実際には重なり合って見えない構成部分についても実線で示している。また、図1~図3では、構成を明確に示すために各部の寸法を実際のものとは変えて示している。 1 to 3 show a configuration of a photoelectric conversion apparatus 200 according to an embodiment of the present invention. FIG. 1 is a plan view of the photoelectric conversion device 200 as viewed from the back side opposite to the light receiving surface. FIG. 2 is a cross-sectional view taken along line AA in FIG. FIG. 3 is a sectional view taken along line BB in FIG. In FIG. 1, in order to clearly show the configuration of the photoelectric conversion device 200, components that are not actually seen overlapping are also shown by solid lines. In FIGS. 1 to 3, the dimensions of each part are shown different from actual ones in order to clearly show the configuration.
 光電変換装置200は、図1~図3に示すように、ガラス基板30、透明電極層32、光電変換層34、裏面電極36、第1集電配線38、第1絶縁被覆材40、第2集電配線42、裏面保護材46、充填材48、端部封止樹脂50及び端子ボックス52を含んで構成される。 As shown in FIGS. 1 to 3, the photoelectric conversion device 200 includes a glass substrate 30, a transparent electrode layer 32, a photoelectric conversion layer 34, a back electrode 36, a first current collector wiring 38, a first insulating coating material 40, a second electrode. The current collector wiring 42 is configured to include a back surface protective material 46, a filler 48, an end sealing resin 50, and a terminal box 52.
 ガラス基板30は、光電変換装置200の光電変換パネルを機械的に支持する部材である。ガラス基板30上には透明電極層32が形成される。透明電極層32は、酸化錫(SnO2)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種を組み合わせて用いることが好適である。特に、酸化亜鉛(ZnO)は、透光性が高く、抵抗率が低く、耐プラズマ特性にも優れているので好適である。透明電極層32はスパッタリング法又はCVD法で形成することができる。 The glass substrate 30 is a member that mechanically supports the photoelectric conversion panel of the photoelectric conversion device 200. A transparent electrode layer 32 is formed on the glass substrate 30. The transparent electrode layer 32 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) is preferable because it has high translucency, low resistivity, and excellent plasma resistance. The transparent electrode layer 32 can be formed by a sputtering method or a CVD method.
 光電変換層34を複数直列に接続した構成とする場合、透明電極層32を短冊状にパターニングして分割する。本実施の形態では、図1の上下方向に沿って透明電極層32に第1スリットS1を形成して分割する。また、光電変換層34を並列に分割した構成とする場合、上記直列接続を形成するための第1スリットS1に直交する方向に短冊状にパターンニングして透明電極層32を分割する。本実施の形態では、図1の左右方向に沿って透明電極層32に第2スリットS2を形成して分割する。例えば、波長1064nm、エネルギー密度13J/cm2、パルス周波数3kHzのYAGレーザを用いて透明電極層32をパターニングすることができる。 In the case where a plurality of photoelectric conversion layers 34 are connected in series, the transparent electrode layer 32 is divided into strips by patterning. In the present embodiment, the first slit S1 is formed in the transparent electrode layer 32 along the vertical direction in FIG. Moreover, when it is set as the structure which divided | segmented the photoelectric converting layer 34 in parallel, it patterns in a strip shape in the direction orthogonal to 1st slit S1 for forming the said serial connection, and the transparent electrode layer 32 is divided | segmented. In the present embodiment, the second slit S2 is formed and divided in the transparent electrode layer 32 along the horizontal direction of FIG. For example, the transparent electrode layer 32 can be patterned using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
 透明電極層32上に、p型層、i型層、n型層のシリコン系薄膜を順に積層して光電変換層34を形成する。光電変換層34は、アモルファスシリコン薄膜光電変換層や微結晶シリコン薄膜光電変換層等の薄膜系光電変換層とすることができる。また、これらの光電変換層を積層したタンデム型やトリプル型の光電変換層としてもよい。さらに、タンデム型やトリプル型の光電変換層とした場合、中間層を挟み込む構成としてもよい。中間層は、透明導電性酸化物(TCO)とすることが好適であり、例えば、酸化亜鉛(ZnO)にマグネシウム(Mg)を不純物としてドープしたものとすることが好適である。 A photoelectric conversion layer 34 is formed by sequentially laminating a p-type layer, an i-type layer, and an n-type silicon thin film on the transparent electrode layer 32. The photoelectric conversion layer 34 can be a thin film photoelectric conversion layer such as an amorphous silicon thin film photoelectric conversion layer or a microcrystalline silicon thin film photoelectric conversion layer. Alternatively, a tandem or triple photoelectric conversion layer in which these photoelectric conversion layers are stacked may be used. Further, in the case of a tandem type or triple type photoelectric conversion layer, an intermediate layer may be sandwiched. The intermediate layer is preferably a transparent conductive oxide (TCO). For example, zinc oxide (ZnO) is preferably doped with magnesium (Mg) as an impurity.
 アモルファスシリコン薄膜光電変換層や微結晶シリコン薄膜光電変換層は、シラン(SiH4)、ジシラン(Si26)、ジクロルシラン(SiH2Cl2)等のシリコン含有ガス、メタン(CH4)等の炭素含有ガス、ジボラン(B26)等のp型ドーパント含有ガス、フォスフィン(PH3)等のn型ドーパント含有ガス及び水素(H2)等の希釈ガスを混合した混合ガスをプラズマ化して成膜を行うプラズマ化学気相成長法(CVD法)により形成することができる。プラズマCVD法は、例えば、13.56MHzの平行平板型RFプラズマCVD法を適用することが好適である。 Amorphous silicon thin film photoelectric conversion layer and microcrystalline silicon thin film photoelectric conversion layer are made of silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), methane (CH 4 ), etc. A mixed gas obtained by mixing a carbon-containing gas, a p-type dopant-containing gas such as diborane (B 2 H 6 ), an n-type dopant-containing gas such as phosphine (PH 3 ), and a diluent gas such as hydrogen (H 2 ) is converted into plasma. It can be formed by a plasma chemical vapor deposition method (CVD method) in which a film is formed. As the plasma CVD method, for example, a 13.56 MHz parallel plate RF plasma CVD method is preferably applied.
 複数のセルを直列接続する場合、光電変換層34を短冊状にパターニングして分割する。例えば、透明電極層32を分割する第1スリットS1から50μm横の位置にYAGレーザを照射して第3スリットS3を形成して光電変換層34を短冊状にパターニングする。YAGレーザは、例えば、エネルギー密度0.7J/cm2、パルス周波数3kHzのものを用いることが好適である。 When a plurality of cells are connected in series, the photoelectric conversion layer 34 is divided into strips by patterning. For example, a YAG laser is irradiated to a position 50 μm lateral from the first slit S1 dividing the transparent electrode layer 32 to form a third slit S3, and the photoelectric conversion layer 34 is patterned into a strip shape. For example, a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
 光電変換層34上に、裏面電極36を形成する。裏面電極36は、透明導電性酸化物(TCO)と反射性金属とをこの順に積層した構造とすることが好適である。透明導電性酸化物(TCO)としては、酸化錫(SnO2)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等の透明導電性酸化物(TCO)、又は、これらの透明導電性酸化物(TCO)に不純物をドープしたものが用いられる。例えば、酸化亜鉛(ZnO)にアルミニウム(Al)を不純物としてドープしたものでもよい。また、反射性金属としては、銀(Ag)、アルミニウム(Al)等の金属が用いられる。透明導電性酸化物(TCO)及び反射性金属は、例えば、スパッタリング法又はCVD法等により形成することができる。透明導電性酸化物(TCO)と反射性金属の少なくとも一方には、光閉じ込め効果を高めるための凹凸が設けることが好適である。 A back electrode 36 is formed on the photoelectric conversion layer 34. The back electrode 36 preferably has a structure in which a transparent conductive oxide (TCO) and a reflective metal are laminated in this order. As the transparent conductive oxide (TCO), a transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or these transparent conductive oxides A material (TCO) doped with impurities is used. For example, zinc oxide (ZnO) doped with aluminum (Al) as an impurity may be used. Moreover, as a reflective metal, metals, such as silver (Ag) and aluminum (Al), are used. The transparent conductive oxide (TCO) and the reflective metal can be formed by, for example, a sputtering method or a CVD method. It is preferable that at least one of the transparent conductive oxide (TCO) and the reflective metal is provided with unevenness for enhancing the light confinement effect.
 複数の光電変換層34を直列接続する場合、裏面電極36を短冊状にパターニングして分割する。光電変換層34をパターンニングする第3スリットS3の位置から50μm横の位置にYAGレーザを照射して第4スリットS4を形成して裏面電極36を短冊状にパターニングする。さらに、光電変換層34を並列に分割した構成とする場合、透明電極層32を分割する第2スリットS2内に形成された光電変換層34及び裏面電極36を分割する第5スリットS5を形成して分割する。YAGレーザは、エネルギー密度0.7J/cm2、パルス周波数4kHzのものを用いることが好適である。 When the plurality of photoelectric conversion layers 34 are connected in series, the back electrode 36 is divided into strips by patterning. A YAG laser is irradiated to a position 50 μm lateral from the position of the third slit S3 for patterning the photoelectric conversion layer 34 to form a fourth slit S4, and the back electrode 36 is patterned into a strip shape. Further, when the photoelectric conversion layer 34 is divided in parallel, the photoelectric conversion layer 34 formed in the second slit S2 dividing the transparent electrode layer 32 and the fifth slit S5 dividing the back electrode 36 are formed. And split. A YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
 このようにガラス基板30上に透明電極層32、光電変換層34及び裏面電極36を積層して光電変換セル202が形成される。続いて、光電変換セル202で発電された電力を取り出すために第1集電配線38及び第2集電配線42が形成される。第1集電配線38は、並列に分割された光電変換セル202から集電を行うための配線であり、第2集電配線42は、第1集電配線38から端子ボックス52までを接続する配線である。 Thus, the transparent electrode layer 32, the photoelectric conversion layer 34, and the back electrode 36 are laminated on the glass substrate 30 to form the photoelectric conversion cell 202. Subsequently, the first current collecting wiring 38 and the second current collecting wiring 42 are formed in order to take out the electric power generated by the photoelectric conversion cell 202. The first current collecting wiring 38 is a wiring for collecting current from the photoelectric conversion cells 202 divided in parallel, and the second current collecting wiring 42 connects the first current collecting wiring 38 to the terminal box 52. Wiring.
 第1集電配線38は、光電変換装置200の端辺付近において並列に分割された光電変換層34の正電極同士及び負電極同士を接続するために形成される。したがって、第1集電配線38は、光電変換層34の並列分割方向に直交する方向に沿って延設される。ここでは、第1集電配線38は、図1における左右の端辺に上下方向に沿って延設される。ただし、図1に示される上下の端辺近傍において、光電変換機能を有さない光電変換層には接続しない。 The first current collecting wiring 38 is formed to connect the positive electrodes and the negative electrodes of the photoelectric conversion layer 34 divided in parallel near the end of the photoelectric conversion device 200. Therefore, the first current collection wiring 38 extends along a direction orthogonal to the parallel division direction of the photoelectric conversion layer 34. Here, the 1st current collection wiring 38 is extended along the up-and-down direction on the right-and-left end sides in FIG. However, it is not connected to the photoelectric conversion layer that does not have the photoelectric conversion function in the vicinity of the upper and lower edges shown in FIG.
 本実施の形態では、第1集電配線38は光電変換セル202上に形成せず、光電変換セル202の端部の周囲に延設される。図2及び図3に示すように、裏面電極36、光電変換層34及び透明電極層32を除去した除去領域Xと、裏面電極36及び光電変換層34を除去し、透明電極層32は残した除去領域Yと、を形成し、除去領域X及びYに跨るように第1集電配線38を延設する。 In the present embodiment, the first current collecting wiring 38 is not formed on the photoelectric conversion cell 202 but extends around the end of the photoelectric conversion cell 202. As shown in FIGS. 2 and 3, the removal region X from which the back electrode 36, the photoelectric conversion layer 34 and the transparent electrode layer 32 are removed, and the back electrode 36 and the photoelectric conversion layer 34 are removed, leaving the transparent electrode layer 32. The removal region Y is formed, and the first current collection wiring 38 is extended so as to straddle the removal regions X and Y.
 まず、除去領域X及びYにおける裏面電極36及び光電変換層34をレーザ処理にて除去する。YAGレーザ(波長532nm)を用いて、除去領域X及びYに形成されている裏面電極36及び光電変換層34を除去して形成することができる。YAGレーザは、エネルギー密度0.7J/cm2、パルス周波数4kHzのものを用いることが好適である。続いて、除去領域Xにおける透明電極層32をレーザ処理にて除去する。YAGレーザ(波長532nm)を用いて、除去領域Xに形成されている裏面電極36及び光電変換層34を除去する。YAGレーザは、エネルギー密度0.7J/cm2、パルス周波数4kHzのものを用いることが好適である。 First, the back electrode 36 and the photoelectric conversion layer 34 in the removal regions X and Y are removed by laser processing. The back electrode 36 and the photoelectric conversion layer 34 formed in the removal regions X and Y can be removed and formed using a YAG laser (wavelength 532 nm). A YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used. Subsequently, the transparent electrode layer 32 in the removal region X is removed by laser processing. The back electrode 36 and the photoelectric conversion layer 34 formed in the removal region X are removed using a YAG laser (wavelength 532 nm). A YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
 除去領域Xの幅は、これに限定されるものではないが10mm~12mm程度とすることが好適である。また、除去領域Yの幅は、これに限定されるものではないが100μm以上400μm以下とすることが好適である。 The width of the removal region X is not limited to this, but is preferably about 10 mm to 12 mm. Further, the width of the removal region Y is not limited to this, but is preferably 100 μm or more and 400 μm or less.
 次に、第1集電配線38を形成する。このとき、除去領域X及びYに跨るように第1集電配線38を形成する。すなわち、第1集電配線38は、除去領域Y上であって光電変換セル202の端部から離れた位置から除去領域X上に亘って形成される。より具体的には、除去領域Y上であって光電変換セル202の端部から50μm以上200μm以下の位置から、除去領域X上であって基板30の端部から10mm~12mm程度の位置まで亘るように第1集電配線38を配設する。また、第1集電配線38は、光電変換層34と物理的に接しないように配置される。 Next, the first current collecting wiring 38 is formed. At this time, the first current collector wiring 38 is formed so as to straddle the removal regions X and Y. That is, the first current collecting wiring 38 is formed on the removal region Y from the position away from the end of the photoelectric conversion cell 202 over the removal region X. More specifically, it extends from the position of 50 μm to 200 μm from the end of the photoelectric conversion cell 202 on the removal region Y to the position of about 10 mm to 12 mm from the end of the substrate 30 on the removal region X. Thus, the first current collector wiring 38 is disposed. Further, the first current collector wiring 38 is disposed so as not to physically contact the photoelectric conversion layer 34.
 第1集電配線38は、導電性のテープ又はシートである。具体的には、第1集電配線38は、アルミニウムを50%以上含む金属材料からなるテープ又はシートとすることが好適である。第1集電配線38を配置した後、除去領域X及びYの少なくとも一方において超音波処理により、第1集電配線38と透明電極層32及びガラス基板30の少なくとも一方とを0.5J/mm2程度の強さで溶融接合させる。超音波処理では、除去領域X上の第1集電配線38に超音波処理装置のヘッドを押し当てた状態で超音波を与えることにより溶融接合を行う。この超音波処理が、超音波溶接法に相当する。これによって、直列接続された光電変換セル202の正電極同士及び負電極同士が並列に接続される。また、第1集電配線38は、99.999%以上のアルミニウム配線とし、幅4~6mm、厚さ110μmとすることが好適である。 The first current collecting wiring 38 is a conductive tape or sheet. Specifically, the first current collector wiring 38 is preferably a tape or sheet made of a metal material containing 50% or more of aluminum. After the first current collector wiring 38 is disposed, the first current collector wiring 38 and at least one of the transparent electrode layer 32 and the glass substrate 30 are 0.5 J / mm by ultrasonic treatment in at least one of the removal regions X and Y. Melt-bond at about 2 strength. In the ultrasonic treatment, melt bonding is performed by applying ultrasonic waves in a state where the head of the ultrasonic treatment device is pressed against the first current collecting wiring 38 on the removal region X. This ultrasonic treatment corresponds to the ultrasonic welding method. Thereby, the positive electrodes and the negative electrodes of the photoelectric conversion cells 202 connected in series are connected in parallel. The first current collecting wiring 38 is preferably 99.999% or more aluminum wiring, 4 to 6 mm wide and 110 μm thick.
 このように、光電変換セル202上に第1集電配線38を設けないようにすることによって、光電変換セル202への光の入射が妨げられることがなくなり、光電変換装置200における発電効率を高めることができる。 Thus, by not providing the first current collection wiring 38 on the photoelectric conversion cell 202, the incidence of light on the photoelectric conversion cell 202 is not hindered, and the power generation efficiency in the photoelectric conversion device 200 is increased. be able to.
 また、ガラス基板30又は透明電極層32と第1集電配線38とを溶着させることによって、第1集電配線38が剥がれにくくなる等、光電変換装置200の信頼性を向上させることができる。溶着によって、第1集電配線38とガラス基板30との界面を介した水分の浸入をより確実に防ぐことができる。 Further, by welding the glass substrate 30 or the transparent electrode layer 32 and the first current collector wiring 38, the reliability of the photoelectric conversion device 200 can be improved, such that the first current collector wiring 38 is hardly peeled off. By welding, it is possible to more reliably prevent moisture from entering through the interface between the first current collector wiring 38 and the glass substrate 30.
 次に、第2集電配線42と裏面電極36との間の電気的な絶縁を形成するために第1絶縁被覆材40を配設する。第1絶縁被覆材40は、図1,図2及び図3に示すように、光電変換装置200の左右の端辺に沿って設けられた第1集電配線38近傍から中央部の端子ボックス52の配置位置まで、スリットS4を跨いで裏面電極36上に直列分割方向に直交する方向に沿って延設される。ここでは、図1に示すように、第1絶縁被覆材40は、左右の第1集電配線38の近傍から端子ボックス52に向けて左右方向に沿って延設される。第1絶縁被覆材40は、抵抗率が1016(Ωcm)以上の絶縁性の材料で構成することが好適である。例えば、ポリエステル(PE)、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリフッ化ビニル等とすることが好適である。また、第1絶縁被覆材40は、裏面にシール状に接着材が塗布されたものを用いることが好適である。これにより、第1絶縁被覆材40を配設する際の手間が軽減される。 Next, in order to form electrical insulation between the second current collector wiring 42 and the back electrode 36, a first insulating covering material 40 is provided. As shown in FIGS. 1, 2, and 3, the first insulating covering material 40 is connected to the terminal box 52 in the center from the vicinity of the first current collector wiring 38 provided along the left and right edges of the photoelectric conversion device 200. Is extended along the direction orthogonal to the serial division direction on the back electrode 36 across the slit S4 up to the arrangement position. Here, as shown in FIG. 1, the first insulating covering material 40 extends in the left-right direction from the vicinity of the left and right first current collecting wires 38 toward the terminal box 52. The first insulating coating material 40 is preferably composed of an insulating material having a resistivity of 10 16 (Ωcm) or more. For example, polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride and the like are suitable. Moreover, it is preferable to use the 1st insulating coating material 40 by which the adhesive material was apply | coated to the back surface in the seal form. Thereby, the effort at the time of arrange | positioning the 1st insulation coating material 40 is reduced.
 第2集電配線42は、図1,図2及び図3に示すように、左右の第1集電配線38から第1絶縁被覆材40上に沿って光電変換装置200の中央部へ向けて延設される。第2集電配線42は、第1集電配線38と同じものであってもよいし、表面をはんだで被覆した銅配線であってもよい。第2集電配線42と裏面電極36との間に第1絶縁被覆材40が挟み込まれ、第2集電配線42と裏面電極36との直接的な電気的な接触がないようにされる。一方、第2集電配線42の一端は、図2及び図3に示すように、第1集電配線38の側面上まで延設され、第1集電配線38の側面に電気的に接続される。例えば、第2集電配線42の端部を超音波処理等によって第1集電配線38の側面に電気的に溶着させる。 As shown in FIGS. 1, 2, and 3, the second current collecting wiring 42 extends from the left and right first current collecting wirings 38 toward the center of the photoelectric conversion device 200 along the first insulating coating material 40. It is extended. The second current collecting wiring 42 may be the same as the first current collecting wiring 38, or may be a copper wiring whose surface is covered with solder. The first insulating coating material 40 is sandwiched between the second current collector wiring 42 and the back electrode 36 so that there is no direct electrical contact between the second current collector wiring 42 and the back electrode 36. On the other hand, one end of the second current collector wiring 42 extends to the side surface of the first current collector wiring 38 and is electrically connected to the side surface of the first current collector wiring 38 as shown in FIGS. The For example, the end of the second current collector wiring 42 is electrically welded to the side surface of the first current collector wiring 38 by ultrasonic treatment or the like.
 第2集電配線42の他端は、裏面ガラス46の開口部から引き出される。第2集電配線42の他端は、端子ボックス52内の電極端子に接続される。これにより、光電変換セル202で発電された電力が光電変換装置200の外部へ取り出される。 The other end of the second current collecting wiring 42 is drawn from the opening of the back glass 46. The other end of the second current collector wiring 42 is connected to the electrode terminal in the terminal box 52. Thereby, the electric power generated by the photoelectric conversion cell 202 is taken out of the photoelectric conversion device 200.
 続いて、端部封止樹脂50を配設する。端部封止樹脂50は、光電変換装置200の端部周辺の除去領域Xの第1集電配線38が配設されていない領域に形成する。端部封止樹脂50は、第1集電配線38に隣接するように形成する。具体的には、端部封止樹脂50は、その幅は6mm~10mm程度であり、その厚さは充填材48の厚さよりも0.05mm~0.2mm程度厚くする。ラミネート処理を終了した後には、端部封止樹脂50の厚さは充填材48とほぼ同等の厚さになる。 Subsequently, the end sealing resin 50 is disposed. The end sealing resin 50 is formed in a region where the first current collection wiring 38 is not disposed in the removal region X around the end of the photoelectric conversion device 200. The end sealing resin 50 is formed so as to be adjacent to the first current collector wiring 38. Specifically, the end sealing resin 50 has a width of about 6 mm to 10 mm and a thickness of about 0.05 mm to 0.2 mm thicker than the thickness of the filler 48. After the laminating process is finished, the thickness of the end sealing resin 50 becomes substantially the same as that of the filler 48.
 端部封止樹脂50は、抵抗率が1010(Ωcm)以上の絶縁材料とする。また、端部封止樹脂50は、光電変換装置200の端部からの水分の浸入を防ぐために水分の透過性の低い材料とすることが好適である。特に、端部封止樹脂50は、充填材48よりも水分の透過性の低い材料とすることが好適である。さらに、光電変換装置200の端部に機械的な力が加えられた場合に、光電変換装置200に発生する応力を緩和するための弾性を有することが好適である。例えば、端部封止樹脂50は、エポキシ系樹脂やブチル系樹脂とすることが好適であり、より具体的には、高温での塗布及び接着が容易なホットメルトブチルを適用することが好適である。 The end sealing resin 50 is an insulating material having a resistivity of 10 10 (Ωcm) or more. The end sealing resin 50 is preferably made of a material with low moisture permeability in order to prevent moisture from entering from the end of the photoelectric conversion device 200. In particular, the end sealing resin 50 is preferably made of a material having a moisture permeability lower than that of the filler 48. Furthermore, it is preferable to have elasticity to relieve stress generated in the photoelectric conversion device 200 when a mechanical force is applied to the end portion of the photoelectric conversion device 200. For example, the end sealing resin 50 is preferably an epoxy resin or a butyl resin, and more specifically, it is preferable to apply hot melt butyl which is easy to apply and adhere at high temperatures. is there.
 このように、端部封止樹脂50を適用することにより、光電変換装置200の端部からの水分の浸入を抑制することができ、光電変換装置200の信頼性を向上させることができる。さらに、端部封止樹脂50に隣接させて第1集電配線38を形成することにより、防水性をさらに高めることができ、光電変換装置200の信頼性をより向上させることができる。特に、第1集電配線38を基板30から裏面保護材46までに亘るように形成することによって、光電変換装置200の端部からの水分の浸入を防ぐ効果を高めることができる。 Thus, by applying the end sealing resin 50, it is possible to suppress the intrusion of moisture from the end of the photoelectric conversion device 200, and to improve the reliability of the photoelectric conversion device 200. Furthermore, by forming the 1st current collection wiring 38 adjacent to the edge part sealing resin 50, waterproofness can further be improved and the reliability of the photoelectric conversion apparatus 200 can be improved more. In particular, by forming the first current collector wiring 38 so as to extend from the substrate 30 to the back surface protective material 46, it is possible to enhance the effect of preventing moisture from entering from the end of the photoelectric conversion device 200.
 光電変換装置200の裏面は、裏面保護材46を用いて封止される。第2集電配線40の端部を立ち上げた状態において光電変換セル202、第1集電配線38及び第2集電配線42等の上にシート状の充填材48を配置する。充填材48は、絶縁樹脂とする。より具体的には、抵抗率が1014(Ωcm)程度の絶縁材料とすることが好適であり、例えば、エチレン酢酸ビニル共重合樹脂(EVA)やポリビニルブラチール(PVB)とすることが好適である。さらに、裏面保護材46で光電変換装置200の裏面が覆われる。このとき、裏面保護材46に設けられた開口部を通して第2集電配線42の端部を外部へ引き出した状態で裏面保護材46を配置する。裏面保護材46は、電気的な絶縁性を有し、水分の透過性が低く、耐腐食性が高い材料とすることが好適である。裏面保護材46は、例えば、ガラス板とすることが好適である。 The back surface of the photoelectric conversion device 200 is sealed using a back surface protection material 46. In a state where the end of the second current collecting wiring 40 is raised, a sheet-like filler 48 is disposed on the photoelectric conversion cell 202, the first current collecting wiring 38, the second current collecting wiring 42, and the like. The filler 48 is an insulating resin. More specifically, an insulating material having a resistivity of about 10 14 (Ωcm) is preferable. For example, ethylene vinyl acetate copolymer resin (EVA) or polyvinyl bratil (PVB) is preferable. is there. Further, the back surface of the photoelectric conversion device 200 is covered with the back surface protective material 46. At this time, the back surface protective material 46 is arranged in a state where the end portion of the second current collecting wiring 42 is pulled out through the opening provided in the back surface protective material 46. The back surface protective material 46 is preferably made of a material having electrical insulation, low moisture permeability, and high corrosion resistance. The back surface protective material 46 is preferably a glass plate, for example.
 このような状態において、裏面保護材46を光電変換セル202側へ押圧しながら加熱して真空ラミネート処理を施す。加熱処理は、例えば、150℃程度で行う。これにより、裏面保護材46によって光電変換装置200の裏面が封止される。さらに、充填材48としてエチレン酢酸ビニル共重合樹脂(EVA)を用いた場合、キュア炉において光電変換装置200を加熱してキュア処理を行ってもよい。キュア処理における加熱処理は、例えば150℃で30分程度行うとよい。 In such a state, the back surface protective material 46 is heated while being pressed toward the photoelectric conversion cell 202 side to perform a vacuum laminating process. The heat treatment is performed at about 150 ° C., for example. Thereby, the back surface of the photoelectric conversion device 200 is sealed by the back surface protection material 46. Further, when ethylene vinyl acetate copolymer resin (EVA) is used as the filler 48, the photoelectric conversion device 200 may be heated in a curing furnace to perform the curing process. The heat treatment in the curing process is preferably performed at 150 ° C. for about 30 minutes, for example.
 このように、裏面保護材46によって光電変換装置200の裏面を封止することによって、裏面から光電変換層34への水分や腐食性物質が浸入することを防ぐことができ、光電変換装置200の耐環境性を高めることができる。 Thus, by sealing the back surface of the photoelectric conversion device 200 with the back surface protective material 46, it is possible to prevent moisture and corrosive substances from entering the photoelectric conversion layer 34 from the back surface. Environmental resistance can be improved.
 最後に、図1に示すように、光電変換装置200を封止する裏面保護材46から引き出された第2集電配線42の端部の近傍に端子ボックス52を取り付ける。端子ボックス52は、シリコーン等を用いて接着して取り付けることができる。第2集電配線42の端部を端子ボックス52内の端子電極にハンダ付け等により電気的に接続し、端子ボックス52内の空間にシリコーン等の絶縁樹脂を充填して蓋をする。以上のように、本実施の形態における光電変換装置200が形成される。 Finally, as shown in FIG. 1, a terminal box 52 is attached in the vicinity of the end of the second current collecting wiring 42 drawn out from the back surface protective material 46 that seals the photoelectric conversion device 200. The terminal box 52 can be attached by bonding using silicone or the like. The end of the second current collecting wiring 42 is electrically connected to the terminal electrode in the terminal box 52 by soldering or the like, and the space in the terminal box 52 is filled with an insulating resin such as silicone and covered. As described above, the photoelectric conversion device 200 according to this embodiment is formed.
 なお、除去領域Xを形成するには、透明電極層32、光電変換層34及び裏面電極36を形成する際に、マスク部材を用いてガラス基板30の周囲をマスクして成膜処理を行ってもよい。また、除去領域Yを形成するには、光電変換層34及び裏面電極36を形成する際に、マスク部材を用いてガラス基板30の周囲をマスクして成膜処理を行ってもよい。また、光電変換セル202を形成後にサンドブラスト又はエッチングによって光電変換装置200の端部周辺の透明電極層32、光電変換層34及び裏面電極36を除去してもよい。 In order to form the removal region X, when the transparent electrode layer 32, the photoelectric conversion layer 34, and the back electrode 36 are formed, a mask member is used to mask the periphery of the glass substrate 30 and perform a film forming process. Also good. Further, in order to form the removal region Y, when the photoelectric conversion layer 34 and the back electrode 36 are formed, the periphery of the glass substrate 30 may be masked using a mask member to perform a film forming process. Further, after forming the photoelectric conversion cell 202, the transparent electrode layer 32, the photoelectric conversion layer 34, and the back electrode 36 around the end of the photoelectric conversion device 200 may be removed by sandblasting or etching.
 また、図4に示すように、第1集電配線38の高さを第2集電配線42の折り曲げ部分の高さと同程度まで下げた構成としてもよい。ここで、端部封止樹脂50の形成の際に、端部封止樹脂50が第1集電配線38の上まで覆うように形成することが好適である。 Further, as shown in FIG. 4, the height of the first current collecting wiring 38 may be lowered to the same level as the height of the bent portion of the second current collecting wiring 42. Here, when the end sealing resin 50 is formed, it is preferable that the end sealing resin 50 is formed so as to cover the first current collector wiring 38.
 また、図5に示すように、図4の変形例として、第1集電配線38の高さを第2集電配線42の折り曲げ部分の高さと同程度まで下げた構成において、第2集電配線42を第1集電配線38上にまで延在させた構成としてもよい。ここで、端部封止樹脂50の形成の際に、端部封止樹脂50が第1集電配線38と重畳する第2集電配線42の上まで覆うように形成することが好適である。 Further, as shown in FIG. 5, as a modification of FIG. 4, in the configuration in which the height of the first current collector wiring 38 is lowered to the same level as the height of the bent portion of the second current collector wiring 42, The wiring 42 may be configured to extend up to the first current collecting wiring 38. Here, when the end sealing resin 50 is formed, it is preferable that the end sealing resin 50 is formed so as to cover the second current collecting wiring 42 overlapping the first current collecting wiring 38. .
 なお、本実施の形態では、透明電極層32から基板30に亘って第1集電配線38を形成するものとしたが、図6の断面図に示すように、透明電極層32の端部を裏面電極36によって覆い、裏面電極36から基板30に亘って第1集電配線38を形成してもよい。 In the present embodiment, the first current collector wiring 38 is formed from the transparent electrode layer 32 to the substrate 30. However, as shown in the cross-sectional view of FIG. The first current collector wiring 38 may be formed from the back electrode 36 to the substrate 30 by covering with the back electrode 36.
 この場合、第1スリットS1を形成する際に基板30の端部の透明電極層38を除去し、その除去領域上に光電変換層34を形成し、第3スリットS3を形成する際に除去領域上に形成された半導体変換層34及び除去領域に隣接する透明電極層38上に形成された光電変換層34を除去する。このようにして、基板30の端部に透明電極層38が露出した領域及び基板30が露出した領域を形成し、その後、裏面電極36を形成する。そして、第4スリットS4を形成する際に、透明電極層30上に形成された光電変換層34及びそれに続く基板30上に形成された光電変換層34の一部を残すように、基板30の端部に形成された裏面電極36を除去する。 In this case, the transparent electrode layer 38 at the end of the substrate 30 is removed when forming the first slit S1, the photoelectric conversion layer 34 is formed on the removal region, and the removal region when forming the third slit S3. The semiconductor conversion layer 34 formed above and the photoelectric conversion layer 34 formed on the transparent electrode layer 38 adjacent to the removal region are removed. In this way, a region where the transparent electrode layer 38 is exposed and a region where the substrate 30 is exposed are formed at the end of the substrate 30, and then the back electrode 36 is formed. Then, when forming the fourth slit S4, the photoelectric conversion layer 34 formed on the transparent electrode layer 30 and a part of the photoelectric conversion layer 34 formed on the subsequent substrate 30 are left so as to remain. The back electrode 36 formed at the end is removed.
 このようにして、基板30の端部において透明電極層30の端部が裏面電極36によって覆われた領域を形成し、その領域において裏面電極36から基板30に亘って第1集電配線38を配設する。 In this manner, a region where the end of the transparent electrode layer 30 is covered with the back electrode 36 is formed at the end of the substrate 30, and the first current collector wiring 38 is formed from the back electrode 36 to the substrate 30 in that region. Arrange.
 光電変換装置200の反対側の端部も同様に透明電極層32の端部を裏面電極36によって覆い、裏面電極36から基板30に亘って第1集電配線38を形成することができる。 Similarly, the end of the transparent electrode layer 32 is also covered with the back electrode 36 at the opposite end of the photoelectric conversion device 200, and the first current collector wiring 38 can be formed from the back electrode 36 to the substrate 30.
 このように、透明電極層32の端部を裏面電極36によって覆い、さらにその裏面電極36を挟んで裏面電極36の端部を覆うように裏面電極36から基板30に亘って第1集電配線38を形成することによって、光電変換装置200の端部からの水分の浸入を防ぐ効果をより高めることができる。 In this way, the first current collector wiring is formed from the back electrode 36 to the substrate 30 so as to cover the end of the transparent electrode layer 32 with the back electrode 36 and further cover the end of the back electrode 36 with the back electrode 36 interposed therebetween. By forming 38, the effect of preventing moisture from entering from the end of the photoelectric conversion device 200 can be further enhanced.
 10 ガラス基板、12 透明電極層、14 光電変換層、16 裏面電極、18 第1集電配線、20 絶縁被覆材、22 第2集電配線、24 端部封止樹脂、26 裏面ガラス、28 充填材、30 基板、32 透明電極層、34 光電変換層、36 裏面電極、38 第1集電配線、40 第1絶縁被覆材、42 第2集電配線、46 裏面保護材、48 充填材、50 端部封止樹脂、52 端子ボックス、100 光電変換装置、102 光電変換セル、200 光電変換装置、202 光電変換セル。 10 glass substrate, 12 transparent electrode layer, 14 photoelectric conversion layer, 16 back electrode, 18 first current collector wiring, 20 insulation covering material, 22 second current collector wiring, 24 end sealing resin, 26 back glass, 28 filling Material, 30 substrate, 32 transparent electrode layer, 34 photoelectric conversion layer, 36 back electrode, 38 1st current collection wiring, 40 1st insulation coating material, 42 2nd current collection wiring, 46 back surface protection material, 48 filler, 50 End sealing resin, 52 terminal box, 100 photoelectric conversion device, 102 photoelectric conversion cell, 200 photoelectric conversion device, 202 photoelectric conversion cell.

Claims (6)

  1.  基板上に形成された第1電極層、前記第1電極層上に形成された光電変換層、及び前記光電変換層上に形成された第2電極層によって構成される複数の光電変換セルと、
     前記複数の光電変換セルを並列に接続する集電配線と、
    を備え、
     前記集電配線は、前記基板の周辺部に配置され、前記第1電極層の端部を覆うように形成されていることを特徴とする光電変換装置。
    A plurality of photoelectric conversion cells including a first electrode layer formed on a substrate, a photoelectric conversion layer formed on the first electrode layer, and a second electrode layer formed on the photoelectric conversion layer;
    Current collection wiring connecting the plurality of photoelectric conversion cells in parallel;
    With
    The said current collection wiring is arrange | positioned in the peripheral part of the said board | substrate, and is formed so that the edge part of the said 1st electrode layer may be covered.
  2.  請求項1に記載の光電変換装置であって、
     前記集電配線は、前記光電変換層と物理的に接しないように形成されていることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 1,
    The current collector wiring is formed so as not to be in physical contact with the photoelectric conversion layer.
  3.  請求項1又は2に記載の光電変換装置であって、
     前記集電配線は、前記第1電極層の周辺部において前記基板に溶着されていることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 1, wherein
    The photoelectric conversion device, wherein the current collecting wiring is welded to the substrate at a peripheral portion of the first electrode layer.
  4.  請求項1~3のいずれか一つに記載の光電変換装置であって、
     前記集電配線は、前記第2電極層を挟んで前記第1電極層の端部を覆うように形成されていることを特徴とする光電変換装置。
    A photoelectric conversion device according to any one of claims 1 to 3,
    The said current collection wiring is formed so that the edge part of the said 1st electrode layer may be covered on both sides of the said 2nd electrode layer, The photoelectric conversion apparatus characterized by the above-mentioned.
  5.  請求項1~4のいずれか一つに記載の光電変換装置であって、
     前記基板の周辺部における前記集電配線より外側に、前記集電配線に隣り合うように樹脂封止材が配置されていることを特徴とする光電変換装置。
    The photoelectric conversion device according to any one of claims 1 to 4, wherein
    A photoelectric conversion device, wherein a resin sealing material is disposed outside the current collecting wiring in a peripheral portion of the substrate so as to be adjacent to the current collecting wiring.
  6.  請求項1~5のいずれか一つに記載の光電変換装置であって、
     前記第2電極層側を覆う裏面保護材を備え、
     前記集電配線は、前記基板から前記裏面保護材までに亘るように形成されていることを特徴とする光電変換装置。
    A photoelectric conversion device according to any one of claims 1 to 5,
    A back surface protection material covering the second electrode layer side;
    The said current collection wiring is formed so that it may extend from the said board | substrate to the said back surface protective material, The photoelectric conversion apparatus characterized by the above-mentioned.
PCT/JP2011/069335 2010-08-30 2011-08-26 Photoelectric conversion device WO2012029668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-191818 2010-08-30
JP2010191818 2010-08-30

Publications (1)

Publication Number Publication Date
WO2012029668A1 true WO2012029668A1 (en) 2012-03-08

Family

ID=45772758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069335 WO2012029668A1 (en) 2010-08-30 2011-08-26 Photoelectric conversion device

Country Status (1)

Country Link
WO (1) WO2012029668A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153101A (en) * 2012-01-26 2013-08-08 Kyocera Corp Photoelectric conversion module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310744A (en) * 1993-04-26 1994-11-04 Fuji Electric Co Ltd Thin film solar cell module and connection method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310744A (en) * 1993-04-26 1994-11-04 Fuji Electric Co Ltd Thin film solar cell module and connection method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153101A (en) * 2012-01-26 2013-08-08 Kyocera Corp Photoelectric conversion module

Similar Documents

Publication Publication Date Title
WO2012029651A1 (en) Photoelectric conversion device and method for producing same
EP1811576B1 (en) Photovoltaic module
JP4791098B2 (en) Integrated thin film solar cell module
US20150194552A1 (en) Solar cell module and method for manufacturing the solar cell module
JP2013077821A (en) Solar cell module
WO2008038553A1 (en) Solar cell module
JP5702472B2 (en) Laminated glass solar cell module
JP4101611B2 (en) Thin film solar cell
TW201005968A (en) Thin film photovoltaic battery module and method for manufacturing the same
WO2009099180A1 (en) Solar cell module
CN102460729B (en) Solar cell module and method for manufacturing solar cell module
JP2007165531A (en) Solar cell and manufacturing method thereof
WO2013179530A1 (en) Photoelectric conversion device
WO2012035780A1 (en) Photoelectric converter
JP5047134B2 (en) Solar cell module
JP2009099883A (en) Thin film solar cell module
WO2012029668A1 (en) Photoelectric conversion device
WO2011052479A1 (en) Photoelectric conversion module
WO2012023260A1 (en) Photoelectric conversion device and method for manufacturing same
WO2011105167A1 (en) Photoelectric conversion device
JP2008053303A (en) Solar cell panel
US20120024339A1 (en) Photovoltaic Module Including Transparent Sheet With Channel
WO2011114781A1 (en) Photoelectric conversion device and process for production thereof
JP2013058702A (en) Solar cell and manufacturing method thereof, and solar cell module and manufacturing method thereof
JP2013128026A (en) Photovoltaic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP