WO2011114781A1 - Photoelectric conversion device and process for production thereof - Google Patents

Photoelectric conversion device and process for production thereof Download PDF

Info

Publication number
WO2011114781A1
WO2011114781A1 PCT/JP2011/051731 JP2011051731W WO2011114781A1 WO 2011114781 A1 WO2011114781 A1 WO 2011114781A1 JP 2011051731 W JP2011051731 W JP 2011051731W WO 2011114781 A1 WO2011114781 A1 WO 2011114781A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
filler
bypass diode
conversion device
electrode layer
Prior art date
Application number
PCT/JP2011/051731
Other languages
French (fr)
Japanese (ja)
Inventor
竜也 桐山
翔 高橋
聡生 柳浦
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010058706A external-priority patent/JP2011192864A/en
Priority claimed from JP2010059172A external-priority patent/JP2011192890A/en
Priority claimed from JP2010127097A external-priority patent/JP2011253954A/en
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011114781A1 publication Critical patent/WO2011114781A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photoelectric conversion device and a manufacturing method thereof.
  • a photoelectric conversion device in which semiconductor thin films such as amorphous and microcrystals are stacked is used.
  • a photoelectric conversion module is formed by connecting a plurality of photoelectric conversion cells and enclosing with a light-transmitting substrate and a filler mainly composed of ethylene vinyl acetate copolymer (EVA).
  • EVA ethylene vinyl acetate copolymer
  • a reverse bias voltage is applied to the photoelectric conversion cell, and the cell generates heat.
  • Such a situation is called a hot spot. If the phenomenon of this hot spot occurs and the temperature of the photoelectric conversion cell continues to rise, in the worst case, the photoelectric conversion cell is destroyed, and a predetermined electric output cannot be taken out from the photoelectric conversion module.
  • a method of connecting a bypass diode to the photoelectric conversion cell so as to be reverse-biased with respect to the normal output is adopted.
  • One aspect of the present invention includes a photoelectric conversion module in which photoelectric conversion cells divided by slits are connected in series, a bypass diode film having a diode on which at least a p layer and an n layer are stacked, and a bypass diode film And a back sheet for sealing the back surface of the photoelectric conversion module, and a filler filled between the photoelectric conversion module and the back sheet, and the diodes are arranged in series so as to straddle the adjacent photoelectric conversion cells.
  • This is a photoelectric conversion device in which a bypass diode film is extended along the direction of connection.
  • a photoelectric conversion device in which a bypass diode is easily installed can be obtained.
  • the photoelectric conversion device 200 includes a photoelectric conversion module 202, a bypass diode film 204, a back sheet 208, and a filler 210.
  • FIG. 1 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 200 along the direction in which the bypass diode film 204 is extended.
  • FIG. 2 shows a perspective view of the photoelectric conversion device 200 with the back sheet 208 and the filler 210 removed.
  • the photoelectric conversion module 202 has an amorphous silicon photoelectric conversion unit (a) having a substrate 20 as a light incident side and a wide band gap as a transparent electrode layer 22 and a top cell from the light incident side. -Si unit) 24, an intermediate layer 26, and a microcrystalline silicon photoelectric conversion unit ( ⁇ c-Si unit) 28 having a narrower band gap than the a-Si unit 24 and a back electrode layer 30 as a bottom cell are stacked.
  • a tandem photoelectric conversion device in which the a-Si unit 24 and the ⁇ c-Si unit 28 are stacked will be described as an example.
  • a single-type photoelectric conversion device using only one of the a-Si unit 24 and the ⁇ c-Si unit 28 or a photoelectric conversion device to which another type of photoelectric conversion unit is applied may be used.
  • a material having transparency in at least the visible light wavelength region such as a glass substrate or a plastic substrate, can be applied.
  • a transparent electrode layer 22 is formed on the substrate 20.
  • the transparent electrode layer 22 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO).
  • TCO transparent conductive oxide
  • zinc oxide (ZnO) is preferable because it has high translucency, low resistivity, and excellent plasma resistance.
  • the transparent electrode layer 22 can be formed by, for example, a sputtering method or a CVD method.
  • a slit S1 is formed in the transparent electrode layer 22 and patterned into a strip shape.
  • the transparent electrode layer 22 can be patterned into a strip shape using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
  • the a-Si unit 24 includes a silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), a carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 )
  • a silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), a carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 )
  • Plasma chemical vapor deposition in which a mixed gas obtained by mixing a p-type dopant-containing gas such as phosphine (PH 3 ) and a diluent gas such as phosphine (PH 3 ) and a diluent gas such as hydrogen (H 2 ) is formed into a plasma. It can be formed by the method (CVD method).
  • the intermediate layer 26 is formed on the a-Si unit 24.
  • the intermediate layer 26 is preferably made of a transparent conductive oxide (TCO) such as zinc oxide (ZnO) or silicon oxide (SiOx). In particular, it is preferable to use zinc oxide (ZnO) or silicon oxide (SiOx) doped with magnesium Mg.
  • TCO transparent conductive oxide
  • ZnO zinc oxide
  • SiOx silicon oxide
  • the intermediate layer 26 can be formed by, for example, a sputtering method or a CVD method.
  • the thickness of the intermediate layer 26 is preferably in the range of 10 nm to 200 nm. The intermediate layer 26 may not be provided.
  • a ⁇ c-Si unit 28 in which a p-type layer, an i-type layer, and an n-type layer are sequentially laminated is formed.
  • the ⁇ c-Si unit 28 includes silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 ) formed by a plasma CVD method in which a mixed gas obtained by mixing a p-type dopant-containing gas such as phosphine (PH 3 ) and a diluted gas such as phosphine (PH 3 ) and hydrogen (H 2 ) is formed into a plasma. can do.
  • the plasma CVD method it is preferable to apply, for example, a 13.56 MHz RF plasma CVD method as in the case of the a-Si unit 24.
  • a slit S2 is formed in the a-Si unit 24 and the ⁇ c-Si unit 28 and patterned into a strip shape.
  • a slit S2 is formed by irradiating a position 50 ⁇ m laterally from the position of the slit S1 formed in the transparent electrode layer 22 to form the slit S2, and the a-Si unit 24 and the ⁇ c-Si unit 28 are patterned into strips.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
  • a back electrode layer 30 is formed on the ⁇ c-Si unit 28.
  • the back electrode layer 30 preferably has a structure in which a transparent conductive oxide (TCO) and a reflective metal are sequentially laminated.
  • a transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or these transparent conductive oxides
  • TCO transparent conductive oxide
  • TCO such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or these transparent conductive oxides
  • a material (TCO) doped with impurities is used.
  • zinc oxide (ZnO) doped with aluminum (Al) as an impurity may be used.
  • metals such as silver (Ag) and aluminum (Al), can be used.
  • the transparent conductive oxide (TCO) can be formed by, for example, a sputtering method or a CVD method.
  • the back electrode layer 30 is preferably about 1 ⁇ m in total. It is preferable that at least one of the back electrode layers 30 is provided with unevenness for enhancing the light confinement effect.
  • a slit S3 is formed in the back electrode layer 30 and patterned into a strip shape.
  • a slit S3 is formed by irradiating YAG laser to a position 50 ⁇ m lateral from the position of the slit S2 formed in the a-Si unit 24 and the ⁇ c-Si unit 28, and the back electrode layer 30 is patterned into a strip shape.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
  • the back electrode layer 30 of one photoelectric conversion cell is electrically connected to the transparent electrode layer 22 of the adjacent photoelectric conversion cell via the back electrode layer 30 embedded in the slit S2, and the adjacent photoelectric conversion cells are connected to each other. Are connected in series.
  • the bypass diode film 204 is configured by laminating the substrate 40, the first electrode layer 42, the bypass diode 44, and the second electrode layer 46.
  • the bypass diode film 204 is formed by arranging a plurality of bypass diodes 44 on a tape-like, film-like or sheet-like substrate 40 made of an insulating material.
  • the substrate 40 is made of a flexible insulating material.
  • a film of a plastic material such as polyethylene or polyimide is used.
  • a first electrode layer 42 is formed on the substrate 40.
  • the first electrode layer 42 may be a layer made of a conductive material.
  • the first electrode layer 42 is made of, for example, tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc., tin (Sn), antimony (Sb), fluorine (F), aluminum (Al). It is preferable to use at least one kind or a combination of plural kinds of transparent conductive oxides (TCO) doped with, etc., or a metal such as silver (Ag) or aluminum (Al). In particular, zinc oxide (ZnO) and metal are preferable because they have low resistivity and excellent plasma resistance.
  • the first electrode layer 42 can be formed by, for example, a sputtering method or a CVD method.
  • the first electrode layer 42 is patterned into a strip shape by the slit S4.
  • the bypass diode 44 formed on the bypass diode film 204 needs to be formed at the same pitch as the photoelectric conversion cell formed on the photoelectric conversion module 202.
  • the slits S4 are formed at a pitch P2 that matches the pitch P1 of the photoelectric conversion cell arrangement.
  • the first electrode layer 42 can be patterned into a strip shape using, for example, a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
  • the first electrode layer 42 may be formed by a sputtering method using a mask or a screen printing method.
  • the semiconductor layer 42 On the first electrode layer 42, at least a p-type layer and an n-type silicon thin film are sequentially stacked to form a semiconductor layer to be the bypass diode 44.
  • the semiconductor layer only needs to have a pn junction characteristic as a whole, and can adopt aspects such as a p / n two-layer stack or a p / i / n three-layer stack.
  • the semiconductor layer can be formed by laminating an amorphous silicon thin film or a microcrystalline silicon thin film.
  • An amorphous silicon thin film or a microcrystalline silicon thin film is formed using a silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), a carbon-containing gas such as methane (CH 4 ), diborane ( Plasma chemistry for forming a film by converting a mixed gas obtained by mixing a p-type dopant-containing gas such as B 2 H 6 ), an n-type dopant-containing gas such as phosphine (PH 3 ), and a diluent gas such as hydrogen (H 2 ) into plasma. It can be formed by a vapor deposition method (CVD method). As the plasma CVD method, for example, an RF plasma CVD method of 13.56 MHz is preferably applied.
  • a vapor deposition method As the plasma CVD method, for example, an RF plasma CVD method of 13.56 MHz is preferably applied.
  • the semiconductor layer is divided into strips by the slit S5 to form the bypass diode 44.
  • the slit S5 is formed by irradiating YAG laser at a position 50 ⁇ m lateral from the position of the slit S4 formed in the first electrode layer 42, and the semiconductor layer is patterned into a strip shape.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
  • a second electrode layer 46 is formed on the bypass diode 44.
  • the second electrode layer 46 may be a layer made of a conductive material.
  • the second electrode layer 46 is made of, for example, tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc., tin (Sn), antimony (Sb), fluorine (F), aluminum (Al). It is preferable to use at least one kind or a combination of plural kinds of transparent conductive oxides (TCO) doped with, etc., or a metal such as silver (Ag) or aluminum (Al).
  • the second electrode layer 46 can be formed by, for example, a sputtering method or a CVD method.
  • a slit S6 is formed in the second electrode layer 46 and patterned into a strip shape.
  • a slit S6 is formed by irradiating YAG laser at a position 50 ⁇ m lateral from the position of the slit S5 formed in the semiconductor layer, and the second electrode layer 46 is patterned into a strip shape.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
  • the second electrode layer 46 may be formed by a sputtering method using a mask or a screen printing method.
  • the second electrode layer 46 of one bypass diode 44 is electrically connected to the first electrode layer 42 of the adjacent bypass diode 44 via the second electrode layer 46 embedded in the slit S5, and the adjacent bypass A bypass diode film 204 in which the diodes 44 are connected in series is formed.
  • the bypass diode film 204 formed in this way is arranged on the photoelectric conversion module 202 so that the voltage is applied in a reverse bias state in a state where the photoelectric conversion cell of the photoelectric conversion module 202 is normally generating power.
  • the bypass diode 44 of the bypass diode film 204 is connected to the photoelectric conversion cell. That is, the direction in which the bypass diode 44 of the bypass diode film 204 is connected in series is aligned with the direction in which the photoelectric conversion cells of the photoelectric conversion module 202 are connected in series, and the second electrode layer 46 of one bypass diode 44 of the bypass diode film 204 is aligned.
  • the pitch P2 of the arrangement of the bypass diodes 44 of the bypass diode film 204 and the pitch P1 of the arrangement of the photoelectric conversion cells of the photoelectric conversion module 202 are matched, so one of the photoelectric conversion cells connected in series
  • the bypass diodes 44 can be connected in association with each other. Note that by making the slits S1 to S3 and the slits S4 to S5 overlap, the alignment of the bypass diode film 204 and the photoelectric conversion module 202 can be easily performed.
  • bypass diode 44 may be provided across a plurality of photoelectric conversion cells without providing the bypass diode 44 for each of the photoelectric conversion cells connected in series.
  • the bypass diodes 44 are formed on the bypass diode film 204 at a pitch P2 that extends over a plurality of photoelectric conversion cells.
  • the pitch P2 of the arrangement of the bypass diodes 44 is n times the pitch P1 of the arrangement of the photoelectric conversion cells.
  • the surface of the back electrode layer 30 is covered with the back sheet 208 and sealed using the filler 210.
  • the filler 210 and the back sheet 208 can be resin materials such as EVA and polyimide.
  • the filler 210 is disposed on the back electrode layer 30 on which the bypass diode film 204 is disposed.
  • the filler 210 is covered with the back sheet 208 and heated to a temperature of about 150 ° C. toward the back electrode layer 30. Sealing can be performed by applying pressure to the. This can prevent moisture from entering the power generation layer of the photoelectric conversion device 200.
  • the bypass sheet 204 is pressed toward the photoelectric conversion module 202 by the back sheet 208, and the anode electrode and the cathode electrode of the bypass diode 44 are pressed against the back electrode layer 30, so that the anode is not performed without soldering or the like. Good electrical connection between the electrode and cathode electrode and the back electrode layer 30 can be obtained.
  • FIG. 5 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 300 along the direction in which the bypass diode film 204 and the cover member 212 are extended.
  • FIG. 6 is a perspective view of the photoelectric conversion device 300 with the back sheet 208 and the filler 210 removed in order to clearly show the features of the present invention.
  • the bypass diode film 204 covered with the cover member 212 is indicated by a broken line in order to clarify the configuration.
  • the cover member 212 is a tape-like, film-like or sheet-like member made of an insulating material.
  • the cover member 212 preferably has heat resistance enough to withstand the heating in the sealing process of the back sheet 208. Since the heat treatment is performed at about 150 ° C., the cover member 212 is preferably made of, for example, Teflon (registered trademark).
  • the filler 210 does not enter between the second electrode layer 46 and the back electrode layer 30 of the bypass diode 44 when sealing with the back sheet 208, It is possible to prevent the electrical contact between the second electrode layer 46 and the back electrode layer 30 from becoming defective.
  • the photoelectric conversion device of the present embodiment it is possible to prevent the photoelectric conversion cell from being damaged by the bypass diode when a hot spot occurs. Furthermore, the bypass diode can be easily installed when the photoelectric conversion device is manufactured.
  • the photoelectric conversion device 200 includes a photoelectric conversion module 202, an insulating member 214, a bypass diode 206, a back sheet 208, and a filler 210.
  • FIG. 7 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 200 along the extending direction of the insulating member 214 and the bypass diode 206.
  • FIG. 8 shows a perspective view of the photoelectric conversion device 200 with the back sheet 208 and the filler 210 removed.
  • the photoelectric conversion module 202 includes an amorphous silicon photoelectric conversion unit (a) having a substrate 20 as a light incident side and a wide band gap as a transparent electrode layer 22 and a top cell from the light incident side. -Si unit) 24, an intermediate layer 26, and a microcrystalline silicon photoelectric conversion unit ( ⁇ c-Si unit) 28 having a narrower band gap than the a-Si unit 24 and a back electrode layer 30 as a bottom cell are stacked.
  • a tandem photoelectric conversion device in which the a-Si unit 24 and the ⁇ c-Si unit 28 are stacked will be described as an example.
  • a single-type photoelectric conversion device using only one of the a-Si unit 24 and the ⁇ c-Si unit 28 or a photoelectric conversion device to which another type of photoelectric conversion unit is applied may be used.
  • a material having transparency in at least the visible light wavelength region such as a glass substrate or a plastic substrate, can be applied.
  • a transparent electrode layer 22 is formed on the substrate 20.
  • the transparent electrode layer 22 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO).
  • TCO transparent conductive oxide
  • zinc oxide (ZnO) is preferable because it has high translucency, low resistivity, and excellent plasma resistance.
  • the transparent electrode layer 22 can be formed by, for example, a sputtering method or a CVD method.
  • a slit S1 is formed in the transparent electrode layer 22 and patterned into a strip shape.
  • the transparent electrode layer 22 can be patterned into a strip shape using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
  • the a-Si unit 24 includes silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 )
  • silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 )
  • Plasma chemical vapor deposition in which a mixed gas obtained by mixing a p-type dopant-containing gas, such as phosphine (PH 3 ), and a mixed gas, such as phosphine (PH 3 ), and a diluent gas, such as hydrogen (H 2 ), is converted into plasma. It can be formed by the method (CVD method).
  • the plasma CVD method for example, an RF plasma CVD
  • An intermediate layer 26 is formed on the a-Si unit 24.
  • the intermediate layer 26 is preferably made of a transparent conductive oxide (TCO) such as zinc oxide (ZnO) or silicon oxide (SiOx). In particular, it is preferable to use zinc oxide (ZnO) or silicon oxide (SiOx) doped with magnesium Mg.
  • TCO transparent conductive oxide
  • ZnO zinc oxide
  • SiOx silicon oxide
  • the intermediate layer 26 can be formed by sputtering, for example.
  • the thickness of the intermediate layer 26 is preferably in the range of 10 nm to 200 nm. The intermediate layer 26 may not be provided.
  • a ⁇ c-Si unit 28 in which a p-type layer, an i-type layer, and an n-type layer are sequentially laminated is formed.
  • the ⁇ c-Si unit 28 includes a silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), a carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 ) formed by a plasma CVD method in which a mixed gas obtained by mixing a p-type dopant-containing gas such as phosphine (PH 3 ) and a dilute gas such as phosphine (PH 3 ) and hydrogen (H 2 ) is formed into a plasma. can do.
  • the plasma CVD method it is preferable to apply, for example, a 13.56 MHz RF plasma CVD method as in the case of the a-Si unit 24.
  • a slit S2 is formed in the a-Si unit 24 and the ⁇ c-Si unit 28 and patterned into a strip shape.
  • a slit S2 is formed by irradiating a position 50 ⁇ m laterally from the position of the slit S1 formed in the transparent electrode layer 22 to form the slit S2, and the a-Si unit 24 and the ⁇ c-Si unit 28 are patterned into strips.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
  • a back electrode layer 30 is formed on the ⁇ c-Si unit 28.
  • the back electrode layer 30 preferably has a structure in which a transparent conductive oxide (TCO) and a reflective metal are sequentially laminated.
  • a transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or these transparent conductive oxides
  • TCO transparent conductive oxide
  • TCO such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or these transparent conductive oxides
  • a material (TCO) doped with impurities is used.
  • zinc oxide (ZnO) doped with aluminum (Al) as an impurity may be used.
  • metals such as silver (Ag) and aluminum (Al), can be used.
  • the transparent conductive oxide (TCO) can be formed by, for example, a sputtering method or a CVD method.
  • the back electrode layer 30 is preferably about 1 ⁇ m in total. It is preferable that at least one of the back electrode layers 30 is provided with unevenness for enhancing the light confinement effect.
  • a slit S3 is formed in the back electrode layer 30 and patterned into a strip shape.
  • a slit S3 is formed by irradiating YAG laser to a position 50 ⁇ m lateral from the position of the slit S2 formed in the a-Si unit 24 and the ⁇ c-Si unit 28, and the back electrode layer 30 is patterned into a strip shape.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
  • the back electrode layer 30 of one photoelectric conversion cell is electrically connected to the transparent electrode layer 22 of the adjacent photoelectric conversion cell via the back electrode layer 30 embedded in the slit S2, and the adjacent photoelectric conversion cells are connected to each other. Are connected in series.
  • the insulating member 214 is a tape-like, film-like or sheet-like member made of an insulating material.
  • the insulating member 214 extends on the back electrode layer 30 of the photoelectric conversion module 202 along the serial connection direction of the photoelectric conversion cells.
  • a plurality of holes 32 are formed in the insulating member 214 at a predetermined pitch P1 along the extending direction, and the holes 32 are used for alignment of the bypass diode 206.
  • the material of the insulating member 214 is preferably Teflon (registered trademark), for example.
  • the holes 32 formed in the insulating member 214 are formed at the same pitch P1 as the pitch P where the bypass diode 206 is disposed.
  • the holes 32 are formed at the same pitch P1 as the pitch P2 of the photoelectric conversion cell arrangement as shown in FIGS. To do.
  • the hole 32 is shaped and sized so that the position of the bypass diode 206 is not spatially displaced when the bypass diode 206 is fitted in the hole 32.
  • the insulating member 214 is arrange
  • the bypass diode 206 is provided to prevent damage to the photoelectric conversion cell when a hot spot occurs in the photoelectric conversion device 200.
  • the bypass diode 206 is connected to the photoelectric conversion cell so that the voltage is applied in a reverse bias state in a state where the photoelectric conversion cell is normally generating power.
  • bypass diode 206 when the bypass diode 206 is provided for each of the photoelectric conversion cells connected in series, the bypass diode 206 is arranged in each of the holes 32 of the insulating member 214 arranged as described above, and the adjacent photoelectric conversion cells are arranged.
  • the anode electrode and the cathode electrode of the bypass diode 206 are respectively connected to the back electrode layer 30.
  • the connection between the back electrode layer 30 and the anode electrode or the cathode electrode may be performed by general soldering or by mechanical pressure bonding by sealing the back sheet 208.
  • the bypass diode 206 may be provided across a plurality of photoelectric conversion cells without providing the bypass diode 206 for each of the photoelectric conversion cells connected in series.
  • holes 32 are provided in the insulating member 214 at a pitch P1 obtained by adding a plurality of photoelectric conversion cells.
  • the hole 32 is sized so as to straddle a plurality of photoelectric conversion cells.
  • the bypass diode 206 is connected to the photoelectric conversion cell so that the voltage is applied in a reverse bias state in a state where the photoelectric conversion cell normally generates power across the plurality of photoelectric conversion cells.
  • the bypass diode 206 can be aligned only by arranging the bypass diode 206 in accordance with the hole 32. Therefore, it is possible to reduce the burden of alignment work of the bypass diode 206.
  • the surface of the back electrode layer 30 is covered with the back sheet 208 and sealed with the filler 210.
  • the filler 210 and the back sheet 208 can be resin materials such as EVA and polyimide. Sealing can be performed by covering the back electrode layer 30 coated with the filler 210 with the back sheet 208 and applying pressure to the back sheet 208 toward the back electrode layer 30 while heating to a temperature of about 150 ° C. . This can prevent moisture from entering the power generation layer of the photoelectric conversion device 200.
  • the insulating member 214 has heat resistance enough to withstand the heating in such a sealing process. Since the heat treatment is performed at about 150 ° C., the insulating member 214 is preferably made of, for example, Teflon (registered trademark).
  • the thickness of the insulating member 214 is smaller than the thickness of the bypass diode 206.
  • the bypass diode 206 When the bypass diode 206 is disposed, the anode electrode and the cathode electrode are in contact with the surface of the back electrode layer 30, so that when the back sheet 208 is sealed by applying pressure to the back sheet 208, the bypass diode 206 is connected to the back electrode layer 30.
  • the anode electrode and the cathode electrode are pressed against the back electrode layer 30, and a good electrical connection between the anode electrode and the cathode electrode and the back electrode layer 30 can be obtained without performing a soldering operation or the like. it can.
  • the thickness of the insulating member 214 is 0.3 to 0.7 times the thickness of the bypass diode 206. In this way, by making the thickness of the insulating member 214 about half the thickness of the bypass diode 206, the step from the back electrode layer 30 to the bypass diode 206 is smoothly connected by the step of the insulating member 214, and each step is The width of can be reduced. Thereby, the lift of the back sheet 208 due to a step can be suppressed, and the unevenness of the back sheet 208 can be reduced.
  • the insulating member 214 can be attached to the back electrode layer 30 with an adhesive, and the position of the insulating member 214 may be shifted when the bypass diode 206 is disposed. Therefore, the insulating member 214 and the bypass diode 206 can be aligned more accurately and quickly.
  • FIG. 11 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 300 along the extending direction of the insulating member 214, the bypass diode 206, and the cover member 212.
  • FIG. 12 is a perspective view of the photoelectric conversion device 300 with the back sheet 208 and the filler 210 removed in order to clearly show the features of the present invention.
  • the bypass diode 206 covered with the cover member 212 and the hole 32 of the insulating member 214 are indicated by broken lines in order to clarify the configuration.
  • the cover member 212 is a tape-like, film-like or sheet-like member made of an insulating material. Like the insulating member 214, the cover member 212 preferably has heat resistance enough to withstand the heating in the sealing process of the back sheet 208. Since the heat treatment is performed at about 150 ° C., the cover member 212 is preferably made of, for example, Teflon (registered trademark).
  • Covering the insulating member 214 and the bypass diode 206 with the cover member 212 can prevent the hole 32 of the insulating member 214 from being filled with the filler 210 when sealing with the back sheet 208.
  • the filler 210 does not enter between the anode and cathode electrodes of the bypass diode 206 and the back electrode layer 30, and the electrical contact between the anode and cathode electrodes and the back electrode layer 30 becomes poor. Can be prevented.
  • the photoelectric conversion device of the present embodiment it is possible to prevent the photoelectric conversion cell from being damaged by the bypass diode when a hot spot occurs. Furthermore, the bypass diode can be easily installed when the photoelectric conversion device is manufactured.
  • the photoelectric conversion device 200 in the third embodiment includes a photoelectric conversion module 202, a bypass diode 206, a back sheet 208, and a filler 216a.
  • FIG. 13 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 200 along the extending direction of the bypass diode 206.
  • FIG. 14 is a perspective view showing a state in which the back sheet 208 of the photoelectric conversion device 200 is removed.
  • the photoelectric conversion module 202 includes an amorphous silicon photoelectric conversion unit (a) having a substrate 20 as a light incident side and a wide band gap as a transparent electrode layer 22 and a top cell from the light incident side. -Si unit) 24, an intermediate layer 26, and a microcrystalline silicon photoelectric conversion unit ( ⁇ c-Si unit) 28 having a narrower band gap than the a-Si unit 24 and a back electrode layer 30 as a bottom cell are stacked.
  • a tandem photoelectric conversion device in which the a-Si unit 24 and the ⁇ c-Si unit 28 are stacked will be described as an example.
  • a single-type photoelectric conversion device using only one of the a-Si unit 24 and the ⁇ c-Si unit 28 or a photoelectric conversion device to which another type of photoelectric conversion unit is applied may be used.
  • a material having transparency in at least the visible light wavelength region such as a glass substrate or a plastic substrate, can be applied.
  • a transparent electrode layer 22 is formed on the substrate 20.
  • the transparent electrode layer 22 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO).
  • TCO transparent conductive oxide
  • zinc oxide (ZnO) is preferable because it has high translucency, low resistivity, and excellent plasma resistance.
  • the transparent electrode layer 22 can be formed by, for example, a sputtering method or a CVD method.
  • the slit S1 is formed in the transparent electrode layer 22 and is patterned into a strip shape.
  • the transparent electrode layer 22 can be patterned into a strip shape using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
  • the a-Si unit 24 includes silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 )
  • SiH 4 silane
  • Si 2 H 6 disilane
  • SiH 2 Cl 2 dichlorosilane
  • carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 )
  • Plasma chemical vapor deposition in which a gas mixture is formed by mixing a mixed gas obtained by mixing a p-type dopant-containing gas such as phosphine (PH 3 ) or the like and a diluent gas such as hydrogen (H 2 ). It can be formed by a growth method (CVD method).
  • the plasma CVD method for example, an RF plasma CVD method of 13.56 MHz is preferably applied.
  • the intermediate layer 26 is formed on the a-Si unit 24.
  • the intermediate layer 26 is preferably made of a transparent conductive oxide (TCO) such as zinc oxide (ZnO) or silicon oxide (SiO x ).
  • TCO transparent conductive oxide
  • ZnO zinc oxide
  • SiO x silicon oxide
  • Mg magnesium
  • the intermediate layer 26 can be formed by sputtering, for example.
  • the thickness of the intermediate layer 26 is preferably in the range of 10 nm to 200 nm. The intermediate layer 26 may not be provided.
  • a ⁇ c-Si unit 28 in which a p-type layer, an i-type layer, and an n-type layer are sequentially laminated is formed.
  • the ⁇ c-Si unit 28 includes a silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), a carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 )
  • Plasma CVD method in which a gas mixture is formed by mixing a gas mixture of a p-type dopant containing gas such as phosphine (PH 3 ) and an n-type dopant containing gas such as phosphine (PH 3 ) and a diluent gas such as hydrogen (H 2 ).
  • the plasma CVD method it is preferable to apply, for example, a 13.56 MHz RF plasma CVD method as in the case of the a-S
  • a slit S2 is formed in the a-Si unit 24 and the ⁇ c-Si unit 28 and patterned into a strip shape.
  • the slit S2 is formed by irradiating a position 50 ⁇ m laterally from the position of the slit S1 formed in the transparent electrode layer 22 to form the slit S2, and the a-Si unit 24, the intermediate layer 26 and the ⁇ c-Si unit 28 are patterned into a strip shape .
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
  • a back electrode layer 30 is formed on the ⁇ c-Si unit 28.
  • the back electrode layer 30 preferably has a structure in which a transparent conductive oxide (TCO) and a reflective metal are sequentially laminated.
  • TCO transparent conductive oxide
  • SnO 2 tin oxide
  • ZnO zinc oxide
  • ITO indium tin oxide
  • impurities are used.
  • zinc oxide (ZnO) doped with aluminum (Al) as an impurity may be used.
  • metals, such as silver (Ag) and aluminum (Al) can be used.
  • the transparent conductive oxide (TCO) can be formed by, for example, a sputtering method or a CVD method.
  • the back electrode layer 30 is preferably about 1 ⁇ m in total. It is preferable that at least one of the back electrode layers 30 is provided with unevenness for enhancing the light confinement effect.
  • a slit S3 is formed in the back electrode layer 30 and patterned into a strip shape.
  • a slit S3 is formed by irradiating YAG laser to a position 50 ⁇ m lateral from the position of the slit S2 formed in the a-Si unit 24 and the ⁇ c-Si unit 28, and the back electrode layer 30 is patterned into a strip shape.
  • a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
  • the back electrode layer 30 of one photoelectric conversion cell 201 is electrically connected to the transparent electrode layer 22 of the adjacent photoelectric conversion cell 201 via the back electrode layer 30 embedded in the slit S2, and the adjacent photoelectric conversion is performed.
  • the cells 201 and 201 are the photoelectric conversion module 202 connected in series.
  • the filler 216a is a film-like or sheet-like member made of an insulating material having thermoplasticity.
  • the material of the filler 216a is preferably, for example, an EVA resin, an ethylene resin such as EEA, PVB, silicone, urethane, acrylic, or an epoxy resin.
  • As the filling material 216a a material having approximately the same size as the substrate 20 is used. Note that the thickness of the filler 216a is preferably equal to or less than the thickness of the bypass diode 206, and preferably equal to the thickness of the bypass diode 206.
  • the filler 216 a is disposed so as to cover almost the entire surface of the back electrode layer 30 of the photoelectric conversion module 202.
  • a plurality of holes 32 are formed in the filling material 216a at a predetermined pitch P1 along the extending direction, and the holes 32 are used for alignment of the bypass diode 206.
  • the holes 32 formed in the filler 216a are formed at the same pitch P2 as the bypass diode 206.
  • the holes 32 are formed at the same pitch P2 as the arrangement pitch P1 of the photoelectric conversion cells 201 as shown in FIG. .
  • the hole 32 is shaped and sized so that the position of the bypass diode 206 is not spatially displaced when the bypass diode 206 is disposed in the hole 32.
  • the filler 216a is arrange
  • the bypass diode 206 is provided in the hole 32 of the filler 216a in order to prevent damage to the photoelectric conversion cell 201 when a hot spot occurs in the photoelectric conversion device 200.
  • the bypass diode 206 is connected to the photoelectric conversion cell 201 so that the voltage is applied to the bypass diode 206 in a reverse bias state in a state where the photoelectric conversion cell 201 is normally generating power.
  • an adhesive is applied to a part of the filler 216a or a double-sided tape is applied, and the filler 216a is applied to the back electrode layer 30. Temporarily fix it.
  • bypass diode 206 when the bypass diode 206 is provided for each of the photoelectric conversion cells 201 connected in series, the bypass diode 206 is disposed in each of the holes 32 provided in the filler 216a as described above, and the adjacent photoelectric conversion cells 201 are arranged.
  • the anode electrode and the cathode electrode of the bypass diode 206 are connected to the back electrode layer 30 of the conversion cells 201 and 201, respectively.
  • the connection between the back electrode layer 30 and the anode electrode or the cathode electrode may be performed by general soldering or by mechanical pressure bonding by sealing the back sheet 208.
  • the bypass diode 206 may be provided so as to straddle the plurality of photoelectric conversion cells 201,... Without providing the bypass diode 206 for each of the photoelectric conversion cells 201,.
  • holes 32 are provided in the filler 216a at a pitch P3 obtained by adding a plurality of photoelectric conversion cells 201,.
  • the hole 32 is sized so as to straddle the plurality of photoelectric conversion cells 201.
  • the bypass diode 206 performs photoelectric conversion so that the voltage is applied to the bypass diode 206 in a reverse bias state in a state where the photoelectric conversion cell 201 is normally generating power across the plurality of photoelectric conversion cells 201. Connect to cell 201.
  • the back sheet 208 is made of a laminated body made of PET / Al foil / PET, a single layer of a resin such as fluorine resin (ETFE, PVDF, PCTFE, etc.), PC, PET, PEN, PVF, acrylic, or a metal foil.
  • a resin such as fluorine resin (ETFE, PVDF, PCTFE, etc.)
  • PC PET, PEN, PVF, acrylic
  • a flexible and weather-resistant material having a sandwiched structure is used.
  • the back sheet 208 is disposed so as to cover the bypass diode 206 disposed on the back electrode layer 30 using the filler 216a.
  • a frame body made of Al may be provided on the outer peripheral portion of the photovoltaic device 200 according to the third embodiment via an elastic body such as butyl rubber or a resin such as silicone.
  • the thickness of the filler 216a is made equal to the thickness of the bypass diode 206.
  • the bypass diode 206 is always in contact with the back sheet 208 in the step of heating and pressurizing the laminate composed of the photoelectric conversion module 203, the filler 216a, the bypass diode 206, and the back sheet 208.
  • the bypass diode 206 is pressed from the back sheet 208 toward the back electrode layer 30, so that the anode electrode and the cathode electrode of the bypass diode 206 can always touch the surface of the back electrode layer 30. Therefore, good electrical connection between the anode and cathode electrodes and the back electrode layer 30 can be obtained without performing operations such as soldering.
  • the thickness of the filler 216a is made equal to the thickness of the bypass diode 206.
  • a filler 216a having a size substantially equal to that of the substrate 20 is used.
  • the bypass diode 206 can be formed in a predetermined manner simply by arranging the substrate 20 and the ends and corners of the filler 216a to overlap. Therefore, the filler 216a and the bypass diode 206 can be aligned more accurately and quickly.
  • the filler 216a is temporarily fixed to the back electrode layer 30 by applying an adhesive on the surface in contact with the back electrode layer 30 or applying a double-sided tape. Thereby, the filler 216a can be disposed on the back electrode layer 30 of the photoelectric conversion module 202, and the displacement of the filler 216a that occurs when the bypass diode 206 is disposed in the hole 32 of the filler 216a can be prevented. It becomes. As a result, the bypass diode 206 can be disposed in the hole 32 of the filler 216a more accurately and quickly.
  • a hole 32 is formed in the filler 216 a based on the interval between the photoelectric conversion cells 201, 201, and the bypass diode 206 is disposed in the hole 32.
  • bypass diode 206 By simply placing the bypass diode 206 in the hole 32, the bypass diode 206 can be aligned. Therefore, it is possible to reduce the burden of the alignment operation of the bypass diode 206 and to align the bypass diode 206 more quickly.
  • the bypass diode 206 is disposed in the hole 32 of the filler 216a, and the photoelectric converter 200 is formed while heating and melting the filler 216a and releasing the air by applying pressure. Thereby, it can embed with the filler 216a so that a space is not formed around the bypass diode 206. As a result, it is possible to prevent a space from being formed around the bypass diode 206, and to better prevent moisture from entering the photoelectric conversion module 202.
  • FIG. 17 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 300 along the extending direction of the filler 210, the bypass diode 206, and the filler 212.
  • FIG. 17 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 300 along the extending direction of the filler 210, the bypass diode 206, and the filler 212.
  • the filler 216a is a tape-like, film-like or sheet-like member made of an insulating material having heat melting property.
  • the filler 216a is not limited to a film shape or a sheet shape, and may be a tape shape and may not be approximately the same size as the substrate 20.
  • the material of the filler 216a is preferably, for example, an EVA resin, an ethylene resin such as EEA, PVB, silicone, urethane, acrylic, or an epoxy resin.
  • a plurality of holes 32 are formed in the filler 216a at a predetermined pitch P2 along the extending direction.
  • the bypass diode 206 is disposed in the hole 32, and the bypass diode 206 is disposed on the back electrode layer 30.
  • an adhesive is applied to a part of the filler 216a or a double-sided tape is applied, and the filler 216a is applied to the back electrode layer 30. Temporarily fix it.
  • the filler 216b is disposed on the stacked body in which the bypass diode 206 is disposed on the back electrode layer 30 of the photoelectric conversion module 202 formed on the substrate 20 using the filler 216a.
  • the filler 216b is a tape-like, film-like or sheet-like member made of an insulating material having heat melting property.
  • the filler 216b is made of the same material as the filler 216a and has a size approximately equal to that of the substrate 20. Note that the thickness of the filler 216b is preferably thicker than that of the filler 216a.
  • a non-heat-meltable member in the form of a tape, film or sheet made of an insulating material having a size approximately equal to or larger than that of the filler 216a and not larger than the filler 216b is provided between the fillers 216a and 216b. You may arrange.
  • the back sheet 208 is disposed so as to cover the filler 216b.
  • a pressure is applied to the back sheet 208 toward the back electrode layer 30 while heating the laminated body including the photoelectric conversion module 203, the filler 216 a, the bypass diode 206, the filler 216 b, and the back sheet 208 to a temperature of about 150 ° C.
  • the filler 216a and the filler 216b are melted and integrated to fix the photoelectric conversion cell 201 between the substrate 20 and the back sheet 20, and the photoelectric conversion device 300 according to the fourth embodiment is completed. To do.
  • the thickness of the filler 216a is made equal to the thickness of the vibrator ode 206.
  • the total thickness of the filler 216b and the filler 216a is made thicker than that of the bypass diode 206.
  • the photoelectric conversion device of the present invention it is possible to prevent the photoelectric conversion module from being damaged by the bypass diode when a hot spot occurs, and to reduce the reliability caused by providing the bypass diode. Can be suppressed. Furthermore, the bypass diode can be easily installed when the photoelectric conversion device is manufactured.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a photoelectric conversion device in which a bypass diode can be installed easily. For the purpose of preventing the occurrence of the fracture of a photoelectric conversion module by means of a bypass diode when hot spotting occurs, the photoelectric conversion device involves a photoelectric conversion module (202) which comprises divided photoelectric conversion cells connected in series and a bypass diode film (204) having, formed on the surface thereof, a bypass diode (44) comprising at least a p layer and an n layer laminated to each other, wherein the bypass diode film (204) is extended along the direction of the series-connection so that the bypass diode (44) can lie astride neighboring photoelectric conversion cells.

Description

光電変換装置およびその製造方法Photoelectric conversion device and manufacturing method thereof
 本発明は、光電変換装置およびその製造方法に関する。 The present invention relates to a photoelectric conversion device and a manufacturing method thereof.
 太陽光を利用した発電システムとして、アモルファスや微結晶等の半導体薄膜を積層した光電変換装置が用いられている。 As a power generation system using sunlight, a photoelectric conversion device in which semiconductor thin films such as amorphous and microcrystals are stacked is used.
 光電変換装置では、複数の光電変換セルを直並列に接続して実用的な電気出力を取り出せる構成とされている。複数の光電変換セルを接続して透光性基板とエチレンビニルアセテート共重合体(EVA)などを主成分とする充填材で封入して光電変換モジュールが形成されている。このような光電変換モジュールを屋外に設置した場合、光電変換モジュール内のある1つの光電変換セルが何かの影になったときなどで発電が不十分になった場合、その光電変換セルは抵抗となる。このとき光電変換セルの両電極にはその抵抗値と流れる電流の積の電位差が発生する。すなわち、光電変換セルに逆方向のバイアス電圧が印加されることになり、このセルは発熱するようになる。このような状況をホットスポットと呼んでいる。このホットスポットの現象が発生し、光電変換セルの温度が上昇し続けると、最悪の場合、この光電変換セルは破壊して光電変換モジュールから所定の電気出力を取り出すことができなくなる。 In the photoelectric conversion device, a plurality of photoelectric conversion cells are connected in series and parallel so that a practical electric output can be taken out. A photoelectric conversion module is formed by connecting a plurality of photoelectric conversion cells and enclosing with a light-transmitting substrate and a filler mainly composed of ethylene vinyl acetate copolymer (EVA). When such a photoelectric conversion module is installed outdoors, when power generation becomes insufficient, such as when a certain photoelectric conversion cell in the photoelectric conversion module becomes a shadow, the photoelectric conversion cell It becomes. At this time, a potential difference of the product of the resistance value and the flowing current is generated in both electrodes of the photoelectric conversion cell. That is, a reverse bias voltage is applied to the photoelectric conversion cell, and the cell generates heat. Such a situation is called a hot spot. If the phenomenon of this hot spot occurs and the temperature of the photoelectric conversion cell continues to rise, in the worst case, the photoelectric conversion cell is destroyed, and a predetermined electric output cannot be taken out from the photoelectric conversion module.
 そこで、ホットスポットによる光電変換モジュールの損傷を防ぐために、光電変換セルに正常時の出力に対して逆バイアスとなるようにバイパスダイオードを接続する方法が採用されている。バイパスダイオードを設けることによって、どこかの光電変換セルが陰になって発電量が落ちた場合であってもその部分を回避してバイパスダイオードを介して電流が流れるので、陰部分の影響が回路全体には及ぶことがなくなる。 Therefore, in order to prevent damage to the photoelectric conversion module due to hot spots, a method of connecting a bypass diode to the photoelectric conversion cell so as to be reverse-biased with respect to the normal output is adopted. By providing a bypass diode, even if a photoelectric conversion cell somewhere is in the shade and the amount of power generation falls, the current flows through the bypass diode avoiding that portion, so the influence of the shaded part is affected by the circuit It will not extend to the whole.
 ところで、光電変換装置では、多数の光電変換セルが直並列に接続されており、各光電変換セルに対して個別にバイパスダイオードを配置し、電気的に接続する処理が必要とされる。そこで、このような処理を簡易かつ迅速に行うことができる光電変換装置の構成が望まれている。 By the way, in the photoelectric conversion device, a large number of photoelectric conversion cells are connected in series and parallel, and a process of arranging a bypass diode individually for each photoelectric conversion cell and electrically connecting the cells is required. Therefore, a configuration of a photoelectric conversion device that can perform such processing simply and quickly is desired.
 本発明の1つの態様は、スリットによって分割された光電変換セルを直列に接続した光電変換モジュールと、少なくともp層及びn層を積層したダイオードが表面に形成されたバイパスダイオードフィルムと、バイパスダイオードフィルムと共に光電変換モジュールの裏面を封止するバックシートと、光電変換モジュールとバックシートとの間に充填される充填材と、を備え、隣接する光電変換セルに跨ってダイオードが配置されるように直列接続の方向に沿ってバイパスダイオードフィルムが延設された、光電変換装置である。 One aspect of the present invention includes a photoelectric conversion module in which photoelectric conversion cells divided by slits are connected in series, a bypass diode film having a diode on which at least a p layer and an n layer are stacked, and a bypass diode film And a back sheet for sealing the back surface of the photoelectric conversion module, and a filler filled between the photoelectric conversion module and the back sheet, and the diodes are arranged in series so as to straddle the adjacent photoelectric conversion cells. This is a photoelectric conversion device in which a bypass diode film is extended along the direction of connection.
 本発明によれば、バイパスダイオードの設置を容易にした光電変換装置ができる。 According to the present invention, a photoelectric conversion device in which a bypass diode is easily installed can be obtained.
第1の実施の形態における光電変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion apparatus in 1st Embodiment. 第1の実施の形態における光電変換装置の構造を説明する内部斜視図である。It is an internal perspective view explaining the structure of the photoelectric conversion apparatus in 1st Embodiment. 第1の実施の形態における光電変換モジュールの構造を示す拡大断面図である。It is an expanded sectional view which shows the structure of the photoelectric conversion module in 1st Embodiment. 第1の実施の形態におけるバイパスダイオードフィルムの構造を示す拡大断面図である。It is an expanded sectional view which shows the structure of the bypass diode film in 1st Embodiment. 第1の実施の形態における光電変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion apparatus in 1st Embodiment. 第1の実施の形態における光電変換装置の構造を説明する内部斜視図である。It is an internal perspective view explaining the structure of the photoelectric conversion apparatus in 1st Embodiment. 第2の実施の形態における光電変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion apparatus in 2nd Embodiment. 第2の実施の形態における光電変換装置の構造を説明する内部斜視図である。It is an internal perspective view explaining the structure of the photoelectric conversion apparatus in 2nd Embodiment. 第2の実施の形態における光電変換モジュールの構造を示す拡大断面図である。It is an expanded sectional view which shows the structure of the photoelectric conversion module in 2nd Embodiment. 第2の実施の形態における光電変換装置の構造を説明する内部斜視図である。It is an internal perspective view explaining the structure of the photoelectric conversion apparatus in 2nd Embodiment. 第2の実施の形態における光電変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion apparatus in 2nd Embodiment. 第2の実施の形態における光電変換装置の構造を説明する内部斜視図である。It is an internal perspective view explaining the structure of the photoelectric conversion apparatus in 2nd Embodiment. 第3の実施の形態における光電変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion apparatus in 3rd Embodiment. 第3の実施の形態における光電変換装置の構造を説明する内部斜視図である。It is an internal perspective view explaining the structure of the photoelectric conversion apparatus in 3rd Embodiment. 第3の実施の形態における光電変換モジュールの構造を示す拡大断面図である。It is an expanded sectional view which shows the structure of the photoelectric conversion module in 3rd Embodiment. 第3の実施の形態における他の光電変換装置の構造を説明する内部斜視図である。It is an internal perspective view explaining the structure of the other photoelectric conversion apparatus in 3rd Embodiment. 第4の実施の形態における光電変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion apparatus in 4th Embodiment. 第4の実施の形態における光電変換装置の構造を説明する内部斜視図である。It is an internal perspective view explaining the structure of the photoelectric conversion apparatus in 4th Embodiment.
 第1の実施の形態における光電変換装置200は、図1に示すように、光電変換モジュール202、バイパスダイオードフィルム204、バックシート208及び充填材210を含んで構成される。なお、図1は、バイパスダイオードフィルム204が延設された方向に沿った光電変換装置200の断面構造を模式的に示した図である。また、本発明の特徴を明確に示すために、図2に光電変換装置200のバックシート208及び充填材210を除去した状態の斜視図を示す。 As shown in FIG. 1, the photoelectric conversion device 200 according to the first embodiment includes a photoelectric conversion module 202, a bypass diode film 204, a back sheet 208, and a filler 210. FIG. 1 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 200 along the direction in which the bypass diode film 204 is extended. In order to clearly show the features of the present invention, FIG. 2 shows a perspective view of the photoelectric conversion device 200 with the back sheet 208 and the filler 210 removed.
 光電変換モジュール202は、図3の拡大断面図に示すように、基板20を光入射側として、光入射側から、透明電極層22、トップセルとして広いバンドギャップを有するアモルファスシリコン光電変換ユニット(a-Siユニット)24、中間層26、ボトムセルとしてa-Siユニット24よりバンドギャップの狭い微結晶シリコン光電変換ユニット(μc-Siユニット)28及び裏面電極層30、を積層した構造を有する。なお、本実施の形態では、a-Siユニット24及びμc-Siユニット28を積層したタンデム型光電変換装置を例に説明を行うが、本発明の適用範囲はこれに限定されるものではなく、a-Siユニット24及びμc-Siユニット28のいずれかのみを用いたシングル型光電変換装置やさらに他種の光電変換ユニットを適用した光電変換装置であってもよい。 As shown in the enlarged sectional view of FIG. 3, the photoelectric conversion module 202 has an amorphous silicon photoelectric conversion unit (a) having a substrate 20 as a light incident side and a wide band gap as a transparent electrode layer 22 and a top cell from the light incident side. -Si unit) 24, an intermediate layer 26, and a microcrystalline silicon photoelectric conversion unit (μc-Si unit) 28 having a narrower band gap than the a-Si unit 24 and a back electrode layer 30 as a bottom cell are stacked. In this embodiment, a tandem photoelectric conversion device in which the a-Si unit 24 and the μc-Si unit 28 are stacked will be described as an example. However, the scope of the present invention is not limited to this, A single-type photoelectric conversion device using only one of the a-Si unit 24 and the μc-Si unit 28 or a photoelectric conversion device to which another type of photoelectric conversion unit is applied may be used.
 基板20は、例えば、ガラス基板、プラスチック基板等の少なくとも可視光波長領域において透過性を有する材料を適用することができる。基板20上に透明電極層22が形成される。透明電極層22は、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種を組み合わせて用いることが好適である。特に、酸化亜鉛(ZnO)は、透光性が高く、抵抗率が低く、耐プラズマ特性にも優れているので好適である。透明電極層22は、例えば、スパッタリング法やCVD法等により形成することができる。 For the substrate 20, for example, a material having transparency in at least the visible light wavelength region, such as a glass substrate or a plastic substrate, can be applied. A transparent electrode layer 22 is formed on the substrate 20. The transparent electrode layer 22 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) is preferable because it has high translucency, low resistivity, and excellent plasma resistance. The transparent electrode layer 22 can be formed by, for example, a sputtering method or a CVD method.
 光電変換モジュール202を複数の光電変換セルを直列に接続した構成とする場合、透明電極層22にスリットS1を形成して短冊状にパターニングする。例えば、波長1064nm、エネルギー密度13J/cm、パルス周波数3kHzのYAGレーザを用いて透明電極層22を短冊状にパターニングすることができる。 When the photoelectric conversion module 202 has a configuration in which a plurality of photoelectric conversion cells are connected in series, a slit S1 is formed in the transparent electrode layer 22 and patterned into a strip shape. For example, the transparent electrode layer 22 can be patterned into a strip shape using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
 透明電極層22上に、p型層、i型層、n型層のシリコン系薄膜を順に積層してa-Siユニット24を形成する。a-Siユニット24は、シラン(SiH)、ジシラン(Si)、ジクロルシラン(SiHCl)等のシリコン含有ガス、メタン(CH)等の炭素含有ガス、ジボラン(B)等のp型ドーパント含有ガス、フォスフィン(PH)等のn型ドーパント含有ガス及び水素(H)等の希釈ガスを混合した混合ガスをプラズマ化して成膜を行うプラズマ化学気相成長法(CVD法)により形成することができる。プラズマCVD法は、例えば、13.56MHzのRFプラズマCVD法を適用することが好適である。 On the transparent electrode layer 22, a p-type layer, an i-type layer, and an n-type layer of silicon-based thin film are sequentially laminated to form an a-Si unit 24. The a-Si unit 24 includes a silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), a carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 ) Plasma chemical vapor deposition in which a mixed gas obtained by mixing a p-type dopant-containing gas such as phosphine (PH 3 ) and a diluent gas such as phosphine (PH 3 ) and a diluent gas such as hydrogen (H 2 ) is formed into a plasma. It can be formed by the method (CVD method). As the plasma CVD method, for example, an RF plasma CVD method of 13.56 MHz is preferably applied.
 a-Siユニット24上に、中間層26を形成する。中間層26は、酸化亜鉛(ZnO)、酸化シリコン(SiOx)等の透明導電性酸化物(TCO)を用いることが好適である。特に、マグネシウムMgがドープされた酸化亜鉛(ZnO)や酸化シリコン(SiOx)を用いることが好適である。中間層26は、例えば、スパッタリング法やCVD法等により形成することができる。中間層26の膜厚は10nm以上200nm以下の範囲とすることが好適である。なお、中間層26は、設けなくてもよい。 An intermediate layer 26 is formed on the a-Si unit 24. The intermediate layer 26 is preferably made of a transparent conductive oxide (TCO) such as zinc oxide (ZnO) or silicon oxide (SiOx). In particular, it is preferable to use zinc oxide (ZnO) or silicon oxide (SiOx) doped with magnesium Mg. The intermediate layer 26 can be formed by, for example, a sputtering method or a CVD method. The thickness of the intermediate layer 26 is preferably in the range of 10 nm to 200 nm. The intermediate layer 26 may not be provided.
 中間層26上に、p型層、i型層、n型層を順に積層したμc-Siユニット28を形成する。μc-Siユニット28は、シラン(SiH)、ジシラン(Si)、ジクロルシラン(SiHCl)等のシリコン含有ガス、メタン(CH)等の炭素含有ガス、ジボラン(B)等のp型ドーパント含有ガス、フォスフィン(PH)等のn型ドーパント含有ガス及び水素(H)等の希釈ガスを混合した混合ガスをプラズマ化して成膜を行うプラズマCVD法により形成することができる。プラズマCVD法は、a-Siユニット24と同様に、例えば、13.56MHzのRFプラズマCVD法を適用することが好適である。 On the intermediate layer 26, a μc-Si unit 28 in which a p-type layer, an i-type layer, and an n-type layer are sequentially laminated is formed. The μc-Si unit 28 includes silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 ) formed by a plasma CVD method in which a mixed gas obtained by mixing a p-type dopant-containing gas such as phosphine (PH 3 ) and a diluted gas such as phosphine (PH 3 ) and hydrogen (H 2 ) is formed into a plasma. can do. As for the plasma CVD method, it is preferable to apply, for example, a 13.56 MHz RF plasma CVD method as in the case of the a-Si unit 24.
 複数のセルを直列接続する場合、a-Siユニット24及びμc-Siユニット28にスリットS2を形成して短冊状にパターニングする。透明電極層22に形成したスリットS1の位置から50μm横の位置にYAGレーザを照射してスリットS2を形成し、a-Siユニット24及びμc-Siユニット28を短冊状にパターニングする。YAGレーザは、例えば、エネルギー密度0.7J/cm、パルス周波数3kHzのものを用いることが好適である。 When a plurality of cells are connected in series, a slit S2 is formed in the a-Si unit 24 and the μc-Si unit 28 and patterned into a strip shape. A slit S2 is formed by irradiating a position 50 μm laterally from the position of the slit S1 formed in the transparent electrode layer 22 to form the slit S2, and the a-Si unit 24 and the μc-Si unit 28 are patterned into strips. For example, a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
 μc-Siユニット28上に、裏面電極層30を形成する。裏面電極層30は、透明導電性酸化物(TCO)と反射性金属とを順に積層した構造とすることが好適である。透明導電性酸化物(TCO)としては、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等の透明導電性酸化物(TCO)、又は、これらの透明導電性酸化物(TCO)に不純物をドープしたものが用いられる。例えば、酸化亜鉛(ZnO)にアルミニウム(Al)を不純物としてドープしたものでもよい。また、反射性金属としては、銀(Ag)、アルミニウム(Al)等の金属が使用できる。透明導電性酸化物(TCO)は、例えば、スパッタリング法やCVD法等により形成することができる。裏面電極層30は、合わせて1μm程度の膜厚とすることが好適である。裏面電極層30の少なくとも一方には、光閉じ込め効果を高めるための凹凸が設けることが好適である。 A back electrode layer 30 is formed on the μc-Si unit 28. The back electrode layer 30 preferably has a structure in which a transparent conductive oxide (TCO) and a reflective metal are sequentially laminated. As the transparent conductive oxide (TCO), a transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or these transparent conductive oxides A material (TCO) doped with impurities is used. For example, zinc oxide (ZnO) doped with aluminum (Al) as an impurity may be used. Moreover, as a reflective metal, metals, such as silver (Ag) and aluminum (Al), can be used. The transparent conductive oxide (TCO) can be formed by, for example, a sputtering method or a CVD method. The back electrode layer 30 is preferably about 1 μm in total. It is preferable that at least one of the back electrode layers 30 is provided with unevenness for enhancing the light confinement effect.
 複数のセルを直列接続する場合、裏面電極層30にスリットS3を形成して短冊状にパターニングする。a-Siユニット24及びμc-Siユニット28に形成したスリットS2の位置から50μm横の位置にYAGレーザを照射してスリットS3を形成し、裏面電極層30を短冊状にパターニングする。YAGレーザは、エネルギー密度0.7J/cm、パルス周波数4kHzのものを用いることが好適である。 When a plurality of cells are connected in series, a slit S3 is formed in the back electrode layer 30 and patterned into a strip shape. A slit S3 is formed by irradiating YAG laser to a position 50 μm lateral from the position of the slit S2 formed in the a-Si unit 24 and the μc-Si unit 28, and the back electrode layer 30 is patterned into a strip shape. A YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
 これにより、スリットS2に埋め込まれた裏面電極層30を介して1つの光電変換セルの裏面電極層30が隣り合う光電変換セルの透明電極層22に電気的に接続され、隣り合う光電変換セル同士が直列に接続された構造となる。 Thereby, the back electrode layer 30 of one photoelectric conversion cell is electrically connected to the transparent electrode layer 22 of the adjacent photoelectric conversion cell via the back electrode layer 30 embedded in the slit S2, and the adjacent photoelectric conversion cells are connected to each other. Are connected in series.
 次に、バイパスダイオードフィルム204の構成及び製造方法を説明する。バイパスダイオードフィルム204は、図4の拡大断面図に示すように、基板40、第1電極層42、バイパスダイオード44及び第2電極層46を積層して構成される。バイパスダイオードフィルム204は、絶縁性材料からなるテープ状、フィルム状又はシート状の基板40上にバイパスダイオード44を複数並べて形成したものである。 Next, the configuration and manufacturing method of the bypass diode film 204 will be described. As shown in the enlarged sectional view of FIG. 4, the bypass diode film 204 is configured by laminating the substrate 40, the first electrode layer 42, the bypass diode 44, and the second electrode layer 46. The bypass diode film 204 is formed by arranging a plurality of bypass diodes 44 on a tape-like, film-like or sheet-like substrate 40 made of an insulating material.
 基板40は、可撓性を有する絶縁材料で構成される。例えば、ポリエチレン、ポリイミド等のプラスチック材料のフィルムとする。基板40上に第1電極層42が形成される。第1電極層42は、導電性の材料で構成される層であればよい。第1電極層42は、例えば、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種の組み合わせ、又は、銀(Ag)、アルミニウム(Al)等の金属を用いることが好適である。特に、酸化亜鉛(ZnO)や金属は、抵抗率が低く、耐プラズマ特性にも優れているので好適である。第1電極層42は、例えば、スパッタリング法やCVD法等により形成することができる。 The substrate 40 is made of a flexible insulating material. For example, a film of a plastic material such as polyethylene or polyimide is used. A first electrode layer 42 is formed on the substrate 40. The first electrode layer 42 may be a layer made of a conductive material. The first electrode layer 42 is made of, for example, tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc., tin (Sn), antimony (Sb), fluorine (F), aluminum (Al). It is preferable to use at least one kind or a combination of plural kinds of transparent conductive oxides (TCO) doped with, etc., or a metal such as silver (Ag) or aluminum (Al). In particular, zinc oxide (ZnO) and metal are preferable because they have low resistivity and excellent plasma resistance. The first electrode layer 42 can be formed by, for example, a sputtering method or a CVD method.
 第1電極層42は、スリットS4によって短冊状にパターニングされる。バイパスダイオード44を、隣り合う光電変換セル毎に設ける場合には、バイパスダイオードフィルム204に形成されるバイパスダイオード44を光電変換モジュール202に形成される光電変換セルと同じピッチで形成する必要があるので、スリットS4を光電変換セルの配置のピッチP1に合わせたピッチP2で形成する。第1電極層42は、例えば、波長1064nm、エネルギー密度13J/cm、パルス周波数3kHzのYAGレーザを用いて短冊状にパターニングすることができる。なお、第1電極層42は、マスクを用いたスパッタリング法やスクリーン印刷法によって形成してもよい。 The first electrode layer 42 is patterned into a strip shape by the slit S4. When the bypass diode 44 is provided for each adjacent photoelectric conversion cell, the bypass diode 44 formed on the bypass diode film 204 needs to be formed at the same pitch as the photoelectric conversion cell formed on the photoelectric conversion module 202. The slits S4 are formed at a pitch P2 that matches the pitch P1 of the photoelectric conversion cell arrangement. The first electrode layer 42 can be patterned into a strip shape using, for example, a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz. The first electrode layer 42 may be formed by a sputtering method using a mask or a screen printing method.
 第1電極層42上に、少なくともp型層及びn型層のシリコン系薄膜を順に積層してバイパスダイオード44となる半導体層を形成する。半導体層は、全体としてpn接合特性を有すればよく、p/nの2層積層やp/i/nの3層積層等の態様を採ることができる。半導体層は、アモルファスシリコン薄膜や微結晶シリコン薄膜を積層することにより構成することができる。アモルファスシリコン薄膜や微結晶シリコン薄膜は、シラン(SiH)、ジシラン(Si)、ジクロルシラン(SiHCl)等のシリコン含有ガス、メタン(CH)等の炭素含有ガス、ジボラン(B)等のp型ドーパント含
有ガス、フォスフィン(PH)等のn型ドーパント含有ガス及び水素(H)等の希釈ガスを混合した混合ガスをプラズマ化して成膜を行うプラズマ化学気相成長法(CVD法)により形成することができる。プラズマCVD法は、例えば、13.56MHzのRFプラズマCVD法を適用することが好適である。
On the first electrode layer 42, at least a p-type layer and an n-type silicon thin film are sequentially stacked to form a semiconductor layer to be the bypass diode 44. The semiconductor layer only needs to have a pn junction characteristic as a whole, and can adopt aspects such as a p / n two-layer stack or a p / i / n three-layer stack. The semiconductor layer can be formed by laminating an amorphous silicon thin film or a microcrystalline silicon thin film. An amorphous silicon thin film or a microcrystalline silicon thin film is formed using a silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), a carbon-containing gas such as methane (CH 4 ), diborane ( Plasma chemistry for forming a film by converting a mixed gas obtained by mixing a p-type dopant-containing gas such as B 2 H 6 ), an n-type dopant-containing gas such as phosphine (PH 3 ), and a diluent gas such as hydrogen (H 2 ) into plasma. It can be formed by a vapor deposition method (CVD method). As the plasma CVD method, for example, an RF plasma CVD method of 13.56 MHz is preferably applied.
 次に、半導体層をスリットS5により短冊状に分割してバイパスダイオード44を形成する。第1電極層42に形成したスリットS4の位置から50μm横の位置にYAGレーザを照射してスリットS5を形成し、半導体層を短冊状にパターニングする。YAGレーザは、例えば、エネルギー密度0.7J/cm、パルス周波数3kHzのものを用いることが好適である。 Next, the semiconductor layer is divided into strips by the slit S5 to form the bypass diode 44. The slit S5 is formed by irradiating YAG laser at a position 50 μm lateral from the position of the slit S4 formed in the first electrode layer 42, and the semiconductor layer is patterned into a strip shape. For example, a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
 バイパスダイオード44上に、第2電極層46を形成する。第2電極層46は、導電性の材料で構成される層であればよい。第2電極層46は、例えば、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種の組み合わせ、又は、銀(Ag)、アルミニウム(Al)等の金属を用いることが好適である。第2電極層46は、例えば、スパッタリング法やCVD法等により形成することができる。 A second electrode layer 46 is formed on the bypass diode 44. The second electrode layer 46 may be a layer made of a conductive material. The second electrode layer 46 is made of, for example, tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc., tin (Sn), antimony (Sb), fluorine (F), aluminum (Al). It is preferable to use at least one kind or a combination of plural kinds of transparent conductive oxides (TCO) doped with, etc., or a metal such as silver (Ag) or aluminum (Al). The second electrode layer 46 can be formed by, for example, a sputtering method or a CVD method.
 次に、第2電極層46にスリットS6を形成して短冊状にパターニングする。半導体層に形成したスリットS5の位置から50μm横の位置にYAGレーザを照射してスリットS6を形成し、第2電極層46を短冊状にパターニングする。YAGレーザは、エネルギー密度0.7J/cm、パルス周波数4kHzのものを用いることが好適である。なお、第2電極層46は、マスクを用いたスパッタリング法やスクリーン印刷法によって形成してもよい。 Next, a slit S6 is formed in the second electrode layer 46 and patterned into a strip shape. A slit S6 is formed by irradiating YAG laser at a position 50 μm lateral from the position of the slit S5 formed in the semiconductor layer, and the second electrode layer 46 is patterned into a strip shape. A YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used. The second electrode layer 46 may be formed by a sputtering method using a mask or a screen printing method.
 これにより、スリットS5に埋め込まれた第2電極層46を介して1つのバイパスダイオード44の第2電極層46が隣り合うバイパスダイオード44の第1電極層42に電気的に接続され、隣り合うバイパスダイオード44同士が直列に接続されたバイパスダイオードフィルム204が形成される。 As a result, the second electrode layer 46 of one bypass diode 44 is electrically connected to the first electrode layer 42 of the adjacent bypass diode 44 via the second electrode layer 46 embedded in the slit S5, and the adjacent bypass A bypass diode film 204 in which the diodes 44 are connected in series is formed.
 このように形成されたバイパスダイオードフィルム204を光電変換モジュール202上に配置し、光電変換モジュール202の光電変換セルが正常に発電している状態において、電圧が逆バイアスの状態で印加されるようにバイパスダイオードフィルム204のバイパスダイオード44を光電変換セルに接続する。すなわち、バイパスダイオードフィルム204のバイパスダイオード44が直列接続された方向を光電変換モジュール202の光電変換セルが直列接続された方向に合わせ、バイパスダイオードフィルム204の1つのバイパスダイオード44の第2電極層46を光電変換モジュール202の光電変換セルの1つの裏面電極層30に接触させ、そのバイパスダイオード44に隣接するバイパスダイオード44の第2電極層46をその光電変換モジュール202に隣接する光電変換セルの裏面電極層30に接触させる。 The bypass diode film 204 formed in this way is arranged on the photoelectric conversion module 202 so that the voltage is applied in a reverse bias state in a state where the photoelectric conversion cell of the photoelectric conversion module 202 is normally generating power. The bypass diode 44 of the bypass diode film 204 is connected to the photoelectric conversion cell. That is, the direction in which the bypass diode 44 of the bypass diode film 204 is connected in series is aligned with the direction in which the photoelectric conversion cells of the photoelectric conversion module 202 are connected in series, and the second electrode layer 46 of one bypass diode 44 of the bypass diode film 204 is aligned. Is brought into contact with one back electrode layer 30 of the photoelectric conversion cell of the photoelectric conversion module 202, and the second electrode layer 46 of the bypass diode 44 adjacent to the bypass diode 44 is connected to the back surface of the photoelectric conversion cell adjacent to the photoelectric conversion module 202. The electrode layer 30 is brought into contact.
 このとき、バイパスダイオードフィルム204のバイパスダイオード44の配置のピッチP2と、光電変換モジュール202の光電変換セルの配置のピッチP1と、を一致させているので、直列接続された光電変換セルの1つずつに対応付けてバイパスダイオード44を接続することができる。なお、スリットS1~S3とスリットS4~S5とが重なり合うようにすることによって、バイパスダイオードフィルム204と光電変換モジュール202との位置合わせを容易に行うことができる。 At this time, the pitch P2 of the arrangement of the bypass diodes 44 of the bypass diode film 204 and the pitch P1 of the arrangement of the photoelectric conversion cells of the photoelectric conversion module 202 are matched, so one of the photoelectric conversion cells connected in series The bypass diodes 44 can be connected in association with each other. Note that by making the slits S1 to S3 and the slits S4 to S5 overlap, the alignment of the bypass diode film 204 and the photoelectric conversion module 202 can be easily performed.
 なお、直列接続された光電変換セルの1つずつにバイパスダイオード44を設けず、複数の光電変換セルに跨ってバイパスダイオード44を設けてもよい。この場合には、バイパスダイオードフィルム204には複数の光電変換セルに跨るようなピッチP2でバイパスダイオード44を形成する。具体的には、n個の光電変換セルに跨ってバイパスダイオード44を配置する場合、バイパスダイオード44の配置のピッチP2を光電変換セルの配置のピッチP1のn倍とすることが好適である。 Note that the bypass diode 44 may be provided across a plurality of photoelectric conversion cells without providing the bypass diode 44 for each of the photoelectric conversion cells connected in series. In this case, the bypass diodes 44 are formed on the bypass diode film 204 at a pitch P2 that extends over a plurality of photoelectric conversion cells. Specifically, when the bypass diode 44 is arranged across n photoelectric conversion cells, it is preferable that the pitch P2 of the arrangement of the bypass diodes 44 is n times the pitch P1 of the arrangement of the photoelectric conversion cells.
 このようにバイパスダイオードフィルム204を配置した状態において、充填材210を用いて裏面電極層30の表面をバックシート208で覆って封止する。充填材210及びバックシート208は、EVA、ポリイミド等の樹脂材料とすることができる。バイパスダイオードフィルム204を配置した裏面電極層30上に充填材210を配置し、充填材210上をバックシート208で覆い、150℃程度の温度に加熱しつつ裏面電極層30へ向かってバックシート208に圧力を加えることによって封止を行うことができる。これによって、光電変換装置200の発電層への水分の侵入等を防ぐことができる。 In the state where the bypass diode film 204 is arranged in this way, the surface of the back electrode layer 30 is covered with the back sheet 208 and sealed using the filler 210. The filler 210 and the back sheet 208 can be resin materials such as EVA and polyimide. The filler 210 is disposed on the back electrode layer 30 on which the bypass diode film 204 is disposed. The filler 210 is covered with the back sheet 208 and heated to a temperature of about 150 ° C. toward the back electrode layer 30. Sealing can be performed by applying pressure to the. This can prevent moisture from entering the power generation layer of the photoelectric conversion device 200.
 このとき、バックシート208によってバイパスダイオードフィルム204が光電変換モジュール202に向けて押圧され、バイパスダイオード44のアノード電極及びカソード電極が裏面電極層30に押し付けられ、ハンダ付け等の作業を行うことなくアノード電極及びカソード電極と裏面電極層30との良好な電気的接続を得ることができる。 At this time, the bypass sheet 204 is pressed toward the photoelectric conversion module 202 by the back sheet 208, and the anode electrode and the cathode electrode of the bypass diode 44 are pressed against the back electrode layer 30, so that the anode is not performed without soldering or the like. Good electrical connection between the electrode and cathode electrode and the back electrode layer 30 can be obtained.
 また、図5の断面図及び図6の内部斜視図に示すように、バイパスダイオードフィルム204上を覆うようにカバー部材212を設けてもよい。なお、図5は、バイパスダイオードフィルム204及びカバー部材212が延設された方向に沿って光電変換装置300の断面構造を模式的に示した図である。また、図6は、本発明の特徴を明確に示すために、光電変換装置300のバックシート208及び充填材210を除去した状態の斜視図を示す。図6の内部斜視図では、構成を明確にするためにカバー部材212で覆われているバイパスダイオードフィルム204を破線で示している。 Further, as shown in the cross-sectional view of FIG. 5 and the internal perspective view of FIG. 6, a cover member 212 may be provided so as to cover the bypass diode film 204. FIG. 5 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 300 along the direction in which the bypass diode film 204 and the cover member 212 are extended. FIG. 6 is a perspective view of the photoelectric conversion device 300 with the back sheet 208 and the filler 210 removed in order to clearly show the features of the present invention. In the internal perspective view of FIG. 6, the bypass diode film 204 covered with the cover member 212 is indicated by a broken line in order to clarify the configuration.
 カバー部材212は、絶縁性材料からなるテープ状、フィルム状又はシート状の部材である。カバー部材212は、バックシート208の封止処理における加熱に耐えられる程度の耐熱性を有することが好適である。加熱処理は150℃程度で行われるので、カバー部材212を例えばテフロン(登録商標)とすることが好適である。 The cover member 212 is a tape-like, film-like or sheet-like member made of an insulating material. The cover member 212 preferably has heat resistance enough to withstand the heating in the sealing process of the back sheet 208. Since the heat treatment is performed at about 150 ° C., the cover member 212 is preferably made of, for example, Teflon (registered trademark).
 カバー部材212によりバイパスダイオードフィルム204を覆うことで、バックシート208で封止を行う際に充填材210がバイパスダイオード44の第2電極層46と裏面電極層30との間に入り込むことがなくなり、第2電極層46と裏面電極層30との電気的接触が不良になることを防ぐことができる。 By covering the bypass diode film 204 with the cover member 212, the filler 210 does not enter between the second electrode layer 46 and the back electrode layer 30 of the bypass diode 44 when sealing with the back sheet 208, It is possible to prevent the electrical contact between the second electrode layer 46 and the back electrode layer 30 from becoming defective.
 また、裏面電極層30とバイパスダイオードフィルム204との間の段差をカバー部材212で覆うことによって滑らかな傾斜とすることができる。これによって、段差によるバックシート208の浮き上がりを抑制し、バックシート208の凹凸を小さくすることができる。 Further, by covering the step between the back electrode layer 30 and the bypass diode film 204 with the cover member 212, a smooth inclination can be obtained. As a result, it is possible to suppress the back sheet 208 from being lifted by a step, and to reduce the unevenness of the back sheet 208.
 以上のように、本実施の形態の光電変換装置によれば、ホットスポットが発生した場合にバイパスダイオードによって光電変換セルの破損を防ぐことができる。さらに、光電変換装置を製造する際に、バイパスダイオードの設置を容易にすることができる。 As described above, according to the photoelectric conversion device of the present embodiment, it is possible to prevent the photoelectric conversion cell from being damaged by the bypass diode when a hot spot occurs. Furthermore, the bypass diode can be easily installed when the photoelectric conversion device is manufactured.
 第2の実施の形態における光電変換装置200は、図7に示すように、光電変換モジュール202、絶縁部材214、バイパスダイオード206、バックシート208及び充填材210を含んで構成される。なお、図7は、絶縁部材214及びバイパスダイオード206の延設方向に沿って光電変換装置200の断面構造を模式的に示した図である。また、本発明の特徴を明確に示すために、図8に光電変換装置200のバックシート208及び充填材210を除去した状態の斜視図を示す。 As shown in FIG. 7, the photoelectric conversion device 200 according to the second embodiment includes a photoelectric conversion module 202, an insulating member 214, a bypass diode 206, a back sheet 208, and a filler 210. FIG. 7 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 200 along the extending direction of the insulating member 214 and the bypass diode 206. In order to clearly show the characteristics of the present invention, FIG. 8 shows a perspective view of the photoelectric conversion device 200 with the back sheet 208 and the filler 210 removed.
 光電変換モジュール202は、図9の拡大断面図に示すように、基板20を光入射側として、光入射側から、透明電極層22、トップセルとして広いバンドギャップを有するアモルファスシリコン光電変換ユニット(a-Siユニット)24、中間層26、ボトムセルとしてa-Siユニット24よりバンドギャップの狭い微結晶シリコン光電変換ユニット(μc-Siユニット)28及び裏面電極層30、を積層した構造を有する。なお、本実施の形態では、a-Siユニット24及びμc-Siユニット28を積層したタンデム型光電変換装置を例に説明を行うが、本発明の適用範囲はこれに限定されるものではなく、a-Siユニット24及びμc-Siユニット28のいずれかのみを用いたシングル型光電変換装置やさらに他種の光電変換ユニットを適用した光電変換装置であってもよい。 As shown in the enlarged sectional view of FIG. 9, the photoelectric conversion module 202 includes an amorphous silicon photoelectric conversion unit (a) having a substrate 20 as a light incident side and a wide band gap as a transparent electrode layer 22 and a top cell from the light incident side. -Si unit) 24, an intermediate layer 26, and a microcrystalline silicon photoelectric conversion unit (μc-Si unit) 28 having a narrower band gap than the a-Si unit 24 and a back electrode layer 30 as a bottom cell are stacked. In this embodiment, a tandem photoelectric conversion device in which the a-Si unit 24 and the μc-Si unit 28 are stacked will be described as an example. However, the scope of the present invention is not limited to this, A single-type photoelectric conversion device using only one of the a-Si unit 24 and the μc-Si unit 28 or a photoelectric conversion device to which another type of photoelectric conversion unit is applied may be used.
 基板20は、例えば、ガラス基板、プラスチック基板等の少なくとも可視光波長領域において透過性を有する材料を適用することができる。基板20上に透明電極層22が形成される。透明電極層22は、酸化錫(SnO2)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種を組み合わせて用いることが好適である。特に、酸化亜鉛(ZnO)は、透光性が高く、抵抗率が低く、耐プラズマ特性にも優れているので好適である。透明電極層22は、例えば、スパッタリング法又はCVD法等により形成することができる。 For the substrate 20, for example, a material having transparency in at least the visible light wavelength region, such as a glass substrate or a plastic substrate, can be applied. A transparent electrode layer 22 is formed on the substrate 20. The transparent electrode layer 22 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) is preferable because it has high translucency, low resistivity, and excellent plasma resistance. The transparent electrode layer 22 can be formed by, for example, a sputtering method or a CVD method.
 光電変換モジュール202を複数の光電変換セルを直列に接続した構成とする場合、透明電極層22にスリットS1を形成して短冊状にパターニングする。例えば、波長1064nm、エネルギー密度13J/cm2、パルス周波数3kHzのYAGレーザを用いて透明電極層22を短冊状にパターニングすることができる。 When the photoelectric conversion module 202 has a configuration in which a plurality of photoelectric conversion cells are connected in series, a slit S1 is formed in the transparent electrode layer 22 and patterned into a strip shape. For example, the transparent electrode layer 22 can be patterned into a strip shape using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
 透明電極層22上に、p型層、i型層、n型層のシリコン系薄膜を順に積層してa-Siユニット24を形成する。a-Siユニット24は、シラン(SiH4)、ジシラン(Si26)、ジクロルシラン(SiH2Cl2)等のシリコン含有ガス、メタン(CH4)等の炭素含有ガス、ジボラン(B26)等のp型ドーパント含有ガス、フォスフィン(PH3)等のn型ドーパント含有ガス及び水素(H2)等の希釈ガスを混合した混合ガスをプラズマ化して成膜を行うプラズマ化学気相成長法(CVD法)により形成することができる。プラズマCVD法は、例えば、13.56MHzのRFプラズマCVD法を適用することが好適である。 On the transparent electrode layer 22, a p-type layer, an i-type layer, and an n-type layer of silicon-based thin film are sequentially laminated to form an a-Si unit 24. The a-Si unit 24 includes silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 ) Plasma chemical vapor deposition in which a mixed gas obtained by mixing a p-type dopant-containing gas, such as phosphine (PH 3 ), and a mixed gas, such as phosphine (PH 3 ), and a diluent gas, such as hydrogen (H 2 ), is converted into plasma. It can be formed by the method (CVD method). As the plasma CVD method, for example, an RF plasma CVD method of 13.56 MHz is preferably applied.
 a-Siユニット24上に、中間層26を形成する。中間層26は、酸化亜鉛(ZnO)、酸化シリコン(SiOx)等の透明導電性酸化物(TCO)を用いることが好適である。特に、マグネシウムMgがドープされた酸化亜鉛(ZnO)や酸化シリコン(SiOx)を用いることが好適である。中間層26は、例えば、スパッタリング等により形成することができる。中間層26の膜厚は10nm以上200nm以下の範囲とすることが好適である。なお、中間層26は、設けなくてもよい。 An intermediate layer 26 is formed on the a-Si unit 24. The intermediate layer 26 is preferably made of a transparent conductive oxide (TCO) such as zinc oxide (ZnO) or silicon oxide (SiOx). In particular, it is preferable to use zinc oxide (ZnO) or silicon oxide (SiOx) doped with magnesium Mg. The intermediate layer 26 can be formed by sputtering, for example. The thickness of the intermediate layer 26 is preferably in the range of 10 nm to 200 nm. The intermediate layer 26 may not be provided.
 中間層26上に、p型層、i型層、n型層を順に積層したμc-Siユニット28を形成する。μc-Siユニット28は、シラン(SiH4)、ジシラン(Si26)、ジクロルシラン(SiH2Cl2)等のシリコン含有ガス、メタン(CH4)等の炭素含有ガス、ジボラン(B26)等のp型ドーパント含有ガス、フォスフィン(PH3)等のn型ドーパント含有ガス及び水素(H2)等の希釈ガスを混合した混合ガスをプラズマ化して成膜を行うプラズマCVD法により形成することができる。プラズマCVD法は、a-Siユニット24と同様に、例えば、13.56MHzのRFプラズマCVD法を適用することが好適である。 On the intermediate layer 26, a μc-Si unit 28 in which a p-type layer, an i-type layer, and an n-type layer are sequentially laminated is formed. The μc-Si unit 28 includes a silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), a carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 ) formed by a plasma CVD method in which a mixed gas obtained by mixing a p-type dopant-containing gas such as phosphine (PH 3 ) and a dilute gas such as phosphine (PH 3 ) and hydrogen (H 2 ) is formed into a plasma. can do. As for the plasma CVD method, it is preferable to apply, for example, a 13.56 MHz RF plasma CVD method as in the case of the a-Si unit 24.
 複数のセルを直列接続する場合、a-Siユニット24及びμc-Siユニット28にスリットS2を形成して短冊状にパターニングする。透明電極層22に形成したスリットS1の位置から50μm横の位置にYAGレーザを照射してスリットS2を形成し、a-Siユニット24及びμc-Siユニット28を短冊状にパターニングする。YAGレーザは、例えば、エネルギー密度0.7J/cm2、パルス周波数3kHzのものを用いることが好適である。 When a plurality of cells are connected in series, a slit S2 is formed in the a-Si unit 24 and the μc-Si unit 28 and patterned into a strip shape. A slit S2 is formed by irradiating a position 50 μm laterally from the position of the slit S1 formed in the transparent electrode layer 22 to form the slit S2, and the a-Si unit 24 and the μc-Si unit 28 are patterned into strips. For example, a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
 μc-Siユニット28上に、裏面電極層30を形成する。裏面電極層30は、透明導電性酸化物(TCO)と反射性金属とを順に積層した構造とすることが好適である。透明導電性酸化物(TCO)としては、酸化錫(SnO2)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等の透明導電性酸化物(TCO)、又は、これらの透明導電性酸化物(TCO)に不純物をドープしたものが用いられる。例えば、酸化亜鉛(ZnO)にアルミニウム(Al)を不純物としてドープしたものでもよい。また、反射性金属としては、銀(Ag)、アルミニウム(Al)等の金属が使用できる。透明導電性酸化物(TCO)は、例えば、スパッタリング法又はCVD法等により形成することができる。裏面電極層30は、合わせて1μm程度の膜厚とすることが好適である。裏面電極層30の少なくとも一方には、光閉じ込め効果を高めるための凹凸が設けることが好適である。 A back electrode layer 30 is formed on the μc-Si unit 28. The back electrode layer 30 preferably has a structure in which a transparent conductive oxide (TCO) and a reflective metal are sequentially laminated. As the transparent conductive oxide (TCO), a transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or these transparent conductive oxides A material (TCO) doped with impurities is used. For example, zinc oxide (ZnO) doped with aluminum (Al) as an impurity may be used. Moreover, as a reflective metal, metals, such as silver (Ag) and aluminum (Al), can be used. The transparent conductive oxide (TCO) can be formed by, for example, a sputtering method or a CVD method. The back electrode layer 30 is preferably about 1 μm in total. It is preferable that at least one of the back electrode layers 30 is provided with unevenness for enhancing the light confinement effect.
 複数のセルを直列接続する場合、裏面電極層30にスリットS3を形成して短冊状にパターニングする。a-Siユニット24及びμc-Siユニット28に形成したスリットS2の位置から50μm横の位置にYAGレーザを照射してスリットS3を形成し、裏面電極層30を短冊状にパターニングする。YAGレーザは、エネルギー密度0.7J/cm2、パルス周波数4kHzのものを用いることが好適である。 When a plurality of cells are connected in series, a slit S3 is formed in the back electrode layer 30 and patterned into a strip shape. A slit S3 is formed by irradiating YAG laser to a position 50 μm lateral from the position of the slit S2 formed in the a-Si unit 24 and the μc-Si unit 28, and the back electrode layer 30 is patterned into a strip shape. A YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
 これにより、スリットS2に埋め込まれた裏面電極層30を介して1つの光電変換セルの裏面電極層30が隣り合う光電変換セルの透明電極層22に電気的に接続され、隣り合う光電変換セル同士が直列に接続された構造となる。 Thereby, the back electrode layer 30 of one photoelectric conversion cell is electrically connected to the transparent electrode layer 22 of the adjacent photoelectric conversion cell via the back electrode layer 30 embedded in the slit S2, and the adjacent photoelectric conversion cells are connected to each other. Are connected in series.
 次に、絶縁部材214及びバイパスダイオード206が搭載される。絶縁部材214は、絶縁性材料からなるテープ状、フィルム状又はシート状の部材である。絶縁部材214は、光電変換モジュール202の裏面電極層30上に光電変換セルの直列接続方向に沿って延設される。絶縁部材214には、その延設方向に沿って所定のピッチP1で複数の穴32が形成されており、穴32がバイパスダイオード206の位置合わせに使用される。絶縁部材214の材料は、例えば、テフロン(登録商標)とすることが好適である。 Next, the insulating member 214 and the bypass diode 206 are mounted. The insulating member 214 is a tape-like, film-like or sheet-like member made of an insulating material. The insulating member 214 extends on the back electrode layer 30 of the photoelectric conversion module 202 along the serial connection direction of the photoelectric conversion cells. A plurality of holes 32 are formed in the insulating member 214 at a predetermined pitch P1 along the extending direction, and the holes 32 are used for alignment of the bypass diode 206. The material of the insulating member 214 is preferably Teflon (registered trademark), for example.
 絶縁部材214に形成される穴32は、バイパスダイオード206を配置するピッチPと同じピッチP1で形成する。例えば、直列接続された光電変換セルの1つずつにバイパスダイオード206を設ける場合には、図7及び図8に示すように、光電変換セルの配置のピッチP2と同じピッチP1で穴32を形成する。また、穴32は、バイパスダイオード206を穴32内に嵌め置いた際にバイパスダイオード206の位置が空間的にずれないような形状及び大きさとする。そして、穴32が隣り合う光電変換セルの裏面電極層30に跨るように、光電変換モジュール202の裏面電極層30上に絶縁部材214を配置する。 The holes 32 formed in the insulating member 214 are formed at the same pitch P1 as the pitch P where the bypass diode 206 is disposed. For example, when the bypass diode 206 is provided for each of the photoelectric conversion cells connected in series, the holes 32 are formed at the same pitch P1 as the pitch P2 of the photoelectric conversion cell arrangement as shown in FIGS. To do. The hole 32 is shaped and sized so that the position of the bypass diode 206 is not spatially displaced when the bypass diode 206 is fitted in the hole 32. And the insulating member 214 is arrange | positioned on the back surface electrode layer 30 of the photoelectric conversion module 202 so that the hole 32 may straddle the back surface electrode layer 30 of the adjacent photoelectric conversion cell.
 バイパスダイオード206は、光電変換装置200にホットスポットが発生した場合に光電変換セルの破損を防ぐために設けられる。バイパスダイオード206は、光電変換セルが正常に発電している状態において、電圧が逆バイアスの状態で印加されるように光電変換セルに接続される。 The bypass diode 206 is provided to prevent damage to the photoelectric conversion cell when a hot spot occurs in the photoelectric conversion device 200. The bypass diode 206 is connected to the photoelectric conversion cell so that the voltage is applied in a reverse bias state in a state where the photoelectric conversion cell is normally generating power.
 例えば、直列接続された光電変換セルの1つずつにバイパスダイオード206を設ける場合には、上記のように配置された絶縁部材214の穴32の各々にバイパスダイオード206を並べ、隣り合う光電変換セルの裏面電極層30にバイパスダイオード206のアノード電極とカソード電極をそれぞれ接続する。裏面電極層30とアノード電極又はカソード電極との接続は、一般的なハンダ付けでもよいし、バックシート208の封止による機械的な圧着でもよい。 For example, when the bypass diode 206 is provided for each of the photoelectric conversion cells connected in series, the bypass diode 206 is arranged in each of the holes 32 of the insulating member 214 arranged as described above, and the adjacent photoelectric conversion cells are arranged. The anode electrode and the cathode electrode of the bypass diode 206 are respectively connected to the back electrode layer 30. The connection between the back electrode layer 30 and the anode electrode or the cathode electrode may be performed by general soldering or by mechanical pressure bonding by sealing the back sheet 208.
 また、直列接続された光電変換セルの1つずつにバイパスダイオード206を設けず、複数の光電変換セルに跨ってバイパスダイオード206を設けてもよい。この場合には、図10に示すように、絶縁部材214には複数の光電変換セルを足し合わせたピッチP1で穴32を設ける。また、穴32は複数の光電変換セルに跨るような大きさとする。バイパスダイオード206は、複数の光電変換セルに跨って光電変換セルが正常に発電している状態において、電圧が逆バイアスの状態で印加されるように光電変換セルに接続される。 Further, the bypass diode 206 may be provided across a plurality of photoelectric conversion cells without providing the bypass diode 206 for each of the photoelectric conversion cells connected in series. In this case, as shown in FIG. 10, holes 32 are provided in the insulating member 214 at a pitch P1 obtained by adding a plurality of photoelectric conversion cells. The hole 32 is sized so as to straddle a plurality of photoelectric conversion cells. The bypass diode 206 is connected to the photoelectric conversion cell so that the voltage is applied in a reverse bias state in a state where the photoelectric conversion cell normally generates power across the plurality of photoelectric conversion cells.
 穴32が形成された絶縁部材214を用いることによって、穴32に合わせてバイパスダイオード206を配置するだけでバイパスダイオード206の位置合わせを行うことができる。したがって、バイパスダイオード206の位置合わせの作業の負担を軽減することができる。 By using the insulating member 214 in which the hole 32 is formed, the bypass diode 206 can be aligned only by arranging the bypass diode 206 in accordance with the hole 32. Therefore, it is possible to reduce the burden of alignment work of the bypass diode 206.
 このように絶縁部材214を用いてバイパスダイオード206を配置した状態において、充填材210によって裏面電極層30の表面をバックシート208で覆って封止する。充填材210及びバックシート208は、EVA、ポリイミド等の樹脂材料とすることができる。充填材210を塗布した裏面電極層30上をバックシート208で覆い、150℃程度の温度に加熱しつつ裏面電極層30へ向かってバックシート208に圧力を加えることによって封止を行うことができる。これによって、光電変換装置200の発電層への水分の侵入等を防ぐことができる。 In the state where the bypass diode 206 is arranged using the insulating member 214 as described above, the surface of the back electrode layer 30 is covered with the back sheet 208 and sealed with the filler 210. The filler 210 and the back sheet 208 can be resin materials such as EVA and polyimide. Sealing can be performed by covering the back electrode layer 30 coated with the filler 210 with the back sheet 208 and applying pressure to the back sheet 208 toward the back electrode layer 30 while heating to a temperature of about 150 ° C. . This can prevent moisture from entering the power generation layer of the photoelectric conversion device 200.
 このとき、絶縁部材214は、このような封止処理における加熱に耐えられる程度の耐熱性を有することが好適である。加熱処理は150℃程度で行われるので、絶縁部材214を例えばテフロン(登録商標)とすることが好適である。 At this time, it is preferable that the insulating member 214 has heat resistance enough to withstand the heating in such a sealing process. Since the heat treatment is performed at about 150 ° C., the insulating member 214 is preferably made of, for example, Teflon (registered trademark).
 また、絶縁部材214の厚さをバイパスダイオード206の厚さよりも小さくすることが好適である。バイパスダイオード206を配置する際にアノード電極及びカソード電極が裏面電極層30の表面に触れるようにしておくことによって、バックシート208に圧力を加えて封止する際にバイパスダイオード206が裏面電極層30に向けて押圧され、アノード電極及びカソード電極が裏面電極層30に押し付けられ、ハンダ付け等の作業を行うことなくアノード電極及びカソード電極と裏面電極層30との良好な電気的接続を得ることができる。 In addition, it is preferable that the thickness of the insulating member 214 is smaller than the thickness of the bypass diode 206. When the bypass diode 206 is disposed, the anode electrode and the cathode electrode are in contact with the surface of the back electrode layer 30, so that when the back sheet 208 is sealed by applying pressure to the back sheet 208, the bypass diode 206 is connected to the back electrode layer 30. The anode electrode and the cathode electrode are pressed against the back electrode layer 30, and a good electrical connection between the anode electrode and the cathode electrode and the back electrode layer 30 can be obtained without performing a soldering operation or the like. it can.
 さらに好適には、絶縁部材214の厚さをバイパスダイオード206の厚さの0.3倍以上0.7倍以下にするとよい。このように、絶縁部材214の厚さをバイパスダイオード206の厚さの半分程度にすることによって、裏面電極層30からバイパスダイオード206までの段差を絶縁部材214の段差によって滑らかに繋ぎ、それぞれの段差の幅を小さくすることができる。これにより、段差によるバックシート208の浮き上がりを抑制し、バックシート208の凹凸を低減することができる。 More preferably, the thickness of the insulating member 214 is 0.3 to 0.7 times the thickness of the bypass diode 206. In this way, by making the thickness of the insulating member 214 about half the thickness of the bypass diode 206, the step from the back electrode layer 30 to the bypass diode 206 is smoothly connected by the step of the insulating member 214, and each step is The width of can be reduced. Thereby, the lift of the back sheet 208 due to a step can be suppressed, and the unevenness of the back sheet 208 can be reduced.
 さらに、絶縁部材214の一面には接着材を塗布し、シール状に形成しておくことも好適である。絶縁部材214を裏面電極層30上に配置する際に、接着剤により絶縁部材214を裏面電極層30に貼り付けることができ、バイパスダイオード206を配置する際に絶縁部材214の位置がずれることがなくなり、より正確かつ迅速に絶縁部材214及びバイパスダイオード206の位置合わせを行うことができる。 Furthermore, it is also preferable to apply an adhesive to one surface of the insulating member 214 to form a seal. When the insulating member 214 is disposed on the back electrode layer 30, the insulating member 214 can be attached to the back electrode layer 30 with an adhesive, and the position of the insulating member 214 may be shifted when the bypass diode 206 is disposed. Therefore, the insulating member 214 and the bypass diode 206 can be aligned more accurately and quickly.
 また、図11の断面図及び図12の内部斜視図に示すように、絶縁部材214及びバイパスダイオード206上を覆うようにカバー部材212を設けてもよい。なお、図11は、絶縁部材214,バイパスダイオード206及びカバー部材212の延設方向に沿って光電変換装置300の断面構造を模式的に示した図である。また、図12は、本発明の特徴を明確に示すために、光電変換装置300のバックシート208及び充填材210を除去した状態の斜視図を示す。図12の内部斜視図では、構成を明確にするためにカバー部材212で覆われているバイパスダイオード206及び絶縁部材214の穴32を破線で示している。 Further, as shown in the sectional view of FIG. 11 and the internal perspective view of FIG. 12, a cover member 212 may be provided so as to cover the insulating member 214 and the bypass diode 206. FIG. 11 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 300 along the extending direction of the insulating member 214, the bypass diode 206, and the cover member 212. FIG. 12 is a perspective view of the photoelectric conversion device 300 with the back sheet 208 and the filler 210 removed in order to clearly show the features of the present invention. In the internal perspective view of FIG. 12, the bypass diode 206 covered with the cover member 212 and the hole 32 of the insulating member 214 are indicated by broken lines in order to clarify the configuration.
 カバー部材212は、絶縁性材料からなるテープ状、フィルム状又はシート状の部材である。カバー部材212は、絶縁部材214と同様に、バックシート208の封止処理における加熱に耐えられる程度の耐熱性を有することが好適である。加熱処理は150℃程度で行われるので、カバー部材212を例えばテフロン(登録商標)とすることが好適である。 The cover member 212 is a tape-like, film-like or sheet-like member made of an insulating material. Like the insulating member 214, the cover member 212 preferably has heat resistance enough to withstand the heating in the sealing process of the back sheet 208. Since the heat treatment is performed at about 150 ° C., the cover member 212 is preferably made of, for example, Teflon (registered trademark).
 カバー部材212により絶縁部材214及びバイパスダイオード206を覆うことで、バックシート208で封止を行う際に充填材210によって絶縁部材214の穴32が埋められることを防ぐことができる。これにより、充填材210がバイパスダイオード206のアノード電極及びカソード電極と裏面電極層30との間に入り込むことがなくなり、アノード電極及びカソード電極と裏面電極層30との電気的接触が不良になることを防ぐことができる。 Covering the insulating member 214 and the bypass diode 206 with the cover member 212 can prevent the hole 32 of the insulating member 214 from being filled with the filler 210 when sealing with the back sheet 208. As a result, the filler 210 does not enter between the anode and cathode electrodes of the bypass diode 206 and the back electrode layer 30, and the electrical contact between the anode and cathode electrodes and the back electrode layer 30 becomes poor. Can be prevented.
 また、裏面電極層30と絶縁部材214との間の段差、及び絶縁部材214とバイパスダイオード206との間の段差をカバー部材212で覆うことによって滑らかな傾斜とすることができる。これによって、これらの段差によるバックシート208の浮き上がりを抑制し、バックシート208の凹凸を小さくすることができる。 Further, by covering the step between the back electrode layer 30 and the insulating member 214 and the step between the insulating member 214 and the bypass diode 206 with the cover member 212, a smooth inclination can be achieved. Accordingly, it is possible to suppress the back sheet 208 from being lifted by these steps, and to reduce the unevenness of the back sheet 208.
 以上のように、本実施の形態の光電変換装置によれば、ホットスポットが発生した場合にバイパスダイオードによって光電変換セルの破損を防ぐことができる。さらに、光電変換装置を製造する際に、バイパスダイオードの設置を容易にすることができる。 As described above, according to the photoelectric conversion device of the present embodiment, it is possible to prevent the photoelectric conversion cell from being damaged by the bypass diode when a hot spot occurs. Furthermore, the bypass diode can be easily installed when the photoelectric conversion device is manufactured.
 第3・BR>フ実施の形態における光電変換装置200は、図13に示すように、光電変換モジュール202、バイパスダイオード206、バックシート208及び充填材216aを含んで構成される。なお、図13は、バイパスダイオード206の延設方向に沿って光電変換装置200の断面構造を模式的に示した図である。また、第3の実施の形態の特徴を明確に示すために、図14に光電変換装置200のバックシート208を除去した状態の斜視図を示す。 As shown in FIG. 13, the photoelectric conversion device 200 in the third embodiment includes a photoelectric conversion module 202, a bypass diode 206, a back sheet 208, and a filler 216a. FIG. 13 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 200 along the extending direction of the bypass diode 206. Further, in order to clearly show the characteristics of the third embodiment, FIG. 14 is a perspective view showing a state in which the back sheet 208 of the photoelectric conversion device 200 is removed.
 以下に第3の実施の形態における光電変換装置200の製造方法を図13及び図14を用いて以下に説明する。 Hereinafter, a method for manufacturing the photoelectric conversion device 200 according to the third embodiment will be described with reference to FIGS. 13 and 14.
 光電変換モジュール202は、図15の拡大断面図に示すように、基板20を光入射側として、光入射側から、透明電極層22、トップセルとして広いバンドギャップを有するアモルファスシリコン光電変換ユニット(a-Siユニット)24、中間層26、ボトムセルとしてa-Siユニット24よりバンドギャップの狭い微結晶シリコン光電変換ユニット(μc-Siユニット)28及び裏面電極層30、を積層した構造を有する。なお、本実施の形態では、a-Siユニット24及びμc-Siユニット28を積層したタンデム型光電変換装置を例に説明を行うが、本発明の適用範囲はこれに限定されるものではなく、a-Siユニット24及びμc-Siユニット28のいずれかのみを用いたシングル型光電変換装置や、さらに他種の光電変換ユニットを適用した光電変換装置であってもよい。 As shown in the enlarged sectional view of FIG. 15, the photoelectric conversion module 202 includes an amorphous silicon photoelectric conversion unit (a) having a substrate 20 as a light incident side and a wide band gap as a transparent electrode layer 22 and a top cell from the light incident side. -Si unit) 24, an intermediate layer 26, and a microcrystalline silicon photoelectric conversion unit (μc-Si unit) 28 having a narrower band gap than the a-Si unit 24 and a back electrode layer 30 as a bottom cell are stacked. In this embodiment, a tandem photoelectric conversion device in which the a-Si unit 24 and the μc-Si unit 28 are stacked will be described as an example. However, the scope of the present invention is not limited to this, A single-type photoelectric conversion device using only one of the a-Si unit 24 and the μc-Si unit 28 or a photoelectric conversion device to which another type of photoelectric conversion unit is applied may be used.
 基板20は、例えば、ガラス基板、プラスチック基板等の少なくとも可視光波長領域において透過性を有する材料を適用することができる。基板20上に透明電極層22が形成される。透明電極層22は、酸化錫(SnO2)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種を組み合わせて用いることが好適である。特に、酸化亜鉛(ZnO)は、透光性が高く、抵抗率が低く、耐プラズマ特性にも優れているので好適である。透明電極層22は、例えば、スパッタリング法又はCVD法等により形成することができる。 For the substrate 20, for example, a material having transparency in at least the visible light wavelength region, such as a glass substrate or a plastic substrate, can be applied. A transparent electrode layer 22 is formed on the substrate 20. The transparent electrode layer 22 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) is preferable because it has high translucency, low resistivity, and excellent plasma resistance. The transparent electrode layer 22 can be formed by, for example, a sputtering method or a CVD method.
 光電変換モジュール202を複数の光電変換セル201を直列に接続した構成とする場合、透明電極層22にスリットS1を形成して短冊状にパターニングする。例えば、波長1064nm、エネルギー密度13J/cm2、パルス周波数3kHzのYAGレーザを用いて透明電極層22を短冊状にパターニングすることができる。 When the photoelectric conversion module 202 has a configuration in which a plurality of photoelectric conversion cells 201 are connected in series, the slit S1 is formed in the transparent electrode layer 22 and is patterned into a strip shape. For example, the transparent electrode layer 22 can be patterned into a strip shape using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.
 透明電極層22上に、p型層、i型層、n型層のシリコン系薄膜を順に積層してa-Siユニット24を形成する。a-Siユニット24は、シラン(SiH4)、ジシラン(Si26)、ジクロルシラン(SiH2Cl2)等のシリコン含有ガス、メタン(CH4)等の炭素含有ガス、ジボラン(B26)等のp型ドーパント含有ガス、フォスフィン(PH3)等のn型ドーパント含有ガス、及び水素(H2)等の希釈ガスを混合した混合ガスをプラズマ化して成膜を行うプラズマ化学気相成長法(CVD法)により形成することができる。プラズマCVD法は、例えば、13.56MHzのRFプラズマCVD法を適用することが好適である。 On the transparent electrode layer 22, a p-type layer, an i-type layer, and an n-type layer of silicon-based thin film are sequentially laminated to form an a-Si unit 24. The a-Si unit 24 includes silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 ) Plasma chemical vapor deposition in which a gas mixture is formed by mixing a mixed gas obtained by mixing a p-type dopant-containing gas such as phosphine (PH 3 ) or the like and a diluent gas such as hydrogen (H 2 ). It can be formed by a growth method (CVD method). As the plasma CVD method, for example, an RF plasma CVD method of 13.56 MHz is preferably applied.
 a-Siユニット24上に、中間層26を形成する。中間層26は、酸化亜鉛(ZnO)、酸化シリコン(SiO)等の透明導電性酸化物(TCO)を用いることが好適である。特に、マグネシウム(Mg)がドープされた酸化亜鉛(ZnO)や酸化シリコン(SiO)を用いることが好適である。中間層26は、例えば、スパッタリング等により形成することができる。中間層26の膜厚は10nm以上200nm以下の範囲とすることが好適である。なお、中間層26は、設けなくてもよい。 An intermediate layer 26 is formed on the a-Si unit 24. The intermediate layer 26 is preferably made of a transparent conductive oxide (TCO) such as zinc oxide (ZnO) or silicon oxide (SiO x ). In particular, it is preferable to use zinc oxide (ZnO) or silicon oxide (SiO x ) doped with magnesium (Mg). The intermediate layer 26 can be formed by sputtering, for example. The thickness of the intermediate layer 26 is preferably in the range of 10 nm to 200 nm. The intermediate layer 26 may not be provided.
 中間層26上に、p型層、i型層、n型層を順に積層したμc-Siユニット28を形成する。μc-Siユニット28は、シラン(SiH4)、ジシラン(Si26)、ジクロルシラン(SiH2Cl2)等のシリコン含有ガス、メタン(CH4)等の炭素含有ガス、ジボラン(B26)等のp型ドーパント含有ガス、フォスフィン(PH3)等のn型ドーパント含有ガス、及び水素(H2)等の希釈ガスを混合した混合ガスをプラズマ化して成膜を行うプラズマCVD法により形成することができる。プラズマCVD法は、a-Siユニット24と同様に、例えば、13.56MHzのRFプラズマCVD法を適用することが好適である。 On the intermediate layer 26, a μc-Si unit 28 in which a p-type layer, an i-type layer, and an n-type layer are sequentially laminated is formed. The μc-Si unit 28 includes a silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), a carbon-containing gas such as methane (CH 4 ), diborane (B 2 H 6 ) Plasma CVD method in which a gas mixture is formed by mixing a gas mixture of a p-type dopant containing gas such as phosphine (PH 3 ) and an n-type dopant containing gas such as phosphine (PH 3 ) and a diluent gas such as hydrogen (H 2 ). Can be formed. As for the plasma CVD method, it is preferable to apply, for example, a 13.56 MHz RF plasma CVD method as in the case of the a-Si unit 24.
 複数のセルを直列接続する場合、a-Siユニット24及びμc-Siユニット28にスリットS2を形成して短冊状にパターニングする。透明電極層22に形成したスリットS1の位置から50μm横の位置にYAGレーザを照射してスリットS2を形成し、a-Siユニット24、中間層26及びμc-Siユニット28を短冊状にパターニングする。YAGレーザは、例えば、エネルギー密度0.7J/cm2、パルス周波数3kHzのものを用いることが好適である。 When a plurality of cells are connected in series, a slit S2 is formed in the a-Si unit 24 and the μc-Si unit 28 and patterned into a strip shape. The slit S2 is formed by irradiating a position 50 μm laterally from the position of the slit S1 formed in the transparent electrode layer 22 to form the slit S2, and the a-Si unit 24, the intermediate layer 26 and the μc-Si unit 28 are patterned into a strip shape . For example, a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.
 μc-Siユニット28上に、裏面電極層30を形成する。裏面電極層30は、透明導電性酸化物(TCO)と反射性金属とを順に積層した構造とすることが好適である。透明導電性酸化物(TCO)としては、酸化錫(SnO2)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等、又は、これらのに不純物をドープしたものが用いられる。例えば、酸化亜鉛(ZnO)にアルミニウム(Al)を不純物としてドープしたものでもよい。また、反射性金属としては、銀(Ag)、アルミニウム(Al)等の金属が使用できる。透明導電性酸化物(TCO)は、例えば、スパッタリング法又はCVD法等により形成することができる。裏面電極層30は、合わせて1μm程度の膜厚とすることが好適である。裏面電極層30の少なくとも一方には、光閉じ込め効果を高めるための凹凸が設けることが好適である。 A back electrode layer 30 is formed on the μc-Si unit 28. The back electrode layer 30 preferably has a structure in which a transparent conductive oxide (TCO) and a reflective metal are sequentially laminated. As the transparent conductive oxide (TCO), tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc., or those doped with impurities are used. For example, zinc oxide (ZnO) doped with aluminum (Al) as an impurity may be used. Moreover, as a reflective metal, metals, such as silver (Ag) and aluminum (Al), can be used. The transparent conductive oxide (TCO) can be formed by, for example, a sputtering method or a CVD method. The back electrode layer 30 is preferably about 1 μm in total. It is preferable that at least one of the back electrode layers 30 is provided with unevenness for enhancing the light confinement effect.
 複数のセルを直列接続する場合、裏面電極層30にスリットS3を形成して短冊状にパターニングする。a-Siユニット24及びμc-Siユニット28に形成したスリットS2の位置から50μm横の位置にYAGレーザを照射してスリットS3を形成し、裏面電極層30を短冊状にパターニングする。YAGレーザは、エネルギー密度0.7J/cm2、パルス周波数4kHzのものを用いることが好適である。 When a plurality of cells are connected in series, a slit S3 is formed in the back electrode layer 30 and patterned into a strip shape. A slit S3 is formed by irradiating YAG laser to a position 50 μm lateral from the position of the slit S2 formed in the a-Si unit 24 and the μc-Si unit 28, and the back electrode layer 30 is patterned into a strip shape. A YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 4 kHz is preferably used.
 これにより、スリットS2に埋め込まれた裏面電極層30を介して1つの光電変換セル201の裏面電極層30が隣り合う光電変換セル201の透明電極層22に電気的に接続され、隣り合う光電変換セル201,201同士が直列に接続された光電変換モジュール202となる。 Accordingly, the back electrode layer 30 of one photoelectric conversion cell 201 is electrically connected to the transparent electrode layer 22 of the adjacent photoelectric conversion cell 201 via the back electrode layer 30 embedded in the slit S2, and the adjacent photoelectric conversion is performed. The cells 201 and 201 are the photoelectric conversion module 202 connected in series.
 次に、充填材216a及びバイパスダイオード206が搭載される。充填材216aは、熱可塑性を有する絶縁性材料からなるフィルム状又はシート状の部材である。充填材216aの材料は、例えば、EVAの他、EEA等のエチレン系樹脂、PVB、シリコーン、ウレタン、アクリル、エポキシ樹脂とすることが好適である。充填材216aは、基板20とほぼ同等の大きさを有するものが用いられる。なお、充填材216aの厚さは、バイパスダイオード206の厚さ以下、好ましくはバイパスダイオード206の厚さと同等の厚さとすることが好適である。 Next, the filler 216a and the bypass diode 206 are mounted. The filler 216a is a film-like or sheet-like member made of an insulating material having thermoplasticity. The material of the filler 216a is preferably, for example, an EVA resin, an ethylene resin such as EEA, PVB, silicone, urethane, acrylic, or an epoxy resin. As the filling material 216a, a material having approximately the same size as the substrate 20 is used. Note that the thickness of the filler 216a is preferably equal to or less than the thickness of the bypass diode 206, and preferably equal to the thickness of the bypass diode 206.
 充填材216aは、光電変換モジュール202の裏面電極層30上のほぼ全面を覆うように配置される。充填材216aには、その延設方向に沿って所定のピッチP1で複数の穴32が形成されており、穴32がバイパスダイオード206の位置合わせに使用される。 The filler 216 a is disposed so as to cover almost the entire surface of the back electrode layer 30 of the photoelectric conversion module 202. A plurality of holes 32 are formed in the filling material 216a at a predetermined pitch P1 along the extending direction, and the holes 32 are used for alignment of the bypass diode 206.
 充填材216aに形成される穴32は、バイパスダイオード206と同じピッチP2で形成する。例えば、直列接続された光電変換セル201の1つずつにバイパスダイオード206を設ける場合には、図14に示すように、光電変換セル201の配置のピッチP1と同じピッチP2で穴32を形成する。また、穴32は、バイパスダイオード206を穴32内に配置した際にバイパスダイオード206の位置が空間的にずれないような形状及び大きさとする。そして、穴32が隣り合う光電変換セル201,201の裏面電極層30に跨るように、光電変換モジュール202の裏面電極層30上に充填材216aを配置する。 The holes 32 formed in the filler 216a are formed at the same pitch P2 as the bypass diode 206. For example, when the bypass diode 206 is provided for each of the photoelectric conversion cells 201 connected in series, the holes 32 are formed at the same pitch P2 as the arrangement pitch P1 of the photoelectric conversion cells 201 as shown in FIG. . The hole 32 is shaped and sized so that the position of the bypass diode 206 is not spatially displaced when the bypass diode 206 is disposed in the hole 32. And the filler 216a is arrange | positioned on the back surface electrode layer 30 of the photoelectric conversion module 202 so that the hole 32 may straddle the back surface electrode layer 30 of the photoelectric conversion cells 201 and 201 which adjoin.
 バイパスダイオード206は、光電変換装置200にホットスポットが発生した場合に光電変換セル201の破損を防ぐために、充填材216aの穴32内にバイパスダイオード206が設けられる。バイパスダイオード206は、光電変換セル201が正常に発電している状態において、電圧が逆バイアスの状態でバイパスダイオード206に印加されるように光電変換セル201に接続する。なお、充填材216aの穴32内にバイパスダイオード206を配置する際には、充填材216aの一部に接着材を塗布して、または両面テープを貼って、裏面電極層30に充填材216aを仮止めするとよい。 The bypass diode 206 is provided in the hole 32 of the filler 216a in order to prevent damage to the photoelectric conversion cell 201 when a hot spot occurs in the photoelectric conversion device 200. The bypass diode 206 is connected to the photoelectric conversion cell 201 so that the voltage is applied to the bypass diode 206 in a reverse bias state in a state where the photoelectric conversion cell 201 is normally generating power. When the bypass diode 206 is disposed in the hole 32 of the filler 216a, an adhesive is applied to a part of the filler 216a or a double-sided tape is applied, and the filler 216a is applied to the back electrode layer 30. Temporarily fix it.
 例えば、直列接続された光電変換セル201の1つずつにバイパスダイオード206を設ける場合には、上記のように充填材216aに設けられた穴32の各々にバイパスダイオード206を配置し、隣り合う光電変換セル201,201の裏面電極層30にバイパスダイオード206のアノード電極とカソード電極をそれぞれ接続する。裏面電極層30とアノード電極又はカソード電極との接続は、一般的なハンダ付けでもよいし、バックシート208の封止による機械的な圧着でもよい。 For example, when the bypass diode 206 is provided for each of the photoelectric conversion cells 201 connected in series, the bypass diode 206 is disposed in each of the holes 32 provided in the filler 216a as described above, and the adjacent photoelectric conversion cells 201 are arranged. The anode electrode and the cathode electrode of the bypass diode 206 are connected to the back electrode layer 30 of the conversion cells 201 and 201, respectively. The connection between the back electrode layer 30 and the anode electrode or the cathode electrode may be performed by general soldering or by mechanical pressure bonding by sealing the back sheet 208.
 また、直列接続された光電変換セル201,・・・の1つずつにバイパスダイオード206を設けず、複数の光電変換セル201,・・・に跨るようにしてバイパスダイオード206を設けてもよい。この場合には、図16に示すように、充填材216aには複数の光電変換セル201,・・・を足し合わせたピッチP3で穴32を設ける。また、穴32は複数の光電変換セル201,・・・に跨るような大きさとする。バイパスダイオード206は、複数の光電変換セル201,・・・に跨って光電変換セル201が正常に発電している状態において、電圧が逆バイアスの状態でバイパスダイオード206に印加されるように光電変換セル201に接続する。 Further, the bypass diode 206 may be provided so as to straddle the plurality of photoelectric conversion cells 201,... Without providing the bypass diode 206 for each of the photoelectric conversion cells 201,. In this case, as shown in FIG. 16, holes 32 are provided in the filler 216a at a pitch P3 obtained by adding a plurality of photoelectric conversion cells 201,. Moreover, the hole 32 is sized so as to straddle the plurality of photoelectric conversion cells 201. The bypass diode 206 performs photoelectric conversion so that the voltage is applied to the bypass diode 206 in a reverse bias state in a state where the photoelectric conversion cell 201 is normally generating power across the plurality of photoelectric conversion cells 201. Connect to cell 201.
 このように光電変換モジュール202上に充填材216aを用いてバイパスダイオード206を配置したものをバックシート208で覆って封止する。バックシート208は、PET/Al箔/PETからなる積層体の他、フッ素系樹脂(ETFE、PVDF、PCTFE等)、PC、PET、PEN、PVF、アクリル等の樹脂の単層体や金属箔を挟んだ構造を有する可撓性と耐候性を有するものが用いられる。バックシート208は、裏面電極層30上に充填材216aを用いて配置されたバイパスダイオード206を覆うようにして配置される。そして、この積層体を150℃程度の温度に加熱しつつ裏面電極層30へ向かってバックシート208に圧力を加える。これによって充填材216aを溶融させ、基板20とバックシート20の間に光電変換セル201を固定して、第3の実施の形態に係る光電変換装置200が完成する。 In this way, the one in which the bypass diode 206 is arranged on the photoelectric conversion module 202 using the filler 216a is covered with the back sheet 208 and sealed. The back sheet 208 is made of a laminated body made of PET / Al foil / PET, a single layer of a resin such as fluorine resin (ETFE, PVDF, PCTFE, etc.), PC, PET, PEN, PVF, acrylic, or a metal foil. A flexible and weather-resistant material having a sandwiched structure is used. The back sheet 208 is disposed so as to cover the bypass diode 206 disposed on the back electrode layer 30 using the filler 216a. Then, pressure is applied to the back sheet 208 toward the back electrode layer 30 while heating the laminated body to a temperature of about 150 ° C. As a result, the filler 216a is melted and the photoelectric conversion cell 201 is fixed between the substrate 20 and the back sheet 20, and the photoelectric conversion device 200 according to the third embodiment is completed.
 なお、第3の実施の形態に係る光起電力装置200の外周部には、ブチルゴム等の弾性体やシリコーン等の樹脂を介してAlからなる枠体を設けてもよい。 A frame body made of Al may be provided on the outer peripheral portion of the photovoltaic device 200 according to the third embodiment via an elastic body such as butyl rubber or a resin such as silicone.
 第3の実施の形態に係る光起電力装置200の製造方法による効果について、以下に説明する。 The effects of the method for manufacturing the photovoltaic device 200 according to the third embodiment will be described below.
 (1)充填材216aの厚さをバイパスダイオード206の厚さと同等とする。これにより、光電変換モジュール203、充填材216a、バイパスダイオード206及びバックシート208からなる積層体を加熱・加圧する工程において、バイパスダイオード206がバックシート208と常時接触する。この結果、バックシート208からバイパスダイオード206が裏面電極層30に向けて押圧され、バイパスダイオード206のアノード電極及びカソード電極が裏面電極層30の表面に常時、触れるようにしておくことができる。従って、ハンダ付け等の作業を行うことなくアノード電極及びカソード電極と裏面電極層30との良好な電気的接続を得ることができる。 (1) The thickness of the filler 216a is made equal to the thickness of the bypass diode 206. Thereby, the bypass diode 206 is always in contact with the back sheet 208 in the step of heating and pressurizing the laminate composed of the photoelectric conversion module 203, the filler 216a, the bypass diode 206, and the back sheet 208. As a result, the bypass diode 206 is pressed from the back sheet 208 toward the back electrode layer 30, so that the anode electrode and the cathode electrode of the bypass diode 206 can always touch the surface of the back electrode layer 30. Therefore, good electrical connection between the anode and cathode electrodes and the back electrode layer 30 can be obtained without performing operations such as soldering.
 (2)充填材216aの厚さをバイパスダイオード206の厚さと同等とする。これにより、バイパスダイオード206と充填材216aにより生じるバックシート208の段差を緩和し、滑らかにすることができる。この結果、段差によるバックシート208の浮き上がりを抑制し、バックシート208の凹凸を低減することができる。このバックシート208の凹凸の低減により、外部からの力が光電変換セル201の一部に集中して力が加わり、光電変換セル201が破壊されることを防止することができる。 (2) The thickness of the filler 216a is made equal to the thickness of the bypass diode 206. Thereby, the level | step difference of the back seat | sheet 208 produced with the bypass diode 206 and the filler 216a can be eased, and it can be made smooth. As a result, it is possible to suppress the back sheet 208 from being lifted by a step, and to reduce the unevenness of the back sheet 208. By reducing the unevenness of the back sheet 208, it is possible to prevent the external force from being concentrated on a part of the photoelectric conversion cell 201 and applying the force, thereby preventing the photoelectric conversion cell 201 from being destroyed.
 (3)基板20とほぼ同等の大きさの充填材216aを用いる。これにより、基板20に形成された裏面電極層30上に充填材216aを配置する際に、基板20と充填材216aの端部や角が重なるように配置するだけで、バイパスダイオード206を所定の位置に配置することが可能となり、より正確かつ迅速に充填材216a及びバイパスダイオード206の位置合わせを行うことができる。 (3) A filler 216a having a size substantially equal to that of the substrate 20 is used. As a result, when the filler 216a is disposed on the back electrode layer 30 formed on the substrate 20, the bypass diode 206 can be formed in a predetermined manner simply by arranging the substrate 20 and the ends and corners of the filler 216a to overlap. Therefore, the filler 216a and the bypass diode 206 can be aligned more accurately and quickly.
 (4)充填材216aは、その裏面電極層30と接触する表面に接着材を塗布して、または両面テープを貼ることにより、裏面電極層30に仮止めする。これにより、光電変換モジュール202の裏面電極層30上に充填材216aを配置し、充填材216aの穴32内にバイパスダイオード206を配置する際に生じる充填材216aの位置ずれを防止することが可能となる。この結果、より正確かつ迅速に充填材216aの穴32内にバイパスダイオード206を配置することができる。 (4) The filler 216a is temporarily fixed to the back electrode layer 30 by applying an adhesive on the surface in contact with the back electrode layer 30 or applying a double-sided tape. Thereby, the filler 216a can be disposed on the back electrode layer 30 of the photoelectric conversion module 202, and the displacement of the filler 216a that occurs when the bypass diode 206 is disposed in the hole 32 of the filler 216a can be prevented. It becomes. As a result, the bypass diode 206 can be disposed in the hole 32 of the filler 216a more accurately and quickly.
 (5)充填材216aに光電変換セル201,201の間隔に基づいて穴32を形成し、この穴32内にバイパスダイオード206を配置する。これによって、以下の効果が得られる。 (5) A hole 32 is formed in the filler 216 a based on the interval between the photoelectric conversion cells 201, 201, and the bypass diode 206 is disposed in the hole 32. As a result, the following effects can be obtained.
 (a)穴32内に合わせてバイパスダイオード206を配置するだけでバイパスダイオード206の位置合わせを行うことができる。したがって、バイパスダイオード206の位置合わせの作業の負担を軽減するとともに、より迅速にバイパスダイオード206の位置合わせを行うことができる。 (A) By simply placing the bypass diode 206 in the hole 32, the bypass diode 206 can be aligned. Therefore, it is possible to reduce the burden of the alignment operation of the bypass diode 206 and to align the bypass diode 206 more quickly.
 (b)充填材216aの穴32内にバイパスダイオード206を配置し、充填材216aを加熱して溶融させ、加圧をして空気を抜きながら光電変換装置200を形成する。これにより、バイパスダイオード206の周囲に空間が形成されることがないように充填材216aで埋設することができる。この結果、バイパスダイオード206の周囲に空間ができることを防止することができ、より良く光電変換モジュール202への水分の侵入を防止することができる。 (B) The bypass diode 206 is disposed in the hole 32 of the filler 216a, and the photoelectric converter 200 is formed while heating and melting the filler 216a and releasing the air by applying pressure. Thereby, it can embed with the filler 216a so that a space is not formed around the bypass diode 206. As a result, it is possible to prevent a space from being formed around the bypass diode 206, and to better prevent moisture from entering the photoelectric conversion module 202.
 次に、第4の実施の形態に係る光電変換装置300について説明する。なお、第3の実施の形態と同様の構成には同じ符号を用いて説明を省略する。第4の実施の形態では、第3の実施の形態に対し、充填材216bを設ける点で異なる。以下に第4の実施の形態に係る光起電力装置300の断面図である図17、及び内部斜視図である図18を用いて、第4の実施の形態と第3の実施の形態の差異について説明する。なお、図17は、充填材210,バイパスダイオード206及び充填材212の延設方向に沿って光電変換装置300の断面構造を模式的に示した図である。また、図18は、本発明の特徴を明確に示すために、光電変換装置300のバックシート208を除去した状態の斜視図を示す。図18の内部斜視図では、構成を明確にするために充填材216bで覆われているバイパスダイオード206及び充填材216aの穴32を破線で示している。 充填材216aは、熱溶融性を有する絶縁性材料からなるテープ状、フィルム状又はシート状の部材である。本実施形態では、第3の実施の形態と異なり、充填材216aは、フィルム状又はシート状に限らず、テープ状でもよく、基板20とほぼ同等の大きさでなくてもよい。充填材216aの材料は、例えば、EVAの他、EEA等のエチレン系樹脂、PVB、シリコーン、ウレタン、アクリル、エポキシ樹脂とすることが好適である。 Next, a photoelectric conversion device 300 according to the fourth embodiment will be described. Note that the same components as those of the third embodiment are denoted by the same reference numerals, and description thereof is omitted. The fourth embodiment is different from the third embodiment in that a filler 216b is provided. The difference between the fourth embodiment and the third embodiment will be described below with reference to FIG. 17 which is a cross-sectional view of a photovoltaic device 300 according to the fourth embodiment and FIG. 18 which is an internal perspective view. Will be described. FIG. 17 is a diagram schematically showing a cross-sectional structure of the photoelectric conversion device 300 along the extending direction of the filler 210, the bypass diode 206, and the filler 212. FIG. 18 is a perspective view of the photoelectric conversion device 300 with the back sheet 208 removed in order to clearly show the features of the present invention. In the internal perspective view of FIG. 18, the bypass diode 206 covered with the filler 216b and the hole 32 of the filler 216a are indicated by broken lines in order to clarify the configuration. The filler 216a is a tape-like, film-like or sheet-like member made of an insulating material having heat melting property. In the present embodiment, unlike the third embodiment, the filler 216a is not limited to a film shape or a sheet shape, and may be a tape shape and may not be approximately the same size as the substrate 20. The material of the filler 216a is preferably, for example, an EVA resin, an ethylene resin such as EEA, PVB, silicone, urethane, acrylic, or an epoxy resin.
 充填材216aには、その延設方向に沿って所定のピッチP2で複数の穴32が形成される。そして、穴32には、バイパスダイオード206を穴32内に配置し、バイパスダイオード206が裏面電極層30上に配置される。なお、充填材216aの穴32内にバイパスダイオード206を配置する際には、充填材216aの一部に接着材を塗布して、または両面テープを貼って、裏面電極層30に充填材216aを仮止めするとよい。 A plurality of holes 32 are formed in the filler 216a at a predetermined pitch P2 along the extending direction. In the hole 32, the bypass diode 206 is disposed in the hole 32, and the bypass diode 206 is disposed on the back electrode layer 30. When the bypass diode 206 is disposed in the hole 32 of the filler 216a, an adhesive is applied to a part of the filler 216a or a double-sided tape is applied, and the filler 216a is applied to the back electrode layer 30. Temporarily fix it.
 充填材216bは、基板20に形成した光電変換モジュール202の裏面電極層30の上に充填材216aを用いてバイパスダイオード206を配置した積層体の上に配置される。充填材216bは、熱溶融性を有する絶縁性材料からなるテープ状、フィルム状又はシート状の部材である。充填材216bは、充填材216aと同様の材料からなり、基板20とほぼ同等の大きさを有するものが用いられる。なお、充填材216bの厚さは、充填材216aに比べ、厚いものとすることが好適である。また、充填材216aと216bの間には、充填材216aとほぼ同等以上、且つ充填材216b以下の大きさを有する絶縁性材料からなるテープ状、フィルム状又はシート状の非熱溶融性部材を配置してもよい。 The filler 216b is disposed on the stacked body in which the bypass diode 206 is disposed on the back electrode layer 30 of the photoelectric conversion module 202 formed on the substrate 20 using the filler 216a. The filler 216b is a tape-like, film-like or sheet-like member made of an insulating material having heat melting property. The filler 216b is made of the same material as the filler 216a and has a size approximately equal to that of the substrate 20. Note that the thickness of the filler 216b is preferably thicker than that of the filler 216a. Further, a non-heat-meltable member in the form of a tape, film or sheet made of an insulating material having a size approximately equal to or larger than that of the filler 216a and not larger than the filler 216b is provided between the fillers 216a and 216b. You may arrange.
 バックシート208は、充填材216bを覆うようにして配置される。この光電変換モジュール203、充填材216a、バイパスダイオード206、充填材216b及びバックシート208からなる積層体を150℃程度の温度に加熱しつつ裏面電極層30へ向かってバックシート208に圧力を加える。これによって充填材216aと充填材216bを溶融して一体化することにより、基板20とバックシート20の間に光電変換セル201を固定し、第4の実施の形態に係る光電変換装置300が完成する。 The back sheet 208 is disposed so as to cover the filler 216b. A pressure is applied to the back sheet 208 toward the back electrode layer 30 while heating the laminated body including the photoelectric conversion module 203, the filler 216 a, the bypass diode 206, the filler 216 b, and the back sheet 208 to a temperature of about 150 ° C. As a result, the filler 216a and the filler 216b are melted and integrated to fix the photoelectric conversion cell 201 between the substrate 20 and the back sheet 20, and the photoelectric conversion device 300 according to the fourth embodiment is completed. To do.
 以下に第4の実施の形態では、第3の実施の形態(3)及び(4)と同様の効果の他、以下の効果を得ることができる。 Hereinafter, in the fourth embodiment, the following effects can be obtained in addition to the same effects as in the third embodiment (3) and (4).
 (6)充填材216aの厚さをバイバスダーオード206の厚さと同等とする。これにより、光電変換モジュール203、充填材216a、バイパスダイオード206、充填材216b及びバックシート208からなる積層体を加熱・加圧する工程において、バイパスダイオード206が充填材216bと常時接触する。この結果、充填材bからバイパスダイオード206は裏面電極層30に向けて押圧され、バイパスダイオード206のアノード電極及びカソード電極が裏面電極層30の表面に常時、触れるようにしておくことができる。従って、ハンダ付け等の作業を行うことなくアノード電極及びカソード電極と裏面電極層30との良好な電気的接続を得ることができる。 (6) The thickness of the filler 216a is made equal to the thickness of the vibrator ode 206. Thereby, in the process of heating and pressurizing the laminated body including the photoelectric conversion module 203, the filler 216a, the bypass diode 206, the filler 216b, and the back sheet 208, the bypass diode 206 is always in contact with the filler 216b. As a result, the bypass diode 206 is pressed from the filler b toward the back electrode layer 30, so that the anode electrode and the cathode electrode of the bypass diode 206 can always touch the surface of the back electrode layer 30. Therefore, good electrical connection between the anode and cathode electrodes and the back electrode layer 30 can be obtained without performing operations such as soldering.
 (7)充填材216bと充填材216aの合計の厚さをバイパスダイオード206に比べ厚くする。これにより、充填材216bを溶融させたとき、裏面電極30とバイパスダイオード206により生じるバックシート208表面の段差を緩和し、平坦にすることができる。この結果、段差によるバックシート208の浮き上がりを抑制し、バックシート208の凹凸を低減することができる。このバックシート208の凹凸の低減により、外部からの力が光電変換セル201の一部に集中して力が加わり、光電変換セル201が破壊されることを防止することができる。 (7) The total thickness of the filler 216b and the filler 216a is made thicker than that of the bypass diode 206. Thereby, when the filler 216b is melted, the step on the surface of the back sheet 208 caused by the back electrode 30 and the bypass diode 206 can be relaxed and flattened. As a result, it is possible to suppress the back sheet 208 from being lifted by a step, and to reduce the unevenness of the back sheet 208. By reducing the unevenness of the back sheet 208, it is possible to prevent the external force from being concentrated on a part of the photoelectric conversion cell 201 and applying the force, thereby preventing the photoelectric conversion cell 201 from being destroyed.
 以上のように、本発明の光電変換装置によれば、ホットスポットが発生した場合にバイパスダイオードによって光電変換モジュールの破損を防ぐことができるとともに、バイパスダイオードを設けたことによって発生する信頼性の低下を抑制することができる。さらに、光電変換装置を製造する際に、バイパスダイオードの設置を容易にすることができる。 As described above, according to the photoelectric conversion device of the present invention, it is possible to prevent the photoelectric conversion module from being damaged by the bypass diode when a hot spot occurs, and to reduce the reliability caused by providing the bypass diode. Can be suppressed. Furthermore, the bypass diode can be easily installed when the photoelectric conversion device is manufactured.
 20 基板、22 透明電極層、24 アモルファスシリコン光電変換ユニット、26 中間層、28 微結晶シリコン光電変換ユニット、30 裏面電極層、32 穴、40 基板、42 第1電極層、44 バイパスダイオード、46 第2電極層、200,300 光電変換装置、201 光電変換セル、202 光電変換モジュール、204 バイパスダイオードフィルム、214 絶縁部材、216a 充填材、216b 充填材、206 バイパスダイオード、208 バックシート、210 充填材、212 カバー部材。 20 substrate, 22 transparent electrode layer, 24 amorphous silicon photoelectric conversion unit, 26 intermediate layer, 28 microcrystalline silicon photoelectric conversion unit, 30 back electrode layer, 32 holes, 40 substrate, 42 1st electrode layer, 44 bypass diode, 46th 2 electrode layers, 200, 300 photoelectric conversion device, 201 photoelectric conversion cell, 202 photoelectric conversion module, 204 bypass diode film, 214 insulating member, 216a filler, 216b filler, 206 bypass diode, 208 backsheet, 210 filler, 212 Cover member.

Claims (14)

  1.  スリットによって分割された光電変換セルを直列に接続した光電変換モジュールと、
     少なくともp層及びn層を積層したダイオードが表面に形成されたバイパスダイオードフィルムと、
     前記バイパスダイオードフィルムと共に前記光電変換モジュールの裏面を封止するバックシートと、
     前記光電変換モジュールと前記バックシートとの間に充填される充填材と、
    を備え、
     隣接する前記光電変換セルに跨って前記ダイオードが配置されるように前記直列接続の方向に沿って前記バイパスダイオードフィルムが延設されていることを特徴とする光電変換装置。
    A photoelectric conversion module in which photoelectric conversion cells divided by slits are connected in series;
    A bypass diode film having a diode formed by laminating at least a p layer and an n layer on the surface;
    A back sheet for sealing the back surface of the photoelectric conversion module together with the bypass diode film;
    A filler filled between the photoelectric conversion module and the back sheet;
    With
    The photoelectric conversion device, wherein the bypass diode film is extended along the direction of the series connection so that the diode is disposed across the adjacent photoelectric conversion cells.
  2.  請求項1に記載の光電変換装置であって、
     前記バイパスダイオードフィルムは、前記スリットのピッチと同じピッチで前記ダイオードが並べられていることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 1,
    In the photoelectric conversion device, the bypass diode film has the diodes arranged at the same pitch as the slits.
  3.  請求項1又は2に記載の光電変換装置であって、
     前記バイパスダイオードフィルムを覆うようにカバー部材が設けられていることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 1, wherein
    A photoelectric conversion device, wherein a cover member is provided so as to cover the bypass diode film.
  4.  スリットによって分割された光電変換セルを直列に接続した光電変換モジュールと、
     隣接する前記光電変換セルに跨って前記光電変換セルの裏面が露出する穴が開けられ、
    前記直列接続の方向に沿って延設された絶縁部材と、
     前記絶縁部材の穴内に、隣接する前記光電変換セルを跨って配置されたダイオードと、
     前記絶縁部材及び前記ダイオードと共に前記光電変換モジュールの裏面を封止するバックシートと、
     前記光電変換モジュールと前記バックシートとの間に充填される充填材と、
    を備えることを特徴とする光電変換装置。
    A photoelectric conversion module in which photoelectric conversion cells divided by slits are connected in series;
    A hole where the back surface of the photoelectric conversion cell is exposed across the adjacent photoelectric conversion cells is opened,
    An insulating member extending along the direction of the series connection;
    In the hole of the insulating member, a diode disposed across the adjacent photoelectric conversion cells, and
    A back sheet for sealing the back surface of the photoelectric conversion module together with the insulating member and the diode;
    A filler filled between the photoelectric conversion module and the back sheet;
    A photoelectric conversion device comprising:
  5.  請求項4に記載の光電変換装置であって、
     前記絶縁部材の穴を覆うカバー部材を備えることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 4,
    A photoelectric conversion device comprising a cover member that covers the hole of the insulating member.
  6.  請求項4又は5に記載の光電変換装置であって、
     前記絶縁部材の厚さは、前記ダイオードの厚さよりも小さいことを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 4 or 5,
    The photoelectric conversion device according to claim 1, wherein a thickness of the insulating member is smaller than a thickness of the diode.
  7.  基板上に光電変換セルを直列接続した光電変換モジュールを形成する第1の工程と、
     前記直列接続の方向に沿って延設された第1の充填材を前記光電変換モジュール上に配置する第2の工程と、
     前記複数の光電変換セルを跨るようにダイオードを配置する第3の工程と、
     前記ダイオードと前記光電変換モジュール上にバックシートを配置する第4の工程と、
     前記基板と前記バックシート間に前記光電変換モジュールおよび前記ダイオードを前記第1の充填材で固定する第5の工程と、
    を備え、
     前記第2の工程では、前記第1の充填材に前記複数の光電変換セルに跨って前記光電変換セルが露出する穴が開けられており、前記第3の工程では、前記第1の充填材の穴内に前記ダイオードが配置されていることを特徴とする光電変換装置の製造方法。
    A first step of forming a photoelectric conversion module in which photoelectric conversion cells are connected in series on a substrate;
    A second step of disposing a first filler extending along the direction of the series connection on the photoelectric conversion module;
    A third step of disposing a diode across the plurality of photoelectric conversion cells;
    A fourth step of disposing a backsheet on the diode and the photoelectric conversion module;
    A fifth step of fixing the photoelectric conversion module and the diode with the first filler between the substrate and the backsheet;
    With
    In the second step, a hole through which the photoelectric conversion cell is exposed is formed across the plurality of photoelectric conversion cells in the first filler, and in the third step, the first filler is formed. A method of manufacturing a photoelectric conversion device, wherein the diode is disposed in a hole of the photoelectric conversion device.
  8.  請求項7に記載の光電変換装置の製造方法であって、
     前記第1の充填材の厚さは、前記ダイオードの厚さ以下であることを特徴とする光電変換装置の製造方法。
    It is a manufacturing method of the photoelectric conversion device according to claim 7,
    The method for manufacturing a photoelectric conversion device, wherein a thickness of the first filler is equal to or less than a thickness of the diode.
  9.  請求項7に記載の光電変換装置の製造方法であって、
     前記第4の工程は、前記第1の充填材の穴内に配置された前記ダイオードを覆うように第2の充填材を配置した後、前記ダイオードと前記光電変換モジュール上にバックシートを配置する工程であることを特徴とする光電変換装置の製造方法。
    It is a manufacturing method of the photoelectric conversion device according to claim 7,
    The fourth step is a step of disposing a back sheet on the diode and the photoelectric conversion module after disposing the second filler so as to cover the diode disposed in the hole of the first filler. A method for manufacturing a photoelectric conversion device, wherein:
  10.  請求項9に記載の光電変換装置の製造方法であって、
     前記第2の充填材の厚さは、前記第1の充填材の厚さより厚いことを特徴とする光電変換装置の製造方法。
    It is a manufacturing method of the photoelectric conversion device according to claim 9,
    The method for manufacturing a photoelectric conversion device, wherein a thickness of the second filler is thicker than a thickness of the first filler.
  11.  請求項7~10のいずれか1つに記載の光電変換装置の製造方法であって、
     前記第2の工程において、前記第1の充填材は、前記光電変換モジュールと接着剤にて接着されていることを特徴とする光電変換装置の製造方法。
    A method for manufacturing a photoelectric conversion device according to any one of claims 7 to 10,
    In the second step, the first filler is bonded to the photoelectric conversion module with an adhesive.
  12.  請求項7~10のいずれか1つに記載の光電変換装置の製造方法であって、
     前記第2の工程において、前記第1の充填材は、前記光電変換モジュールと両面テープにて接着されていることを特徴とする光電変換装置の製造方法。
    A method for manufacturing a photoelectric conversion device according to any one of claims 7 to 10,
    In the second step, the first filler is bonded to the photoelectric conversion module with a double-sided tape.
  13.  基板上に形成された光電変換セルを直列接続した光電変換モジュールと、
     前記光電変換モジュール上に配置された充填材と、
     前記充填材上に位置されたバックシートと、
    を有する光起電力装置に関するものであって、
     前記充填材に埋設され、前記複数の光電変換セルを跨るように前記光電変換モジュール上に配置されたダイオードを備えることを特徴とする光電変換装置。
    A photoelectric conversion module in which photoelectric conversion cells formed on a substrate are connected in series;
    A filler disposed on the photoelectric conversion module;
    A backsheet positioned on the filler;
    A photovoltaic device having
    A photoelectric conversion device comprising a diode embedded in the filler and disposed on the photoelectric conversion module so as to straddle the plurality of photoelectric conversion cells.
  14.  請求項13に記載の光電変換装置であって、
     前記ダイオードと前記バックシートが接触したことを特徴とする光電変換装
    The photoelectric conversion device according to claim 13,
    The photoelectric conversion device, wherein the diode and the back sheet are in contact with each other
PCT/JP2011/051731 2010-03-16 2011-01-28 Photoelectric conversion device and process for production thereof WO2011114781A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010058706A JP2011192864A (en) 2010-03-16 2010-03-16 Photoelectric conversion device
JP2010-058706 2010-03-16
JP2010059172A JP2011192890A (en) 2010-03-16 2010-03-16 Photoelectric conversion device
JP2010-059172 2010-03-16
JP2010127097A JP2011253954A (en) 2010-06-02 2010-06-02 Photoelectric conversion device and method for manufacturing the same
JP2010-127097 2010-06-02

Publications (1)

Publication Number Publication Date
WO2011114781A1 true WO2011114781A1 (en) 2011-09-22

Family

ID=44648890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051731 WO2011114781A1 (en) 2010-03-16 2011-01-28 Photoelectric conversion device and process for production thereof

Country Status (1)

Country Link
WO (1) WO2011114781A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057697A1 (en) * 2012-10-10 2014-04-17 三菱電機株式会社 Integrated thin-film solar battery module
EP3428974A4 (en) * 2017-05-19 2020-02-12 Miasole Photovoltaic Technology Co., Ltd. Thin film photovoltaic battery assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184874A (en) * 1984-09-28 1986-04-30 ザ スタンダード オイル カンパニー Bypass diode assembly for photocell module
JPH05152596A (en) * 1991-11-29 1993-06-18 Sharp Corp Solar cell module
JP2005268719A (en) * 2004-03-22 2005-09-29 Sharp Corp Thin film solar cell
JP2006165172A (en) * 2004-12-06 2006-06-22 Canon Inc Solar cell module with frame material
JP2006165168A (en) * 2004-12-06 2006-06-22 Canon Inc Solar cell module and manufacturing method thereof
JP2009527123A (en) * 2006-09-04 2009-07-23 エルジー エレクトロニクス インコーポレイティド Thin-film solar cell including bypass diode and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184874A (en) * 1984-09-28 1986-04-30 ザ スタンダード オイル カンパニー Bypass diode assembly for photocell module
JPH05152596A (en) * 1991-11-29 1993-06-18 Sharp Corp Solar cell module
JP2005268719A (en) * 2004-03-22 2005-09-29 Sharp Corp Thin film solar cell
JP2006165172A (en) * 2004-12-06 2006-06-22 Canon Inc Solar cell module with frame material
JP2006165168A (en) * 2004-12-06 2006-06-22 Canon Inc Solar cell module and manufacturing method thereof
JP2009527123A (en) * 2006-09-04 2009-07-23 エルジー エレクトロニクス インコーポレイティド Thin-film solar cell including bypass diode and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057697A1 (en) * 2012-10-10 2014-04-17 三菱電機株式会社 Integrated thin-film solar battery module
EP3428974A4 (en) * 2017-05-19 2020-02-12 Miasole Photovoltaic Technology Co., Ltd. Thin film photovoltaic battery assembly

Similar Documents

Publication Publication Date Title
JP5367587B2 (en) Solar cell module and solar cell
TWI413266B (en) Photovoltaic module
EP3095139B1 (en) High efficiency solar panel
US20150194552A1 (en) Solar cell module and method for manufacturing the solar cell module
JP6785427B2 (en) Solar cell elements and solar cell modules
WO2012029651A1 (en) Photoelectric conversion device and method for producing same
JP6656225B2 (en) Solar cell, method of manufacturing the same, and solar cell module
WO2009099180A1 (en) Solar cell module
US20120090680A1 (en) Solar cell module and method for manufacturing solar cell module
JP5637089B2 (en) Solar cell module
WO2012035780A1 (en) Photoelectric converter
WO2011114781A1 (en) Photoelectric conversion device and process for production thereof
JP2006278695A (en) Solar cell module
US20120024339A1 (en) Photovoltaic Module Including Transparent Sheet With Channel
WO2014050193A1 (en) Photoelectric conversion module
JP6025123B2 (en) Solar cell module
WO2012023260A1 (en) Photoelectric conversion device and method for manufacturing same
JP2013030627A (en) Photoelectric conversion device
WO2011125922A1 (en) Photoelectric conversion device
JP3972233B2 (en) Solar cell module
US20180122966A1 (en) Solar cell module
KR101066850B1 (en) Photovoltaic module and method for manufacturing thereof
JP2011253954A (en) Photoelectric conversion device and method for manufacturing the same
JP2011192864A (en) Photoelectric conversion device
JP2000196128A (en) Photovoltaic element module, solar cell module and building member of integral structure with solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755971

Country of ref document: EP

Kind code of ref document: A1