WO2014050193A1 - Photoelectric conversion module - Google Patents

Photoelectric conversion module Download PDF

Info

Publication number
WO2014050193A1
WO2014050193A1 PCT/JP2013/062566 JP2013062566W WO2014050193A1 WO 2014050193 A1 WO2014050193 A1 WO 2014050193A1 JP 2013062566 W JP2013062566 W JP 2013062566W WO 2014050193 A1 WO2014050193 A1 WO 2014050193A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
sealing material
protective
sealing
protective material
Prior art date
Application number
PCT/JP2013/062566
Other languages
French (fr)
Japanese (ja)
Inventor
和仁 西村
善之 奈須野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014050193A1 publication Critical patent/WO2014050193A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • This invention relates to a photoelectric conversion module.
  • Patent Document 1 discloses a sealing resin having adhesiveness higher than that of ethylene-vinyl acetate copolymer resin (EVA) which has been conventionally used as a sealing resin for modules. It is disclosed.
  • EVA ethylene-vinyl acetate copolymer resin
  • Patent Document 2 discloses a frameless solar cell module in which a frame body that supports the module is eliminated.
  • the sealing resin is exposed to the outside through the gap between the substrate glass and the cover glass, moisture easily enters, and in Patent Document 2, the side end of the module is sealed with a metal sealing material. Therefore, the weather resistance performance is maintained.
  • Patent Document 2 has a problem that it involves an increase in cost due to additional members.
  • a photoelectric conversion module is provided in which the cost of the module is reduced and the moisture block performance between the sealing resin and the protective material is improved to increase the reliability.
  • the photoelectric conversion module includes first and second protective materials, a photoelectric conversion device, and a sealing material.
  • the first protective material has a flat plate shape and translucency.
  • the second protective material has a flat plate shape.
  • the photoelectric conversion device is disposed between the first protective material and the second protective material.
  • the sealing material seals the photoelectric conversion device between the first protective material and the second protective material.
  • a sealing material contacts with the 1st and 2nd protective material in the peripheral part of the surface direction of a 1st and 2nd protective material.
  • the contact angle between the end portion on the outer peripheral side of the sealing material in the in-plane direction and the first and second protective materials is larger than 0 degree and smaller than 90 degrees.
  • the end portion on the outer peripheral side of the sealing material in the in-plane direction has a cross-sectional shape that is recessed in a direction from the outer peripheral side in the in-plane direction toward the photoelectric conversion device, and the outer peripheral side of the sealing material in the in-plane direction.
  • the distance between the contact point where the end surface of the sealing material contacts the first and second protective materials and the photoelectric conversion device is longer than the distance between the most depressed point of the sealing material and the photoelectric conversion device.
  • the photoelectric conversion device has a structure in which a light-transmitting first electrode layer, a semiconductor layer, and a second electrode layer are sequentially stacked on the first protective material, and the in-plane of the first protective material.
  • An insulating region is formed at the peripheral edge in the direction.
  • the sealing material is made of a resin having thermoplasticity.
  • the sealing material is made of an ionomer resin or a polyolefin resin.
  • a silane coupling agent is added to the sealing material.
  • the sealing material contains a silane-modified resin.
  • the first and second protective materials are made of glass.
  • the first protective material is made of glass
  • the second protective material is made of a resin sheet.
  • the support base of the photoelectric conversion device is a semiconductor substrate.
  • the support base of the photoelectric conversion device is the first protective material or the second protective material.
  • the photoelectric conversion device includes a semiconductor substrate, a transparent conductive film, and an electrode.
  • the transparent conductive film is disposed on the light receiving surface side surface of the semiconductor substrate.
  • the electrode is disposed on the opposite side of the light receiving surface side of the semiconductor substrate.
  • the sealing material is not present in the peripheral portion on the light receiving surface side of the first protective material.
  • the encapsulant includes particles having a higher thermal conductivity than the encapsulant.
  • the thermal conductivity of the particles is greater than 2 [W / mK].
  • the end portions of the sealing material in the in-plane direction of the first and second protective materials are externally exposed in the in-plane direction of the first and second protective materials.
  • the cross-sectional shape is recessed in the direction toward the conversion device, and the contact angle between the end of the sealing material and the first and second protective materials is greater than 0 degrees and smaller than 90 degrees.
  • FIG. 1 is an exploded perspective view of a photoelectric conversion module according to Embodiment 1 of the present invention. It is sectional drawing of the photoelectric conversion module shown in FIG. It is a top view of a wiring sheet. It is sectional drawing which shows the structure of the photovoltaic cell shown in FIG. 1 and FIG. It is sectional drawing which shows another structure of the photovoltaic cell shown in FIG. 1 and FIG. It is sectional drawing which shows the connection state of a photovoltaic cell and a wiring sheet. It is process drawing which shows the manufacturing method of the photoelectric conversion module shown in FIG. 1 and FIG. It is a 1st process drawing which shows the detailed process of the manufacturing process of the photovoltaic cell shown in FIG.
  • FIG. 6 is an exploded perspective view showing a configuration of a photoelectric conversion module according to Embodiment 2. It is sectional drawing of the photoelectric conversion module shown in FIG. It is process drawing which shows the manufacturing method of the photoelectric conversion module shown to FIG. 19 and FIG. It is a 1st process drawing which shows the detailed process of the manufacturing process of the thin film photovoltaic cell shown in FIG. 21, and the formation process of an integrated structure.
  • FIG. 6 is an exploded perspective view showing a configuration of a photoelectric conversion module according to Embodiment 2. It is sectional drawing of the photoelectric conversion module shown in FIG. It is process drawing which shows the manufacturing method of the photoelectric conversion module shown to FIG. 19 and FIG. It is a 1st process drawing which shows the detailed process of the manufacturing process of the thin film photovoltaic cell shown in FIG. 21, and the formation process of an integrated structure.
  • FIG. 6 is an exploded perspective view showing a configuration of a photoelectric conversion module according to Embodiment 2. It is sectional drawing of the photoelectric conversion module
  • FIG. 22 is a second process diagram showing detailed processes of the manufacturing process of the thin-film solar cell and the formation process of the integrated structure shown in FIG. 21. It is process drawing which shows the detailed process in Embodiment 2 of the electrode attachment process shown in FIG. It is process drawing which shows the detailed process in Embodiment 2 of the mounting process shown in FIG. It is process drawing which shows the detailed process in Embodiment 2 of the sealing process shown in FIG.
  • amorphous phase refers to a state in which silicon (Si) atoms and the like are randomly arranged.
  • the “microcrystalline phase” means a state in which crystal grains such as Si having a grain size of about 10 to 100 nm exist in a random network such as Si atoms.
  • amorphous silicon is expressed as “a-Si”, this notation actually means hydrogenated amorphous silicon containing hydrogen (H) atoms.
  • FIG. 1 is an exploded perspective view of a photoelectric conversion module according to Embodiment 1 of the present invention.
  • a photoelectric conversion module 10 according to Embodiment 1 of the present invention includes protective materials 1 and 5, sealing materials 2 and 4, a photoelectric conversion device 3, and a terminal box 20.
  • the protective material 1 is a protective material on the light receiving surface side of the photoelectric conversion module 10.
  • the protective material 1 has a flat plate shape and is made of a translucent insulator, for example, glass.
  • Sealing material 2 is disposed between protective material 1 and photoelectric conversion device 3. And the sealing material 2 consists of resin which has a flat plate shape and has thermoplasticity. More specifically, the sealing material 2 is made of an ionomer resin or a polyolefin resin.
  • the photoelectric conversion device 3 is disposed between the sealing material 2 and the sealing material 4.
  • the photoelectric conversion device 3 includes a positive electrode terminal 31, a negative electrode terminal 32, and a plurality of solar battery cells 33.
  • the plurality of solar cells 33 are connected in series.
  • the plurality of solar cells 33 are composed of, for example, 24 solar cells 33 and are arranged in a grid pattern.
  • the sealing material 4 is disposed between the photoelectric conversion device 3 and the protective material 5.
  • the sealing material 4 has a flat plate shape and is made of the same material as the sealing material 2.
  • the protective material 5 is a protective material on the back side of the photoelectric conversion module 10.
  • the protective material 5 has a flat plate shape and is made of glass or a back sheet.
  • the terminal box 20 is connected to the positive terminal 31 and the negative terminal 32 of the photoelectric conversion device 3.
  • FIG. 2 is a cross-sectional view of the photoelectric conversion module 10 shown in FIG. In FIG. 2, the positive terminal 31 and the negative terminal 32 of the photoelectric conversion device 3 and the terminal box 20 are omitted.
  • sealing material 2 is in contact with protective material 1 and photoelectric conversion device 3 in the region where photoelectric conversion device 3 is present. Further, the sealing material 2 is integrated with the sealing material 4 at the peripheral portions 1A, 1B, 5A, and 5B of the protective materials 1 and 5 where the photoelectric conversion device 3 does not exist. Then, the integrated sealing material 24 is in contact with the protective materials 1 and 5 at the peripheral portions 1A, 1B, 5A and 5B of the protective materials 1 and 5.
  • the integrated sealing material 24 has a cross-sectional shape in which the outer peripheral end in the in-plane direction DR1 of the protective materials 1 and 5 is recessed in the direction from the outside toward the photoelectric conversion device 3.
  • Sealing material 4 is in contact with photoelectric conversion device 3 and protective material 5 in the region where photoelectric conversion device 3 is present. Moreover, the sealing material 4 is integrated with the sealing material 2 and constitutes the sealing material 24 in the peripheral portions 1A, 1B, 5A, and 5B where the photoelectric conversion device 3 does not exist.
  • the sealing material does not exist in the peripheral portion on the light receiving surface side of the protective material 1 which is a protective material on the light receiving surface side. If the sealing material adheres to the peripheral edge of the protective material 1 on the light receiving surface side, it is not preferable in appearance. Moreover, it is not preferable also from the point that sealing resin adheres to the conveyance system in the processes after the heat treatment process.
  • the photoelectric conversion device 3 is sealed with the sealing materials 2 and 4.
  • the photoelectric conversion module 10 can make the frame body which hold
  • FIG. 3 is a plan view of the wiring sheet.
  • the photoelectric conversion device 3 further includes a wiring sheet 34 shown in FIG. 3 in addition to the positive electrode terminal 31, the negative electrode terminal 32 and the plurality of solar cells 33.
  • the wiring sheet 34 includes regions 341 to 364, a positive electrode mounting pad 11, and a negative electrode mounting pad 12.
  • Each of the regions 341 to 364 includes a positive electrode pad 6, a negative electrode pad 7, and wirings 8 and 9.
  • five positive electrode pads 6 and five negative electrode pads 7 are alternately arranged in parallel with each other.
  • the wiring 8 has one end connected to the five positive electrode pads 6 and the other end connected to the positive electrode mounting pad 11.
  • the wiring 9 has one end connected to the five negative pads 7 and the other end connected to one positive pad 6 in the region 342.
  • the wiring 8 is connected to the five positive electrode pads 6. Further, the wiring 9 in the regions 342 to 345 has one end connected to the five negative electrode pads 7 and the other end connected to one positive electrode pad 6 in each of the regions 343 to 346. Further, the wiring 8 in the region 346 is connected to the five positive pads 6, and the wiring 9 in the region 346 has one end connected to the five negative pads 7 and the other end connected to the wiring 8 in the region 347. Is done.
  • the wiring 8 in the region 347 has one end connected to the five positive electrode pads 6 and the other end connected to the wiring 9 in the region 346. Further, the wiring 9 in the region 347 has one end connected to the five negative pads 7 and the other end connected to one positive pad 6 in the region 348.
  • the wiring 8 in the regions 348 to 351 is connected to five positive electrode pads 6.
  • the wiring 9 in the regions 348 to 351 has one end connected to the five negative pads 7 and the other end connected to one positive pad 6 in the regions 349 to 352, respectively.
  • the wiring 8 in the region 352 is connected to the five positive electrode pads 6.
  • the wiring 9 in the region 352 has one end connected to the five negative electrode pads 7 and the other end connected to the wiring 8 in the region 353.
  • the wiring 8 in the region 353 has one end connected to the five positive electrode pads 6 and the other end connected to the wiring 9 in the region 352.
  • the wiring 9 in the region 353 has one end connected to the five negative pads 7 and the other end connected to one positive pad 6 in the region 354.
  • the wirings 8 in the regions 354 to 357 are connected to the five positive electrode pads 6.
  • the wiring 9 in the regions 354 to 357 has one end connected to the five negative electrode pads 7 and the other end connected to one positive electrode pad 6 in each of the regions 355 to 358.
  • the wiring 8 in the region 358 is connected to the five positive electrode pads 6.
  • the wiring 9 in the region 358 has one end connected to the five negative electrode pads 7 and the other end connected to the wiring 8 in the region 359.
  • the wiring 8 in the region 359 has one end connected to the five positive electrode pads 6 and the other end connected to the wiring 9 in the region 358.
  • the wiring 9 in the region 359 has one end connected to the five negative pads 7 and the other end connected to one positive pad 6 in the region 360.
  • the wiring 8 in the regions 360 to 363 is connected to the five positive electrode pads 6. Further, the wiring 9 in the regions 360 to 363 has one end connected to the five negative electrode pads 7 and the other end connected to one positive electrode pad 6 in each of the regions 361 to 364.
  • the wiring 8 in the region 364 is connected to the five positive electrode pads 6.
  • the wiring 9 in the region 363 has one end connected to the five negative electrode pads 7 and the other end connected to the negative electrode mounting pad 12.
  • the positive electrode mounting pad 11 is connected to the positive electrode terminal 31 shown in FIG. 1, and the negative electrode mounting pad 12 is connected to the negative electrode terminal 32 shown in FIG.
  • FIG. 4 is a cross-sectional view showing a configuration of the solar battery cell 33 shown in FIGS. 1 and 2.
  • solar cell 33 includes an n-type single crystal silicon substrate 331, a light-receiving surface passivation film 332a, a transparent conductive film 332b, positive electrodes 371 to 375, and negative electrodes 376 to 380. .
  • the n-type single crystal silicon substrate 331 has, for example, a thickness of 100 to 300 ⁇ m and a specific resistance of 0.1 to 10 ⁇ cm.
  • the n-type single crystal silicon substrate 331 has a texture structure on the light receiving surface side, and includes p-type diffusion regions 3311 to 3315 and n-type diffusion regions 3316 to 3320 on the back surface side.
  • the p-type diffusion regions 3311 to 3315 and the n-type diffusion regions 3316 to 3320 are disposed in the n-type single crystal silicon substrate 331 in contact with the back surface of the n-type single crystal silicon substrate 331.
  • the p-type diffusion regions 3311 to 3315 and the n-type diffusion regions 3316 to 3320 are alternately arranged in the in-plane direction DR2 of the n-type single crystal silicon substrate 331.
  • Each of the p-type diffusion regions 3311 to 3315 includes, for example, boron (B) as a dopant.
  • B boron
  • the concentration of B is, for example, 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 .
  • Each of the n-type diffusion regions 3316 to 3320 includes, for example, phosphorus (P) as a dopant.
  • the concentration of P is, for example, 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the p-type diffusion regions 3311 to 3315 and the n-type diffusion regions 3316 to 3320 have the same length in the direction perpendicular to the paper surface of FIG.
  • the area occupancy ratio which is the ratio of the entire area of the p-type diffusion regions 3311 to 3315 to the area of the n-type single crystal silicon substrate 331, is 60 to 93%, and the entire area of the n-type diffusion regions 3316 to 3320 is
  • the area occupation ratio which is the ratio of the area to the area of the n-type single crystal silicon substrate 331, is 5 to 20%.
  • the reason why the area occupancy of the p-type diffusion regions 3311 to 3315 is larger than the area occupancy of the n-type diffusion regions 3316 to 3320 is that electrons and holes photoexcited in the n-type single crystal silicon substrate 331 are used. This is because the pn junction (p-type diffusion regions 3311 to 3315 / n-type single crystal silicon substrate 331) is easily separated and the contribution ratio of photoexcited electrons and holes to power generation is increased.
  • the light-receiving surface passivation film 332a is made of a silicon nitride film and has a film thickness of, for example, 50 to 100 nm.
  • the transparent conductive film 332b is disposed in contact with the light receiving surface side of the light receiving surface passivation film 332a. Then, the transparent conductive film 332b is made of SnO 2, ZnO and TiO 2, etc., the thickness is, for example, 20 nm.
  • the positive electrodes 371 to 375 are disposed in contact with the p-type diffusion regions 3311 to 3315, respectively.
  • Negative electrodes 376-380 are arranged in contact with n-type diffusion regions 3316-3320, respectively.
  • Each of the positive electrodes 371 to 375 and the negative electrodes 376 to 380 is composed of a single film or a laminated film of a plurality of metal films selected from silver (Ag), aluminum (Al), titanium (Ti), and the like.
  • the transparent conductive film 332 functions as an antireflection film and releases the charge accumulated on the light receiving surface of the solar cell 33 to the bulk region of the n-type single crystal silicon substrate 331. Thereby, the output fall of the photovoltaic cell 33 by accumulation
  • storage of surface charge can be suppressed, and conversion efficiency can be improved.
  • holes and electrons photoexcited in the n-type single crystal silicon substrate 331 are separated by a pn junction (p-type diffusion regions 3311 to 3315 / n-type single crystal silicon substrate 331). Then, holes reach the positive electrodes 371 to 375 through the p-type diffusion regions 3311 to 3315, and the electrons reach the negative electrodes 376 to 380 through the n-type diffusion regions 3316 to 3320. Electrons that reach the negative electrodes 376 to 380 flow to the positive electrodes 371 to 375 through a load connected between the positive electrodes 371 to 375 and the negative electrodes 376 to 380, and recombine with holes. As a result, current flows to the load.
  • the solar battery cell 33 is a back contact type solar battery that extracts power from the back surface of the n-type single crystal silicon substrate 331.
  • FIG. 5 is a cross-sectional view showing another configuration of the solar battery cell 33 shown in FIGS. 1 and 2.
  • the solar battery cell 33 may be a solar battery cell 33A shown in FIG.
  • solar cell 33A replaces n-type single crystal silicon substrate 331 of solar cell 33 shown in FIG. 4 with n-type single crystal silicon substrate 333, and replaces light-receiving surface passivation film 332a with a light-receiving surface passivation film.
  • positive electrodes 371 to 375 are replaced with positive electrodes 391 to 395
  • negative electrodes 376 to 380 are replaced with negative electrodes 396 to 400
  • p-type amorphous thin films 381 to 385 and n-type amorphous thin films 386 to 390 is added, and the others are the same as those of the solar battery cell 33.
  • the n-type single crystal silicon substrate 333 has, for example, a thickness of 100 to 300 ⁇ m and a specific resistance of 0.1 to 10 ⁇ cm.
  • the n-type single crystal silicon substrate 333 has a texture structure on the light receiving surface side.
  • the light-receiving surface passivation film 332c is made of an i-type amorphous silicon film, and has a film thickness of several nm to 30 nm, for example.
  • the transparent conductive film 332b is disposed in contact with the light receiving surface side of the light receiving surface passivation film 332c.
  • the p-type amorphous thin films 381 to 385 and the n-type amorphous thin films 386 to 390 are alternately arranged in the in-plane direction DR3 of the n-type single crystal silicon substrate 333 in contact with the back surface of the n-type single crystal silicon substrate 333.
  • Each of the p-type amorphous thin films 381 to 385 has an amorphous phase and is made of p-type a-Si, p-type a-SiC, p-type a-SiN, p-type a-SiGe, or the like.
  • Each of the n-type amorphous thin films 386 to 390 has an amorphous phase and is made of n-type a-Si, n-type a-SiC, n-type a-SiN, n-type a-SiGe, or the like.
  • Each of the p-type amorphous thin film 381 to 385 and the n-type amorphous thin film 386 to 390 has a film thickness of 10 to 30 nm, for example.
  • Each of the p-type amorphous thin films 381 to 385 includes, for example, B as a dopant.
  • the concentration of B is, for example, 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 .
  • Each of the n-type amorphous thin films 386 to 390 includes, for example, P as a dopant.
  • the concentration of P is, for example, 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the p-type amorphous thin films 381 to 385 and the n-type amorphous thin films 386 to 390 have the same length in the direction perpendicular to the paper surface of FIG.
  • the area occupancy ratio which is the ratio of the entire area of the p-type amorphous thin film 381 to 385 to the area of the n-type single crystal silicon substrate 333, is 60 to 93%, and the n-type amorphous thin film 386 to
  • the area occupation ratio which is the ratio of the entire area of 390 to the area of the n-type single crystal silicon substrate 333, is 5 to 20%.
  • the area occupancy of the p-type amorphous thin films 381 to 385 is larger than that of the n-type amorphous thin films 386 to 390. This is because electrons and holes are easily separated by a pn junction (p-type amorphous thin film 381 to 385 / n-type single crystal silicon substrate 333), and the contribution ratio of photoexcited electrons and holes to power generation is increased. is there.
  • the positive electrodes 391 to 395 are disposed in contact with the p-type amorphous thin films 381 to 385, respectively.
  • Negative electrodes 396 to 400 are disposed in contact with n-type amorphous thin films 386 to 390, respectively.
  • the positive electrodes 391 to 395 and the negative electrodes 396 to 400 are transparent conductive films such as indium oxide disposed on the sides in contact with the p-type amorphous thin films 381 to 385 and the n-type amorphous thin films 386 to 390, respectively. And a metal layer made of copper or the like disposed in contact with the transparent conductive film.
  • holes and electrons photoexcited in the n-type single crystal silicon substrate 333 are separated by a pn junction (p-type amorphous thin film 381 to 385 / n-type single crystal silicon substrate 333).
  • the holes reach the positive electrodes 391 to 395 via the p-type amorphous thin films 381 to 385, and the electrons reach the negative electrodes 396 to 400 via the n-type amorphous thin films 386 to 390.
  • Electrons that reach the negative electrodes 396 to 400 flow to the positive electrodes 391 to 395 through a load connected between the positive electrodes 391 to 395 and the negative electrodes 396 to 400, and recombine with holes. As a result, current flows to the load.
  • the solar battery cell 33A is also a back contact type solar battery that extracts power from the back surface of the n-type single crystal silicon substrate 333.
  • the solar battery cell 33A includes an n-type single crystal silicon substrate 333 and p-type amorphous thin films 381 to 385, and an n-type single crystal silicon substrate 333 and n-type amorphous thin films 386 to 390.
  • An i-type amorphous thin film inserted into the film may be further provided.
  • the i-type amorphous thin film has an amorphous phase and is made of i-type a-Si, i-type a-SiC, i-type a-SiN, i-type a-SiGe, or the like.
  • the film thickness of the i-type amorphous thin film is, for example, 5 to 10 nm.
  • An i-type amorphous thin film is formed between the n-type single crystal silicon substrate 333 and the p-type amorphous thin film 381 to 385 and between the n-type single crystal silicon substrate 333 and the n-type amorphous thin film 386 to 390.
  • the passivation effect on the back surface of the n-type single crystal silicon substrate 333 can be improved, and recombination of electrons and holes on the back surface of the n-type single crystal silicon substrate 333 can be suppressed.
  • the conversion efficiency of the solar battery cell 33A can be further improved.
  • the solar cells 33 and 33A are provided with the n-type single crystal silicon substrates 331 and 333.
  • the solar cells 33 and 33A are not limited to the p-type.
  • a single crystal silicon substrate, an n-type polycrystalline silicon substrate, a p-type polycrystalline silicon substrate, and a compound semiconductor substrate such as gallium arsenide (GaAs) may be provided.
  • the solar cells 33 and 33A have been described as being back contact solar cells. However, in the first embodiment, the solar cells 33 and 33A are not limited to this, and the solar cells 33 and 33A are disposed on the light receiving surface side. You may consist of the solar cell in which a pn junction or a pin junction exists.
  • each of the solar cells 33 and 33A has been described as including the transparent conductive film 332b on the surface on the light receiving surface side.
  • the solar cells 33 and 33A are not limited thereto.
  • Each of 33A does not need to include the transparent conductive film 332b on the surface on the light receiving surface side.
  • FIG. 6 is a cross-sectional view showing a connection state between the solar battery cell 33 and the wiring sheet 34.
  • FIG. 6 shows a connection state between one solar battery cell 33 and one region of the wiring sheet 34 (any one of the regions 341 to 364).
  • positive electrodes 371 to 375 of solar battery cell 33 are connected to five positive electrode pads 6 respectively, and negative electrode electrodes 376 to 380 of solar battery cell 33 are connected to five negative electrode pads 7 respectively.
  • the solar cells 33 are arranged in one region (any one of the regions 341 to 364) of the wiring sheet 34.
  • the photoelectric conversion device 3 includes the 24 solar cells 33 as described above, the 24 solar cells 33 are arranged in the regions 341 to 364 of the wiring sheet 34 in the manner shown in FIG. Thus, the 24 solar cells 33 are connected in series, and the electric power generated by the 24 solar cells 33 is taken out from the positive electrode mounting pad 11 and the negative electrode mounting pad 12 to the outside.
  • the positive electrodes 391 to 395 of the solar cell 33A are provided in the same manner as in the embodiment shown in FIG. Each is connected to five positive electrode pads 6, and the negative electrodes 396 to 400 of the solar battery cell 33 A are connected to five negative electrode pads 7, respectively.
  • the photoelectric conversion device 3 includes a plurality of solar cells 33 (or a plurality of solar cells 33A) connected in series, and each of the solar cells 33 and 33A includes a single crystal silicon substrate 331 and a solar cell 331, respectively.
  • 333 is formed as a support base. Therefore, in the photoelectric conversion module 10, the support base of the photoelectric conversion device 3 is a semiconductor substrate.
  • FIG. 7 is a process diagram showing a method for manufacturing the photoelectric conversion module 10 shown in FIGS. 1 and 2.
  • an etching process of a semiconductor substrate n-type single crystal silicon substrate
  • the semiconductor substrate n-type single crystal silicon substrate
  • the surface of the semiconductor substrate is chemically anisotropically etched using alkali to texture the surface of the semiconductor substrate (n-type single crystal silicon substrate).
  • the semiconductor substrate (n-type single crystal silicon substrate) is immersed in hydrofluoric acid to remove the natural oxide film formed on the surface of the semiconductor substrate (n-type single crystal silicon substrate), and the semiconductor substrate (n-type silicon substrate).
  • the surface of the single crystal silicon substrate is terminated with hydrogen.
  • step S2 a manufacturing step of the solar battery cell 33 (or the solar battery cell 33A) is executed (step S2). Subsequently, an electrode mounting step is performed (step S3). More specifically, solar cell 33 (or solar cell 33A) is connected to wiring sheet 34, and positive electrode terminal 31 and negative electrode terminal 32 are connected to positive electrode mounting pad 11 and negative electrode mounting pad 12 of wiring sheet 34, respectively. . Thereby, the photoelectric conversion device 3 is manufactured.
  • step S5 the sealing process which seals the protective material 5, the sealing material 4, the photoelectric conversion apparatus 3, the sealing material 2, and the protective material 1 is performed.
  • step S6 the sealing process which seals the protective material 5, the sealing material 4, the photoelectric conversion apparatus 3, the sealing material 2, and the protective material 1 is performed.
  • step S7 the terminal box connection process which connects the terminal box 20 to the positive electrode terminal 31 and the negative electrode terminal 32 is performed.
  • step S8 a conversion efficiency measurement step for measuring the conversion efficiency of the photoelectric conversion module 10 is performed.
  • FIG. 8 and FIG. 9 are first and second process diagrams showing detailed steps of the solar cell manufacturing process S2 shown in FIG. 7, respectively. 8 and 9 show process diagrams for manufacturing the solar battery cell 33 shown in FIG.
  • n-type single crystal silicon substrate 40 having a texture structure formed on one surface is produced (see process (a)).
  • a BSG (Boron Silicate Glass) film 41 and an NSG (Non-doped Silicate Glass) film 42 are sequentially laminated on the back surface of the n-type single crystal silicon substrate 40 by a normal pressure CVD (ChemicalhemVapor Deposition) method (step (b)). reference).
  • the material gas for forming the BSG film 41 is silane (SiH 4 ) gas, oxygen (O 2 ) gas, and diborane (B 2 H 6 ) gas, and the material gas for forming the NSG film 42.
  • SiH 4 gas and O 2 gas are, for example, 10 to 100 nm.
  • BSG film 41 and NSG film 42 are patterned using photolithography and etching to form BSG films 41A to 41E and NSG films 42A to 42E (see step (c)).
  • a PSG (Phosphorus Silicate Glass) film 43 is formed by atmospheric pressure CVD so as to cover the BSG films 41A to 41E, NSG films 42A to 42E and the back surface of the n-type single crystal silicon substrate 40 (see step (d)).
  • the material gas for forming the PSG film 43 is SiH 4 gas, O 2 gas, and phosphine (PH 3 ) gas.
  • the thickness of the PSG film 43 is, for example, 10 to 100 nm.
  • BSG films 41A-41E, NSG films 42A-42E, PSG film 43 and n-type single crystal silicon substrate 40 are heat-treated, and then BSG films 41A-41E, NSG The films 42A to 42E and the PSG film 43 are removed.
  • An n-type single crystal silicon substrate 331 in which type diffusion regions 3316 to 3320 are formed on the back side is manufactured (see step (e)).
  • the heat treatment is performed for 1 hour at a temperature of 800 ° C. in an inert gas atmosphere.
  • NSG films 42A to 42E are disposed between the BSG films 41A to 41E and the NSG film 43, respectively, P from the PSG film 43 formed on the BSG films 41A to 41E is p-type. Diffusion to the diffusion regions 3311 to 3315 is prevented.
  • the film 332a is formed (see step (f)).
  • a transparent conductive film 332b made of SnO 2 , ZnO, TiO 2 or the like is formed on the light-receiving surface side of the light-receiving surface passivation film 332a by vapor deposition, sputtering, thermal CVD, or the like (see step (g)). .
  • FIGS. 10 to 12 are first to third process diagrams showing other detailed processes of the solar cell manufacturing process S2 shown in FIG. 7, respectively. 10 to 12 show process diagrams for manufacturing the solar battery cell 33A shown in FIG.
  • a p-type amorphous thin film 44 is formed on the back surface of the n-type single crystal silicon substrate 333 by plasma CVD (see step (b)).
  • the p-type amorphous thin film 44 is made of p-type a-Si
  • SiH 4 gas and B 2 H 6 gas are used as material gases
  • the p-type amorphous thin film 44 is made of p-type a-SiC
  • SiH 4 gas, methane (CH 4 ) gas, and B 2 H 6 gas are used as material gases
  • the p-type amorphous thin film 44 is made of p-type a-SiN
  • B 2 H 6 gas are used as material gases
  • the p-type amorphous thin film 44 is made of p-type a-SiGe
  • SiH 4 gas, germane (GeH 4 ) gas, and B 2 H 6 gas are used as material gases. Used
  • step (b) a resist is applied onto the p-type amorphous thin film 44, and the applied resist is patterned by photolithography and etching to form a resist pattern 45 (see step (c)).
  • the p-type amorphous thin film 44 is etched using the resist pattern 45 as a mask to form p-type amorphous thin films 381 to 385 (see step (d)).
  • n-type amorphous thin films 386 to 390 are formed on the back surface of n-type single crystal silicon substrate 333 by plasma CVD using resist pattern 45 as a mask (step (e). )reference).
  • resist pattern 45 as a mask
  • an n-type amorphous thin film 46 is formed on the resist pattern 45.
  • n-type amorphous thin films 46 and 386 to 390 are made of n-type a-Si, SiH 4 gas and PH 3 gas are used as material gases, and the n-type amorphous thin films 46 and 386 to 390 are n-type a -When made of SiC, SiH 4 gas, CH 4 gas and PH 3 gas are used as material gases, and when the n-type amorphous thin films 46, 386 to 390 are made of n-type a-SiN, SiH 4 gas, NH 3 gas and PH 3 gas are used as material gases, and when the n-type amorphous thin films 46 and 386 to 390 are made of n-type a-SiGe, SiH 4 gas, GeH 4 gas and PH 3 gas are used as material gases. It is done.
  • step (e) the resist pattern 45 is removed.
  • the n-type amorphous thin film 46 is removed by lift-off, and p-type amorphous thin films 381 to 385 and n-type amorphous thin films 386 to 390 are alternately formed on the back surface of the n-type single crystal silicon substrate 333. (See step (f)).
  • the light-receiving surface passivation film 332c is made of i-type a-Si
  • SiH 4 gas is used as a material gas
  • the light-receiving surface passivation film 332c is made of i-type a-SiC, SiH 4 gas and CH 4 gas are used.
  • Is used as the material gas and the light-receiving surface passivation film 332c is made of i-type a-SiN, SiH 4 gas and NH 3 gas are used as the material gas, and the light-receiving surface passivation film 332c is made of i-type a-SiGe SiH 4 gas and GeH 4 gas are used as material gases.
  • a transparent conductive film 332b made of SnO 2 , ZnO, TiO 2 or the like is deposited, using a sputtering method, a thermal CVD method, or the like, on the light receiving surface side of light receiving surface passivation film 332c. (See step (h)).
  • a transparent conductive film is formed so as to be in contact with the p-type amorphous thin films 381 to 385 and the n-type amorphous thin films 386 to 390 using vapor deposition, sputtering, thermal CVD, or the like, and the formed transparent conductive film
  • An Ag paste or the like is applied in contact with the film, and the applied Ag paste is baked to form positive electrodes 391 to 395 and negative electrodes 396 to 400.
  • the solar battery cell 33A is completed (see step (i)).
  • FIG. 13 is a process diagram showing detailed steps of the electrode attachment step S3 shown in FIG.
  • FIG. 13 is a process diagram in the case where one solar battery cell 33 is connected to the positive electrode pad 6 and the negative electrode pad 7 in one region of the wiring sheet 34.
  • conductive material 13 is placed on five positive electrode pads 6 and five negative electrode pads 7 of wiring sheet 34 (step (a)). reference).
  • the conductive material 13 is made of, for example, an epoxy paste containing silver or solder.
  • the conductive material 13 is placed on the positive electrode pad 6 and the negative electrode pad 7 by any one of printing, application, and transfer.
  • the solar cell 33 is placed in one region (region) of the wiring sheet 34 so that the positive electrodes 371 to 375 are located on the positive electrode pad 6 and the negative electrodes 376 to 380 are located on the negative electrode pad 7. Any one of 341 to 364) (see step (b)).
  • the solar battery cell 33 and the wiring sheet 34 are heated in a high temperature chamber to cure the epoxy paste. Accordingly, the positive electrodes 371 to 375 are connected to the positive electrode pad 6, the negative electrodes 376 to 380 are connected to the negative electrode pad 7, and the solar battery cell 33 is fixed to the wiring sheet 34 (see step (c)).
  • the photoelectric conversion device 3 includes the 24 solar cells 33, actually, the 24 solar cells 33 are formed on the wiring sheet 34 according to the steps (a) to (c) of FIG. Fix it.
  • the positive electrode terminal 31 is soldered to the positive electrode mounting pad 11
  • the negative electrode terminal 32 is soldered to the negative electrode mounting pad 12.
  • FIG. 14 is a process diagram showing detailed steps of the mounting process S4 shown in FIG. Referring to FIG. 14, after electrode attaching step S3 shown in FIG. 7, sealing material 4 is placed on protective material 5 (see step (a)).
  • the photoelectric conversion device 3 is placed on the sealing material 4 so that the peripheral edge portions 5A and 5B described above are formed on the outer peripheral side of the protective material 5 (see step (b)).
  • sealing material 2 and the protective material 1 are sequentially placed on the photoelectric conversion device 3 (see step (c)).
  • the sealing materials 2 and 4 are made of a resin having thermoplasticity as described above. As a result, since the sealing materials 2 and 4 do not have thermosetting property and thermal cross-linking property, they are resins that do not require a cross-linking reaction unlike conventionally used EVA.
  • the sealing materials 2 and 4 are made of an ionomer resin or a polyolefin resin.
  • the thickness of the sealing materials 2 and 4 is preferably in the range of 200 to 600 ⁇ m. This is because the positive electrode terminal 31 and the negative electrode terminal 32 can be surely buried in the sealing materials 2 and 4 with this thickness.
  • the protective materials 1 and 5 are made of tempered glass having a thickness of 3.2 mm.
  • the size of the protective material 1 is substantially the same as the size of the sealing material 2, and the size of the protective material 5 is substantially the same as the size of the sealing material 4.
  • a film-like back sheet may be used as the protective material 5 on the back side.
  • a back sheet a three-layer structure of polyvinyl fluoride (PVF) / aluminum foil / polyvinyl fluoride (PVF), or a three-layer structure of polyethylene terephthalate (PET) / resin film deposited with metal oxide / polyethylene terephthalate (PET) You can use the structure.
  • the resin film deposited with metal oxide functions as a water vapor barrier layer.
  • the thickness of the back sheet is preferably in the range of 50 to 300 ⁇ m.
  • the sealing materials 2 and 4 may be made of an ionomer resin or a polyolefin resin added with a silane coupling agent, or may be made of an ionomer resin or a polyolefin resin containing a silane-modified resin. Adhesion can be increased by adding a silane coupling agent.
  • the sealing materials 2 and 4 include silane coupling.
  • a silane coupling agent is added to the sealing materials 2 and 4. It is because the adhesive force of the sealing materials 2 and 4 will become high if the sealing materials 2 and 4 contain the silane coupling.
  • the sealing materials 2 and 4 may further include particles having a higher thermal conductivity than the sealing materials 2 and 4.
  • the particles are made of, for example, aluminum oxide (alumina), silicon nitride, silicon carbide, zinc oxide, magnesium oxide, aluminum nitride, or boron nitride.
  • the thermal conductivity of aluminum oxide (alumina) is 23 to 36 (W / m ⁇ K), and the thermal conductivity of silicon nitride is 20 to 28 (W / m ⁇ K).
  • the thermal conductivity of 55 to 130 (W / m ⁇ K) is zinc oxide, the thermal conductivity of zinc oxide is 25.2 (W / m ⁇ K), and the thermal conductivity of magnesium oxide is 59 ( W / m ⁇ K), the thermal conductivity of aluminum nitride is 90 to 200 (W / m ⁇ K), and the thermal conductivity of boron nitride is 30 to 50 (W / m ⁇ K). .
  • particles having a thermal conductivity larger than 2 are added to the sealing materials 2 and 4.
  • the heat conductivity inside the photoelectric conversion module 10 can be improved, and the temperature rise at the time of the hot spot generation
  • FIG. 15 is a process diagram showing detailed steps of the sealing step S5 shown in FIG. Referring to FIG. 15, when the mounting step S ⁇ b> 4 shown in FIG. 7 is completed, the protective material 5, the sealing material 4, the photoelectric conversion device 3, the sealing material 2, and the protective material 1 are sequentially stacked ( Step (a)).
  • the protective material 5, the sealing material 4, the photoelectric conversion apparatus 3, the sealing material 2, and the protective material 1 are mounted on the heater plate of the laminating apparatus which is a sealing apparatus.
  • the heater plate is heated to 110 ° C.
  • the upper chamber and lower chamber of the laminator are depressurized to the same pressure.
  • the interface between the protective material 1 and the sealing material 2 the interface between the sealing material 2 and the photoelectric conversion device 3, the interface between the photoelectric conversion device 3 and the sealing material 4, and the sealing material 4 and the protective material 5.
  • the air is removed from the interface with the bubbles, and the bubbles contained in the sealing materials 2 and 4 are removed.
  • the pressure in the upper chamber of the laminator is returned to atmospheric pressure.
  • 1 atmosphere is pressurized to the protective material 5, the sealing material 4, the photoelectric conversion device 3, the sealing material 2, and the protective material 1 to maintain the pressurized state.
  • the heating temperature is preferably 105 to 120 ° C.
  • the photoelectric conversion device 3 cannot be sealed because it is lower than the melting point of the sealing materials 2 and 4.
  • the viscosity of the sealing materials 2 and 4 becomes too low, and the sealing materials 2 and 4 protrude from the end surfaces of the protective materials 1 and 5, and the appearance is poor.
  • the sealing materials 2 and 4 By sealing the protective material 5, the sealing material 4, the photoelectric conversion device 3, the sealing material 2, and the protective material 1 using the method described above, the sealing materials 2 and 4
  • the peripheral portions 1A, 1B, 5A, 5B are integrated to form the sealing material 24.
  • the edge part of the outer peripheral side of the sealing material 24 has a cross-sectional shape depressed in the direction which goes to the photoelectric conversion apparatus 3 from the outside in the in-plane direction of the protective materials 1 and 5.
  • the distance between the protective material 1 and the protective material 5 after sealing is narrower than the distance between the protective material 1 and the protective material 5 before sealing.
  • the sealing material 24 functions to adhere the protective materials 1 and 5 to each other at the peripheral portions 1A, 1B, 5A and 5B of the protective materials 1 and 5 (see step (b)).
  • the photoelectric conversion module 10 is heat-treated.
  • An IR furnace with IR double-side radiation is used as a heat treatment apparatus.
  • the heat treatment apparatus is not limited to the IR furnace, and may be a hot air furnace using hot air.
  • a batch processing apparatus capable of accommodating a plurality of photoelectric conversion modules 10 and heating them at once is preferable.
  • the processing capacity per unit time of the heat treatment apparatus can be improved, and the heat treatment process can be prevented from becoming a bottleneck in the production line.
  • the heat treatment was performed in an air atmosphere. This is because the photoelectric conversion module 10 has a structure in which the photoelectric conversion device 3 is sealed, so that the electrodes on the back surfaces of the solar cells 33 and 33A are not oxidized due to the influence of oxygen in the atmosphere.
  • the photoelectric conversion module 10 was put into a heat treatment apparatus heated to a preset heating temperature without using a process of raising and lowering temperature and heated. Since a process of raising and lowering temperature is not used, it is not necessary to add a process control function to the heat treatment apparatus, and the heat treatment apparatus can be reduced in cost.
  • silicone resin is injected into the terminal box 20 to improve waterproofness.
  • conversion efficiency measurement process After the terminal box connection step S7 shown in FIG. 7, the conversion efficiency of the photoelectric conversion module 10 was measured. By measuring the conversion efficiency of the photoelectric conversion module 10, the photoelectric conversion module 10 having a low conversion efficiency can be excluded as a characteristic defect, and the minimum value of the conversion efficiency of the product can be guaranteed.
  • FIG. 16 is a cross-sectional view showing changes in the sealing materials 2 and 4 in the sealing step S5 and the heat treatment step S6.
  • the ends of the sealing materials 2 and 4 Before the sealing step S5 is started, the ends of the sealing materials 2 and 4 have a right-angle shape.
  • the end portion (end surface 2A) of the sealing material 2 has a contact point a1 with the protective material 1, and the end portion (end surface 4A) of the sealing material 4 has a contact point b1 with the protective material 5. (Refer to FIG. 16A).
  • sealing materials 2 and 4 will pull the protective materials 1 and 5 to each other in the direction of the arrow while melting by heating. And the adhesive force between the sealing material 4 and the protective material 5 are strengthened. As the heating proceeds, the sealing materials 2 and 4 are integrated at the peripheral portions 1A and 5B of the protective materials 1 and 5, and the sealing material 24 is formed.
  • the protective materials 1 and 5 approach each other due to the tensile stress between the protective materials 1 and 5, push the sealing material 24 to the outer peripheral side of the protective materials 1 and 5, and seal as the sealing material 24 softens and melts.
  • the contact points a2 and b2 move outside the contact points a1 and b1 in the in-plane direction of the protective materials 1 and 5. Further, the end surface 24A of the sealing material 24 also moves to the outer side than before the start of the sealing step S5.
  • the protective materials 1 and 5 further approach each other and push the sealing material 24 further outward, and the wettability of the sealing material 24 to the protective materials 1 and 5 further increases, and the sealing material 24 is sealed.
  • the contact points a3 and b3 move further outward than the contact points a2 and b2 in the in-plane direction of the protective materials 1 and 5.
  • the end surface 24B of the sealing material 24 also moves outward from the end surface 24A.
  • FIG. 17 is a diagram for explaining the definition of the contact angle.
  • the end face 24B (see (a))
  • the end face 24B ′ (see (b))
  • the end face 24B ′′ (see (b)))
  • 24B has a cross-sectional shape that is recessed in the direction from the outside toward the photoelectric conversion device 3 in the in-plane direction of the protective materials 1 and 5.
  • the end surface 24B ′ is in the vicinity of the contact points a3 and b3.
  • the end surface 24B ′′ is recessed in the direction toward the photoelectric conversion device 3 from the outside in the in-plane direction of the protective materials 1 and 5 in the vicinity of the contact points a3 and b3. In a region other than the vicinity of the contact points a3 and b3, Having a recessed cross-sectional shape in a direction from the photoelectric conversion device 3 to the outside in the plane direction of Mamoruzai 1,5.
  • the angle ⁇ a formed by the tangents of the end faces 24B, 24B ′, 24B ′′ at the contact points a3, b3 between the sealing material 24 and the protective materials 1, 5 is formed with the protective materials 1, 5.
  • ⁇ b 2; ⁇ a 2 ′, ⁇ b 2 ′; ⁇ a 2 ′′, ⁇ b 2 ′′ are defined as contact angles.
  • the contact angles ⁇ a 2 and ⁇ b 2 and the contact angles ⁇ a 2 ′′ and ⁇ b 2 ′′ are larger than 0 degree and smaller than 90 degrees.
  • the contact angles ⁇ a 2 ′ and ⁇ b 2 ′ are larger than 90 degrees.
  • the contact angle between the end portions on the outer peripheral side of the sealing material 24 and the protective materials 1 and 5 in the in-plane direction of the protective materials 1 and 5 is larger than 0 degrees, and , And an angle smaller than 90 degrees.
  • FIG. 18 is a cross-sectional view of the end portion of the photoelectric conversion module 10.
  • position (A) is defined as a position where the end surface of sealing material 24 is parallel to the normal direction of photoelectric conversion module 10
  • position (B) is defined as the outermost side of protective materials 1 and 5.
  • the position (C) is defined as the position where the protective materials 1 and 5 and the sealing material 24 start to contact
  • the position (D) is defined as the outermost position of the photoelectric conversion device 3.
  • the distance L1 between the position (B) and the position (C) is shorter than the distance L2 between the position (B) and the position (A).
  • the distance L3 between the position (A) and the position (D) is shorter than the distance L4 between the position (C) and the position (D) ((a of FIG. 18 )reference).
  • the distance L1 is longer than the distance L2.
  • the distance L3 is longer than the distance L4 (see FIG. 18B).
  • the contact angle between the sealing material 24 and the protective materials 1 and 5 is larger than 0 degree and smaller than 90 degrees.
  • the contact angle between the sealing material 24 and the protective materials 1 and 5 is larger than 90 degrees.
  • the distance between the outermost position of the protective materials 1 and 5 and the position where the protective materials 1 and 5 and the sealing material 24 start to contact each other is the distance between the protective materials 1 and 5. It is characterized by being shorter than the distance between the outermost position and the position where the end face of the sealing material 24 is parallel to the normal direction of the photoelectric conversion module 10. In the embodiment of the present invention, the distance between the contact point at which the sealing material 24 starts to contact the protective materials 1 and 5 and the photoelectric conversion device 3 is the most depressed point of the sealing material 24 and the photoelectric conversion device. It is characterized by being longer than the distance to 3.
  • the cost of the photoelectric conversion module 10 can be reduced, and the reliability of the photoelectric conversion module 10 can be improved.
  • FIG. 19 is an exploded perspective view showing the configuration of the photoelectric conversion module according to the second embodiment.
  • photoelectric conversion module 410 according to Embodiment 2 includes protective materials 401 and 408, photoelectric conversion device 402, positive electrode current collector 403, negative electrode current collector 404, and extraction electrodes 405 and 406. And a sealing material 407 and a terminal box 409.
  • the protective material 401 is a protective material on the light receiving surface side of the photoelectric conversion module 410.
  • the protective material 401 has a flat plate shape and is made of a translucent insulator.
  • the rectangular light receiving surface having a long side length of 1.4 m and a short side length of 1.0 m. 3.9 mm thick untempered glass having
  • a heat-resistant resin having translucency such as polyimide may be used.
  • the photoelectric conversion device 402 is disposed on the protective material 401.
  • the photoelectric conversion device 402 includes an integrated thin film solar cell.
  • the positive electrode current collector 403 is disposed on one end of the photoelectric conversion device 402 in the in-plane direction DR4 of the protective material 401.
  • the negative electrode current collector 404 is disposed on the other end of the photoelectric conversion device 402 in the in-plane direction DR4.
  • the extraction electrode 405 has one end electrically connected to the positive electrode current collector 403 and the other end bent in the normal direction of the protective material 401.
  • One end of the extraction electrode 406 is electrically connected to the negative electrode current collector 404, and the other end is bent in the normal direction of the protective material 401.
  • the sealing material 407 is disposed between the photoelectric conversion device 402 and the protective material 408.
  • the sealing material 407 has a flat plate shape and is made of the same material as the sealing materials 2 and 4 described above.
  • the protective material 408 is a protective material on the back side of the photoelectric conversion device 402.
  • the protective material 408 is disposed on the sealing material 407. Further, the protective material 408 has a flat plate shape and is made of a glass or film-like back sheet. Furthermore, the protective material 408 has a through hole 408A at the center of the protective material 408 in the in-plane direction DR4.
  • the through hole 408A is a hole through which the other end of the extraction electrodes 405 and 406 penetrates the protective material 408.
  • the terminal box 409 is electrically connected to the other ends of the extraction electrodes 405 and 406 through the through hole 408A.
  • FIG. 20 is a cross-sectional view of the photoelectric conversion module 410 shown in FIG. In FIG. 20, the extraction electrodes 405 and 406 and the terminal box 409 are omitted.
  • the photoelectric conversion device 402 is disposed on one main surface of the protective material 401.
  • the photoelectric conversion device 402 includes a transparent conductive film 52, a photoelectric conversion layer 53, and a back electrode 54.
  • the transparent conductive film 52 is disposed on the protective material 401 across the first separation groove 55 in the in-plane direction of the protective material 401.
  • the transparent conductive film 52 is made of SnO 2 , ZnO, ITO (Indium Tin Oxide), or the like.
  • the width of the first separation groove 55 is about 60 nm, for example.
  • the photoelectric conversion layer 53 is disposed on the transparent conductive film 52 so as to fill the first separation groove 55. In this case, the photoelectric conversion layer 53 is disposed via the second separation groove 56 in the in-plane direction of the protective material 401.
  • the photoelectric conversion layer 53 has, for example, a pin structure in which a p layer, an i layer, and an n layer are sequentially stacked.
  • the i layer is made of an amorphous phase or a microcrystalline phase, for example, i-type amorphous silicon or i-type microcrystalline silicon.
  • the i layer may be made of i-type amorphous silicon germanium or i-type microcrystalline silicon germanium in order to change the optical band gap of the i layer.
  • the p layer and the n layer may be composed of the same silicon based semiconductor layer as the i layer, or may be composed of a silicon based semiconductor layer of a different type from the i layer.
  • the p layer and the i layer may be formed of microcrystalline silicon
  • the n layer may be formed of amorphous silicon.
  • the p layer may be formed of amorphous silicon carbide.
  • each of the p-layer, i-layer, and n-layer may have a single-layer structure or a multi-layer structure. In the case of a multi-layer structure, each of the p-layer, i-layer, and n-layer may be composed of different types of silicon-based semiconductors.
  • the photoelectric conversion layer 53 may have one pin structure, or may have two, three, or four or more pin structures.
  • the photoelectric conversion layer 53 is configured by a tandem junction structure in which a pin structure made of amorphous silicon and a pin structure made of microcrystalline silicon are sequentially stacked.
  • the thickness of the photoelectric conversion layer 53 can be 500 nm to 4000 nm, but is 2000 nm here. Further, the width of the second separation groove 56 is, for example, about 40 nm.
  • the back electrode 54 is disposed on the photoelectric conversion layer 53 so as to fill the second separation groove 56. In this case, the back electrode 54 is disposed via the third separation groove 57 in the in-plane direction of the protective material 401.
  • the back electrode 54 has a structure in which a transparent conductive film and a metal film are sequentially laminated.
  • the transparent conductive film is made of ZnO, SnO 2, ITO, or the like.
  • the metal film is made of Ag, Al, Ti, or the like.
  • the back electrode 54 has a structure in which ZnO and Ag are sequentially laminated.
  • the width of the third separation groove 57 is, for example, about 60 nm.
  • the end portion of the sealing material 407 in the in-plane direction of the protective material 401 is illustrated as having an end surface parallel to the normal direction of the protective material 401. 17A, the contact angle with the protective members 401 and 408 is larger than 0 degree and smaller than 90 degrees, and the photoelectric layer is exposed from the outside in the in-plane direction of the protective members 401 and 408. It has a cross-sectional shape that is recessed in the direction toward the conversion device 402.
  • the cross-sectional shape of the end surface of the sealing material 407 in the in-plane direction of the protective materials 401 and 408 Is set to be the same as the cross-sectional shape of the end surface 24B, moisture remaining at the contact point between the protective material 401 and the sealing material 407 is suppressed, and moisture enters the interface between the protective material 401 and the photoelectric conversion device 402.
  • the withstand voltage performance of the photoelectric conversion device 402 can be improved, so that a highly reliable photoelectric conversion module can be provided.
  • the positive electrode current collector 403 is disposed on the back electrode 54 connected to the photoelectric conversion layer 53 having the highest potential, and the negative electrode current collector 404 is connected to the photoelectric conversion layer 53 having the lowest potential. 54.
  • the thickness of the sealing material 407 is preferably in the range of 200 to 600 ⁇ m, for example, set to 300 ⁇ m. This is because the extraction electrodes 405 and 406 can be reliably buried in the sealing material 407 when the thickness of the sealing material 407 is in the range of 200 to 600 ⁇ m.
  • the photoelectric conversion device 402 has an integrated structure in which a plurality of photoelectric conversion layers 53 are connected in series by the transparent conductive film 52 and the back electrode 54 through the second separation groove 56.
  • the number of stages connected in series can be arbitrarily set according to the specification of the output voltage desired to be obtained from the photoelectric conversion module 410, but here, in order to set the open-circuit voltage of the photoelectric conversion module 410 to 60 to 65V, it is set to 45 stages. Was set.
  • the photoelectric conversion module 410 has a trimming region 58 on the outer peripheral side of the photoelectric conversion device 402.
  • the trimming region 58 is a region where the transparent conductive film 52, the photoelectric conversion layer 53, and the back electrode 54 are not present.
  • the photoelectric conversion module 410 can have sufficient insulating performance.
  • the sealing material is not present at the peripheral portion on the light receiving surface side of the protective material 401 which is a protective material on the light receiving surface side. If the sealing material adheres to the peripheral edge of the protective material 401 on the light receiving surface side, it is not preferable in terms of appearance. Moreover, it is not preferable also from the point that sealing resin adheres to the conveyance system in the processes after the heat treatment process.
  • the photoelectric conversion device 402 is formed on the protective material 401. Therefore, in the photoelectric conversion module 410, the support base of the photoelectric conversion device 402 is the protective material 401.
  • FIG. 21 is a process diagram showing a method for manufacturing the photoelectric conversion module 410 shown in FIGS. 19 and 20.
  • the process diagram shown in FIG. 21 is the same as the process diagram shown in FIG. 7 except that steps S1 and S2 in the process diagram shown in FIG. 7 are replaced with steps S11 and S12, respectively.
  • step S11 when manufacturing of photoelectric conversion module 410 is started, a manufacturing process of a thin-film solar battery cell (transparent conductive film 52, photoelectric conversion layer 53, and back electrode 54) is performed (step S11).
  • step S12 an integrated structure forming step is executed (step S12). Thereafter, the above-described steps S3 to S8 are sequentially performed, and the photoelectric conversion module 410 is manufactured.
  • FIG. 22 and 23 are first and second process diagrams showing detailed processes of the thin-film solar cell manufacturing process S11 and the integrated structure forming process S12 shown in FIG. 21, respectively.
  • transparent conductive film 52 made of SnO 2 is formed on protective material 401 by vapor deposition, sputtering, thermal CVD, or the like (in FIG. 22). Step (a)).
  • the transparent conductive film 52 is irradiated with laser light from the transparent conductive film 52 side to form the first separation groove 55 in the transparent conductive film 52 (see step (b) in FIG. 22).
  • the width of the first separation groove 55 is, for example, about 60 nm.
  • a fundamental wave of a YAG laser was used as the laser light.
  • the photoelectric conversion layer 53 is formed on the transparent conductive film 52 so as to fill the first separation groove 55 by the plasma CVD method (see step (c) in FIG. 22). More specifically, a pin structure made of amorphous silicon and a pin structure made of microcrystalline silicon are sequentially stacked on the transparent conductive film 52 by a plasma CVD method. And the thickness of the photoelectric converting layer 53 is 2000 nm, for example.
  • the photoelectric conversion layer 53 is irradiated with laser light from the protective material 401 side to form the second separation groove 56 in the photoelectric conversion layer 53 (see step (d) in FIG. 22).
  • the width of the second separation groove 56 is, for example, about 60 nm
  • the distance between the first separation groove 55 and the second separation groove 56 is, for example, about 40 nm.
  • the second harmonic of a YAG laser was used as the laser light.
  • a transparent conductive film made of ZnO is deposited on the photoelectric conversion layer 53 by a vapor deposition method, a sputtering method, or the like, and subsequently, a metal layer made of Ag is deposited on the transparent conductive film by a vapor deposition method, a sputtering method, or the like.
  • the back electrode 54 is formed so as to fill the second separation groove 56 (see step (e) in FIG. 22).
  • step (e) laser light is irradiated to photoelectric conversion layer 53 and back electrode 54 from the protective material 401 side to form third separation groove 57 in photoelectric conversion layer 53 and back electrode 54.
  • the width of the third separation groove 57 is, for example, about 60 nm
  • the distance between the second separation groove 56 and the third separation groove 57 is, for example, about 40 nm.
  • the second harmonic of a YAG laser was used as the laser light.
  • the number of stages of photoelectric conversion layers 53 connected in series is 45.
  • the YAG laser second harmonic is applied to the serial connection body in which the photoelectric conversion layers 53 are connected in series to scribe the photoelectric conversion layer 53 and the back electrode 54, and further transparent using the fundamental wave of the YAG laser.
  • the series connection body was divided in parallel by scribing the conductive film 52. This series-connected body divided in parallel is called a cell string.
  • the transparent conductive film 52, the photoelectric conversion layer 53, and the back electrode 54 at the peripheral portion of the protective material 401 are removed using the second harmonic of the YAG laser to form a trimming region 58 (step (g) in FIG. 23). reference).
  • the thin film solar cell manufacturing step S11 and the integrated structure forming step S12 are completed.
  • the YAG laser is used to form the first separation groove 55, the second separation groove 56, and the third separation groove 57.
  • the second embodiment is not limited to this, and the YVO4 laser is used.
  • the first separation groove 55, the second separation groove 56, and the third separation groove 57 may be formed using the fundamental wave, the second harmonic, and the like. Further, the first separation groove 55, the second separation groove 56, and the third separation groove 57 may be formed by a mechanical scribing method, a sand blast method, a water jet, etching, or the like.
  • FIG. 24 is a process diagram showing detailed steps in the second embodiment of the electrode attachment step S3 shown in FIG. Referring to FIG. 24, in electrode attachment step S3, positive electrode current collector 403 is joined to back electrode 54 connected to photoelectric conversion layer 53 having the highest potential in the integrated structure, and photoelectric conversion layer 53 having the lowest potential in the integrated structure.
  • the negative electrode current collector 404 is joined to the back electrode 54 connected to (see step (a)).
  • Each of the positive electrode current collector 403 and the negative electrode current collector 404 is preferably made of a material having high conductivity.
  • a solder-coated copper bus bar was used. Bonding is performed electrically and mechanically, and soldering or conductive paste is used as a bonding means.
  • one end of the extraction electrode 405 is connected to the positive electrode current collector 403, and the other end of the extraction electrode 405 is bent in the normal direction of the protective material 401.
  • one end of the extraction electrode 406 is connected to the negative electrode current collector 404, and the other end of the extraction electrode 406 is bent in the normal direction of the protective material 401.
  • the lead electrodes 405 and 406 are preferably made of a material having high conductivity like the positive electrode current collector 403 and the negative electrode current collector 404, and a soldered copper bus bar was used.
  • the extraction electrode 405 and the positive electrode current collector 403 were joined together and the extraction electrode 406 and the negative electrode current collector 404 were joined together by soldering.
  • the case where the extraction electrode and the current collector are separate components has been described.
  • the extraction electrodes 405 and 406 straddle the plurality of photoelectric conversion layers 53, but the adjacent photoelectric conversion layers 53 are not short-circuited via the extraction electrodes 405 and 406 due to the presence of the insulating film.
  • FIG. 25 is a process diagram showing a detailed process in the second embodiment of the mounting process S4 shown in FIG. Referring to FIG. 25, after electrode attachment step S3 shown in FIG. 21, photoelectric conversion of protective material 401 in which photoelectric conversion device 402, positive current collector 403, negative current collector 404, and extraction electrodes 405 and 406 are formed. On the device 402, the positive electrode current collector 403, the negative electrode current collector 404, and the lead electrodes 405 and 406, the other ends of the lead electrodes 405 and 406 (portions bent in the normal direction of the protective material 401) pass through the through hole 407A. Thus, the sealing material 407 is placed (see step (a)).
  • the protective material 408 is placed on the sealing material 407 so that the other end of the extraction electrodes 405 and 406 (the portion bent in the normal direction of the protective material 401) passes through the through hole 408A (step (b)). reference).
  • the sealing material 407 is made of the same material as the sealing materials 2 and 4 described above.
  • the thickness of the sealing material 407 is, for example, 300 ⁇ m.
  • the protective material 408 is made of tempered glass having a thickness of 3.2 mm.
  • the protective material 408 has a substantially rectangular light receiving surface with a long side length of 1.4 m and a short side length of 1.0 m, and has substantially the same shape as the protective material 401. Further, the protective material 408 has approximately the same size as the sealing material 407.
  • the protective material 408 By using glass as the protective material 408, sufficient strength as the photoelectric conversion module 410 can be secured, and high weather resistance and insulation can be secured. Glass different from the transparent protective material is used as the protective material 408. Double tempered glass or untempered glass may be used as the protective material 408.
  • FIG. 26 is a process diagram showing detailed steps of the sealing step S5 shown in FIG. 21 in the second embodiment.
  • the protective material 401, the photoelectric conversion device 402, the positive current collector 403, the negative current collector 404, the sealing material 407, and the protective material 408 are provided. Are sequentially stacked (see step (a)).
  • the protective material 401, the photoelectric conversion device 402, the positive electrode current collector 403, the negative electrode current collector 404, the sealing material 407, and the protective material 408 are placed on the heater plate of the laminating apparatus which is a sealing device.
  • the heater plate is heated to 110 ° C.
  • the upper chamber and lower chamber of the laminator are depressurized to the same pressure.
  • air is removed from the interface between the protective material 401 and the sealing material 407, the interface between the photoelectric conversion device 402 and the sealing material 407, and the interface between the sealing material 407 and the protective material 408. Bubbles contained in the material 407 are removed.
  • the pressure in the upper chamber of the laminator is returned to atmospheric pressure.
  • 1 atmosphere is pressurized to the protective material 401, the photoelectric conversion device 402, the positive electrode current collector 403, the negative electrode current collector 404, the sealing material 407, and the protective material 408, and the pressurized state is maintained.
  • the heating temperature is preferably 105 to 120 ° C.
  • the photoelectric conversion device 402 cannot be sealed because it is lower than the melting point of the sealing material 407.
  • the viscosity of the sealing material 407 becomes too low, the sealing material 407 protrudes from the end surfaces of the protective materials 401 and 408, and the sealing resin can contaminate the light receiving surface of the protective material 401. Because there is sex.
  • the outer peripheral side of the sealing material 407 The end of each has a cross-sectional shape that is recessed in the direction from the outside toward the photoelectric conversion device 402 in the in-plane direction of the protective materials 401 and 408. Further, the distance between the protective material 401 and the protective material 408 after sealing is narrower than the distance between the protective material 401 and the protective material 408 before sealing. Further, the sealing material 407 functions to adhere the protective materials 401 and 408 to each other at the peripheral portions of the protective materials 401 and 408 (see step (b)).
  • Heat treatment process The heat treatment step is performed for the following two purposes.
  • the sealing material 407 is produced by dehydration condensation of carboxylic acid groups in the sealing material by heating at 150 to 200 ° C. in the heat treatment step. Bonding between 407 and the surfaces of the protective materials 401 and 408 increases, and the adhesive strength is enhanced.
  • the dopant contained in the p layer and n layer of the photoelectric conversion layer 53 is activated and the internal electric field is increased, thereby improving the carrier collection efficiency.
  • the defect density of the i layer increases due to the excessive heat to the i layer, and the conversion efficiency decreases.
  • the heat treatment process in the second embodiment is performed according to the same process as the heat treatment process in the first embodiment.
  • the external output terminal of the terminal box 409 is connected to the other end of the extraction electrodes 405 and 406 (the portion bent in the normal direction of the protective material 401) by soldering.
  • a bypass diode is connected to bypass the output current of another module when the module is shaded. Even if any of the modules connected in series is shaded by this bypass diode, the generated power can be taken out from the other modules, so that the power generation amount can be improved.
  • the terminal box 409 is improved in waterproofness by injecting silicone resin into the inside after soldering.
  • the distance L1 between the position (B) and the position (C) becomes the position (B) and the position ( It is shorter than the distance L2 with A).
  • the distance L3 between the position (A) and the position (D) is shorter than the distance L4 between the position (C) and the position (D).
  • the contact angle between the sealing material 407 and the protective materials 401 and 408 is larger than 0 degree and smaller than 90 degrees.
  • the distance between the outermost position of the protective materials 401 and 408 and the position where the protective materials 401 and 408 and the sealing material 407 start to contact is the outermost position of the protective materials 401 and 408.
  • the distance between the end surface of the sealing material 407 and the position parallel to the normal direction of the photoelectric conversion module 410 is characterized.
  • the distance between the contact point at which the sealing material 407 starts to contact the protective materials 401 and 408 and the photoelectric conversion device 402 is the same as the point at which the sealing material 407 is most depressed and the photoelectric conversion device 402. It is characterized by being longer than the distance.
  • the sealing material 407 contacts the protective materials 401 and 408 at the periphery of the protective materials 401 and 408 in the in-plane direction of the protective materials 401 and 408, and the sealing material 407.
  • the end of the outer peripheral side has a cross-sectional shape that is recessed in the direction from the outside toward the photoelectric conversion device 402 in the in-plane direction of the protective materials 401 and 408.
  • the photoelectric conversion module 410 does not include a frame body that supports the photoelectric conversion module 410 outside the sealing material 407.
  • the cost of the photoelectric conversion module 410 can be reduced, and the reliability of the photoelectric conversion module 410 can be improved.
  • the photoelectric conversion device 402 is described as having a superstrate structure in which the photoelectric conversion layer 53 is formed using the protective material 401 on the light-receiving surface side as a supporting base.
  • the photoelectric conversion device 402 may have a substrate structure in which the photoelectric conversion layer 53 is formed using the protective material 408 on the back surface side as a supporting base.
  • the support base of the photoelectric conversion device 402 is made of the protective material 401 or the protective material 408.
  • the photoelectric conversion device 402 is a thin-film silicon solar cell using an amorphous silicon film or a microcrystalline silicon film.
  • the photoelectric conversion device 402 is not limited to this. , CIS solar cells may be used, or CdTe solar cells may be used.
  • Tables 1 and 2 show examples and comparative examples of photoelectric conversion modules manufactured by changing the heat treatment temperature and the heat treatment time in the heat treatment step S6.
  • Table 1 shows the case where the protective material 5,408 is glass
  • Table 2 shows the case where the protective material 5,408 is a back sheet.
  • the ionomer resins in Examples 1 to 8 were obtained by cross-linking the ethylene-methacrylic acid copolymer molecules with metal ions.
  • the high-temperature and high-humidity test was conducted for 1000 hours in an environment of a temperature of 85 ° C. ⁇ 2 ° C. and a humidity of 85% ⁇ 5% for both the photoelectric conversion module 10 (crystal solar cell module) and the photoelectric conversion module 410 (thin film solar cell module). Conducted under conditions.
  • the international standard relating to the conditions of the high temperature and high humidity test corresponds to IEC61215 for the crystalline solar cell module and to IEC61646 for the thin film solar cell module.
  • a voltage of 6000 V was applied as a test for a photoelectric conversion module having a system voltage of 1000 V, and if the current value was less than 50 ⁇ A, it was determined to be acceptable.
  • the international standard relating to the conditions of the dielectric withstand voltage test corresponds to IEC61215 for the crystalline solar cell module, and corresponds to IEC61646 for the thin film solar cell module.
  • the dielectric strength voltage of the photoelectric conversion modules 10 and 410 is measured, and after the above high temperature and high humidity test is performed, the dielectric strength voltage is again measured. The voltage was measured, and the ratio of the leakage current value during the dielectric withstand voltage test before and after the high temperature and high humidity test was determined. A large ratio means that the degree of deterioration in insulation performance due to the high-temperature and high-humidity test is large.
  • Examples 1 to 8 the deterioration in insulation performance in the high-temperature and high-humidity test environment is smaller than that in Comparative Examples 1 to 4, and good insulation withstand voltage performance can be maintained even in use in harsh environments.
  • a highly reliable photoelectric conversion module can be provided.
  • EVA which is a thermosetting resin
  • EVA is soft at the initial stage of heating, but has heat shrinkability. It hardens while shrinking. Therefore, the end surface of the sealing material before sealing is a right-angled shape, but the sealing material has a corner as shown in FIG. 18B through the sealing step S5 and the heat treatment step S6. It becomes a shape and hardens.
  • Examples 1 to 8 use an ionomer resin that has thermoplasticity and does not have thermosetting properties as the sealing material. Is pulled in the direction of the arrow shown in FIG. 16 (b), thereby strengthening the adhesive force between the sealing material and the protective material. As the heating progresses, the distance between the protective materials is shortened by the tensile stress described above, and the sealing material is pushed out in the direction of the peripheral edge, and as the sealing material softens and melts, the sealing material is sealed. As the wettability of the stop resin to the protective material increases, the sealing resin becomes familiar with the protective material that is glass, and the contact angle between the sealing material and the protective material decreases. As a result, the end surface of the sealing material is considered to have a cross-sectional shape shown in FIG.
  • Example 3 Comparing Example 3 and Example 4, the higher the heat treatment temperature in heat treatment step S6, the more the sealing material has a concave shape (cross-sectional shape of the end face 24B shown in FIG. 18A) by the above mechanism. You can see that it is pushed out. This is because the distance L1 between the position (B) and the position (C) becomes shorter as the heat treatment temperature increases.
  • the contact angle between the sealant and the protective material is preferably an angle larger than 0 degree and smaller than 90 degrees, but larger than 30 degrees and larger than 80 degrees from Examples 1 to 8. If the angle is small, the leakage current value ratio during the dielectric withstand voltage test is smaller than 1.4, which is more preferable.
  • the correlation between the cross-sectional shape of the sealing material and the improvement of the insulation withstand voltage performance is considered as follows.
  • the hot spot test was carried out on a plurality of samples in accordance with IEC 61646 and changing the types of particles having high thermal conductivity dispersed in the sealing material as shown in Table 3.
  • Example 9 a photoelectric conversion module was produced using the same material and the same manufacturing conditions as in Example 7, and a hot spot test was performed.
  • Example 10 and 11 a photoelectric conversion module was produced in the same manner as in Example 7 except that the heat conductive particles were dispersed in the sealant, and a hot spot test was performed.
  • Example 9 using the encapsulant containing no thermally conductive particles is a peeled area after the hot spot test than Comparative Example 5 using the encapsulant containing no thermally conductive particles. The ratio is small.
  • the peeling area ratio after the hot spot test is higher than that in Example 9 using the encapsulant that does not include the thermally conductive particles. Diminished. It is considered that by dispersing the heat conductive particles in the sealing material, the temperature rise at the time of hot spot was suppressed and the peeled area could be reduced.
  • the bonding force of the peripheral portion is increased, and the temperature rise at the time of hot spot is further increased by the effect of the heat conductive particles.
  • the insulation withstand voltage performance and the suppression of peeling at the time of hot spot could be realized at the same time.
  • This invention is applied to a photoelectric conversion module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A photoelectric conversion module (10) is provided with a protector (1, 5), a sealing material (2, 4), and a photoelectric converter (3). The photoelectric converter (3) comprises a plurality of photovoltaic cells connected in series. The photoelectric converter (3) is disposed between the protector (1) and the protector (5) and sealed using the sealing material (2, 4). The sealing materials (2, 4) are integrated at the periphery of the photoelectric conversion module (10), the contact angle between an integrated sealing material (24) and the protectors (1, 5) is greater than 0 degrees and less than 90 degrees. The cross-section of the end surfaces of the sealing material (24) have a shape that is recessed from the outside toward the photoelectric converter (3) in the in-plane direction (DR1) of the protector (1). Further, a frame for supporting the photoelectric conversion module (10) is not present around the sealing material (24).

Description

光電変換モジュールPhotoelectric conversion module
 この発明は、光電変換モジュールに関するものである。 This invention relates to a photoelectric conversion module.
 太陽電池モジュールは、近年、高温多湿の熱帯地域等、過酷な環境への設置事例が増えており、より高いモジュールの信頼性が求められている。その解決策の一つとして、特許文献1では、モジュールの封止樹脂として従来使用されていたエチレン-酢酸ビニル共重合樹脂(EVA:Ethylene-Vinyl Acetate)よりも高い接着性を有する封止樹脂が開示されている。 In recent years, solar cell modules have been increasingly installed in harsh environments such as hot and humid tropical areas, and higher module reliability is required. As one of the solutions, Patent Document 1 discloses a sealing resin having adhesiveness higher than that of ethylene-vinyl acetate copolymer resin (EVA) which has been conventionally used as a sealing resin for modules. It is disclosed.
 一方、太陽電池の普及における課題として、既存の火力発電等の発電電力に対して発電ワット単価が高い点が挙げられ、モジュールの低コスト化が必要不可欠である。その解決策の一つとして、特許文献2ではモジュールを支持する枠体をなくしたフレームレス太陽電池モジュールが開示されている。このフレームレス構造では、封止樹脂が基板ガラスとカバーガラスの隙間から外部に露出するために水分が浸入しやすく、特許文献2では、モジュールの側端を金属製の封止材により封止することにより、耐候性能を維持している。
特開2000-186114号公報 特開2008-283035号公報
On the other hand, a problem in the spread of solar cells is that the unit price of generated watts is higher than that of existing power generation such as thermal power generation, and it is essential to reduce the cost of the module. As one of the solutions, Patent Document 2 discloses a frameless solar cell module in which a frame body that supports the module is eliminated. In this frameless structure, since the sealing resin is exposed to the outside through the gap between the substrate glass and the cover glass, moisture easily enters, and in Patent Document 2, the side end of the module is sealed with a metal sealing material. Therefore, the weather resistance performance is maintained.
JP 2000-186114 A JP 2008-283035 A
 しかし、特許文献2の方法では、追加部材によるコストアップを伴うという問題がある。 However, the method of Patent Document 2 has a problem that it involves an increase in cost due to additional members.
 この発明の実施の形態によれば、モジュールの低コスト化を図り、かつ、封止樹脂と保護材との間の水分ブロック性能を向上して信頼性を高めた光電変換モジュールを提供する。 According to the embodiment of the present invention, a photoelectric conversion module is provided in which the cost of the module is reduced and the moisture block performance between the sealing resin and the protective material is improved to increase the reliability.
 この発明の実施の形態によれば、光電変換モジュールは、第1および第2の保護材と、光電変換装置と、封止材とを備える。第1の保護材は、平板形状を有し、透光性を有する。第2の保護材は、平板形状を有する。光電変換装置は、第1の保護材と第2の保護材との間に配置される。封止材は、第1の保護材と第2の保護材との間で光電変換装置を封止する。そして、封止材は、第1および第2の保護材の面内方向の周縁部において第1および第2の保護材と接触する。また、面内方向における封止材の外周側の端部と第1および第2の保護材との接触角は、0度よりも大きく、かつ、90度よりも小さい。 According to the embodiment of the present invention, the photoelectric conversion module includes first and second protective materials, a photoelectric conversion device, and a sealing material. The first protective material has a flat plate shape and translucency. The second protective material has a flat plate shape. The photoelectric conversion device is disposed between the first protective material and the second protective material. The sealing material seals the photoelectric conversion device between the first protective material and the second protective material. And a sealing material contacts with the 1st and 2nd protective material in the peripheral part of the surface direction of a 1st and 2nd protective material. In addition, the contact angle between the end portion on the outer peripheral side of the sealing material in the in-plane direction and the first and second protective materials is larger than 0 degree and smaller than 90 degrees.
 好ましくは、面内方向における封止材の外周側の端部は、面内方向における外周側から光電変換装置へ向かう方向に窪んだ断面形状を有し、面内方向における封止材の外周側の端面が第1および第2の保護材に接触する接触点と前記光電変換装置との距離は、封止材の最も窪んだ点と光電変換装置との距離よりも長い。 Preferably, the end portion on the outer peripheral side of the sealing material in the in-plane direction has a cross-sectional shape that is recessed in a direction from the outer peripheral side in the in-plane direction toward the photoelectric conversion device, and the outer peripheral side of the sealing material in the in-plane direction. The distance between the contact point where the end surface of the sealing material contacts the first and second protective materials and the photoelectric conversion device is longer than the distance between the most depressed point of the sealing material and the photoelectric conversion device.
 好ましくは、光電変換装置は、第1の保護材上に透光性の第1の電極層、半導体層および第2の電極層が順次積層された構造からなり、第1の保護材の面内方向における周縁部には、絶縁領域が形成されている。 Preferably, the photoelectric conversion device has a structure in which a light-transmitting first electrode layer, a semiconductor layer, and a second electrode layer are sequentially stacked on the first protective material, and the in-plane of the first protective material. An insulating region is formed at the peripheral edge in the direction.
 好ましくは、封止材は、熱可塑性を有する樹脂からなる。 Preferably, the sealing material is made of a resin having thermoplasticity.
 好ましくは、封止材は、アイオノマー樹脂またはポリオレフィン系樹脂からなる。 Preferably, the sealing material is made of an ionomer resin or a polyolefin resin.
 好ましくは、封止材は、シランカップリング剤が添加されている。 Preferably, a silane coupling agent is added to the sealing material.
 好ましくは、封止材は、シラン変性樹脂を含有する。 Preferably, the sealing material contains a silane-modified resin.
 好ましくは、第1および第2の保護材は、ガラスからなる。 Preferably, the first and second protective materials are made of glass.
 好ましくは、第1の保護材は、ガラスからなり、第2の保護材は、樹脂シートからなる。 Preferably, the first protective material is made of glass, and the second protective material is made of a resin sheet.
 好ましくは、光電変換装置の支持基体は、半導体基板である。 Preferably, the support base of the photoelectric conversion device is a semiconductor substrate.
 好ましくは、光電変換装置の支持基体は、第1の保護材または第2の保護材である。 Preferably, the support base of the photoelectric conversion device is the first protective material or the second protective material.
 好ましくは、光電変換装置は、半導体基板と、透明導電膜と、電極とを含む。透明導電膜は、半導体基板の受光面側の表面に配置される。電極は、半導体基板の受光面側の表面と反対側に配置される。 Preferably, the photoelectric conversion device includes a semiconductor substrate, a transparent conductive film, and an electrode. The transparent conductive film is disposed on the light receiving surface side surface of the semiconductor substrate. The electrode is disposed on the opposite side of the light receiving surface side of the semiconductor substrate.
 好ましくは、封止材は、第1の保護材の受光面側の周縁部に存在しない。 Preferably, the sealing material is not present in the peripheral portion on the light receiving surface side of the first protective material.
 好ましくは、封止材は、熱伝導率が封止材よりも高い粒子を含む。 Preferably, the encapsulant includes particles having a higher thermal conductivity than the encapsulant.
 好ましくは、粒子の熱伝導率は、2[W/mK]よりも大きい。 Preferably, the thermal conductivity of the particles is greater than 2 [W / mK].
 この発明の実施の形態による光電変換モジュールにおいては、第1および第2の保護材の面内方向における封止材の端部は、第1および第2の保護材の面内方向において外部から光電変換装置へ向かう方向に窪んだ断面形状を有し、封止材の端部と第1および第2の保護材との接触角は、0度よりも大きく、かつ、90度よりも小さい。その結果、封止材が第1および第2の保護材と接触し始める接触点に水分が残留し難くなるとともに、水分が封止材と第1の保護材との界面および封止材と第2の保護材との界面に侵入し難くなり、封止材と第1および第2の保護材との剥離が抑制されるとともに、光電変換装置の光電変換モジュールの外部からの絶縁耐圧性能が向上する。 In the photoelectric conversion module according to the embodiment of the present invention, the end portions of the sealing material in the in-plane direction of the first and second protective materials are externally exposed in the in-plane direction of the first and second protective materials. The cross-sectional shape is recessed in the direction toward the conversion device, and the contact angle between the end of the sealing material and the first and second protective materials is greater than 0 degrees and smaller than 90 degrees. As a result, it is difficult for moisture to remain at the contact point where the sealing material starts to contact the first and second protective materials, and the moisture is present at the interface between the sealing material and the first protective material and between the sealing material and the first protective material. It becomes difficult to enter the interface with the protective material 2 and the separation between the sealing material and the first and second protective materials is suppressed, and the withstand voltage performance from the outside of the photoelectric conversion module of the photoelectric conversion device is improved. To do.
 従って、モジュールの低コスト化を図り、かつ、光電変換モジュールの高温高湿試験および温湿度サイクル試験に対する耐性を高め、光電変換モジュールの信頼性を向上できる。 Therefore, it is possible to reduce the cost of the module, increase the resistance of the photoelectric conversion module to the high-temperature and high-humidity test and the temperature-humidity cycle test, and improve the reliability of the photoelectric conversion module.
この発明の実施の形態1による光電変換モジュールの分解斜視図である。1 is an exploded perspective view of a photoelectric conversion module according to Embodiment 1 of the present invention. 図1に示す光電変換モジュールの断面図である。It is sectional drawing of the photoelectric conversion module shown in FIG. 配線シートの平面図である。It is a top view of a wiring sheet. 図1および図2に示す太陽電池セルの構成を示す断面図である。It is sectional drawing which shows the structure of the photovoltaic cell shown in FIG. 1 and FIG. 図1および図2に示す太陽電池セルの別の構成を示す断面図である。It is sectional drawing which shows another structure of the photovoltaic cell shown in FIG. 1 and FIG. 太陽電池セルと配線シートとの接続状態を示す断面図である。It is sectional drawing which shows the connection state of a photovoltaic cell and a wiring sheet. 図1および図2に示す光電変換モジュールの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the photoelectric conversion module shown in FIG. 1 and FIG. 図7に示す太陽電池セルの作製工程の詳細な工程を示す第1の工程図である。It is a 1st process drawing which shows the detailed process of the manufacturing process of the photovoltaic cell shown in FIG. 図7に示す太陽電池セルの作製工程の詳細な工程を示す第2の工程図である。It is a 2nd process drawing which shows the detailed process of the manufacturing process of the photovoltaic cell shown in FIG. 図7に示す太陽電池セルの作製工程の他の詳細な工程を示す第1の工程図である。It is a 1st process drawing which shows the other detailed process of the manufacturing process of the photovoltaic cell shown in FIG. 図7に示す太陽電池セルの作製工程の他の詳細な工程を示す第2の工程図である。It is a 2nd process drawing which shows the other detailed process of the manufacturing process of the photovoltaic cell shown in FIG. 図7に示す太陽電池セルの作製工程の他の詳細な工程を示す第3の工程図である。It is a 3rd process drawing which shows the other detailed process of the manufacturing process of the photovoltaic cell shown in FIG. 図7に示す電極取付工程の詳細な工程を示す工程図である。It is process drawing which shows the detailed process of the electrode attachment process shown in FIG. 図7に示す載置工程の詳細な工程を示す工程図である。It is process drawing which shows the detailed process of the mounting process shown in FIG. 図7に示す封止工程の詳細な工程を示す工程図である。It is process drawing which shows the detailed process of the sealing process shown in FIG. 封止工程および熱処理工程における封止材の変化を示す断面図である。It is sectional drawing which shows the change of the sealing material in a sealing process and a heat processing process. 接触角の定義を説明するための図である。It is a figure for demonstrating the definition of a contact angle. 光電変換モジュールの端部の断面図である。It is sectional drawing of the edge part of a photoelectric conversion module. 実施の形態2による光電変換モジュールの構成を示す分解斜視図である。FIG. 6 is an exploded perspective view showing a configuration of a photoelectric conversion module according to Embodiment 2. 図19に示す光電変換モジュールの断面図である。It is sectional drawing of the photoelectric conversion module shown in FIG. 図19および図20に示す光電変換モジュールの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the photoelectric conversion module shown to FIG. 19 and FIG. 図21に示す薄膜太陽電池セルの作製工程および集積構造の形成工程の詳細な工程を示す第1の工程図である。It is a 1st process drawing which shows the detailed process of the manufacturing process of the thin film photovoltaic cell shown in FIG. 21, and the formation process of an integrated structure. 図21に示す薄膜太陽電池セルの作製工程および集積構造の形成工程の詳細な工程を示す第2の工程図である。FIG. 22 is a second process diagram showing detailed processes of the manufacturing process of the thin-film solar cell and the formation process of the integrated structure shown in FIG. 21. 図21に示す電極取付工程の実施の形態2における詳細な工程を示す工程図である。It is process drawing which shows the detailed process in Embodiment 2 of the electrode attachment process shown in FIG. 図21に示す載置工程の実施の形態2における詳細な工程を示す工程図である。It is process drawing which shows the detailed process in Embodiment 2 of the mounting process shown in FIG. 図21に示す封止工程の実施の形態2における詳細な工程を示す工程図である。It is process drawing which shows the detailed process in Embodiment 2 of the sealing process shown in FIG.
 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 この明細書において、「非晶質相」とは、シリコン(Si)原子等がランダムに配列された状態を言う。また、「微結晶相」とは、Si原子等のランダムなネットワークの中に粒径が10~100nm程度であるSi等の結晶粒が存在する状態を言う。更に、アモルファスシリコンを「a-Si」と表記するが、この表記は、実際には、水素(H)原子が含まれた水素化アモルファスシリコンを意味する。アモルファスシリコンカーバイド(a-SiC)、アモルファスシリコンナイトライド(a-SiN)、アモルファスシリコンゲルマニウム(a-SiGe)、アモルファスゲルマニウム(a-Ge)、微結晶シリコンカーバイド(μc-SiC)、微結晶シリコンナイトライド(μc-SiN)、微結晶シリコン(μc-Si)、微結晶シリコンゲルマニウム(μc-SiGe)、および微結晶ゲルマニウム(μc-Ge)についても、同様に、H原子が含まれていることを意味する。 In this specification, “amorphous phase” refers to a state in which silicon (Si) atoms and the like are randomly arranged. The “microcrystalline phase” means a state in which crystal grains such as Si having a grain size of about 10 to 100 nm exist in a random network such as Si atoms. Furthermore, although amorphous silicon is expressed as “a-Si”, this notation actually means hydrogenated amorphous silicon containing hydrogen (H) atoms. Amorphous silicon carbide (a-SiC), amorphous silicon nitride (a-SiN), amorphous silicon germanium (a-SiGe), amorphous germanium (a-Ge), microcrystalline silicon carbide (μc-SiC), microcrystalline silicon nitrite Ride (μc-SiN), microcrystalline silicon (μc-Si), microcrystalline silicon germanium (μc-SiGe), and microcrystalline germanium (μc-Ge) also contain H atoms. means.
 [実施の形態1]
 図1は、この発明の実施の形態1による光電変換モジュールの分解斜視図である。図1を参照して、この発明の実施の形態1による光電変換モジュール10は、保護材1,5と、封止材2,4と、光電変換装置3と、端子ボックス20とを備える。
[Embodiment 1]
1 is an exploded perspective view of a photoelectric conversion module according to Embodiment 1 of the present invention. Referring to FIG. 1, a photoelectric conversion module 10 according to Embodiment 1 of the present invention includes protective materials 1 and 5, sealing materials 2 and 4, a photoelectric conversion device 3, and a terminal box 20.
 保護材1は、光電変換モジュール10の受光面側の保護材である。そして、保護材1は、平板形状を有するとともに透光性の絶縁物からなり、例えば、ガラスからなる。 The protective material 1 is a protective material on the light receiving surface side of the photoelectric conversion module 10. The protective material 1 has a flat plate shape and is made of a translucent insulator, for example, glass.
 封止材2は、保護材1と光電変換装置3との間に配置される。そして、封止材2は、平板形状を有するとともに熱可塑性を有する樹脂からなる。より具体的には、封止材2は、アイオノマー樹脂またはポリオレフィン系樹脂からなる。 Sealing material 2 is disposed between protective material 1 and photoelectric conversion device 3. And the sealing material 2 consists of resin which has a flat plate shape and has thermoplasticity. More specifically, the sealing material 2 is made of an ionomer resin or a polyolefin resin.
 光電変換装置3は、封止材2と封止材4との間に配置される。そして、光電変換装置3は、正極端子31と、負極端子32と、複数の太陽電池セル33とを含む。複数の太陽電池セル33は、直列に接続される。複数の太陽電池セル33は、例えば、24個の太陽電池セル33からなり、碁盤目状に配置される。 The photoelectric conversion device 3 is disposed between the sealing material 2 and the sealing material 4. The photoelectric conversion device 3 includes a positive electrode terminal 31, a negative electrode terminal 32, and a plurality of solar battery cells 33. The plurality of solar cells 33 are connected in series. The plurality of solar cells 33 are composed of, for example, 24 solar cells 33 and are arranged in a grid pattern.
 封止材4は、光電変換装置3と保護材5との間に配置される。そして、封止材4は、平板形状を有するとともに封止材2と同じ材料からなる。 The sealing material 4 is disposed between the photoelectric conversion device 3 and the protective material 5. The sealing material 4 has a flat plate shape and is made of the same material as the sealing material 2.
 保護材5は、光電変換モジュール10の裏面側の保護材である。そして、保護材5は、平板形状を有するとともに、ガラスまたはバックシートからなる。 The protective material 5 is a protective material on the back side of the photoelectric conversion module 10. The protective material 5 has a flat plate shape and is made of glass or a back sheet.
 端子ボックス20は、光電変換装置3の正極端子31および負極端子32に接続される。 The terminal box 20 is connected to the positive terminal 31 and the negative terminal 32 of the photoelectric conversion device 3.
 図2は、図1に示す光電変換モジュール10の断面図である。なお、図2においては、光電変換装置3の正極端子31および負極端子32と、端子ボックス20とが省略されている。 FIG. 2 is a cross-sectional view of the photoelectric conversion module 10 shown in FIG. In FIG. 2, the positive terminal 31 and the negative terminal 32 of the photoelectric conversion device 3 and the terminal box 20 are omitted.
 図2を参照して、封止材2は、光電変換装置3が存在する領域では、保護材1および光電変換装置3に接する。また、封止材2は、光電変換装置3が存在しない保護材1,5の周縁部1A,1B,5A,5Bでは、封止材4と一体になる。そして、その一体となった封止材24は、保護材1,5の周縁部1A,1B,5A,5Bにおいて、保護材1,5に接する。また、一体となった封止材24は、保護材1,5の面内方向DR1における外周側の端部が外部から光電変換装置3へ向かう方向に窪んだ断面形状を有する。 Referring to FIG. 2, sealing material 2 is in contact with protective material 1 and photoelectric conversion device 3 in the region where photoelectric conversion device 3 is present. Further, the sealing material 2 is integrated with the sealing material 4 at the peripheral portions 1A, 1B, 5A, and 5B of the protective materials 1 and 5 where the photoelectric conversion device 3 does not exist. Then, the integrated sealing material 24 is in contact with the protective materials 1 and 5 at the peripheral portions 1A, 1B, 5A and 5B of the protective materials 1 and 5. The integrated sealing material 24 has a cross-sectional shape in which the outer peripheral end in the in-plane direction DR1 of the protective materials 1 and 5 is recessed in the direction from the outside toward the photoelectric conversion device 3.
 封止材4は、光電変換装置3が存在する領域では、光電変換装置3および保護材5に接する。また、封止材4は、光電変換装置3が存在しない周縁部1A,1B,5A,5Bでは、封止材2と一体になって封止材24を構成する。 Sealing material 4 is in contact with photoelectric conversion device 3 and protective material 5 in the region where photoelectric conversion device 3 is present. Moreover, the sealing material 4 is integrated with the sealing material 2 and constitutes the sealing material 24 in the peripheral portions 1A, 1B, 5A, and 5B where the photoelectric conversion device 3 does not exist.
 そして、封止材は、受光面側の保護材である保護材1の受光面側の周縁部に存在しない。封止材が保護材1の受光面側の周縁部に付着すると、外観上、好ましくない。また、熱処理工程以降の工程における搬送系に封止樹脂が付着する点でも好ましくない。 And the sealing material does not exist in the peripheral portion on the light receiving surface side of the protective material 1 which is a protective material on the light receiving surface side. If the sealing material adheres to the peripheral edge of the protective material 1 on the light receiving surface side, it is not preferable in appearance. Moreover, it is not preferable also from the point that sealing resin adheres to the conveyance system in the processes after the heat treatment process.
 光電変換装置3は、封止材2,4によって封止される。 The photoelectric conversion device 3 is sealed with the sealing materials 2 and 4.
 そして、光電変換モジュール10は、単体での強度が十分高い材料によって保護材1または保護材5を構成することにより、保護材1,5の周囲を保持する枠体を不要とすることができる。例えば、保護材1または保護材5に厚さが1.8mmの強度ガラスを用いることにより、光電変換モジュール10の強度を高めるための枠体を不要とし、低コスト化を図ることができる。 And the photoelectric conversion module 10 can make the frame body which hold | maintains the surroundings of the protective materials 1 and 5 unnecessary by comprising the protective material 1 or the protective material 5 with the material with the intensity | strength with sufficient single substance. For example, by using strength glass having a thickness of 1.8 mm for the protective material 1 or the protective material 5, a frame for increasing the strength of the photoelectric conversion module 10 is not necessary, and cost reduction can be achieved.
 図3は、配線シートの平面図である。光電変換装置3は、正極端子31、負極端子32および複数の太陽電池セル33に加え、図3に示す配線シート34を更に備える。 FIG. 3 is a plan view of the wiring sheet. The photoelectric conversion device 3 further includes a wiring sheet 34 shown in FIG. 3 in addition to the positive electrode terminal 31, the negative electrode terminal 32 and the plurality of solar cells 33.
 図3を参照して、配線シート34は、領域341~364と、正極実装パッド11と、負極実装パッド12とを含む。 Referring to FIG. 3, the wiring sheet 34 includes regions 341 to 364, a positive electrode mounting pad 11, and a negative electrode mounting pad 12.
 領域341~364の各々は、正極パッド6と、負極パッド7と、配線8,9とを含む。そして、領域341~364の各々においては、例えば、5個の正極パッド6および5個の負極パッド7が相互に平行に、かつ、交互に配置される。 Each of the regions 341 to 364 includes a positive electrode pad 6, a negative electrode pad 7, and wirings 8 and 9. In each of the regions 341 to 364, for example, five positive electrode pads 6 and five negative electrode pads 7 are alternately arranged in parallel with each other.
 領域341においては、配線8は、その一方端が5個の正極パッド6に接続され、他方端が正極実装パッド11に接続される。また、領域341においては、配線9は、その一方端が5個の負極パッド7に接続され、他方端が領域342の1つの正極パッド6に接続される。 In the region 341, the wiring 8 has one end connected to the five positive electrode pads 6 and the other end connected to the positive electrode mounting pad 11. In the region 341, the wiring 9 has one end connected to the five negative pads 7 and the other end connected to one positive pad 6 in the region 342.
 領域342~346においては、配線8は、5個の正極パッド6に接続される。また、領域342~345の配線9は、その一方端が5個の負極パッド7に接続され、他方端がそれぞれ領域343~346の1つの正極パッド6に接続される。更に、領域346の配線8は、5個の正極パッド6に接続され、領域346の配線9は、その一方端が5個の負極パッド7に接続され、他方端が領域347の配線8に接続される。 In the regions 342 to 346, the wiring 8 is connected to the five positive electrode pads 6. Further, the wiring 9 in the regions 342 to 345 has one end connected to the five negative electrode pads 7 and the other end connected to one positive electrode pad 6 in each of the regions 343 to 346. Further, the wiring 8 in the region 346 is connected to the five positive pads 6, and the wiring 9 in the region 346 has one end connected to the five negative pads 7 and the other end connected to the wiring 8 in the region 347. Is done.
 領域347の配線8は、その一方端が5個の正極パッド6に接続され、他方端が領域346の配線9に接続される。また、領域347の配線9は、その一方端が5個の負極パッド7に接続され、他方端が領域348の1つの正極パッド6に接続される。 The wiring 8 in the region 347 has one end connected to the five positive electrode pads 6 and the other end connected to the wiring 9 in the region 346. Further, the wiring 9 in the region 347 has one end connected to the five negative pads 7 and the other end connected to one positive pad 6 in the region 348.
 領域348~351の配線8は、5個の正極パッド6に接続される。また、領域348~351の配線9は、その一方端が5個の負極パッド7に接続され、他方端がそれぞれ領域349~352の1つの正極パッド6に接続される。 The wiring 8 in the regions 348 to 351 is connected to five positive electrode pads 6. The wiring 9 in the regions 348 to 351 has one end connected to the five negative pads 7 and the other end connected to one positive pad 6 in the regions 349 to 352, respectively.
 領域352の配線8は、5個の正極パッド6に接続される。また、領域352の配線9は、その一方端が5個の負極パッド7に接続され、他方端が領域353の配線8に接続される。 The wiring 8 in the region 352 is connected to the five positive electrode pads 6. The wiring 9 in the region 352 has one end connected to the five negative electrode pads 7 and the other end connected to the wiring 8 in the region 353.
 領域353の配線8は、その一方端が5個の正極パッド6に接続され、他方端が領域352の配線9に接続される。また、領域353の配線9は、その一方端が5個の負極パッド7に接続され、他方端が領域354の1つの正極パッド6に接続される。 The wiring 8 in the region 353 has one end connected to the five positive electrode pads 6 and the other end connected to the wiring 9 in the region 352. The wiring 9 in the region 353 has one end connected to the five negative pads 7 and the other end connected to one positive pad 6 in the region 354.
 領域354~357の配線8は、5個の正極パッド6に接続される。領域354~357の配線9は、その一方端が5個の負極パッド7に接続され、他方端がそれぞれ領域355~358の1つの正極パッド6に接続される。 The wirings 8 in the regions 354 to 357 are connected to the five positive electrode pads 6. The wiring 9 in the regions 354 to 357 has one end connected to the five negative electrode pads 7 and the other end connected to one positive electrode pad 6 in each of the regions 355 to 358.
 領域358の配線8は、5個の正極パッド6に接続される。また、領域358の配線9は、その一方端が5個の負極パッド7に接続され、他方端が領域359の配線8に接続される。 The wiring 8 in the region 358 is connected to the five positive electrode pads 6. In addition, the wiring 9 in the region 358 has one end connected to the five negative electrode pads 7 and the other end connected to the wiring 8 in the region 359.
 領域359の配線8は、その一方端が5個の正極パッド6に接続され、他方端が領域358の配線9に接続される。また、領域359の配線9は、その一方端が5個の負極パッド7に接続され、他方端が領域360の1つの正極パッド6に接続される。 The wiring 8 in the region 359 has one end connected to the five positive electrode pads 6 and the other end connected to the wiring 9 in the region 358. The wiring 9 in the region 359 has one end connected to the five negative pads 7 and the other end connected to one positive pad 6 in the region 360.
 領域360~363の配線8は、5個の正極パッド6に接続される。また、領域360~363の配線9は、その一方端が5個の負極パッド7に接続され、他方端がそれぞれ領域361~364の1つの正極パッド6に接続される。 The wiring 8 in the regions 360 to 363 is connected to the five positive electrode pads 6. Further, the wiring 9 in the regions 360 to 363 has one end connected to the five negative electrode pads 7 and the other end connected to one positive electrode pad 6 in each of the regions 361 to 364.
 領域364の配線8は、5個の正極パッド6に接続される。また、領域363の配線9は、その一方端が5個の負極パッド7に接続され、他方端が負極実装パッド12に接続される。 The wiring 8 in the region 364 is connected to the five positive electrode pads 6. The wiring 9 in the region 363 has one end connected to the five negative electrode pads 7 and the other end connected to the negative electrode mounting pad 12.
 正極実装パッド11は、図1に示す正極端子31に接続され、負極実装パッド12は、図1に示す負極端子32に接続される。 The positive electrode mounting pad 11 is connected to the positive electrode terminal 31 shown in FIG. 1, and the negative electrode mounting pad 12 is connected to the negative electrode terminal 32 shown in FIG.
 図4は、図1および図2に示す太陽電池セル33の構成を示す断面図である。図4を参照して、太陽電池セル33は、n型単結晶シリコン基板331と、受光面パッシベーション膜332aと、透明導電膜332bと、正極電極371~375と、負極電極376~380とを含む。 FIG. 4 is a cross-sectional view showing a configuration of the solar battery cell 33 shown in FIGS. 1 and 2. Referring to FIG. 4, solar cell 33 includes an n-type single crystal silicon substrate 331, a light-receiving surface passivation film 332a, a transparent conductive film 332b, positive electrodes 371 to 375, and negative electrodes 376 to 380. .
 n型単結晶シリコン基板331は、例えば、100~300μmの厚さを有するとともに、0.1~10Ωcmの比抵抗を有する。 The n-type single crystal silicon substrate 331 has, for example, a thickness of 100 to 300 μm and a specific resistance of 0.1 to 10 Ωcm.
 また、n型単結晶シリコン基板331は、受光面側にテクスチャ構造を有し、裏面側にp型拡散領域3311~3315とn型拡散領域3316~3320とを含む。 The n-type single crystal silicon substrate 331 has a texture structure on the light receiving surface side, and includes p-type diffusion regions 3311 to 3315 and n-type diffusion regions 3316 to 3320 on the back surface side.
 p型拡散領域3311~3315およびn型拡散領域3316~3320は、n型単結晶シリコン基板331の裏面に接してn型単結晶シリコン基板331中に配置される。また、p型拡散領域3311~3315およびn型拡散領域3316~3320は、n型単結晶シリコン基板331の面内方向DR2に交互に配置される。 The p-type diffusion regions 3311 to 3315 and the n-type diffusion regions 3316 to 3320 are disposed in the n-type single crystal silicon substrate 331 in contact with the back surface of the n-type single crystal silicon substrate 331. The p-type diffusion regions 3311 to 3315 and the n-type diffusion regions 3316 to 3320 are alternately arranged in the in-plane direction DR2 of the n-type single crystal silicon substrate 331.
 p型拡散領域3311~3315の各々は、例えば、ボロン(B)をドーパントとして含む。Bの濃度は、例えば、1×1018cm-3~1×1019cm-3である。 Each of the p-type diffusion regions 3311 to 3315 includes, for example, boron (B) as a dopant. The concentration of B is, for example, 1 × 10 18 cm −3 to 1 × 10 19 cm −3 .
 n型拡散領域3316~3320の各々は、例えば、リン(P)をドーパントとして含む。Pの濃度は、例えば、1×1018cm-3~1×1019cm-3である。 Each of the n-type diffusion regions 3316 to 3320 includes, for example, phosphorus (P) as a dopant. The concentration of P is, for example, 1 × 10 18 cm −3 to 1 × 10 19 cm −3 .
 p型拡散領域3311~3315およびn型拡散領域3316~3320は、図4の紙面に垂直な方向において同じ長さを有する。そして、p型拡散領域3311~3315の全体の面積がn型単結晶シリコン基板331の面積に占める割合である面積占有率は、60~93%であり、n型拡散領域3316~3320の全体の面積がn型単結晶シリコン基板331の面積に占める割合である面積占有率は、5~20%である。 The p-type diffusion regions 3311 to 3315 and the n-type diffusion regions 3316 to 3320 have the same length in the direction perpendicular to the paper surface of FIG. The area occupancy ratio, which is the ratio of the entire area of the p-type diffusion regions 3311 to 3315 to the area of the n-type single crystal silicon substrate 331, is 60 to 93%, and the entire area of the n-type diffusion regions 3316 to 3320 is The area occupation ratio, which is the ratio of the area to the area of the n-type single crystal silicon substrate 331, is 5 to 20%.
 このように、p型拡散領域3311~3315の面積占有率をn型拡散領域3316~3320の面積占有率よりも大きくするのは、n型単結晶シリコン基板331中で光励起された電子および正孔がpn接合(p型拡散領域3311~3315/n型単結晶シリコン基板331)によって分離され易くし、光励起された電子および正孔の発電への寄与率を高くするためである。 Thus, the reason why the area occupancy of the p-type diffusion regions 3311 to 3315 is larger than the area occupancy of the n-type diffusion regions 3316 to 3320 is that electrons and holes photoexcited in the n-type single crystal silicon substrate 331 are used. This is because the pn junction (p-type diffusion regions 3311 to 3315 / n-type single crystal silicon substrate 331) is easily separated and the contribution ratio of photoexcited electrons and holes to power generation is increased.
 受光面パッシベーション膜332aは、n型単結晶シリコン基板331の受光面(=テクスチャ構造が形成された面)に接して配置される。受光面パッシベーション膜332aは、窒化シリコン膜からなり、膜厚は、例えば、50~100nmである。 The light-receiving surface passivation film 332a is disposed in contact with the light-receiving surface (= the surface on which the texture structure is formed) of the n-type single crystal silicon substrate 331. The light-receiving surface passivation film 332a is made of a silicon nitride film and has a film thickness of, for example, 50 to 100 nm.
 透明導電膜332bは、受光面パッシベーション膜332aの受光面側に接して配置される。そして、透明導電膜332bは、SnO、ZnOおよびTiO等からなり、膜厚は、例えば、20nmである。 The transparent conductive film 332b is disposed in contact with the light receiving surface side of the light receiving surface passivation film 332a. Then, the transparent conductive film 332b is made of SnO 2, ZnO and TiO 2, etc., the thickness is, for example, 20 nm.
 正極電極371~375は、それぞれ、p型拡散領域3311~3315に接して配置される。負極電極376~380は、それぞれ、n型拡散領域3316~3320に接して配置される。そして、正極電極371~375および負極電極376~380の各々は、銀(Ag)、アルミニウム(Al)およびチタン(Ti)等から選択された単膜または複数の金属膜の積層膜からなる。 The positive electrodes 371 to 375 are disposed in contact with the p-type diffusion regions 3311 to 3315, respectively. Negative electrodes 376-380 are arranged in contact with n-type diffusion regions 3316-3320, respectively. Each of the positive electrodes 371 to 375 and the negative electrodes 376 to 380 is composed of a single film or a laminated film of a plurality of metal films selected from silver (Ag), aluminum (Al), titanium (Ti), and the like.
 太陽電池セル33においては、透明導電膜332は、反射防止膜として機能するとともに、太陽電池セル33の受光面に蓄積された電荷をn型単結晶シリコン基板331のバルク領域へ逃がす。これによって、表面電荷の蓄積による太陽電池セル33の出力低下を抑制し、変換効率を向上することができる。 In the solar cell 33, the transparent conductive film 332 functions as an antireflection film and releases the charge accumulated on the light receiving surface of the solar cell 33 to the bulk region of the n-type single crystal silicon substrate 331. Thereby, the output fall of the photovoltaic cell 33 by accumulation | storage of surface charge can be suppressed, and conversion efficiency can be improved.
 太陽電池セル33においては、n型単結晶シリコン基板331中で光励起された正孔および電子は、pn接合(p型拡散領域3311~3315/n型単結晶シリコン基板331)によって分離される。そして、正孔は、p型拡散領域3311~3315を介して正極電極371~375へ到達し、電子は、n型拡散領域3316~3320を介して負極電極376~380へ到達する。負極電極376~380へ到達した電子は、正極電極371~375と負極電極376~380との間に接続された負荷を介して正極電極371~375へ流れ、正孔と再結合する。これによって、電流が負荷に流れる。 In the solar cell 33, holes and electrons photoexcited in the n-type single crystal silicon substrate 331 are separated by a pn junction (p-type diffusion regions 3311 to 3315 / n-type single crystal silicon substrate 331). Then, holes reach the positive electrodes 371 to 375 through the p-type diffusion regions 3311 to 3315, and the electrons reach the negative electrodes 376 to 380 through the n-type diffusion regions 3316 to 3320. Electrons that reach the negative electrodes 376 to 380 flow to the positive electrodes 371 to 375 through a load connected between the positive electrodes 371 to 375 and the negative electrodes 376 to 380, and recombine with holes. As a result, current flows to the load.
 このように、太陽電池セル33は、n型単結晶シリコン基板331の裏面から電力を取り出すバックコンタクト型の太陽電池である。 Thus, the solar battery cell 33 is a back contact type solar battery that extracts power from the back surface of the n-type single crystal silicon substrate 331.
 図5は、図1および図2に示す太陽電池セル33の別の構成を示す断面図である。実施の形態1においては、太陽電池セル33は、図5に示す太陽電池セル33Aであってもよい。 FIG. 5 is a cross-sectional view showing another configuration of the solar battery cell 33 shown in FIGS. 1 and 2. In Embodiment 1, the solar battery cell 33 may be a solar battery cell 33A shown in FIG.
 図5を参照して、太陽電池セル33Aは、図4に示す太陽電池セル33のn型単結晶シリコン基板331をn型単結晶シリコン基板333に代え、受光面パッシベーション膜332aを受光面パッシベーション膜332cに代え、正極電極371~375を正極電極391~395に代え、負極電極376~380を負極電極396~400に代え、p型非晶質薄膜381~385およびn型非晶質薄膜386~390を追加したものであり、その他は、太陽電池セル33と同じである。 Referring to FIG. 5, solar cell 33A replaces n-type single crystal silicon substrate 331 of solar cell 33 shown in FIG. 4 with n-type single crystal silicon substrate 333, and replaces light-receiving surface passivation film 332a with a light-receiving surface passivation film. Instead of 332c, positive electrodes 371 to 375 are replaced with positive electrodes 391 to 395, negative electrodes 376 to 380 are replaced with negative electrodes 396 to 400, p-type amorphous thin films 381 to 385 and n-type amorphous thin films 386 to 390 is added, and the others are the same as those of the solar battery cell 33.
 n型単結晶シリコン基板333は、例えば、100~300μmの厚さを有するとともに、0.1~10Ωcmの比抵抗を有する。また、n型単結晶シリコン基板333は、受光面側にテクスチャ構造を有する。 The n-type single crystal silicon substrate 333 has, for example, a thickness of 100 to 300 μm and a specific resistance of 0.1 to 10 Ωcm. The n-type single crystal silicon substrate 333 has a texture structure on the light receiving surface side.
 受光面パッシベーション膜332cは、n型単結晶シリコン基板333の受光面(=テクスチャ構造が形成された面)に接して配置される。受光面パッシベーション膜332cは、i型非晶質シリコン膜からなり、膜厚は、例えば、数nm~30nmである。 The light-receiving surface passivation film 332c is disposed in contact with the light-receiving surface (= the surface on which the texture structure is formed) of the n-type single crystal silicon substrate 333. The light-receiving surface passivation film 332c is made of an i-type amorphous silicon film, and has a film thickness of several nm to 30 nm, for example.
 なお、太陽電池セル33Aにおいては、透明導電膜332bは、受光面パッシベーション膜332cの受光面側に接して配置される。 In the solar battery cell 33A, the transparent conductive film 332b is disposed in contact with the light receiving surface side of the light receiving surface passivation film 332c.
 p型非晶質薄膜381~385およびn型非晶質薄膜386~390は、n型単結晶シリコン基板333の裏面に接してn型単結晶シリコン基板333の面内方向DR3に交互に配置される。 The p-type amorphous thin films 381 to 385 and the n-type amorphous thin films 386 to 390 are alternately arranged in the in-plane direction DR3 of the n-type single crystal silicon substrate 333 in contact with the back surface of the n-type single crystal silicon substrate 333. The
 p型非晶質薄膜381~385の各々は、非晶質相を有し、p型a-Si,p型a-SiC,p型a-SiN,p型a-SiGe等からなる。n型非晶質薄膜386~390の各々は、非晶質相を有し、n型a-Si,n型a-SiC,n型a-SiN,n型a-SiGe等からなる。 Each of the p-type amorphous thin films 381 to 385 has an amorphous phase and is made of p-type a-Si, p-type a-SiC, p-type a-SiN, p-type a-SiGe, or the like. Each of the n-type amorphous thin films 386 to 390 has an amorphous phase and is made of n-type a-Si, n-type a-SiC, n-type a-SiN, n-type a-SiGe, or the like.
 p型非晶質薄膜381~385およびn型非晶質薄膜386~390の各々は、例えば、10~30nmの膜厚を有する。 Each of the p-type amorphous thin film 381 to 385 and the n-type amorphous thin film 386 to 390 has a film thickness of 10 to 30 nm, for example.
 p型非晶質薄膜381~385の各々は、例えば、Bをドーパントとして含む。Bの濃度は、例えば、1×1018cm-3~1×1019cm-3である。 Each of the p-type amorphous thin films 381 to 385 includes, for example, B as a dopant. The concentration of B is, for example, 1 × 10 18 cm −3 to 1 × 10 19 cm −3 .
 n型非晶質薄膜386~390の各々は、例えば、Pをドーパントとして含む。Pの濃度は、例えば、1×1018cm-3~1×1019cm-3である。 Each of the n-type amorphous thin films 386 to 390 includes, for example, P as a dopant. The concentration of P is, for example, 1 × 10 18 cm −3 to 1 × 10 19 cm −3 .
 p型非晶質薄膜381~385およびn型非晶質薄膜386~390は、図5の紙面に垂直な方向において同じ長さを有する。そして、p型非晶質薄膜381~385の全体の面積がn型単結晶シリコン基板333の面積に占める割合である面積占有率は、60~93%であり、n型非晶質薄膜386~390の全体の面積がn型単結晶シリコン基板333の面積に占める割合である面積占有率は、5~20%である。 The p-type amorphous thin films 381 to 385 and the n-type amorphous thin films 386 to 390 have the same length in the direction perpendicular to the paper surface of FIG. The area occupancy ratio, which is the ratio of the entire area of the p-type amorphous thin film 381 to 385 to the area of the n-type single crystal silicon substrate 333, is 60 to 93%, and the n-type amorphous thin film 386 to The area occupation ratio, which is the ratio of the entire area of 390 to the area of the n-type single crystal silicon substrate 333, is 5 to 20%.
 このように、p型非晶質薄膜381~385の面積占有率をn型非晶質薄膜386~390の面積占有率よりも大きくするのは、n型単結晶シリコン基板333中で光励起された電子および正孔がpn接合(p型非晶質薄膜381~385/n型単結晶シリコン基板333)によって分離され易くし、光励起された電子および正孔の発電への寄与率を高くするためである。 Thus, it is photoexcited in the n-type single crystal silicon substrate 333 that the area occupancy of the p-type amorphous thin films 381 to 385 is larger than that of the n-type amorphous thin films 386 to 390. This is because electrons and holes are easily separated by a pn junction (p-type amorphous thin film 381 to 385 / n-type single crystal silicon substrate 333), and the contribution ratio of photoexcited electrons and holes to power generation is increased. is there.
 正極電極391~395は、それぞれ、p型非晶質薄膜381~385に接して配置される。負極電極396~400は、それぞれ、n型非晶質薄膜386~390に接して配置される。そして、正極電極391~395および負極電極396~400は、それぞれ、p型非晶質薄膜381~385およびn型非晶質薄膜386~390と接する側に配置された酸化インジウム等の透明導電膜と、透明導電膜に接して配置された銅等からなる金属層とからなる。 The positive electrodes 391 to 395 are disposed in contact with the p-type amorphous thin films 381 to 385, respectively. Negative electrodes 396 to 400 are disposed in contact with n-type amorphous thin films 386 to 390, respectively. The positive electrodes 391 to 395 and the negative electrodes 396 to 400 are transparent conductive films such as indium oxide disposed on the sides in contact with the p-type amorphous thin films 381 to 385 and the n-type amorphous thin films 386 to 390, respectively. And a metal layer made of copper or the like disposed in contact with the transparent conductive film.
 太陽電池セル33Aにおいては、n型単結晶シリコン基板333中で光励起された正孔および電子は、pn接合(p型非晶質薄膜381~385/n型単結晶シリコン基板333)によって分離される。そして、正孔は、p型非晶質薄膜381~385を介して正極電極391~395へ到達し、電子は、n型非晶質薄膜386~390を介して負極電極396~400へ到達する。負極電極396~400へ到達した電子は、正極電極391~395と負極電極396~400との間に接続された負荷を介して正極電極391~395へ流れ、正孔と再結合する。これによって、電流が負荷に流れる。 In the solar cell 33A, holes and electrons photoexcited in the n-type single crystal silicon substrate 333 are separated by a pn junction (p-type amorphous thin film 381 to 385 / n-type single crystal silicon substrate 333). . The holes reach the positive electrodes 391 to 395 via the p-type amorphous thin films 381 to 385, and the electrons reach the negative electrodes 396 to 400 via the n-type amorphous thin films 386 to 390. . Electrons that reach the negative electrodes 396 to 400 flow to the positive electrodes 391 to 395 through a load connected between the positive electrodes 391 to 395 and the negative electrodes 396 to 400, and recombine with holes. As a result, current flows to the load.
 このように、太陽電池セル33Aも、n型単結晶シリコン基板333の裏面から電力を取り出すバックコンタクト型の太陽電池である。 Thus, the solar battery cell 33A is also a back contact type solar battery that extracts power from the back surface of the n-type single crystal silicon substrate 333.
 なお、太陽電池セル33Aは、n型単結晶シリコン基板333とp型非晶質薄膜381~385との間、およびn型単結晶シリコン基板333とn型非晶質薄膜386~390との間に挿入されたi型非晶質薄膜を更に備えていてもよい。 Note that the solar battery cell 33A includes an n-type single crystal silicon substrate 333 and p-type amorphous thin films 381 to 385, and an n-type single crystal silicon substrate 333 and n-type amorphous thin films 386 to 390. An i-type amorphous thin film inserted into the film may be further provided.
 この場合、i型非晶質薄膜は、非晶質相を有し、i型a-Si,i型a-SiC,i型a-SiN,i型a-SiGe等からなる。そして、i型非晶質薄膜の膜厚は、例えば、5~10nmである。 In this case, the i-type amorphous thin film has an amorphous phase and is made of i-type a-Si, i-type a-SiC, i-type a-SiN, i-type a-SiGe, or the like. The film thickness of the i-type amorphous thin film is, for example, 5 to 10 nm.
 n型単結晶シリコン基板333とp型非晶質薄膜381~385との間、およびn型単結晶シリコン基板333とn型非晶質薄膜386~390との間にi型非晶質薄膜を挿入することによってn型単結晶シリコン基板333の裏面のパッシベーション効果を向上でき、n型単結晶シリコン基板333の裏面における電子および正孔の再結合を抑制できる。その結果、太陽電池セル33Aの変換効率を更に向上できる。 An i-type amorphous thin film is formed between the n-type single crystal silicon substrate 333 and the p-type amorphous thin film 381 to 385 and between the n-type single crystal silicon substrate 333 and the n-type amorphous thin film 386 to 390. By inserting, the passivation effect on the back surface of the n-type single crystal silicon substrate 333 can be improved, and recombination of electrons and holes on the back surface of the n-type single crystal silicon substrate 333 can be suppressed. As a result, the conversion efficiency of the solar battery cell 33A can be further improved.
 上記においては、太陽電池セル33,33Aは、n型単結晶シリコン基板331,333を備えると説明したが、実施の形態1においては、これに限らず、太陽電池セル33,33Aは、p型単結晶シリコン基板、n型多結晶シリコン基板、p型多結晶シリコン基板、およびガリウム砒素(GaAs)等の化合物半導体基板を備えていてもよい。 In the above description, the solar cells 33 and 33A are provided with the n-type single crystal silicon substrates 331 and 333. However, in the first embodiment, the solar cells 33 and 33A are not limited to the p-type. A single crystal silicon substrate, an n-type polycrystalline silicon substrate, a p-type polycrystalline silicon substrate, and a compound semiconductor substrate such as gallium arsenide (GaAs) may be provided.
 また、上記においては、太陽電池セル33,33Aは、バックコンタクト型の太陽電池からなると説明したが、実施の形態1においては、これに限らず、太陽電池セル33,33Aは、受光面側にpn接合またはpin接合が存在する太陽電池からなっていてもよい。 In the above description, the solar cells 33 and 33A have been described as being back contact solar cells. However, in the first embodiment, the solar cells 33 and 33A are not limited to this, and the solar cells 33 and 33A are disposed on the light receiving surface side. You may consist of the solar cell in which a pn junction or a pin junction exists.
 更に、上記においては、太陽電池セル33,33Aの各々は、受光面側の表面に透明導電膜332bを備えると説明したが、実施の形態1においては、これに限らず、太陽電池セル33,33Aの各々は、受光面側の表面に透明導電膜332bを備えていなくてもよい。 Further, in the above description, each of the solar cells 33 and 33A has been described as including the transparent conductive film 332b on the surface on the light receiving surface side. However, in the first embodiment, the solar cells 33 and 33A are not limited thereto. Each of 33A does not need to include the transparent conductive film 332b on the surface on the light receiving surface side.
 図6は、太陽電池セル33と配線シート34との接続状態を示す断面図である。なお、図6は、1つの太陽電池セル33と配線シート34の1つの領域(領域341~364のいずれか)との接続状態を示す。 FIG. 6 is a cross-sectional view showing a connection state between the solar battery cell 33 and the wiring sheet 34. FIG. 6 shows a connection state between one solar battery cell 33 and one region of the wiring sheet 34 (any one of the regions 341 to 364).
 図6を参照して、太陽電池セル33の正極電極371~375がそれぞれ5個の正極パッド6に接続され、太陽電池セル33の負極電極376~380がそれぞれ5個の負極パッド7に接続されるように太陽電池セル33を配線シート34の1つの領域(領域341~364のいずれか)に配置する。 Referring to FIG. 6, positive electrodes 371 to 375 of solar battery cell 33 are connected to five positive electrode pads 6 respectively, and negative electrode electrodes 376 to 380 of solar battery cell 33 are connected to five negative electrode pads 7 respectively. Thus, the solar cells 33 are arranged in one region (any one of the regions 341 to 364) of the wiring sheet 34.
 光電変換装置3は、上述したように、24個の太陽電池セル33を備えるので、24個の太陽電池セル33は、図6に示す態様で配線シート34の領域341~364に配置される。これによって、24個の太陽電池セル33は、直列に接続され、24個の太陽電池セル33で発電した電力は、正極実装パッド11および負極実装パッド12から外部へ取り出される。 Since the photoelectric conversion device 3 includes the 24 solar cells 33 as described above, the 24 solar cells 33 are arranged in the regions 341 to 364 of the wiring sheet 34 in the manner shown in FIG. Thus, the 24 solar cells 33 are connected in series, and the electric power generated by the 24 solar cells 33 is taken out from the positive electrode mounting pad 11 and the negative electrode mounting pad 12 to the outside.
 なお、太陽電池セル33Aを配線シート34の1つの領域(領域341~364のいずれか)に配置する場合も、図6に示す態様と同じように、太陽電池セル33Aの正極電極391~395がそれぞれ5個の正極パッド6に接続され、太陽電池セル33Aの負極電極396~400がそれぞれ5個の負極パッド7に接続される。 Even when the solar cell 33A is arranged in one region (any one of the regions 341 to 364) of the wiring sheet 34, the positive electrodes 391 to 395 of the solar cell 33A are provided in the same manner as in the embodiment shown in FIG. Each is connected to five positive electrode pads 6, and the negative electrodes 396 to 400 of the solar battery cell 33 A are connected to five negative electrode pads 7, respectively.
 上述したように、光電変換装置3は、直列に接続された複数の太陽電池セル33(または複数の太陽電池セル33A)からなり、太陽電池セル33,33Aは、それぞれ、単結晶シリコン基板331,333を支持基体として形成される。従って、光電変換モジュール10においては、光電変換装置3の支持基体は、半導体基板である。 As described above, the photoelectric conversion device 3 includes a plurality of solar cells 33 (or a plurality of solar cells 33A) connected in series, and each of the solar cells 33 and 33A includes a single crystal silicon substrate 331 and a solar cell 331, respectively. 333 is formed as a support base. Therefore, in the photoelectric conversion module 10, the support base of the photoelectric conversion device 3 is a semiconductor substrate.
 [光電変換モジュール10の製造]
 図7は、図1および図2に示す光電変換モジュール10の製造方法を示す工程図である。図7を参照して、光電変換モジュール10の製造が開始されると、半導体基板(n型単結晶シリコン基板)のエッチング工程が実行される(工程S1)。より具体的には、半導体基板(n型単結晶シリコン基板)をエタノール等で超音波洗浄して脱脂する。その後、半導体基板(n型単結晶シリコン基板)の表面をアルカリを用いて化学的に異方性エッチングし、半導体基板(n型単結晶シリコン基板)の表面をテクスチャ化する。引き続いて、半導体基板(n型単結晶シリコン基板)をフッ酸中に浸漬して半導体基板(n型単結晶シリコン基板)の表面に形成された自然酸化膜を除去するとともに、半導体基板(n型単結晶シリコン基板)の表面を水素で終端する。
[Manufacture of photoelectric conversion module 10]
FIG. 7 is a process diagram showing a method for manufacturing the photoelectric conversion module 10 shown in FIGS. 1 and 2. Referring to FIG. 7, when manufacturing of photoelectric conversion module 10 is started, an etching process of a semiconductor substrate (n-type single crystal silicon substrate) is performed (process S1). More specifically, the semiconductor substrate (n-type single crystal silicon substrate) is degreased by ultrasonic cleaning with ethanol or the like. Thereafter, the surface of the semiconductor substrate (n-type single crystal silicon substrate) is chemically anisotropically etched using alkali to texture the surface of the semiconductor substrate (n-type single crystal silicon substrate). Subsequently, the semiconductor substrate (n-type single crystal silicon substrate) is immersed in hydrofluoric acid to remove the natural oxide film formed on the surface of the semiconductor substrate (n-type single crystal silicon substrate), and the semiconductor substrate (n-type silicon substrate). The surface of the single crystal silicon substrate is terminated with hydrogen.
 その後、太陽電池セル33(または太陽電池セル33A)の作製工程が実行される(工程S2)。引き続いて、電極取付工程が実行される(工程S3)。より具体的には、太陽電池セル33(または太陽電池セル33A)を配線シート34に接続し、配線シート34の正極実装パッド11および負極実装パッド12にそれぞれ正極端子31および負極端子32を接続する。これによって、光電変換装置3が作製される。 Thereafter, a manufacturing step of the solar battery cell 33 (or the solar battery cell 33A) is executed (step S2). Subsequently, an electrode mounting step is performed (step S3). More specifically, solar cell 33 (or solar cell 33A) is connected to wiring sheet 34, and positive electrode terminal 31 and negative electrode terminal 32 are connected to positive electrode mounting pad 11 and negative electrode mounting pad 12 of wiring sheet 34, respectively. . Thereby, the photoelectric conversion device 3 is manufactured.
 そして、保護材5、封止材4、光電変換装置3、封止材2および保護材1を順次載置する載置工程が実行される(工程S4)。 And the mounting process which mounts the protective material 5, the sealing material 4, the photoelectric conversion apparatus 3, the sealing material 2, and the protective material 1 one by one is performed (process S4).
 その後、保護材5、封止材4、光電変換装置3、封止材2および保護材1を封止する封止工程が実行され(工程S5)、引き続いて、封止した保護材5、封止材4、光電変換装置3、封止材2および保護材1を熱処理する熱処理工程が実行される(工程S6)。 Then, the sealing process which seals the protective material 5, the sealing material 4, the photoelectric conversion apparatus 3, the sealing material 2, and the protective material 1 is performed (process S5), followed by the sealed protective material 5, sealing A heat treatment step is performed in which the stopping material 4, the photoelectric conversion device 3, the sealing material 2, and the protective material 1 are heat treated (step S6).
 そして、端子ボックス20を正極端子31および負極端子32に接続する端子ボックス接続工程が実行される(工程S7)。最後に、光電変換モジュール10の変換効率を測定する変換効率測定工程が実行され(工程S8)、光電変換モジュール10が完成する。 And the terminal box connection process which connects the terminal box 20 to the positive electrode terminal 31 and the negative electrode terminal 32 is performed (process S7). Finally, a conversion efficiency measurement step for measuring the conversion efficiency of the photoelectric conversion module 10 is performed (step S8), and the photoelectric conversion module 10 is completed.
 [太陽電池セルの作製工程]
 図8および図9は、それぞれ、図7に示す太陽電池セルの作製工程S2の詳細な工程を示す第1および第2の工程図である。なお、図8および図9は、図4に示す太陽電池セル33を作製する工程図を示す。
[Solar cell manufacturing process]
FIG. 8 and FIG. 9 are first and second process diagrams showing detailed steps of the solar cell manufacturing process S2 shown in FIG. 7, respectively. 8 and 9 show process diagrams for manufacturing the solar battery cell 33 shown in FIG.
 図8を参照して、図7に示す半導体基板のエッチング工程が終了すると、一方の表面にテクスチャ構造が形成されたn型単結晶シリコン基板40が作製される(工程(a)参照)。 Referring to FIG. 8, when the etching process of the semiconductor substrate shown in FIG. 7 is completed, n-type single crystal silicon substrate 40 having a texture structure formed on one surface is produced (see process (a)).
 そして、BSG(Boron Silicate Glass)膜41およびNSG(Non-doped Silicate Glass)膜42を常圧CVD(Chemical Vapor Deposition)法によってn型単結晶シリコン基板40の裏面に順次積層する(工程(b)参照)。 Then, a BSG (Boron Silicate Glass) film 41 and an NSG (Non-doped Silicate Glass) film 42 are sequentially laminated on the back surface of the n-type single crystal silicon substrate 40 by a normal pressure CVD (ChemicalhemVapor Deposition) method (step (b)). reference).
 この場合、BSG膜41を形成するときの材料ガスは、シラン(SiH)ガス、酸素(O)ガスおよびジボラン(B)ガスであり、NSG膜42を形成するときの材料ガスは、SiHガスおよびOガスである。また、BSG膜41およびNSG膜42の膜厚は、例えば、10~100nmである。 In this case, the material gas for forming the BSG film 41 is silane (SiH 4 ) gas, oxygen (O 2 ) gas, and diborane (B 2 H 6 ) gas, and the material gas for forming the NSG film 42. Are SiH 4 gas and O 2 gas. The film thicknesses of the BSG film 41 and the NSG film 42 are, for example, 10 to 100 nm.
 工程(b)の後、フォトリソグラフィおよびエッチングを用いてBSG膜41およびNSG膜42をパターンニングし、BSG膜41A~41EおよびNSG膜42A~42Eを形成する(工程(c)参照)。 After step (b), BSG film 41 and NSG film 42 are patterned using photolithography and etching to form BSG films 41A to 41E and NSG films 42A to 42E (see step (c)).
 そして、BSG膜41A~41E、NSG膜42A~42Eおよびn型単結晶シリコン基板40の裏面を覆うようにPSG(Phosphorus Silicate Glass)膜43を常圧CVD法によって形成する(工程(d)参照)。この場合、PSG膜43を形成するときの材料ガスは、SiHガス、Oガスおよびフォスフィン(PH)ガスである。また、PSG膜43の膜厚は、例えば、10~100nmである。 Then, a PSG (Phosphorus Silicate Glass) film 43 is formed by atmospheric pressure CVD so as to cover the BSG films 41A to 41E, NSG films 42A to 42E and the back surface of the n-type single crystal silicon substrate 40 (see step (d)). . In this case, the material gas for forming the PSG film 43 is SiH 4 gas, O 2 gas, and phosphine (PH 3 ) gas. The thickness of the PSG film 43 is, for example, 10 to 100 nm.
 図9を参照して、工程(d)の後、BSG膜41A~41E、NSG膜42A~42E、PSG膜43およびn型単結晶シリコン基板40を熱処理し、その後、BSG膜41A~41E、NSG膜42A~42EおよびPSG膜43を除去する。この熱処理によって、BがBSG膜41からn型単結晶シリコン基板40中へ拡散するとともに、PがPSG膜43からn型単結晶シリコン基板40中へ拡散し、p型拡散領域3311~3315およびn型拡散領域3316~3320が裏面側に形成されたn型単結晶シリコン基板331が作製される(工程(e)参照)。 Referring to FIG. 9, after step (d), BSG films 41A-41E, NSG films 42A-42E, PSG film 43 and n-type single crystal silicon substrate 40 are heat-treated, and then BSG films 41A-41E, NSG The films 42A to 42E and the PSG film 43 are removed. By this heat treatment, B diffuses from the BSG film 41 into the n-type single crystal silicon substrate 40, and P diffuses from the PSG film 43 into the n-type single crystal silicon substrate 40, and p-type diffusion regions 3311 to 3315 and n An n-type single crystal silicon substrate 331 in which type diffusion regions 3316 to 3320 are formed on the back side is manufactured (see step (e)).
 なお、熱処理は、不活性ガス雰囲気中で800℃の温度で1時間行われる。また、BSG膜41A~41EとNSG膜43との間には、それぞれ、NSG膜42A~42Eが配置されているので、BSG膜41A~41E上に形成されたPSG膜43からのPがp型拡散領域3311~3315へ拡散するのが防止される。 The heat treatment is performed for 1 hour at a temperature of 800 ° C. in an inert gas atmosphere. In addition, since the NSG films 42A to 42E are disposed between the BSG films 41A to 41E and the NSG film 43, respectively, P from the PSG film 43 formed on the BSG films 41A to 41E is p-type. Diffusion to the diffusion regions 3311 to 3315 is prevented.
 工程(e)の後、窒化シリコン膜をスパッタリング法およびプラズマCVD法等を用いてn型単結晶シリコン基板331の受光面(=テクスチャ構造が形成された面)上に堆積し、受光面パッシベーッション膜332aを形成する(工程(f)参照)。 After the step (e), a silicon nitride film is deposited on the light-receiving surface (= the surface on which the texture structure is formed) of the n-type single crystal silicon substrate 331 by using a sputtering method, a plasma CVD method, or the like. The film 332a is formed (see step (f)).
 そして、SnO、ZnOおよびTiO等からなる透明導電膜332bを蒸着、スパッタリング法および熱CVD法等を用いて受光面パッシベーッション膜332aの受光面側に形成する(工程(g)参照)。 Then, a transparent conductive film 332b made of SnO 2 , ZnO, TiO 2 or the like is formed on the light-receiving surface side of the light-receiving surface passivation film 332a by vapor deposition, sputtering, thermal CVD, or the like (see step (g)). .
 そして、Agペースト等をp型拡散領域3311~3315およびn型拡散領域3316~3320に接するように塗布し、その塗布したAgペーストを焼成して正極電極371~375および負極電極376~380を形成する。これによって、太陽電池セル33が完成する(工程(h)参照)。 Then, Ag paste or the like is applied so as to be in contact with the p-type diffusion regions 3311 to 3315 and the n-type diffusion regions 3316 to 3320, and the applied Ag paste is baked to form the positive electrodes 371 to 375 and the negative electrodes 376 to 380. To do. Thereby, the photovoltaic cell 33 is completed (refer process (h)).
 図10から図12は、それぞれ、図7に示す太陽電池セルの作製工程S2の他の詳細な工程を示す第1から第3の工程図である。なお、図10から図12は、図5に示す太陽電池セル33Aを作製する工程図を示す。 FIGS. 10 to 12 are first to third process diagrams showing other detailed processes of the solar cell manufacturing process S2 shown in FIG. 7, respectively. 10 to 12 show process diagrams for manufacturing the solar battery cell 33A shown in FIG.
 図10を参照して、図7に示す半導体基板のエッチング工程が終了すると、一方の表面にテクスチャ構造が形成されたn型単結晶シリコン基板333が作製される(工程(a)参照)。 Referring to FIG. 10, when the etching process of the semiconductor substrate shown in FIG. 7 is completed, an n-type single crystal silicon substrate 333 having a texture structure formed on one surface is produced (see process (a)).
 そして、p型非晶質薄膜44をプラズマCVD法によってn型単結晶シリコン基板333の裏面に形成する(工程(b)参照)。p型非晶質薄膜44がp型a-Siからなる場合、SiHガスおよびBガスが材料ガスとして用いられ、p型非晶質薄膜44がp型a-SiCからなる場合、SiHガス、メタン(CH)ガスおよびBガスが材料ガスとして用いられ、p型非晶質薄膜44がp型a-SiNからなる場合、SiHガス、アンモニア(NH)ガスおよびBガスが材料ガスとして用いられ、p型非晶質薄膜44がp型a-SiGeからなる場合、SiHガス、ゲルマン(GeH)ガスおよびBガスが材料ガスとして用いられる。 Then, a p-type amorphous thin film 44 is formed on the back surface of the n-type single crystal silicon substrate 333 by plasma CVD (see step (b)). When the p-type amorphous thin film 44 is made of p-type a-Si, SiH 4 gas and B 2 H 6 gas are used as material gases, and when the p-type amorphous thin film 44 is made of p-type a-SiC, When SiH 4 gas, methane (CH 4 ) gas, and B 2 H 6 gas are used as material gases and the p-type amorphous thin film 44 is made of p-type a-SiN, SiH 4 gas, ammonia (NH 3 ) gas And B 2 H 6 gas are used as material gases, and when the p-type amorphous thin film 44 is made of p-type a-SiGe, SiH 4 gas, germane (GeH 4 ) gas, and B 2 H 6 gas are used as material gases. Used.
 工程(b)の後、レジストをp型非晶質薄膜44上に塗布し、その塗布したレジストをフォトリソグラフィおよびエッチングによってパターンニングし、レジストパターン45を形成する(工程(c)参照)。 After step (b), a resist is applied onto the p-type amorphous thin film 44, and the applied resist is patterned by photolithography and etching to form a resist pattern 45 (see step (c)).
 そして、レジストパターン45をマスクとしてp型非晶質薄膜44をエッチングし、p型非晶質薄膜381~385を形成する(工程(d)参照)。 Then, the p-type amorphous thin film 44 is etched using the resist pattern 45 as a mask to form p-type amorphous thin films 381 to 385 (see step (d)).
 図11を参照して、工程(d)の後、レジストパターン45をマスクとしてn型非晶質薄膜386~390をプラズマCVD法によってn型単結晶シリコン基板333の裏面に形成する(工程(e)参照)。この場合、n型非晶質薄膜46がレジストパターン45上に形成される。n型非晶質薄膜46,386~390がn型a-Siからなる場合、SiHガスおよびPHガスが材料ガスとして用いられ、n型非晶質薄膜46,386~390がn型a-SiCからなる場合、SiHガス、CHガスおよびPHガスが材料ガスとして用いられ、n型非晶質薄膜46,386~390がn型a-SiNからなる場合、SiHガス、NHガスおよびPHガスが材料ガスとして用いられ、n型非晶質薄膜46,386~390がn型a-SiGeからなる場合、SiHガス、GeHガスおよびPHガスが材料ガスとして用いられる。 Referring to FIG. 11, after step (d), n-type amorphous thin films 386 to 390 are formed on the back surface of n-type single crystal silicon substrate 333 by plasma CVD using resist pattern 45 as a mask (step (e). )reference). In this case, an n-type amorphous thin film 46 is formed on the resist pattern 45. When the n-type amorphous thin films 46 and 386 to 390 are made of n-type a-Si, SiH 4 gas and PH 3 gas are used as material gases, and the n-type amorphous thin films 46 and 386 to 390 are n-type a -When made of SiC, SiH 4 gas, CH 4 gas and PH 3 gas are used as material gases, and when the n-type amorphous thin films 46, 386 to 390 are made of n-type a-SiN, SiH 4 gas, NH 3 gas and PH 3 gas are used as material gases, and when the n-type amorphous thin films 46 and 386 to 390 are made of n-type a-SiGe, SiH 4 gas, GeH 4 gas and PH 3 gas are used as material gases. It is done.
 工程(e)の後、レジストパターン45を除去する。これによって、n型非晶質薄膜46は、リフトオフによって除去され、p型非晶質薄膜381~385およびn型非晶質薄膜386~390がn型単結晶シリコン基板333の裏面に交互に形成される(工程(f)参照)。 After step (e), the resist pattern 45 is removed. As a result, the n-type amorphous thin film 46 is removed by lift-off, and p-type amorphous thin films 381 to 385 and n-type amorphous thin films 386 to 390 are alternately formed on the back surface of the n-type single crystal silicon substrate 333. (See step (f)).
 その後、i型非晶質シリコン膜からなる受光面パッシベーション膜332cをプラズマCVD法によってn型単結晶シリコン基板333の受光面(=テクスチャ構造が形成された面)上に形成する(工程(g)参照)。この場合、受光面パッシベーション膜332cがi型a-Siからなる場合、SiHガスが材料ガスとして用いられ、受光面パッシベーション膜332cがi型a-SiCからなる場合、SiHガスおよびCHガスが材料ガスとして用いられ、受光面パッシベーション膜332cがi型a-SiNからなる場合、SiHガスおよびNHガスが材料ガスとして用いられ、受光面パッシベーション膜332cがi型a-SiGeからなる場合、SiHガスおよびGeHガスが材料ガスとして用いられる。 Thereafter, a light-receiving surface passivation film 332c made of an i-type amorphous silicon film is formed on the light-receiving surface (= the surface on which the texture structure is formed) of the n-type single crystal silicon substrate 333 by plasma CVD (step (g)). reference). In this case, when the light-receiving surface passivation film 332c is made of i-type a-Si, SiH 4 gas is used as a material gas, and when the light-receiving surface passivation film 332c is made of i-type a-SiC, SiH 4 gas and CH 4 gas are used. Is used as the material gas and the light-receiving surface passivation film 332c is made of i-type a-SiN, SiH 4 gas and NH 3 gas are used as the material gas, and the light-receiving surface passivation film 332c is made of i-type a-SiGe SiH 4 gas and GeH 4 gas are used as material gases.
 図12を参照して、工程(g)の後、SnO、ZnOおよびTiO等からなる透明導電膜332bを蒸着、スパッタリング法および熱CVD法等を用いて受光面パッシベーション膜332cの受光面側に形成する(工程(h)参照)。 Referring to FIG. 12, after step (g), a transparent conductive film 332b made of SnO 2 , ZnO, TiO 2 or the like is deposited, using a sputtering method, a thermal CVD method, or the like, on the light receiving surface side of light receiving surface passivation film 332c. (See step (h)).
 そして、蒸着、スパッタリング法および熱CVD法等を用いて、p型非晶質薄膜381~385およびn型非晶質薄膜386~390に接するように透明導電膜を形成し、その形成した透明導電膜に接してAgペースト等を塗布し、その塗布したAgペーストを焼成して正極電極391~395および負極電極396~400を形成する。これによって、太陽電池セル33Aが完成する(工程(i)参照)。 Then, a transparent conductive film is formed so as to be in contact with the p-type amorphous thin films 381 to 385 and the n-type amorphous thin films 386 to 390 using vapor deposition, sputtering, thermal CVD, or the like, and the formed transparent conductive film An Ag paste or the like is applied in contact with the film, and the applied Ag paste is baked to form positive electrodes 391 to 395 and negative electrodes 396 to 400. Thus, the solar battery cell 33A is completed (see step (i)).
 [電極取付工程]
 図13は、図7に示す電極取付工程S3の詳細な工程を示す工程図である。なお、図13は、1つの太陽電池セル33を配線シート34の1つの領域の正極パッド6および負極パッド7に接続する場合の工程図を示す。
[Electrode mounting process]
FIG. 13 is a process diagram showing detailed steps of the electrode attachment step S3 shown in FIG. FIG. 13 is a process diagram in the case where one solar battery cell 33 is connected to the positive electrode pad 6 and the negative electrode pad 7 in one region of the wiring sheet 34.
 図13を参照して、図7に示す太陽電池セルの作製工程S2の後、配線シート34の5個の正極パッド6および5個の負極パッド7上に導電材13を載せる(工程(a)参照)。導電材13は、例えば、銀または半田を含有するエポキシ系ペーストからなる。そして、導電材13は、印刷、塗布および転写のいずれかによって正極パッド6および負極パッド7上に載せられる。 Referring to FIG. 13, after solar cell manufacturing step S <b> 2 shown in FIG. 7, conductive material 13 is placed on five positive electrode pads 6 and five negative electrode pads 7 of wiring sheet 34 (step (a)). reference). The conductive material 13 is made of, for example, an epoxy paste containing silver or solder. The conductive material 13 is placed on the positive electrode pad 6 and the negative electrode pad 7 by any one of printing, application, and transfer.
 工程(a)の後、正極電極371~375が正極パッド6上に位置し、負極電極376~380が負極パッド7上に位置するように太陽電池セル33を配線シート34の1つの領域(領域341~364のいずれか)上に配置する(工程(b)参照)。 After the step (a), the solar cell 33 is placed in one region (region) of the wiring sheet 34 so that the positive electrodes 371 to 375 are located on the positive electrode pad 6 and the negative electrodes 376 to 380 are located on the negative electrode pad 7. Any one of 341 to 364) (see step (b)).
 そして、太陽電池セル33および配線シート34を高温室で加熱し、エポキシ系ペーストを硬化させる。これによって、正極電極371~375が正極パッド6に接続され、負極電極376~380が負極パッド7に接続され、太陽電池セル33が配線シート34に固定される(工程(c)参照)。 Then, the solar battery cell 33 and the wiring sheet 34 are heated in a high temperature chamber to cure the epoxy paste. Accordingly, the positive electrodes 371 to 375 are connected to the positive electrode pad 6, the negative electrodes 376 to 380 are connected to the negative electrode pad 7, and the solar battery cell 33 is fixed to the wiring sheet 34 (see step (c)).
 上述したように、光電変換装置3は、24個の太陽電池セル33を備えるので、実際には、24個の太陽電池セル33を図13の工程(a)~(c)に従って配線シート34に固定する。 As described above, since the photoelectric conversion device 3 includes the 24 solar cells 33, actually, the 24 solar cells 33 are formed on the wiring sheet 34 according to the steps (a) to (c) of FIG. Fix it.
 そして、24個の太陽電池セル33を配線シート34に固定すると、正極端子31を正極実装パッド11に半田付けし、負極端子32を負極実装パッド12に半田付けする。これによって、光電変換装置3が作製される。 When 24 solar cells 33 are fixed to the wiring sheet 34, the positive electrode terminal 31 is soldered to the positive electrode mounting pad 11, and the negative electrode terminal 32 is soldered to the negative electrode mounting pad 12. Thereby, the photoelectric conversion device 3 is manufactured.
 なお、24個の太陽電池セル33Aを配線シート34に固定する場合も、上述した方法によって、24個の太陽電池セル33Aを配線シート34に固定する。 Even when 24 solar cells 33A are fixed to the wiring sheet 34, the 24 solar cells 33A are fixed to the wiring sheet 34 by the method described above.
 [載置工程]
 図14は、図7に示す載置工程S4の詳細な工程を示す工程図である。図14を参照して、図7に示す電極取付工程S3の後、封止材4を保護材5上に載置する(工程(a)参照)。
[Placement process]
FIG. 14 is a process diagram showing detailed steps of the mounting process S4 shown in FIG. Referring to FIG. 14, after electrode attaching step S3 shown in FIG. 7, sealing material 4 is placed on protective material 5 (see step (a)).
 そして、上述した周縁部5A,5Bが保護材5の外周側に形成されるように光電変換装置3を封止材4上に載置する(工程(b)参照)。 Then, the photoelectric conversion device 3 is placed on the sealing material 4 so that the peripheral edge portions 5A and 5B described above are formed on the outer peripheral side of the protective material 5 (see step (b)).
 その後、封止材2および保護材1を光電変換装置3上に順次載置する(工程(c)参照)。 Thereafter, the sealing material 2 and the protective material 1 are sequentially placed on the photoelectric conversion device 3 (see step (c)).
 封止材2,4は、上述したように、熱可塑性を有する樹脂からなる。その結果、封止材2,4は、熱硬化性および熱架橋性を有しないため、従来、用いられているEVAのように架橋反応を必要としない樹脂である。そして、封止材2,4は、アイオノマー樹脂またはポリオレフィン系樹脂からなる。 The sealing materials 2 and 4 are made of a resin having thermoplasticity as described above. As a result, since the sealing materials 2 and 4 do not have thermosetting property and thermal cross-linking property, they are resins that do not require a cross-linking reaction unlike conventionally used EVA. The sealing materials 2 and 4 are made of an ionomer resin or a polyolefin resin.
 また、封止材2,4の厚さは、200~600μmの範囲が好ましい。この程度の厚さであれば、正極端子31および負極端子32を封止材2,4中に確実に埋没させることができるからである。 The thickness of the sealing materials 2 and 4 is preferably in the range of 200 to 600 μm. This is because the positive electrode terminal 31 and the negative electrode terminal 32 can be surely buried in the sealing materials 2 and 4 with this thickness.
 保護材1,5は、3.2mmの厚さを有する強化ガラスからなる。保護材1のサイズは、封止材2のサイズと概ね同じであり、保護材5のサイズは、封止材4のサイズと概ね同じである。 The protective materials 1 and 5 are made of tempered glass having a thickness of 3.2 mm. The size of the protective material 1 is substantially the same as the size of the sealing material 2, and the size of the protective material 5 is substantially the same as the size of the sealing material 4.
 裏面側の保護材5として、フィルム状のバックシートを用いてもよい。バックシートとしては、ポリフッ化ビニル(PVF)/アルミニウム箔/ポリフッ化ビニル(PVF)の3層構造、またはポリエチレンテレフタレート(PET)/金属酸化物を蒸着した樹脂フィルム/ポリエチレンテレフタレート(PET)の3層構造を使用できる。ポリエチレンテレフタレート(PET)/金属酸化物を蒸着した樹脂フィルム/ポリエチレンテレフタレート(PET)の3層構造において、金属酸化物を蒸着した樹脂フィルムは、水蒸気バリア層として機能する。バックシートの厚さは、50~300μmの範囲が好適である。 As the protective material 5 on the back side, a film-like back sheet may be used. As the back sheet, a three-layer structure of polyvinyl fluoride (PVF) / aluminum foil / polyvinyl fluoride (PVF), or a three-layer structure of polyethylene terephthalate (PET) / resin film deposited with metal oxide / polyethylene terephthalate (PET) You can use the structure. In the three-layer structure of polyethylene terephthalate (PET) / resin film deposited with metal oxide / polyethylene terephthalate (PET), the resin film deposited with metal oxide functions as a water vapor barrier layer. The thickness of the back sheet is preferably in the range of 50 to 300 μm.
 なお、封止材2,4は、シランカップリング剤を添加したアイオノマー樹脂またはポリオレフィン系樹脂からなっていてもよく、シラン変性樹脂を含有するアイオノマー樹脂またはポリオレフィン系樹脂からなっていてもよい。シランカップリング剤を添加することによって接着力を高くできる。 The sealing materials 2 and 4 may be made of an ionomer resin or a polyolefin resin added with a silane coupling agent, or may be made of an ionomer resin or a polyolefin resin containing a silane-modified resin. Adhesion can be increased by adding a silane coupling agent.
 この発明の実施の形態においては、光電変換モジュール10に用いられた封止材2,4からシランカップリング剤が検出されなくても、封止材2,4がシランカップリングを含んでいれば、シランカップリング剤が封止材2,4に添加されていることになる。封止材2,4がシランカップリングを含んでいれば、封止材2,4の接着力が高くなるからである。 In the embodiment of the present invention, even if the silane coupling agent is not detected from the sealing materials 2 and 4 used in the photoelectric conversion module 10, the sealing materials 2 and 4 include silane coupling. A silane coupling agent is added to the sealing materials 2 and 4. It is because the adhesive force of the sealing materials 2 and 4 will become high if the sealing materials 2 and 4 contain the silane coupling.
 また、封止材2,4は、熱伝導率が封止材2,4よりも大きい粒子を更に含んでいてもよい。この粒子は、例えば、酸化アルミニウム(アルミナ)、窒化ケイ素、炭化ケイ素、酸化亜鉛、酸化マグネシウム、窒化アルミニウムおよび窒化ホウ素のいずれかからなる。 Moreover, the sealing materials 2 and 4 may further include particles having a higher thermal conductivity than the sealing materials 2 and 4. The particles are made of, for example, aluminum oxide (alumina), silicon nitride, silicon carbide, zinc oxide, magnesium oxide, aluminum nitride, or boron nitride.
 この場合、酸化アルミニウム(アルミナ)の熱伝導率は、23~36(W/m・K)であり、窒化ケイ素の熱伝導率は、20~28(W/m・K)であり、炭化ケイ素の熱伝導率は、55~130(W/m・K)であり、酸化亜鉛の熱伝導率は、25.2(W/m・K)であり、酸化マグネシウムの熱伝導率は、59(W/m・K)であり、窒化アルミニウムの熱伝導率は、90~200(W/m・K)であり、窒化ホウ素の熱伝導率は、30~50(W/m・K)である。 In this case, the thermal conductivity of aluminum oxide (alumina) is 23 to 36 (W / m · K), and the thermal conductivity of silicon nitride is 20 to 28 (W / m · K). The thermal conductivity of 55 to 130 (W / m · K) is zinc oxide, the thermal conductivity of zinc oxide is 25.2 (W / m · K), and the thermal conductivity of magnesium oxide is 59 ( W / m · K), the thermal conductivity of aluminum nitride is 90 to 200 (W / m · K), and the thermal conductivity of boron nitride is 30 to 50 (W / m · K). .
 このように、この発明の実施の形態においては、2(W/m・K)よりも大きい熱伝導率を有する粒子を封止材2,4に添加する。これによって、光電変換モジュール10の内部の熱伝導性を向上させ、光電変換モジュール10のホットスポット発生時の温度上昇を抑制することができる。 Thus, in the embodiment of the present invention, particles having a thermal conductivity larger than 2 (W / m · K) are added to the sealing materials 2 and 4. Thereby, the heat conductivity inside the photoelectric conversion module 10 can be improved, and the temperature rise at the time of the hot spot generation | occurrence | production of the photoelectric conversion module 10 can be suppressed.
 [封止工程]
 図15は、図7に示す封止工程S5の詳細な工程を示す工程図である。図15を参照して、図7に示す載置工程S4が終了した時点では、保護材5、封止材4、光電変換装置3、封止材2および保護材1が順次積層されている(工程(a)参照)。
[Sealing process]
FIG. 15 is a process diagram showing detailed steps of the sealing step S5 shown in FIG. Referring to FIG. 15, when the mounting step S <b> 4 shown in FIG. 7 is completed, the protective material 5, the sealing material 4, the photoelectric conversion device 3, the sealing material 2, and the protective material 1 are sequentially stacked ( Step (a)).
 そして、保護材5、封止材4、光電変換装置3、封止材2および保護材1を封止装置であるラミネート装置のヒーター板上に載置する。ヒーター板は、110℃に加熱されている。 And the protective material 5, the sealing material 4, the photoelectric conversion apparatus 3, the sealing material 2, and the protective material 1 are mounted on the heater plate of the laminating apparatus which is a sealing apparatus. The heater plate is heated to 110 ° C.
 その後、ラミネート装置の上部室と下部室を同じ圧力に減圧する。この操作によって、保護材1と封止材2との界面、封止材2と光電変換装置3との界面、光電変換装置3と封止材4との界面および封止材4と保護材5との界面から空気が除去されるとともに、封止材2,4に含まれる気泡が除去される。 After that, the upper chamber and lower chamber of the laminator are depressurized to the same pressure. By this operation, the interface between the protective material 1 and the sealing material 2, the interface between the sealing material 2 and the photoelectric conversion device 3, the interface between the photoelectric conversion device 3 and the sealing material 4, and the sealing material 4 and the protective material 5. The air is removed from the interface with the bubbles, and the bubbles contained in the sealing materials 2 and 4 are removed.
 引き続いて、ラミネート装置の上部室の圧力を大気圧に戻す。これによって、1気圧が保護材5、封止材4、光電変換装置3、封止材2および保護材1に加圧され、加圧状態を保持する。 Subsequently, the pressure in the upper chamber of the laminator is returned to atmospheric pressure. Thereby, 1 atmosphere is pressurized to the protective material 5, the sealing material 4, the photoelectric conversion device 3, the sealing material 2, and the protective material 1 to maintain the pressurized state.
 この場合、減圧、加圧および加圧状態の保持を合わせて約6分間の工程である。 In this case, it is a process of about 6 minutes including decompression, pressurization, and holding of the pressurized state.
 加熱温度は、105~120℃が好ましい。105℃よりも低い温度では、封止材2,4の融点よりも低いため、光電変換装置3を封止できない。また、120℃よりも高い温度では、封止材2,4の粘度が低くなり過ぎて、封止材2,4が保護材1,5の端面からはみ出し、外観上、見栄えが悪くなる。 The heating temperature is preferably 105 to 120 ° C. At a temperature lower than 105 ° C., the photoelectric conversion device 3 cannot be sealed because it is lower than the melting point of the sealing materials 2 and 4. Further, at a temperature higher than 120 ° C., the viscosity of the sealing materials 2 and 4 becomes too low, and the sealing materials 2 and 4 protrude from the end surfaces of the protective materials 1 and 5, and the appearance is poor.
 上述した方法を用いて、保護材5、封止材4、光電変換装置3、封止材2および保護材1を封止することによって、封止材2,4は、保護材1,5の周縁部1A,1B,5A,5Bで一体的になり、封止材24が形成される。そして、封止材24の外周側の端部は、保護材1,5の面内方向において、外部から光電変換装置3へ向かう方向に窪んだ断面形状を有する。また、封止後の保護材1と保護材5との間隔は、封止前の保護材1と保護材5との間隔よりも狭い。更に、封止材24は、保護材1,5の周縁部1A,1B,5A,5Bにおいて、保護材1,5を相互に接着させる機能を果たす(工程(b)参照)。 By sealing the protective material 5, the sealing material 4, the photoelectric conversion device 3, the sealing material 2, and the protective material 1 using the method described above, the sealing materials 2 and 4 The peripheral portions 1A, 1B, 5A, 5B are integrated to form the sealing material 24. And the edge part of the outer peripheral side of the sealing material 24 has a cross-sectional shape depressed in the direction which goes to the photoelectric conversion apparatus 3 from the outside in the in-plane direction of the protective materials 1 and 5. The distance between the protective material 1 and the protective material 5 after sealing is narrower than the distance between the protective material 1 and the protective material 5 before sealing. Further, the sealing material 24 functions to adhere the protective materials 1 and 5 to each other at the peripheral portions 1A, 1B, 5A and 5B of the protective materials 1 and 5 (see step (b)).
 [熱処理工程]
 図7に示す封止工程S5の後、光電変換モジュール10を熱処理する。熱処理装置としてIR両面輻射のIR炉を用いる。なお、熱処理装置は、IR炉に限定されるものではなく、熱風を用いる熱風炉であってもよい。
[Heat treatment process]
After the sealing step S5 shown in FIG. 7, the photoelectric conversion module 10 is heat-treated. An IR furnace with IR double-side radiation is used as a heat treatment apparatus. The heat treatment apparatus is not limited to the IR furnace, and may be a hot air furnace using hot air.
 また、熱処理装置としては、複数の光電変換モジュール10を収容して一括で加熱できるバッチ処理装置が好ましい。一度の加熱で多数の光電変換モジュール10を処理できる装置を使用することによって、熱処理装置の単位時間当たりの処理能力を向上でき、熱処理工程が製造ラインのボトルネックとなることを防止できる。 Moreover, as the heat treatment apparatus, a batch processing apparatus capable of accommodating a plurality of photoelectric conversion modules 10 and heating them at once is preferable. By using an apparatus capable of processing a large number of photoelectric conversion modules 10 with a single heating, the processing capacity per unit time of the heat treatment apparatus can be improved, and the heat treatment process can be prevented from becoming a bottleneck in the production line.
 熱処理は、大気雰囲気中で行われた。光電変換モジュール10は、光電変換装置3を封止した構造となっているので、大気中の酸素の影響で太陽電池セル33,33Aの裏面の電極が酸化することがないからである。 The heat treatment was performed in an air atmosphere. This is because the photoelectric conversion module 10 has a structure in which the photoelectric conversion device 3 is sealed, so that the electrodes on the back surfaces of the solar cells 33 and 33A are not oxidized due to the influence of oxygen in the atmosphere.
 そして、熱処理を大気雰囲気中で行うため、真空引きのためのポンプ、および注入ガスが不要となる。 And, since the heat treatment is performed in the atmosphere, a pump for evacuation and an injection gas are unnecessary.
 また、昇温および降温というプロセスを用いず、予め設定した加熱温度まで昇温した熱処理装置に光電変換モジュール10を入れ、加熱した。昇温および降温というプロセスを用いないため、熱処理装置にプロセス制御機能を付ける必要がなく、熱処理装置を低コスト化できる。 In addition, the photoelectric conversion module 10 was put into a heat treatment apparatus heated to a preset heating temperature without using a process of raising and lowering temperature and heated. Since a process of raising and lowering temperature is not used, it is not necessary to add a process control function to the heat treatment apparatus, and the heat treatment apparatus can be reduced in cost.
 [端子ボックス接続工程]
 図7に示す熱処理工程S6の後、端子ボックス20の内部で正極端子31および負極端子32と外部出力端子とが半田付けによって接続される。
[Terminal box connection process]
After the heat treatment step S6 shown in FIG. 7, the positive terminal 31, the negative terminal 32 and the external output terminal are connected by soldering inside the terminal box 20.
 半田付けを実施した後、端子ボックス20の内部にシリコーン樹脂を注入し、防水性を向上させる。 After soldering, silicone resin is injected into the terminal box 20 to improve waterproofness.
 [変換効率測定工程]
 図7に示す端子ボックス接続工程S7の後、光電変換モジュール10の変換効率を測定した。光電変換モジュール10の変換効率を測定することによって、変換効率が低い光電変換モジュール10を特性不良として除外することが可能となり、製品の変換効率の最低値を保証できる。
[Conversion efficiency measurement process]
After the terminal box connection step S7 shown in FIG. 7, the conversion efficiency of the photoelectric conversion module 10 was measured. By measuring the conversion efficiency of the photoelectric conversion module 10, the photoelectric conversion module 10 having a low conversion efficiency can be excluded as a characteristic defect, and the minimum value of the conversion efficiency of the product can be guaranteed.
 図16は、封止工程S5および熱処理工程S6における封止材2,4の変化を示す断面図である。封止工程S5が開始される前、封止材2,4の端部は、直角形状である。そして、封止材2の端部(端面2A)は、保護材1との接触点a1を有し、封止材4の端部(端面4A)は、保護材5との接触点b1を有する(図16の(a)参照)。 FIG. 16 is a cross-sectional view showing changes in the sealing materials 2 and 4 in the sealing step S5 and the heat treatment step S6. Before the sealing step S5 is started, the ends of the sealing materials 2 and 4 have a right-angle shape. The end portion (end surface 2A) of the sealing material 2 has a contact point a1 with the protective material 1, and the end portion (end surface 4A) of the sealing material 4 has a contact point b1 with the protective material 5. (Refer to FIG. 16A).
 そして、封止工程S5が開始されると、封止材2,4は、加熱によって融解しながら保護材1,5同士を矢印の方向に引っ張り合うことによって、封止材2と保護材1との間の接着力および封止材4と保護材5との間の接着力が強化される。そして、加熱の進行に伴い、封止材2,4は、保護材1,5の周縁部1A,5Bにおいて一体になり、封止材24が形成される。保護材1,5は、保護材1,5同士の引張応力によって相互に近づき、封止材24を保護材1,5の外周側へ押し出すとともに、封止材24が軟化および融解するにつれて封止材24の保護材1,5に対する濡れ性が増加し、封止材24は、保護材1,5(=ガラス)との界面になじんで封止材24と保護材1との接触角α1および封止材24と保護材5との接触角α1は、90°よりも小さくなる(図16の(b)参照)。 And when sealing process S5 is started, the sealing materials 2 and 4 will pull the protective materials 1 and 5 to each other in the direction of the arrow while melting by heating. And the adhesive force between the sealing material 4 and the protective material 5 are strengthened. As the heating proceeds, the sealing materials 2 and 4 are integrated at the peripheral portions 1A and 5B of the protective materials 1 and 5, and the sealing material 24 is formed. The protective materials 1 and 5 approach each other due to the tensile stress between the protective materials 1 and 5, push the sealing material 24 to the outer peripheral side of the protective materials 1 and 5, and seal as the sealing material 24 softens and melts. The wettability of the material 24 to the protective materials 1 and 5 increases, and the sealing material 24 becomes familiar with the interface with the protective materials 1 and 5 (= glass) and the contact angle α a between the sealing material 24 and the protective material 1. 1 and the contact angle α b 1 between the sealing material 24 and the protective material 5 is smaller than 90 ° (see FIG. 16B).
 その結果、接触点a2,b2は、保護材1,5の面内方向において接触点a1,b1よりも外側へ移動する。また、封止材24の端面24Aも、封止工程S5の開始前よりも外側へ移動する。 As a result, the contact points a2 and b2 move outside the contact points a1 and b1 in the in-plane direction of the protective materials 1 and 5. Further, the end surface 24A of the sealing material 24 also moves to the outer side than before the start of the sealing step S5.
 そして、加熱が更に進行すると、保護材1,5は、相互に更に近づき、封止材24を更に外側へ押し出すとともに、封止材24の保護材1,5に対する濡れ性が更に増加し、封止材24と保護材1との接触角α2および封止材24と保護材5との接触角α2は、それぞれ、接触角α1,α1よりも更に小さくなる(図16の(c)参照)。 As the heating further proceeds, the protective materials 1 and 5 further approach each other and push the sealing material 24 further outward, and the wettability of the sealing material 24 to the protective materials 1 and 5 further increases, and the sealing material 24 is sealed. contact angle alpha b 2 and the contact angle alpha a 2 and the sealing material 24 between the sealant 24 and the protective member 1 and the protective member 5, respectively, the contact angle alpha a 1, further reduced than alpha b 1 (FIG. 16 (c)).
 その結果、接触点a3,b3は、保護材1,5の面内方向において接触点a2,b2よりも更に外側へ移動する。また、封止材24の端面24Bも、端面24Aよりも外側へ移動する。そして、封止材24の外周部の端部(=端面24B)は、保護材1,5の面内方向において、外側から光電変換装置3へ向かう方向へ窪んだ断面形状を有する。 As a result, the contact points a3 and b3 move further outward than the contact points a2 and b2 in the in-plane direction of the protective materials 1 and 5. Further, the end surface 24B of the sealing material 24 also moves outward from the end surface 24A. And the edge part (= end surface 24B) of the outer peripheral part of the sealing material 24 has the cross-sectional shape hollowed in the direction which goes to the photoelectric conversion apparatus 3 from the outer side in the in-plane direction of the protective materials 1 and 5. FIG.
 図17は、接触角の定義を説明するための図である。図17を参照して、端面24B((a)参照))、端面24B’((b)参照))および端面24B”((b)参照))を封止材24の端面として想定する。端面24Bは、全体が保護材1,5の面内方向において外部から光電変換装置3へ向かう方向に窪んだ断面形状を有する。また、端面24B’は、接触点a3,b3の近傍で、保護材1,5の面内方向において光電変換装置3から外部へ向かう方向に窪んでおり、接触点a3,b3の近傍以外の領域で、保護材1,5の面内方向において外部から光電変換装置3へ向かう方向に窪んだ断面形状を有する。更に、端面24B”は、接触点a3,b3の近傍で、保護材1,5の面内方向において外部から光電変換装置3へ向かう方向に窪んでおり、接触点a3,b3の近傍以外の領域で、保護材1,5の面内方向において光電変換装置3から外部へ向かう方向に窪んだ断面形状を有する。 FIG. 17 is a diagram for explaining the definition of the contact angle. Referring to FIG. 17, the end face 24B (see (a))), the end face 24B ′ (see (b))) and the end face 24B ″ (see (b))) are assumed as end faces of the sealing material 24. 24B has a cross-sectional shape that is recessed in the direction from the outside toward the photoelectric conversion device 3 in the in-plane direction of the protective materials 1 and 5. Further, the end surface 24B ′ is in the vicinity of the contact points a3 and b3. 1 and 5 is recessed in the direction from the photoelectric conversion device 3 to the outside, and the photoelectric conversion device 3 from the outside in the in-plane direction of the protective material 1 and 5 in a region other than the vicinity of the contact points a3 and b3. The end surface 24B ″ is recessed in the direction toward the photoelectric conversion device 3 from the outside in the in-plane direction of the protective materials 1 and 5 in the vicinity of the contact points a3 and b3. In a region other than the vicinity of the contact points a3 and b3, Having a recessed cross-sectional shape in a direction from the photoelectric conversion device 3 to the outside in the plane direction of Mamoruzai 1,5.
 そして、この発明の実施の形態においては、封止材24と保護材1,5との接触点a3,b3における端面24B,24B’,24B”の接線が保護材1,5と成す角度α2,α2;α2’,α2’;α2”,α2”を接触角と定義する。 In the embodiment of the present invention, the angle α a formed by the tangents of the end faces 24B, 24B ′, 24B ″ at the contact points a3, b3 between the sealing material 24 and the protective materials 1, 5 is formed with the protective materials 1, 5. 2, α b 2; α a 2 ′, α b 2 ′; α a 2 ″, α b 2 ″ are defined as contact angles.
 接触角α2,α2および接触角α2”,α2”は、0度よりも大きく、かつ、90度よりも小さい。一方、接触角α2’,α2’は、90度よりも大きい。 The contact angles α a 2 and α b 2 and the contact angles α a 2 ″ and α b 2 ″ are larger than 0 degree and smaller than 90 degrees. On the other hand, the contact angles α a 2 ′ and α b 2 ′ are larger than 90 degrees.
 端面24B,24B”が形成される場合、水分が接触点a3,b3に残留し難くなり、
水分が保護材1と封止材2との界面および封止材4と保護材5との界面に侵入し難くなる。従って、保護材1と封止材2との剥離および封止材4と保護材5との剥離を抑制できる。
When the end faces 24B and 24B ″ are formed, moisture hardly remains at the contact points a3 and b3.
It becomes difficult for moisture to enter the interface between the protective material 1 and the sealing material 2 and the interface between the sealing material 4 and the protective material 5. Therefore, peeling between the protective material 1 and the sealing material 2 and peeling between the sealing material 4 and the protective material 5 can be suppressed.
 従って、この発明の実施の形態においては、保護材1,5の面内方向における封止材24の外周側の端部と保護材1,5との接触角を、0度よりも大きく、かつ、90度よりも小さい角度に設定することを特徴とする。 Therefore, in the embodiment of the present invention, the contact angle between the end portions on the outer peripheral side of the sealing material 24 and the protective materials 1 and 5 in the in-plane direction of the protective materials 1 and 5 is larger than 0 degrees, and , And an angle smaller than 90 degrees.
 図18は、光電変換モジュール10の端部の断面図である。図18を参照して、位置(A)を封止材24の端面が光電変換モジュール10の法線方向と平行になる位置と定義し、位置(B)を保護材1,5の最も外側の位置と定義し、位置(C)を保護材1,5と封止材24とが接触し始める位置と定義し、位置(D)を光電変換装置3の最も外側の位置と定義する。 FIG. 18 is a cross-sectional view of the end portion of the photoelectric conversion module 10. Referring to FIG. 18, position (A) is defined as a position where the end surface of sealing material 24 is parallel to the normal direction of photoelectric conversion module 10, and position (B) is defined as the outermost side of protective materials 1 and 5. The position (C) is defined as the position where the protective materials 1 and 5 and the sealing material 24 start to contact, and the position (D) is defined as the outermost position of the photoelectric conversion device 3.
 そうすると、封止材24が端面24Bを有する場合、位置(B)と位置(C)との距離L1は、位置(B)と位置(A)との距離L2よりも短い。また、封止材24が端面24Bを有する場合、位置(A)と位置(D)との距離L3は、位置(C)と位置(D)との距離L4よりも短い(図18の(a)参照)。 Then, when the sealing material 24 has the end surface 24B, the distance L1 between the position (B) and the position (C) is shorter than the distance L2 between the position (B) and the position (A). When the sealing material 24 has the end surface 24B, the distance L3 between the position (A) and the position (D) is shorter than the distance L4 between the position (C) and the position (D) ((a of FIG. 18 )reference).
 一方、封止材24が端面24B-1を有する場合、距離L1は、距離L2よりも長い。また、封止材24が端面24B-1を有する場合、距離L3は、距離L4よりも長い(図18の(b)参照)。 On the other hand, when the sealing material 24 has the end face 24B-1, the distance L1 is longer than the distance L2. When the sealing material 24 has the end face 24B-1, the distance L3 is longer than the distance L4 (see FIG. 18B).
 封止材24が端面24Bを有する場合、封止材24と保護材1,5との接触角は、0度よりも大きく、かつ、90度よりも小さい。 When the sealing material 24 has the end surface 24B, the contact angle between the sealing material 24 and the protective materials 1 and 5 is larger than 0 degree and smaller than 90 degrees.
 また、封止材24が端面24B-1を有する場合、封止材24と保護材1,5との接触角は、90度よりも大きい。 Further, when the sealing material 24 has the end face 24B-1, the contact angle between the sealing material 24 and the protective materials 1 and 5 is larger than 90 degrees.
 従って、この発明の実施の形態においては、保護材1,5の最も外側の位置と、保護材1,5と封止材24とが接触し始める位置との距離は、保護材1,5の最も外側の位置と、封止材24の端面が光電変換モジュール10の法線方向と平行になる位置との距離よりも短いことを特徴とする。また、この発明の実施の形態においては、封止材24が保護材1,5に接触し始める接触点と光電変換装置3との距離は、封止材24の最も窪んだ点と光電変換装置3との距離よりも長いことを特徴とする。 Therefore, in the embodiment of the present invention, the distance between the outermost position of the protective materials 1 and 5 and the position where the protective materials 1 and 5 and the sealing material 24 start to contact each other is the distance between the protective materials 1 and 5. It is characterized by being shorter than the distance between the outermost position and the position where the end face of the sealing material 24 is parallel to the normal direction of the photoelectric conversion module 10. In the embodiment of the present invention, the distance between the contact point at which the sealing material 24 starts to contact the protective materials 1 and 5 and the photoelectric conversion device 3 is the most depressed point of the sealing material 24 and the photoelectric conversion device. It is characterized by being longer than the distance to 3.
 上述したように、光電変換モジュール10においては、封止材2,4は、保護材1,5の面内方向における保護材1,5の周縁部1A,1B,5A,5Bにおいて保護材1,5に接触し、封止材2,4の外周側の端部(=封止材24)は、保護材1,5の面内方向において外側から光電変換装置3へ向かう方向に窪んだ断面形状を有する。 As described above, in the photoelectric conversion module 10, the sealing materials 2, 4 are the protective materials 1, 1 A, 1 B, 5 A, 5 B of the protective materials 1, 5 in the in-plane direction of the protective materials 1, 5. 5, and the end portions (= sealing material 24) on the outer peripheral side of the sealing materials 2 and 4 are recessed in the direction from the outside toward the photoelectric conversion device 3 in the in-plane direction of the protective materials 1 and 5. Have
 その結果、水分が封止材2,4(=封止材24)と保護剤1,5との接触点に残留し難くなり、水分が封止材2,4(=封止材24)と保護剤1,5との界面に侵入し難くなる。その結果、封止材2,4(=封止材24)と保護剤1,5との剥離を抑制できる。また、図18(a)に示すように、距離L4が距離L3よりも長くなった結果として、光電変換モジュール10の外部に水分が存在する場合、封止剤24と保護材1,5との界面から仮に水分が浸入しても、封止剤24と保護材1,5との接触点から光電変換装置3までの距離L4が長いため、光電変換モジュール10の絶縁耐圧性能の低下が生じ難く、ひいては、信頼性の高い光電変換モジュールを提供できる。更に、光電変換モジュール10は、封止材2,4(=封止材24)の外側に光電変換モジュール10を支持する枠体を備えない。 As a result, it becomes difficult for moisture to remain at the contact points between the sealing materials 2 and 4 (= sealing material 24) and the protective agents 1 and 5, and the moisture becomes the sealing materials 2 and 4 (= sealing material 24). It becomes difficult to enter the interface with the protective agents 1 and 5. As a result, peeling between the sealing materials 2 and 4 (= sealing material 24) and the protective agents 1 and 5 can be suppressed. Further, as shown in FIG. 18A, as a result of the distance L4 becoming longer than the distance L3, when moisture exists outside the photoelectric conversion module 10, the sealing agent 24 and the protective materials 1 and 5 Even if moisture enters from the interface, since the distance L4 from the contact point between the sealing agent 24 and the protective materials 1 and 5 to the photoelectric conversion device 3 is long, the dielectric strength performance of the photoelectric conversion module 10 is unlikely to deteriorate. As a result, a highly reliable photoelectric conversion module can be provided. Furthermore, the photoelectric conversion module 10 does not include a frame body that supports the photoelectric conversion module 10 outside the sealing materials 2 and 4 (= sealing material 24).
 従って、光電変換モジュール10のコストを低くでき、かつ、光電変換モジュール10の信頼性を向上できる。 Therefore, the cost of the photoelectric conversion module 10 can be reduced, and the reliability of the photoelectric conversion module 10 can be improved.
 [実施の形態2]
 図19は、実施の形態2による光電変換モジュールの構成を示す分解斜視図である。図19を参照して、実施の形態2による光電変換モジュール410は、保護材401,408と、光電変換装置402と、正極集電部403と、負極集電部404と、引出電極405,406と、封止材407と、端子ボックス409とを備える。
[Embodiment 2]
FIG. 19 is an exploded perspective view showing the configuration of the photoelectric conversion module according to the second embodiment. Referring to FIG. 19, photoelectric conversion module 410 according to Embodiment 2 includes protective materials 401 and 408, photoelectric conversion device 402, positive electrode current collector 403, negative electrode current collector 404, and extraction electrodes 405 and 406. And a sealing material 407 and a terminal box 409.
 保護材401は、光電変換モジュール410の受光面側の保護材である。そして、保護材401は、平板形状を有するとともに透光性の絶縁物からなり、例えば、長辺の長さが1.4mであり、短辺の長さが1.0mである長方形の受光面を有する厚さ3.9mmの未強化ガラスからなる。保護材401としては、ポリイミド等の透光性を有する耐熱性樹脂を用いてもよい。 The protective material 401 is a protective material on the light receiving surface side of the photoelectric conversion module 410. The protective material 401 has a flat plate shape and is made of a translucent insulator. For example, the rectangular light receiving surface having a long side length of 1.4 m and a short side length of 1.0 m. 3.9 mm thick untempered glass having As the protective material 401, a heat-resistant resin having translucency such as polyimide may be used.
 光電変換装置402は、保護材401上に配置される。そして、光電変換装置402は、集積型の薄膜太陽電池からなる。 The photoelectric conversion device 402 is disposed on the protective material 401. The photoelectric conversion device 402 includes an integrated thin film solar cell.
 正極集電部403は、保護材401の面内方向DR4において、光電変換装置402の一方端上に配置される。負極集電部404は、面内方向DR4において、光電変換装置402の他方端上に配置される。 The positive electrode current collector 403 is disposed on one end of the photoelectric conversion device 402 in the in-plane direction DR4 of the protective material 401. The negative electrode current collector 404 is disposed on the other end of the photoelectric conversion device 402 in the in-plane direction DR4.
 引出電極405は、その一方端が正極集電部403に電気的に接続され、他方端が保護材401の法線方向に折り曲げられている。引出電極406は、その一方端が負極集電部404に電気的に接続され、他方端が保護材401の法線方向に折り曲げられている。 The extraction electrode 405 has one end electrically connected to the positive electrode current collector 403 and the other end bent in the normal direction of the protective material 401. One end of the extraction electrode 406 is electrically connected to the negative electrode current collector 404, and the other end is bent in the normal direction of the protective material 401.
 封止材407は、光電変換装置402と保護材408との間に配置される。そして、封止材407は、平板形状を有し、上述した封止材2,4と同じ材料からなる。 The sealing material 407 is disposed between the photoelectric conversion device 402 and the protective material 408. The sealing material 407 has a flat plate shape and is made of the same material as the sealing materials 2 and 4 described above.
 保護材408は、光電変換装置402の裏面側の保護材である。そして、保護材408は、封止材407上に配置される。また、保護材408は、平板形状を有し、ガラスまたはフィルム状のバックシートからなる。更に、保護材408は、面内方向DR4における保護材408の中央部に貫通孔408Aを有する。この貫通孔408Aは、引出電極405,406の他方端が保護材408を貫通する孔である。 The protective material 408 is a protective material on the back side of the photoelectric conversion device 402. The protective material 408 is disposed on the sealing material 407. Further, the protective material 408 has a flat plate shape and is made of a glass or film-like back sheet. Furthermore, the protective material 408 has a through hole 408A at the center of the protective material 408 in the in-plane direction DR4. The through hole 408A is a hole through which the other end of the extraction electrodes 405 and 406 penetrates the protective material 408.
 端子ボックス409は、貫通孔408Aを介して引出電極405,406の他方端に電気的に接続される。 The terminal box 409 is electrically connected to the other ends of the extraction electrodes 405 and 406 through the through hole 408A.
 図20は、図19に示す光電変換モジュール410の断面図である。なお、図20においては、引出電極405,406および端子ボックス409が省略されている。 FIG. 20 is a cross-sectional view of the photoelectric conversion module 410 shown in FIG. In FIG. 20, the extraction electrodes 405 and 406 and the terminal box 409 are omitted.
 図20を参照して、光電変換装置402は、保護材401の一主面上に配置される。そして、光電変換装置402は、透明導電膜52と、光電変換層53と、裏面電極54とを備える。 Referring to FIG. 20, the photoelectric conversion device 402 is disposed on one main surface of the protective material 401. The photoelectric conversion device 402 includes a transparent conductive film 52, a photoelectric conversion layer 53, and a back electrode 54.
 透明導電膜52は、保護材401の面内方向において第1分離溝55を隔てて保護材401上に配置される。そして、透明導電膜52は、SnO、ZnOおよびITO(Indium Tin Oxide)等からなる。また、第1分離溝55の幅は、例えば、約60nmである。 The transparent conductive film 52 is disposed on the protective material 401 across the first separation groove 55 in the in-plane direction of the protective material 401. The transparent conductive film 52 is made of SnO 2 , ZnO, ITO (Indium Tin Oxide), or the like. The width of the first separation groove 55 is about 60 nm, for example.
 光電変換層53は、第1分離溝55を埋めるように透明導電膜52上に配置される。この場合、光電変換層53は、保護材401の面内方向において第2分離溝56を介して配置される。そして、光電変換層53は、例えば、p層、i層およびn層を順次積層したpin構造からなる。 The photoelectric conversion layer 53 is disposed on the transparent conductive film 52 so as to fill the first separation groove 55. In this case, the photoelectric conversion layer 53 is disposed via the second separation groove 56 in the in-plane direction of the protective material 401. The photoelectric conversion layer 53 has, for example, a pin structure in which a p layer, an i layer, and an n layer are sequentially stacked.
 i層は、非晶質相または微結晶相からなり、例えば、i型アモルファスシリコンまたはi型微結晶シリコンからなる。また、i層は、i層の光学的バンドギャップを変化させるために、i型アモルファスシリコンゲルマニウムまたはi型微結晶シリコンゲルマニウムからなっていてもよい。 The i layer is made of an amorphous phase or a microcrystalline phase, for example, i-type amorphous silicon or i-type microcrystalline silicon. The i layer may be made of i-type amorphous silicon germanium or i-type microcrystalline silicon germanium in order to change the optical band gap of the i layer.
 p層およびn層は、i層と同じシリコン系半導体層からなっていてもよく、i層と異なる種類のシリコン系半導体層からなっていてもよい。また、p層およびi層を微結晶シリコンで形成し、n層をアモルファスシリコンで形成してもよい。更に、p層をアモルファスシリコンカーバイドで形成してもよい。更に、p層、i層およびn層の各々は、1層構造であっても複数層の構造であってもよい。複数層の構造からなる場合、p層、i層およびn層の各層は、互いに異なる種類のシリコン系半導体からなっていてもよい。 The p layer and the n layer may be composed of the same silicon based semiconductor layer as the i layer, or may be composed of a silicon based semiconductor layer of a different type from the i layer. Alternatively, the p layer and the i layer may be formed of microcrystalline silicon, and the n layer may be formed of amorphous silicon. Further, the p layer may be formed of amorphous silicon carbide. Further, each of the p-layer, i-layer, and n-layer may have a single-layer structure or a multi-layer structure. In the case of a multi-layer structure, each of the p-layer, i-layer, and n-layer may be composed of different types of silicon-based semiconductors.
 光電変換層53は、pin構造を1つ備えていてもよく、pin構造を2つ、3つ、もしくは4つ以上備えていてもよい。ここでは、アモルファスシリコンからなるpin構造と微結晶シリコンからなるpin構造とを順次積層したタンデム接合構造によって光電変換層53を構成した。そして、光電変換層53の厚さは、500nm~4000nmが使用可能であるが、ここでは、2000nmとした。また、第2分離溝56の幅は、例えば、約40nmである。 The photoelectric conversion layer 53 may have one pin structure, or may have two, three, or four or more pin structures. Here, the photoelectric conversion layer 53 is configured by a tandem junction structure in which a pin structure made of amorphous silicon and a pin structure made of microcrystalline silicon are sequentially stacked. The thickness of the photoelectric conversion layer 53 can be 500 nm to 4000 nm, but is 2000 nm here. Further, the width of the second separation groove 56 is, for example, about 40 nm.
 裏面電極54は、第2分離溝56を埋めるように光電変換層53上に配置される。この場合、裏面電極54は、保護材401の面内方向において第3分離溝57を介して配置される。 The back electrode 54 is disposed on the photoelectric conversion layer 53 so as to fill the second separation groove 56. In this case, the back electrode 54 is disposed via the third separation groove 57 in the in-plane direction of the protective material 401.
 裏面電極54は、透明導電膜および金属膜を順次積層した構造からなる。透明導電膜は、ZnO、SnOおよびITO等からなる。金属膜は、Ag、AlおよびTi等からなる。ここでは、裏面電極54は、ZnOおよびAgを順次積層した構造からなる。また、第3分離溝57の幅は、例えば、約60nmである。 The back electrode 54 has a structure in which a transparent conductive film and a metal film are sequentially laminated. The transparent conductive film is made of ZnO, SnO 2, ITO, or the like. The metal film is made of Ag, Al, Ti, or the like. Here, the back electrode 54 has a structure in which ZnO and Ag are sequentially laminated. Further, the width of the third separation groove 57 is, for example, about 60 nm.
 なお、図20においては、保護材401の面内方向における封止材407の端部は、保護材401の法線方向に平行な端面を有するように図示されているが、実際には、図17の(a)に示す端面24Bのように、保護材401,408との接触角が0度よりも大きく、かつ、90度よりも小さく、保護材401,408の面内方向において外部から光電変換装置402へ向かう方向に窪んだ断面形状を有する。 In FIG. 20, the end portion of the sealing material 407 in the in-plane direction of the protective material 401 is illustrated as having an end surface parallel to the normal direction of the protective material 401. 17A, the contact angle with the protective members 401 and 408 is larger than 0 degree and smaller than 90 degrees, and the photoelectric layer is exposed from the outside in the in-plane direction of the protective members 401 and 408. It has a cross-sectional shape that is recessed in the direction toward the conversion device 402.
 これによって、水分が封止材407と保護材401,408との接触点に残留し難くなり、水分が封止材407と保護材401,408との界面に侵入し難くなる。その結果、封止材407と保護材401,408との剥離を抑制でき、光電変換モジュール410の信頼性を向上できる。特に、光電変換モジュール410においては、保護材401と光電変換装置402との間に封止材が挿入されていないため、保護材401,408の面内方向における封止材407の端面の断面形状を端面24Bの断面形状と同じに設定することによって、保護材401と封止材407との接触点に残留する水分を抑制するとともに保護材401と光電変換装置402との界面に水分が浸入するのを抑制して光電変換装置402の絶縁耐圧性能を向上させ、ひいては、信頼性の高い光電変換モジュールを提供することができる。 This makes it difficult for moisture to remain at the contact point between the sealing material 407 and the protective materials 401 and 408, and prevents moisture from entering the interface between the sealing material 407 and the protective materials 401 and 408. As a result, peeling between the sealing material 407 and the protective materials 401 and 408 can be suppressed, and the reliability of the photoelectric conversion module 410 can be improved. In particular, in the photoelectric conversion module 410, since the sealing material is not inserted between the protective material 401 and the photoelectric conversion device 402, the cross-sectional shape of the end surface of the sealing material 407 in the in-plane direction of the protective materials 401 and 408 Is set to be the same as the cross-sectional shape of the end surface 24B, moisture remaining at the contact point between the protective material 401 and the sealing material 407 is suppressed, and moisture enters the interface between the protective material 401 and the photoelectric conversion device 402. Thus, the withstand voltage performance of the photoelectric conversion device 402 can be improved, so that a highly reliable photoelectric conversion module can be provided.
 また、正極集電部403は、最も電位の高い光電変換層53に接続された裏面電極54上に配置され、負極集電部404は、最も電位の低い光電変換層53に接続された裏面電極54上に配置される。 The positive electrode current collector 403 is disposed on the back electrode 54 connected to the photoelectric conversion layer 53 having the highest potential, and the negative electrode current collector 404 is connected to the photoelectric conversion layer 53 having the lowest potential. 54.
 更に、封止材407の厚さは、200~600μmの範囲が好ましく、例えば、300μmに設定される。封止材407の厚さが200~600μmの範囲であれば、引出電極405,406を封止材407中に確実に埋没させることができるからである。 Furthermore, the thickness of the sealing material 407 is preferably in the range of 200 to 600 μm, for example, set to 300 μm. This is because the extraction electrodes 405 and 406 can be reliably buried in the sealing material 407 when the thickness of the sealing material 407 is in the range of 200 to 600 μm.
 上述したように、光電変換装置402は、複数の光電変換層53が第2分離溝56を介して透明導電膜52および裏面電極54によって直列に接続された集積構造を有する。ここで、直列接続の段数は、光電変換モジュール410から得たい出力電圧の仕様に応じて任意に設定できるが、ここでは、光電変換モジュール410の開放電圧を60~65Vとするために45段に設定された。 As described above, the photoelectric conversion device 402 has an integrated structure in which a plurality of photoelectric conversion layers 53 are connected in series by the transparent conductive film 52 and the back electrode 54 through the second separation groove 56. Here, the number of stages connected in series can be arbitrarily set according to the specification of the output voltage desired to be obtained from the photoelectric conversion module 410, but here, in order to set the open-circuit voltage of the photoelectric conversion module 410 to 60 to 65V, it is set to 45 stages. Was set.
 また、光電変換モジュール410は、光電変換装置402の外周側にトリミング領域58を有する。トリミング領域58は、透明導電膜52、光電変換層53および裏面電極54が存在しない領域である。そして、トリミング領域58は、例えば、約12mmの幅を有する。従って、光電変換モジュール410は、保護材401の周縁部上に絶縁領域(=トリミング領域58)が配置された構造からなる。 Further, the photoelectric conversion module 410 has a trimming region 58 on the outer peripheral side of the photoelectric conversion device 402. The trimming region 58 is a region where the transparent conductive film 52, the photoelectric conversion layer 53, and the back electrode 54 are not present. The trimming region 58 has a width of about 12 mm, for example. Therefore, the photoelectric conversion module 410 has a structure in which an insulating region (= trimming region 58) is disposed on the peripheral edge of the protective material 401.
 このように、トリミング領域58(=絶縁領域)を設けることによって、光電変換モジュール410に十分な絶縁性能を持たせることができる。 Thus, by providing the trimming region 58 (= insulating region), the photoelectric conversion module 410 can have sufficient insulating performance.
 更に、封止材が受光面側の保護材である保護材401の受光面側の周縁部に存在しない。封止材が保護材401の受光面側の周縁部に付着すると、外観上、好ましくない。また、熱処理工程以降の工程における搬送系に封止樹脂が付着する点でも好ましくない。 Furthermore, the sealing material is not present at the peripheral portion on the light receiving surface side of the protective material 401 which is a protective material on the light receiving surface side. If the sealing material adheres to the peripheral edge of the protective material 401 on the light receiving surface side, it is not preferable in terms of appearance. Moreover, it is not preferable also from the point that sealing resin adheres to the conveyance system in the processes after the heat treatment process.
 更に、光電変換モジュール410においては、光電変換装置402は、保護材401上に形成される。従って、光電変換モジュール410においては、光電変換装置402の支持基体は、保護材401である。 Furthermore, in the photoelectric conversion module 410, the photoelectric conversion device 402 is formed on the protective material 401. Therefore, in the photoelectric conversion module 410, the support base of the photoelectric conversion device 402 is the protective material 401.
 図21は、図19および図20に示す光電変換モジュール410の製造方法を示す工程図である。 FIG. 21 is a process diagram showing a method for manufacturing the photoelectric conversion module 410 shown in FIGS. 19 and 20.
 図21に示す工程図は、図7に示す工程図の工程S1,S2をそれぞれ工程S11,S12に代えたものであり、その他は、図7に示す工程図と同じである。 The process diagram shown in FIG. 21 is the same as the process diagram shown in FIG. 7 except that steps S1 and S2 in the process diagram shown in FIG. 7 are replaced with steps S11 and S12, respectively.
 図21を参照して、光電変換モジュール410の製造が開始されると、薄膜太陽電池セル(透明導電膜52、光電変換層53および裏面電極54)の作製工程が実行される(工程S11)。 Referring to FIG. 21, when manufacturing of photoelectric conversion module 410 is started, a manufacturing process of a thin-film solar battery cell (transparent conductive film 52, photoelectric conversion layer 53, and back electrode 54) is performed (step S11).
 そして、集積構造の形成工程が実行される(工程S12)。その後、上述した工程S3~S8が順次実行され、光電変換モジュール410が製造される。 Then, an integrated structure forming step is executed (step S12). Thereafter, the above-described steps S3 to S8 are sequentially performed, and the photoelectric conversion module 410 is manufactured.
 [光電変換装置の作製工程]
 図22および図23は、それぞれ、図21に示す薄膜太陽電池セルの作製工程S11および集積構造の形成工程S12の詳細な工程を示す第1および第2の工程図である。
[Production process of photoelectric conversion device]
22 and 23 are first and second process diagrams showing detailed processes of the thin-film solar cell manufacturing process S11 and the integrated structure forming process S12 shown in FIG. 21, respectively.
 図22を参照して、光電変換モジュール410の製造が開始されると、蒸着法、スパッタリング法および熱CVD法等によってSnOからなる透明導電膜52を保護材401上に形成する(図22の工程(a)参照)。 Referring to FIG. 22, when manufacturing of photoelectric conversion module 410 is started, transparent conductive film 52 made of SnO 2 is formed on protective material 401 by vapor deposition, sputtering, thermal CVD, or the like (in FIG. 22). Step (a)).
 そして、レーザ光を透明導電膜52側から透明導電膜52に照射し、透明導電膜52に第1分離溝55を形成する(図22の工程(b)参照)。この場合、第1分離溝55の幅は、例えば、約60nmである。また、レーザ光としてYAGレーザの基本波を用いた。 Then, the transparent conductive film 52 is irradiated with laser light from the transparent conductive film 52 side to form the first separation groove 55 in the transparent conductive film 52 (see step (b) in FIG. 22). In this case, the width of the first separation groove 55 is, for example, about 60 nm. Further, a fundamental wave of a YAG laser was used as the laser light.
 工程(b)の後、光電変換層53がプラズマCVD法によって第1分離溝55を埋めるように透明導電膜52上に形成される(図22の工程(c)参照)。より具体的には、アモルファスシリコンからなるpin構造と微結晶シリコンからなるpin構造とをプラズマCVD法によって透明導電膜52上に順次積層する。そして、光電変換層53の厚さは、例えば、2000nmである。 After the step (b), the photoelectric conversion layer 53 is formed on the transparent conductive film 52 so as to fill the first separation groove 55 by the plasma CVD method (see step (c) in FIG. 22). More specifically, a pin structure made of amorphous silicon and a pin structure made of microcrystalline silicon are sequentially stacked on the transparent conductive film 52 by a plasma CVD method. And the thickness of the photoelectric converting layer 53 is 2000 nm, for example.
 工程(c)の後、レーザ光を保護材401側から光電変換層53に照射し、光電変換層53に第2分離溝56を形成する(図22の工程(d)参照)。この場合、第2分離溝56の幅は、例えば、約60nmであり、第1分離溝55と第2分離溝56との間隔は、例えば、約40nmである。また、レーザ光としてYAGレーザの第2高調波を用いた。 After the step (c), the photoelectric conversion layer 53 is irradiated with laser light from the protective material 401 side to form the second separation groove 56 in the photoelectric conversion layer 53 (see step (d) in FIG. 22). In this case, the width of the second separation groove 56 is, for example, about 60 nm, and the distance between the first separation groove 55 and the second separation groove 56 is, for example, about 40 nm. The second harmonic of a YAG laser was used as the laser light.
 工程(d)の後、蒸着法およびスパッタリング法等によってZnOからなる透明導電膜を光電変換層53上に堆積し、引き続いて、蒸着法およびスパッタリング法等によってAgからなる金属層を透明導電膜上に堆積し、第2分離溝56を埋めるように裏面電極54を形成する(図22の工程(e)参照)。 After the step (d), a transparent conductive film made of ZnO is deposited on the photoelectric conversion layer 53 by a vapor deposition method, a sputtering method, or the like, and subsequently, a metal layer made of Ag is deposited on the transparent conductive film by a vapor deposition method, a sputtering method, or the like. The back electrode 54 is formed so as to fill the second separation groove 56 (see step (e) in FIG. 22).
 図23を参照して、工程(e)の後、保護材401側からレーザ光を光電変換層53および裏面電極54に照射し、光電変換層53および裏面電極54に第3分離溝57を形成する(図23の工程(f)参照)。この場合、第3分離溝57の幅は、例えば、約60nmであり、第2分離溝56と第3分離溝57との間隔は、例えば、約40nmである。また、レーザ光としてYAGレーザの第2高調波を用いた。そして、直列に接続される光電変換層53の段数は、45段である。 Referring to FIG. 23, after step (e), laser light is irradiated to photoelectric conversion layer 53 and back electrode 54 from the protective material 401 side to form third separation groove 57 in photoelectric conversion layer 53 and back electrode 54. (See step (f) in FIG. 23). In this case, the width of the third separation groove 57 is, for example, about 60 nm, and the distance between the second separation groove 56 and the third separation groove 57 is, for example, about 40 nm. The second harmonic of a YAG laser was used as the laser light. The number of stages of photoelectric conversion layers 53 connected in series is 45.
 その後、光電変換層53が直列に接続された直列接続体にYAGレーザの第2高調波を照射して光電変換層53および裏面電極54をスクライブし、更に、YAGレーザの基本波を用いて透明導電膜52をスクライブすることによって直列接続体を並列分割した。この並列分割された直列接続体をセルストリングと言う。 Thereafter, the YAG laser second harmonic is applied to the serial connection body in which the photoelectric conversion layers 53 are connected in series to scribe the photoelectric conversion layer 53 and the back electrode 54, and further transparent using the fundamental wave of the YAG laser. The series connection body was divided in parallel by scribing the conductive film 52. This series-connected body divided in parallel is called a cell string.
 引き続いて、保護材401の周縁部の透明導電膜52、光電変換層53および裏面電極54をYAGレーザの第2高調波を用いて取り除き、トリミング領域58を形成する(図23の工程(g)参照)。これによって、薄膜太陽電池セルの作製工程S11および集積構造の形成工程S12が終了する。 Subsequently, the transparent conductive film 52, the photoelectric conversion layer 53, and the back electrode 54 at the peripheral portion of the protective material 401 are removed using the second harmonic of the YAG laser to form a trimming region 58 (step (g) in FIG. 23). reference). Thus, the thin film solar cell manufacturing step S11 and the integrated structure forming step S12 are completed.
 なお、上記においては、YAGレーザを用いて、第1分離溝55、第2分離溝56および第3分離溝57を形成すると説明したが、実施の形態2においては、これに限らず、YVO4レーザの基本波および第2高調波等を用いて第1分離溝55、第2分離溝56および第3分離溝57を形成してもよい。また、機械的スクライブ法、サンドブラスト法、ウォータージェットおよびエッチング等によって第1分離溝55、第2分離溝56および第3分離溝57を形成してもよい。 In the above description, the YAG laser is used to form the first separation groove 55, the second separation groove 56, and the third separation groove 57. However, the second embodiment is not limited to this, and the YVO4 laser is used. The first separation groove 55, the second separation groove 56, and the third separation groove 57 may be formed using the fundamental wave, the second harmonic, and the like. Further, the first separation groove 55, the second separation groove 56, and the third separation groove 57 may be formed by a mechanical scribing method, a sand blast method, a water jet, etching, or the like.
 [電極取付工程]
 図24は、図21に示す電極取付工程S3の実施の形態2における詳細な工程を示す工程図である。図24を参照して、電極取付工程S3では、集積構造の最高電位の光電変換層53に接続された裏面電極54に正極集電部403を接合し、集積構造の最低電位の光電変換層53に接続された裏面電極54に負極集電部404を接合する(工程(a)参照)。
[Electrode mounting process]
FIG. 24 is a process diagram showing detailed steps in the second embodiment of the electrode attachment step S3 shown in FIG. Referring to FIG. 24, in electrode attachment step S3, positive electrode current collector 403 is joined to back electrode 54 connected to photoelectric conversion layer 53 having the highest potential in the integrated structure, and photoelectric conversion layer 53 having the lowest potential in the integrated structure. The negative electrode current collector 404 is joined to the back electrode 54 connected to (see step (a)).
 正極集電部403および負極集電部404の各々は、導電性が高い材料が好ましく、ここでは、半田被覆された銅製のバスバーを用いた。また、接合は、電気的かつ機械的に行われ、接合手段として半田付けまたは導電性ペースト等を用いる。 Each of the positive electrode current collector 403 and the negative electrode current collector 404 is preferably made of a material having high conductivity. Here, a solder-coated copper bus bar was used. Bonding is performed electrically and mechanically, and soldering or conductive paste is used as a bonding means.
 次に、引出電極405の一方端を正極集電部403に接続し、引出電極405の他方端を保護材401の法線方向に折り曲げる。同様に、引出電極406の一方端を負極集電部404に接続し、引出電極406の他方端を保護材401の法線方向に折り曲げる。 Next, one end of the extraction electrode 405 is connected to the positive electrode current collector 403, and the other end of the extraction electrode 405 is bent in the normal direction of the protective material 401. Similarly, one end of the extraction electrode 406 is connected to the negative electrode current collector 404, and the other end of the extraction electrode 406 is bent in the normal direction of the protective material 401.
 引出電極405,406は、正極集電部403および負極集電部404と同様に導電性が高い材料が好ましく、半田被覆された銅製のバスバーを使用した。また、引出電極405と正極集電部403との接合および引出電極406と負極集電部404との接合を半田付けによって行った。ここでは、引出電極と集電部とが別の部品となっている場合について説明したが、実施の形態2においては、集電部と引出電極とが予め一体となっているT字型の部品を用いてもよい。 The lead electrodes 405 and 406 are preferably made of a material having high conductivity like the positive electrode current collector 403 and the negative electrode current collector 404, and a soldered copper bus bar was used. The extraction electrode 405 and the positive electrode current collector 403 were joined together and the extraction electrode 406 and the negative electrode current collector 404 were joined together by soldering. Here, the case where the extraction electrode and the current collector are separate components has been described. However, in the second embodiment, a T-shaped component in which the current collector and the extraction electrode are integrated in advance. May be used.
 なお、引出電極405,406として絶縁被膜で覆われているものを用いた。引出電極405,406は、複数の光電変換層53に跨っているが、絶縁被膜の存在によって、隣接する光電変換層53が引出電極405,406を介して短絡することがない。 In addition, what was covered with the insulating film as the extraction electrodes 405 and 406 was used. The extraction electrodes 405 and 406 straddle the plurality of photoelectric conversion layers 53, but the adjacent photoelectric conversion layers 53 are not short-circuited via the extraction electrodes 405 and 406 due to the presence of the insulating film.
 [載置工程]
 図25は、図21に示す載置工程S4の実施の形態2における詳細な工程を示す工程図である。図25を参照して、図21に示す電極取付工程S3の後、光電変換装置402、正極集電部403、負極集電部404および引出電極405,406が形成された保護材401の光電変換装置402、正極集電部403、負極集電部404および引出電極405,406上に引出電極405,406の他方端(保護材401の法線方向に折り曲げられた部分)が貫通孔407Aを通るように封止材407を載置する(工程(a)参照)。
[Placement process]
FIG. 25 is a process diagram showing a detailed process in the second embodiment of the mounting process S4 shown in FIG. Referring to FIG. 25, after electrode attachment step S3 shown in FIG. 21, photoelectric conversion of protective material 401 in which photoelectric conversion device 402, positive current collector 403, negative current collector 404, and extraction electrodes 405 and 406 are formed. On the device 402, the positive electrode current collector 403, the negative electrode current collector 404, and the lead electrodes 405 and 406, the other ends of the lead electrodes 405 and 406 (portions bent in the normal direction of the protective material 401) pass through the through hole 407A. Thus, the sealing material 407 is placed (see step (a)).
 その後、引出電極405,406の他方端(保護材401の法線方向に折り曲げられた部分)が貫通孔408Aを通るように保護材408を封止材407上に載置する(工程(b)参照)。 Thereafter, the protective material 408 is placed on the sealing material 407 so that the other end of the extraction electrodes 405 and 406 (the portion bent in the normal direction of the protective material 401) passes through the through hole 408A (step (b)). reference).
 封止材407は、上述した封止材2,4と同じ材料からなる。また、封止材407の厚さは、例えば、300μmである。 The sealing material 407 is made of the same material as the sealing materials 2 and 4 described above. The thickness of the sealing material 407 is, for example, 300 μm.
 保護材408は、3.2mmの厚さを有する強化ガラスからなる。保護材408は、長辺の長さが1.4mであり、短辺の長さが1.0mである略長方形の受光面を有しており、保護材401と略同じ形状である。また、保護材408は、封止材407と概ね同じ大きさを有する。 The protective material 408 is made of tempered glass having a thickness of 3.2 mm. The protective material 408 has a substantially rectangular light receiving surface with a long side length of 1.4 m and a short side length of 1.0 m, and has substantially the same shape as the protective material 401. Further, the protective material 408 has approximately the same size as the sealing material 407.
 保護材408としてガラスを用いることによって、光電変換モジュール410として十分な強度を確保できるとともに、高い耐候性および絶縁性を確保できる。透明保護材とは異なるガラスを保護材408として用いている。保護材408として倍強化ガラスまたは未強化ガラスを用いてもよい。 By using glass as the protective material 408, sufficient strength as the photoelectric conversion module 410 can be secured, and high weather resistance and insulation can be secured. Glass different from the transparent protective material is used as the protective material 408. Double tempered glass or untempered glass may be used as the protective material 408.
 保護材408についてのその他の説明は、実施の形態1における保護材5の説明と同じである。 Other description of the protective material 408 is the same as the description of the protective material 5 in the first embodiment.
 [封止工程]
 図26は、図21に示す封止工程S5の実施の形態2における詳細な工程を示す工程図である。図26を参照して、図21に示す載置工程S4が終了した時点では、保護材401、光電変換装置402、正極集電部403、負極集電部404、封止材407および保護材408が順次積層されている(工程(a)参照)。
[Sealing process]
FIG. 26 is a process diagram showing detailed steps of the sealing step S5 shown in FIG. 21 in the second embodiment. Referring to FIG. 26, when the mounting step S4 shown in FIG. 21 is completed, the protective material 401, the photoelectric conversion device 402, the positive current collector 403, the negative current collector 404, the sealing material 407, and the protective material 408 are provided. Are sequentially stacked (see step (a)).
 そして、保護材401、光電変換装置402、正極集電部403、負極集電部404、封止材407および保護材408を封止装置であるラミネート装置のヒーター板上に載置する。ヒーター板は、110℃に加熱されている。 Then, the protective material 401, the photoelectric conversion device 402, the positive electrode current collector 403, the negative electrode current collector 404, the sealing material 407, and the protective material 408 are placed on the heater plate of the laminating apparatus which is a sealing device. The heater plate is heated to 110 ° C.
 その後、ラミネート装置の上部室と下部室を同じ圧力に減圧する。この操作によって、保護材401と封止材407との界面、光電変換装置402と封止材407との界面および封止材407と保護材408との界面から空気が除去されるとともに、封止材407に含まれる気泡が除去される。 After that, the upper chamber and lower chamber of the laminator are depressurized to the same pressure. By this operation, air is removed from the interface between the protective material 401 and the sealing material 407, the interface between the photoelectric conversion device 402 and the sealing material 407, and the interface between the sealing material 407 and the protective material 408. Bubbles contained in the material 407 are removed.
 引き続いて、ラミネート装置の上部室の圧力を大気圧に戻す。これによって、1気圧が保護材401、光電変換装置402、正極集電部403、負極集電部404、封止材407および保護材408に加圧され、加圧状態を保持する。 Subsequently, the pressure in the upper chamber of the laminator is returned to atmospheric pressure. Thus, 1 atmosphere is pressurized to the protective material 401, the photoelectric conversion device 402, the positive electrode current collector 403, the negative electrode current collector 404, the sealing material 407, and the protective material 408, and the pressurized state is maintained.
 この場合、減圧、加圧および加圧状態の保持を合わせて約6分間の工程である。 In this case, it is a process of about 6 minutes including decompression, pressurization, and holding of the pressurized state.
 加熱温度は、105~120℃が好ましい。105℃よりも低い温度では、封止材407の融点よりも低いため、光電変換装置402を封止できない。また、120℃よりも高い温度では、封止材407の粘度が低くなり過ぎて、封止材407が保護材401,408の端面からはみ出し、封止樹脂が保護材401の受光面を汚す可能性があるからである。 The heating temperature is preferably 105 to 120 ° C. At a temperature lower than 105 ° C., the photoelectric conversion device 402 cannot be sealed because it is lower than the melting point of the sealing material 407. Further, at a temperature higher than 120 ° C., the viscosity of the sealing material 407 becomes too low, the sealing material 407 protrudes from the end surfaces of the protective materials 401 and 408, and the sealing resin can contaminate the light receiving surface of the protective material 401. Because there is sex.
 上述した方法を用いて、保護材401、光電変換装置402、正極集電部403、負極集電部404、封止材407および保護材408を封止することによって、封止材407の外周側の端部は、保護材401,408の面内方向において、外部から光電変換装置402へ向かう方向に窪んだ断面形状を有する。また、封止後の保護材401と保護材408との間隔は、封止前の保護材401と保護材408との間隔よりも狭い。更に、封止材407は、保護材401,408の周縁部において、保護材401,408を相互に接着させる機能を果たす(工程(b)参照)。 By sealing the protective material 401, the photoelectric conversion device 402, the positive electrode current collector 403, the negative electrode current collector 404, the sealing material 407, and the protective material 408 using the method described above, the outer peripheral side of the sealing material 407 The end of each has a cross-sectional shape that is recessed in the direction from the outside toward the photoelectric conversion device 402 in the in-plane direction of the protective materials 401 and 408. Further, the distance between the protective material 401 and the protective material 408 after sealing is narrower than the distance between the protective material 401 and the protective material 408 before sealing. Further, the sealing material 407 functions to adhere the protective materials 401 and 408 to each other at the peripheral portions of the protective materials 401 and 408 (see step (b)).
 [熱処理工程]
 熱処理工程は、下記の2つの目的のために実施する。
[Heat treatment process]
The heat treatment step is performed for the following two purposes.
 (1)封止材と保護材との間の接着力の強化
 封止材407は、熱処理工程における150~200℃の加熱によって、封止材中のカルボン酸基の脱水縮合により、封止材407と保護材401,408の表面との結合が増加し、接着力が強化される。
(1) Strengthening of the adhesive force between the sealing material and the protective material The sealing material 407 is produced by dehydration condensation of carboxylic acid groups in the sealing material by heating at 150 to 200 ° C. in the heat treatment step. Bonding between 407 and the surfaces of the protective materials 401 and 408 increases, and the adhesive strength is enhanced.
 (2)変換効率の向上
 150~200℃の熱処理によって光電変換装置402の変換効率が向上する。その理由は、次のとおりである。
(2) Improvement of conversion efficiency The conversion efficiency of the photoelectric conversion device 402 is improved by heat treatment at 150 to 200 ° C. The reason is as follows.
 ・光電変換層53のp層およびn層に含まれるドーパントが活性化し、内部電界が大きくなることによってキャリアの収集効率が向上する。 The dopant contained in the p layer and n layer of the photoelectric conversion layer 53 is activated and the internal electric field is increased, thereby improving the carrier collection efficiency.
 ・裏面電極54を構成する透明導電膜の透過率および導電率が向上する。 · The transmittance and conductivity of the transparent conductive film constituting the back electrode 54 are improved.
 ・裏面電極54の透明導電膜と金属膜との間の界面での反射率が向上する。 -The reflectance at the interface between the transparent conductive film of the back electrode 54 and the metal film is improved.
 熱処理温度が200℃以上になると、実質的にi層への過剰な熱によってi層の欠陥密度が増加し、変換効率が低下する。 When the heat treatment temperature is 200 ° C. or higher, the defect density of the i layer increases due to the excessive heat to the i layer, and the conversion efficiency decreases.
 上述した効果が大きく発現し、変換効率の向上が特に大きくなるのは、熱処理温度が160~180℃の範囲である。 The above-mentioned effects are greatly manifested and the conversion efficiency is particularly improved when the heat treatment temperature is in the range of 160 to 180 ° C.
 上述した目的のために、実施の形態2における熱処理工程は、上述した実施の形態1における熱処理工程と同じ工程に従って実行される。 For the above-described purpose, the heat treatment process in the second embodiment is performed according to the same process as the heat treatment process in the first embodiment.
 [端子ボックス接続工程]
 端子ボックス接続工程S7では、端子ボックス409の内部において、端子ボックス409の外部出力端子が引出電極405,406の他方端(保護材401の法線方向に折り曲げられた部分)に半田付けによって接続される。
[Terminal box connection process]
In the terminal box connection step S7, in the terminal box 409, the external output terminal of the terminal box 409 is connected to the other end of the extraction electrodes 405 and 406 (the portion bent in the normal direction of the protective material 401) by soldering. The
 なお、端子ボックス409の内部には、モジュールが影になった場合に他のモジュールの出力電流をバイパスするためのバイパスダイオードが接続されている。このバイパスダイオードによって、直列に接続されたモジュールのうちのいずれかが影になった場合でも、他のモジュールから発電電力を取り出すことができるので、発電量を向上できる。端子ボックス409は、半田付け後、内部にシリコーン樹脂を注入することによって、防水性の向上が図られている。 In the terminal box 409, a bypass diode is connected to bypass the output current of another module when the module is shaded. Even if any of the modules connected in series is shaded by this bypass diode, the generated power can be taken out from the other modules, so that the power generation amount can be improved. The terminal box 409 is improved in waterproofness by injecting silicone resin into the inside after soldering.
 [変換効率測定工程]
 実施の形態2における変換効率測定工程は、上述した実施の形態1における変換効率測定工程と同じである。
[Conversion efficiency measurement process]
The conversion efficiency measurement process in Embodiment 2 is the same as the conversion efficiency measurement process in Embodiment 1 described above.
 実施の形態2においても、位置(A)~(D)を実施の形態1と同様に定義することによって、位置(B)と位置(C)との距離L1は、位置(B)と位置(A)との距離L2よりも短い。また、位置(A)と位置(D)との距離L3は、位置(C)と位置(D)との距離L4よりも短い。 Also in the second embodiment, by defining the positions (A) to (D) in the same manner as in the first embodiment, the distance L1 between the position (B) and the position (C) becomes the position (B) and the position ( It is shorter than the distance L2 with A). The distance L3 between the position (A) and the position (D) is shorter than the distance L4 between the position (C) and the position (D).
 また、封止材407と保護材401,408との接触角は、0度よりも大きく、かつ、90度よりも小さい。 Further, the contact angle between the sealing material 407 and the protective materials 401 and 408 is larger than 0 degree and smaller than 90 degrees.
 従って、実施の形態2においては、保護材401,408の最も外側の位置と、保護材401,408と封止材407とが接触し始める位置との距離は、保護材401,408の最も外側の位置と、封止材407の端面が光電変換モジュール410の法線方向と平行になる位置との距離よりも短いことを特徴とする。また、実施の形態2においては、封止材407が保護材401,408に接触し始める接触点と光電変換装置402との距離は、封止材407の最も窪んだ点と光電変換装置402との距離よりも長いことを特徴とする。 Therefore, in the second embodiment, the distance between the outermost position of the protective materials 401 and 408 and the position where the protective materials 401 and 408 and the sealing material 407 start to contact is the outermost position of the protective materials 401 and 408. And the distance between the end surface of the sealing material 407 and the position parallel to the normal direction of the photoelectric conversion module 410 is characterized. In Embodiment 2, the distance between the contact point at which the sealing material 407 starts to contact the protective materials 401 and 408 and the photoelectric conversion device 402 is the same as the point at which the sealing material 407 is most depressed and the photoelectric conversion device 402. It is characterized by being longer than the distance.
 上述したように、光電変換モジュール410においては、封止材407は、保護材401,408の面内方向における保護材401,408の周縁部において保護材401,408に接触し、封止材407の外周側の端部は、保護材401,408の面内方向において外側から光電変換装置402へ向かう方向に窪んだ断面形状を有する。 As described above, in the photoelectric conversion module 410, the sealing material 407 contacts the protective materials 401 and 408 at the periphery of the protective materials 401 and 408 in the in-plane direction of the protective materials 401 and 408, and the sealing material 407. The end of the outer peripheral side has a cross-sectional shape that is recessed in the direction from the outside toward the photoelectric conversion device 402 in the in-plane direction of the protective materials 401 and 408.
 その結果、水分が封止材407と保護剤401,408との接触点に残留し難くなり、水分が封止材407と保護剤401,408との界面に侵入し難くなる。その結果、封止材407と保護剤401,408との剥離を抑制できる。また、図18(a)に示すように、距離L4が距離L3よりも長くなった結果として、光電変換モジュール410の外部に水分が存在する場合、封止剤407と保護材401,408との界面から仮に水分が浸入しても、封止剤407と保護材401,408との接触点から光電変換装置402までの距離L4が長いため、光電変換モジュール410の絶縁耐圧性能の低下が生じ難く、ひいては、信頼性の高い光電変換モジュールを提供できる。更に、光電変換モジュール410は、封止材407の外側に光電変換モジュール410を支持する枠体を備えない。 As a result, moisture hardly remains at the contact point between the sealing material 407 and the protective agents 401 and 408, and moisture hardly enters the interface between the sealing material 407 and the protective agents 401 and 408. As a result, peeling between the sealing material 407 and the protective agents 401 and 408 can be suppressed. Further, as shown in FIG. 18A, when moisture exists outside the photoelectric conversion module 410 as a result of the distance L4 being longer than the distance L3, the sealing agent 407 and the protective materials 401 and 408 Even if moisture enters from the interface, since the distance L4 from the contact point between the sealing agent 407 and the protective materials 401 and 408 to the photoelectric conversion device 402 is long, the withstand voltage performance of the photoelectric conversion module 410 is unlikely to decrease. As a result, a highly reliable photoelectric conversion module can be provided. Further, the photoelectric conversion module 410 does not include a frame body that supports the photoelectric conversion module 410 outside the sealing material 407.
 従って、光電変換モジュール410のコストを低くでき、かつ、光電変換モジュール410の信頼性を向上できる。 Therefore, the cost of the photoelectric conversion module 410 can be reduced, and the reliability of the photoelectric conversion module 410 can be improved.
 上記においては、光電変換装置402は、受光面側の保護材401を支持基体として光電変換層53が形成されるスーパーストレート型構造からなると説明したが、実施の形態2においては、これに限らず、光電変換装置402は、裏面側の保護材408を支持基体として光電変換層53が形成されるサブストレート型構造からなっていてもよい。 In the above description, the photoelectric conversion device 402 is described as having a superstrate structure in which the photoelectric conversion layer 53 is formed using the protective material 401 on the light-receiving surface side as a supporting base. However, the present invention is not limited to this. The photoelectric conversion device 402 may have a substrate structure in which the photoelectric conversion layer 53 is formed using the protective material 408 on the back surface side as a supporting base.
 従って、光電変換モジュール410においては、光電変換装置402の支持基体は、保護材401または保護材408からなる。 Therefore, in the photoelectric conversion module 410, the support base of the photoelectric conversion device 402 is made of the protective material 401 or the protective material 408.
 また、上記においては、光電変換装置402は、アモルファスシリコン膜または微結晶シリコン膜を用いた薄膜シリコン太陽電池からなると説明したが、実施の形態2においては、これに限らず、光電変換装置402は、CIS太陽電池からなっていてもよく、CdTe太陽電池からなっていてもよい。 In the above description, the photoelectric conversion device 402 is a thin-film silicon solar cell using an amorphous silicon film or a microcrystalline silicon film. However, in Embodiment Mode 2, the photoelectric conversion device 402 is not limited to this. , CIS solar cells may be used, or CdTe solar cells may be used.
 以下、実施例について説明する。 Hereinafter, examples will be described.
 (実施例)
 熱処理工程S6における熱処理温度および熱処理時間を変えて製造した光電変換モジュールの実施例および比較例を表1および表2に示す。
(Example)
Tables 1 and 2 show examples and comparative examples of photoelectric conversion modules manufactured by changing the heat treatment temperature and the heat treatment time in the heat treatment step S6.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1は、保護材5,408がガラスである場合を示し、表2は、保護材5,408がバックシートである場合を示す。 Table 1 shows the case where the protective material 5,408 is glass, and Table 2 shows the case where the protective material 5,408 is a back sheet.
 また、実施例1~8におけるアイオノマー樹脂は、エチレン-メタクリル酸共重合体の分子間を金属イオンで架橋したものを用いた。 In addition, the ionomer resins in Examples 1 to 8 were obtained by cross-linking the ethylene-methacrylic acid copolymer molecules with metal ions.
 更に、高温高湿試験は、光電変換モジュール10(結晶太陽電池モジュール)および光電変換モジュール410(薄膜太陽電池モジュール)共に、温度85℃±2℃、湿度85%±5%の環境で1000時間の条件で実施された。この高温高湿試験の条件に関する国際規格は、結晶太陽電池モジュールについては、IEC61215に該当し、薄膜太陽電池モジュールについては、IEC61646に該当する。 Further, the high-temperature and high-humidity test was conducted for 1000 hours in an environment of a temperature of 85 ° C. ± 2 ° C. and a humidity of 85% ± 5% for both the photoelectric conversion module 10 (crystal solar cell module) and the photoelectric conversion module 410 (thin film solar cell module). Conducted under conditions. The international standard relating to the conditions of the high temperature and high humidity test corresponds to IEC61215 for the crystalline solar cell module and to IEC61646 for the thin film solar cell module.
 更に、絶縁耐電圧試験は、システム電圧が1000Vの光電変換モジュール用の試験として6000Vの電圧を印加し、電流値が50μA未満であれば、合格と判断した。この絶縁耐電圧試験の条件に関する国際規格は、結晶太陽電池モジュールについては、IEC61215に該当し、薄膜太陽電池モジュールについては、IEC61646に該当する。 Furthermore, in the dielectric withstand voltage test, a voltage of 6000 V was applied as a test for a photoelectric conversion module having a system voltage of 1000 V, and if the current value was less than 50 μA, it was determined to be acceptable. The international standard relating to the conditions of the dielectric withstand voltage test corresponds to IEC61215 for the crystalline solar cell module, and corresponds to IEC61646 for the thin film solar cell module.
 更に、図7または図21に示す変換効率測定工程S8が完了した後に、光電変換モジュール10,410の絶縁耐電圧を測定し、更に、上記の高温高湿試験を実施した後に、再度、絶縁耐電圧を測定し、高温高湿試験の前後における絶縁耐電圧試験時漏洩電流値の比率を求めた。この比率が大きいことは、高温高湿試験による絶縁性能の低下度が大きいことを意味する。 Furthermore, after the conversion efficiency measurement step S8 shown in FIG. 7 or FIG. 21 is completed, the dielectric strength voltage of the photoelectric conversion modules 10 and 410 is measured, and after the above high temperature and high humidity test is performed, the dielectric strength voltage is again measured. The voltage was measured, and the ratio of the leakage current value during the dielectric withstand voltage test before and after the high temperature and high humidity test was determined. A large ratio means that the degree of deterioration in insulation performance due to the high-temperature and high-humidity test is large.
 表1,2に示す結果から、実施例1~8および比較例1~4のいずれも、高温高湿試験前の絶縁耐電圧性能は、同等(漏洩電流が同程度に小さい)であるが、高温高湿試験の後においては、特に比較例1~4において、漏洩電流が大きくなっている。漏洩電流値比率(=試験後/試験前)が、保護材5,408としてガラスを用いた場合、実施例1~4では、1.3以下であるのに対し、比較例1,2では、2.1以上であること(表1参照)、保護材5,408としてバックシートを用いた場合、実施例5~8では、1.4以下であるのに対し、比較例3,4では、2.0以上であること(表2参照)からも明らかである。 From the results shown in Tables 1 and 2, all of Examples 1 to 8 and Comparative Examples 1 to 4 have the same dielectric withstand voltage performance before the high-temperature and high-humidity test (leakage current is about the same). After the high temperature and high humidity test, particularly in Comparative Examples 1 to 4, the leakage current is large. When glass is used as the protective material 5,408, the leakage current value ratio (= after test / before test) is 1.3 or less in Examples 1 to 4, whereas in Comparative Examples 1 and 2, 2.1 or more (see Table 1), when a back sheet is used as the protective material 5,408, in Examples 5 to 8, it is 1.4 or less, whereas in Comparative Examples 3 and 4, It is also clear from being 2.0 or more (see Table 2).
 即ち、実施例1~8は、比較例1~4に対して高温高湿試験環境での絶縁性能の低下が小さく、過酷な環境下の使用でも良好な絶縁耐電圧性能を維持できるので、長期信頼性の高い光電変換モジュールを提供できる。 That is, in Examples 1 to 8, the deterioration in insulation performance in the high-temperature and high-humidity test environment is smaller than that in Comparative Examples 1 to 4, and good insulation withstand voltage performance can be maintained even in use in harsh environments. A highly reliable photoelectric conversion module can be provided.
 このような絶縁性能の向上は、光電変換モジュール10,410の周縁部における封止材24,407の断面形状が図17の(a)に示す断面形状になっていることに起因していると考えられる。その理由は、以下のとおりである。 Such an improvement in insulation performance is due to the fact that the cross-sectional shape of the sealing materials 24 and 407 at the peripheral edge portions of the photoelectric conversion modules 10 and 410 is the cross-sectional shape shown in FIG. Conceivable. The reason is as follows.
 比較例1~4は、封止材として熱硬化樹脂であるEVAを使用しており、EVAは、加熱の初期には材料が軟化するが、加熱収縮性を有するため、その後の加熱の進行に伴って縮みながら硬化していく。従って、封止前の封止材の端面は、直角形状であるが、封止工程S5および熱処理工程S6を経て、封止材は、図18の(b)に示すように、角が取れた形状となって固まる。 In Comparative Examples 1 to 4, EVA, which is a thermosetting resin, is used as a sealing material. EVA is soft at the initial stage of heating, but has heat shrinkability. It hardens while shrinking. Therefore, the end surface of the sealing material before sealing is a right-angled shape, but the sealing material has a corner as shown in FIG. 18B through the sealing step S5 and the heat treatment step S6. It becomes a shape and hardens.
 これに対し、実施例1~8は、封止材として熱可塑性を有し、熱硬化性を有さないアイオノマー樹脂を使用しているので、封止材は、加熱によって融解しながら保護材同士を図16の(b)に示す矢印の方向に引っ張り合うことにより封止材と保護材との間の接着力が強化されていく。そして、加熱の進行に伴って、上記の引張応力により保護材間の距離が短くなり、封止材は、周縁部の方向に押し出されていくとともに、封止材が軟化および融解するにつれて、封止樹脂の保護材に対する濡れ性が増加することにより、封止樹脂は、ガラスである保護材になじんで封止材と保護材との接触角が減少していく。その結果、封止材の端面は、図18の(a)に示す断面形状になると考えられる。 On the other hand, Examples 1 to 8 use an ionomer resin that has thermoplasticity and does not have thermosetting properties as the sealing material. Is pulled in the direction of the arrow shown in FIG. 16 (b), thereby strengthening the adhesive force between the sealing material and the protective material. As the heating progresses, the distance between the protective materials is shortened by the tensile stress described above, and the sealing material is pushed out in the direction of the peripheral edge, and as the sealing material softens and melts, the sealing material is sealed. As the wettability of the stop resin to the protective material increases, the sealing resin becomes familiar with the protective material that is glass, and the contact angle between the sealing material and the protective material decreases. As a result, the end surface of the sealing material is considered to have a cross-sectional shape shown in FIG.
 実施例3と実施例4とを比較すると、熱処理工程S6における熱処理温度を高温にするほど、上記のメカニズムによって封止材は、凹型形状(図18の(a)に示す端面24Bの断面形状)に押し出されていることがわかる。位置(B)と位置(C)との間の距離L1が熱処理温度の上昇に伴って短くなっているからである。 Comparing Example 3 and Example 4, the higher the heat treatment temperature in heat treatment step S6, the more the sealing material has a concave shape (cross-sectional shape of the end face 24B shown in FIG. 18A) by the above mechanism. You can see that it is pushed out. This is because the distance L1 between the position (B) and the position (C) becomes shorter as the heat treatment temperature increases.
 また、封止剤と保護材との接触角は、0度よりも大きく、かつ、90度よりも小さい角度が好ましいが、実施例1~8より、30度よりも大きく、かつ、80度よりも小さい角度である場合、絶縁耐電圧試験時の漏洩電流値比率が1.4よりも小さいため、更に好ましい。 Further, the contact angle between the sealant and the protective material is preferably an angle larger than 0 degree and smaller than 90 degrees, but larger than 30 degrees and larger than 80 degrees from Examples 1 to 8. If the angle is small, the leakage current value ratio during the dielectric withstand voltage test is smaller than 1.4, which is more preferable.
 封止材の断面形状と絶縁耐電圧性能の向上との相関は、下記が考えられる。封止材と保護材とが接触し始める接触点と光電変換装置の外周側の位置との間の距離が長ければ長いほど、光電変換モジュールの端面から侵入した水分が光電変換装置へ到達するための距離が長くなり、保護材-封止材-保護材が直接接合する領域面積が増加するため、周縁部の接合力が増すことが原因であると考えられる。 The correlation between the cross-sectional shape of the sealing material and the improvement of the insulation withstand voltage performance is considered as follows. The longer the distance between the contact point at which the sealing material and the protective material start to contact and the position on the outer peripheral side of the photoelectric conversion device, the more moisture that has entered from the end face of the photoelectric conversion module reaches the photoelectric conversion device. This is considered to be caused by an increase in the bonding force at the peripheral portion because the distance between the protective material, the sealing material, and the protective material directly increases, and the area of the protective material, the sealing material, and the protective material increases.
 [高熱伝導性粒子の効果検証]
 高熱伝導性粒子の封止材への添加の有無によるホットスポット試験後の剥離面積割合を評価した。その結果を表3に示す。
[Verification of the effect of high thermal conductivity particles]
The peeled area ratio after the hot spot test according to the presence or absence of addition of high thermal conductivity particles to the sealing material was evaluated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 ホットスポット試験は、IEC61646に準拠し、表3に示すように封止材に分散させる高い熱伝導性を有する粒子の種類を変えた複数のサンプルについて実施された。 The hot spot test was carried out on a plurality of samples in accordance with IEC 61646 and changing the types of particles having high thermal conductivity dispersed in the sealing material as shown in Table 3.
 また、実施例9は、実施例7と同じ材料および同じ製造条件によって光電変換モジュールを作製してホットスポット試験を実施した。実施例10,11は、封止剤中に熱伝導性粒子を分散させた以外は、実施例7と同様にして光電変換モジュールを作製してホットスポット試験を実施した。 In Example 9, a photoelectric conversion module was produced using the same material and the same manufacturing conditions as in Example 7, and a hot spot test was performed. In Examples 10 and 11, a photoelectric conversion module was produced in the same manner as in Example 7 except that the heat conductive particles were dispersed in the sealant, and a hot spot test was performed.
 表3に示す結果から、熱伝導性粒子を含まない封止材を用いた実施例9は、熱伝導性粒子を含まない封止材を用いた比較例5よりもホットスポット試験後の剥離面積割合が小さい。 From the results shown in Table 3, Example 9 using the encapsulant containing no thermally conductive particles is a peeled area after the hot spot test than Comparative Example 5 using the encapsulant containing no thermally conductive particles. The ratio is small.
 このように、熱可塑性樹脂からなる封止材を用いて光電変換モジュールを作製することによって封止材と保護材との剥離面積が減少することが実証された。 Thus, it was demonstrated that the peel area between the sealing material and the protective material is reduced by producing a photoelectric conversion module using the sealing material made of thermoplastic resin.
 また、熱伝導性粒子を封止材中に分散させた実施例10,11は、熱伝導性粒子を含まない封止材を用いた実施例9に対し、ホットスポット試験後の剥離面積割合が減少した。熱伝導性粒子を封止材中に分散させることによって、ホットスポット時の温度上昇が抑制され、剥離面積を減少できたものと考えられる。 Further, in Examples 10 and 11 in which the thermally conductive particles are dispersed in the encapsulant, the peeling area ratio after the hot spot test is higher than that in Example 9 using the encapsulant that does not include the thermally conductive particles. Diminished. It is considered that by dispersing the heat conductive particles in the sealing material, the temperature rise at the time of hot spot was suppressed and the peeled area could be reduced.
 上述したように、封止剤の断面形状を図17の(a)のような形状とすることで、周縁部の接合力を増し、更に熱伝導性粒子の効果によりホットスポット時の温度上昇を抑制することで、絶縁耐圧性能の向上とホットスポット時の剥離抑制を同時に実現することができたと考えられる。 As described above, by making the cross-sectional shape of the sealant as shown in FIG. 17 (a), the bonding force of the peripheral portion is increased, and the temperature rise at the time of hot spot is further increased by the effect of the heat conductive particles. By suppressing, it is considered that the insulation withstand voltage performance and the suppression of peeling at the time of hot spot could be realized at the same time.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.
 この発明は、光電変換モジュールに適用される。 This invention is applied to a photoelectric conversion module.

Claims (5)

  1.  平板形状を有し、透光性の第1の保護材と、
     平板形状を有する第2の保護材と、
     前記第1の保護材と前記第2の保護材との間に配置された光電変換装置と、
     前記第1の保護材と前記第2の保護材との間で前記光電変換装置を封止する封止材とを備え、
     前記封止材は、前記第1および第2の保護材の面内方向の周縁部において前記第1および第2の保護材と接触し、
     前記面内方向における前記封止材の外周側の端部と前記第1および第2の保護材との接触角は、0度よりも大きく、かつ、90度よりも小さい、光電変換モジュール。
    A first protective material having a flat plate shape and translucent;
    A second protective material having a flat plate shape;
    A photoelectric conversion device disposed between the first protective material and the second protective material;
    A sealing material for sealing the photoelectric conversion device between the first protective material and the second protective material;
    The sealing material is in contact with the first and second protective materials at a peripheral edge in the in-plane direction of the first and second protective materials;
    The photoelectric conversion module in which the contact angle between the end portion on the outer peripheral side of the sealing material in the in-plane direction and the first and second protective materials is larger than 0 degree and smaller than 90 degrees.
  2.  前記面内方向における前記封止材の外周側の端部は、前記面内方向における外周側から前記光電変換装置へ向かう方向に窪んだ断面形状を有し、
     前記面内方向における前記封止材の外周側の端面が前記第1および第2の保護材に接触する接触点と前記光電変換装置との距離は、前記封止材の最も窪んだ点と前記光電変換装置との距離よりも長い、請求項1に記載の光電変換モジュール。
    An end portion on the outer peripheral side of the sealing material in the in-plane direction has a cross-sectional shape that is recessed in a direction from the outer peripheral side in the in-plane direction toward the photoelectric conversion device,
    The distance between the photoelectric conversion device and the contact point at which the end face on the outer peripheral side of the sealing material in the in-plane direction contacts the first and second protective materials is the most depressed point of the sealing material and the The photoelectric conversion module according to claim 1, wherein the photoelectric conversion module is longer than a distance from the photoelectric conversion device.
  3.  前記光電変換装置は、前記第1の保護材上に透光性の第1の電極層、半導体層および第2の電極層が順次積層された構造からなり、
     前記第1の保護材の面内方向における周縁部には、絶縁領域が形成されている、請求項1または請求項2に記載の光電変換モジュール。
    The photoelectric conversion device has a structure in which a light-transmitting first electrode layer, a semiconductor layer, and a second electrode layer are sequentially stacked on the first protective material,
    The photoelectric conversion module according to claim 1, wherein an insulating region is formed at a peripheral edge portion in the in-plane direction of the first protective material.
  4.  前記封止材は、熱可塑性を有する樹脂からなる、請求項1から請求項3のいずれか1項に記載の光電変換モジュール。 The photoelectric conversion module according to any one of claims 1 to 3, wherein the sealing material is made of a thermoplastic resin.
  5.  前記封止材は、アイオノマー樹脂またはポリオレフィン系樹脂からなる、請求項4に記載の光電変換モジュール。 The photoelectric conversion module according to claim 4, wherein the sealing material is made of an ionomer resin or a polyolefin resin.
PCT/JP2013/062566 2012-09-28 2013-04-30 Photoelectric conversion module WO2014050193A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-217515 2012-09-28
JP2012217515 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050193A1 true WO2014050193A1 (en) 2014-04-03

Family

ID=50387613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062566 WO2014050193A1 (en) 2012-09-28 2013-04-30 Photoelectric conversion module

Country Status (1)

Country Link
WO (1) WO2014050193A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002721A1 (en) * 2014-06-30 2016-01-07 日東電工株式会社 Solar-cell module, conductive member for use in solar cell module, and sealing film
WO2016002720A1 (en) * 2014-06-30 2016-01-07 日東電工株式会社 Solar cell module, and conductive member and sealing film for solar cell modules
WO2022268912A1 (en) * 2021-06-22 2022-12-29 Winterhalder Selbstklebetechnik Gmbh Photovoltaic module, and photovoltaic system connected in parallel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0199233A1 (en) * 1985-04-17 1986-10-29 Siemens Aktiengesellschaft Building construction element and its use
JP2003273374A (en) * 2002-03-13 2003-09-26 Sekisui Jushi Co Ltd Solar cell module and method of manufacturing the same
WO2011039860A1 (en) * 2009-09-30 2011-04-07 三菱重工業株式会社 Solar cell module, solar cell panel, solar cell module manufacturing method, and solar cell panel manufacturing method
JP2011222666A (en) * 2010-04-07 2011-11-04 Sharp Corp Method of manufacturing thin-film solar cell
WO2012002422A1 (en) * 2010-06-30 2012-01-05 シャープ株式会社 Method for manufacturing solar cell module, and solar cell module manufactured by the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0199233A1 (en) * 1985-04-17 1986-10-29 Siemens Aktiengesellschaft Building construction element and its use
JP2003273374A (en) * 2002-03-13 2003-09-26 Sekisui Jushi Co Ltd Solar cell module and method of manufacturing the same
WO2011039860A1 (en) * 2009-09-30 2011-04-07 三菱重工業株式会社 Solar cell module, solar cell panel, solar cell module manufacturing method, and solar cell panel manufacturing method
JP2011222666A (en) * 2010-04-07 2011-11-04 Sharp Corp Method of manufacturing thin-film solar cell
WO2012002422A1 (en) * 2010-06-30 2012-01-05 シャープ株式会社 Method for manufacturing solar cell module, and solar cell module manufactured by the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002721A1 (en) * 2014-06-30 2016-01-07 日東電工株式会社 Solar-cell module, conductive member for use in solar cell module, and sealing film
WO2016002720A1 (en) * 2014-06-30 2016-01-07 日東電工株式会社 Solar cell module, and conductive member and sealing film for solar cell modules
WO2022268912A1 (en) * 2021-06-22 2022-12-29 Winterhalder Selbstklebetechnik Gmbh Photovoltaic module, and photovoltaic system connected in parallel

Similar Documents

Publication Publication Date Title
US9299871B2 (en) Solar cell, solar cell module using solar cell, and manufacturing method for solar cell
KR101485623B1 (en) Solar cell module and solar cell
US9608140B2 (en) Solar cell and solar cell module
KR101703829B1 (en) Method for manufacturing photovoltaic cells with multiple junctions and multiple electrodes
JP2004288898A (en) Manufacturing method of solar cell module
JP6785427B2 (en) Solar cell elements and solar cell modules
JP5642355B2 (en) Solar cell module
WO2008038553A1 (en) Solar cell module
JP5641728B2 (en) Thin-film solar cell module and method for manufacturing thin-film solar cell module
JPWO2011065571A1 (en) PHOTOELECTRIC CONVERSION MODULE, ITS MANUFACTURING METHOD, AND POWER GENERATION DEVICE
JP2014157874A (en) Solar battery module and method of manufacturing the same
JP2008205045A (en) Manufacturing method of solar cell module
JP6334871B2 (en) Solar cell module
JP2015119008A (en) Solar battery module and method for manufacturing the same
JP6995828B2 (en) Solar cell module
US20120090680A1 (en) Solar cell module and method for manufacturing solar cell module
WO2014050193A1 (en) Photoelectric conversion module
JP2008305945A (en) Substrate for thin film solar cell and manufacturing method of the same, and manufacturing method of thin film solar cell
WO2019087590A1 (en) Double-sided electrode type solar cell and solar cell module
WO2015098872A1 (en) I-v measurement method for solar cell, i-v measurement device for solar cell, manufacturing method for solar cell, manufacturing method for solar cell module, and solar cell module
JP2011054660A (en) Solar-cell string and solar-cell module using the same
JP2016025119A (en) Solar battery module and manufacturing method for solar battery module
WO2014054605A1 (en) Photoelectric conversion device, method for manufacturing photoelectric conversion device, and photoelectric conversion module
JP6689757B2 (en) Photoelectric conversion element, solar cell module including the same, and photovoltaic power generation system
JP6653696B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP