JP2004111952A - Laminated glass and method of manufacturing the same - Google Patents

Laminated glass and method of manufacturing the same Download PDF

Info

Publication number
JP2004111952A
JP2004111952A JP2003304815A JP2003304815A JP2004111952A JP 2004111952 A JP2004111952 A JP 2004111952A JP 2003304815 A JP2003304815 A JP 2003304815A JP 2003304815 A JP2003304815 A JP 2003304815A JP 2004111952 A JP2004111952 A JP 2004111952A
Authority
JP
Japan
Prior art keywords
laminated glass
resin film
resin member
resin
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003304815A
Other languages
Japanese (ja)
Other versions
JP4208672B2 (en
Inventor
Tetsuo Sasajima
笹嶋 徹雄
Yuji Nunokawa
布川 祐史
Hidemi Nakai
中井 日出海
Takeshi Kubo
久保 剛
Koichi Yanagida
柳田 好一
Kazuichi Hirayama
平山 和一
Shinichi Nakajima
中島 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Nippon Sheet Glass Co Ltd
Original Assignee
Kyocera Corp
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Nippon Sheet Glass Co Ltd filed Critical Kyocera Corp
Priority to JP2003304815A priority Critical patent/JP4208672B2/en
Publication of JP2004111952A publication Critical patent/JP2004111952A/en
Application granted granted Critical
Publication of JP4208672B2 publication Critical patent/JP4208672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce cracking on a device when laminated glass is manufactured, in which a solar cell device is sealed between two glass plates. <P>SOLUTION: Between two glass plates 11 and 15, the following members are disposed: a solar cell device 16, two resin films 12 and 14 for sandwiching a device surface, and a resin member 13 disposed between a conductor 17 drawn from the light-receiving surface of the device 16 and the resin film making contact with the non-light receiving surface of a device 26. These members are integrated. The resin member 13 disposed under the conductor 17 reduces local stress concentration. When the first resin film 12 is increased in thickness (e.g. 1.0 mm or larger), cracking on the device is further prevented. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、太陽電池素子(太陽電池セル、光電変換素子)を封入した合わせガラスの製造方法と、この製造方法により製造しうる合わせガラスに関する。 The present invention relates to a method for producing a laminated glass in which a solar cell element (solar cell, photoelectric conversion element) is encapsulated, and a laminated glass that can be produced by this production method.

 太陽電池素子を一対の板状体内に固定した太陽電池モジュールは、例えば特許文献1により公知である。特許文献1には、ガラス等の透光性部材とアルミ箔等の裏面部材との間に複数の太陽電池素子を挟持した太陽電池モジュールの製造方法が開示されている。この文献に開示されているように、太陽電池素子は、通常、透光性部材、裏面部材、これら部材と素子との間にそれぞれ配置される樹脂膜とともにチャンバー内に設置され、このチャンバー内を減圧しつつ加熱することにより樹脂膜を軟化させ、透光性部材と裏面部材との間に挟持される。 太陽 A solar cell module in which a solar cell element is fixed in a pair of plate-like bodies is known, for example, from Patent Document 1. Patent Literature 1 discloses a method for manufacturing a solar cell module in which a plurality of solar cell elements are sandwiched between a translucent member such as glass and a back member such as aluminum foil. As disclosed in this document, a solar cell element is usually installed in a chamber together with a translucent member, a back surface member, and a resin film disposed between these members and the element. By heating while reducing the pressure, the resin film is softened and sandwiched between the translucent member and the back surface member.

 特許文献2には、太陽電池モジュールに気泡が残らないように、モジュールとする積層体にガラス繊維不織布や有機樹脂繊維不織布を挿入することが提案されている。 Patent Document 2 proposes inserting a glass fiber nonwoven fabric or an organic resin fiber nonwoven fabric into a laminate to be used as a module so that no air bubbles remain in the solar cell module.

 特許文献3には、太陽電池素子の位置ずれを防ぐことなどを目的として、太陽電池モジュールとする積層体に、開口部を有する基材を挿入することが提案されている。 Patent Document 3 proposes to insert a base material having an opening into a laminate serving as a solar cell module, for the purpose of preventing the solar cell element from being displaced.

 特許文献4には、太陽電池モジュールに気泡が残らないように、モジュールとする積層体に、表面に凹凸構造を有する封止材膜を挿入することが提案されている。 Patent Document 4 proposes to insert a sealing material film having an uneven structure on the surface into a laminate to be a module so that air bubbles do not remain in the solar cell module.

 一方、車両用、建築用の窓ガラスとして用いるために、一対のガラス板を、ポリビニルブチラール(PVB)、エチレン−酢酸ビニル共重合体(EVA)等の樹脂膜(中間膜)により接合した合わせガラスが量産されている。接合のための加熱を伴う貼り合わせ工程は、加熱炉およびオートクレーブを用いて、あるいは加熱炉のみを用いて工業的に実施される。
特開平10−214987号公報 特開平11−112007号公報 特開2001−60709号公報 特開2002−134768号公報
On the other hand, a laminated glass in which a pair of glass plates is joined by a resin film (intermediate film) such as polyvinyl butyral (PVB) or ethylene-vinyl acetate copolymer (EVA) to be used as a window glass for vehicles or buildings. Has been mass-produced. The bonding step involving heating for bonding is industrially performed using a heating furnace and an autoclave, or using only a heating furnace.
JP-A-10-214987 JP-A-11-112007 JP 2001-60709 A JP 2002-134768 A

 一対のガラス板の間に太陽電池素子を固定すると、素子が配置された領域で光電変換を行い、この領域以外からは光を取り込む光電変換機能付きの透光性モジュールを得ることができる。しかし、公知のエアバックまたはシングルチャンバーを用いた貼り合わせ方法を適用して一対のガラス板の間に太陽電池素子を固定しようとすると、中間膜が十分に軟化する前に太陽電池素子に力が集中的に掛かるため、この局部的な応力の発生により、太陽電池素子の割れが多発する。 (4) When a solar cell element is fixed between a pair of glass plates, photoelectric conversion is performed in a region where the device is arranged, and a light-transmitting module with a photoelectric conversion function of taking in light from a region other than the region can be obtained. However, when applying a known airbag or a bonding method using a single chamber to fix the solar cell element between a pair of glass plates, force is concentrated on the solar cell element before the intermediate film is sufficiently softened. , The local stress is generated, and the solar cell element is frequently cracked.

 そこで、本発明では、ガラス板の間に、従来から用いられてきた2枚の樹脂膜とは別に樹脂部材を配置することとした。 Therefore, in the present invention, a resin member is disposed between the glass plates separately from the two resin films conventionally used.

 即ち、本発明は、太陽電池素子が第1および第2のガラス板の間に挟持された合わせガラスの製造方法であって、
 第1のガラス板の上に、第1の樹脂膜、太陽電池素子、および第2の樹脂膜をこの順に配置するとともに、この素子と電気的に接続された導線の下に樹脂部材を配置し、
 第2の樹脂膜の上に、第2のガラス板を配置し、
 第1および第2のガラス板、上記素子、第1および第2の樹脂膜、ならびに上記樹脂部材を一体化する合わせガラスの製造方法を提供する。
That is, the present invention is a method for producing a laminated glass in which a solar cell element is sandwiched between first and second glass plates,
On a first glass plate, a first resin film, a solar cell element, and a second resin film are arranged in this order, and a resin member is arranged under a conductive wire electrically connected to the element. ,
Place a second glass plate on the second resin film,
A method for manufacturing a laminated glass in which first and second glass plates, the element, the first and second resin films, and the resin member are integrated is provided.

 本発明は、上記方法により製造しうる合わせガラスも提供する。この合わせガラスは、例えば、複数の太陽電池素子が2枚のガラス板の間に挟持され、これら2枚のガラス板と上記複数の素子との間にそれぞれ樹脂膜が介在した合わせガラスであって、上記複数の素子は、受光面が同一方向を向くように配置され、かつ上記複数の素子の少なくとも一部が、電気的に直列に接続され、受光面に接する樹脂膜と、非受光面に接する樹脂膜との厚みが相違する合わせガラス、である。 The present invention also provides a laminated glass that can be produced by the above method. The laminated glass is, for example, a laminated glass in which a plurality of solar cell elements are sandwiched between two glass plates, and a resin film is interposed between the two glass plates and the plurality of elements. The plurality of elements are arranged such that the light receiving surfaces face in the same direction, and at least a part of the plurality of elements is electrically connected in series, and a resin film in contact with the light receiving surface and a resin film in contact with the non-light receiving surface It is a laminated glass having a different thickness from the film.

 なお、上記樹脂部材は、その数および形状を問わない。 The number and shape of the resin members are not limited.

 本発明によれば、樹脂部材が太陽電池素子に印加される局部的な応力を緩和するため、割れを抑制しつつ太陽電池素子を合わせガラス内に固定できる。 According to the present invention, since the resin member relaxes the local stress applied to the solar cell element, the solar cell element can be fixed in the laminated glass while suppressing cracks.

 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.

 本発明の製造方法は、1つの太陽電池素子を用いた太陽電池モジュールの製造にも適用できるが、複数の太陽電池素子、具体的には、受光面が同一方向を向くように配置され、少なくとも一部が電気的に直列に接続された複数の太陽電池素子を用いた太陽電池モジュールの製造に適用すると効果が大きい。また、本発明の製造方法は、貼り合わせのために用いる装置の種類を問わず、適用できる。 Although the manufacturing method of the present invention can be applied to the manufacture of a solar cell module using one solar cell element, a plurality of solar cell elements, specifically, arranged so that the light receiving surface faces the same direction, at least The effect is great when applied to the manufacture of a solar cell module using a plurality of solar cell elements, some of which are electrically connected in series. Further, the manufacturing method of the present invention can be applied irrespective of the type of an apparatus used for bonding.

 太陽電池素子の電気的接続のために素子の間を掛け渡す導線は、接続の対象とする2つの素子に予め固定しておいてもよく、一方の素子にのみ予め固定された導線をガラス板の貼り合わせ工程において他方の素子に接触させて導通を確保することとしてもよい。導線を素子に予め固定する場合は、はんだ付けなどにより行えばよい。 A conductor that bridges between the elements for electrical connection of the solar cell element may be fixed to two elements to be connected in advance, or the conductor that is fixed to only one of the elements is a glass plate. In the bonding step, the element may be brought into contact with the other element to ensure conduction. When the conductor is fixed to the element in advance, it may be performed by soldering or the like.

 いずれにしても、複数の太陽電池素子は、受光面または非受光面から引き出された導線を、順次、導線が引き出された素子に隣接する素子における導線が引き出された面(導線引き出し面)と反対側の面(導線非引き出し面)に接続することにより、電気的に直列に接続された状態とするとよい。 In any case, the plurality of solar cell elements are configured such that the wires drawn from the light-receiving surface or the non-light-receiving surface are sequentially connected to the surface from which the wires of the elements adjacent to the element from which the wires were drawn (wire-leading surface). By connecting to the opposite surface (the surface from which the lead wire is not drawn out), it is preferable to electrically connect in series.

 導線引き出し面を受光面とすると、導線非引き出し面は非受光面となる。導線の接続作業および太陽電池モジュールの品質を考慮すると、導線引き出し面を受光面とすることが好ましい。 す る と If the conducting wire lead-out surface is a light receiving surface, the conducting wire non-leading surface is a non-light receiving surface. In consideration of the operation of connecting the conductors and the quality of the solar cell module, it is preferable that the lead-out surface be the light receiving surface.

 電気的に直列に接続された太陽電池素子を含む合わせガラスの製造工程では、通常、これら素子の下方に第1の樹脂膜が配置されることになり、これら素子と第1の樹脂膜との間に導線の一部が介在することなる。この場合、第1の樹脂膜の膜厚を1.0mm以上とすると、太陽電池素子の割れをさらに抑制できる。また、第1の樹脂膜は、第2の樹脂膜よりも厚くするとよい。これらの好ましい形態によると、第1の樹脂膜に接触する導線近傍における素子の割れを低減できる。 In a manufacturing process of a laminated glass including solar cell elements electrically connected in series, usually, a first resin film is to be disposed below these elements, and the first resin film is formed between these elements and the first resin film. A part of the conductor is interposed between them. In this case, when the thickness of the first resin film is 1.0 mm or more, cracking of the solar cell element can be further suppressed. Further, the first resin film is preferably thicker than the second resin film. According to these preferred embodiments, it is possible to reduce cracking of the element in the vicinity of the conductive wire that contacts the first resin film.

 本発明の製造方法は、複数の太陽電池素子がそれぞれ所定数の素子列および素子行を構成するように上記複数の素子をマトリックス状に配置し、素子列を構成する複数の素子を電気的に直列に接続した形態にも適用できる。この形態では、素子列の間の領域および素子行の間の領域を光が透過する透光性領域として利用できる。素子列を構成する太陽電池素子の電気的接続は、上記と同様に配置した導線により確保すればよい。 In the manufacturing method of the present invention, the plurality of elements are arranged in a matrix so that the plurality of solar cell elements respectively form a predetermined number of element columns and element rows, and the plurality of elements forming the element columns are electrically connected. It can also be applied to a form connected in series. In this mode, a region between element columns and a region between element rows can be used as a light-transmitting region through which light passes. The electrical connection of the solar cell elements constituting the element row may be ensured by conducting wires arranged as described above.

 この場合は、素子列の間の領域および素子行の間の領域に樹脂部材を配置すればよい。樹脂部材は、複数の素子列および複数の素子行から選ばれる少なくとも一方を横断するように、上記領域に配置しても構わない。配置作業を効率よく実施できるからである。 In this case, a resin member may be arranged in a region between element columns and a region between element rows. The resin member may be arranged in the region so as to cross at least one selected from a plurality of element columns and a plurality of element rows. This is because the placement work can be performed efficiently.

 また、樹脂部材として2以上の部材を用いてもよく、例えば、導線の下に配置する上記樹脂部材を第1の樹脂部材として、第1の樹脂部材とともに、第2の樹脂部材を、この第2の樹脂部材が配置された少なくとも一部の領域において第1の樹脂部材のみが配置された領域よりも樹脂部材の総厚みが大きくなるように、さらに配置することが好ましい。素子の端部に加わる応力を緩和できるからである。 Further, two or more members may be used as the resin member. For example, the above-mentioned resin member disposed below the conducting wire may be used as a first resin member, and the second resin member may be used together with the first resin member. It is preferable to further arrange the resin members so that the total thickness of the resin members is larger in at least a part of the region where the second resin member is arranged than in the region where only the first resin member is arranged. This is because stress applied to the end of the element can be reduced.

 上記のとおり樹脂部材の形状は問わないが、特に複数の素子をマトリックス状に配置する場合には、短冊状の樹脂部材を用いることが好ましい。また、複数の素子列を横断する短冊状の樹脂部材と、複数の素子行を横断する短冊状の樹脂部材とを、素子列の間の領域および素子行の間の領域が重複する交差領域において重なるように配置してもよい。この配置によれば、交差領域における樹脂部材が相対的に厚くなり、樹脂膜および樹脂部材が加熱により流動性を得るまでの間に素子端部に力が集中することを抑制できる。 と お り As described above, the shape of the resin member is not limited. However, when a plurality of elements are arranged in a matrix, it is preferable to use a strip-shaped resin member. In addition, a strip-shaped resin member traversing a plurality of element rows and a strip-shaped resin member traversing a plurality of element rows are provided in an intersection area where a region between element columns and a region between element rows overlap. You may arrange so that it may overlap. According to this arrangement, the resin member in the intersecting region becomes relatively thick, and it is possible to suppress concentration of force on the element end portion until the resin film and the resin member obtain fluidity by heating.

 本発明の製造方法では、樹脂部材を、太陽電池素子と重なり合わないように配置することが好ましい。また、太陽電池素子と樹脂部材との間に隙間が確保されるように樹脂部材を配置すると、合わせ後の気泡残りの抑制に効果がある。特に、各部材を積層した状態(樹脂膜を軟化させる前の状態)で、この隙間が合わせガラスの端部にまで導通するように樹脂部材を配置すると、気泡残りが生じにくい。 で は In the manufacturing method of the present invention, it is preferable that the resin member is arranged so as not to overlap with the solar cell element. In addition, when the resin member is arranged so that a gap is secured between the solar cell element and the resin member, there is an effect of suppressing remaining air bubbles after the combination. In particular, when the resin members are arranged such that the gap is conducted to the end of the laminated glass in a state where the respective members are stacked (a state before the resin film is softened), bubbles are less likely to remain.

 本発明の製造方法において樹脂膜および樹脂部材から選ばれる少なくとも一方がEVAである場合には、一体化のための貼り合わせ工程における最高温度から室温までの冷却時間を30分以下とすることが好ましい。この場合は、一体化のための貼り合わせ工程において、室温から70℃までの平均昇温速度を1.5℃/分以上とすることが好ましい。 When at least one selected from the resin film and the resin member is EVA in the production method of the present invention, the cooling time from the maximum temperature to room temperature in the bonding step for integration is preferably 30 minutes or less. . In this case, in the bonding step for integration, the average rate of temperature rise from room temperature to 70 ° C. is preferably 1.5 ° C./min or more.

 本発明では、太陽電池素子において互いに表裏の関係にある受光面および非受光面のいずれを導線引き出し面としてもよく、また、いずれを合わせ工程において上向きに配置してもよい。ただし、受光面を上向きに配置すると、非受光面に接する第1の樹脂膜を厚くしても、受光面に接する第2の樹脂膜を薄く保つことができるため、素子に導入する光量を高く維持できる。その結果、素子の割れを抑制しながら発電効率の高い合わせガラスを製造できる。 According to the present invention, any one of the light receiving surface and the non-light receiving surface which are in front and back of each other in the solar cell element may be used as the conducting wire lead-out surface, and may be arranged upward in the combining step. However, when the light-receiving surface is arranged upward, the second resin film in contact with the light-receiving surface can be kept thin even if the first resin film in contact with the non-light-receiving surface is thickened. Can be maintained. As a result, a laminated glass with high power generation efficiency can be manufactured while suppressing cracking of the element.

 本発明では、導線引き出し面を上向き、下向きのいずれに配置してもよい。受光面を導線引き出し面とする場合には上記観点からは導線引き出し面は上向きとするべきであるが、ガラス板の貼り合わせ工程において一端が素子から引き出された導線の他端を隣接する素子に順次接触させていく場合には、作業性を考慮すれば、導線引き出し面を下向きとして導線非引き出し面を上向きとするほうがよい。 で は In the present invention, the lead-out surface may be arranged either upward or downward. When the light receiving surface is a lead wire drawing surface, the lead wire drawing surface should be upward from the above viewpoint, but one end of the lead wire pulled out from the element in the glass plate bonding step is connected to the adjacent element. In the case of successive contact, it is preferable that the lead-out surface is downward and the lead-out surface is upward in consideration of workability.

 なお、素子の両面にそれぞれ接する2枚の樹脂膜の厚さの差異は、合わせ工程の後において(即ち、合わせガラスの状態で)、例えば0.2mm以上であることが好ましい。 It is preferable that the difference in thickness between the two resin films in contact with both surfaces of the element after the laminating step (that is, in the state of laminated glass) is, for example, 0.2 mm or more.

 以下、本発明の詳細を図面を参照しつつ説明する。 Hereinafter, the details of the present invention will be described with reference to the drawings.

 まず、予備実験の内容について説明する。複数の太陽電池素子を互いに離間した状態でガラス板の間に固定しようとすると、素子割れとともに、素子の位置ずれや気泡残りが問題となる。そこで、この予備実験では、これらの問題を解決するために当初最適と思われた対処法、即ち、複数の素子を配置する部分をくり抜いて窓10とエア抜きスリット18を設けた樹脂膜53(図1)を、素子面の接合に用いる2枚の樹脂膜の間に第3の樹脂膜として介在させる方法を試みた。この予備実験は、特許文献3の開示に基づく。 First, the contents of the preliminary experiment will be described. If it is attempted to fix a plurality of solar cell elements between glass plates in a state where they are separated from each other, there is a problem that the element is displaced or bubbles remain, along with the element crack. Therefore, in this preliminary experiment, in order to solve these problems, a countermeasure that was initially considered to be optimal, that is, a resin film 53 (in which a portion in which a plurality of elements are arranged is cut out and a window 10 and an air vent slit 18 are provided) is provided. FIG. 1) was interposed as a third resin film between two resin films used for bonding the element surfaces. This preliminary experiment is based on the disclosure of Patent Document 3.

 各部材の積層順序は、以下のとおりとした。まず、下側ガラス板の上に第1の樹脂膜を配置する。次に、第1の樹脂膜の上に太陽電池素子をマトリックス状に配置し、素子列方向に各素子を直列に接続する。各素子は、上面(この素子では受光面)の周端部から引き出された導線を、順次、隣接する素子の下面(非受光面)と第1の樹脂膜との間に介在させることにより、互いに直列に接続した。そして、導線の端部を外部引き出し線に接続した。さらに、各素子が窓10内に配置されるように、図1に示した樹脂膜53を第3の樹脂膜として導線の上から配置する。最後に、この樹脂膜上に、第2の樹脂膜および上側ガラス板をこの順に積層する。なお、ここでは、導線引き出し面を上面としたが、作業性を考慮し、導線引き出し面(受光面)が下面となるように配置してもよい。 積 層 The order of lamination of each member was as follows. First, a first resin film is disposed on a lower glass plate. Next, the solar cell elements are arranged in a matrix on the first resin film, and the elements are connected in series in the element column direction. Each element is formed by sequentially interposing a lead wire drawn from a peripheral end of an upper surface (a light receiving surface in this element) between a lower surface (non-light receiving surface) of an adjacent element and the first resin film. They were connected in series with each other. Then, the end of the conductive wire was connected to the external lead wire. Further, the resin film 53 shown in FIG. 1 is disposed as a third resin film from above the conductor so that each element is disposed in the window 10. Finally, a second resin film and an upper glass plate are laminated on the resin film in this order. In this case, the conducting wire lead-out surface is set as the upper surface. However, in consideration of workability, the conducting wire lead-out surface (light receiving surface) may be arranged so as to be the lower surface.

 この積層体と第3の樹脂膜を配置しない従来の積層体とについて合わせ試験を実施したところ、第3の樹脂膜の配置により、素子の位置ずれや気泡残りはほぼ解決できた。しかし、素子割れの確率は、第3の樹脂膜53を配置してもほとんど改善できなかった。 (4) A matching test was conducted on this laminate and a conventional laminate in which the third resin film was not disposed. As a result, the displacement of the element and the residual air bubbles could be substantially solved by the arrangement of the third resin film. However, even if the third resin film 53 was arranged, the probability of element cracking could hardly be improved.

 予備実験の結果を分析したところ、素子割れは、以下の3つのパターンに分類できた(図2)。第1は、素子16の上面から引き出された導線(タブ線)17の接続部(タブ固定部)の周囲における割れ41である。第2は、素子16の下面に接する導線7に沿って発生する割れ42である。第3は、平面視で矩形の素子16のコーナー部(偶角部)近傍で発生する割れ43である。 (4) When the results of the preliminary experiment were analyzed, element cracks could be classified into the following three patterns (FIG. 2). The first is a crack 41 around the connecting portion (tab fixing portion) of the conductive wire (tab wire) 17 drawn out from the upper surface of the element 16. The second is a crack 42 that occurs along the conductor 7 that contacts the lower surface of the element 16. The third is a crack 43 generated near a corner (even angle) of the rectangular element 16 in plan view.

 第1の割れ41は、その発生部位から見て、第2の樹脂膜(上側樹脂膜)14および上側ガラス板15が、素子16,26の間において、導線17を上側から圧迫したことにより発生したと考えられる(図3)。この上側からの圧力により導線17は素子16を巻き込むように押し下げ、その結果、素子16の端部がてこの支点となって、素子上面16aの周縁部における導線17との狭い接続部に応力が集中する。 The first crack 41 is generated when the second resin film (upper resin film) 14 and the upper glass plate 15 press the conductive wire 17 between the elements 16 and 26 from above when viewed from the site where the first crack 41 is generated. It is considered that they have been performed (FIG. 3). Due to the pressure from above, the wire 17 is pushed down so as to wind the element 16, and as a result, the end of the element 16 becomes a lever, and stress is applied to the narrow connection portion with the wire 17 on the periphery of the element upper surface 16 a. concentrate.

 なお、図3に示したように、素子の上面16aから引き出された導線17の端部は、下側ガラス板11の上に保持された第1の樹脂膜12と、隣接する素子26との間に配置される。この導線17は、ガラス板の貼り合わせにより、第1の樹脂膜12と素子26の下面26bとの間に固定され、導電性の非受光面26bを介して素子16,26を接続する。素子26は、その上面26aから引き出された導線27を介して隣接する素子(図示省略)にさらに接続され、同様に、素子16は、その下面16bに接する導線7を介して逆側に隣接する素子(図示省略)に接続されている。こうして複数の素子・・・16、26・・・が順次電気的に直列に接続される。 As shown in FIG. 3, the end of the conductive wire 17 drawn out from the upper surface 16 a of the element is formed between the first resin film 12 held on the lower glass plate 11 and the adjacent element 26. Placed between. The conductive wire 17 is fixed between the first resin film 12 and the lower surface 26b of the element 26 by bonding a glass plate, and connects the elements 16 and 26 via a conductive non-light receiving surface 26b. The element 26 is further connected to an adjacent element (not shown) via a lead wire 27 drawn out from its upper surface 26a, and similarly, the element 16 is adjacent to the opposite side via a conductive wire 7 contacting its lower surface 16b. It is connected to an element (not shown). .., 16, 26... Are sequentially electrically connected in series.

 第2の割れ42は、割れが導線27に沿って発生していること等から見て、直接には、導線17が素子26の下に介在することにより発生する曲げ応力に起因すると考えられる(図4)。支持部材30の平らな支持面上に置かれた下側ガラス板11の上で、素子26は導線17の両側で上側から押圧されるため、導線17の両側に沿った領域55に応力が集中する。 The second crack 42 is considered to be directly caused by the bending stress generated when the conductor 17 is interposed below the element 26, in view of the fact that the crack occurs along the conductor 27 (for example). (Fig. 4). On the lower glass plate 11 placed on the flat support surface of the support member 30, the element 26 is pressed from above on both sides of the conductor 17, so that stress concentrates on the area 55 along both sides of the conductor 17. I do.

 第3の割れ43は、素子列間の帯状領域と素子行間の帯状領域とが交差する領域(交差領域20;図1)において、ガラス板15がわずかながら内側にたわむことにより発生する応力に起因すると考えられる。 The third crack 43 is caused by a stress generated when the glass plate 15 bends slightly inward in a region where the band-shaped region between the element columns and the band-shaped region between the element rows intersect (intersecting region 20; FIG. 1). It is thought that.

 第1〜第3の割れのうち、最も頻度が高いのは、第1の割れ41であった。そこで、第1の割れを抑制するべく、導線17の下に第3の樹脂膜13を配置したところ(図5)、素子割れの発生確率は激減した。これは、第3の樹脂膜13が導線17を下側から支え、上面16aの導線接続部における応力集中を緩和したためと考えられる。このように、第1の割れは、素子の上面16aから引き出された導線17と、この素子の下面16bに接する樹脂膜12との間に、素子面の接合に用いる樹脂膜12,14とは別の樹脂膜13を配置することにより、抑制できる。 の う ち Of the first to third cracks, the first crack 41 was the most frequent. Then, when the third resin film 13 was disposed under the conductive wire 17 to suppress the first crack (FIG. 5), the probability of occurrence of the element crack was drastically reduced. This is presumably because the third resin film 13 supported the conductor 17 from below, and alleviated stress concentration at the conductor connection portion on the upper surface 16a. As described above, the first crack is caused by the resin films 12 and 14 used for bonding the element surfaces between the conductive wire 17 drawn out from the upper surface 16a of the element and the resin film 12 in contact with the lower surface 16b of the element. This can be suppressed by disposing another resin film 13.

 樹脂部材の厚みは、太陽電池素子の厚みと同じか、やや厚めとするとよい。なお、ここでは、導線の下に配置する樹脂部材として樹脂膜を用いたが、導線接続部への応力集中を緩和できれば、その形状等に特に制限はなく、例えば、樹脂の棒状体や樹脂片の積層体を樹脂部材として用いてもよい。 The thickness of the resin member is preferably equal to or slightly larger than the thickness of the solar cell element. Here, a resin film is used as the resin member disposed below the conductor. However, the shape and the like are not particularly limited as long as stress concentration on the conductor connection part can be reduced. For example, a resin rod or a resin piece is used. May be used as a resin member.

 第3の樹脂膜13の追加により第1の割れが劇的に減少するため、第2、第3の割れに対する特別の対策を講じなくても、十分に実用的な製造歩留まりを得ることは可能である。第1の割れ41を抑制しても、第2,第3の割れ42,43が大幅に増加することはない。しかし、さらに高い製造歩留まりを得るためには、これらの割れ42,43に対しても以下の対策を施すとよい。 Since the first crack is dramatically reduced by the addition of the third resin film 13, it is possible to obtain a sufficiently practical production yield without taking any special measures against the second and third cracks. It is. Even if the first crack 41 is suppressed, the second and third cracks 42 and 43 do not increase significantly. However, in order to obtain a higher production yield, the following measures should be taken for these cracks 42 and 43.

 第2の割れ42の抑制には、下側の樹脂膜(第1の樹脂膜)12を厚くして、この樹脂膜による「クッション効果」を大きくするとよい。この効果は、第2の割れを発生させる曲げ応力の緩和に有効である。通常の合わせ工程では、樹脂膜12,14の膜厚は0.8mm程度あれば足りる。しかし、この種の割れ42を防止するためには、樹脂膜の膜厚は1.0mm以上が好適である。EVAを用いた実験により確認した範囲では、膜厚を1.2mm以上にすると、第2の割れ42は全く見られなくなる。加熱後の冷却工程においても導線17付近には応力が加わるが、下側の樹脂膜12を厚膜化すると、樹脂膜の降温に伴う応力も緩和できる。 To suppress the second crack 42, it is preferable to increase the thickness of the lower resin film (first resin film) 12 to increase the "cushion effect" of the resin film. This effect is effective in alleviating the bending stress that causes the second crack. In a normal alignment step, it is sufficient that the resin films 12 and 14 have a thickness of about 0.8 mm. However, in order to prevent this kind of crack 42, the thickness of the resin film is preferably 1.0 mm or more. In the range confirmed by the experiment using EVA, when the film thickness is set to 1.2 mm or more, the second crack 42 is not seen at all. Even in the cooling step after heating, stress is applied to the vicinity of the conductive wire 17, but if the lower resin film 12 is made thicker, the stress accompanying the temperature decrease of the resin film can also be reduced.

 第2の割れ42の発生には、樹脂膜の昇温速度も影響しているようである。曲げ応力が素子の強度を上回るときまでに樹脂膜の流動性を確保できれば、曲げ応力が緩和されるからである。この曲げ応力は、素子の下に配置された導線17の一部が樹脂膜12に埋没する程度に樹脂膜12が塑性変形すれば緩和される。この程度の流動性は、例えばEVAであれば70℃まで加熱すれば得ることができる。従って、樹脂膜としてEVAを用いる場合には、室温から70℃までの樹脂膜の平均昇温速度が、所定値以上、例えば1.5℃/分以上となるように、樹脂膜を加熱することが好ましい。特に、第2の割れは、EVAが軟化し始め、流動性を得るまでの50〜70℃の温度域において生じていると考えられることから、この温度域における平均昇温速度は少なくとも1.5℃/分、さらには3.0〜5.0℃/分とすることがより好ましい。 It seems that the rate of temperature rise of the resin film is also affecting the generation of the second crack 42. This is because if the fluidity of the resin film can be secured before the bending stress exceeds the strength of the element, the bending stress is reduced. The bending stress is reduced if the resin film 12 is plastically deformed to such an extent that a part of the conductive wire 17 disposed under the element is buried in the resin film 12. This degree of fluidity can be obtained, for example, by heating to 70 ° C. in the case of EVA. Therefore, when EVA is used as the resin film, it is necessary to heat the resin film so that the average rate of temperature rise of the resin film from room temperature to 70 ° C. becomes a predetermined value or more, for example, 1.5 ° C./min or more. Is preferred. In particular, since the second crack is considered to occur in a temperature range of 50 to 70 ° C. until the EVA starts to soften and obtains fluidity, the average heating rate in this temperature range is at least 1.5. C / min, and more preferably 3.0 to 5.0 C / min.

 第3の割れ43は、交差領域20またはこの領域近傍における第3の樹脂膜13を厚くすることにより、あるいは昇温速度を所定値以上にすることにより、抑制できる。加熱時および冷却時において、素子16のコーナー部分にかかる応力が緩和されるからである。具体的には、この領域20における樹脂膜13を他の領域における樹脂膜よりも厚くするとよい。また、室温から70℃までの樹脂膜の平均昇温速度を1.5℃/分以上とすることにより、樹脂膜または樹脂部材が流動性を獲得するまでの間に、太陽電池素子の端部に集中的に力が掛かることを防止できる。 The third crack 43 can be suppressed by increasing the thickness of the third resin film 13 in or near the intersection region 20 or by increasing the temperature rising rate to a predetermined value or more. This is because stress applied to the corners of the element 16 during heating and cooling is reduced. Specifically, it is preferable that the resin film 13 in this region 20 be thicker than the resin films in other regions. In addition, by setting the average rate of temperature rise of the resin film from room temperature to 70 ° C. to 1.5 ° C./min or more, the edge of the solar cell element can be obtained until the resin film or the resin member acquires fluidity. Can be prevented from being concentrated.

 交差領域20における樹脂膜の部分的な厚膜化は、短冊状の樹脂膜を用いることにより容易に実現できる(図6)。短冊状の樹脂膜は、単に、導線17により互いに直列に接続した素子16からなる素子列の間の領域(素子列間領域)および素子列に直交する方向に伸長する仮想的な素子16の行(素子行)の間の領域(素子行間領域)に沿って、換言すれば、各素子列および各素子行を横切るように、配置すればよい。素子列間領域に沿って配置された短冊状樹脂膜23と、素子行間領域に沿って配置された短冊状樹脂膜33とは、交差領域において重なり合い、この重複部分21において局部的に厚くなる。 (4) It is easy to partially increase the thickness of the resin film in the intersection region 20 by using a strip-shaped resin film (FIG. 6). The strip-shaped resin film is simply formed of a region between element columns (region between element columns) composed of elements 16 connected in series with each other by a conductive wire 17 and a row of virtual elements 16 extending in a direction orthogonal to the element columns. What is necessary is just to arrange | position along the area | region (element row area | region) between (element row), in other words, to cross each element column and each element row. The strip-shaped resin film 23 arranged along the inter-element-row region and the strip-shaped resin film 33 arranged along the inter-element-row region overlap in the intersection region, and become locally thick at the overlapping portion 21.

 図6に示した好ましい形態においても、素子行間領域に沿って配置する樹脂膜33は、素子16を接続する導線17の下に配置される。 In the preferred embodiment shown in FIG. 6 as well, the resin film 33 arranged along the element row region is arranged below the conductor 17 connecting the elements 16.

 素子16と第3の樹脂膜13,23,33とは、互いに接触しないように配置するとよく、図6に示したように、素子の周囲のすべてにおいて空隙を確保することが好ましい。素子と第3の樹脂膜との間の好ましい間隔は、0.5mm〜5mm程度である。この程度の隙間は、樹脂膜が軟化したときには内部の空気を抜くエア抜き通路として機能しつつ、樹脂膜の温度が室温付近にまで下がったときには解消されて素子と樹脂膜とが密着し、気泡残りの原因ともならない。 (4) The element 16 and the third resin films 13, 23, and 33 are preferably arranged so as not to contact each other. As shown in FIG. 6, it is preferable to secure a gap around the entire element. A preferred distance between the element and the third resin film is about 0.5 mm to 5 mm. When the resin film is softened, the gap functions as an air bleeding passage for bleeding air when the resin film is softened. It does not cause the rest.

 図6に示した形態では、短冊状の樹脂膜23,33に沿って縦横にエア抜き通路29,39が伸長しており(即ち素子の周囲すべてに通路が接しており)、しかもこれら通路29,39が合わせガラスの端部にまで導通しているため、内部の空気の放出を確実に行うことができる。 In the embodiment shown in FIG. 6, the air vent passages 29, 39 extend vertically and horizontally along the strip-shaped resin films 23, 33 (that is, the passages are in contact with the entire periphery of the element). , 39 are conducted to the end of the laminated glass, so that the air inside can be reliably discharged.

 ガラス板が大きくなれば、エア抜き通路の重要性は高くなる。各素子について、合わせガラスの端部にまで導通するエア抜き通路が確保されるように、第3の樹脂膜を配置するとよい。 れ ば The larger the glass plate, the greater the importance of the air vent passage. For each element, it is preferable to arrange the third resin film so as to secure an air vent passage leading to the end of the laminated glass.

 内部の空気のより確実な放出を優先して、短冊状の樹脂膜を分割してもよい(図7)。図7には、樹脂膜が重複しないように、素子列間領域に沿って伸長する樹脂膜23を分割し、複数の樹脂膜23’とした形態を例示した。この場合は、第3の割れ43を抑制するためには、樹脂膜23’を導線の下をくぐらせる樹脂膜33よりも厚くするとよい。また、樹脂膜33を樹脂膜23’のように分割してもよい。 (4) The strip-shaped resin film may be divided to give priority to more reliable release of the air inside (FIG. 7). FIG. 7 illustrates an example in which the resin film 23 extending along the inter-element-row region is divided into a plurality of resin films 23 ′ so that the resin films do not overlap. In this case, in order to suppress the third crack 43, it is preferable that the resin film 23 'be thicker than the resin film 33 passing under the conductive wire. Further, the resin film 33 may be divided like the resin film 23 '.

 このように、第3の割れ43を抑制するためには、導線を支えるための樹脂膜(第1の樹脂部材)に加え、追加の樹脂膜(第2の樹脂部材)を配置し、この追加の樹脂膜が配置された少なくとも一部の領域、具体的には第1の樹脂部材が導線を支えている部分以外の領域、において、導線を支えるための樹脂膜のみが配置された領域よりも樹脂膜の総厚み(合計厚み)を大きくするとよい。図6に示した形態では、樹脂膜23,33が交差するため、両樹脂膜の厚みの和が樹脂膜の総厚みとなる。 As described above, in order to suppress the third crack 43, an additional resin film (second resin member) is arranged in addition to the resin film (first resin member) for supporting the conductive wire, and this additional In at least a part of the region where the resin film is disposed, specifically, the region other than the portion where the first resin member supports the conductor, the region is smaller than the region where only the resin film for supporting the conductor is disposed. It is preferable to increase the total thickness (total thickness) of the resin film. In the embodiment shown in FIG. 6, since the resin films 23 and 33 intersect, the sum of the thicknesses of the two resin films becomes the total thickness of the resin films.

 この総厚みは、導線の厚さを含めた素子の全体厚さ以上とすることが好ましい。例えば、素子本体の厚みが0.4mm、導線の厚みが160μmの場合には、素子の受光面16aと非受光面16bとで導線17が重なり合うことを考慮すると、素子の全体厚みは、約0.72mmとなる。従って、この場合、樹脂膜の総厚みは、0.72mm以上が好適である。この厚みを実現するために、短冊状の樹脂膜の厚みは0.4〜0.8mmが好適である。なお、本明細書では、樹脂膜の厚みを、合わせ工程の前の厚みで評価する。 総 The total thickness is preferably equal to or more than the entire thickness of the element including the thickness of the conductive wire. For example, when the thickness of the element body is 0.4 mm and the thickness of the conductor is 160 μm, the total thickness of the element is about 0, considering that the conductor 17 overlaps the light receiving surface 16a and the non-light receiving surface 16b of the element. .72 mm. Therefore, in this case, the total thickness of the resin film is preferably 0.72 mm or more. In order to realize this thickness, the thickness of the strip-shaped resin film is preferably 0.4 to 0.8 mm. In the present specification, the thickness of the resin film is evaluated by the thickness before the alignment step.

 ガラス板としては、特に制限はなく、汎用のソーダライムシリカガラスを用いればよいが、特に受光面側に配置するガラス板15は、素子への透過光量を確保するために、鉄分を減少させたガラスを用いるとよい。具体的には、着色成分として、Feに換算した全鉄量を0.2wt%以下とするとよい。 The glass plate is not particularly limited, and general-purpose soda lime silica glass may be used. In particular, the glass plate 15 disposed on the light receiving surface side has a reduced iron content in order to secure the amount of light transmitted to the element. It is preferable to use glass. Specifically, the total amount of iron as Fe 2 O 3 as a coloring component is preferably 0.2 wt% or less.

 樹脂膜としては、合わせガラスの製造に従来から用いられてきたPVBやEVAが好適であるが、これに限らず、ポリウレタン等を用いてもよい。なお、EVAは、軟化時の流動性が高いため、太陽電池素子の封入に適している。なお、EVAを用いる場合は、2枚のガラス板の貼り合わせにオートクレーブを必ずしも用いなくてもよい。第3の樹脂膜(樹脂部材)の材料にも特に制限はないが、併用する樹脂膜と同じ材料の樹脂を用いれば足りる。 As the resin film, PVB or EVA, which has been conventionally used for manufacturing laminated glass, is suitable, but not limited thereto, and polyurethane or the like may be used. EVA is suitable for encapsulation of a solar cell element because of its high fluidity when softened. When EVA is used, an autoclave does not necessarily need to be used for bonding two glass plates. There is no particular limitation on the material of the third resin film (resin member), but it is sufficient to use a resin of the same material as the resin film used in combination.

 太陽電池素子の外形、内部構造等にも制限はない。本明細書では、上面から引き出された導線(タブ線)を素子の下面に接続する形態を示したが、タブ線接続の形態はこれに限らず、別に接続部材を用意しても構わない。また、合わせ工程で素子を互いに接続するのではなく、予め複数の太陽電池素子を接続した素子群を使用してもよい。この場合も、素子から引き出された導線を、隣接する素子の反対側の面(導線引き出し面が受光面であれば非受光面)に、順次、はんだ等で電気的に接続した素子群を用いるとよい。 外形 There are no restrictions on the outer shape or internal structure of the solar cell element. In the present specification, the form in which the conducting wire (tab wire) drawn from the upper surface is connected to the lower surface of the element has been described. However, the form of the tab wire connection is not limited to this, and another connecting member may be prepared. Further, instead of connecting the elements to each other in the alignment step, an element group in which a plurality of solar cell elements are connected in advance may be used. Also in this case, an element group is used in which a lead wire drawn out of an element is electrically connected to a surface on the opposite side of an adjacent element (a non-light receiving surface if the lead wire drawing surface is a light receiving surface) by solder or the like. Good.

 本発明の合わせガラスの製造には、従来から用いられてきた素子の封入装置(シングルチャンバー方式、エアバッグ方式等の減圧チャンバー)を適用すればよい。また、合わせガラスの製造に用いられてきたオートクレーブをさらに適用しても構わない。減圧雰囲気下で所定温度にまで加熱して樹脂膜を軟化させて素子を固定し(仮接着)、引き続き、加圧雰囲気下で上記所定温度以上の温度にまで加熱すると(本接着)、第1および第2のガラス板と素子との間を樹脂によって充填して未充填部分を排除できる。 (4) In the production of the laminated glass of the present invention, an element encapsulating apparatus (a single-chamber method, a decompression chamber of an airbag method or the like) which has been conventionally used may be applied. In addition, an autoclave that has been used for manufacturing laminated glass may be further applied. When heated to a predetermined temperature in a reduced-pressure atmosphere to soften the resin film and fix the element (temporary bonding), and subsequently heated to a temperature equal to or higher than the predetermined temperature in a pressurized atmosphere (final bonding), the first In addition, the space between the second glass plate and the element can be filled with a resin to remove the unfilled portion.

 本発明の効果をより確実にするためには、下側ガラス板の下側の面が、図3に示すように、支持部材30によって支えられていることが好ましく、上記仮接着および本接着のそれぞれの段階において支持部材上に保持されていることが好ましい。本接着を完了した段階では、太陽電池モジュールを縦置きに保管したり、反転させてその表裏を入れ替えても構わない。 In order to further ensure the effects of the present invention, the lower surface of the lower glass plate is preferably supported by a support member 30, as shown in FIG. It is preferable that the support is held on the support member at each stage. At the stage when the final bonding is completed, the solar cell module may be stored vertically or may be reversed and its front and back may be switched.

 本接着においては、最高温度域で20〜30分間維持しなければ、合わせガラスの十分な接着強度が得られない。このため、最高温度域での保持時間を短縮することは適当ではなく、貼り合わせ工程の作業性を改善するには、昇温速度および冷却速度をできるだけ大きくする必要がある。ただし、あまり速すぎると、合わせガラスの面内温度差が大きくなり、接着不良が発生し、また合わせガラスが変形することもある。従って、昇温速度および冷却速度は、1.5〜7.0℃/分、特に3.0〜5.0℃/分に制御することが好ましい。昇温速度および冷却速度の精密な制御には、オートクレーブが適している。 In the final bonding, unless the temperature is maintained at the maximum temperature range for 20 to 30 minutes, a sufficient bonding strength of the laminated glass cannot be obtained. For this reason, it is not appropriate to shorten the holding time in the maximum temperature range, and it is necessary to increase the heating rate and the cooling rate as much as possible in order to improve the workability of the bonding step. However, if the speed is too high, the in-plane temperature difference of the laminated glass becomes large, and adhesion failure occurs, and the laminated glass may be deformed. Therefore, it is preferable to control the temperature raising rate and the cooling rate to 1.5 to 7.0 ° C./min, particularly 3.0 to 5.0 ° C./min. An autoclave is suitable for precise control of the heating rate and the cooling rate.

 樹脂膜または樹脂部材としてEVAを使用する場合は、仮接着の有無にかかわらず、本接着における冷却時間がその特性に大きく影響する。実験によれば、本接着における最高温度(例えば150℃)から室温まで冷却するのに要する時間(冷却時間)が30分を超えると、EVAが白濁することがわかった。これは、EVAが結晶化するためと考えられる。樹脂膜および樹脂部材から選ばれる少なくとも一方がEVAである場合には、貼り合わせ工程における最高温度から室温までの冷却時間を30分以下とするとよい。 (4) When EVA is used as the resin film or the resin member, the cooling time in the final bonding greatly affects the characteristics regardless of the presence or absence of the temporary bonding. According to an experiment, it was found that when the time required for cooling from the maximum temperature (for example, 150 ° C.) to room temperature in the actual bonding (cooling time) exceeds 30 minutes, EVA becomes cloudy. This is considered because EVA crystallized. When at least one selected from the resin film and the resin member is EVA, the cooling time from the maximum temperature to room temperature in the bonding step is preferably 30 minutes or less.

 以下、実施例により、本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

 ソーダライムシリカガラス(寸法1400mm×2800mm、厚さ5.0mm)と、EVA中間膜(ブリヂストン社製(WG1820,WG1620,WG1420):厚さ0.4mm、0.6mmまたは0.8mm、本接着温度150℃)と、太陽電池セル(京セラ社製)とを準備した。ここで、本接着温度とは、当該樹脂膜を用いてオートクレーブ中で行う最高温度として設定すべき温度である。 Soda lime silica glass (dimensions 1400 mm x 2800 mm, thickness 5.0 mm) and EVA interlayer (Bridgestone Corporation (WG1820, WG1620, WG1420): thickness 0.4 mm, 0.6 mm or 0.8 mm, final bonding temperature) 150 ° C.) and a solar cell (manufactured by Kyocera Corporation). Here, the final bonding temperature is a temperature to be set as a maximum temperature in an autoclave using the resin film.

 なお、ソーダライムシリカガラスとしては、受光面側に配置する全鉄量0.2wt%以下の高透過ガラスと、非受光面側に配置する通常ガラスとを用意した。 As soda-lime silica glass, a high transmission glass having a total iron content of 0.2 wt% or less disposed on the light receiving surface side and a normal glass disposed on the non-light receiving surface side were prepared.

 太陽電池セルは、寸法150mm×155mmの矩形、厚さ0.35〜0.40mmであり、受光面の周縁部から一対の導線(タブ線)が導出されている。タブ線の幅および厚さは、それぞれ2mmおよび0.2mmである。このセルの非受光面はアルミニウムにより構成された裏面電極であり、セルの起電力は、タブ線と裏面電極との間から取り出すことができる。 The photovoltaic cell has a rectangular shape of dimensions 150 mm × 155 mm and a thickness of 0.35 to 0.40 mm, and a pair of conducting wires (tab wires) is led out from the periphery of the light receiving surface. The width and thickness of the tab line are 2 mm and 0.2 mm, respectively. The non-light-receiving surface of this cell is a back electrode made of aluminum, and the electromotive force of the cell can be extracted from between the tab line and the back electrode.

 さらに、第3の樹脂膜として、短冊状EVA膜を準備した。このEVA膜は、EVA中間膜(第1、第2の樹脂膜)として準備した厚さ0.4mmのEVA膜を、幅10mmの短冊状に切断したものである。 Further, a strip-shaped EVA film was prepared as a third resin film. This EVA film is obtained by cutting a 0.4 mm thick EVA film prepared as an EVA intermediate film (first and second resin films) into a 10 mm wide strip.

 これらの部材を、下側ガラス板、第1のEVA中間膜、太陽電池セルおよび短冊状EVA膜、第2のEVA中間膜、上側ガラス板、の順に積層した。ただし、第1のEVA中間膜は、所定の膜厚を得るために、適宜、2枚または3枚のEVA中間膜を重ねて使用した。第2のEVA中間膜は、厚さ0.4mmのEVA膜を2枚重ねて厚さ0.8mmとした。 These members were laminated in the following order: a lower glass plate, a first EVA intermediate film, a solar cell and a strip-shaped EVA film, a second EVA intermediate film, and an upper glass plate. However, in order to obtain a predetermined film thickness, two or three EVA intermediate films were appropriately used as the first EVA intermediate film. The second EVA intermediate film was formed to have a thickness of 0.8 mm by stacking two EVA films having a thickness of 0.4 mm.

 このとき、太陽電池セルは、受光面が下面となるように配置した。また、4×10個のマトリックス状に配置し、4つの列については、タブ線の端部を、隣接するセルとEVA中間膜との間に順次介在させ、この列のセルを直列に接続した。セルが構成する4つの列の間および10の行の間にはそれぞれ約15mmの間隔を確保した。 At this time, the photovoltaic cells were arranged such that the light receiving surface was on the lower surface. In addition, the cells were arranged in a matrix of 4 × 10, and the ends of the tab lines were sequentially interposed between adjacent cells and the EVA intermediate film for the four columns, and the cells in this column were connected in series. . Approximately 15 mm intervals were secured between the four columns and ten rows of the cell.

 短冊状EVA膜と太陽電池セルとは、図6に示したとおり、素子列を横切るEVA膜がタブ線の下をくぐるように配置した。短冊状EVA膜とセルとの間には、平均約2.5mmの間隔を確保した。 (6) The strip-shaped EVA film and the solar cell were arranged such that the EVA film crossing the element row passed under the tab line as shown in FIG. An average distance of about 2.5 mm was secured between the strip-shaped EVA film and the cell.

 こうして得た積層体を、シングルチャンバー方式により、下記条件で一次接着を行った。 積 層 The thus obtained laminate was subjected to primary bonding by a single chamber method under the following conditions.

 [一次接着条件]
・チャンバー内平均温度 :110℃(樹脂膜温度:85〜95℃)
・チャンバー内圧力   :約98kPa
・上記平均温度の保持時間:40分
・昇温速度       :約1.5℃/分
 一次接着の後、オートクレーブを用いて、下記条件で二次接着を行った。
[Primary bonding conditions]
・ Average temperature in chamber: 110 ° C (resin film temperature: 85 to 95 ° C)
-Chamber pressure: about 98 kPa
-Holding time of the above average temperature: 40 minutes-Temperature rising rate: about 1.5 ° C / minute After the primary bonding, secondary bonding was performed using an autoclave under the following conditions.

 [二次接着条件]
・設定温度       :150℃
・設定圧力       :490kPa
・設定温度までの平均昇温速度:4.0℃/分
・上記設定温度の保持時間:30分
・設定温度から室温までの平均冷却速度:4.0℃/分
・冷却時間       :30分
・室温〜設定温度〜室温に至る一連の加熱処理工程の時間:90分
[Secondary bonding conditions]
・ Set temperature: 150 ℃
・ Set pressure: 490 kPa
・ Average heating rate to the set temperature: 4.0 ° C./min ・ Holding time of the above set temperature: 30 minutes Time of a series of heat treatment steps from room temperature to set temperature to room temperature: 90 minutes

 比較のために、第3の樹脂膜(EVA膜)を用いない以外は、上記と同様にして合わせガラスを作製した(比較例1)。また、第3の樹脂膜(EVA膜)をタブ線の上に配置した以外は、上記と同様にして合わせガラスを作製した(比較例2)。さらに、短冊状EVA膜に代えてセルを配置する部分をくり抜いたEVA膜(図1参照)を用いた以外は、比較例2と同様にして作製した合わせガラス(比較例3)も評価の対象とした。比較例3は、上述した予備実験の結果に相当する。なお、比較例3で用いたEVA膜は、厚さ0.4mmのEVA膜を2枚重ねて用いた。 合 わ せ For comparison, a laminated glass was produced in the same manner as above except that the third resin film (EVA film) was not used (Comparative Example 1). Further, a laminated glass was produced in the same manner as described above except that the third resin film (EVA film) was arranged on the tab line (Comparative Example 2). Further, a laminated glass (Comparative Example 3) produced in the same manner as in Comparative Example 2 except that a strip-shaped EVA film was replaced with an EVA film (see FIG. 1) in which a cell was disposed was used. And Comparative Example 3 corresponds to the result of the preliminary experiment described above. The EVA film used in Comparative Example 3 was formed by stacking two 0.4 mm thick EVA films.

 こうして得た複数の合わせガラスについて、目視により「気泡残り」、「セルずれ」および「セル割れ」を確認した。なお、「セルずれ」としては、一次接着前の位置から最もずれたセルの移動距離を評価の対象とし、この移動距離が0.5mm以下は許容範囲内とした。結果を表1にまとめて示す。 に つ い て About a plurality of laminated glasses thus obtained, “bubble remaining”, “cell shift” and “cell cracking” were visually confirmed. As the “cell shift”, the moving distance of the cell which was most shifted from the position before the primary bonding was evaluated, and the moving distance of 0.5 mm or less was within the allowable range. The results are summarized in Table 1.

 (表1)
―――――――――――――――――――――――――――――――――――
   下側中間膜    樹脂部材        合わせガラス
    厚さ   形状 厚さ 位置関係  気泡残り セルずれ セル割れ
   (mm)    (mm)      (個)        (%)
―――――――――――――――――――――――――――――――――――
実施例
 1  0.8   短冊  0.4   下    0   許容範囲  0.25
 2  1.0   短冊  0.4   下    0   許容範囲  0.11
 3  1.2   短冊  0.4   下    0   許容範囲  0.06
―――――――――――――――――――――――――――――――――――
比較例
 1  0.8   なし  −   −    10    5mm以上  20
 2  0.8   短冊  0.4   上    0   許容範囲  20
 3  0.8  くり抜き 0.8   上    0   許容範囲  20
―――――――――――――――――――――――――――――――――――
樹脂部材について「下(上)」はタブ線の「下(上)」に樹脂部材を配置したことを示す。
(Table 1)
―――――――――――――――――――――――――――――――――――
Lower intermediate film Resin member Laminated glass Thickness Shape Thickness Positional relationship Bubble remaining Cell shift Cell crack (mm) (mm) (pcs) (%)
―――――――――――――――――――――――――――――――――――
Example 1 0.8 Strip 0.4 Lower 0 Allowable range 0.25
2 1.0 Strip 0.4 Lower 0 Allowable range 0.11
3 1.2 Strip 0.4 Lower 0 Allowable range 0.06
―――――――――――――――――――――――――――――――――――
Comparative Example 1 0.8 None--10 5mm or more 20
2 0.8 Strip 0.4 Top 0 Allowable range 20
3 0.8 Hollow 0.8 Top 0 Allowable range 20
―――――――――――――――――――――――――――――――――――
“Lower (upper)” of the resin member indicates that the resin member is arranged “lower (upper)” of the tab line.

 本接着における冷却時間と、EVAの結晶化との関係を調べるため、実施例1において、冷却速度のみを変え、その他は同様にして合わせガラスを作製した。具体的には、平均冷却速度7.0℃/分として3枚作製し(実施例4)、平均冷却速度を3.0℃/分として3枚作製した(参照例)。これらの合わせガラスについて、太陽電池素子がない部分を切り取ってその部分のヘイズ率を測定したところ、実施例1および実施例4の合わせガラスはどちらも平均で1.0%であったのに対し、参照例の合わせガラスのヘイズ率は平均で15.0%であった。参照例における冷却時間(40分)を考慮すると、冷却時間は30分以下が好ましいことがわかる。 合 わ せ In order to examine the relationship between the cooling time in the actual bonding and the crystallization of EVA, a laminated glass was produced in the same manner as in Example 1 except that only the cooling rate was changed. Specifically, three sheets were produced at an average cooling rate of 7.0 ° C./min (Example 4), and three sheets were produced at an average cooling rate of 3.0 ° C./min (Reference Example). With respect to these laminated glasses, a portion having no solar cell element was cut out and the haze ratio of the portion was measured. As a result, the laminated glasses of Example 1 and Example 4 were both 1.0% on average. The haze ratio of the laminated glass of Reference Example was 15.0% on average. Considering the cooling time (40 minutes) in the reference example, it is understood that the cooling time is preferably 30 minutes or less.

 太陽電池素子を封入した合わせガラスは、耐久性に優れた光電変換機能付きの透光性部材として、建築物や車両の窓ガラスや屋根材等多方面での使用の拡大が期待できる。 合 わ せ The laminated glass encapsulating the solar cell element is expected to be used as a translucent member with excellent photoelectric conversion function with excellent durability in various fields such as window glass and roofing materials of buildings and vehicles.

予備実験で使用した樹脂膜の平面図である。It is a top view of the resin film used in the preliminary experiment. 太陽電池素子を受光面から見た平面図であり、素子(セル)割れを説明するためにセル割れの典型的なパターンが記入されている。FIG. 3 is a plan view of the solar cell element as viewed from a light receiving surface, in which a typical pattern of cell cracks is written in order to explain element (cell) cracks. 予備実験における樹脂膜の配置を示すための断面図である。FIG. 4 is a cross-sectional view illustrating an arrangement of a resin film in a preliminary experiment. 図3のI−I断面図である。It is II sectional drawing of FIG. 本発明の製造方法における樹脂部材(第3の樹脂膜)の配置の例を説明するための断面図である。FIG. 9 is a cross-sectional view for explaining an example of the arrangement of a resin member (third resin film) in the manufacturing method of the present invention. 第3の樹脂膜として用いる短冊状樹脂膜と太陽電池素子との配置の例を示すための平面図である。It is a top view for showing the example of arrangement of a strip-shaped resin film used as a 3rd resin film, and a solar cell element. 第3の樹脂膜と太陽電池素子との配置の別の例を示すための平面図である。It is a top view for showing another example of arrangement of a 3rd resin film and a solar cell element.

符号の説明Explanation of reference numerals

 11,15    ガラス板
 12,14    第1、第2の樹脂膜
 13,23,23’,33 第3の樹脂膜(樹脂部材)
 16,26    太陽電池素子(セル)
 16a,26a  受光面
 16b,26b  非受光面
 7,17,27  導線
 18       第3の樹脂膜のエア抜きスリット
 20       交差領域
 21       第3の樹脂膜の重複部分
 29,39    エア抜き通路
 30       支持部材
 41,42,43 セル割れ
11, 15 Glass plate 12, 14 First and second resin films 13, 23, 23 ', 33 Third resin film (resin member)
16,26 Solar cell elements (cells)
16a, 26a Light-receiving surface 16b, 26b Non-light-receiving surface 7, 17, 27 Conductor 18 Air vent slit of third resin film 20 Intersecting area 21 Overlapping portion of third resin film 29, 39 Air vent passage 30 Support member 41, 42,43 Cell crack

Claims (16)

 太陽電池素子が第1および第2のガラス板の間に挟持された合わせガラスの製造方法であって、
 前記第1のガラス板の上に、第1の樹脂膜、前記素子、および第2の樹脂膜をこの順に配置するとともに、前記素子と電気的に接続された導線の下に樹脂部材を配置し、
 前記第2の樹脂膜の上に、前記第2のガラス板を配置し、
 前記第1および第2のガラス板、前記素子、前記第1および第2の樹脂膜、ならびに前記樹脂部材を一体化する合わせガラスの製造方法。
A method for producing a laminated glass in which a solar cell element is sandwiched between first and second glass plates,
A first resin film, the element, and a second resin film are arranged on the first glass plate in this order, and a resin member is arranged below a conductive wire electrically connected to the element. ,
Disposing the second glass plate on the second resin film;
A method for manufacturing a laminated glass by integrating the first and second glass plates, the element, the first and second resin films, and the resin member.
 前記素子として、受光面が同一方向を向くように配置され、少なくとも一部が電気的に直列に接続された複数の太陽電池素子を用いる請求項1に記載の合わせガラスの製造方法。 The method for manufacturing a laminated glass according to claim 1, wherein a plurality of solar cell elements, each of which has a light-receiving surface facing in the same direction and at least a part of which is electrically connected in series, are used as the elements.  第1の樹脂膜の膜厚を1.0mm以上とする請求項2に記載の合わせガラスの製造方法。 The method for producing a laminated glass according to claim 2, wherein the thickness of the first resin film is 1.0 mm or more.  第1の樹脂膜を第2の樹脂膜よりも厚くする請求項2または3に記載の合わせガラスの製造方法。 4. The method for manufacturing a laminated glass according to claim 2, wherein the first resin film is thicker than the second resin film.  複数の太陽電池素子がそれぞれ所定数の素子列および素子行を構成するように前記複数の素子をマトリックス状に配置し、前記素子列を構成する複数の素子を電気的に直列に接続する請求項2〜4のいずれかに記載の合わせガラスの製造方法。 The plurality of solar cells are arranged in a matrix so that each of the plurality of solar cells constitutes a predetermined number of element columns and element rows, and the plurality of elements constituting the element columns are electrically connected in series. 5. The method for producing a laminated glass according to any one of 2 to 4.  素子列の間の領域および素子行の間の領域に樹脂部材を配置する請求項5に記載の合わせガラスの製造方法。 6. The method of manufacturing a laminated glass according to claim 5, wherein the resin member is disposed in a region between the element columns and a region between the element rows.  複数の素子列および複数の素子行から選ばれる少なくとも一方を横断するように、樹脂部材を配置する請求項6に記載の合わせガラスの製造方法。 7. The method for manufacturing a laminated glass according to claim 6, wherein the resin member is disposed so as to cross at least one selected from a plurality of element columns and a plurality of element rows.  導線の下に配置する樹脂部材を第1の樹脂部材として、前記第1の樹脂部材とともに、第2の樹脂部材を、前記第2の樹脂部材が配置された少なくとも一部の領域において前記第1の樹脂部材のみが配置された領域よりも樹脂部材の総厚みが大きくなるように、さらに配置する請求項5〜7のいずれかに記載の合わせガラスの製造方法。 The first resin member is a resin member disposed below the conductive wire, and the second resin member is moved together with the first resin member in at least a part of the region where the second resin member is disposed. The method for manufacturing a laminated glass according to any one of claims 5 to 7, wherein the resin member is further arranged so that the total thickness of the resin member is larger than a region where only the resin member is arranged.  複数の素子列を横断する短冊状の第1の樹脂部材と、複数の素子行を横断する短冊状の第2の樹脂部材とを、素子列の間の領域および素子行の間の領域が重複する交差領域において重なるように配置する請求項8に記載の合わせガラスの製造方法。 A strip-shaped first resin member traversing a plurality of element columns and a strip-shaped second resin member traversing a plurality of element rows overlap an area between element columns and an area between element rows. The method for producing a laminated glass according to claim 8, wherein the laminated glass is arranged so as to overlap in the intersecting region.  前記樹脂部材を、前記素子と重なり合わないように配置する請求項1〜9のいずれかに記載の合わせガラスの製造方法。 (10) The method for manufacturing a laminated glass according to any one of (1) to (9), wherein the resin member is arranged so as not to overlap with the element.  太陽電池素子と樹脂部材との間に隙間が確保されるように前記樹脂部材を配置する請求項10に記載の合わせガラスの製造方法。 The method for manufacturing a laminated glass according to claim 10, wherein the resin member is disposed such that a gap is secured between the solar cell element and the resin member.  隙間が合わせガラスの端部にまで導通するように樹脂部材を配置する請求項11に記載の合わせガラスの製造方法。 The method for manufacturing a laminated glass according to claim 11, wherein the resin member is arranged such that the gap is conducted to an end of the laminated glass.  樹脂膜および樹脂部材から選ばれる少なくとも一方がエチレン−酢酸ビニル共重合体であって、一体化のための貼り合わせ工程における最高温度から室温までの冷却時間が30分以下である請求項1〜12のいずれかに記載の合わせガラスの製造方法。 At least one selected from a resin film and a resin member is an ethylene-vinyl acetate copolymer, and a cooling time from a maximum temperature to room temperature in a bonding step for integration is 30 minutes or less. The method for producing a laminated glass according to any one of the above.  樹脂膜がエチレン−酢酸ビニル共重合体であって、一体化のための貼り合わせ工程において、室温から70℃までの平均昇温速度を1.5℃/分以上とする請求項1〜13のいずれかに記載の合わせガラスの製造方法。 14. The resin film according to claim 1, wherein the resin film is an ethylene-vinyl acetate copolymer, and in the bonding step for integration, the average temperature rising rate from room temperature to 70 ° C. is 1.5 ° C./min or more. A method for producing a laminated glass according to any one of the above.  請求項1〜14のいずれかの製造方法により得られた合わせガラス。 合 わ せ A laminated glass obtained by the method according to any one of claims 1 to 14.  複数の太陽電池素子が2枚のガラス板の間に挟持され、前記2枚のガラス板と前記素子との間にそれぞれ樹脂膜が介在した合わせガラスであって、
 前記複数の素子は、受光面が同一方向を向くように配置され、かつ前記複数の素子の少なくとも一部が、電気的に直列に接続され、
 前記受光面に接する樹脂膜と、前記非受光面に接する樹脂膜との厚みが相違する合わせガラス。
A laminated glass in which a plurality of solar cell elements are sandwiched between two glass plates, and a resin film is interposed between the two glass plates and the element,
The plurality of elements are arranged so that a light receiving surface faces in the same direction, and at least a part of the plurality of elements are electrically connected in series,
A laminated glass in which the thickness of the resin film in contact with the light receiving surface and the thickness of the resin film in contact with the non-light receiving surface are different.
JP2003304815A 2002-08-29 2003-08-28 Laminated glass and its manufacturing method Expired - Fee Related JP4208672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304815A JP4208672B2 (en) 2002-08-29 2003-08-28 Laminated glass and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002251938 2002-08-29
JP2003304815A JP4208672B2 (en) 2002-08-29 2003-08-28 Laminated glass and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2004111952A true JP2004111952A (en) 2004-04-08
JP4208672B2 JP4208672B2 (en) 2009-01-14

Family

ID=32301310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304815A Expired - Fee Related JP4208672B2 (en) 2002-08-29 2003-08-28 Laminated glass and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4208672B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142319A1 (en) * 2006-06-09 2007-12-13 Nippon Sheet Glass Company, Limited Sheet sealed laminated glass
JP2010021595A (en) * 2009-10-29 2010-01-28 Sanyo Electric Co Ltd Solar battery module
JP2010287688A (en) * 2009-06-10 2010-12-24 Mitsubishi Electric Corp Solar cell module
JP2012114331A (en) * 2010-11-26 2012-06-14 Koito Mfg Co Ltd Solar cell module
WO2013094299A1 (en) * 2011-12-21 2013-06-27 三洋電機株式会社 Photovoltaic apparatus
WO2013140552A1 (en) * 2012-03-21 2013-09-26 三洋電機株式会社 Solar cell module
JP2016178120A (en) * 2015-03-18 2016-10-06 トヨタ自動車株式会社 Solar battery module
CN108349790A (en) * 2015-10-20 2018-07-31 旭硝子株式会社 Glass/resin complex and its manufacturing method
JP2018198285A (en) * 2017-05-24 2018-12-13 パナソニック株式会社 Solar battery module and solar battery module manufacturing method
JP2021072298A (en) * 2019-10-29 2021-05-06 京セラ株式会社 Solar cell module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142319A1 (en) * 2006-06-09 2007-12-13 Nippon Sheet Glass Company, Limited Sheet sealed laminated glass
JP2010287688A (en) * 2009-06-10 2010-12-24 Mitsubishi Electric Corp Solar cell module
JP2010021595A (en) * 2009-10-29 2010-01-28 Sanyo Electric Co Ltd Solar battery module
JP2012114331A (en) * 2010-11-26 2012-06-14 Koito Mfg Co Ltd Solar cell module
WO2013094299A1 (en) * 2011-12-21 2013-06-27 三洋電機株式会社 Photovoltaic apparatus
WO2013140552A1 (en) * 2012-03-21 2013-09-26 三洋電機株式会社 Solar cell module
JP2016178120A (en) * 2015-03-18 2016-10-06 トヨタ自動車株式会社 Solar battery module
CN108349790A (en) * 2015-10-20 2018-07-31 旭硝子株式会社 Glass/resin complex and its manufacturing method
CN108349790B (en) * 2015-10-20 2020-09-15 Agc株式会社 Glass-resin composite and method for producing same
JP2018198285A (en) * 2017-05-24 2018-12-13 パナソニック株式会社 Solar battery module and solar battery module manufacturing method
JP2021072298A (en) * 2019-10-29 2021-05-06 京セラ株式会社 Solar cell module
JP7274398B2 (en) 2019-10-29 2023-05-16 京セラ株式会社 solar module

Also Published As

Publication number Publication date
JP4208672B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP3875708B2 (en) Manufacturing method of solar cell module
JP4359308B2 (en) Manufacturing method of solar cell module
CN112789735B (en) Method for producing solar panels curved in two directions
WO2012017538A1 (en) Solar cell module and solar cell module production method
JP4208672B2 (en) Laminated glass and its manufacturing method
JP2011151334A (en) Method of manufacturing solar cell module
JP2006295087A (en) Photovoltaic module
WO2013183395A1 (en) Solar battery module, and method of manufacturing solar battery module
US11302837B2 (en) Solar cell panel and method for manufacturing the same
CN111223950A (en) Solar panel and solar cell module
JP2008294486A (en) Method for manufacturing solar cell module
JP2002039631A (en) Photothermal hybrid panel, hybrid panel main body using it, and method of manufacturing it
JP2005072567A (en) Manufacturing method of solar cell module
JP4667098B2 (en) Solar cell module
JP2005191125A (en) Connection tab for connecting solar battery element and solar battery module, and method of manufacturing solar battery module
JP4340132B2 (en) Manufacturing method of solar cell module
WO2012090694A1 (en) Solar cell module
JP2005236217A (en) Sealing material for solar cell module, and manufacturing method for solar cell module using the same
US20140157594A1 (en) Method for manufacturing a solar module
WO2015064458A1 (en) Vacuum multi-layer glass manufacturing method
CN115836397A (en) Solar cell panel and method for manufacturing same
JP3875715B2 (en) Manufacturing method of solar cell module
JP2009206231A (en) Solar cell module, and manufacturing method thereof
WO2020054020A1 (en) Solar cell connection tab, solar cell connection tab manufacturing apparatus, method for manufacturing solar cell connection tab, and solar cell module
WO2017056363A1 (en) Method for producing solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees