WO2013094246A1 - Method for manufacturing liquid cooling jacket - Google Patents

Method for manufacturing liquid cooling jacket Download PDF

Info

Publication number
WO2013094246A1
WO2013094246A1 PCT/JP2012/070196 JP2012070196W WO2013094246A1 WO 2013094246 A1 WO2013094246 A1 WO 2013094246A1 JP 2012070196 W JP2012070196 W JP 2012070196W WO 2013094246 A1 WO2013094246 A1 WO 2013094246A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotary tool
jacket
friction stir
sealing body
stir welding
Prior art date
Application number
PCT/JP2012/070196
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 牧田
伸城 瀬尾
堀 久司
雅敬 玉石
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Publication of WO2013094246A1 publication Critical patent/WO2013094246A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1265Non-butt welded joints, e.g. overlap-joints, T-joints or spot welds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4878Mechanical treatment, e.g. deforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for manufacturing a liquid-cooled jacket constituted by fixing a sealing body to an opening of a concave portion of a jacket body by friction stir welding.
  • Patent Document 1 discloses a technique in which constituent members are joined to each other by friction stir welding.
  • This liquid cooling jacket includes, for example, a jacket body having a fin housing chamber for housing metal fins, and a sealing body for sealing the fin housing chamber, and seals the peripheral wall of the jacket body surrounding the fin housing chamber.
  • a liquid cooling jacket is manufactured by rotating the rotating tool around the abutting portion with the outer peripheral surface of the stationary body and performing friction stir welding.
  • the sealing body is formed thinner than the jacket main body, and is placed on a support surface including a bottom surface of a step formed in the jacket main body. The rotating tool moves along the abutting portion so that the center thereof is located on the abutting portion, and joins the jacket body and the sealing body.
  • Patent Document 2 discloses a technique in which a cooling plate is attached to a jacket main body that performs friction stir welding and the rotating tool is moved while cooling the jacket main body.
  • an object of the present invention is to provide a manufacturing method of a liquid cooling jacket that can easily perform friction stir welding and can manufacture a liquid cooling jacket having high flatness.
  • the present invention fixes a sealing body for sealing the opening of the recess to the jacket main body having the recess and the flange formed in the recess by friction stir welding.
  • a method for manufacturing a liquid cooling jacket comprising: a support surface comprising a stepped bottom surface formed at a peripheral edge of the opening of the recess of the jacket body and lowering from the surface of the jacket body; and the flange that is flush with the support surface
  • the rotating tool provided with the stirring pin is caused to make a round along the abutting portion between the step side surface of the jacket body and the outer peripheral surface of the sealing body, and is moved along the flange portion on the surface of the sealing body.
  • the joined body is press-corrected after the friction stir welding step, it is not necessary to cool at the time of friction stir welding. Therefore, complication of the friction stir welding operation can be prevented, and the operation can be facilitated.
  • the stirring pin of the rotary tool is inserted into the jacket body from the support surface, the plasticizing region enters into a deep portion inside the jacket body. As a result, stress due to thermal contraction in the plasticized region can be distributed to the jacket body, and deformation of the sealing body can be suppressed.
  • the jacket main body and the sealing body can be joined by the support surface and the collar at the inner portion of the recess even when the recess has a large area, the deformation of the joined body can be suppressed by providing the collar.
  • the invention according to claim 2 is characterized in that the jacket body has a planar rectangular shape, and in the correction step, the joined body is arranged so that the sealing body faces downward, and the joined body The peripheral portion of the jacket is supported from below, and the center portion where the diagonal lines of the jacket body intersect is pressed downward to correct the press.
  • the joined body is supported at both ends as viewed in the cross-sectional direction, and the center is pressed downward.
  • pressing until the central portion is below the both ends allows the joined body to be flattened after pressing. Further, since the central portion is pressed intensively, the pressing load can be reduced.
  • a lower mold and an upper mold having a pressing surface having an area larger than the projected area of the joined body are used, and the gap between the lower mold and the upper mold is used.
  • the bonded body is press-corrected with the entire bonded body positioned.
  • the joined body can be pressed with uniform stress in a stable state, and press correction can be performed with high accuracy.
  • one of the pressing surface of the lower mold and the pressing surface of the upper mold is configured as a convex surface, and the other is configured as a concave surface meshing with the convex surface.
  • the bonded body is arranged so that the sealing body faces the concave surface.
  • the center portion is pressed and deformed to the opposite side from the state where the center portion is initially warped. It can be flat.
  • the invention according to claim 5 is characterized by further comprising a burr cutting step for cutting a burr generated in the friction stir welding after the friction stir welding step and before the correction step.
  • the burrs are not pinched during press correction, preventing the joint from being deformed locally or from being damaged by biting into the surface of the joint. can do.
  • the invention according to claim 6 is characterized in that a width dimension of the support surface is larger than a radial dimension of a shoulder portion of the rotary tool.
  • the plasticizing region can be formed in the support surface when the rotary tool is moved directly above the abutting portion, and the pushing force of the rotary tool is reliably supported by the support surface. be able to.
  • the invention according to claim 7 is characterized in that a width dimension of the flange portion is larger than a diameter dimension of a shoulder portion of the rotary tool.
  • the plasticizing region can be formed in the buttock when the rotary tool is moved directly above the buttock, the pushing force of the rotary tool is reliably supported by the buttock. be able to.
  • the invention according to claim 8 is the spiral ridge portion that spirally surrounds the periphery of the root of the stirring pin on the bottom surface of the shoulder portion of the rotary tool used in the friction stir welding step. Is formed, and a spiral metal reservoir is formed.
  • the invention according to claim 9 is the friction stir welding step, wherein when the rotary tool is moved clockwise with respect to the opening, the rotary tool is rotated to the right, and the rotary tool is moved to the opening. When moving counterclockwise with respect to the part, the rotating tool is rotated counterclockwise.
  • the rotary tool is moved to the outer peripheral side of the plasticized region formed in the first round. It is shifted, The rotation tool is made to make one more round along the said abutting part, The outer peripheral side of the said plasticization area
  • region is re-stirred.
  • a part of the abutting portion is used for temporary joining smaller than the rotary tool. Temporary joining is performed using a rotating tool.
  • the sealing body does not move during friction stir welding (hereinafter sometimes referred to as “main joining”). And it becomes easy to join and the positioning accuracy of a sealing body improves. Further, since the temporary welding rotary tool is smaller than the main welding rotary tool, the main welding can be completed only by moving the main welding rotary tool on the temporary bonding portion and performing frictional stirring.
  • the invention according to claim 12 is characterized in that the abutting portion has a rectangular frame shape, and in the step of temporarily joining the abutting portion with the rotary tool for temporary joining in the friction stir welding step, the abutting is performed. One of the diagonals of the part is temporarily joined first, and then the other diagonal is provisionally joined.
  • the invention according to claim 13 is characterized in that the abutting portion has a rectangular frame shape, and in the step of temporarily joining the abutting portion with the rotary tool for temporary joining in the friction stir welding step, the abutting is performed. It is characterized in that after the intermediate portions of one opposite side of the part are temporarily joined, the intermediate portions of the other opposite side are temporarily joined.
  • the sealing body can be temporarily joined in a balanced manner, and the positioning accuracy of the sealing body with respect to the jacket body is improved.
  • FIG. (A) is a figure for demonstrating the friction stir welding process of the manufacturing method of the liquid cooling jacket which concerns on embodiment of this invention, Comprising: The friction stir welding process (main joining process) following FIG. It is the top view which showed.
  • (A), (b) is a figure for demonstrating the friction stir welding process of the manufacturing method of the liquid cooling jacket which concerns on 1st Embodiment of this invention, Comprising: The friction stir welding process following FIG. 6 was shown. It is a top view. It is a figure for demonstrating the friction stir welding process of another form, Comprising: (a) is the top view which showed the temporary joining process, (b) is the top view which showed this joining process. It is the perspective view which showed the conjugate
  • the liquid cooling jacket is a component of a cooling system mounted on an electronic device such as a personal computer, for example, and is a component that cools a CPU (heat generating body) and the like.
  • the liquid cooling system includes a liquid cooling jacket in which a CPU is mounted at a predetermined position, a radiator (heat dissipating means) that discharges heat transported by cooling water (heat transport fluid) to the outside, and a micropump (heat transport) that circulates the cooling water.
  • Fluid supply means a reserve tank that absorbs expansion / contraction of cooling water due to temperature change, a flexible tube that connects these, and cooling water that transports heat.
  • the cooling water is a heat transport fluid that transports heat generated by a CPU (not shown), which is a heat generator, to the outside.
  • a CPU not shown
  • an ethylene glycol antifreeze is used as the cooling water.
  • a micropump act operates, cooling water will circulate through these apparatuses.
  • a liquid cooling jacket 1 is a sealing body that seals an opening 12 of a recess 11 in a jacket body 10 having a recess 11 that is partially opened while cooling water (not shown) flows. 30 is fixed by friction stir welding (see FIGS. 6 to 8).
  • the liquid cooling jacket 1 has a heat diffusion sheet at a position corresponding to a portion (a portion through which cooling water flows) where the fins 32 are arranged on the upper surface (the surface of the lid plate portion 31 of the sealing body 30) in FIG.
  • a CPU (not shown) is attached via (not shown), and receives heat generated by the CPU and exchanges heat with cooling water flowing inside. Thereby, the liquid cooling jacket 1 transmits the heat received from the CPU to the cooling water, and as a result, the CPU is efficiently cooled.
  • the heat diffusion sheet is a sheet for efficiently transferring the heat of the CPU to the jacket body 10 and is formed of a metal having high thermal conductivity such as copper, for example.
  • the jacket body 10 is a shallow box body that is open on one side (the upper side in FIG. 1 in the present embodiment), and has a rectangular shape in plan view in the present embodiment.
  • the jacket main body 10 is formed with a recess 11 having an opening at the inside thereof, and has a bottom wall 13 and a peripheral wall 14 of the recess 11.
  • Such a jacket main body 10 is produced by die casting, casting, forging or the like, for example.
  • the jacket body 10 is formed from aluminum or an aluminum alloy. Thereby, the liquid cooling jacket 1 has been reduced in weight and is easy to handle.
  • the opening 12 of the recess 11 of the jacket body 10 has a substantially rectangular shape with four corners chamfered in an arc shape.
  • a support surface 15 a is formed on the opening peripheral edge 12 a of the concave portion 11 of the jacket body 10, which is a stepped bottom surface that is lowered by one step on the bottom surface side of the concave portion 11.
  • the flange portion 17 is formed in the recess portion 11.
  • the opening portion 12 of the recess portion 11 has a substantially rectangular shape, assuming that the flange portion 17 is also a part of the recess portion 11.
  • the opening peripheral part 12a of the recessed part 11 is taken as the peripheral part of the recessed part 11 also including the collar part 17.
  • the height difference dimension H1 between the upper surface of the jacket body 10 and the support surface 15a is the same length as the thickness dimension T1 of the sealing body 30.
  • the support surface 15a is a surface which supports the sealing body 30, Comprising: The peripheral part 30a of the sealing body 30 is mounted on the support surface 15a. Further, the width W1 of the support surface 15a (the width of the portion on which the peripheral edge 30a of the sealing body 30 is placed) dimension W1 is set larger than the radial dimension R2 of the shoulder 51 of the rotary tool 50 used for friction stir welding. Has been.
  • the peripheral wall 14 around the recess 11 includes a pair of wall portions 14 a and 14 b positioned at both ends in the longitudinal direction (X-axis direction in FIG. 1) of the jacket body 10, and a short direction (see FIG. 1). 1 and a pair of wall portions 14c and 14d located at both ends in the Y-axis direction).
  • the pair of wall portions 14a and 14b both extend in the Y-axis direction and are formed in parallel to each other with a predetermined distance in the X-axis direction.
  • the pair of wall portions 14c and 14d both extend in the X-axis direction and are formed in parallel to each other at a predetermined distance in the Y-axis direction.
  • a flange 17 is formed inside the recess 11.
  • the flange portion 17 is configured by a wall body raised from the bottom wall 13 of the recess 11.
  • the height of the flange portion 17 from the bottom wall 13 is the same as the height of the support surface 15a from the bottom wall 13. That is, the upper end surface (surface of the flange portion 17) 17 a of the flange portion 17 is flush with the support surface 15 a formed on the opening peripheral edge portion 12 a of the recess 11.
  • the flange portion 17 extends from the central portion of the length in the Y-axis direction of the inner wall surface (the inner peripheral side surface on the concave portion 11 side) of one of the wall portions 14a and 14b toward the other wall portion 14b.
  • the distal end of the flange portion 17 in the extending direction (X-axis direction) is separated from the inner wall surface (the inner peripheral side surface on the concave portion 11 side) of the wall portion 14b by a predetermined distance, and the distal end of the flange portion 17 and the inner wall portion 14b A space through which the coolant flows is formed between the wall surfaces. That is, by forming the flange portion 17 inside the recess 11, a U-shaped groove (substantially recessed portion) is formed in a plan view, and the coolant flows along this U-shape.
  • Through holes 16 and 16 are formed in the wall portions 14a located at both ends of the U-shaped channel in a plan view, respectively, for allowing cooling water to flow through the recess 11.
  • the through holes 16, 16 extend in the X-axis direction, have a circular cross section, and are formed in the intermediate portion in the depth direction of the recess 11.
  • the shape, number, and formation position of the through-hole 16 are not restricted to this, It can change suitably according to the kind and flow volume of cooling water.
  • the sealing body 30 has an outer peripheral shape having the same shape as the step side surface 15b (see FIG. 1) of the jacket body 10 (in this embodiment, a substantially rectangular shape with four corners chamfered in an arc shape). And a plurality of fins 32, 32... Provided on the lower surface of the lid plate portion 31.
  • the fins 32 are provided to increase the surface area of the sealing body 30.
  • the plurality of fins 32, 32... are arranged parallel to each other and orthogonal to the lid plate portion 31, and are configured integrally with the lid plate portion 31. Thereby, heat is transmitted favorably between the cover plate portion 31 and the fins 32, 32.
  • the fins 32, 32... are arranged so as to extend in a direction (X-axis direction in FIG. 1) orthogonal to the wall portion 14a of the peripheral wall 14 in which the through holes 16, 16 are formed. ing. Since the collar part 17 is located in the center part of the Y-axis direction of the cover board part 31 at the time of mounting to the jacket main body 10, the fin is not provided.
  • the fin 32 has a height (depth) dimension (length in the Z-axis direction in FIG. 1) equivalent to the depth dimension of the recess 11 or a height (depth) dimension slightly shorter than the depth dimension of the recess 11.
  • the tip portion of the fin 32 comes into contact with the bottom surface of the recess 11 (the surface of the bottom wall 13), or a minute gap is formed between the tip portion of the fin 32 and the bottom surface of the recess 11.
  • a cylindrical space is partitioned by the cover plate portion 31 of the sealing body 30, the adjacent fins 32 and 32, and the bottom surface of the recess 11.
  • the space functions as a flow path 33 (see FIG. 5A) through which cooling water flows.
  • the fins 32, 32... Have a length dimension (length in the X-axis direction in FIG. 1) shorter than the extension length dimension of the flange portion 17, and one end thereof (the wall portion 14a side) is The inner wall surface of the wall portion 14a is separated from the inner wall surface by a predetermined distance.
  • a space between one end of the fins 32, 32... And the wall 14a is a flow path header section 34 (see FIG. 6) that connects the flow path 33 defined by the fins 32, 32 and the through hole 16. (See (a)).
  • the other end (on the wall 14b side) of the fins 32, 32... Is located at a portion corresponding to the tip of the flange part 17, and the other end of the fins 32, 32.
  • the space between the wall portion 14b constitutes a communication flow channel 35 (see FIG. 6A) that connects the flow channels 33, 33 located on both sides of the flange portion 17.
  • the sealing body 30 is also made of aluminum or an aluminum alloy, like the jacket body 10. Thereby, the liquid cooling jacket 1 has been reduced in weight and is easy to handle.
  • the sealing body 30 is manufactured by forming a cover plate portion 31 and fins 32 by cutting a block formed of aluminum or an aluminum alloy. Note that the manufacturing method is not limited to this, and for example, it may be manufactured by die casting, casting, forging, or the like, or a member having a cross-sectional shape composed of a lid plate portion 31 and a plurality of fins 32, 32. May be formed by extruding or grooving and removing both ends of the fin 32.
  • the sealing body 30 is inserted into the concave portion 11 of the jacket body 10 so that the fins 32 are on the lower side, and the peripheral portion 30a of the sealing body 30 is removed. Then, it is placed on the support surface 15a. Then, the step side surface 15b of the jacket main body 10 and the outer peripheral surface 30b of the sealing body 30 are abutted to form the abutting portion 40.
  • the temporary bonding rotary tool 60 includes a shoulder portion and a stirring pin (not shown) that are smaller in diameter than the rotary tool 50, and the plasticizing region 45 formed by the temporary bonding rotary tool 60 is a later process.
  • the width of the plasticized region 41 (see FIG. 6B) formed by the rotary tool 50 is smaller.
  • region 45 is formed in the position (The position where the center of the width direction of the plasticization area
  • the plasticizing region 45 in the temporary joining is completely covered with the plasticizing region 41, so that the trace of the extraction of the temporary joining rotary tool 60 remaining in the plasticizing region 45 and the trace of the plasticizing region 45 are present. Does not remain.
  • the abutting portion 40 has a substantially rectangular shape (rectangular frame shape) with four corners chamfered in an arc shape.
  • the step of temporarily joining the abutting portion 40 with the temporary joining rotary tool 60 after diagonally joining the one chamfered diagonals 44a and 44b of the abutting portion 40 first, the other chamfered diagonal 44c, 44d is temporarily joined.
  • the sealing body 30 can be temporarily joined to the jacket body 10 in a well-balanced manner, and the positioning accuracy of the sealing body 30 with respect to the jacket body 10 is improved. Deformation can be prevented.
  • the extraction trace 61 (refer FIG.6 (b)) remains, but it leaves in this embodiment. Keep it.
  • the process of temporarily joining the sealing body 30 is not limited to the above procedures, and may be performed by other procedures. That is, in the above procedure, the corners of the rectangular abutting portion 40 are friction stir welded, whereas the intermediate portions of each side are linearly joined by friction stir welding.
  • the abutting portion 40 has a substantially rectangular shape (rectangular frame shape), and in the step of temporarily joining the abutting portion 40 with the temporary joining rotary tool 60, The intermediate portions 46a and 46b of one opposite side 46 and 46 of the part 40 are temporarily joined first, and then the intermediate portions 47a and 47b of the other opposite side 47 and 47 are temporarily joined.
  • the plasticizing regions 48 formed by the temporary bonding rotary tool 60 are linearly formed with the same length. Moreover, the plasticization area
  • the main joining with the rotary tool 50 is performed.
  • a jig (not shown) surrounding the jacket body 10 from four directions is applied in advance to the outer peripheral surface of the peripheral wall 14 of the jacket body 10. According to this, the thickness of the peripheral wall 14 is thin, and the distance (gap) between the outer peripheral surface of the shoulder 51 (see FIG.
  • the rotary tool 50 is made of a metal material that is harder than the jacket body 10 and the sealing body 30, and has a columnar shoulder 51 and a lower end surface of the shoulder 51, as shown in FIG.
  • a projecting stirring pin (probe) 52 is provided.
  • the dimensions and shape of the rotary tool 50 are set according to the material and thickness of the jacket body 10 and the sealing body 30.
  • the stirring pin 52 has a truncated cone shape with a reduced diameter at the lower portion, and the protruding length dimension L1 is equal to or greater than the thickness dimension T1 of the lid plate portion 31 of the sealing body 30. .
  • the tip of the shoulder portion 51 of the rotary tool 50 is pushed a predetermined depth from the surfaces of the jacket body 10 and the sealing body 30, and the tip of the stirring pin 52 penetrates the support surface 15a. Further, the radial dimension R2 of the shoulder portion 51 is smaller than the width dimension H1 of the support surface 15a.
  • the rotational speed of the rotary tool 50 is 500 to 15000 (rpm)
  • the feed speed is 0.05 to 2 (m / min)
  • the pushing force for pressing the abutting portion 40 is about 1 to 20 (kN).
  • the sealing body 30 is appropriately selected according to the material, plate thickness, and shape.
  • a stirring blade 58 is formed in a spiral shape so as to enhance the stirring effect.
  • a spiral ridge 59a is formed on the bottom surface of the shoulder portion 51.
  • the spiral ridge 59a surrounds the periphery of the base of the stirring pin 52 and spreads in a spiral, and a spiral metal reservoir 59b is formed between adjacent spiral ridges 59a.
  • the stirring blade 58, the spiral ridge 59a, and the metal reservoir 59b are illustrated only in FIG. 5, and are not illustrated in FIGS. 3 and 4 to prevent complication of the drawings.
  • the spiral protrusion 59a has a winding direction determined according to the rotation direction of the rotary tool 50, and is a winding direction in which the plastic fluidized metal flows to the stirring pin 52 side. Since the plastic fluidized metal is caused to flow toward the stirring pin 52, the efficiency of friction stirring can be increased. In addition, what is necessary is just to set suitably the length of the spiral protruding item
  • the rotary tool 50 is inserted into the insertion position 53 while rotating.
  • the insertion position 53 of the rotary tool 50 is the upper surface of the peripheral wall 14 that is outside the abutting portion 40.
  • a pilot hole (not shown) may be formed in advance at the insertion position 53 of the rotary tool 50. If it does in this way, the insertion time (pressing time) of the rotation tool 50 can be shortened.
  • the rotating tool 50 is moved while being rotated from the insertion position 53 to a position directly above the abutting portion 40 (a position where the axis of the rotating tool 50 is located on the abutting portion 40).
  • the moving direction is changed so that the center (axial center) of the rotating tool 50 moves along the abutting portion 40, and the rotating tool 50 is moved.
  • the rotary tool 50 is positioned such that the sealing body 30 is positioned on the flow side 50a where the rotary tool 50 rotates in the direction opposite to the moving direction of the rotary tool 50 (see arrow Y1 in FIGS. 6 and 7).
  • the rotation direction (spinning direction) of the rotary tool 50 in the abutting portion 40 is set to be the same direction as the moving direction (revolution direction). That is, in this embodiment, as shown in FIG. 6B, the rotary tool 50 is moved clockwise with respect to the opening 12 of the recess 11 (see FIG. 6A), The tool 50 is rotated clockwise (see arrow Y2 in FIGS. 6 and 7). When the rotary tool 50 is moved counterclockwise with respect to the opening 12 of the recess 11, the rotary tool 50 is rotated counterclockwise.
  • the relative speed of the outer periphery of the rotary tool 50 with respect to the sealing body 30 is a value obtained by subtracting the magnitude of the moving speed from the magnitude of the tangential speed on the outer periphery of the rotary tool 50 (sealing body).
  • 30 is the flow side 50a)
  • the speed is lower than the shear side 50b in which the rotary tool 50 rotates in the same direction as the moving direction of the rotary tool 50.
  • a cavity defect hardly occurs on the sealing body 30 side.
  • the shear side 50b is located in the thick part of the jacket main body 10 near the outer side of the abutting part 40, it does not fall into a metal shortage.
  • the plastically fluidized metal flows toward the stirring pin 52, so that the metal does not run short, and the efficiency of friction stirring can be improved. it can.
  • the stirring pin 52 of the rotary tool 50 has a length dimension L1 longer than the thickness dimension T1 of the sealing body 30.
  • the leading end penetrates through the support surface 15 a and enters the inner side of the jacket body 10.
  • the distal end portion (lower end portion) of the plasticizing region 41 formed by the rotary tool 50 is formed so as to penetrate deeply into the inner side of the jacket main body 10.
  • the “plasticization region” includes both a state in which the rotary tool 50 is heated by frictional heat and is actually plasticized, and a state in which the rotary tool 50 passes and returns to room temperature.
  • the rotation and movement of the rotary tool 50 are continued, and as shown in FIG. 7A, the rotary tool 50 is rotated around the opening portion 12 along the abutting portion 40 to form the plasticized region 41.
  • the rotary tool 50 is rotated around the opening portion 12 along the abutting portion 40 to form the plasticized region 41.
  • the rotary tool along the start end including the start end 54a of the first turn (a portion from the start end 54a to a position advanced by a predetermined length in the moving direction of the rotary tool 50 (the same position as the end end 54b)). 50 is moved by a predetermined length. Accordingly, the start end 54a and the end end 54b in the circumferential movement of the rotary tool 50 overlap each other, and a part of the plasticizing region 41 is configured to overlap.
  • the rotary tool 50 is further rotated once to be referred to as a plasticization region (hereinafter referred to as “second plasticization region”). 43).
  • the rotary tool 50 is shifted to the outer peripheral side of the plasticizing region 41 formed by the movement in the first round from the end 54b of the first round.
  • the shift of the rotary tool 50 moves diagonally so as to move outward in the moving direction, and the inner end of the second movement trajectory (plasticization region 43) of the rotary tool 50
  • the first movement trajectory (plasticization region 41) is located on the center line (butting portion 40) or slightly outside the center line.
  • the rotary tool 50 moves in parallel while maintaining a certain positional relationship with the movement locus (plasticization region 41) of the first round. Therefore, the outer peripheral side portion of the movement track of the first round is re-stirred by the movement of the second round of the rotary tool 50 (see FIGS. 7 and 8).
  • the cavity defect is eliminated because it is re-stirred.
  • the shear side 50b of the rotary tool 50 in the second round of movement is located in the thick part of the jacket body 10 near the outside of the abutting part 40, there is no shortage of metal. Furthermore, even if a cavity defect occurs, there is no problem because the position is away from the abutting portion 40.
  • the second round movement of the rotary tool 50 is the same as the first round rotation direction, rotation speed, movement direction, movement speed, and pushing amount (see arrows Y3 and Y4 in FIGS. 7 and 8). .
  • the rotation speed, movement speed, push-in amount, and the like of the second rotation tool 50 may be changed as appropriate according to the shape and material of the jacket body 10 and the sealing body 30.
  • the stirring pin 52 of the rotary tool 50 has a length dimension L1 (see FIG. 3A) that is a thickness dimension T1 of the sealing body 30. Since the length is longer than that (see (a) of FIG. 3), the tip of the stirring pin 52 enters the inner side of the jacket body 10. As a result, the distal end portion (lower end portion) of the second plasticizing region 43 formed by the second movement of the rotary tool 50 is formed so as to penetrate deeply into the interior of the jacket body 10.
  • the rotary tool 50 is inserted into the insertion position 56 at the distal end of the flange portion 17 while rotating.
  • a pilot hole (not shown) may be formed in advance at the insertion position 56 of the rotary tool 50. If it does in this way, the insertion time (pressing time) of the rotation tool 50 can be shortened.
  • the rotating tool 50 is moved from the insertion position 56 to the outside of the abutting portion 40 while being rotated along the flange portion 17 to form the plasticized region 49.
  • the rotation of the rotary tool 50 advances and frictional stirring is performed up to the inner peripheral side end of the plasticizing region 41, the rotary tool 50 enters the plasticizing region 41 as it is, and then continues from the plasticizing region 41 to the second plasticizing region 43. Move to. Thereafter, the rotary tool 50 is moved from the outer peripheral side end of the second plasticizing region 43 to the upper surface of the peripheral wall 14 that is outside, and the rotary tool 50 is pulled out at that position (pulling position 57).
  • the extraction position 57 of the rotary tool 50 is located outside the abutting portion 40, so that the extraction trace (not shown) of the stirring pin 52 (see FIG. 4A) abuts.
  • the portion 40 is not formed.
  • the rotary tool 50 moves linearly (see arrow Y5 in FIG. 8B) from the insertion position 56 to the pulling position 57 along the flange portion 17.
  • the rotation direction autorotation direction
  • the rotation speed the rotation speed
  • the movement direction the movement direction, and the pushing amount are constant.
  • the rotation direction may be either left rotation or right rotation.
  • the tip of the stirring pin 52 of the rotary tool 50 is the flange portion 17.
  • the inside of the jacket body 10 enters the back side.
  • the distal end portion (lower end portion) of the plasticizing region 49 formed by the rotary tool 50 is formed so as to enter the inner back side of the jacket main body 10.
  • the rotary tool 50 is rotated around the opening 12 of the recess 11 along the abutting portion 40 and friction stir welding is performed to form the plasticized region 41 and the second plasticized region 43. Further, the rotating tool 50 is moved along the flange portion 17 to perform friction stir welding to form the plasticized region 49, and the joined body 1 ′ (see FIG. 8 and FIG. 10) is formed.
  • press correction is performed by placing the joined body 1 ′ on the support base 70 and pressing the central portion 20 downward from above.
  • the support base 70 is manufactured as a mold when the liquid cooling jacket 1 is mass-produced.
  • the support base 70 is a shallow box that is large enough to accommodate the joined body 1 ′ and has an upper opening.
  • the support base 70 has a rectangular shape in plan view.
  • the support base 70 has a recess 71 whose top is open.
  • the opening 72 of the recess 71 has a rectangular shape that is slightly larger than the outer peripheral surface of the joined body 1 ′, and the joined body 1 ′ can be accommodated in the recessed portion 71.
  • a support surface 73 formed of a step bottom surface that is stepped down by one step on the bottom surface side is formed inside the recess 71.
  • the support surface 73 is formed to extend inward from the inner peripheral surface of the recess 71.
  • the support surface 73 has a width capable of supporting the peripheral edge of the joined body 1 ′.
  • the joined body 1 ′ is placed on the support base 70 in a state where the sealing body 30 faces downward (in a state where the central portion is warped upward).
  • the periphery of the joined body 1 ′ is supported from below by the support surface 73. Since the joined body 1 ′ is deformed with the central portion 20 warped upward, at the time when the joined body 1 ′ is installed, depending on the deformed state, the four corners of the joined body 1 ′, or the four corners. It is supported on the support surface 73 at three points.
  • the center portion 20 (see FIG. 11) where the diagonal lines of the jacket body 10 intersect is pressed downward.
  • the central portion 20 of the jacket body 10 is pressed by the pressing body 75, the joined body 1 ′ is deformed and the central portion 20 is lowered downward.
  • the entire joined body 1 ′ is pushed downward to be deformed, so even if it is in a three-point support state before pressing, the transition to four-point support is performed, and the joined body is started from the middle.
  • the support surface 73 is supported over the entire circumference of the 1 ′ outer peripheral surface.
  • the joined body 1 ′ When the joined body 1 ′ is viewed in the cross-sectional direction, the lower surface of both ends is supported by the outer fulcrum, and the inner fulcrum of the upper surface of the central portion is pressed downward, and in principle, the state is similar to that of three-point bending. At this time, since the joined body 1 ′ tries to return to the original shape (the shape warped upward) by the spring back, it is pressed to a position where the central portion 20 warps downward as compared with the flat state (in the figure, two (Indicated by a dotted line).
  • the joined body 1 ′ 10 formed along the steps of the present embodiment has a state in which the central portion 20 is approximately 0.9 mm upward.
  • the vertical axis represents the pressing load and the horizontal axis represents the downward displacement of the joined body 1 ′.
  • the numerical value of the displacement amount is a negative value when the joined body 1 ′ is 0 mm when flat and the central portion 20 is warped upward compared to the peripheral portion, and the central portion 20 warps downward.
  • a pressing load of 25 kN may be applied downward, and the pressing may be stopped when the central portion 20 is deformed downward by 2.65 mm. Note that the pressing load and the amount of displacement at which the joined body 1 ′ returns to the flat state vary depending on the shape of the joined body 1 ′, and thus are determined by performing appropriate tests.
  • the production of the liquid cooling jacket 1 is completed.
  • the manufacturing method of the liquid cooling jacket of the present embodiment since the joined body 1 ′ is press-corrected after the friction stir welding process, deformation during the friction stir welding can be allowed. Therefore, it is not necessary to cool the jacket main body 10 during the friction stir welding. That is, according to the manufacturing method of the liquid cooling jacket of this embodiment, complication of the friction stir welding operation can be prevented, and the operation can be facilitated.
  • the joined body 1 ′ is arranged so that the sealing body 30 faces downward, and the periphery of the joined body 1 ′ is supported from the lower side by the support base 70, and the jacket body 10.
  • the central portion 20 where the diagonal lines intersect with each other downward the jacket body 10 is supported from the lower side at both ends as viewed in the cross-sectional direction, and the central portion 20 is pressed downward.
  • the central portion 20 is pressed downward.
  • the distance from the central pressing point to the support points at both ends becomes equal to the left and right.
  • the pressing load is transmitted to the jacket body 10 and the sealing body 30 in a well-balanced manner, and the left and right are deformed evenly.
  • the joined body 1 ′ is not deformed locally, and the whole can be corrected to be flat. Further, when the central portion 20 is pressed, the flange portion 17 is pressed, so that it becomes easy to transmit a pressing load to the sealing body 30. Even when the flanges are formed in a plurality of rows and the flanges are not located at the center, it is preferable to press the center in consideration of the balance of deformation of the joined body 1 ′.
  • the joined body 1 ′ can be flattened after the pressing is completed.
  • the central portion 20 of the joined body 1 ′ is pressed intensively, so that the press load can be reduced.
  • the rotary tool 50 including the stirring pin 52 having the length dimension L1 larger than the thickness dimension T1 of the sealing body 30 is used. Since the friction stir welding is performed, the tip portions of the plasticized regions 41, 43, and 46 are formed so as to enter the deep part inside the jacket body 10. Thereby, the abutting portion 40 between the jacket main body 10 and the sealing body 30 can be reliably friction stir welded, and a liquid-cooled jacket excellent in water tightness can be manufactured.
  • the width dimension W1 of the support surface 15a is larger than the radius dimension R2 of the shoulder portion 51 of the rotary tool 50, when the first rotation of the rotary tool 50 is moved directly above the abutting portion 40, A plasticized region 41 can be formed in the support surface 15a. Accordingly, since the plasticized region 41 is not exposed on the inner side surface of the concave portion 11, the support surface 15a is not lowered toward the bottom wall 13 of the concave portion 11, and the pushing force of the rotary tool 50 is reliably supported by the support surface 15a. be able to. Therefore, since the sealing body 30 is supported by the support surface 15a, the pressing force of the rotary tool 50 is not applied downward to the sealing body 30, and the sealing body 30 is not deformed.
  • a flange 17 having a surface 17a flush with the support surface 15a is formed inside the recess 11, and a plasticized region 49 is formed along the flange 17, so that the sealing body 30 is By joining to the part 17, even when the recessed part 11 is large area, the sealing body 30 is supported planarly on the support surface 15a and the surface 17a of the collar part 17. FIG. Thereby, the planarity of the sealing body 30 is maintained, and deformation of the sealing body 30 can be suppressed. Furthermore, even if the sealing body 30 is deformed by friction stir welding around the opening 12 of the jacket body 10, the sealing body 30 and the flange portion 17 are joined in a later step. Thereby, the deformation
  • the width dimension W2 of the flange part 17 is larger than the diameter dimension R1 of the shoulder part 51 of the rotary tool 50, when the rotary tool 50 is moved directly above the flange part 17, the plasticizing region 49 is formed. It can be formed in the surface 17 a of the flange 15. Accordingly, since the plasticized region 49 is not exposed on the side surface of the flange portion 17, the surface 17 a of the flange portion 17 does not fall to the bottom wall 13 side of the recess 11, and the pushing force of the rotary tool 50 is surely secured by the flange portion 17. Can be supported. Therefore, since the sealing body 30 is supported by the surface 17a of the flange portion 17, the pressing force of the rotary tool 50 is not applied downward to the sealing body 30, and the sealing body 30 is not deformed.
  • the thin sealing body 30 becomes the flow side 50a, and the sealing body 30 side Is difficult to generate cavity defects.
  • the jacket main body 10 becomes the shear side 50b
  • the jacket main body 10 is thick, even if the relative speed of the outer periphery of the rotary tool 50 with respect to the jacket main body 10 is high, there is no shortage of metal. Therefore, it is possible to prevent the occurrence of cavity defects due to lack of metal in the abutting portion, and it is possible to prevent the bonding strength of the abutting portion 40 from being lowered. And even if a cavity defect should occur, it will occur at a position away from the abutment 40 and away from the flow path of the heat transport fluid. It hardly leaks from the flow path to the outside and does not affect the sealing performance of the joint.
  • a part of the abutting portion 40 is temporarily joined using the temporary joining rotary tool 60.
  • the sealing body 30 does not move, it becomes easy to join, and the positioning accuracy of the sealing body 30 with respect to the jacket body 10 is improved.
  • the temporary joining rotary tool 60 is smaller than the main joining rotary tool 50, the main joining rotary tool 50 is merely moved and frictionally stirred on the plasticized region 45 formed by the temporary joining.
  • the extraction traces of the plasticized region 45 and the rotary tool 60 are covered, and the main joining is finished.
  • the abutting portion 40 has a rectangular frame shape, and after temporarily joining one diagonal 44a, 44b of the abutting portion 40 in the step of temporarily joining the abutting portion 40 with the temporary joining rotary tool 60, Since the other diagonals 44c and 44d are temporarily joined together, the sealing body 30 can be temporarily joined with good balance, and the positioning accuracy of the sealing body 30 with respect to the jacket body 10 is further improved.
  • the plasticizing region 41 since the plasticizing region 41 partially overlaps at the start end 54a and the terminal end 54b in the circumferential movement of the rotary tool 50, the plasticizing region is formed in the opening peripheral portion 12a of the recess 11. There is no portion where 41 is interrupted. Therefore, the peripheral wall 14 of the jacket main body 10 and the sealing body 30 can be favorably joined, and the heat transport fluid does not leak to the outside, so that the sealing performance of the joint can be improved.
  • the manufacturing method of the liquid cooling jacket which concerns on 2nd Embodiment is demonstrated with reference to FIG. 14 and FIG.
  • the manufacturing method of the liquid cooling jacket of the second embodiment is different from the first embodiment in the shape of the press device used in the correction process.
  • the press device 80 includes a lower mold 81 that supports the jacket body 10 to which the sealing body 30 is bonded, and an upper mold 86 that presses the jacket body 10.
  • the lower mold 81 includes a pressing surface 82 having an area larger than the projected area of the jacket body 10
  • the upper mold 86 includes a pressing surface 87 having an area larger than the projected area of the jacket body 10.
  • the pressing surface 82 of the lower die 81 is formed in a concave shape with the central portion recessed downward, and the pressing surface 87 of the upper die 86 protrudes downward in the central portion. It is formed in a convex shape.
  • the joined body 1 ′ is placed on the pressing surface 82 in a state where the central portion is warped upward (a state where the sealing body 30 faces the lower concave surface).
  • the concave surface of the pressing surface 82 and the convex surface of the pressing surface 87 have the same radius of curvature, and have a curvature that meshes with each other.
  • the curvature radius of the convex surface and the concave surface is set so that the numerical value becomes (for example, 2.65 mm in the example of the joined body 1 ′ in the first embodiment).
  • a press apparatus 80 ' as shown in FIG.
  • the pressing surface 82 ′ of the lower mold 81 ′ is formed in a convex shape with the central portion protruding upward, and the pressing surface 87 ′ of the upper mold 86 ′ is recessed upward in the central portion. It is formed in a concave shape.
  • the joined body 1 ′ is placed on the pressing surface 82 ′ in a state where the center part is warped downward (a state where the sealing body 30 faces the upper concave surface).
  • the convex surface of the pressing surface 82 ′ and the concave surface of the pressing surface 87 ′ have the same radius of curvature and have a curvature that meshes with each other.
  • the central portion 20 of the joined body 1 ′ warps upward, but the upward displacement amount is flat when the joined body 1 ′ springs back after releasing the pressing load.
  • the curvature radii of the convex surface and the concave surface are set so that the numerical values are as follows.
  • the jacket main body 10 to which the sealing body 30 is bonded can also be flattened by the press devices 80 and 80 ′ having such a configuration. Furthermore, according to the press devices 80 and 80 ', the jacket main body 10 and the sealing body 30 can be supported in a stable state, and the entire surface thereof can be pressed. Therefore, regardless of the position of the concave portion or the collar portion of the jacket main body 10, even when the concave portion or the collar portion is disposed at a position deviated from the central portion, the press correction can be performed with high accuracy, and the joined body 1 ′ can be Can be flattened. Further, even when the shape of the joined body 1 ′ is different from the rectangle, press correction can be performed, and versatility is improved.
  • the burrs are not sandwiched between the jacket body 10 and the pressing surfaces 87, 87 ′ or the pressing surfaces 82, 82 ′ at the time of pressing, and may be locally deformed. It is possible to prevent the burr from biting into the surface and causing scratches.
  • the joined body 1 ′ has a substantially rectangular shape in plan view, but is not limited thereto, and may be another shape such as a square, a polygon, or a circle. In this case, the shape of the support for supporting the joined body 1 ′ is changed as appropriate.
  • the fin 32 provided in the sealing body 30 may be a separate body from the lid plate portion.
  • the fin 32 may be separately housed in the recess 11 or provided integrally with the jacket body. Yes.
  • the collar part 17 is extended from the one wall part 14a to the other wall part 14b and formed in one place, it is not limited to this, A plurality is formed. You may do it. In this case, a plurality of ridges extending from one wall portion to the other wall portion may be formed, or at least one ridge portion may be formed on each of a pair of wall portions facing each other to cool the ridge portion. You may comprise so that the flow path through which water flows may meander.

Abstract

The present invention is characterized by being equipped with: a placement step, wherein a sealing body (30) is placed upon a support surface (15a) comprising the bottom surface of a stepped part that is formed at the aperture edge part (12a) of a recessed part (11) of a jacket main body (10) and that is lower than the surface of the jacket main body (10), and upon the surface (17a) of a rib part (17) that is flush with this support surface (15a), and the side surface (15b) of the stepped part of the jacket main body (10) and the outer peripheral surface (30b) of the sealing body (30) are butted together; a friction stir welding step, wherein the sealing body (30) is friction stir welded to the jacket main body (10) to form a welded body (1') by making one circuit with a rotary tool (50), equipped with a stirring pin (52) having a length (L1) greater than the thickness (T1) of the sealing body (30), along the abutting part (40) between the side surface (15b) of the stepped part of the jacket main body (10) and the outer peripheral surface (30b) of the sealing body (30), and moving the rotary tool along the rib part (17) at the surface of the sealing body (30); and a straightening step, wherein the welded body (1') is press-straightened.

Description

液冷ジャケットの製造方法Manufacturing method of liquid cooling jacket
 本発明は、ジャケット本体の凹部の開口部に封止体を摩擦攪拌接合によって固定して構成される液冷ジャケットの製造方法に関する。 The present invention relates to a method for manufacturing a liquid-cooled jacket constituted by fixing a sealing body to an opening of a concave portion of a jacket body by friction stir welding.
 金属部材同士を接合する方法として、摩擦攪拌接合(FSW=Friction Stir Welding)が知られている。摩擦攪拌接合とは、回転ツールを回転させつつ金属部材同士の突合部に沿って移動させ、回転ツールと金属部材との摩擦熱により突合部の金属を塑性流動させることで、金属部材同士を固相接合させるものである。 Friction stir welding (FSW = Friction Stir Welding) is known as a method for joining metal members. Friction stir welding is a technique in which metal members are fixed to each other by causing the metal at the abutting portion to plastically flow by frictional heat between the rotating tool and the metal member by moving the rotating tool along the abutting portion while rotating the rotating tool. Phase joining is performed.
 ところで、近年、パーソナルコンピュータに代表される電子機器は、その性能が向上するにつれて、搭載されるCPU(熱発生体)の発熱量が増大し、CPUの冷却が益々重要になっている。従来、CPUを冷却するために、空冷ファン方式のヒートシンクが使用されてきたが、ファン騒音や、空冷方式での冷却限界といった問題がクローズアップされるようになり、次世代冷却方式として、液冷ジャケットが注目されている。 By the way, in recent years, as the performance of electronic devices typified by personal computers has improved, the amount of heat generated by the CPU (heat generating body) mounted has increased, and cooling of the CPU has become increasingly important. Conventionally, air-cooled fan type heat sinks have been used to cool CPUs, but problems such as fan noise and cooling limit in air-cooled systems have come to be highlighted. The jacket is drawing attention.
 このような液冷ジャケットにおいて、構成部材同士を摩擦攪拌接合によって接合した技術が特許文献1で開示されている。この液冷ジャケットは、たとえば、金属製フィンを収容するフィン収容室を有するジャケット本体と、フィン収容室を封止する封止体とを備えており、フィン収容室を取り囲むジャケット本体の周壁と封止体の外周面との突合部に沿って回転ツールを一周させて、摩擦攪拌接合することで液冷ジャケットを製造するように構成されている。封止体は、ジャケット本体と比較して薄く形成されており、ジャケット本体に形成された段差の底面からなる支持面に載置されている。そして、回転ツールは、その中心が突合部上に位置するように突合部に沿って移動して、ジャケット本体と封止体とを接合するようになっている。 In such a liquid cooling jacket, Patent Document 1 discloses a technique in which constituent members are joined to each other by friction stir welding. This liquid cooling jacket includes, for example, a jacket body having a fin housing chamber for housing metal fins, and a sealing body for sealing the fin housing chamber, and seals the peripheral wall of the jacket body surrounding the fin housing chamber. A liquid cooling jacket is manufactured by rotating the rotating tool around the abutting portion with the outer peripheral surface of the stationary body and performing friction stir welding. The sealing body is formed thinner than the jacket main body, and is placed on a support surface including a bottom surface of a step formed in the jacket main body. The rotating tool moves along the abutting portion so that the center thereof is located on the abutting portion, and joins the jacket body and the sealing body.
 ところで、前記のように、薄肉の封止体をジャケット本体の支持面に載置して、その突合部を摩擦攪拌接合する場合、ジャケット本体の表面から摩擦攪拌を行うため、熱収縮及び熱膨張によって封止体が反って撓んでしまうという問題があった。 By the way, as described above, when a thin sealing body is placed on the support surface of the jacket main body and the abutting portion is friction stir welded, the friction shrinking is performed from the surface of the jacket main body. Therefore, there is a problem that the sealing body warps and bends.
 そこで、このような問題を解決するために、摩擦攪拌接合を行うジャケット本体に冷却板を取り付けて、ジャケット本体を冷却しながら回転ツールを移動させる技術が、特許文献2で開示されている。 Therefore, in order to solve such a problem, Patent Document 2 discloses a technique in which a cooling plate is attached to a jacket main body that performs friction stir welding and the rotating tool is moved while cooling the jacket main body.
特開2006-324647号公報JP 2006-324647 A 特開2010-194545号公報JP 2010-194545 A
 しかしながら、特許文献2に係る発明では、摩擦攪拌接合を行う際に冷却板に冷却媒体を流す必要があり、摩擦攪拌接合の作業が煩雑で困難となるという問題があった。 However, in the invention according to Patent Document 2, it is necessary to flow a cooling medium through the cooling plate when performing friction stir welding, and there is a problem that the work of friction stir welding becomes complicated and difficult.
 このような観点から本発明は、摩擦攪拌接合を容易に行えるとともに、平坦性の高い液冷ジャケットを製造できる液冷ジャケットの製造方法を提供することを課題とする。 From such a viewpoint, an object of the present invention is to provide a manufacturing method of a liquid cooling jacket that can easily perform friction stir welding and can manufacture a liquid cooling jacket having high flatness.
 前記課題を解決するための手段として、本発明は、凹部とその内部に形成された畝部を有するジャケット本体に、前記凹部の開口部を封止する封止体を摩擦攪拌接合によって固定して構成される液冷ジャケットの製造方法であって、前記ジャケット本体の前記凹部の開口周縁部に形成され前記ジャケット本体の表面より下がった段差底面からなる支持面およびこの支持面と面一の前記畝部の表面に、前記封止体を載置して、前記ジャケット本体の段差側面と前記封止体の外周面を突き合わせる設置工程と、前記封止体の厚さ寸法よりも大きい長さ寸法の攪拌ピンを備えた回転ツールを、前記ジャケット本体の前記段差側面と前記封止体の外周面との突合部に沿って一周させるとともに、前記封止体の表面で前記畝部に沿って移動させて、前記封止体を前記ジャケット本体に摩擦攪拌接合してなる接合体を形成する摩擦攪拌接合工程と、前記接合体をプレス矯正する矯正工程と、を備えたことを特徴とする液冷ジャケットの製造方法である。 As a means for solving the above-mentioned problem, the present invention fixes a sealing body for sealing the opening of the recess to the jacket main body having the recess and the flange formed in the recess by friction stir welding. A method for manufacturing a liquid cooling jacket, comprising: a support surface comprising a stepped bottom surface formed at a peripheral edge of the opening of the recess of the jacket body and lowering from the surface of the jacket body; and the flange that is flush with the support surface An installation step of placing the sealing body on the surface of the part and abutting the step side surface of the jacket main body with the outer peripheral surface of the sealing body, and a length dimension larger than the thickness dimension of the sealing body The rotating tool provided with the stirring pin is caused to make a round along the abutting portion between the step side surface of the jacket body and the outer peripheral surface of the sealing body, and is moved along the flange portion on the surface of the sealing body. Let A method for producing a liquid-cooled jacket, comprising: a friction stir welding step for forming a joined body formed by friction stir welding a sealing body to the jacket body; and a straightening step for press-correcting the joined body. It is.
 このような方法によれば、摩擦攪拌接合工程の後に、接合体をプレス矯正するので、摩擦攪拌接合時に冷却する必要がない。したがって、摩擦攪拌接合作業の煩雑化を防止することができ、作業の容易化を図れる。また、回転ツールの攪拌ピンが支持面からジャケット本体内に挿入されるので、塑性化領域がジャケット本体の内部の深い部分まで入り込む。これによって、塑性化領域の熱収縮による応力をジャケット本体に分散でき、封止体の変形を抑制することができる。さらに、畝部を設けたことで、凹部が大面積の場合でも、凹部の内側部分において支持面と畝部で、ジャケット本体と封止体を接合できるので、接合体の変形を抑制できる。 According to such a method, since the joined body is press-corrected after the friction stir welding step, it is not necessary to cool at the time of friction stir welding. Therefore, complication of the friction stir welding operation can be prevented, and the operation can be facilitated. Further, since the stirring pin of the rotary tool is inserted into the jacket body from the support surface, the plasticizing region enters into a deep portion inside the jacket body. As a result, stress due to thermal contraction in the plasticized region can be distributed to the jacket body, and deformation of the sealing body can be suppressed. Furthermore, since the jacket main body and the sealing body can be joined by the support surface and the collar at the inner portion of the recess even when the recess has a large area, the deformation of the joined body can be suppressed by providing the collar.
 請求の範囲第2項に係る発明は、前記ジャケット本体が、平面矩形形状を呈しており、前記矯正工程では、前記封止体が下方を向くように前記接合体を配置して、前記接合体の周縁部を下側から支持し、前記ジャケット本体の対角線が交差する中央部を下方に押圧してプレス矯正することを特徴とする。 The invention according to claim 2 is characterized in that the jacket body has a planar rectangular shape, and in the correction step, the joined body is arranged so that the sealing body faces downward, and the joined body The peripheral portion of the jacket is supported from below, and the center portion where the diagonal lines of the jacket body intersect is pressed downward to correct the press.
 このような方法によれば、断面方向に見て接合体は、両端部で支持され中央部が下方に押圧される状態となる。ここで、接合体のスプリングバックを考慮して、中央部が両端部よりも下方になるまで押圧すると、押圧終了後に接合体を平坦にすることができる。また、中央部を集中的に押圧するので、押圧荷重が小さくて済む。 According to such a method, the joined body is supported at both ends as viewed in the cross-sectional direction, and the center is pressed downward. Here, in consideration of the spring back of the joined body, pressing until the central portion is below the both ends allows the joined body to be flattened after pressing. Further, since the central portion is pressed intensively, the pressing load can be reduced.
 請求の範囲第3項に係る発明は、前記矯正工程では、前記接合体の投影面積より大きい面積の押圧面を有する下型および上型を使用し、前記下型と前記上型との間に前記接合体の全体を位置させた状態で前記接合体をプレス矯正することを特徴とする。 In the invention according to claim 3, in the correction step, a lower mold and an upper mold having a pressing surface having an area larger than the projected area of the joined body are used, and the gap between the lower mold and the upper mold is used. The bonded body is press-corrected with the entire bonded body positioned.
 このような方法によれば、接合体を安定した状態で、均一な応力で押圧することができ、プレス矯正を精度良く行うことができる。 According to such a method, the joined body can be pressed with uniform stress in a stable state, and press correction can be performed with high accuracy.
 請求の範囲第4項に係る発明は、前記下型の前記押圧面および前記上型の前記押圧面のいずれか一方が凸面にて構成され、他方が前記凸面に噛み合う凹面にて構成されており、前記矯正工程では、前記封止体が前記凹面に対向するように前記接合体を配置することを特徴とする。 In the invention according to claim 4, one of the pressing surface of the lower mold and the pressing surface of the upper mold is configured as a convex surface, and the other is configured as a concave surface meshing with the convex surface. In the correction step, the bonded body is arranged so that the sealing body faces the concave surface.
 このような方法によれば、接合体のスプリングバックを考慮して、中央部が最初に反った状態よりも反対側まで押圧して変形させているので、押圧終了後にジャケット本体および封止体を平坦にすることができる。 According to such a method, in consideration of the spring back of the joined body, the center portion is pressed and deformed to the opposite side from the state where the center portion is initially warped. It can be flat.
 請求の範囲第5項に係る発明は、前記摩擦攪拌接合工程の後で前記矯正工程の前に、摩擦攪拌接合にて発生したバリを切除するバリ切除工程を、さらに備えることを特徴とする。 The invention according to claim 5 is characterized by further comprising a burr cutting step for cutting a burr generated in the friction stir welding after the friction stir welding step and before the correction step.
 矯正工程の前にバリを切除することで、プレス矯正時にバリが挟まることがなく、接合体が局所的に変形したり、バリが接合体の表面に食い込んで傷が発生したりするのを防止することができる。 By removing the burrs before the straightening process, the burrs are not pinched during press correction, preventing the joint from being deformed locally or from being damaged by biting into the surface of the joint. can do.
 請求の範囲第6項に係る発明は、前記支持面の幅寸法は、前記回転ツールのショルダー部の半径寸法よりも大きいことを特徴とする。 The invention according to claim 6 is characterized in that a width dimension of the support surface is larger than a radial dimension of a shoulder portion of the rotary tool.
 このような方法によれば、回転ツールを突合部の真上で移動させたときに、塑性化領域を支持面内に形成することができ、回転ツールの押込み力を支持面で確実に支持することができる。 According to such a method, the plasticizing region can be formed in the support surface when the rotary tool is moved directly above the abutting portion, and the pushing force of the rotary tool is reliably supported by the support surface. be able to.
 請求の範囲第7項に係る発明は、前記畝部の幅寸法が、前記回転ツールのショルダー部の直径寸法よりも大きいことを特徴とする。 The invention according to claim 7 is characterized in that a width dimension of the flange portion is larger than a diameter dimension of a shoulder portion of the rotary tool.
 このような方法によれば、回転ツールを畝部の真上で移動させたときに、塑性化領域を畝部内に形成することができるので、回転ツールの押込み力を畝部で確実に支持することができる。 According to such a method, since the plasticizing region can be formed in the buttock when the rotary tool is moved directly above the buttock, the pushing force of the rotary tool is reliably supported by the buttock. be able to.
 請求の範囲第8項に係る発明は、前記摩擦攪拌接合工程にて用いられる前記回転ツールのショルダー部の底面には、前記攪拌ピンの根元の周囲を囲んで渦巻状に広がる渦巻状凸条部が形成され、渦巻状のメタル溜まり部が形成されていることを特徴とする。 The invention according to claim 8 is the spiral ridge portion that spirally surrounds the periphery of the root of the stirring pin on the bottom surface of the shoulder portion of the rotary tool used in the friction stir welding step. Is formed, and a spiral metal reservoir is formed.
 このような方法によれば、流動化された金属が、渦巻状凸条部によって攪拌ピン側に流動されるので、摩擦攪拌効率を高めることができる。 According to such a method, since the fluidized metal is caused to flow toward the stirring pin by the spiral ridges, the friction stirring efficiency can be increased.
 請求の範囲第9項に係る発明は、前記摩擦攪拌接合工程では、前記回転ツールを前記開口部に対して右回りに移動させるときは、前記回転ツールを右回転させ、前記回転ツールを前記開口部に対して左回りに移動させるときは、前記回転ツールを左回転させることを特徴とする。 The invention according to claim 9 is the friction stir welding step, wherein when the rotary tool is moved clockwise with respect to the opening, the rotary tool is rotated to the right, and the rotary tool is moved to the opening. When moving counterclockwise with respect to the part, the rotating tool is rotated counterclockwise.
 このような方法によれば、万一、空洞欠陥が発生したとしても、突合部よりも外側位置の離反した部分であって、熱輸送流体の流路から離れた位置に発生することとなる。したがって、熱輸送流体が流路から外部に漏れ難く、接合部の密閉性能に悪い影響を与えることはない。 According to such a method, even if a cavity defect is generated, it is generated at a position away from the abutting portion and away from the flow path of the heat transport fluid. Therefore, it is difficult for the heat transport fluid to leak from the flow path to the outside, and the sealing performance of the joint is not adversely affected.
 請求の範囲第10項に係る発明は、前記摩擦攪拌接合工程では、前記回転ツールを前記突合部に沿って一周させた後、前記回転ツールを一周目で形成された塑性化領域の外周側に偏移させ、前記回転ツールを前記突合部に沿ってさらに一周させて前記塑性化領域の外周側を再攪拌することを特徴とする。 In the friction stir welding process according to the tenth aspect of the present invention, after rotating the rotary tool once along the abutting portion, the rotary tool is moved to the outer peripheral side of the plasticized region formed in the first round. It is shifted, The rotation tool is made to make one more round along the said abutting part, The outer peripheral side of the said plasticization area | region is re-stirred.
 このような方法によれば、一周目で空洞欠陥が発生したとしても二周目の移動で攪拌して空洞欠陥を低減することができるとともに、万一、二周目で空洞欠陥が発生したとしても、ジャケット本体の開口周縁部と封止体の周縁部との突合部から大きく離反した部分に発生するので、熱輸送流体が外部に漏れにくくなり、接合部の密閉性能を大幅に向上させることができる。 According to such a method, even if a cavity defect occurs in the first round, it is possible to reduce the cavity defect by stirring in the second round of movement, and in the unlikely event that a cavity defect occurs in the second round However, the heat transport fluid is less likely to leak to the outside, and the sealing performance of the joint is greatly improved because it occurs in a portion that is greatly separated from the abutting portion between the opening peripheral edge of the jacket body and the peripheral edge of the sealing body. Can do.
 請求の範囲第11項に係る発明は、前記摩擦攪拌接合工程では、前記回転ツールで塑性化領域を形成する工程に先立って、前記突合部の一部を前記回転ツールよりも小型の仮接合用回転ツールを用いて仮接合することを特徴とする。 In the invention according to claim 11, in the friction stir welding step, prior to the step of forming the plasticized region with the rotary tool, a part of the abutting portion is used for temporary joining smaller than the rotary tool. Temporary joining is performed using a rotating tool.
 このような方法によれば、ジャケット本体と封止体とを仮接合することによって、摩擦攪拌接合(以下「本接合」と言う場合がある)の際に、封止体が移動することがなく、接合しやすくなるとともに、封止体の位置決め精度が向上する。また、仮接合用回転ツールが本接合用の回転ツールよりも小さいので、本接合用の回転ツールを、仮接合部分の上で移動させて摩擦攪拌するだけで、本接合が仕上げられる。 According to such a method, by temporarily joining the jacket body and the sealing body, the sealing body does not move during friction stir welding (hereinafter sometimes referred to as “main joining”). And it becomes easy to join and the positioning accuracy of a sealing body improves. Further, since the temporary welding rotary tool is smaller than the main welding rotary tool, the main welding can be completed only by moving the main welding rotary tool on the temporary bonding portion and performing frictional stirring.
 請求の範囲第12項に係る発明は、前記突合部が矩形枠状を呈しており、前記摩擦攪拌接合工程のうち、前記仮接合用回転ツールで前記突合部を仮接合する工程において、前記突合部の一方の対角同士を先に仮接合した後に、他方の対角同士を仮接合することを特徴とする。 The invention according to claim 12 is characterized in that the abutting portion has a rectangular frame shape, and in the step of temporarily joining the abutting portion with the rotary tool for temporary joining in the friction stir welding step, the abutting is performed. One of the diagonals of the part is temporarily joined first, and then the other diagonal is provisionally joined.
 請求の範囲第13項に係る発明は、前記突合部が矩形枠状を呈しており、前記摩擦攪拌接合工程のうち、前記仮接合用回転ツールで前記突合部を仮接合する工程において、前記突合部の一方の対辺の中間部同士を先に仮接合した後に、他方の対辺の中間部同士を仮接合することを特徴とする。 The invention according to claim 13 is characterized in that the abutting portion has a rectangular frame shape, and in the step of temporarily joining the abutting portion with the rotary tool for temporary joining in the friction stir welding step, the abutting is performed. It is characterized in that after the intermediate portions of one opposite side of the part are temporarily joined, the intermediate portions of the other opposite side are temporarily joined.
 請求の範囲第12項および請求の範囲第13項に記載された方法によれば、封止体をバランスよく仮接合することができ、封止体のジャケット本体に対する位置決め精度が向上する。 According to the method described in claims 12 and 13, the sealing body can be temporarily joined in a balanced manner, and the positioning accuracy of the sealing body with respect to the jacket body is improved.
 本発明によれば、摩擦攪拌接合を容易に行えるとともに、平坦性の高い液冷ジャケットを製造することができる。 According to the present invention, it is possible to easily perform friction stir welding and to manufacture a liquid cooling jacket having high flatness.
液冷ジャケットを示した分解斜視図である。It is the disassembled perspective view which showed the liquid cooling jacket. 液冷ジャケットの封止体を斜め下方から示した斜視図である。It is the perspective view which showed the sealing body of the liquid cooling jacket from diagonally downward. 本発明の実施形態に係る液冷ジャケットの製造方法を説明するための図であって、(a)は一周目の摩擦攪拌接合工程を示した断面図、(b)は二周目の摩擦攪拌接合工程を示した断面図である。It is a figure for demonstrating the manufacturing method of the liquid cooling jacket which concerns on embodiment of this invention, Comprising: (a) is sectional drawing which showed the friction stirring joining process of the 1st round, (b) is the friction stirring of the 2nd round. It is sectional drawing which showed the joining process. 本発明の実施形態に係る液冷ジャケットの製造方法を説明するための図であって、畝部における摩擦攪拌接合工程を示した断面図である。It is a figure for demonstrating the manufacturing method of the liquid cooling jacket which concerns on embodiment of this invention, Comprising: It is sectional drawing which showed the friction stir welding process in a collar part. 摩擦攪拌接合工程にて用いられる回転ツールの図であって、(a)は断面図、(b)は一部断面底面図である。It is a figure of the rotary tool used at a friction stir welding process, Comprising: (a) is sectional drawing, (b) is a partial cross section bottom view. 本発明の実施形態に係る液冷ジャケットの製造方法の摩擦攪拌接合工程を説明するための図であって、(a)は仮接合工程を示した平面図、(b)は本接合工程を示した平面図である。It is a figure for demonstrating the friction stir welding process of the manufacturing method of the liquid cooling jacket which concerns on embodiment of this invention, Comprising: (a) is the top view which showed the temporary joining process, (b) shows this joining process. FIG. (a)、(b)は、本発明の実施形態に係る液冷ジャケットの製造方法の摩擦攪拌接合工程を説明するための図であって、図5に続く摩擦攪拌接合工程(本接合工程)を示した平面図である。(A), (b) is a figure for demonstrating the friction stir welding process of the manufacturing method of the liquid cooling jacket which concerns on embodiment of this invention, Comprising: The friction stir welding process (main joining process) following FIG. It is the top view which showed. (a)、(b)は、本発明の第1実施形態に係る液冷ジャケットの製造方法の摩擦攪拌接合工程を説明するための図であって、図6に続く摩擦攪拌接合工程を示した平面図である。(A), (b) is a figure for demonstrating the friction stir welding process of the manufacturing method of the liquid cooling jacket which concerns on 1st Embodiment of this invention, Comprising: The friction stir welding process following FIG. 6 was shown. It is a top view. 他の形態の摩擦攪拌接合工程を説明するための図であって、(a)は仮接合工程を示した平面図、(b)は本接合工程を示した平面図である。It is a figure for demonstrating the friction stir welding process of another form, Comprising: (a) is the top view which showed the temporary joining process, (b) is the top view which showed this joining process. 矯正前の接合体を示した斜視図と、矯正工程において接合体を支持する支持台を示した一部破断斜視図である。It is the perspective view which showed the conjugate | zygote before correction | amendment, and the partially broken perspective view which showed the support stand which supports a conjugate | zygote in a correction process. 接合体と支持台を示した平面図である。It is the top view which showed the joined body and the support stand. プレス矯正における接合体の変形状態を示した断面図である。It is sectional drawing which showed the deformation | transformation state of the conjugate | zygote in press correction. プレス矯正における負荷荷重と変位量の関係を示したグラフである。It is the graph which showed the relationship between the load load and displacement amount in press correction. 第2実施形態に係る液冷ジャケットの製造方法で用いるプレス装置を示した図であって、(a)は斜視図、(b)は断面図である。It is the figure which showed the press apparatus used with the manufacturing method of the liquid cooling jacket which concerns on 2nd Embodiment, (a) is a perspective view, (b) is sectional drawing. さらに他のプレス装置を示した図であって、(a)は斜視図、(b)は断面図である。Furthermore, it is the figure which showed the other press apparatus, Comprising: (a) is a perspective view, (b) is sectional drawing.
[第1実施形態]
 以下、本発明の第1実施形態について、図面を適宜参照して詳細に説明する。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
 まず、本発明に係る液冷ジャケットの製造方法によって形成される液冷ジャケットについて説明する。液冷ジャケットは、例えば、パーソナルコンピュータ等の電子機器に搭載される冷却システムの構成部品であって、CPU(熱発生体)等を冷却する部品である。液冷システムは、CPUが所定位置に取り付けられる液冷ジャケットと、冷却水(熱輸送流体)が輸送する熱を外部に放出するラジエータ(放熱手段)と、冷却水を循環させるマイクロポンプ(熱輸送流体供給手段)と、温度変化による冷却水の膨張/収縮を吸収するリザーブタンクと、これらを接続するフレキシブルチューブと、熱を輸送する冷却水とを主に備えている。冷却水は、熱発生体であるCPU(図示せず)が発生する熱を外部に輸送する熱輸送流体である。冷却水としては、例えば、エチレングリコール系の不凍液が使用される。そして、マイクロポンプが作動すると、冷却水がこれら機器を循環するようになっている。 First, the liquid cooling jacket formed by the method for manufacturing a liquid cooling jacket according to the present invention will be described. The liquid cooling jacket is a component of a cooling system mounted on an electronic device such as a personal computer, for example, and is a component that cools a CPU (heat generating body) and the like. The liquid cooling system includes a liquid cooling jacket in which a CPU is mounted at a predetermined position, a radiator (heat dissipating means) that discharges heat transported by cooling water (heat transport fluid) to the outside, and a micropump (heat transport) that circulates the cooling water. Fluid supply means), a reserve tank that absorbs expansion / contraction of cooling water due to temperature change, a flexible tube that connects these, and cooling water that transports heat. The cooling water is a heat transport fluid that transports heat generated by a CPU (not shown), which is a heat generator, to the outside. For example, an ethylene glycol antifreeze is used as the cooling water. And if a micropump act | operates, cooling water will circulate through these apparatuses.
 図1に示すように、液冷ジャケット1は、冷却水(図示せず)が流れるとともに一部が開口した凹部11を有するジャケット本体10に、凹部11の開口部12を封止する封止体30を摩擦攪拌接合(図6乃至図8参照)によって固定して構成されている。 As shown in FIG. 1, a liquid cooling jacket 1 is a sealing body that seals an opening 12 of a recess 11 in a jacket body 10 having a recess 11 that is partially opened while cooling water (not shown) flows. 30 is fixed by friction stir welding (see FIGS. 6 to 8).
 液冷ジャケット1は、図1における上方側の面(封止体30の蓋板部31の表面)でフィン32が配置された部分(冷却水が流れる部分)に相当する位置に、熱拡散シート(図示せず)を介してCPU(図示せず)が取り付けられるようになっており、CPUが発生する熱を受熱すると共に、内部を流通する冷却水と熱交換する。これによって、液冷ジャケット1は、CPUから受け入れた熱を冷却水に伝達し、その結果として、CPUを効率的に冷却する。なお、熱拡散シートは、CPUの熱を、ジャケット本体10に効率的に伝達させるためのシートであり、例えば、銅などの高熱伝導性を有する金属から形成されている。 The liquid cooling jacket 1 has a heat diffusion sheet at a position corresponding to a portion (a portion through which cooling water flows) where the fins 32 are arranged on the upper surface (the surface of the lid plate portion 31 of the sealing body 30) in FIG. A CPU (not shown) is attached via (not shown), and receives heat generated by the CPU and exchanges heat with cooling water flowing inside. Thereby, the liquid cooling jacket 1 transmits the heat received from the CPU to the cooling water, and as a result, the CPU is efficiently cooled. The heat diffusion sheet is a sheet for efficiently transferring the heat of the CPU to the jacket body 10 and is formed of a metal having high thermal conductivity such as copper, for example.
 ジャケット本体10は、一方側(本実施形態では図1中、上側)が開口した浅底の箱体であって、本実施形態では平面視長方形を呈している。ジャケット本体10は、その内側に上部が開口した凹部11が形成されており、凹部11の底壁13と、周壁14とを有している。このようなジャケット本体10は、例えば、ダイキャスト、鋳造、鍛造などによって作製される。ジャケット本体10は、アルミニウムまたはアルミニウム合金から形成されている。これにより、液冷ジャケット1は軽量化が達成されており、取り扱い容易となっている。 The jacket body 10 is a shallow box body that is open on one side (the upper side in FIG. 1 in the present embodiment), and has a rectangular shape in plan view in the present embodiment. The jacket main body 10 is formed with a recess 11 having an opening at the inside thereof, and has a bottom wall 13 and a peripheral wall 14 of the recess 11. Such a jacket main body 10 is produced by die casting, casting, forging or the like, for example. The jacket body 10 is formed from aluminum or an aluminum alloy. Thereby, the liquid cooling jacket 1 has been reduced in weight and is easy to handle.
 ジャケット本体10の凹部11の開口部12は、四隅が円弧状に面取りされた略長方形を呈している。ジャケット本体10の凹部11の開口周縁部12aには、凹部11の底面側に一段下がった段差底面からなる支持面15aが形成されている。なお、本実施形態では、凹部11内に畝部17が形成されるが、畝部17も凹部11の一部であるとして、凹部11の開口部12が略長方形を呈すると説明している。また、凹部11の開口周縁部12aは、畝部17も含んだ凹部11の周縁部とする。 The opening 12 of the recess 11 of the jacket body 10 has a substantially rectangular shape with four corners chamfered in an arc shape. A support surface 15 a is formed on the opening peripheral edge 12 a of the concave portion 11 of the jacket body 10, which is a stepped bottom surface that is lowered by one step on the bottom surface side of the concave portion 11. In the present embodiment, the flange portion 17 is formed in the recess portion 11. However, it is described that the opening portion 12 of the recess portion 11 has a substantially rectangular shape, assuming that the flange portion 17 is also a part of the recess portion 11. Moreover, the opening peripheral part 12a of the recessed part 11 is taken as the peripheral part of the recessed part 11 also including the collar part 17. FIG.
 図3の(a)に示すように、ジャケット本体10の上面と支持面15aとの高低差寸法H1は、封止体30の厚さ寸法T1と同じ長さとなっている。支持面15aは、封止体30を支持する面であって、支持面15a上には、封止体30の周縁部30aが載置される。また、支持面15aの幅(封止体30の周縁部30aが載置される部分の幅)寸法W1は、摩擦攪拌接合に用いられる回転ツール50のショルダー部51の半径寸法R2よりも大きく設定されている。 3A, the height difference dimension H1 between the upper surface of the jacket body 10 and the support surface 15a is the same length as the thickness dimension T1 of the sealing body 30. As shown in FIG. The support surface 15a is a surface which supports the sealing body 30, Comprising: The peripheral part 30a of the sealing body 30 is mounted on the support surface 15a. Further, the width W1 of the support surface 15a (the width of the portion on which the peripheral edge 30a of the sealing body 30 is placed) dimension W1 is set larger than the radial dimension R2 of the shoulder 51 of the rotary tool 50 used for friction stir welding. Has been.
 図1に示すように、凹部11の周囲の周壁14は、ジャケット本体10の長手方向(図1中、X軸方向)の両端に位置する一対の壁部14a,14bと、短手方向(図1中、Y軸方向)の両端に位置する一対の壁部14c,14dとで構成されている。一対の壁部14a,14bは、ともにY軸方向に延在して、X軸方向に所定の距離を隔てて互いに平行に形成されている。一対の壁部14c,14dは、ともにX軸方向に延在して、Y軸方向に所定の距離を隔てて互いに平行に形成されている。 As shown in FIG. 1, the peripheral wall 14 around the recess 11 includes a pair of wall portions 14 a and 14 b positioned at both ends in the longitudinal direction (X-axis direction in FIG. 1) of the jacket body 10, and a short direction (see FIG. 1). 1 and a pair of wall portions 14c and 14d located at both ends in the Y-axis direction). The pair of wall portions 14a and 14b both extend in the Y-axis direction and are formed in parallel to each other with a predetermined distance in the X-axis direction. The pair of wall portions 14c and 14d both extend in the X-axis direction and are formed in parallel to each other at a predetermined distance in the Y-axis direction.
 凹部11の内部には、畝部17が形成されている。畝部17は、凹部11の底壁13から立ち上げられた壁体にて構成されている。畝部17の底壁13からの高さは、支持面15aの底壁13からの高さと同じ寸法となっている。すなわち、畝部17の上端面(畝部17の表面)17aは、凹部11の開口周縁部12aに形成された支持面15aと面一となっている。畝部17は、一対の壁部14a,14bのうち、一方の壁部14aの内壁面(凹部11側の内周側面)のY軸方向長さの中央部から、他方の壁部14bに向かってX軸方向に延出している。畝部17の延出方向(X軸方向)先端は、壁部14bの内壁面(凹部11側の内周側面)と所定の距離を隔てており、畝部17の先端と壁部14bの内壁面との間に、冷却液が流れる空間が形成されるようになっている。すなわち、凹部11の内部に畝部17を形成することによって、平面視U字状の溝(実質的に凹む部分)が形成されて、このU字に沿って冷却液が流れる。平面視U字状の流路の両端に位置する壁部14aには、凹部11に冷却水を流通させるための貫通孔16,16がそれぞれ形成されている。貫通孔16,16は、本実施形態では、X軸方向に延在しており、円形断面を有し、凹部11の深さ方向中間部に形成されている。なお、貫通孔16の形状、数および形成位置は、これに限られるものではなく、冷却水の種類や流量に応じて適宜変更可能である。 A flange 17 is formed inside the recess 11. The flange portion 17 is configured by a wall body raised from the bottom wall 13 of the recess 11. The height of the flange portion 17 from the bottom wall 13 is the same as the height of the support surface 15a from the bottom wall 13. That is, the upper end surface (surface of the flange portion 17) 17 a of the flange portion 17 is flush with the support surface 15 a formed on the opening peripheral edge portion 12 a of the recess 11. The flange portion 17 extends from the central portion of the length in the Y-axis direction of the inner wall surface (the inner peripheral side surface on the concave portion 11 side) of one of the wall portions 14a and 14b toward the other wall portion 14b. Extending in the X-axis direction. The distal end of the flange portion 17 in the extending direction (X-axis direction) is separated from the inner wall surface (the inner peripheral side surface on the concave portion 11 side) of the wall portion 14b by a predetermined distance, and the distal end of the flange portion 17 and the inner wall portion 14b A space through which the coolant flows is formed between the wall surfaces. That is, by forming the flange portion 17 inside the recess 11, a U-shaped groove (substantially recessed portion) is formed in a plan view, and the coolant flows along this U-shape. Through holes 16 and 16 are formed in the wall portions 14a located at both ends of the U-shaped channel in a plan view, respectively, for allowing cooling water to flow through the recess 11. In the present embodiment, the through holes 16, 16 extend in the X-axis direction, have a circular cross section, and are formed in the intermediate portion in the depth direction of the recess 11. In addition, the shape, number, and formation position of the through-hole 16 are not restricted to this, It can change suitably according to the kind and flow volume of cooling water.
 図1および図2に示すように、封止体30は、ジャケット本体10の段差側面15b(図1参照)と同じ形状(本実施形態では四隅が円弧状に面取りされた略長方形)の外周形状を有する板状の蓋板部31と、蓋板部31の下面に設けられた複数のフィン32,32…とを備えて構成されている。 As shown in FIGS. 1 and 2, the sealing body 30 has an outer peripheral shape having the same shape as the step side surface 15b (see FIG. 1) of the jacket body 10 (in this embodiment, a substantially rectangular shape with four corners chamfered in an arc shape). And a plurality of fins 32, 32... Provided on the lower surface of the lid plate portion 31.
 フィン32は、封止体30の表面積を大きくするために設けられている。複数のフィン32,32…は、互いに平行で且つ蓋板部31に対して直交して配置されており、蓋板部31と一体に構成されている。これにより、蓋板部31とフィン32,32…との間において、熱が良好に伝達するようになっている。図1に示すように、フィン32,32…は、貫通孔16,16が形成された周壁14の壁部14aと直交する方向(図1中、X軸方向)に延在するように配置されている。蓋板部31のY軸方向中央部には、ジャケット本体10への装着時に畝部17が位置するため、フィンは設けられていない。フィン32は、凹部11の深さ寸法と同等の高さ(深さ)寸法(図1中、Z軸方向長さ)、または凹部11の深さ寸法より若干短い高さ(深さ)寸法を有しており、その先端部が凹部11の底面(底壁13の表面)に当接するか、或いはフィン32の先端部と凹部11の底面の間に微小な隙間が生じるようになっている。これによって、封止体30がジャケット本体10に取り付けられた状態で、封止体30の蓋板部31と、隣り合うフィン32,32と、凹部11の底面とで筒状の空間が区画され、その空間が、冷却水が流れる流路33(図5の(a)参照)として機能することとなる。 The fins 32 are provided to increase the surface area of the sealing body 30. The plurality of fins 32, 32... Are arranged parallel to each other and orthogonal to the lid plate portion 31, and are configured integrally with the lid plate portion 31. Thereby, heat is transmitted favorably between the cover plate portion 31 and the fins 32, 32. As shown in FIG. 1, the fins 32, 32... Are arranged so as to extend in a direction (X-axis direction in FIG. 1) orthogonal to the wall portion 14a of the peripheral wall 14 in which the through holes 16, 16 are formed. ing. Since the collar part 17 is located in the center part of the Y-axis direction of the cover board part 31 at the time of mounting to the jacket main body 10, the fin is not provided. The fin 32 has a height (depth) dimension (length in the Z-axis direction in FIG. 1) equivalent to the depth dimension of the recess 11 or a height (depth) dimension slightly shorter than the depth dimension of the recess 11. The tip portion of the fin 32 comes into contact with the bottom surface of the recess 11 (the surface of the bottom wall 13), or a minute gap is formed between the tip portion of the fin 32 and the bottom surface of the recess 11. Thus, in a state where the sealing body 30 is attached to the jacket body 10, a cylindrical space is partitioned by the cover plate portion 31 of the sealing body 30, the adjacent fins 32 and 32, and the bottom surface of the recess 11. The space functions as a flow path 33 (see FIG. 5A) through which cooling water flows.
 また、フィン32,32…は、畝部17の延出長さ寸法よりも短い長さ寸法(図1中、X軸方向長さ)を有しており、その一端(壁部14a側)は、壁部14aの内壁面とそれぞれ所定の間隔を隔てるように構成されている。このフィン32,32…の一端部と、壁部14aとの間の空間は、フィン32,32によって区画形成される流路33と、貫通孔16とを繋ぐ流路ヘッダ部34(図6の(a)参照)を構成する。また、フィン32,32…の他端(壁部14b側)は、畝部17の先端に相当する部分に位置しており、フィン32,32…の他端部および畝部17の先端部と、壁部14bとの間の空間は、畝部17の両側に位置する流路33,33同士を繋ぐ連通流路35(図6の(a)参照)を構成する。 Further, the fins 32, 32... Have a length dimension (length in the X-axis direction in FIG. 1) shorter than the extension length dimension of the flange portion 17, and one end thereof (the wall portion 14a side) is The inner wall surface of the wall portion 14a is separated from the inner wall surface by a predetermined distance. A space between one end of the fins 32, 32... And the wall 14a is a flow path header section 34 (see FIG. 6) that connects the flow path 33 defined by the fins 32, 32 and the through hole 16. (See (a)). Further, the other end (on the wall 14b side) of the fins 32, 32... Is located at a portion corresponding to the tip of the flange part 17, and the other end of the fins 32, 32. The space between the wall portion 14b constitutes a communication flow channel 35 (see FIG. 6A) that connects the flow channels 33, 33 located on both sides of the flange portion 17.
 封止体30もジャケット本体10と同様に、アルミニウムまたはアルミニウム合金から形成されている。これにより、液冷ジャケット1は軽量化が達成されており、取り扱い容易となっている。封止体30は、アルミニウムまたはアルミニウム合金から形成されたブロックを切削加工することで蓋板部31とフィン32を形成して作製されている。なお、作製方法はこれに限定されるものではなく、例えば、ダイキャスト、鋳造、鍛造などによって作製してもよいし、蓋板部31と複数のフィン32,32…からなる断面形状を有する部材を、押出成形または溝加工によって形成し、そのフィン32の両端部を取り除くことによって作製してもよい。 The sealing body 30 is also made of aluminum or an aluminum alloy, like the jacket body 10. Thereby, the liquid cooling jacket 1 has been reduced in weight and is easy to handle. The sealing body 30 is manufactured by forming a cover plate portion 31 and fins 32 by cutting a block formed of aluminum or an aluminum alloy. Note that the manufacturing method is not limited to this, and for example, it may be manufactured by die casting, casting, forging, or the like, or a member having a cross-sectional shape composed of a lid plate portion 31 and a plurality of fins 32, 32. May be formed by extruding or grooving and removing both ends of the fin 32.
 次に、ジャケット本体10に、封止体30を摩擦攪拌接合によって固定する方法について、図3乃至図8を参照して説明する。 Next, a method for fixing the sealing body 30 to the jacket body 10 by friction stir welding will be described with reference to FIGS.
(設置工程)
 まず、図6の(a)に示すように、封止体30を、フィン32が下側になるようにして、ジャケット本体10の凹部11に挿入して、封止体30の周縁部30aを、支持面15a上に載置する。すると、ジャケット本体10の段差側面15bと、封止体30の外周面30bとが突き合わされ、突合部40が構成される。
(Installation process)
First, as shown in FIG. 6A, the sealing body 30 is inserted into the concave portion 11 of the jacket body 10 so that the fins 32 are on the lower side, and the peripheral portion 30a of the sealing body 30 is removed. Then, it is placed on the support surface 15a. Then, the step side surface 15b of the jacket main body 10 and the outer peripheral surface 30b of the sealing body 30 are abutted to form the abutting portion 40.
(摩擦攪拌接合工程)
 ところで、本実施形態では、図3乃至図5に示した回転ツール50で本接合を行う(塑性化領域41を形成する)工程に先立って、ジャケット本体10と封止体30との突合部40の一部を回転ツール50よりも小型の仮接合用回転ツール60(図6の(a)で平面形状のみ図示)を用いて仮接合する。
(Friction stir welding process)
By the way, in this embodiment, prior to the step of performing the main joining (forming the plasticized region 41) with the rotary tool 50 shown in FIGS. 3 to 5, the abutting portion 40 between the jacket body 10 and the sealing body 30. Is temporarily joined using a rotary tool 60 for temporary joining which is smaller than the rotary tool 50 (only the planar shape is shown in FIG. 6A).
 仮接合用回転ツール60は、回転ツール50よりも小径のショルダー部と攪拌ピン(図示せず)を備えており、仮接合用回転ツール60にて形成される塑性化領域45は、後の工程で回転ツール50によって形成される塑性化領域41(図6の(b)参照)の幅よりも小さい幅を有することとなる。そして、塑性化領域45は、後の工程で塑性化領域41が形成される位置からはみ出さない位置(本実施形態では、塑性化領域45の幅方向中心が突合部40となる位置)に形成される。これによって、仮接合における塑性化領域45は、塑性化領域41で完全に覆われることとなるので、塑性化領域45に残った仮接合用回転ツール60の引抜跡および塑性化領域45の跡が残らない。 The temporary bonding rotary tool 60 includes a shoulder portion and a stirring pin (not shown) that are smaller in diameter than the rotary tool 50, and the plasticizing region 45 formed by the temporary bonding rotary tool 60 is a later process. Thus, the width of the plasticized region 41 (see FIG. 6B) formed by the rotary tool 50 is smaller. And the plasticization area | region 45 is formed in the position (The position where the center of the width direction of the plasticization area | region 45 becomes the butt | matching part 40) which does not protrude from the position where the plasticization area | region 41 is formed in a next process. Is done. As a result, the plasticizing region 45 in the temporary joining is completely covered with the plasticizing region 41, so that the trace of the extraction of the temporary joining rotary tool 60 remaining in the plasticizing region 45 and the trace of the plasticizing region 45 are present. Does not remain.
 本実施形態では、突合部40が、四隅が円弧状に面取りされた略長方形(矩形枠状)を呈している。仮接合用回転ツール60で突合部40を仮接合する工程においては、突合部40の一方の面取りされた対角44a,44b同士を先に仮接合した後に、他方の面取りされた対角44c,44d同士を仮接合するようになっている。このような順序で仮接合することで、封止体30をバランスよくジャケット本体10に仮接合することができ、封止体30のジャケット本体10に対する位置決め精度が向上するとともに、封止体30の変形を防止できる。なお、各対角44a,44b,44c,44dで仮接合した後、仮接合用回転ツール60を引き抜くと、引抜跡61(図6の(b)参照)が残るが、本実施形態では残置しておく。 In the present embodiment, the abutting portion 40 has a substantially rectangular shape (rectangular frame shape) with four corners chamfered in an arc shape. In the step of temporarily joining the abutting portion 40 with the temporary joining rotary tool 60, after diagonally joining the one chamfered diagonals 44a and 44b of the abutting portion 40 first, the other chamfered diagonal 44c, 44d is temporarily joined. By temporarily joining in such an order, the sealing body 30 can be temporarily joined to the jacket body 10 in a well-balanced manner, and the positioning accuracy of the sealing body 30 with respect to the jacket body 10 is improved. Deformation can be prevented. In addition, after temporarily joining at each diagonal 44a, 44b, 44c, and 44d, when the rotary tool 60 for temporary joining is pulled out, the extraction trace 61 (refer FIG.6 (b)) remains, but it leaves in this embodiment. Keep it.
 なお、封止体30を仮接合する工程は、前記のような手順に限定されるものではなく、他の手順で行ってもよい。つまり、前記の手順では、長方形の突合部40の角部を摩擦攪拌接合しているのに対して、各辺の中間部を摩擦攪拌接合することによって直線状に行うようにしている。具体的には、図9の(a)に示すように、突合部40が略長方形(矩形枠状)を呈しており、仮接合用回転ツール60で突合部40を仮接合する工程において、突合部40の一方の対辺46,46の中間部46a,46b同士を先に仮接合した後に、他方の対辺47,47の中間部47a,47b同士を仮接合するようになっている。このとき仮接合用回転ツール60で形成される塑性化領域48は、それぞれ同じ長さの直線状になるようになっている。また、塑性化領域48は、図9の(b)に示すように、後の工程で塑性化領域41が形成される位置からはみ出さない位置に形成される。このように仮接合の摩擦攪拌接合を直線状とすれば、仮接合用回転ツール60を直線的に移動させるだけで済むので、加工が容易である。 In addition, the process of temporarily joining the sealing body 30 is not limited to the above procedures, and may be performed by other procedures. That is, in the above procedure, the corners of the rectangular abutting portion 40 are friction stir welded, whereas the intermediate portions of each side are linearly joined by friction stir welding. Specifically, as shown in FIG. 9A, the abutting portion 40 has a substantially rectangular shape (rectangular frame shape), and in the step of temporarily joining the abutting portion 40 with the temporary joining rotary tool 60, The intermediate portions 46a and 46b of one opposite side 46 and 46 of the part 40 are temporarily joined first, and then the intermediate portions 47a and 47b of the other opposite side 47 and 47 are temporarily joined. At this time, the plasticizing regions 48 formed by the temporary bonding rotary tool 60 are linearly formed with the same length. Moreover, the plasticization area | region 48 is formed in the position which does not protrude from the position where the plasticization area | region 41 is formed in a next process, as shown in FIG.9 (b). If the friction stir welding in the temporary joining is made linear in this way, it is only necessary to move the temporary joining rotary tool 60 linearly, so that the processing is easy.
 次に、回転ツール50による本接合を行う。本工程では、まず、図6の(b)に示すように、摩擦攪拌接合用の回転ツール50を挿入位置53に回転させながら挿入した後、突合部40上に移動させて、この突合部40に沿って移動させる。このとき、ジャケット本体10の周壁14の外周面に、ジャケット本体10を四方向から囲む治具(図示せず)を予め当てておくのが好ましい。これによれば、周壁14の厚さが薄く、回転ツール50のショルダー部51(図3の(a)参照)の外周面と、周壁14の外周面との距離(隙間)が、例えば、2.0mm以下であっても、回転ツール50の押込み力によって周壁14が外側に変形しにくくなる。なお、周壁14の厚さが厚い場合は、前記の治具は設置しなくてもよい。 Next, the main joining with the rotary tool 50 is performed. In this step, first, as shown in FIG. 6B, after inserting the rotating tool 50 for friction stir welding while rotating it to the insertion position 53, it is moved onto the abutting portion 40, and this abutting portion 40. Move along. At this time, it is preferable that a jig (not shown) surrounding the jacket body 10 from four directions is applied in advance to the outer peripheral surface of the peripheral wall 14 of the jacket body 10. According to this, the thickness of the peripheral wall 14 is thin, and the distance (gap) between the outer peripheral surface of the shoulder 51 (see FIG. 3A) of the rotary tool 50 and the outer peripheral surface of the peripheral wall 14 is, for example, 2 Even if it is 0.0 mm or less, the peripheral wall 14 is hardly deformed to the outside by the pushing force of the rotary tool 50. In addition, when the thickness of the surrounding wall 14 is thick, the said jig | tool does not need to be installed.
 回転ツール50は、ジャケット本体10や封止体30よりも硬質の金属材料からなり、図3の(a)に示すように、円柱状を呈するショルダー部51と、このショルダー部51の下端面に突設された攪拌ピン(プローブ)52とを備えて構成されている。回転ツール50の寸法・形状は、ジャケット本体10および封止体30の材質や厚さ等に応じて設定されるものである。本実施形態では、攪拌ピン52は、下部が縮径した円錐台状を呈しており、その突出長さ寸法L1は、封止体30の蓋板部31の厚さ寸法T1以上となっている。そして、摩擦攪拌接合時には、回転ツール50のショルダー部51の先端が、ジャケット本体10および封止体30の表面から所定深さ押し込まれ、攪拌ピン52の先端が支持面15aを突き抜ける。また、ショルダー部51の半径寸法R2は、支持面15aの幅寸法H1より小さくなっている。回転ツール50の回転速度は500~15000(rpm)、送り速度は0.05~2(m/分)で、突合部40を押さえる押込み力は1~20(kN)程度で、ジャケット本体10および封止体30の材質や板厚および形状に応じて適宜選択される。 The rotary tool 50 is made of a metal material that is harder than the jacket body 10 and the sealing body 30, and has a columnar shoulder 51 and a lower end surface of the shoulder 51, as shown in FIG. A projecting stirring pin (probe) 52 is provided. The dimensions and shape of the rotary tool 50 are set according to the material and thickness of the jacket body 10 and the sealing body 30. In the present embodiment, the stirring pin 52 has a truncated cone shape with a reduced diameter at the lower portion, and the protruding length dimension L1 is equal to or greater than the thickness dimension T1 of the lid plate portion 31 of the sealing body 30. . At the time of friction stir welding, the tip of the shoulder portion 51 of the rotary tool 50 is pushed a predetermined depth from the surfaces of the jacket body 10 and the sealing body 30, and the tip of the stirring pin 52 penetrates the support surface 15a. Further, the radial dimension R2 of the shoulder portion 51 is smaller than the width dimension H1 of the support surface 15a. The rotational speed of the rotary tool 50 is 500 to 15000 (rpm), the feed speed is 0.05 to 2 (m / min), and the pushing force for pressing the abutting portion 40 is about 1 to 20 (kN). The sealing body 30 is appropriately selected according to the material, plate thickness, and shape.
 図5の(a)に示すように、回転ツール50の攪拌ピン52の周面には、攪拌効果を高めるために螺旋状に刻設された攪拌翼58が形成されている。ショルダー部51の底面には、渦巻状凸条部59aが形成されている。渦巻状凸条部59aは、攪拌ピン52の根元の周囲を囲んで渦巻状に広がっており、隣り合う渦巻状凸条部59a間に渦巻状のメタル溜まり部59bが形成されている。なお、攪拌翼58、渦巻状凸条部59aおよびメタル溜まり部59bは、図5のみで図示しており、図3および図4においては、図の煩雑化を防ぐために図示を省略している。渦巻状凸条部59aは、回転ツール50の回転方向に応じて巻き方向が決められており、塑性流動化された金属が攪拌ピン52側に流動する巻き方向となっている。このように塑性流動化された金属を攪拌ピン52側に流動させるため、摩擦攪拌の効率を高めることができる。なお、渦巻状凸条部59aの長さや巻回数等は適宜設定すればよい。 As shown in FIG. 5 (a), on the peripheral surface of the stirring pin 52 of the rotary tool 50, a stirring blade 58 is formed in a spiral shape so as to enhance the stirring effect. On the bottom surface of the shoulder portion 51, a spiral ridge 59a is formed. The spiral ridge 59a surrounds the periphery of the base of the stirring pin 52 and spreads in a spiral, and a spiral metal reservoir 59b is formed between adjacent spiral ridges 59a. In addition, the stirring blade 58, the spiral ridge 59a, and the metal reservoir 59b are illustrated only in FIG. 5, and are not illustrated in FIGS. 3 and 4 to prevent complication of the drawings. The spiral protrusion 59a has a winding direction determined according to the rotation direction of the rotary tool 50, and is a winding direction in which the plastic fluidized metal flows to the stirring pin 52 side. Since the plastic fluidized metal is caused to flow toward the stirring pin 52, the efficiency of friction stirring can be increased. In addition, what is necessary is just to set suitably the length of the spiral protruding item | line part 59a, the frequency | count of winding.
 以下に、回転ツール50の動きを具体的に説明する。まず、回転ツール50を回転させながら挿入位置53に挿入する。回転ツール50の挿入位置53は、図6の(b)に示すように、突合部40から外側に外れた周壁14の上面となっている。なお、回転ツール50の挿入位置53に、予め下穴(図示せず)を形成していてもよい。このようにすれば、回転ツール50の挿入時間(押込み時間)を短縮できる。 Hereinafter, the movement of the rotary tool 50 will be specifically described. First, the rotary tool 50 is inserted into the insertion position 53 while rotating. As shown in FIG. 6B, the insertion position 53 of the rotary tool 50 is the upper surface of the peripheral wall 14 that is outside the abutting portion 40. A pilot hole (not shown) may be formed in advance at the insertion position 53 of the rotary tool 50. If it does in this way, the insertion time (pressing time) of the rotation tool 50 can be shortened.
 その後、回転ツール50を、挿入位置53から突合部40の真上位置(回転ツール50の軸芯が突合部40上になる位置)へ回転させながら移動させる。回転ツール50が突合部40の真上位置まで移動したならば、回転ツール50の中心(軸芯)が突合部40に沿って移動するように移動方向を変えて、回転ツール50を移動させる。このとき、回転ツール50の移動方向(図6および図7中、矢印Y1参照)の反対方向に回転ツール50が回動するフロー側50aに、封止体30が位置するように、回転ツール50を回転、移動させる。具体的には、突合部40における回転ツール50の回転方向(自転方向)が、移動方向(公転方向)と同じ方向となるようにする。すなわち、本実施形態では、図6の(b)に示すように、回転ツール50を凹部11の開口部12(図6の(a)参照)に対して右回りに移動させているので、回転ツール50を右回転(図6および図7中、矢印Y2参照)させる。なお、回転ツール50を凹部11の開口部12に対して左回りに移動させるときは、回転ツール50を左回転させることとなる。 Thereafter, the rotating tool 50 is moved while being rotated from the insertion position 53 to a position directly above the abutting portion 40 (a position where the axis of the rotating tool 50 is located on the abutting portion 40). When the rotary tool 50 has moved to a position directly above the abutting portion 40, the moving direction is changed so that the center (axial center) of the rotating tool 50 moves along the abutting portion 40, and the rotating tool 50 is moved. At this time, the rotary tool 50 is positioned such that the sealing body 30 is positioned on the flow side 50a where the rotary tool 50 rotates in the direction opposite to the moving direction of the rotary tool 50 (see arrow Y1 in FIGS. 6 and 7). Rotate and move Specifically, the rotation direction (spinning direction) of the rotary tool 50 in the abutting portion 40 is set to be the same direction as the moving direction (revolution direction). That is, in this embodiment, as shown in FIG. 6B, the rotary tool 50 is moved clockwise with respect to the opening 12 of the recess 11 (see FIG. 6A), The tool 50 is rotated clockwise (see arrow Y2 in FIGS. 6 and 7). When the rotary tool 50 is moved counterclockwise with respect to the opening 12 of the recess 11, the rotary tool 50 is rotated counterclockwise.
 このようにすることによって、封止体30に対する回転ツール50の外周の相対速さは、回転ツール50の外周における接線速度の大きさから移動速度の大きさを減算した値となる(封止体30がフロー側50aとなる)ので、回転ツール50の移動方向と同じ方向に回転ツール50が回動するシアー側50bと比較して低速となる。これによって、封止体30側には、空洞欠陥が発生し難い。また、シアー側50bは、突合部40の外側寄りのジャケット本体10の厚肉部に位置するので、メタル不足に陥ることはない。さらに、回転ツール50に渦巻状凸条部59aを形成したことによって、塑性流動化された金属が攪拌ピン52側に流動するため、メタル不足に陥ることはなく、摩擦攪拌の効率を高めることができる。 By doing in this way, the relative speed of the outer periphery of the rotary tool 50 with respect to the sealing body 30 is a value obtained by subtracting the magnitude of the moving speed from the magnitude of the tangential speed on the outer periphery of the rotary tool 50 (sealing body). 30 is the flow side 50a), the speed is lower than the shear side 50b in which the rotary tool 50 rotates in the same direction as the moving direction of the rotary tool 50. As a result, a cavity defect hardly occurs on the sealing body 30 side. Moreover, since the shear side 50b is located in the thick part of the jacket main body 10 near the outer side of the abutting part 40, it does not fall into a metal shortage. Furthermore, by forming the spiral ridge 59a on the rotary tool 50, the plastically fluidized metal flows toward the stirring pin 52, so that the metal does not run short, and the efficiency of friction stirring can be improved. it can.
 また、このとき、図3の(a)に示すように、回転ツール50の攪拌ピン52は、その長さ寸法L1が、封止体30の厚さ寸法T1よりも長いため、攪拌ピン52の先端部が支持面15aを突き抜けて、ジャケット本体10の内部の奥側に入り込む。これによって、回転ツール50によって形成される塑性化領域41の先端部(下端部)が、ジャケット本体10の内部の奥側に深く入り込んで形成されることとなる。ここで、「塑性化領域」とは、回転ツール50の摩擦熱によって加熱されて現に塑性化している状態と、回転ツール50が通り過ぎて常温に戻った状態の両方を含むこととする。 At this time, as shown in FIG. 3A, the stirring pin 52 of the rotary tool 50 has a length dimension L1 longer than the thickness dimension T1 of the sealing body 30. The leading end penetrates through the support surface 15 a and enters the inner side of the jacket body 10. As a result, the distal end portion (lower end portion) of the plasticizing region 41 formed by the rotary tool 50 is formed so as to penetrate deeply into the inner side of the jacket main body 10. Here, the “plasticization region” includes both a state in which the rotary tool 50 is heated by frictional heat and is actually plasticized, and a state in which the rotary tool 50 passes and returns to room temperature.
 そして、引き続き、回転ツール50の回転および移動を継続し、図7の(a)に示すように、回転ツール50を開口部12の周りを突合部40に沿って一周させて塑性化領域41を形成する。回転ツール50を一周させたら、一周目の始端54aを含む始端部(始端54aから回転ツール50の移動方向に所定長さ進んだ位置(終端54bと同じ位置)までの部分)に沿って回転ツール50を所定長さ移動させる。これによって、回転ツール50の周方向移動における始端54aと終端54bとが互いにオーバーラップしており、塑性化領域41の一部が重複するように構成されている。 Subsequently, the rotation and movement of the rotary tool 50 are continued, and as shown in FIG. 7A, the rotary tool 50 is rotated around the opening portion 12 along the abutting portion 40 to form the plasticized region 41. Form. After rotating the rotary tool 50 once, the rotary tool along the start end including the start end 54a of the first turn (a portion from the start end 54a to a position advanced by a predetermined length in the moving direction of the rotary tool 50 (the same position as the end end 54b)). 50 is moved by a predetermined length. Accordingly, the start end 54a and the end end 54b in the circumferential movement of the rotary tool 50 overlap each other, and a part of the plasticizing region 41 is configured to overlap.
 そして、図7の(b)に示すように、回転ツール50の一周目の移動が終わった後に、引き続き回転ツール50をさらに一周させて塑性化領域(以下「第二塑性化領域」と言う場合がある)43を形成する。二周目においては、回転ツール50を、一周目の終端54bから一周目における移動で形成された塑性化領域41の外周側に偏移させる。 Then, as shown in FIG. 7B, after the movement of the first round of the rotary tool 50 is finished, the rotary tool 50 is further rotated once to be referred to as a plasticization region (hereinafter referred to as “second plasticization region”). 43). In the second round, the rotary tool 50 is shifted to the outer peripheral side of the plasticizing region 41 formed by the movement in the first round from the end 54b of the first round.
 このとき、回転ツール50の偏移は、移動方向に向かうに連れて外側へ移動するように斜めに移動して、回転ツール50の二周目の移動軌跡(塑性化領域43)の内側端が、一周目の移動軌跡(塑性化領域41)の中心線(突合部40)上か、あるいは中心線よりも僅かに外側に位置するようになっている。その後、回転ツール50は、図7の(b)に示すように、一周目の移動軌跡(塑性化領域41)と一定の位置関係を保ちながら平行に移動する。したがって、一周目の移動軌跡の外周側部分が、回転ツール50の二周目の移動によって再攪拌されることとなる(図7および図8参照)。これによって、万一、回転ツール50のシアー側50bとなる塑性化領域41の外周側部分に空洞欠陥が発生していたとしても、再攪拌されるので空洞欠陥が解消される。 At this time, the shift of the rotary tool 50 moves diagonally so as to move outward in the moving direction, and the inner end of the second movement trajectory (plasticization region 43) of the rotary tool 50 The first movement trajectory (plasticization region 41) is located on the center line (butting portion 40) or slightly outside the center line. Thereafter, as shown in FIG. 7B, the rotary tool 50 moves in parallel while maintaining a certain positional relationship with the movement locus (plasticization region 41) of the first round. Therefore, the outer peripheral side portion of the movement track of the first round is re-stirred by the movement of the second round of the rotary tool 50 (see FIGS. 7 and 8). As a result, even if a cavity defect occurs in the outer peripheral side portion of the plasticized region 41 that becomes the shear side 50b of the rotary tool 50, the cavity defect is eliminated because it is re-stirred.
 また、二周目の移動における回転ツール50のシアー側50bは、突合部40の外側寄りのジャケット本体10の厚肉部に位置するので、メタル不足に陥ることはない。さらに、万一、空洞欠陥が発生したとしても突合部40から離れた位置となるので問題はない。ここで、回転ツール50の二周目の移動は、一周目の回転方向、回転速度、移動方向、移動速度および押込み量と同様にしている(図7および図8中、矢印Y3,Y4参照)。なお、二周目の回転ツール50の回転速度や移動速度や押込み量等は、ジャケット本体10と封止体30の形状や材質に応じて適宜変更してもよい。 Also, since the shear side 50b of the rotary tool 50 in the second round of movement is located in the thick part of the jacket body 10 near the outside of the abutting part 40, there is no shortage of metal. Furthermore, even if a cavity defect occurs, there is no problem because the position is away from the abutting portion 40. Here, the second round movement of the rotary tool 50 is the same as the first round rotation direction, rotation speed, movement direction, movement speed, and pushing amount (see arrows Y3 and Y4 in FIGS. 7 and 8). . Note that the rotation speed, movement speed, push-in amount, and the like of the second rotation tool 50 may be changed as appropriate according to the shape and material of the jacket body 10 and the sealing body 30.
 さらに、このとき、図3の(b)に示すように、回転ツール50の攪拌ピン52は、その長さ寸法L1(図3の(a)参照)が、封止体30の厚さ寸法T1(図3の(a)参照)よりも長いため、攪拌ピン52の先端部がジャケット本体10の内部の奥側に入り込む。これによって、回転ツール50の二周目の移動によって形成される第二塑性化領域43の先端部(下端部)が、ジャケット本体10の内部の奥側に深く入り込んで形成されることとなる。 Furthermore, at this time, as shown in FIG. 3B, the stirring pin 52 of the rotary tool 50 has a length dimension L1 (see FIG. 3A) that is a thickness dimension T1 of the sealing body 30. Since the length is longer than that (see (a) of FIG. 3), the tip of the stirring pin 52 enters the inner side of the jacket body 10. As a result, the distal end portion (lower end portion) of the second plasticizing region 43 formed by the second movement of the rotary tool 50 is formed so as to penetrate deeply into the interior of the jacket body 10.
 そして、図8の(a)に示すように、回転ツール50の周方向移動が終了したならば、回転ツール50を塑性化領域43から外側に外れた周壁14の上面へと移動させ、その位置(引抜位置55)で、回転ツール50を引き抜く。このように、回転ツール50の引抜位置55が、突合部40から外側に外れた位置となっているので、攪拌ピン52(図4の(a)参照)の引抜跡(図示せず)が突合部40に形成されることはない。これにより、ジャケット本体10と封止体30との接合性をさらに高めることができる。なお、周壁14の上面の引抜跡は、溶接金属を埋める等の加工を行って補修するようにしてもよい。 Then, as shown in FIG. 8A, when the circumferential movement of the rotary tool 50 is completed, the rotary tool 50 is moved to the upper surface of the peripheral wall 14 outside the plasticizing region 43, and the position At the (drawing position 55), the rotary tool 50 is pulled out. In this way, the extraction position 55 of the rotary tool 50 is located outside the abutting portion 40, so that the extraction trace (not shown) of the stirring pin 52 (see FIG. 4A) abuts. The portion 40 is not formed. Thereby, the joining property of the jacket main body 10 and the sealing body 30 can further be improved. In addition, you may make it repair the drawing trace of the upper surface of the surrounding wall 14 by processing, such as filling a weld metal.
 その後、同じ回転ツール50を用いて、畝部17と封止体30を摩擦攪拌接合する。この工程では、図8の(b)に示すように、畝部17の先端部の挿入位置56に、回転ツール50を回転させながら挿入する。なお、回転ツール50の挿入位置56に、予め下穴(図示せず)を形成していてもよい。このようにすれば、回転ツール50の挿入時間(押込み時間)を短縮できる。 Then, using the same rotary tool 50, the flange portion 17 and the sealing body 30 are friction stir welded. In this step, as shown in FIG. 8B, the rotary tool 50 is inserted into the insertion position 56 at the distal end of the flange portion 17 while rotating. A pilot hole (not shown) may be formed in advance at the insertion position 56 of the rotary tool 50. If it does in this way, the insertion time (pressing time) of the rotation tool 50 can be shortened.
 そして、回転ツール50を、挿入位置56から突合部40の外側へ向かいつつ、畝部17に沿って、回転させながら移動させて塑性化領域49を形成する。回転ツール50の移動が進み、塑性化領域41の内周側端まで摩擦攪拌を行ったら、そのまま、回転ツール50を塑性化領域41へ突入させ、引き続き塑性化領域41から第二塑性化領域43へと移動させる。その後、回転ツール50を、第二塑性化領域43の外周側端から、外側に外れた周壁14の上面へと移動させ、その位置(引抜位置57)で、回転ツール50を引き抜く。このように、回転ツール50の引抜位置57が、突合部40から外側に外れた位置となっているので、攪拌ピン52(図4の(a)参照)の引抜跡(図示せず)が突合部40に形成されることはない。これにより、ジャケット本体10と封止体30との接合性を高めることができる。なお、周壁14の上面の引抜跡は、溶接金属を埋める等の加工を行って補修するようにしてもよい。 Then, the rotating tool 50 is moved from the insertion position 56 to the outside of the abutting portion 40 while being rotated along the flange portion 17 to form the plasticized region 49. When the rotation of the rotary tool 50 advances and frictional stirring is performed up to the inner peripheral side end of the plasticizing region 41, the rotary tool 50 enters the plasticizing region 41 as it is, and then continues from the plasticizing region 41 to the second plasticizing region 43. Move to. Thereafter, the rotary tool 50 is moved from the outer peripheral side end of the second plasticizing region 43 to the upper surface of the peripheral wall 14 that is outside, and the rotary tool 50 is pulled out at that position (pulling position 57). In this way, the extraction position 57 of the rotary tool 50 is located outside the abutting portion 40, so that the extraction trace (not shown) of the stirring pin 52 (see FIG. 4A) abuts. The portion 40 is not formed. Thereby, the joining property of the jacket main body 10 and the sealing body 30 can be improved. In addition, you may make it repair the drawing trace of the upper surface of the surrounding wall 14 by processing, such as filling a weld metal.
 以上のように、回転ツール50は、挿入位置56から畝部17に沿って引抜位置57まで直線状(図8の(b)中、矢印Y5参照)に移動する。このとき、回転方向(自転方向)、回転速度、移動方向(公転方向)、移動方向および押込み量は一定である。なお、回転方向は、左回転であっても右回転であってもどちらでもよい。 As described above, the rotary tool 50 moves linearly (see arrow Y5 in FIG. 8B) from the insertion position 56 to the pulling position 57 along the flange portion 17. At this time, the rotation direction (autorotation direction), the rotation speed, the movement direction (revolution direction), the movement direction, and the pushing amount are constant. The rotation direction may be either left rotation or right rotation.
 このとき、図4に示すように、回転ツール50の攪拌ピン52は、その長さ寸法L1が、封止体30の厚さ寸法T1よりも長いため、攪拌ピン52の先端部が畝部17の表面17aを突き抜けて、ジャケット本体10の内部(畝部17の内部)の奥側に入り込む。これによって、回転ツール50によって形成される塑性化領域49の先端部(下端部)が、ジャケット本体10の内部の奥側に入り込んで形成されることとなる。 At this time, as shown in FIG. 4, since the length dimension L1 of the stirring pin 52 of the rotary tool 50 is longer than the thickness dimension T1 of the sealing body 30, the tip of the stirring pin 52 is the flange portion 17. The inside of the jacket body 10 (the inside of the flange portion 17) enters the back side. As a result, the distal end portion (lower end portion) of the plasticizing region 49 formed by the rotary tool 50 is formed so as to enter the inner back side of the jacket main body 10.
 以上説明したように、回転ツール50を凹部11の開口部12の周囲で、突合部40に沿って二周させて摩擦攪拌接合を行って塑性化領域41および第二塑性化領域43を形成し、さらに、回転ツール50を畝部17に沿って移動させて摩擦攪拌接合を行って塑性化領域49を形成して、ジャケット本体10に封止体30が固定されてなる接合体1’(図8および図10参照)が形成される。 As described above, the rotary tool 50 is rotated around the opening 12 of the recess 11 along the abutting portion 40 and friction stir welding is performed to form the plasticized region 41 and the second plasticized region 43. Further, the rotating tool 50 is moved along the flange portion 17 to perform friction stir welding to form the plasticized region 49, and the joined body 1 ′ (see FIG. 8 and FIG. 10) is formed.
(バリ切除工程)
 その後、摩擦攪拌で発生したバリを切除して、表面を研磨する。
(Burr cutting process)
Thereafter, burrs generated by friction stirring are cut off and the surface is polished.
(矯正工程)
 以上のように接合されたジャケット本体10および封止体30からなる接合体1’は、片面から摩擦攪拌を行っているため、中央部20が一方に突出するように反って撓んでいる(図10参照)。よって、次の矯正工程において、接合体1’をプレス矯正して平坦に戻す。
(Correction process)
Since the joined body 1 ′ composed of the jacket body 10 and the sealed body 30 joined as described above is subjected to frictional stirring from one side, the center part 20 is warped and bent so as to protrude to one side (see FIG. 10). Therefore, in the next correction process, the bonded body 1 ′ is press-corrected and returned to the flat state.
 図10および図11に示すように、プレス矯正は、接合体1’を支持台70上に設置し、その中央部20を上方から下方に押圧することで行われる。支持台70は、液冷ジャケット1を量産する場合に型として製作される。支持台70は、接合体1’を収容可能な大きさで、上側が開口した浅底の箱体である。支持台70は、本実施形態では平面視長方形を呈している。支持台70は、上部が開口した凹部71を有している。凹部71の開口部72は、接合体1’の外周面よりひと回り大きい長方形を呈しており、凹部71に接合体1’が収容可能となっている。凹部71の内部には、底面側に一段下がった段差底面からなる支持面73が形成されている。支持面73は、凹部71の内周面から内側に広がって形成されている。支持面73は、接合体1’の周縁部を支持可能な幅となっている。 As shown in FIG. 10 and FIG. 11, press correction is performed by placing the joined body 1 ′ on the support base 70 and pressing the central portion 20 downward from above. The support base 70 is manufactured as a mold when the liquid cooling jacket 1 is mass-produced. The support base 70 is a shallow box that is large enough to accommodate the joined body 1 ′ and has an upper opening. In this embodiment, the support base 70 has a rectangular shape in plan view. The support base 70 has a recess 71 whose top is open. The opening 72 of the recess 71 has a rectangular shape that is slightly larger than the outer peripheral surface of the joined body 1 ′, and the joined body 1 ′ can be accommodated in the recessed portion 71. Inside the recess 71, a support surface 73 formed of a step bottom surface that is stepped down by one step on the bottom surface side is formed. The support surface 73 is formed to extend inward from the inner peripheral surface of the recess 71. The support surface 73 has a width capable of supporting the peripheral edge of the joined body 1 ′.
 接合体1’は、封止体30が下方を向く状態(中央部が上側に反った状態)で、支持台70に載置される。接合体1’は、その周縁部が支持面73によって下側から支持される。なお、接合体1’は中央部20が上側に反って変形しているので、接合体1’を設置した時点では、その変形状態によって、接合体1’の四隅の四点、または四隅のうち三点で支持面73上に支持される。 The joined body 1 ′ is placed on the support base 70 in a state where the sealing body 30 faces downward (in a state where the central portion is warped upward). The periphery of the joined body 1 ′ is supported from below by the support surface 73. Since the joined body 1 ′ is deformed with the central portion 20 warped upward, at the time when the joined body 1 ′ is installed, depending on the deformed state, the four corners of the joined body 1 ′, or the four corners. It is supported on the support surface 73 at three points.
 接合体1’を支持台70に設置したならば、ジャケット本体10の対角線が交差する中央部20(図11参照)を、下方に押圧する。図12に示すように、ジャケット本体10の中央部20を押圧体75によって押圧すると、接合体1’が変形して、中央部20が下方に降下する。このとき、押圧を開始すると、接合体1’全体が下方に押されて変形するので、押圧前に三点支持の状態であっても、四点支持へと移行して、途中から、接合体1’の外周面の全周に渡って支持面73に支持されるようになる。接合体1’を断面方向に見ると、両端の下面が外側支点で支持され、中央部の上面の内側支点が下方に押圧され、原理的には三点曲げと同様の状態となる。このとき、接合体1’は、スプリングバックで元の形状(上側に反った形状)に戻ろうとするので、平坦な状態よりも中央部20が下方に反る位置まで押圧する(図中、二点鎖線にて示す)。 When the joined body 1 ′ is installed on the support base 70, the center portion 20 (see FIG. 11) where the diagonal lines of the jacket body 10 intersect is pressed downward. As shown in FIG. 12, when the central portion 20 of the jacket body 10 is pressed by the pressing body 75, the joined body 1 ′ is deformed and the central portion 20 is lowered downward. At this time, when pressing is started, the entire joined body 1 ′ is pushed downward to be deformed, so even if it is in a three-point support state before pressing, the transition to four-point support is performed, and the joined body is started from the middle. The support surface 73 is supported over the entire circumference of the 1 ′ outer peripheral surface. When the joined body 1 ′ is viewed in the cross-sectional direction, the lower surface of both ends is supported by the outer fulcrum, and the inner fulcrum of the upper surface of the central portion is pressed downward, and in principle, the state is similar to that of three-point bending. At this time, since the joined body 1 ′ tries to return to the original shape (the shape warped upward) by the spring back, it is pressed to a position where the central portion 20 warps downward as compared with the flat state (in the figure, two (Indicated by a dotted line).
 ここで、実際に封止体30が接合された接合体1’を作成して、押圧荷重、押圧変形量とスプリングバックによる戻り量を測定した試験結果を、図13のグラフを参照しながら説明する。本実施形態の工程に沿って形成された接合体1’10は、中央部20が上方に略0.9mm沿った状態となっていた。図13のグラフは、縦軸が押圧荷重、横軸が接合体1’の下方への変位を示している。なお、変位量の数値は、接合体1’が平坦な状態を0mmとし、周縁部と比較して中央部20が上方に反っているときは、マイナス値となり、中央部20が下方に反っているときは、プラス値となる。図示するように、接合体1’の中央部20にかける押圧荷重を徐々に増加させていくと、下方への変位量が増加していく。そして、押圧荷重が略32.5kNになったところで、接合体1’に亀裂が入ることが分かった。接合体1’に亀裂が入るまでの荷重範囲では、押圧荷重を解除すると、変位量が一定割合で戻る(スプリングバック)ことが分かっている。このグラフより、押圧荷重を25kNとして、変位量が2.65mmとなったところで、押圧をやめると、スプリングバックによって、接合体1’が平坦な状態(変位0mm)に戻ることが分かった。 Here, a test result obtained by creating a joined body 1 ′ to which the sealing body 30 is actually joined and measuring a pressing load, a pressing deformation amount, and a return amount by springback will be described with reference to a graph of FIG. To do. The joined body 1 ′ 10 formed along the steps of the present embodiment has a state in which the central portion 20 is approximately 0.9 mm upward. In the graph of FIG. 13, the vertical axis represents the pressing load and the horizontal axis represents the downward displacement of the joined body 1 ′. Note that the numerical value of the displacement amount is a negative value when the joined body 1 ′ is 0 mm when flat and the central portion 20 is warped upward compared to the peripheral portion, and the central portion 20 warps downward. When it is, it becomes a positive value. As shown in the drawing, when the pressing load applied to the central portion 20 of the joined body 1 ′ is gradually increased, the downward displacement amount is increased. Then, it was found that when the pressing load was approximately 32.5 kN, the joined body 1 ′ was cracked. In the load range until the bonded body 1 ′ is cracked, it is known that when the pressing load is released, the displacement returns at a constant rate (spring back). From this graph, it was found that when the pressing load was 25 kN and the displacement amount was 2.65 mm, when the pressing was stopped, the joined body 1 ′ returned to a flat state (displacement 0 mm) by the springback.
 以上のことより、前記構成の接合体1’では、下向きに25kNの押圧荷重をかけて、中央部20が下方に2.65mm変形したところで押圧を止めればよい。なお、接合体1’が平坦に戻る押圧荷重と変位量は、接合体1’の形状に応じて変化するものであるので、適宜試験を行って決定される。 From the above, in the joined body 1 ′ having the above-described configuration, a pressing load of 25 kN may be applied downward, and the pressing may be stopped when the central portion 20 is deformed downward by 2.65 mm. Note that the pressing load and the amount of displacement at which the joined body 1 ′ returns to the flat state vary depending on the shape of the joined body 1 ′, and thus are determined by performing appropriate tests.
 矯正工程が完了すると、液冷ジャケット1の製造が完了する。本実施形態の液冷ジャケットの製造方法によれば、摩擦攪拌接合工程の後に、接合体1’をプレス矯正するので、摩擦攪拌接合時の変形を許容できる。したがって、摩擦攪拌接合時にジャケット本体10を冷却する必要がない。つまり、本実施形態の液冷ジャケットの製造方法によれば、摩擦攪拌接合作業の煩雑化を防止でき、作業の容易化を図ることができる。 When the correction process is completed, the production of the liquid cooling jacket 1 is completed. According to the manufacturing method of the liquid cooling jacket of the present embodiment, since the joined body 1 ′ is press-corrected after the friction stir welding process, deformation during the friction stir welding can be allowed. Therefore, it is not necessary to cool the jacket main body 10 during the friction stir welding. That is, according to the manufacturing method of the liquid cooling jacket of this embodiment, complication of the friction stir welding operation can be prevented, and the operation can be facilitated.
 また、本実施形態の矯正工程では、封止体30が下方を向くように接合体1’を配置して、支持台70で下側から接合体1’の周縁部を支持し、ジャケット本体10の対角線が交差する中央部20を下方に押圧するようにしたことで、断面方向に見てジャケット本体10は、両端部で下側から支持され中央部20が下方に押圧される状態となる。そして、中央部20を押圧することで、中央の押圧点から両端の支持点まで距離が左右均等になる。これによって、押圧荷重がバランスよくジャケット本体10および封止体30に伝達されることとなって、左右均等に変形する。したがって、接合体1’は、局所的に変形することがなく、その全体を平坦に矯正することができる。また、中央部20を押圧すると畝部17を押圧することになるので、封止体30にも押圧荷重を伝達しやすくなる。なお、畝部が複数列形成されて、中央部に畝部が位置しない場合であっても、接合体1’の変形のバランスを考慮して中央部を押圧するのが好ましい。 Further, in the correction process of the present embodiment, the joined body 1 ′ is arranged so that the sealing body 30 faces downward, and the periphery of the joined body 1 ′ is supported from the lower side by the support base 70, and the jacket body 10. By pressing the central portion 20 where the diagonal lines intersect with each other downward, the jacket body 10 is supported from the lower side at both ends as viewed in the cross-sectional direction, and the central portion 20 is pressed downward. Then, by pressing the central portion 20, the distance from the central pressing point to the support points at both ends becomes equal to the left and right. As a result, the pressing load is transmitted to the jacket body 10 and the sealing body 30 in a well-balanced manner, and the left and right are deformed evenly. Therefore, the joined body 1 ′ is not deformed locally, and the whole can be corrected to be flat. Further, when the central portion 20 is pressed, the flange portion 17 is pressed, so that it becomes easy to transmit a pressing load to the sealing body 30. Even when the flanges are formed in a plurality of rows and the flanges are not located at the center, it is preferable to press the center in consideration of the balance of deformation of the joined body 1 ′.
 さらに、接合体1’の中央部20が周縁部よりも下方になるまで押圧することで、押圧終了後に接合体1’を平坦にすることができる。また、本実施形態では、接合体1’の中央部20を集中的に押圧するので、プレス荷重が小さくて済む。 Furthermore, by pressing until the central portion 20 of the joined body 1 ′ is below the peripheral edge portion, the joined body 1 ′ can be flattened after the pressing is completed. In the present embodiment, the central portion 20 of the joined body 1 ′ is pressed intensively, so that the press load can be reduced.
 一方、本実施形態に係る液冷ジャケット1の製造方法における摩擦攪拌接合によれば、封止体30の厚さ寸法T1よりも大きい長さ寸法L1の攪拌ピン52を備えた回転ツール50を用いて、摩擦攪拌接合を行っているので、塑性化領域41,43,46の先端部が、ジャケット本体10の内部の奥側の深い部分まで入り込んで形成される。これによって、ジャケット本体10と封止体30との突合部40を確実に摩擦攪拌接合することができ、水密性に優れた液冷ジャケットを製造することができる。 On the other hand, according to the friction stir welding in the method for manufacturing the liquid cooling jacket 1 according to the present embodiment, the rotary tool 50 including the stirring pin 52 having the length dimension L1 larger than the thickness dimension T1 of the sealing body 30 is used. Since the friction stir welding is performed, the tip portions of the plasticized regions 41, 43, and 46 are formed so as to enter the deep part inside the jacket body 10. Thereby, the abutting portion 40 between the jacket main body 10 and the sealing body 30 can be reliably friction stir welded, and a liquid-cooled jacket excellent in water tightness can be manufactured.
 また、支持面15aの幅寸法W1が、回転ツール50のショルダー部51の半径寸法R2よりも大きいので、回転ツール50の一周目の移動で、突合部40の真上で移動させたときに、塑性化領域41を支持面15a内に形成することができる。これによって、塑性化領域41が凹部11の内側面に露出しないので、支持面15aが凹部11の底壁13側に下がることがなく、回転ツール50の押込み力を支持面15aで確実に支持することができる。よって、封止体30は、支持面15aで支持されるので、封止体30には、下方に回転ツール50の押込み力がかからず、変形することはない。 Further, since the width dimension W1 of the support surface 15a is larger than the radius dimension R2 of the shoulder portion 51 of the rotary tool 50, when the first rotation of the rotary tool 50 is moved directly above the abutting portion 40, A plasticized region 41 can be formed in the support surface 15a. Accordingly, since the plasticized region 41 is not exposed on the inner side surface of the concave portion 11, the support surface 15a is not lowered toward the bottom wall 13 of the concave portion 11, and the pushing force of the rotary tool 50 is reliably supported by the support surface 15a. be able to. Therefore, since the sealing body 30 is supported by the support surface 15a, the pressing force of the rotary tool 50 is not applied downward to the sealing body 30, and the sealing body 30 is not deformed.
 また、凹部11の内部には、支持面15aと面一の表面17aを有する畝部17が形成されており、畝部17に沿って塑性化領域49を形成して、封止体30を畝部17に接合したことによって、凹部11が大面積の場合でも、封止体30は、支持面15aと畝部17の表面17a上で平面状に支持される。これによって、封止体30の平面性が保持され、封止体30の変形を抑制できる。さらに、万一、ジャケット本体10の開口部12周りの摩擦攪拌接合で、封止体30に変形が発生していたとしても、後の工程で、封止体30と畝部17とを接合することで、封止体30の変形を解消することができる。 In addition, a flange 17 having a surface 17a flush with the support surface 15a is formed inside the recess 11, and a plasticized region 49 is formed along the flange 17, so that the sealing body 30 is By joining to the part 17, even when the recessed part 11 is large area, the sealing body 30 is supported planarly on the support surface 15a and the surface 17a of the collar part 17. FIG. Thereby, the planarity of the sealing body 30 is maintained, and deformation of the sealing body 30 can be suppressed. Furthermore, even if the sealing body 30 is deformed by friction stir welding around the opening 12 of the jacket body 10, the sealing body 30 and the flange portion 17 are joined in a later step. Thereby, the deformation | transformation of the sealing body 30 can be eliminated.
 このとき、畝部17の幅寸法W2が、回転ツール50のショルダー部51の直径寸法R1よりも大きいので、回転ツール50を畝部17の真上で移動させたときに、塑性化領域49を畝部15の表面17a内に形成することができる。これによって、塑性化領域49が畝部17の側面に露出しないので、畝部17の表面17aが凹部11の底壁13側に下がることがなく、回転ツール50の押込み力を畝部17で確実に支持することができる。よって、封止体30は、畝部17の表面17aで支持されるので、封止体30には、下方に回転ツール50の押込み力がかからず、変形することはない。 At this time, since the width dimension W2 of the flange part 17 is larger than the diameter dimension R1 of the shoulder part 51 of the rotary tool 50, when the rotary tool 50 is moved directly above the flange part 17, the plasticizing region 49 is formed. It can be formed in the surface 17 a of the flange 15. Accordingly, since the plasticized region 49 is not exposed on the side surface of the flange portion 17, the surface 17 a of the flange portion 17 does not fall to the bottom wall 13 side of the recess 11, and the pushing force of the rotary tool 50 is surely secured by the flange portion 17. Can be supported. Therefore, since the sealing body 30 is supported by the surface 17a of the flange portion 17, the pressing force of the rotary tool 50 is not applied downward to the sealing body 30, and the sealing body 30 is not deformed.
 また、本実施形態では、回転ツール50を開口部12に対して右回りに移動させて、右回転させているので、薄肉である封止体30がフロー側50aとなり、封止体30側には、空洞欠陥が発生し難い。ジャケット本体10がシアー側50bとなるが、ジャケット本体10は厚肉であるので、ジャケット本体10に対する回転ツール50の外周の相対速度が速くても、メタル不足に陥ることはない。したがって、突合部におけるメタル不足による空洞欠陥の発生を防止でき、突合部40の接合強度の低下を防止できる。そして、万一、空洞欠陥が発生したとしても、突合部40よりも外側位置に離反した部分であって、熱輸送流体の流路から離れた位置に発生することとなるので、熱輸送流体が流路から外部に漏れ難く、接合部の密閉性能に影響を及ぼすことはない。 Moreover, in this embodiment, since the rotation tool 50 is moved clockwise with respect to the opening part 12 and rotated to the right, the thin sealing body 30 becomes the flow side 50a, and the sealing body 30 side Is difficult to generate cavity defects. Although the jacket main body 10 becomes the shear side 50b, since the jacket main body 10 is thick, even if the relative speed of the outer periphery of the rotary tool 50 with respect to the jacket main body 10 is high, there is no shortage of metal. Therefore, it is possible to prevent the occurrence of cavity defects due to lack of metal in the abutting portion, and it is possible to prevent the bonding strength of the abutting portion 40 from being lowered. And even if a cavity defect should occur, it will occur at a position away from the abutment 40 and away from the flow path of the heat transport fluid. It hardly leaks from the flow path to the outside and does not affect the sealing performance of the joint.
 さらに、本実施形態では、回転ツール50の一周目の移動で空洞欠陥が発生したとしても、一周目でシアー側50bであった部分を回転ツール50の二周目の移動で再攪拌することによって、空洞欠陥を解消することができる。 Furthermore, in this embodiment, even if a cavity defect occurs in the first round movement of the rotary tool 50, the portion that was the shear side 50b in the first round is re-stirred by the second round movement of the rotary tool 50. , Cavity defects can be eliminated.
 また、本実施形態では、回転ツール50で塑性化領域41を形成する工程に先立って、突合部40の一部を、仮接合用回転ツール60を用いて仮接合しているので、回転ツール50による摩擦攪拌接合の際に、封止体30が移動することがなく、接合しやすくなるとともに、封止体30のジャケット本体10に対する位置決め精度が向上する。また、仮接合用回転ツール60が本接合用の回転ツール50よりも小さいので、本接合用の回転ツール50を、仮接合で形成される塑性化領域45の上で移動させて摩擦攪拌するだけで、塑性化領域45および回転ツール60の引抜跡が覆われて、本接合が仕上げられる。 In this embodiment, prior to the step of forming the plasticized region 41 with the rotary tool 50, a part of the abutting portion 40 is temporarily joined using the temporary joining rotary tool 60. When the friction stir welding is performed, the sealing body 30 does not move, it becomes easy to join, and the positioning accuracy of the sealing body 30 with respect to the jacket body 10 is improved. In addition, since the temporary joining rotary tool 60 is smaller than the main joining rotary tool 50, the main joining rotary tool 50 is merely moved and frictionally stirred on the plasticized region 45 formed by the temporary joining. Thus, the extraction traces of the plasticized region 45 and the rotary tool 60 are covered, and the main joining is finished.
 さらに、突合部40が矩形枠状を呈しており、仮接合用回転ツール60で突合部40を仮接合する工程において、突合部40の一方の対角44a,44b同士を先に仮接合した後に、他方の対角44c,44d同士を仮接合するので、封止体30をバランスよく仮接合することができ、封止体30のジャケット本体10に対する位置決め精度がより一層向上する。 Furthermore, the abutting portion 40 has a rectangular frame shape, and after temporarily joining one diagonal 44a, 44b of the abutting portion 40 in the step of temporarily joining the abutting portion 40 with the temporary joining rotary tool 60, Since the other diagonals 44c and 44d are temporarily joined together, the sealing body 30 can be temporarily joined with good balance, and the positioning accuracy of the sealing body 30 with respect to the jacket body 10 is further improved.
 また、本実施形態では、回転ツール50の周方向移動における始端54aと終端54bとで、塑性化領域41の一部が重複していることにより、凹部11の開口周縁部12aにおいて、塑性化領域41が途切れる部分がない。したがって、ジャケット本体10の周壁14と、封止体30とを良好に接合することができ、熱輸送流体が外部に漏れないので、接合部の密閉性能を向上させることができる。 Further, in the present embodiment, since the plasticizing region 41 partially overlaps at the start end 54a and the terminal end 54b in the circumferential movement of the rotary tool 50, the plasticizing region is formed in the opening peripheral portion 12a of the recess 11. There is no portion where 41 is interrupted. Therefore, the peripheral wall 14 of the jacket main body 10 and the sealing body 30 can be favorably joined, and the heat transport fluid does not leak to the outside, so that the sealing performance of the joint can be improved.
[第2実施形態]
 次に、第2実施形態に係る液冷ジャケットの製造方法について、図14および図15を参照して説明する。第2実施形態の液冷ジャケットの製造方法は、第1実施形態と矯正工程で用いるプレス装置の形状が異なる。第1実施形態では、接合体1’の周縁部を下方から支持して中央部を下方に押圧する構成であったが、第2実施形態では、ジャケット本体10の全体を上下両面側から覆ってプレス矯正するようになっている。具体的には、図14に示すように、プレス装置80は、封止体30が接合されたジャケット本体10を支持する下型81と、ジャケット本体10を押圧する上型86とを備えている。下型81は、ジャケット本体10の投影面積より大きい面積を有する押圧面82を備え、上型86は、ジャケット本体10の投影面積より大きい面積を有する押圧面87を備えている。
[Second Embodiment]
Next, the manufacturing method of the liquid cooling jacket which concerns on 2nd Embodiment is demonstrated with reference to FIG. 14 and FIG. The manufacturing method of the liquid cooling jacket of the second embodiment is different from the first embodiment in the shape of the press device used in the correction process. In 1st Embodiment, it was the structure which supports the peripheral part of joined body 1 'from the downward direction, and presses the center part downward, However, In 2nd Embodiment, the whole jacket main body 10 is covered from the up-and-down both sides. The press is straightened. Specifically, as shown in FIG. 14, the press device 80 includes a lower mold 81 that supports the jacket body 10 to which the sealing body 30 is bonded, and an upper mold 86 that presses the jacket body 10. . The lower mold 81 includes a pressing surface 82 having an area larger than the projected area of the jacket body 10, and the upper mold 86 includes a pressing surface 87 having an area larger than the projected area of the jacket body 10.
 図14に示したプレス装置80では、下型81の押圧面82が、中央部が下方に窪んだ凹面形状に形成されており、上型86の押圧面87が、中央部が下方に突出した凸面形状に形成されている。この場合、接合体1’は、中央部が上側に反った状態(封止体30が下方の凹面に対向する状態)で、押圧面82に載置される。押圧面82の凹面と押圧面87の凸面とは、同等の曲率半径を有しており、互いに噛み合うような曲率となっている。接合体1’を押圧したときに、接合体1’の中央部20が下方に反ることとなるが、下方への変位量は、押圧荷重を解除後に接合体1’がスプリングバックして平坦になるような数値(例えば第1実施形態における接合体1’の例では2.65mm)となるように、凸面と凹面の曲率半径が設定されている。 In the press device 80 shown in FIG. 14, the pressing surface 82 of the lower die 81 is formed in a concave shape with the central portion recessed downward, and the pressing surface 87 of the upper die 86 protrudes downward in the central portion. It is formed in a convex shape. In this case, the joined body 1 ′ is placed on the pressing surface 82 in a state where the central portion is warped upward (a state where the sealing body 30 faces the lower concave surface). The concave surface of the pressing surface 82 and the convex surface of the pressing surface 87 have the same radius of curvature, and have a curvature that meshes with each other. When the joined body 1 ′ is pressed, the central portion 20 of the joined body 1 ′ warps downward, but the downward displacement is flat when the joined body 1 ′ springs back after releasing the pressing load. The curvature radius of the convex surface and the concave surface is set so that the numerical value becomes (for example, 2.65 mm in the example of the joined body 1 ′ in the first embodiment).
 一方、図15に示したようなプレス装置80’であってもよい。プレス装置80’は、下型81’の押圧面82’が、中央部が上方に突出した凸面形状に形成されており、上型86’の押圧面87’が、中央部が上方に窪んだ凹面形状に形成されている。この場合、接合体1’は、中央部が下側に反った状態(封止体30が上方の凹面に対向する状態)で、押圧面82’に載置される。押圧面82’の凸面と押圧面87’の凹面とは、同等の曲率半径を有しており、互いに噛み合うような曲率となっている。接合体1’を押圧したときに、接合体1’の中央部20が上方に反ることとなるが、上方への変位量は、押圧荷重を解除後に接合体1’がスプリングバックして平坦になるような数値となるように、凸面と凹面の曲率半径が設定されている。 On the other hand, a press apparatus 80 'as shown in FIG. In the pressing device 80 ′, the pressing surface 82 ′ of the lower mold 81 ′ is formed in a convex shape with the central portion protruding upward, and the pressing surface 87 ′ of the upper mold 86 ′ is recessed upward in the central portion. It is formed in a concave shape. In this case, the joined body 1 ′ is placed on the pressing surface 82 ′ in a state where the center part is warped downward (a state where the sealing body 30 faces the upper concave surface). The convex surface of the pressing surface 82 ′ and the concave surface of the pressing surface 87 ′ have the same radius of curvature and have a curvature that meshes with each other. When the joined body 1 ′ is pressed, the central portion 20 of the joined body 1 ′ warps upward, but the upward displacement amount is flat when the joined body 1 ′ springs back after releasing the pressing load. The curvature radii of the convex surface and the concave surface are set so that the numerical values are as follows.
 このような構成のプレス装置80,80’によっても、封止体30が接合されたジャケット本体10を平坦にすることができる。さらに、プレス装置80,80’によれば、ジャケット本体10および封止体30を安定した状態で支持でき、その全面を押圧することができる。したがって、ジャケット本体10の凹部や畝部の位置に関わらず、凹部や畝部が中央部から偏った位置に配置されていた場合でも、プレス矯正を精度高く行うことができ、接合体1’を平坦に矯正することができる。また、接合体1’の形状が、矩形とは異なる場合であっても、プレス矯正を行うことができ、汎用性が高くなる。 The jacket main body 10 to which the sealing body 30 is bonded can also be flattened by the press devices 80 and 80 ′ having such a configuration. Furthermore, according to the press devices 80 and 80 ', the jacket main body 10 and the sealing body 30 can be supported in a stable state, and the entire surface thereof can be pressed. Therefore, regardless of the position of the concave portion or the collar portion of the jacket main body 10, even when the concave portion or the collar portion is disposed at a position deviated from the central portion, the press correction can be performed with high accuracy, and the joined body 1 ′ can be Can be flattened. Further, even when the shape of the joined body 1 ′ is different from the rectangle, press correction can be performed, and versatility is improved.
 また、矯正工程の前にバリを切除することで、プレス時にバリがジャケット本体10と押圧面87,87’または押圧面82,82’との間に挟まることがなく、局所的に変形したり、バリが表面に食い込んで傷が発生したりするのを防止することができる。 Further, by removing the burrs before the correction process, the burrs are not sandwiched between the jacket body 10 and the pressing surfaces 87, 87 ′ or the pressing surfaces 82, 82 ′ at the time of pressing, and may be locally deformed. It is possible to prevent the burr from biting into the surface and causing scratches.
 以上、本発明の実施形態について説明したが、本発明の実施形態はこれに限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更が可能であり、例えば、前記実施形態では、接合体1’が平面視略長方形であるが、これに限定されるものではなく、正方形、多角形、円形等の他の形状であってもよい。この場合、接合体1’を支持する支持台は、適宜形状が変更される。さらに、封止体30に設けられているフィン32は、蓋板部と別体であってもよく、例えば、凹部11内に別体で収容して設けたり、ジャケット本体と一体に形成したりしもよい。 As mentioned above, although embodiment of this invention was described, embodiment of this invention is not limited to this, In the range which does not deviate from the meaning of this invention, it can change suitably, For example, in the said embodiment, The joined body 1 ′ has a substantially rectangular shape in plan view, but is not limited thereto, and may be another shape such as a square, a polygon, or a circle. In this case, the shape of the support for supporting the joined body 1 ′ is changed as appropriate. Furthermore, the fin 32 provided in the sealing body 30 may be a separate body from the lid plate portion. For example, the fin 32 may be separately housed in the recess 11 or provided integrally with the jacket body. Yes.
 また、前記の各実施形態では、畝部17は、一方の壁部14aから他方の壁部14bに延出して一箇所だけ形成されているが、これに限定されるものではなく、複数形成するようにしてもよい。この場合、一方の壁部から他方の壁部に延出する複数の畝部を形成するようにしてもよいし、互いに対向する一対の壁部に少なくとも一つずつ畝部を形成して、冷却水が流れる流路が蛇行するように構成してもよい。 Moreover, in each said embodiment, although the collar part 17 is extended from the one wall part 14a to the other wall part 14b and formed in one place, it is not limited to this, A plurality is formed. You may do it. In this case, a plurality of ridges extending from one wall portion to the other wall portion may be formed, or at least one ridge portion may be formed on each of a pair of wall portions facing each other to cool the ridge portion. You may comprise so that the flow path through which water flows may meander.
 1   液冷ジャケット
 1’  接合体
 10  ジャケット本体
 11  凹部
 12  開口部
 12a 開口周縁部
 15a 支持面(段差底面)
 15b 段差側面
 17  畝部
 17a (畝部の)表面
 30  封止体
 30b 外周面
 40  突合部
 41  塑性化領域
 43  (第二)塑性化領域
 50  回転ツール
 51  ショルダー部
 52  攪拌ピン
 60  仮接合用回転ツール
 70  支持台
 81  下型
 82  支持面
 86  上型
 87  押圧面
 H1  (ジャケット本体の上面と支持面との高低差)寸法
 L1  攪拌ピンの長さ寸法
 R1  ショルダー部の直径寸法
 R2  ショルダー部の半径寸法
 T1  (封止体の)厚さ寸法
 W1  (支持面の)幅寸法
 W2  (畝部の)幅寸法
DESCRIPTION OF SYMBOLS 1 Liquid cooling jacket 1 'Joined body 10 Jacket main body 11 Recessed part 12 Opening part 12a Opening peripheral part 15a Support surface (step bottom)
15b Step side surface 17 Ridge part 17a (Ring part) surface 30 Sealing body 30b Outer peripheral surface 40 Abutting part 41 Plasticization area 43 (Second) Plasticization area 50 Rotating tool 51 Shoulder part 52 Stirring pin 60 Rotating tool for temporary joining 70 Support base 81 Lower mold 82 Support surface 86 Upper mold 87 Press surface H1 (Difference in height between the upper surface of the jacket body and the support surface) Dimensions L1 Length of stirring pin R1 Diameter dimension of shoulder part R2 Radial dimension of shoulder part T1 Thickness dimension (sealing body) W1 (support surface) width dimension W2 (saddle part) width dimension

Claims (13)

  1.  凹部とその内部に形成された畝部を有するジャケット本体に、前記凹部の開口部を封止する封止体を摩擦攪拌接合によって固定して構成される液冷ジャケットの製造方法であって、
     前記ジャケット本体の前記凹部の開口周縁部に形成され前記ジャケット本体の表面より下がった段差底面からなる支持面およびこの支持面と面一の前記畝部の表面に、前記封止体を載置して、前記ジャケット本体の段差側面と前記封止体の外周面を突き合わせる設置工程と、
     前記封止体の厚さ寸法よりも大きい長さ寸法の攪拌ピンを備えた回転ツールを、前記ジャケット本体の前記段差側面と前記封止体の外周面との突合部に沿って一周させるとともに、前記封止体の表面で前記畝部に沿って移動させて、前記封止体を前記ジャケット本体に摩擦攪拌接合してなる接合体を形成する摩擦攪拌接合工程と、
     前記接合体をプレス矯正する矯正工程と、を備えた
     ことを特徴とする液冷ジャケットの製造方法。
    A manufacturing method of a liquid cooling jacket constituted by fixing a sealing body for sealing an opening of the concave portion by friction stir welding to a jacket body having a concave portion and a flange portion formed therein,
    The sealing body is placed on a support surface formed of a step bottom surface that is formed at the peripheral edge of the opening of the concave portion of the jacket body and is lower than the surface of the jacket body, and on the surface of the flange that is flush with the support surface. An installation step of matching the step side surface of the jacket body with the outer peripheral surface of the sealing body,
    While rotating the rotary tool provided with a stirring pin having a length dimension larger than the thickness dimension of the sealing body along the abutting portion between the step side surface of the jacket body and the outer peripheral surface of the sealing body, A friction stir welding step of forming a joined body formed by friction stir welding the sealing body to the jacket body by moving along the flange on the surface of the sealing body;
    And a straightening step of press straightening the joined body. A method for producing a liquid-cooled jacket.
  2.  前記ジャケット本体は、平面矩形形状を呈しており、
     前記矯正工程では、前記封止体が下方を向くように前記接合体を配置して、前記接合体の周縁部を下側から支持し、前記ジャケット本体の対角線が交差する中央部を下方に押圧してプレス矯正する
     ことを特徴とする請求の範囲第1項に記載の液冷ジャケットの製造方法。
    The jacket body has a planar rectangular shape,
    In the straightening step, the joined body is disposed so that the sealing body faces downward, the peripheral portion of the joined body is supported from the lower side, and the central portion where the diagonal lines of the jacket body intersect is pressed downward. The method for producing a liquid-cooled jacket according to claim 1, wherein press correction is performed.
  3.  前記矯正工程では、前記接合体の投影面積より大きい面積の押圧面を有する下型および上型を使用し、前記下型と前記上型との間に前記接合体の全体を位置させた状態で前記接合体をプレス矯正する
     ことを特徴とする請求の範囲第1項に記載の液冷ジャケットの製造方法。
    In the correction step, a lower mold and an upper mold having a pressing surface larger than the projected area of the bonded body are used, and the entire bonded body is positioned between the lower mold and the upper mold. The method for producing a liquid-cooled jacket according to claim 1, wherein the joined body is press-corrected.
  4.  前記下型の前記押圧面および前記上型の前記押圧面のいずれか一方が凸面にて構成され、他方が前記凸面に噛み合う凹面にて構成されており、
     前記矯正工程では、前記封止体が前記凹面に対向するように前記接合体を配置する
     ことを特徴とする請求の範囲第3項に記載の液冷ジャケットの製造方法。
    Either one of the pressing surface of the lower mold and the pressing surface of the upper mold is configured by a convex surface, and the other is configured by a concave surface meshing with the convex surface,
    The method for manufacturing a liquid-cooled jacket according to claim 3, wherein, in the correction step, the bonded body is disposed so that the sealing body faces the concave surface.
  5.  前記摩擦攪拌接合工程の後で前記矯正工程の前に、摩擦攪拌接合にて発生したバリを切除するバリ切除工程を、さらに備える
     ことを特徴とする請求の範囲第1項~第4項に記載の液冷ジャケットの製造方法。
    The burr cutting step of cutting off burrs generated in the friction stir welding after the friction stir welding step and before the correction step is further provided. Of manufacturing a liquid cooling jacket.
  6.  前記支持面の幅寸法は、前記回転ツールのショルダー部の半径寸法よりも大きい
     ことを特徴とする請求の範囲第1項~第4項に記載の液冷ジャケットの製造方法。
    The method for manufacturing a liquid cooling jacket according to any one of claims 1 to 4, wherein a width dimension of the support surface is larger than a radial dimension of a shoulder portion of the rotary tool.
  7.  前記畝部の幅寸法は、前記回転ツールのショルダー部の直径寸法よりも大きい
     ことを特徴とする請求の範囲第1項~第4項に記載の液冷ジャケットの製造方法。
    The method for manufacturing a liquid cooling jacket according to any one of claims 1 to 4, wherein a width dimension of the flange portion is larger than a diameter dimension of a shoulder portion of the rotary tool.
  8.  前記摩擦攪拌接合工程にて用いられる前記回転ツールのショルダー部の底面には、前記攪拌ピンの根元の周囲を囲んで渦巻状に広がる渦巻状凸条部が形成され、渦巻状のメタル溜まり部が形成されている
     ことを特徴とする請求の範囲第1項~第4項に記載の液冷ジャケットの製造方法。
    On the bottom surface of the shoulder portion of the rotary tool used in the friction stir welding process, a spiral ridge that surrounds the base of the stirring pin and spreads in a spiral shape is formed, and a spiral metal reservoir is formed. The method for producing a liquid cooling jacket according to any one of claims 1 to 4, wherein the liquid cooling jacket is formed.
  9.  前記摩擦攪拌接合工程では、
     前記回転ツールを前記開口部に対して右回りに移動させるときは、前記回転ツールを右回転させ、
     前記回転ツールを前記開口部に対して左回りに移動させるときは、前記回転ツールを左回転させる
     ことを特徴とする請求の範囲第1項~第4項に記載の液冷ジャケットの製造方法。
    In the friction stir welding process,
    When moving the rotary tool clockwise with respect to the opening, rotate the rotary tool clockwise,
    The method for manufacturing a liquid cooling jacket according to any one of claims 1 to 4, wherein when the rotary tool is moved counterclockwise with respect to the opening, the rotary tool is rotated counterclockwise.
  10.  前記摩擦攪拌接合工程では、前記回転ツールを前記突合部に沿って一周させた後、前記回転ツールを一周目で形成された塑性化領域の外周側に偏移させ、前記回転ツールを前記突合部に沿ってさらに一周させて前記塑性化領域の外周側を再攪拌する
     ことを特徴とする請求の範囲第9項に記載の液冷ジャケットの製造方法。
    In the friction stir welding step, the rotating tool is caused to make a round along the abutting portion, and then the rotating tool is shifted to the outer peripheral side of the plasticized region formed in the first round, and the rotating tool is moved to the abutting portion. The manufacturing method of the liquid cooling jacket according to claim 9, wherein the outer peripheral side of the plasticized region is re-stirred by further making a round along the line.
  11.  前記摩擦攪拌接合工程では、前記回転ツールで塑性化領域を形成する工程に先立って、前記突合部の一部を前記回転ツールよりも小型の仮接合用回転ツールを用いて仮接合する
     ことを特徴とする請求の範囲第1項~第4項に記載の液冷ジャケットの製造方法。
    In the friction stir welding step, prior to the step of forming the plasticized region with the rotary tool, a part of the abutting portion is temporarily joined using a temporary welding rotary tool smaller than the rotary tool. The method for producing a liquid cooling jacket according to any one of claims 1 to 4.
  12.  前記突合部が矩形枠状を呈しており、
     前記摩擦攪拌接合工程のうち、前記仮接合用回転ツールで前記突合部を仮接合する工程において、前記突合部の一方の対角同士を先に仮接合した後に、他方の対角同士を仮接合する
     ことを特徴とする請求の範囲第11項に記載の液冷ジャケットの製造方法。
    The abutting portion has a rectangular frame shape,
    In the friction stir welding step, in the step of temporarily joining the abutting portion with the temporary tool for temporary joining, after temporarily joining one diagonal of the abutting portion first, the other diagonal is temporarily joined. The method for producing a liquid cooling jacket according to claim 11, wherein:
  13.  前記突合部が矩形枠状を呈しており、
     前記摩擦攪拌接合工程のうち、前記仮接合用回転ツールで前記突合部を仮接合する工程において、前記突合部の一方の対辺の中間部同士を先に仮接合した後に、他方の対辺の中間部同士を仮接合する
     ことを特徴とする請求の範囲第11項に記載の液冷ジャケットの製造方法。
    The abutting portion has a rectangular frame shape,
    Among the friction stir welding steps, in the step of temporarily joining the abutting portion with the temporary tool for temporary joining, after intermediately joining the intermediate portions of one opposite side of the abutting portion first, the intermediate portion of the other opposite side The method for manufacturing a liquid cooling jacket according to claim 11, wherein the members are temporarily joined together.
PCT/JP2012/070196 2011-12-19 2012-08-08 Method for manufacturing liquid cooling jacket WO2013094246A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011276930A JP5862272B2 (en) 2011-12-19 2011-12-19 Manufacturing method of liquid cooling jacket
JP2011-276930 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013094246A1 true WO2013094246A1 (en) 2013-06-27

Family

ID=48668154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070196 WO2013094246A1 (en) 2011-12-19 2012-08-08 Method for manufacturing liquid cooling jacket

Country Status (2)

Country Link
JP (1) JP5862272B2 (en)
WO (1) WO2013094246A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068178A (en) * 2013-09-26 2015-04-13 シグマテクノロジー有限会社 Magnetic coil pump and cooling system using magnetic coil pump
EP2965850A1 (en) 2014-07-11 2016-01-13 NELA Razvojni center d.o.o. Podruznica Vincarje Friction stir welding joint design and method for manufacturing cooling devices for electronic components
JP2016076636A (en) * 2014-10-08 2016-05-12 カルソニックカンセイ株式会社 Method of manufacturing semiconductor cooling device and semiconductor cooling device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104907362B (en) * 2015-05-19 2017-03-29 广东韶钢松山股份有限公司 A kind of bearing calibration of the electric precipitation top board that subsides
JP6484521B2 (en) * 2015-07-17 2019-03-13 株式会社神戸製鋼所 Flatness straightening device
CN105710163A (en) * 2016-04-21 2016-06-29 中船黄埔文冲船舶有限公司 Hull flame deformation correction auxiliary tooling
CN107716614B (en) * 2017-08-24 2019-06-28 武船重型工程股份有限公司 A kind of mechanical antidote of U rib plate unit
CN109014743A (en) * 2018-09-28 2018-12-18 中船黄埔文冲船舶有限公司 A kind of reinforced platoon's installation auxiliary mould for plate
JP7246161B2 (en) * 2018-10-25 2023-03-27 日本発條株式会社 zygote

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115448A (en) * 2008-12-09 2009-05-28 Nippon Light Metal Co Ltd Heat plate and its manufacturing method
JP2009166079A (en) * 2008-01-15 2009-07-30 Nippon Light Metal Co Ltd Manufacturing method of liquid-cooled jacket, and friction stir welding method
JP2009195940A (en) * 2008-02-21 2009-09-03 Nippon Light Metal Co Ltd Manufacturing method of heat transfer plate
JP2010075938A (en) * 2008-09-24 2010-04-08 Nippon Light Metal Co Ltd Method of manufacturing heat transfer plate
JP2010105019A (en) * 2008-10-30 2010-05-13 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2010141113A (en) * 2008-12-11 2010-06-24 Nippon Light Metal Co Ltd Method of manufacturing liquid-cooled jacket
JP2010179349A (en) * 2009-02-09 2010-08-19 Nippon Light Metal Co Ltd Method for manufacturing liquid-cooled jacket, and friction stir welding method
JP2010201447A (en) * 2009-03-02 2010-09-16 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2010240718A (en) * 2009-04-08 2010-10-28 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2010245085A (en) * 2009-04-01 2010-10-28 Nippon Light Metal Co Ltd Method of manufacturing liquid-cooled jacket, and liquid-cooled jacket

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10166064A (en) * 1996-12-05 1998-06-23 Nippon Light Metal Co Ltd Method for bending shape
JP3658940B2 (en) * 1997-09-12 2005-06-15 日本軽金属株式会社 3D bending method for profiles
US20080308610A1 (en) * 2007-06-15 2008-12-18 United Technologies Corporation Hollow structures formed with friction stir welding
JP5262822B2 (en) * 2009-02-23 2013-08-14 日本軽金属株式会社 Manufacturing method of liquid cooling jacket
GB2492510B (en) * 2010-03-31 2018-01-31 Smith International Article of manufacture having a sub-surface friction stir welded channel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166079A (en) * 2008-01-15 2009-07-30 Nippon Light Metal Co Ltd Manufacturing method of liquid-cooled jacket, and friction stir welding method
JP2009195940A (en) * 2008-02-21 2009-09-03 Nippon Light Metal Co Ltd Manufacturing method of heat transfer plate
JP2010075938A (en) * 2008-09-24 2010-04-08 Nippon Light Metal Co Ltd Method of manufacturing heat transfer plate
JP2010105019A (en) * 2008-10-30 2010-05-13 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2009115448A (en) * 2008-12-09 2009-05-28 Nippon Light Metal Co Ltd Heat plate and its manufacturing method
JP2010141113A (en) * 2008-12-11 2010-06-24 Nippon Light Metal Co Ltd Method of manufacturing liquid-cooled jacket
JP2010179349A (en) * 2009-02-09 2010-08-19 Nippon Light Metal Co Ltd Method for manufacturing liquid-cooled jacket, and friction stir welding method
JP2010201447A (en) * 2009-03-02 2010-09-16 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2010245085A (en) * 2009-04-01 2010-10-28 Nippon Light Metal Co Ltd Method of manufacturing liquid-cooled jacket, and liquid-cooled jacket
JP2010240718A (en) * 2009-04-08 2010-10-28 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068178A (en) * 2013-09-26 2015-04-13 シグマテクノロジー有限会社 Magnetic coil pump and cooling system using magnetic coil pump
EP2965850A1 (en) 2014-07-11 2016-01-13 NELA Razvojni center d.o.o. Podruznica Vincarje Friction stir welding joint design and method for manufacturing cooling devices for electronic components
JP2016076636A (en) * 2014-10-08 2016-05-12 カルソニックカンセイ株式会社 Method of manufacturing semiconductor cooling device and semiconductor cooling device

Also Published As

Publication number Publication date
JP5862272B2 (en) 2016-02-16
JP2013126678A (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5862272B2 (en) Manufacturing method of liquid cooling jacket
JP5262822B2 (en) Manufacturing method of liquid cooling jacket
JP5110002B2 (en) Liquid cooling jacket manufacturing method and friction stir welding method
CN107000114B (en) Method for manufacturing liquid cooling sleeve and liquid cooling sleeve
JP5573973B2 (en) Manufacturing method of liquid cooling jacket
JP5168212B2 (en) Manufacturing method of liquid cooling jacket
JP6372515B2 (en) Liquid cooling jacket manufacturing method and liquid cooling jacket
JP6036714B2 (en) Manufacturing method of liquid cooling jacket
US20180141152A1 (en) Method of manufacturing liquid-cooled jacket
JP6036715B2 (en) Manufacturing method of liquid cooling jacket
JP6489219B2 (en) Joining method, liquid cooling jacket manufacturing method, and liquid cooling jacket
JP6471461B2 (en) Manufacturing method of liquid cooling jacket
JP5136072B2 (en) Manufacturing method of liquid cooling jacket
JP5962820B2 (en) Manufacturing method of liquid cooling jacket
WO2017033849A1 (en) Method for manufacturing liquid-cooled jacket, and liquid-cooled jacket
JP5062155B2 (en) Liquid cooling jacket manufacturing method and friction stir welding method
WO2019123678A1 (en) Method for manufacturing liquid cooling jacket
WO2017119232A1 (en) Joining method and method of manufacturing liquid-cooled jacket
JP2013126678A5 (en)
JP2019107665A (en) Method for manufacturing liquid-cooled jacket
JP5343548B2 (en) Manufacturing method of liquid cooling jacket
JP5725098B2 (en) Manufacturing method of liquid cooling jacket
JP2017159351A (en) Manufacturing method of liquid-cooled jacket
JP6015638B2 (en) Manufacturing method of heat transfer plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860682

Country of ref document: EP

Kind code of ref document: A1