WO2013092178A1 - Inspektion eines prüfobjektes - Google Patents

Inspektion eines prüfobjektes Download PDF

Info

Publication number
WO2013092178A1
WO2013092178A1 PCT/EP2012/074199 EP2012074199W WO2013092178A1 WO 2013092178 A1 WO2013092178 A1 WO 2013092178A1 EP 2012074199 W EP2012074199 W EP 2012074199W WO 2013092178 A1 WO2013092178 A1 WO 2013092178A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
test object
local
tested
tool
Prior art date
Application number
PCT/EP2012/074199
Other languages
English (en)
French (fr)
Inventor
Lukasz Adam BIENKOWSKI
Christian Homma
Hubert Mooshofer
Max Rothenfusser
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013092178A1 publication Critical patent/WO2013092178A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D7/00Indicating measured values
    • G01D7/005Indication of measured value by colour change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2694Wings or other aircraft parts

Definitions

  • the present invention relates to an arrangement and a
  • Method for, in particular manual, inspection of a test object for example by means of ultrasound, eddy current or thermography.
  • a manual inspection for example by ultra-sonic ⁇ , eddy current testing or thermographic method, as for example, induction thermography
  • egg ⁇ ne result are displayed on a computer or device screen.
  • a test person must keep an eye on a device screen as well as a test object to be inspected when carrying out the manual inspection. It would be desirable if the inspector during the inspection fully concentrate on the test object and can be the same ⁇ temporarily keep the test results at a glance. This applies in particular to large, unstructured components in which an entire test surface consists of several individual fields , such as aircraft wings, for example, and components with a complex surface.
  • DE 10 2010 014 744 discloses a device and a
  • thermography for evaluating the object by means of thermography, recording at least one thermographic photographic image of the object by means of an infrared camera having a lens with an objective axis, and projecting at least one information onto the object by means of a projection unit having a lens with an objective axis be guided.
  • a congruent projecting of the thermographic light image with the object is carried out as information on the object.
  • DE 10 2010 007 449 discloses active thermography by combining a projection of thermographic data on a test object with an interaction of a test person with the projected thermographic data. An evaluation of the results is not carried out on a computer screen, but directly on the test object.
  • thermography data are disadvantageously provided only after completion of detection of all thermographic data on the test object. This means that only after all the thermographic data for the test object has been recorded are these projected onto the test object for the manual test. Accordingly, a complete measurement step is followed by a complete test or evaluation step. If, during the evaluation ⁇ step, for example, in respect of some of the strigob ⁇ jektes additional questions, a time-consuming active thermography data acquisition step must be repeated. So forth ⁇ tional methods work "offline".
  • an apparatus for material ⁇ testing of a test object by means of a test tool with the following means is provided: a detection ⁇ means for detecting relative positions of für für- imaging and the test object with each other and for detecting to Che ⁇ fenden local sub-areas of the test object in Dependence on the relative positions; a measuring device for activating the test tool at the relative positions at the local subregions of the test object to be tested at measuring times, a local test result being measured for each local subrange of the test object to be tested; a projection unit for projecting a respective local test result at the respective relative position to one associated surface area of the local sub-area of the test object to be tested. From a particular measurement may be a local check result or information derived therefrom can be made available from a loading per ⁇ vantage measurement.
  • a method for material testing a test object by means of a test tool is carried out with the following steps: detection of relative positions of the test tool and test object carried out by means of a detection device and detection of local subregions of the test object to be tested as a function of the relative positions ; Activated by means of a measuring device activating the strigWerk Weges at the rela- tivpositionen to be examined local sub-areas of
  • Test object at measuring times, with a local test result being measured for each local subrange of the test object to be tested; by means of a projection unit, projecting a respective local test result at the respective relative position on an associated surface area of the local subarea of the test object to be tested. From a respective measurement, a local test result or from a respective measurement information derived therefrom can be provided.
  • a sub-area is defined as an area of a test object defi ned ⁇ , which is a partial area of the entire test object. Accordingly, a subregion is assigned a locally limited, ie a local, region of the test object. A sub-area can therefore be understood as a sub-area of a test object. A sub-area may be two-dimensional or three-dimensional. Similarly, a Subbe ⁇ rich be determined by means of a line or a point.
  • a device according to the invention or a method according to the invention has the following advantages. There is a direct evaluation of results on the test object made light ⁇ . An assessment of defects on a screen and their manual transmission to a test object are no longer required. A test person only needs to keep an eye on the test object during a test procedure.
  • storing of each local test result as a function of relative positions and measurement time can be stored by means of a memory device.
  • the projection unit can cumulatively project all previously generated local test products onto the test object.
  • the projection unit may project all local test results as a Whole ⁇ result on the test object at the end of a complete material testing.
  • a relative movement device instead of a manual relative movement, test tool and test object relative to each other gene, whereby to be tested local subregions of the strigob ⁇ jektes can be determined.
  • the detection device can detect three-dimensional surface coordinates of the test object.
  • the detection device may be a depth sensor camera.
  • the measuring device may be an ultrasound, eddy current or thermography measuring device.
  • a thermography measuring device may be an ultrasound, eddy current or thermography measuring device.
  • a test result can alternatively or cumulatively be displayed as gray value image, measured value, curve, assembled result image, quality value, alignment information for the test tool and / or marking.
  • the test result is particularly advantageous a local test result.
  • the following information can be displayed on the test object: an output of measurement results as a gray value image, which optionally can also be color-coded. Output of a current measured value, as it may be, for example, a layer ceiling, in the immediate vicinity of a measuring point test.
  • Output of several individual measurements in an induction thermography as a combined result image on the test object.
  • Output of a quality of material testing for example in Form of an indication "OK" or "Re-measurement required”.
  • Orientation aid for the test tool which can also be referred to as a test head, wherein the test tool is ⁇ example rotated or tilted to effect an improved alignment. Marking of critical points, which may require further remeasurement with other metrology. On this a simplified fast, targeted remeasurement of conspicuous places can be carried out by marking such places.
  • a test result may include all bringleite ⁇ th from a measurement information.
  • an optical camera can capture the entire test object and document the entire material test.
  • the projection unit can respective relative positions and togehö ⁇ membered surface regions to be tested of the test object local Subberei- chen select and specify. In this way, a projection of results or result images can be combined with a projection of predetermined test areas or test positions.
  • the detection device for detecting relative positions of the test tool and the test object relative to one another can be a displacement sensor on the test tool or a camera.
  • the projection unit for projecting may be a digital projector. Further advantageous embodiments will be described in more detail in connection with the figures. Show it: Figure 1 shows a first embodiment of a erfindungsge ⁇ MAESSEN device;
  • FIG. 2 shows a second embodiment of a device according to the invention
  • Figure 3 shows a third embodiment of a erfindungsge ⁇ MAESSEN device
  • Figure 4 shows a fourth embodiment of a erfindungsge ⁇ MAESSEN device
  • Figure 5 shows a first embodiment of a erfindungsge ⁇ MAESSEN method.
  • Figure 1 shows a first embodiment of a device OF INVENTION ⁇ to the invention.
  • Figure 1 shows an apparatus for material testing of a test object 1 using a sketchtechnik ⁇ tool 3.
  • the apparatus comprises a detecting means 5 for detecting relative positions of the test tool 3 for
  • Test object 1 and for detecting to be examined local sub-areas of the test object 1 in dependence on the Relativpo ⁇ sitions.
  • a projection unit 11 projects respective local test results at the respective relative positions onto an associated surface area of the test object 1 to be tested.
  • a measuring device 7 activates the test tool 3 at the respective relative positions on the local subregions SB of the test object 1 to be tested at measuring times Ti, wherein for each testing local subregion SB of the test object 1 a local test result 9 is measured.
  • a device according to the invention may be based on an ultrasonic or eddy current testing system for performing a manual test.
  • the test tool 3 can be, for example, a manually moved test head. The test head is moved over the test object 1 by a test person.
  • Such a Real ⁇ tivschul may alternatively be performed by means of a relative movement means.
  • the test person must then only the test results projected onto the test object 1 interpret.
  • Detection of a scholarköpfposition can be carried out by means of a camera, for example, by means of a displacement sensor on the probe or by means of so-called ⁇ "Position Tracking".
  • a so-called beamers or a so-called digital projector can be used for projection of the measurement results during an ongoing measuring process.
  • Figure 2 shows a second embodiment of an inventive device or a corresponding method.
  • a depth sensor camera can detect the area of the test object 1 to be tested.
  • the position of the test tool 3 at all measuring times is stored. Measuring times can be impulse transmission times in the case of ultrasonic tests or excitation times in the case of an active thermography.
  • the resulting image is expanded dynamically in this way, so that the result of the complete component is visible at the end of Ma ⁇ terial phenomenon.
  • Reference numeral 2 denotes an area already tested.
  • Reference numeral 4 designates a not yet tested surface of the test object 1.
  • Figure 3 shows a third embodiment of a device according OF INVENTION ⁇ dung or a corresponding method.
  • Figure 3 shows an inspection by means of a Ult ⁇ raschall compilers.
  • a test tool 3 is moved in the form of a Ultraschallprüfköpfes.
  • a current amplitude A, a current time signal ZS in the form of an echo sequence and a threshold value excess SW are displayed for the test person by means of a projection unit 11.
  • ⁇ at is displayed by means of the threshold information in the form of a color, whether a parameter is OK or Not. For example, a parameter that is OK is displayed in green. If the SW information is shown in red, the parameter is not correct.
  • PF is characterized ⁇ the entire surface to be tested of the test object 1.
  • the quality of measurement for example in the form of a signal-to-noise ratio in the ultrasonic test can be increased if, for example, the inspector moves the test tool 3 several times over a place and the individual results be averaged. Measuring times are preferably pulse-transmission times in ultrasonic testing methods.
  • Figure 4 shows a fourth embodiment of an OF INVENTION ⁇ to the invention materials testing.
  • the test object 1 is here a relatively large component, as it may be, for example, an aircraft wing. Entspre ⁇ accordingly will be a division of a scholarissuean Attache into individual test cells.
  • the test progression in this relatively large component is shown according to FIG.
  • Reference numeral 2 denotes an area already tested.
  • Be ⁇ reference numbers 4 denotes an even surface to be tested of the test object 1.
  • the assessor can fully concentrate during inspection at the test object 1 and 9 can keep an eye test at the same time.
  • ⁇ constricting invention provides a dynamic projecting loka ⁇ len test results 9 so that the examinee is supported such that it has all the necessary information in real time on the test object 1 is available and can perform materials testing very effective in this way. All test results, in particular local test results 9, can be projected alternatively or cumulatively on the test object 1. For example, the already detected area 2 in Be displayed in light gray, a current test result far ⁇ big and hatched area 4 still hatched.
  • FIG. 5 shows an exemplary embodiment of a method according to the invention.
  • a re ⁇ lativposition of test tool and test object to be tested to each other and corresponding local sub-areas of the test object in dependence on the relative positions is detected by a detection means for ER- Materialprü ⁇ evaporation of a test object by means of a test tool.
  • a further step S2 is followed by activation of the test tool for generating a local check result, for example, on the basis of ultrasound, a ⁇ We belstrom phenomenon or thermographic method.
  • step S3 the test results assigned to the respective relative positions are projected by means of a projection unit to the associated relative positions, so that a test person can evaluate the test object directly at the relevant relative position. If there are ambiguities at a relative position, the measurement can be repeated according to step S2.
  • Test results assigned to a relative position of test tool and test object are projected in real time onto a respective local subregion of the test object to be tested. In this way a test person can immediately evaluate the local sub-area to be tested.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

Eine Inspektion eines Prüfobjektes (1) soll für eine Prüfperson gegenüber dem Stand der Technik einfacher, schneller und zuverlässiger ausgeführt werden. Einer Relativposition von Prüfwerkzeug (3) und Prüfobjekt (1) zueinander zugeordnete lokale Prüfergebnisse (9) werden in Echtzeit auf einen betreffenden zu prüfenden lokalen Subbereich des Prüfobjektes (1) projiziert. Auf diese Weise kann eine Prüfperson sofort den zu prüfenden lokalen Subbereich evaluieren.

Description

Beschreibung
Inspektion eines Prüfobjektes Die vorliegende Erfindung betrifft eine Anordnung und ein
Verfahren zur, insbesondere manuellen, Inspektion eines Prüfobjektes beispielsweise mittels Ultraschall, Wirbelstrom oder Thermografie . Bei einer manuellen Inspektion, beispielsweise mittels Ultra¬ schall-, Wirbelstromprüfung oder thermografischen Verfahren, wie es beispielsweise Induktionsthermografie ist, erfolgt ei¬ ne Ergebnisdarstellung auf einem Computer- beziehungsweise Gerätebildschirm. Eine Prüfperson muss bei der Durchführung der manuellen Inspektion sowohl einen Gerätebildschirm, als auch ein zu inspizierendes Prüfobjekt im Blick behalten. Wünschenswert wäre es, wenn sich die Prüfperson bei der Inspektion voll auf das Prüfobjekt konzentrieren und dabei gleich¬ zeitig die Prüfergebnisse im Blick behalten kann. Dies gilt insbesondere bei großen, unstrukturierten Bauteilen, bei denen eine gesamte Prüffläche aus mehreren Einzelfeldern be¬ steht, wie es beispielsweise Flugzeugflügel sind, sowie bei Bauteilen mit einer komplexen Oberfläche. Die DE 10 2010 014 744 offenbart eine Vorrichtung und ein
Verfahren für eine Bewertung eines zu prüfenden Objektes mittels Thermographie, insbesondere aktiver Thermographie. für ein Bewerten des Objektes mittels Thermographie, wobei ein Aufnehmen mindestens eines Thermographie-Lichtbildes des Ob- jektes mittels einer ein Objektiv mit einer Objektivachse aufweisenden Infrarotkamera, und ein Projizieren mindestens einer Information auf das Objekt mittels einer ein Objektiv mit einer Objektivachse aufweisenden Projektionseinheit aus¬ geführt werden. Mittels der Projektionseinheit wird ein mit dem Objekt deckungsgleiches Projizieren des Thermographie- Lichtbildes als Information auf das Objekt ausgeführt. Die DE 10 2010 007 449 offenbart eine aktive Thermografie mittels Kombinierens einer Projektion von Thermografiedaten auf ein Prüfobjekt mit einer Interaktion einer Prüfperson mit den projizierten Thermografiedaten . Eine Evaluierung der Er- gebnisse wird nicht an einem Computerbildschirm, sondern direkt am Prüfobjekt ausgeführt.
Gemäß dem Stand der Technik werden nachteiliger Weise Thermo- grafiedaten erst nach einem Abschluss einer Erfassung aller Thermografiedaten auf dem Prüfobjekt bereitgestellt. Das heißt, erst nachdem alle Thermografiedaten für das Prüfobjekt erfasst worden sind, werden diese für die manuelle Prüfung auf das Prüfobjekt projiziert. Entsprechend folgt einem vollständigen Messschritt ein vollständiger Prüf- beziehungs- weise Evaluierungsschritt. Ergeben sich bei dem Evaluierungs¬ schritt beispielsweise hinsichtlich eines Teils des Prüfob¬ jektes zusätzliche Fragen, so muss ein zeitintensiver aktiver Thermographiedatenerfassungsschritt wiederholt werden. Her¬ kömmliche Verfahren arbeiten also „offline".
Es ist Aufgabe der vorliegenden Erfindung eine, insbesondere manuelle, Inspektion eines Prüfobjektes für eine Prüfperson gegenüber dem Stand der Technik einfacher, schneller und fehlerfreier auszuführen.
Gemäß einem ersten Aspekt wird eine Vorrichtung zur Material¬ prüfung eines Prüfobjektes mittels eines PrüfWerkzeuges mit dem folgenden Einrichtungen bereitgestellt: eine Erfassungs¬ einrichtung zum Erfassen von Relativpositionen von Prüfwerk- zeug und Prüfobjekt zueinander und zum Erfassen von zu prü¬ fenden lokalen Subbereichen des Prüfobjektes in Abhängigkeit von den Relativpositionen; eine Messeinrichtung zum Aktivieren des PrüfWerkzeuges an den Relativpositionen an den zu prüfenden lokalen Subbereichen des Prüfobjektes zu Messzeit- punkten, wobei für jeden zu prüfenden lokalen Subbereich des Prüfobjektes ein lokales Prüfergebnis gemessen wird; eine Projektionseinheit zum projizieren eines jeweiligen lokalen Prüfergebnisses an der jeweiligen Relativposition auf einen dazugehörigen Oberflächenbereich des zu prüfenden lokalen Subbereiches des Prüfobj ektes . Aus einer jeweiligen Messung kann ein lokales Prüfergebnis beziehungsweise aus einer je¬ weiligen Messung können daraus abgeleitete Informationen be- reitgestellt werden.
Gemäß einem zweiten Aspekt wird ein Verfahren zur Materialprüfung eines Prüfobjektes mittels eines PrüfWerkzeuges , mit den folgenden Schritten ausgeführt: mittels einer Erfassungs- einrichtung ausgeführtes Erfassen von Relativpositionen von Prüfwerkzeug und Prüfobjekt zueinander und zum Erfassen von zu prüfenden lokalen Subbereichen des Prüfobjektes in Abhängigkeit von den Relativpositionen; mittels einer Messeinrichtung ausgeführtes Aktivieren des PrüfWerkzeuges an den Rela- tivpositionen an den zu prüfenden lokalen Subbereichen des
Prüfobjektes zu Messzeitpunkten, wobei für jeden zu prüfenden lokalen Subbereich des Prüfobjektes ein lokales Prüfergebnis gemessen wird; mittels einer Projektionseinheit ausgeführtes Projizieren eines jeweiligen lokalen Prüfergebnisses an der jeweiligen Relativposition auf einem dazugehörigen Oberflächenbereich des zu prüfenden lokalen Subbereichs des Prüfobjektes. Aus einer jeweiligen Messung kann ein lokales Prüfergebnis beziehungsweise aus einer jeweiligen Messung können daraus abgeleitete Informationen bereitgestellt werden.
Ein Subbereich ist als ein Bereich eines Prüfobjektes defi¬ niert, der ein Teilbereich des gesamten PrüfObjektes ist. Entsprechend ist einem Subbereich ein örtlich begrenzter, also ein lokaler, Bereich des PrüfObjektes zugeordnet. Unter einem Subbereich kann also ein Unterbereich eines Prüfobjektes verstanden werden. Ein Subbereich kann zweidimensional oder dreidimensional bestimmt sein. Ebenso kann ein Subbe¬ reich mittels einer Linie oder eines Punktes festgelegt sein. Mittels dynamischen Projizierens von Messergebnissen wird nun erfindungsgemäß eine Prüfperson derart unterstützt, dass die¬ ser alle notwendigen Informationen in Echtzeit auf dem Prüf- objekt bereitgestellt sind und eine, insbesondere manuelle, Prüfung wirksam ausgeführt wird.
Eine erfindungsgemäße Vorrichtung beziehungsweise ein erfin- dungsgemäßes Verfahren weist folgende Vorteile auf. Es wird eine direkte Evaluierung von Ergebnissen am Prüfobjekt ermög¬ licht. Eine Beurteilung von Defekten an einem Bildschirm und deren manuelle Übertragung auf ein Prüfobjekt sind nicht mehr erforderlich. Eine Prüfperson braucht bei einer Prüfdurchfüh- rung lediglich noch das Prüfobjekt im Blick behalten. Eine
Materialprüfung kann gegenüber herkömmlichen Anordnungen und Verfahren schneller durchgeführt werden und es können gleichzeitig Fehler bei einer Durchführung verringert werden. Weitere vorteilhafte Ausgestaltungen werden in Verbindung mit den Unteransprüchen beansprucht.
Gemäß einer vorteilhaften Ausgestaltung kann mittels einer Speichereinrichtung ein Speichern jedes lokalen Prüfergebnis- ses als Funktion von Relativpositionen und Messzeitpunkt gespeichert werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die Projektionseinheit alle bisher erzeugten lokalen Prüferzeug- nisse auf das Prüfobjekt kumulativ projizieren. Auf diese
Weise wird eine Kontrolle einer richtigen Positionszuordnung automatisch dadurch gegeben, dass lokale Prüfergebnisse wie ein „Schweif" hinter dem Prüfwerkzeug dargestellt werden kön¬ nen .
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die Projektionseinheit alle lokalen Prüfergebnisse als Gesamter¬ gebnis auf das Prüfobjekt am Ende einer vollständigen Materialprüfung projizieren.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann eine Relativbewegungseinrichtung anstelle eines manuellen Relativbewegens, Prüfwerkzeug und Prüfobjekt zueinander Relativbewe- gen, wobei dadurch zu prüfende lokale Subbereiche des Prüfob¬ jektes festgelegt werden können.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die Er- fassungseinrichtung dreidimensionale Oberflächenkoordinaten des Prüfobjektes erfassen.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die Erfassungseinrichtung eine Tiefensensorkamera sein.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die Messeinrichtung eine Ultraschall-, Wirbelstrom- oder Thermo- grafie-Messeinrichtung sein. Gemäß einer weiteren vorteilhaften Ausgestaltung kann eine
Rechnereinrichtung die lokalen Prüfergebnisse mittels dazuge¬ höriger lokaler dreidimensionaler Oberflächendaten des Prüfobjektes jeweils an das Prüfobjekt anpassen. Gemäß einer weiteren vorteilhaften Ausgestaltung kann ein Prüfergebnis alternativ oder kumulativ als Grauwertbild, Messwert, Kurvenzug, zusammengefügtes Ergebnisbild, Gütewert, Ausrichtungsinformation für das PrüfWerkzeug und/oder Markierung dargestellt sein. Das Prüfergebnis ist dabei besonders vorteilhaft ein lokales Prüfergebnis . Es können folgende In¬ formationen auf dem Prüfobjekt angezeigt werden: eine Ausgabe von Messergebnissen als Grauwertbild, das gegebenenfalls ebenso farblich kodiert sein kann. Ausgabe eines aktuellen Messwertes, wie es beispielsweise eine Schichtdecke sein kann, in unmittelbarer Nachbarschaft eines Messpunktest. Aus¬ gabe eines Zeitsignals, insbesondere bei einem A-Scan, bei einer Ultraschallprüfung als Kurvenzug in unmittelbarer Nachbarschaft des Messpunktes. Ausgabe des Signals in der Impe¬ danzebene bei einer Wirbelstromprüfung als Kurvenzug in un- mittelbarer Nachbarschaft eines dazugehörigen Messpunktes.
Ausgabe mehrerer Einzelmessungen bei einer Induktionsthermo- grafie als zusammengefügtes Ergebnisbild auf dem PrüfObjekt. Ausgabe einer Güte der Materialprüfung, beispielsweise in Form einer Angabe „OK" oder „Nachmessung erforderlich". Orientierungshilfe für das PrüfWerkzeug, das ebenso als ein Prüfkopf bezeichnet werden kann, wobei das Prüfwerkzeug bei¬ spielsweise rotiert oder gekippt werden soll, um eine verbes- serte Ausrichtung zu bewirken. Markierung von kritischen Stellen, an denen gegebenenfalls weitere Nachmessungen mit anderer Messtechnik erforderlich sind. Auf dieses kann ein vereinfachtes schnelles, gezieltes Nachmessen auffälliger Stellen mittels Markierung derartiger Stellen ausgeführt wer- den. Ein Prüfergebnis kann alle aus einer Messung abgeleite¬ ten Informationen umfassen.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann eine optische Kamera das gesamte Prüfobjekt erfassen und die ge- samte Materialprüfung dokumentieren. Eine derartige Kombination einer erfindungsgemäßen Vorrichtung mit einer optischen Kamera ermöglicht damit eine automatische Dokumentation.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die Projektionseinheit jeweilige Relativpositionen und dazugehö¬ rige Oberflächenbereiche von zu prüfenden lokalen Subberei- chen des Prüfobjektes auswählen und vorgeben. Auf diese Weise kann eine Projektion von Ergebnissen beziehungsweise Ergebnisbildern mit einer Projektion vorgegebener Prüfbereiche oder PrüfPositionen kombiniert werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die Erfassungseinrichtung zum Erfassen von Relativpositionen von Prüfwerkzeug und Prüfobjekt zueinander ein Weggeber am Prüf- Werkzeug oder eine Kamera sein.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann die Projektionseinheit zum Projizieren ein Digitalprojektor sein. Weitere vorteilhafte Ausgestaltungen werden in Verbindung mit den Figuren näher beschrieben. Es zeigen: Figur 1 ein erstes Ausführungsbeispiel einer erfindungsge¬ mäßen Vorrichtung;
Figur 2 ein zweites Ausführungsbeispiel einer erfindungsge- mäßen Vorrichtung;
Figur 3 ein drittes Ausführungsbeispiel einer erfindungsge¬ mäßen Vorrichtung; Figur 4 ein viertes Ausführungsbeispiel einer erfindungsge¬ mäßen Vorrichtung;
Figur 5 ein erstes Ausführungsbeispiel eines erfindungsge¬ mäßen Verfahrens .
Figur 1 zeigt ein erstes Ausführungsbeispiel einer erfin¬ dungsgemäßen Vorrichtung. Figur 1 zeigt eine Vorrichtung zur Materialprüfung eines Prüfobjektes 1 mittels eines Prüfwerk¬ zeuges 3. Die Vorrichtung weist eine Erfassungseinrichtung 5 zum Erfassen von Relativpositionen des PrüfWerkzeuges 3 zum
Prüfobjekt 1 und zum Erfassen von zu prüfenden lokalen Subbe- reichen des Prüfobjektes 1 in Abhängigkeit von den Relativpo¬ sitionen auf. Eine Projektionseinheit 11 projiziert jeweilige lokale Prüfergebnisse an den jeweiligen Relativpositionen auf einen dazugehörigen Oberflächenbereich des zu prüfenden Prüfobjektes 1. Eine Messeinrichtung 7 aktiviert das Prüfwerkzeug 3 an den jeweiligen Relativpositionen an den zu prüfenden lokalen Subbereichen SB des Prüfobjektes 1 zu Messzeitpunkten Ti, wobei für jeden zu prüfenden lokalen Subbereich SB des Prüfobjektes 1 ein lokales Prüfergebnis 9 gemessen wird. Eine erfindungsgemäße Vorrichtung kann auf einem Ultraschall- oder WirbelstromprüfSystem für eine Durchführung einer manuellen Prüfung beruhen. Das PrüfWerkzeug 3 kann beispielsweise ein manuell bewegter Prüfköpf sein. Der Prüfköpf wird von einer Prüfperson über das PrüfObjekt 1 bewegt. Eine derartige Rela¬ tivbewegung kann alternativ mittels einer Relativbewegungseinrichtung ausgeführt werden. Die Prüfperson muss dann lediglich die auf das Prüfobjekt 1 projizierten Prüfergebnisse interpretieren. Eine Erfassung einer Prüfköpfposition kann beispielsweise mittels eines Weggebers am Prüfkopf oder mit¬ tels sogenanntem „Positionstracking" mittels einer Kamera ausgeführt werden. Zur Projektion der Messergebnisse während eines laufenden Messvorgangs kann ein sogenannter Beamer beziehungsweise ein sogenannter Digitalprojektor verwendet werden .
Figur 2 zeigt ein zweites Ausführungsbeispiel einer erfin- dungsgemäßen Vorrichtung beziehungsweise eines entsprechenden Verfahrens. Beispielsweise kann eine Tiefensensorkamera den zu prüfenden Bereich des Prüfobjektes 1 erfassen. Es erfolgt eine fortlaufende Bestimmung der Position des PrüfWerkzeuges 3 mittels der Tiefensensorkamera . Die Lage des PrüfWerkzeuges 3 zu allen Messzeitpunkten wird gespeichert. Messzeitpunkte können Impuls-Sendezeitpunkte im Fall von Ultraschallprüfungen oder Anregungszeitpunkte im Fall einer aktiven Thermogra- fie sein. Es erfolgt eine Ausgabe eines jeweiligen Prüfergeb¬ nisses während der gesamten Prüfung mittels Projektion auf die Oberfläche des Prüfobjektes 1 unter Verwendung der je¬ weils zugehörigen Positionsinformation. Das Ergebnisbild wird auf diese Weise dynamisch erweitert, sodass zum Ende der Ma¬ terialprüfung das Ergebnis des kompletten Bauteils sichtbar ist. Bezugszeichen 2 bezeichnet eine bereits geprüfte Fläche. Bezugszeichen 4 bezeichnet eine noch nicht geprüfte Fläche des Prüfobjektes 1.
Figur 3 zeigt ein drittes Ausführungsbeispiel einer erfin¬ dungsgemäßen Vorrichtung beziehungsweise eines entsprechenden Verfahrens. Figur 3 zeigt eine Inspektion mittels eines Ult¬ raschallverfahrens. Entlang der Oberfläche des PrüfObjektes 1 wird ein Prüfwerkzeug 3 in Form eines Ultraschallprüfköpfes bewegt. In der Nähe des aktuellen Messpunktes wird für die Prüfperson mittels einer Projektionseinheit 11 eine aktuelle Amplitude A, ein aktuelles Zeitsignal ZS in Form einer Echo¬ folge und eine Schwellwertüberschreitung SW dargestellt. Da¬ bei wird mittels der Schwellwert-Information in Form einer Farbe dargestellt, ob ein Parameter in Ordnung ist oder nicht. Beispielsweise ist ein Parameter, der in Ordnung ist, in grüner Farbe dargestellt. Ist die SW-Information in Rot dargstellt, so ist der Parameter nicht in Ordnung. PF be¬ zeichnet die gesamte zu prüfende Oberfläche des Prüfobjektes 1. Optional kann die Messgüte, beispielsweise in Form eines Signal-Rausch-Verhältnisses bei der Ultraschallprüfung erhöht werden, wenn beispielsweise der Prüfer das Prüfwerkzeug 3 mehrfach über eine Stelle bewegt und die Einzelergebnisse ge- mittelt werden. Messzeitpunkte sind bei Ultraschallprüfver- fahren bevorzugt Impuls-Sendezeitpunkte.
Figur 4 zeigt ein viertes Ausführungsbeispiel einer erfin¬ dungsgemäßen Materialprüfung. Auch hier erfolgt eine manuelle Prüfung mit dynamischer Ergebnisprojektion und mit dynami- sehen Ergebnisproj ektions-Anzeigen bei einer Ultraschallprüfung. Das Prüfobjekt 1 ist hier ein relativ großes Bauteil, wie es beispielsweise ein Flugzeugflügel sein kann. Entspre¬ chend erfolgt eine Aufteilung einer Prüfergebnisanzeige in einzelne Prüffelder. Ebenso wird der Prüffortschritt bei die- sem relativ großen Bauteil entsprechend Figur 4 dargestellt. Bezugszeichen 2 bezeichnet eine bereits geprüfte Fläche. Be¬ zugszeichen 4 bezeichnet eine noch zu prüfende Fläche des Prüfobjektes 1. Die Prüfperson kann sich bei der Inspektion voll auf das Prüfobjekt 1 konzentrieren und kann gleichzeitig Prüfergebnisse 9 im Blick behalten. Der Vorteil der vorlie¬ genden Erfindung zeigt sich insbesondere bei großen, unstrukturierten Bauteilen, bei denen die gesamte Prüffläche aus mehreren Einzelfeldern besteht, wie es beispielsweise bei ei¬ ner Turbinenschaufel oder bei Bauteilen beziehungsweise Prüf- Objekten 1 mit komplexer Oberfläche der Fall ist. Die vorlie¬ gende Erfindung bietet ein dynamisches Projizieren von loka¬ len Prüfergebnissen 9 an, sodass die Prüfperson derart unterstützt wird, dass diese alle notwendigen Informationen in Echtzeit auf dem Prüfobjekt 1 zur Verfügung hat und auf diese Weise die Materialprüfung sehr wirksam ausführen kann. Alle Prüfergebnisse, insbesondere lokale Prüfergebnisse 9, können alternativ oder kumulativ auf das PrüfObjekt 1 projiziert werden. Beispielsweise kann die bereits erfasste Fläche 2 in Hellgrau eingeblendet werden, ein aktuelles Prüfergebnis far¬ big und eine noch zu erfassende Fläche 4 schraffiert.
Figur 5 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Verfahrens. Mit einem ersten Schritt Sl wird zur Materialprü¬ fung eines Prüfobjektes mittels eines PrüfWerkzeuges eine Re¬ lativposition von Prüfwerkzeug und Prüfobjekt zueinander und entsprechende zu prüfende lokale Subbereiche des Prüfobjektes in Abhängigkeit von den Relativpositionen mittels einer Er- fassungseinrichtung erfasst. In Kenntnis der Relativpositio¬ nen folgt in einem weiteren Schritt S2 ein Aktivieren des PrüfWerkzeuges zum Erzeugen eines lokalen Prüfergebnisses , beispielsweise auf der Grundlage von Ultraschall, einer Wir¬ belstromprüfung oder thermografischen Verfahren. Mit einem Schritt S3 werden die den jeweiligen Relativpositionen zugeordneten Prüfergebnisse mittels einer Projektionseinheit an die dazugehörigen Relativpositionen projiziert, sodass eine Prüfperson das Prüfobjekt unmittelbar an der betreffenden Relativposition evaluieren kann. Bei Unklarheiten an einer Re- lativposition kann das Messen gemäß dem Schritt S2 wiederholt werden .
Eine Inspektion eines Prüfobjektes soll für eine Prüfperson gegenüber dem Stand der Technik einfacher, schneller und zu- verlässiger ausgeführt werden. Einer Relativposition von Prüfwerkzeug und Prüfobjekt zueinander zugeordnete lokale Prüfergebnisse werden in Echtzeit auf einen betreffenden zu prüfenden lokalen Subbereich des PrüfObjektes projiziert. Auf diese Weise kann eine Prüfperson sofort den zu prüfenden lo- kalen Subbereich evaluieren.

Claims

Patentansprüche
1. Vorrichtung zur Materialprüfung eines PrüfObjektes (1) mittels eines PrüfWerkzeuges (3) , aufweisend:
- eine Erfassungseinrichtung (5) zum Erfassen von Relativpositionen von Prüfwerkzeug (3) und Prüfobjekt (1) zueinander und zum Erfassen von zu prüfenden lokalen Subbereichen des Prüfobjektes (1) in Abhängigkeit von den Relativpositionen;
- eine Messeinrichtung (7) zum Aktivieren des PrüfWerkzeuges (3) an den Relativpositionen an den zu prüfenden lokalen
Subbereichen des Prüfobjektes (1) zu Messzeitpunkten, wobei für jeden zu prüfenden lokalen Subbereich des Prüfobjektes (1) ein lokales Prüfergebnis (9) gemessen wird;
- eine Projektionseinheit (11) zum Projizieren eines jeweili- gen lokalen Prüfergebnisses (9) an der jeweiligen Relativposition auf einen dazugehörigen Oberflächenbereich des zu prüfenden lokalen Subbereichs des Prüfobjekts (1).
2. Vorrichtung nach Anspruch 1, gekennzeichnet durch eine Speichereinrichtung (13) zum Speichern jedes lokalen Prüfergebnisses (9) als Funktion von Relativposition und Messzeit¬ punkt .
3. Vorrichtung nach Anspruch 2, gekennzeichnet durch die Pro- j ektionseinheit (11) zum kumulativen Projizieren aller bisher erzeugten lokalen Prüfergebnisse (9) auf das Prüfobjekt (1).
4. Vorrichtung nach Anspruch 3, gekennzeichnet durch die Projektionseinheit (11) zum Projizieren aller lokalen Prüfergeb- nisse (9) als Gesamtergebnis auf das Prüfobjekt (1) am Ende einer gesamten Materialprüfung.
5. Vorrichtung nach Anspruch 1, gekennzeichnet durch eine Relativbewegungseinrichtung zum Relativbewegen von Prüfwerkzeug (3) und Prüfobjekt (1) zueinander, wobei dadurch zu prüfende lokale Subbereiche des Prüfobjektes (1) festgelegt werden.
6. Vorrichtung nach Anspruch 1, gekennzeichnet durch die Erfassungseinrichtung (5) zur Erfassung von dreidimensionalen Oberflächenkoordinaten des Prüfobjektes (1).
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Erfassungseinrichtung (5) eine Tiefensensorkamera ist.
8. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Messeinrichtung (7) eine Ultraschall-, Wirbelstrom oder Thermographie-Messeinrichtung ist.
9. Vorrichtung nach Anspruch 6, gekennzeichnet durch eine Rechnereinrichtung (15) zur jeweiligen an das Prüfobjekt (1) erfolgenden Anpassung der lokalen Prüfergebnisse (9) mittels dazugehöriger lokaler dreidimensionaler Oberflächendaten des Prüfobjektes (1).
10. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein Prüfergebnis (9) alternativ oder kumulativ als Grauwert- bild, Messwert, Kurvenzug, zusammengefügtes Ergebnisbild, Gü¬ te, Ausrichtungsinformation für das Prüfwerkzeug (3) und/oder Markierung dargestellt ist.
11. Vorrichtung nach Anspruch 1, gekennzeichnet durch eine optische Kamera (17) zum Erfassen des gesamten Prüfobjektes
(1) und zur Dokumentation der Materialprüfung.
12. Vorrichtung nach Anspruch 1, gekennzeichnet durch die Projektionseinheit (11) zum Vorgeben von jeweiligen Relativ- Positionen und dazugehörigen Oberflächenbereichen von zu prüfenden lokalen Subbereichen des Prüfobjekts (1).
13. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Erfassungseinrichtung (5) zum Erfassen von Relativpositi- onen von Prüfwerkzeug (3) und Prüfobjekt (1) zueinander ein Weggeber am Prüfwerkzeug (3) oder eine Kamera ist.
14. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Projektionseinheit (11) zum Projizieren ein Digitalpro¬ jektor ist.
15. Verfahren zur Materialprüfung eines PrüfObjektes (1) mit¬ tels eines PrüfWerkzeuges (3), mit den Schritten:
- mittels einer Erfassungseinrichtung (5) ausgeführtes Erfas¬ sen von Relativpositionen von Prüfwerkzeug (3) und Prüfobjekt (1) zueinander und zum Erfassen von zu prüfenden loka- len Subbereichen des Prüfobjektes (1) in Abhängigkeit von den Relativpositionen;
- mittels einer Messeinrichtung (7) ausgeführtes Aktivieren des PrüfWerkzeuges (3) an den Relativpositionen an den zu prüfenden lokalen Subbereichen des Prüfobjektes (1) zu Messzeitpunkten, wobei für jeden zu prüfenden lokalen Sub- bereich des Prüfobjektes (1) ein lokales Prüfergebnis (9) gemessen wird;
- mittels einer Projektionseinheit (11) ausgeführtes Proji¬ zieren eines jeweiligen lokalen Prüfergebnisses (9) an der jeweiligen Relativposition auf einen dazugehörigen Oberflächenbereich des zu prüfenden lokalen Subbereichs des Prüfobjekts ( 1 ) .
16. Verfahren nach Anspruch 15, gekennzeichnet durch mittels einer Speichereinrichtung (13) ausgeführtes Speichern jedes lokalen Prüfergebnisses (9) als Funktion von Relativposition und Messzeitpunkt.
17. Verfahren nach Anspruch 16, gekennzeichnet durch die Pro- j ektionseinheit (11) zum kumulativen Projizieren aller bisher erzeugten lokalen Prüfergebnisse (9) auf das Prüfobjekt (1).
18. Verfahren nach Anspruch 17, gekennzeichnet durch die Projektionseinheit (11) zum Projizieren aller lokalen Prüfergeb- nisse (9) als Gesamtergebnis auf das Prüfobjekt (1) am Ende der gesamten Materialprüfung.
19. Verfahren nach Anspruch 15, gekennzeichnet durch ein mittels einer Relativbewegungseinrichtung ausgeführtes Relativbewegen von Prüfwerkzeug (3) und Prüfobjekt (1) zueinander, wobei dadurch zu prüfende lokale Subbereiche des Prüfobjektes (1) festgelegt werden.
20. Verfahren nach Anspruch 15, gekennzeichnet durch mittels der Erfassungseinrichtung (5) ausgeführtes Erfassen von dreidimensionalen Oberflächenkoordinaten des Prüfobjektes (1).
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass die Erfassungseinrichtung (5) eine Tiefensensorkamera ist.
22. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die Messeinrichtung (7) eine Ultraschall-, Wirbelstrom oder
Thermographie-Messeinrichtung ist .
23. Verfahren nach Anspruch 20, gekennzeichnet durch mittels einer Rechnereinrichtung (15) ausgeführtes jeweiliges an das Prüfobjekt (1) erfolgendes Anpassen der lokalen Prüfergebnis- se (9) mittels dazugehöriger lokaler dreidimensionaler Oberflächendaten des Prüfobjektes (1).
24. Verfahren nach Anspruch 15, gekennzeichnet durch Darstel- len eines Prüfergebnisses (9) alternativ oder kumulativ als
Grauwertbild, Messwert, Kurvenzug, zusammengefügtes Ergebnis¬ bild, Güte, Ausrichtungsinformation für das Prüfwerkzeug (3) und/oder Markierung.
25. Verfahren nach Anspruch 15, gekennzeichnet durch mittels einer optischen Kamera (17) ausgeführtes Erfassen des gesamten Prüfobjektes (1) und Dokumentieren der gesamten Material¬ prüfung .
26. Verfahren nach Anspruch 15, gekennzeichnet durch mittels der Projektionseinheit (11) ausgeführtes Vorauswählen von je¬ weiligen Relativpositionen und dazugehörigen Oberflächenbe- reichen von zu prüfenden lokalen Subbereichen des Prüfobjekts (1) ·
27. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die Erfassungseinrichtung (5) zum Erfassen von Relativpositionen von Prüfwerkzeug (3) und Prüfobjekt (1) zueinander ein Weggeber am Prüfwerkzeug (3) oder eine Kamera ist.
28. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die Projektionseinheit (11) zum Projizieren ein Digitalpro¬ jektor ist.
PCT/EP2012/074199 2011-12-23 2012-12-03 Inspektion eines prüfobjektes WO2013092178A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011089856A DE102011089856A1 (de) 2011-12-23 2011-12-23 Inspektion eines Prüfobjektes
DE102011089856.5 2011-12-23

Publications (1)

Publication Number Publication Date
WO2013092178A1 true WO2013092178A1 (de) 2013-06-27

Family

ID=47520895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/074199 WO2013092178A1 (de) 2011-12-23 2012-12-03 Inspektion eines prüfobjektes

Country Status (2)

Country Link
DE (1) DE102011089856A1 (de)
WO (1) WO2013092178A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760893A (zh) * 2018-06-15 2018-11-06 广西电网有限责任公司电力科学研究院 一种超声损伤检测中导波轨迹可视化辅助系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803607B2 (ja) * 2016-11-16 2020-12-23 株式会社エアレックス リーク検査支援装置及びこれを用いたリーク検査方法
DE102020204605A1 (de) 2020-04-09 2021-10-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zur visuellen Darstellung von Prüfinformationen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2616002A1 (de) * 1976-04-12 1977-10-20 Graenges Oxeloesunds Jaernverk Verfahren und vorrichtung zum produzieren von metallischen rohlingen, insbesondere stahlbrammen, die zumindest in einem vorbestimmten oberflaechenbereich im wesentlichen keine fehler aufweisen
DE19800482A1 (de) * 1998-01-09 1999-07-22 Reinhard Wiesemann Meßgerät
US7968845B1 (en) * 2008-08-04 2011-06-28 Redshift Systems Corporation System for producing enhanced thermal images
DE102010007449A1 (de) 2010-02-10 2011-08-11 Siemens Aktiengesellschaft, 80333 Anordnung und Verfahren zur Bewertung eines Prüfobjektes mittels aktiver Thermographie
DE102010014744A1 (de) 2010-04-13 2011-10-13 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Projiezieren von Information auf ein Objekt bei Thermographie-Untersuchungen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537073A (en) * 1982-12-24 1985-08-27 Kabushiki Kaisha Kobe Seiko Sho Inspection method of square billet using electronic scanning
CH667151A5 (de) * 1985-05-28 1988-09-15 Ballmoos Ag Von Vorrichtung zum kontinuierlichen messen der dicke eines in seiner laengsrichtung verschiebbaren platten- oder strangfoermigen werkstuecks.
US6795784B1 (en) * 1998-02-25 2004-09-21 Thermal Wave Imaging, Inc. Data integration and registration method and apparatus for non-destructive evaluation of materials
JP3259031B2 (ja) * 1999-08-30 2002-02-18 和歌山大学長 計測結果又は解析結果投影装置及び方法
US8494616B2 (en) * 2000-01-19 2013-07-23 Christie Medical Holdings, Inc. Method and apparatus for projection of subsurface structure onto an object's surface
DE102009015921A1 (de) * 2009-03-25 2010-09-30 Faro Technologies, Inc., Lake Mary Verfahren zum optischen Abtasten und Vermessen einer Umgebung
DE102010026479A1 (de) * 2010-07-07 2012-01-12 Frank Kellershohn Anzeigesystem für eine Steuerung einer Industrieanlage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2616002A1 (de) * 1976-04-12 1977-10-20 Graenges Oxeloesunds Jaernverk Verfahren und vorrichtung zum produzieren von metallischen rohlingen, insbesondere stahlbrammen, die zumindest in einem vorbestimmten oberflaechenbereich im wesentlichen keine fehler aufweisen
DE19800482A1 (de) * 1998-01-09 1999-07-22 Reinhard Wiesemann Meßgerät
US7968845B1 (en) * 2008-08-04 2011-06-28 Redshift Systems Corporation System for producing enhanced thermal images
DE102010007449A1 (de) 2010-02-10 2011-08-11 Siemens Aktiengesellschaft, 80333 Anordnung und Verfahren zur Bewertung eines Prüfobjektes mittels aktiver Thermographie
DE102010014744A1 (de) 2010-04-13 2011-10-13 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Projiezieren von Information auf ein Objekt bei Thermographie-Untersuchungen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760893A (zh) * 2018-06-15 2018-11-06 广西电网有限责任公司电力科学研究院 一种超声损伤检测中导波轨迹可视化辅助系统
CN108760893B (zh) * 2018-06-15 2020-07-24 广西电网有限责任公司电力科学研究院 一种超声损伤检测中导波轨迹可视化辅助系统

Also Published As

Publication number Publication date
DE102011089856A1 (de) 2013-06-27

Similar Documents

Publication Publication Date Title
DE2952809C2 (de)
DE102017204115B4 (de) System und verfahren zum verbessern einer sichtinspektion eines objekts
DE102012101301B4 (de) Vorrichtung zur berührungslosen Kantenprofilbestimmung an einem dünnen scheibenförmigen Objekt
DE102014118753A1 (de) Prüfvorrichtung
DE10319099A1 (de) Verfahren zur Interferenzmessung eines Objektes, insbesondere eines Reifens
DE202015009460U1 (de) Bohrungsinspektionsvorrichtung
DE112007000449T5 (de) System und Verfahren zur Ultraschalldetektion und -Abbildung
DE10049405A1 (de) Verfahren und System zur Diagnose von Fehlern bei bildgebenden Abtasteinrichtungen
EP1775548B1 (de) Verfahren und Vorrichtung zur Erfassung der Verformung von Objekten
DE102015211025B4 (de) Verfahren zur überwachten, räumlich-aufgelösten Prüfung eines dreidimensionalen Objektes
DE102011086267A1 (de) System und Verfahren zur Steuerung eines thermografischen Messvorganges
DE102011003209A1 (de) Verfahren und Vorrichtung zur Inspektion eines Objekts zur Erfassung von Oberflächenschäden
DE102010007449B4 (de) Anordnung und Verfahren zur Bewertung eines Prüfobjektes mittels aktiver Thermographie
WO2013092178A1 (de) Inspektion eines prüfobjektes
EP2470858B1 (de) Verfahren und vorrichtung zur qualitätsprüfung eines umgeformten thermoplastischen faserverstärkten kunststoffbauteils
WO2005121783A1 (de) Verfahren und vorrichtung zur untersuchung von bohrkern-proben
DE69923863T2 (de) Speckle shearing-interferometer für dehnungsmessung
DE102017102338A1 (de) Verfahren und Vorrichtung zum Auffinden oder Untersuchen von Oberflächendefekten in einer mehrschichtigen Oberfläche
DE2439988A1 (de) Verfahren und vorrichtung zur ermittlung von oertlich begrenzten formfehlern an gewoelbten flaechen
DE102017106764A1 (de) Prüfvorrichtung, speichermedium und programm
WO2018068775A1 (de) Verfahren und anlage zum ermitteln der defektfläche mindestens einer fehlstelle auf mindestens einer funktionsoberfläche eines bauteils oder prüfkörpers
DE102008011349A1 (de) Zerstörungsfreie Prüfung einer Schweißnaht
EP2821783B1 (de) Vorrichtung und Verfahren zur Ermittlung von Materialfehlern in rotationssymmetrischen Prüfkörpern mittels Ultraschall
WO2013023787A1 (de) Lagebestimmung von subaperturen auf einem prüfling bei oberflächenmessungen auf dem prüfling
DE112020004812T5 (de) Bewegung in bildern, die in einem visuellen prüfprozess verwendet werden

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12812539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12812539

Country of ref document: EP

Kind code of ref document: A1