WO2013091440A1 - 一种液控移动活塞式发动机 - Google Patents

一种液控移动活塞式发动机 Download PDF

Info

Publication number
WO2013091440A1
WO2013091440A1 PCT/CN2012/083581 CN2012083581W WO2013091440A1 WO 2013091440 A1 WO2013091440 A1 WO 2013091440A1 CN 2012083581 W CN2012083581 W CN 2012083581W WO 2013091440 A1 WO2013091440 A1 WO 2013091440A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
oil chamber
chamber
oil
piston
Prior art date
Application number
PCT/CN2012/083581
Other languages
English (en)
French (fr)
Inventor
欧益忠
张广益
张琼美
Original Assignee
Ou Yizhong
Zhang Guangyi
Zhang Qiongmei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ou Yizhong, Zhang Guangyi, Zhang Qiongmei filed Critical Ou Yizhong
Publication of WO2013091440A1 publication Critical patent/WO2013091440A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B11/00Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type
    • F01B11/001Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type in which the movement in the two directions is obtained by one double acting piston motor
    • F01B11/002Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type in which the movement in the two directions is obtained by one double acting piston motor one side of the double acting piston motor being always under the influence of the fluid under pressure

Definitions

  • the present invention relates to an engine and, in particular, to a hydraulically controlled mobile piston engine.
  • the existing conventional engine relies on the crankshaft, piston, connecting rod and cam valve mechanism to complete the engine working process. It is now perfect, but it reaches a certain working condition, such as large bore diameter, long stroke, high boosting power, and compression ratio. Technical indicators such as adjustment, energy conservation and environmental protection will be subject to various restrictions. In this field, people have made various attempts, including the famous triangular piston rotor engine, but the production and maintenance difficulties due to its special curve, especially the seal is not fundamentally solved. So there has not been a large area promotion so far.
  • Controlling the internal combustion engine will bring the following characteristics: large carrying capacity, low vibration, simple piston production, good motion (no side pressure), easy compression ratio, etc., but at the same time we also see that form
  • the free piston hydraulic engine control system is particularly complex. All need to rely on solenoid valves, oil pumps, oil motors, sensors and other control pistons. However, the number of engine revolutions is from a few hundred to thousands of revolutions. In this way, reliability is problematic and the transmission efficiency is greatly affected.
  • the technical problem to be solved by the present invention is to provide a hydraulically controlled moving piston engine with simple structure, stable and reliable performance and high transmission efficiency.
  • the present invention provides a hydraulically controlled mobile piston engine including a crankshaft linkage, a gas distribution device and a fuel injection ignition device, having at least one unit moving piston assembly, the unit moving the piston assembly a front end is a cylinder, a rear end is a cylinder connected to the cylinder, the gas distribution device and the fuel injection ignition device are mounted on the cylinder, and a moving piston is disposed in the cylinder and the a tail portion of the moving piston in the cylinder is in the cylinder, a return oil chamber is formed between a sidewall of the moving piston and the cylinder, and a tail portion of the moving piston and the cylinder A pressure oil chamber is formed between the piston rod of the reciprocating dual displacement pump and the crankshaft linkage mechanism, and the pressure oil chamber is in communication with an oil chamber of the reciprocating dual displacement pump.
  • the oil return chamber is connected to another oil chamber of the reciprocating dual displacement pump.
  • another liquid-controlled mobile piston engine includes a crankshaft linkage mechanism, a gas distribution device and a fuel injection ignition device, and has two unit moving piston assemblies, each of which moves a front end of the piston assembly is a cylinder, a rear end is a cylinder connected to the cylinder, the gas distribution device and the fuel injection ignition device are mounted on the cylinder, and a moving piston is disposed in the cylinder and The tail of the moving piston and the moving piston are in the cylinder, and the end of the cylinder is provided with a plunger inserted into the inner hole of the tail of the moving piston, the moving piston A return oil chamber is formed between the side wall and the oil cylinder, a pressure oil chamber is formed between the tail portion of the moving piston and the oil cylinder, and a piston rod of the reciprocating dual volume pump and the crank rod connecting rod a mechanism drive connection, two of the unit moving piston assemblies of the pressure oil chamber are in communication, and the two units move one of the oil return chambers of the piston assembly
  • the outlet of the hydraulic pump is connected to the inlet of the check valve and connected to the oil return chamber.
  • the gas distribution device is configured such that the end of the cylinder is provided with a plunger inserted into the inner hole of the tail of the moving piston, and the inner hole of the tail of the moving piston and the plunger
  • a scavenging chamber is formed between the inlet and the exhaust valve, and the exhaust valve is connected with an intake end of the gas storage tank, The outlet end is connected to the cylinder intake port on the cylinder, and the cylinder is provided with a cylinder exhaust port.
  • the air distribution device has a structure in which an air compressor is connected to the crankshaft linkage mechanism, and an outlet of the air compressor is connected to an intake end of the air tank, and the air outlet of the air tank is exhausted. The end is connected to the cylinder inlet on the cylinder, and the cylinder is provided with a cylinder exhaust port.
  • An oil chamber of the accumulator is in communication with an oil chamber of the reciprocating dual displacement pump, and another oil chamber of the accumulator is coupled to another oil chamber of the reciprocating dual displacement pump.
  • the hydraulically controlled moving piston engine forms a combustion chamber for the gas expansion to perform work and energy conversion.
  • the cylinder has a gas inlet and an exhaust port in the radial direction for gas exchange, and the front end cover is provided with an injector or a spark plug for fuel injection or ignition.
  • a return oil chamber and a pressure oil chamber are formed at the cylinder portion. The interaction between the oil return chamber and the pressure oil chamber is used to stably control the movement and direction of the moving piston.
  • Another function of the pressure oil chamber is to change the pressure of the expanded gas received by the moving piston into hydraulic energy and transfer it out.
  • the scavenging chamber is formed at the top of the inner hole of the moving piston, and is introduced into the outside through the inner hole of the plunger and the plunger.
  • the crankshaft linkage mechanism is associated with the gear through the flywheel, and the flywheel is connected to the starter motor to form a starting system.
  • the fuel injection pump is connected by a sprocket (synchronous belt), and the fuel injector constitutes an oil supply ignition system, and the heat dissipation system is formed by the water pump and the radiator.
  • the crankshaft connecting rod mechanism is connected with a reciprocating double-volume oil pump, and the volume oil pump interface respectively corresponds to the pressure oil chamber and the oil return chamber of the oil cylinder, the crankshaft linkage mechanism rotates, and the reciprocating dual-volume pump changes the volume before and after, and is directly coupled to the moving piston.
  • the moving piston is caused to move left and right to complete the intake-compression-expansion work-exhaustion process.
  • the left and right movement of the moving piston acts on the reciprocating dual-volume pump through the pressure oil chamber, and the pump is equivalent to an oil motor, which is converted into a circular motion of the crankshaft linkage.
  • the movement of the moving piston is controllable, and the compression ratio is fixed within a certain range, thereby ensuring the optimal working condition of the engine.
  • Multiple sets of moving piston movements can achieve the same speed, opposite directions, good dynamic balance, and high-frequency oscillations generated by blasting expansion can be absorbed by hydraulic pressure.
  • Move the piston and other key parts First, the number of parts is small, the structure is simple, and the processing is convenient.
  • the power transmission hydraulic pipeline is directly connected, without passing through the valve.
  • the control system has no complicated control unit such as solenoid valve and inductor, which is stable and reliable, and the overall volume of the engine, especially the height is greatly reduced.
  • FIG. 1 is a schematic view showing the overall structure and principle of the present invention.
  • Fig. 2 is a schematic view showing the overall structure of an operating condition of the present invention.
  • FIG. 3 is a schematic view showing the overall structure and schematic diagram of the multi-cylinder engine of the present invention.
  • FIG. 4 is a schematic view showing the overall structure of the twin-cylinder and even-numbered engines of the present invention.
  • Fig. 5 is a schematic view showing the structure of the front end pumping gas of the moving piston at the rear end of the moving piston of the present invention.
  • Figure 6 is a schematic view of the conventional valve training mechanism of the present invention.
  • Figure 7 is a schematic view of the valve train of the external air compressor of the present invention.
  • Figure 8 is a schematic view showing the structure of a reciprocating positive displacement pump of the present invention using a crankshaft linkage mechanism.
  • Figure 9 is a schematic view showing the structure of a reciprocating positive displacement pump of the present invention.
  • Figure 10 is a schematic view showing the addition of an accumulator between the pressure oil chamber and the oil return chamber of the present invention.
  • the front end of the first unit moving piston assembly 1 is a cylinder 2
  • the cylinder 2 is provided with a combustion chamber 3
  • the rear end is an oil cylinder 8 connected to the cylinder 2
  • the fuel injection ignition device 21 is mounted on the cylinder.
  • the moving piston 9 is disposed in the cylinder 2 and the cylinder 8 and the tail of the moving piston 9 is in the cylinder 8
  • the end of the cylinder 8 is provided with a plunger 11 inserted into the inner hole of the tail of the moving piston 9
  • moving A return oil chamber 7 is formed between the side wall of the piston 9 and the oil cylinder 8.
  • a pressure oil chamber 10 is formed between the tail portion of the moving piston 9 and the cylinder 8 and the plunger 11, and the pressure oil chamber 10 is provided with a bypass.
  • the scavenging chamber 6 is provided with an intake valve 13 and an exhaust valve 12 at the end of the plunger 11, and the exhaust valve 12 is connected to the intake end of the gas storage tank 4, and the outlet end of the gas storage tank 4 and the cylinder
  • the cylinder intake port 5 is connected to the cylinder 2, and the cylinder 2 is provided with a cylinder exhaust port 22.
  • An oil chamber of the accumulator 23 is in communication with an oil chamber of the reciprocating dual displacement pump 15, and the other oil chamber of the accumulator 23 is connected to another oil chamber of the reciprocating dual displacement pump 15, and the crankshaft linkage 19 is driven.
  • a starter 18 and a fuel injection pump assembly 20 are coupled.
  • an accumulator 23 is added between the oil return chamber 7 and the pressure oil chamber 10 in each group of hydraulic circuits for buffering the initial pressure peak of the ignition expansion work stroke and the supercharged engine automatically adjusting the compression ratio.
  • the crankshaft linkage 19 when the crankshaft linkage 19 is drivingly coupled with two sets of unit moving piston assemblies, that is, the first unit moving piston assembly 1 and the second unit moving piston assembly 25, the unit moving piston assembly 1 and the unit moving piston assembly 25 are connected in parallel.
  • the first unit moving piston assembly 1 and the second unit moving piston assembly 25 move the piston 9 in the opposite direction, that is, one inhalation and the other exhaust.
  • the number of inflection points of the crankshaft linkage mechanism is increased, and the number of unit piston assemblies is increased correspondingly to form a multi-cylinder hydraulic control engine.
  • each unit moving piston assembly having a structure in which the front end is a cylinder 2, the cylinder 2 is provided with a combustion chamber 3, and the rear end is
  • the oil cylinder 8 connected to the cylinder 2 is mounted on the cylinder 2, the moving piston 9 is disposed in the cylinder 2 and the cylinder 8, and the tail of the moving piston 9 is in the cylinder 8, and the end of the cylinder 8 is inserted into the cylinder 8.
  • the pressure oil chamber 10 is provided with a bypass. The bypass connects the pressure oil chamber 10 and the oil return chamber 7 when the bottom end of the moving piston 9 is connected.
  • the piston rod of the reciprocating dual displacement pump 15 is connected with the crankshaft linkage mechanism 19, A unit moving piston assembly 1 and a second unit moving piston assembly 25 are in communication with a pressure oil chamber 10, and the first unit moves the oil return chamber 7 of the piston assembly 1 to communicate with an oil chamber of the reciprocating dual displacement pump 15, and the second unit moves The oil return chamber 7 of the piston assembly 25 and the other of the reciprocating dual displacement pump 15
  • the oil chamber is connected, the hydraulic pump 16 is drivingly connected with the crankshaft linkage 19, and the outlet of the hydraulic pump 16 is connected to the inlet of the one-way valve 14 and the oil returning chamber 7 of the first unit moving piston assembly 1 and the second unit moving piston assembly 25 Connected, the outlet of the hydraulic pump 16 is connected to the relief valve 17, and the crankshaft linkage 19 is drivingly coupled to the starter 18 and the fuel injection pump assembly 20.
  • a scavenging chamber 6 is formed between the inner bore of the tail of the moving piston 9 of the first unit moving piston assembly 1 and the second unit moving piston assembly 25 and the plunger 11, and an intake valve 13 is provided at the end of the plunger 11.
  • An exhaust valve 12 is connected to the exhaust valve 12, and an intake end of the air tank 4 is connected.
  • the air outlet end of the air tank 4 is connected to the cylinder air inlet 5 of the cylinder 2, and the cylinder 2 is provided with a cylinder exhaust port 22.
  • each set of unit piston assemblies shares a set of reciprocating positive displacement pumps, eliminating a set of reciprocating positive displacement pumps, and the pressure oil chambers of the two sets of unit piston assemblies are respectively connected to the two ends of the reciprocating positive displacement pump, and the oil is returned.
  • the cavity is self-connected.
  • the rear end of the moving piston 9 of the present invention can be hollow or solid in various ways, and the rear end of the moving piston 9 of the present invention is a solid end, and the front end is pumped.
  • the engine of the invention has a plurality of gas distribution modes, and can be used for gas distribution of the cylinder port, and can be combined with a conventional valve, a cam rocker mechanism, etc. to form a 4-stroke hydraulically controlled piston engine, and the valve and the port are combined into a DC scavenging type.
  • the hydraulic control engine, Figure 6 is the conventional valve distribution.
  • the first unit moving piston assembly 1 and the second unit moving piston assembly 25 The structure of the gas distribution device is: the air compressor 24 is connected to the crankshaft linkage 19, the outlet of the air compressor 24 is connected to the intake end of the gas storage tank 4, and the outlet end of the gas storage tank 4 is on the cylinder 2 The cylinder intake port 5 is connected, and the cylinder 2 is provided with a cylinder exhaust port 22.
  • the reciprocating dual displacement pump 15 of the present invention employs a cam structure.
  • FIG. 9 shows that the mechanism for driving and controlling the reciprocating positive displacement pump can be in various forms, which may be a crankshaft linkage mechanism, an eccentric wheel or a cam mechanism, and FIG. 8 is a crankshaft linkage mechanism reciprocating.
  • the volumetric pump, Figure 9 is a cam mechanism reciprocating displacement pump.
  • the rotary crankshaft linkage 19 is associated with the starter 18 and the associated fuel supply system 20 in conjunction with the reciprocating dual displacement pump 15.
  • the compressed air is collected by the gas storage tank 4 after all pumping;
  • the crankshaft linkage mechanism 19 is coupled to the hydraulic pump 16 by a pulley
  • the hydraulic oil is introduced into the pipeline formed by the oil return chamber 7 of the cylinder through the check valve 14, and a relief valve 17 is provided bypassing.
  • a reciprocating dual-volume pump consisting of a reciprocating dual-volume pump, dividing the pump into two left and right volume oil chambers, the oil ports respectively corresponding to the interface of the oil return chamber 7 of the first unit piston assembly and the pressure oil chamber 10, rotating
  • the change of the left and right volume oil chambers of the crankshaft linkage mechanism 19 causes the forward and backward movement of the moving piston 9 to change.
  • the forward and backward movement of the moving piston 9 causes the rotational movement of the crankshaft linkage mechanism 19.
  • starting device 18 Starting, driving the crankshaft linkage mechanism 19 to rotate, thereby driving the reciprocating dual-volume pump 15 to move, causing the volumetric chamber to change the volume chamber, and the oil ports of the reciprocating volume pump 15 respectively correspond to the oil return chamber 7 and the pressure oil of the cylinder in the unit piston assembly.
  • the chamber 10 is subjected to an oil port, and the volume change of the reciprocating dual displacement pump 15 is directly coupled to the movement of the moving piston 9.
  • the starting device 18 is started to drive the crankshaft linkage 19 to rotate, and the position of the piston of the reciprocating dual displacement pump 15 can be assumed to be close to the front end of the inner dead center.
  • the first unit moves the piston assembly 1, the moving piston 9 moves outward, the volume of the combustion chamber 3 increases, the intake valve 13 closes, and the exhaust valve 12 opens.
  • the scavenging chamber 6 starts pumping air to discharge the compressed air, and collects it in the gas storage tank 4.
  • crankshaft link mechanism 19 is rotated to a certain angle, and the inner dead center of the reciprocating dual displacement pump 15.
  • the first unit moves the piston assembly 1 and the volume of the combustion chamber 3 is increased to a maximum.
  • the moving piston 9 moves to the outermost outer dead center, the cylinder air inlet 5 is opened, the cylinder air outlet 22 is opened, and the compressed air is scavenged by the air tank 4 through the cylinder air inlet 5 to complete the gas distribution process and the scavenging air chamber. 6 Complete pumping and start inhaling.
  • crankshaft linkage 19 is rotated to a certain angle to the outer dead center of the piston of the reciprocating dual displacement pump 15.
  • the first unit moves the piston assembly 1 and the combustion chamber 3 is compressed to a minimum.
  • the crankshaft linkage mechanism 19 drives the fuel injection pump assembly 20 to pump oil, and the fuel is ignited by the fuel injection igniter 21 to ignite and expand the work force to push the moving piston 9 to move outward.
  • the pressure oil chamber 10 pushes the reciprocating dual displacement pump 15 to move, and acts on the crankshaft linkage mechanism 19 to rotate and output power to the outside.
  • Intake valve 13 When the exhaust valve 12 is closed, the scavenging chamber 6 completes the suction to start pumping.
  • the reciprocating dual-volume pump 15 piston is subjected to a force to move from the outer dead center to the inner dead center, and the crankshaft linkage mechanism 19 is rotated to a certain angle.
  • the first unit moves the piston assembly 1, the combustion chamber 3 gradually increases, and the moving piston 9 expands to work at the outermost end and the outer dead center position.
  • Intake valve 13 When closed, the exhaust valve 12 is opened and the scavenging chamber 6 is pumped.
  • the entire cycle is repeated and repeated.
  • crankshaft linkage mechanism 19 drives the rotary motion of the hydraulic pump 16
  • the hydraulic oil loss flow during the filling and replenishment start and operation, and the excess is eliminated through the relief valve 17.
  • FIG. 10 shows that in each set of circulating oil passages, an accumulator 23 is added between the oil return chamber and the pressure oil chamber, which can buffer the instantaneous peak pressure when the moving piston 9 ignites and expand and automatically adjust the compression ratio in the supercharged engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

一种液控移动活塞式发动机包括曲轴连杆机构(19)、配气装置和喷油点火装置(21),具有至少一个单元移动活塞组件,单元移动活塞组件的前端为气缸(2),后端为与气缸(2)连接的油缸(8),配气装置和喷油点火装置(21)安装在气缸(2)上,移动活塞(9)设置在气缸(2)和油缸(8)内,移动活塞(9)的侧壁与油缸(8)之间形成有回油腔(7),移动活塞(9)的尾部与油缸(8)之间形成有压力油腔(10),往复式双容积泵(15)的活塞杆与曲轴连杆机构(19)传动连接,压力油腔(10)与往复式双容积泵(15)的一个油腔连通,回油腔(7)与往复式双容积泵(15)的另一个油腔连接。该液控移动活塞式发动机能够以简单的方式控制移动活塞。

Description

一种液控移动活塞式发动机 技术领域
本发明涉及一种发动机,具体的说,涉及一种液控移动活塞式发动机。
背景技术
现有常规发动机是依靠曲轴、活塞、连杆、凸轮配气机构来完成发动机工作过程,现已非常完善,但达到一定工作状况,如大缸径,长行程,高增压大功率,压缩比可调,节能环保等技术指标就会受到各方面限制。在此领域,人们做了各方面的尝试,其中包括著名的三角活塞转子发动机,但因其特殊的曲线造成生产及维护的困难,尤其密封也没有根本性的解决。所以至今也没大面积推广。
能否简化发动机结构如取消曲轴,连杆等,又能保证发动机可靠工作呢?这其中就包括始于上世纪20-30年代开始研究,并于50-60年代工业化生产的自由活塞发气机/压气机。根据自身优劣特征逐渐发展到1980-2000年研制的液压自由活塞发动机。有关这方面报道见《液压自由活塞发动机的发展历程及研究状况》 杨华勇等著 机械工程学报 第37卷 第2期 2001年2月; 《特种发动机原理与结构》 朱仙鼎 1998年版;自由活塞液压发动机等有比较详细系统的论述。
将内燃机液控化将带来如下特征,承载功率大,振动小,活塞的制作非常简单,运动状况好(没有侧压力)压缩比方便自动调整等,但同时我们也看到不管是那种形式的自由活塞液压发动机控制系统特别复杂。都需靠电磁阀,油泵,油马达,感应器等控制活塞运行。但发动机转数从几百至上千转,用这种方式,可靠性存在问题,同时大大影响传动效率。
技术问题
本发明所要解决的技术问题是提供一种结构简单,性能稳定可靠,传动效率高的液控移动活塞式发动机。
技术解决方案
为了解决上述技术问题,本发明提供的一种液控移动活塞式发动机,包括曲轴连杆机构、配气装置和喷油点火装置,具有至少一个单元移动活塞组件,所述的单元移动活塞组件的前端为气缸,后端为与所述的气缸连接的油缸,所述的配气装置和所述的喷油点火装置安装在所述的气缸上,移动活塞设置在所述的气缸和所述的油缸内且所述的移动活塞的尾部处于所述的油缸内,所述的移动活塞的侧壁与所述的油缸之间形成有回油腔,所述的移动活塞的尾部与所述的油缸之间形成有压力油腔,往复式双容积泵的活塞杆与所述的曲轴连杆机构传动连接,所述的压力油腔与所述的往复式双容积泵的一个油腔连通,所述的回油腔与所述的往复式双容积泵的另一个油腔连接。
为了解决上述技术问题,本发明提供的另一种液控移动活塞式发动机,包括曲轴连杆机构、配气装置和喷油点火装置,具有二个单元移动活塞组件,每个所述的单元移动活塞组件的前端为气缸,后端为与所述的气缸连接的油缸,所述的配气装置和所述的喷油点火装置安装在所述的气缸上,移动活塞设置在所述的气缸和所述的油缸内且所述的移动活塞的尾部处于所述的油缸内,所述的油缸的端部设有插入到所述的移动活塞的尾部内孔的柱塞,所述的移动活塞的侧壁与所述的油缸之间形成有回油腔,所述的移动活塞的尾部与所述的油缸之间形成有压力油腔,往复式双容积泵的活塞杆与所述的曲轴连杆机构传动连接,二个所述的单元移动活塞组件的所述的压力油腔相通,二个所述的单元移动活塞组件的其中一个所述的回油腔与所述的往复式双容积泵的一个油腔连通,另一个所述的回油腔与所述的往复式双容积泵的另一个油腔连接。
液压泵的出口连接单向阀的进口后与所述的回油腔连接。
所述的配气装置的结构是:所述的油缸的端部设有插入到所述的移动活塞的尾部内孔的柱塞,在所述的移动活塞的尾部内孔与所述的柱塞之间形成有扫气室,在所述的柱塞的端部设有进气阀和排气阀,所述的排气阀连接有储气罐的进气端,所述的储气罐的出气端与所述的气缸上的气缸进气口连接,气缸设有气缸排气口。
所述的配气装置的结构是:空气压缩机与所述的曲轴连杆机构传动连接,所述的空气压缩机的出口与储气罐的进气端连接,所述的储气罐的出气端与所述的气缸上的气缸进气口连接,气缸设有气缸排气口。
蓄能器的一个油腔与所述的往复式双容积泵的一个油腔连通,所述的蓄能器的另一个油腔与所述的往复式双容积泵的另一个油腔连接。
采用上述技术方案的液控移动活塞式发动机,气缸部位形成燃烧室,用于气体膨胀做功,能量转换。气缸径向方向上开有进气口和排气口,用于气体交换,前端端盖设有喷油器或火花塞用于喷油或点火。在油缸部位形成回油腔和压力油腔。回油腔与压力油腔的共同作用是用于稳定控制移动活塞运动及方向。压力油腔另一作用则是将移动活塞受到的膨胀的气体压力变成液压能并传递出去。移动活塞内孔顶部部位形成扫气室,通过柱塞及柱塞上的内孔导入外部,在进气阀和排气阀的作用下,不断将新鲜空气吸入,以压缩空气形式排出,排出压缩空气都进入储气罐,用于发动机交换气体之用,实际上就相当于往复式空气压缩机,用于发动机供气系统。控制活塞运动及完成整个发动机进气-压缩-膨胀做功-排气,过程是由曲轴及曲轴上的附件完成。
曲轴连杆机构上相关联通过齿轮,飞轮连接启动马达,构成启动系统,通过链轮(同步带)连接喷油泵,喷油器构成供油油点火系统,通过水泵、散热器构成散热系统。这些与常规发动机具有相同的共性。
曲轴连杆机构连接一往复式双容积油泵,容积油泵接口分别对应油缸的压力油腔和回油腔,曲轴连杆机构旋转,往复式双容积泵前后两容积变化,直接耦合到移动活塞上,引起移动活塞左右移动,完成进气-压缩-膨胀做功-排气过程。反之移动活塞的左右移动则通过压力油腔作用到往复式双容积泵上,这时泵就相当一油马达,转化成曲轴连杆机构的圆周运动。
有益效果
本发明与现有自由活塞相比,移动活塞运动是可控,压缩比在一定范围内固定,从而保证发动机最佳工作状况运转。多组移动活塞运动能够做到速度相同,方向相反,动平衡性好,爆破膨胀产生的高频振荡可由液压吸收。移动活塞等关键零件,一是零件数少,构造简单,加工方便。动力传输液压管路直连,不必经过阀,控制系统没有电磁阀,感应器等复杂的控制单元,稳定可靠,发动机整体体积,尤其是高度大为降低。
附图说明
图1 是本发明的整体结构及原理示意图。
图2 是描述本发明一种工作状况整体结构示意图。
图3是本发明多缸发动机整体结构及原理图示意图。
图4 是本发明双缸及偶数级发动机整体结构原理示意图。
图5是本发明移动活塞后端受油端为实体,前端泵气结构示意图。
图6是本发明采用常规气门配气机构示意图。
图7是本发明采用外置式空气压缩机配气机构示意图。
图8是本发明往复式容积泵采用曲轴连杆机构结构示意图。
图9是本发明往复式容积泵采用凸轮结构示意图。
图10是本发明压力油腔与回油腔之间添加蓄能器示意图。
本发明的实施方式
下面结合附图和具体实施方式对本发明作进一步说明。
参见图1、图2和图10,第一单元移动活塞组件1的前端为气缸2,气缸2设有燃烧室3,后端为与气缸2连接的油缸8,喷油点火装置21安装在气缸2上,移动活塞9设置在气缸2和所述的油缸8内且移动活塞9的尾部处于油缸8内,油缸8的端部设有插入到移动活塞9的尾部内孔的柱塞11,移动活塞9的侧壁与油缸8之间形成有回油腔7,移动活塞9的尾部与油缸8和柱塞11之间形成有压力油腔10,压力油腔10设有旁路,旁路在移动活塞9下止点时连通压力油腔10与回油腔7,往复式双容积泵15的活塞杆与曲轴连杆机构19传动连接,压力油腔10与往复式双容积泵15的一个油腔连通,回油腔7与往复式双容积泵15的另一个油腔连接,液压泵16与曲轴连杆机构19传动连接,液压泵16的出口连接单向阀14的进口后与回油腔7连接,液压泵16的出口连接溢流阀17,在移动活塞9的尾部内孔与柱塞11之间形成有扫气室6,在柱塞11的端部设有进气阀13和排气阀12,排气阀12连接有储气罐4的进气端,储气罐4的出气端与气缸2上的气缸进气口5连接,气缸2设有气缸排气口22。蓄能器23的一个油腔与往复式双容积泵15的一个油腔连通,蓄能器23的另一个油腔与往复式双容积泵15的另一个油腔连接,曲轴连杆机构19传动连接有起动装置18和喷油泵组件20。
参见图10,在每组液压回路中回油腔7与压力油腔10之间添加一蓄能器23,用于缓冲点火膨胀做功冲程初始压力峰值及增压式发动机自动调整压缩比。
参见图3,当曲轴连杆机构19传动连接有二组单元移动活塞组件,即第一单元移动活塞组件1和第二单元移动活塞组件25,单元移动活塞组件1和单元移动活塞组件25采用并联,第一单元移动活塞组件1和第二单元移动活塞组件25的移动活塞9运行相反,即一个吸气时另一个排气。在单缸基础上,增加曲轴连杆机构拐点数量,对应增加单元活塞组件数量,则形成多缸液控发动机。
参见图4和图8,具有第一单元移动活塞组件1和第二单元移动活塞组件25,每个单元移动活塞组件的结构是:前端为气缸2,气缸2设有燃烧室3,后端为与气缸2连接的油缸8,喷油点火装置21安装在气缸2上,移动活塞9设置在气缸2和油缸8内且移动活塞9的尾部处于油缸8内,油缸8的端部设有插入到移动活塞9的尾部内孔的柱塞11,移动活塞9的侧壁与油缸8之间形成有回油腔7,移动活塞9的尾部与油缸8和柱塞11之间形成有压力油腔10,压力油腔10设有旁路,旁路在移动活塞9下止点时连通压力油腔10与回油腔7,往复式双容积泵15的活塞杆与曲轴连杆机构19传动连接,第一单元移动活塞组件1和第二单元移动活塞组件25的压力油腔10相通,第一单元移动活塞组件1的回油腔7与往复式双容积泵15的一个油腔连通,第二单元移动活塞组件25的回油腔7与往复式双容积泵15的另一个油腔连接,液压泵16与曲轴连杆机构19传动连接,液压泵16的出口连接单向阀14的进口后与第一单元移动活塞组件1和第二单元移动活塞组件25的回油腔7连接,液压泵16的出口连接溢流阀17,曲轴连杆机构19传动连接有起动装置18和喷油泵组件20。在第一单元移动活塞组件1和第二单元移动活塞组件25的移动活塞9的尾部内孔与柱塞11之间形成有扫气室6,在柱塞11的端部设有进气阀13和排气阀12,排气阀12连接有储气罐4的进气端,储气罐4的出气端与气缸2上的气缸进气口5连接,气缸2设有气缸排气口22。在本发明液控式发动机中,每两组单元活塞组件共用一组往复容积泵,省去一组往复容积泵,两组单元活塞组件压力油腔分别连接往复容积泵的两端接口,回油腔自连。
参见图5,本发明移动活塞9后端受油端多种方式,可为空心或实体,本发明的移动活塞9后端受油端为实体,前端泵气结构。
参见图6,本发明发动机配气方式多种,可用气缸气口配气也可用常规气门,凸轮摇臂机构等方式配气组成4冲程液控活塞式发动机,及气门及气口组合成直流扫气式液控发动机,图6是常规气门配气方式。
参见图7,第一单元移动活塞组件1和第二单元移动活塞组件25 的配气装置的结构是:空气压缩机24与曲轴连杆机构19传动连接,空气压缩机24的出口与储气罐4的进气端连接,储气罐4的出气端与气缸2上的气缸进气口5连接,气缸2设有气缸排气口22。
参见图9,本发明的往复式双容积泵15采用凸轮结构。
图1及图8,图9所示,用于驱动控制往复容积泵的机构可多种形式,可以是曲轴连杆机构,也可以是偏心轮,或凸轮机构,图8为曲轴连杆机构往复式容积泵,图9为凸轮机构往复式容积泵。
以下结合附图对本发明作进一步说明。
旋转曲轴连杆机构19 关联起动装置18和关联供油系统20 连动往复式双容积泵15 。
所有泵气后压缩空气由储气罐4收集;
曲轴连杆机构19通过带轮连动液压泵16 液压油通过单向阀14分别导入油缸的回油腔7形成的管路内,旁通设有一溢流阀17。
参照图8 及图1,一种往复式双容积泵组成的往复式双容积泵,将泵分成左右两容积油腔,油口分别对应第单元活塞组件的回油腔7和压力油腔10的接口,转动曲轴连杆机构19,左右两容积油腔的变化,则引起移动活塞9的前后移动变化,反之,移动活塞9的前后运动则引起曲轴连杆机构19的旋转运动。
本发明的工作原理:起动装置18 起动,带动曲轴连杆机构19旋转,从而带动往复式双容积泵15运动,造成容积泵左右容积腔变化,往复容积泵15的油口分别对应单元活塞组件中油缸的回油腔7与压力油腔10受油口,往复式双容积泵15的容积变化直接耦合到移动活塞9的移动。
参见图1:
过程一,起动装置18起动,带动曲轴连杆机构19旋转,往复式双容积泵15的活塞位置位可先假设于靠近内止点前端。
第一单元移动活塞组件1,移动活塞9向外移动,燃烧室3容积增大, 进气阀 13关闭,排气阀12打开。 扫气腔6 开始泵气以压缩空气排出,到储气罐4收集。
过程二,转动曲轴连杆机构19至一定角度,往复式双容积泵15的内止点。
第一单元移动活塞组件1,燃烧室3容积增至最大。移动活塞9移动至最外端外止点,气缸进气口5打开,气缸排气口22打开,压缩空气由储气罐4经气缸进气口5扫气,完成配气过程,扫气腔6完成泵气,开始吸气。
参见图2:
过程三,转动曲轴连杆机构19至一定角度,至往复式双容积泵15活塞的外止点。
第一单元移动活塞组件1,燃烧室3压缩至最小,曲轴连杆机构19带动喷油泵组件20泵油,通过喷油点火装置21喷油,着火膨胀做功,推动移动活塞9向外移动,通过压力油腔10推动往复式双容积泵15运动,作用于曲轴连杆机构19转为旋转运动,并对外输出动力。进气阀13 关闭,排气阀12 打开,扫气室6完成吸气开始泵气。
过程四,往复式双容积泵15活塞受力做功由外止点向内止点移动,带动曲轴连杆机构19旋转至一定角度。
第一单元移动活塞组件1,燃烧室3逐渐增大,移动活塞9膨胀做功至最外端,外止点位置。进气阀13 关闭,排气阀12打开,扫气腔6 泵气。
整个循环过程周而复始,重复进行。
从以上过程可以看出,它的工作方式与单缸二冲程柴油机相似。采用电喷,用火花塞点燃则成汽油发动机。
曲轴连杆机构19带动液压泵16旋转运动 填充及补充开始及运转过程中液压油损耗流量,多余部分通过溢流阀17排除。
图10是在每组循环油路中,回油腔与压力油腔之间添加蓄能器23,可缓冲移动活塞9点燃膨胀时瞬间高峰压力及增压式发动机中自动调整压缩比。

Claims (10)

  1. 一种液控移动活塞式发动机,包括曲轴连杆机构(19)、配气装置和喷油点火装置(21),其特征是:具有至少一个单元移动活塞组件,所述的单元移动活塞组件的前端为气缸(2),后端为与所述的气缸(2)连接的油缸(8),所述的配气装置和所述的喷油点火装置(21)安装在所述的气缸(2)上,移动活塞(9)设置在所述的气缸(2)和所述的油缸(8)内,所述的移动活塞(9)的侧壁与所述的油缸(8)之间形成有回油腔(7),所述的移动活塞(9)的尾部与所述的油缸(8)之间形成有压力油腔(10),往复式双容积泵(15)的活塞杆与所述的曲轴连杆机构(19)传动连接,所述的压力油腔(10)与所述的往复式双容积泵(15)的一个油腔连通,所述的回油腔(7)与所述的往复式双容积泵(15)的另一个油腔连接。
  2. 根据权利要求1所述的液控移动活塞式发动机,其特征是:液压泵(16)的出口连接单向阀(14)的进口后与所述的回油腔(7)连接。
  3. 根据权利要求1或2所述的液控移动活塞式发动机,其特征是:所述的配气装置的结构是:所述的油缸(8)的端部设有插入到所述的移动活塞(9)的尾部内孔的柱塞(11),在所述的移动活塞(9)的尾部内孔与所述的柱塞(11)之间形成有扫气室(6),在所述的柱塞(11)的端部设有进气阀(13)和排气阀(12),所述的排气阀(12)连接有储气罐(4)的进气端,所述的储气罐(4)的出气端与所述的气缸(2)上的气缸进气口(5)连接,气缸(2)设有气缸排气口(22)。
  4. 根据权利要求1或2所述的液控移动活塞式发动机,其特征是:所述的配气装置的结构是:空气压缩机(24)与所述的曲轴连杆机构(19)传动连接,所述的空气压缩机(24)的出口与储气罐(4)的进气端连接,所述的储气罐(4)的出气端与所述的气缸(2)上的气缸进气口(5)连接,气缸2设有气缸排气口(22)。
  5. 根据权利要求1或2所述的液控移动活塞式发动机,其特征是:蓄能器(23)的一个油腔与所述的往复式双容积泵(15)的一个油腔连通,所述的蓄能器(23)的另一个油腔与所述的往复式双容积泵(15)的另一个油腔连接。
  6. 一种液控移动活塞式发动机,包括曲轴连杆机构19、配气装置和喷油点火装置(21),其特征是:具有二个单元移动活塞组件,每个所述的单元移动活塞组件的前端为气缸(2),后端为与所述的气缸(2)连接的油缸(8),所述的配气装置和所述的喷油点火装置(21)安装在所述的气缸(2)上,移动活塞(9)设置在所述的气缸(2)和所述的油缸(8)内,所述的移动活塞(9)的侧壁与所述的油缸(8)之间形成有回油腔(7),所述的移动活塞(9)的尾部与所述的油缸(8)之间形成有压力油腔(10),往复式双容积泵(15)的活塞杆与所述的曲轴连杆机构(19)传动连接,二个所述的单元移动活塞组件(1)的所述的压力油腔(10)相通,二个所述的单元移动活塞组件的其中一个所述的回油腔(7)与所述的往复式双容积泵(15)的一个油腔连通,另一个所述的回油腔(7)与所述的往复式双容积泵(15)的另一个油腔连接。
  7. 根据权利要求6所述的液控移动活塞式发动机,其特征是:液压泵(16)的出口连接单向阀(14)的进口后与所述的回油腔(7)连接。
  8. 根据权利要求6或7所述的液控移动活塞式发动机,其特征是:所述的配气装置的结构是:所述的油缸(8)的端部设有插入到所述的移动活塞(9)的尾部内孔的柱塞(11),在所述的移动活塞(9)的尾部内孔与所述的柱塞(11)之间形成有扫气室(6),在所述的柱塞(11)的端部设有进气阀(13)和排气阀(12),所述的排气阀(12)连接有储气罐(4)的进气端,所述的储气罐4的出气端与所述的气缸(2)上的气缸进气口(5)连接,气缸(2)设有气缸排气口(22)。
  9. 根据权利要求6或7所述的液控移动活塞式发动机,其特征是:所述的配气装置的结构是:空气压缩机(24)与所述的曲轴连杆机构(19)传动连接,所述的空气压缩机(24)的出口与储气罐(4)的进气端连接,所述的储气罐(4)的出气端与所述的气缸(2)上的气缸进气口(5)连接,气缸2设有气缸排气口(22)。
  10. 根据权利要求6或7所述的液控移动活塞式发动机,其特征是:蓄能器(23)的一个油腔与所述的往复式双容积泵(15)的一个油腔连通,所述的蓄能器(23)的另一个油腔与所述的往复式双容积泵(15)的另一个油腔连接。
PCT/CN2012/083581 2011-12-19 2012-10-26 一种液控移动活塞式发动机 WO2013091440A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110425944.XA CN102518513B (zh) 2011-12-19 2011-12-19 液控移动活塞式发动机
CN201110425944.X 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013091440A1 true WO2013091440A1 (zh) 2013-06-27

Family

ID=46289549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083581 WO2013091440A1 (zh) 2011-12-19 2012-10-26 一种液控移动活塞式发动机

Country Status (2)

Country Link
CN (1) CN102518513B (zh)
WO (1) WO2013091440A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2559852A (en) * 2016-12-21 2018-08-22 Jin Tian Huang Low-energy and high pressure, hydraulic, pneumatic engine
CN111689341A (zh) * 2019-03-15 2020-09-22 上海煊凝机电制造有限公司 一种节能液压油缸升降系统
CN111765224A (zh) * 2020-06-03 2020-10-13 成都天高机电设备有限公司 平衡缸机构隔膜压缩机、泵、液压柱塞泵
CN111828164A (zh) * 2020-08-10 2020-10-27 中船动力研究院有限公司 一种液压增压装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102518513B (zh) * 2011-12-19 2014-04-02 欧益忠 液控移动活塞式发动机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065124A (zh) * 1992-04-08 1992-10-07 纳森 数控液压传动自由活塞内燃机及其控制方法
US6948459B1 (en) * 2004-08-28 2005-09-27 Ford Global Technologies, Llc Position sensing for a free piston engine
CN101377150A (zh) * 2007-11-23 2009-03-04 清华大学深圳研究生院 双组元单活塞式液压自由活塞发动机
CN101566106A (zh) * 2008-12-12 2009-10-28 北京理工大学 两冲程液压自由活塞发动机压缩冲程实现装置
CN102518513A (zh) * 2011-12-19 2012-06-27 欧益忠 液控移动活塞式发动机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3102283A1 (de) * 1981-01-24 1982-09-30 Hans Carl Albert 2000 Hamburg Trede Kraftmaschine mit freikolbenbewegung
DE19755771A1 (de) * 1997-12-16 1999-06-24 Ludwig Wagenseil Verbrennungskraftstoff betriebene Hydropumpe
CN1321823A (zh) * 2000-05-01 2001-11-14 彭志平 新的活塞工作装置内燃机、活塞马达、活塞泵及应用装置
JP4096700B2 (ja) * 2002-11-05 2008-06-04 日産自動車株式会社 内燃機関の可変圧縮比装置
GB2428450B (en) * 2005-07-15 2007-08-01 Lotus Car Opposed piston engine with variable timing
CN201025122Y (zh) * 2007-03-10 2008-02-20 刘波 高功率密度内燃机
US8104436B2 (en) * 2009-05-01 2012-01-31 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Quasi free piston engine
CN101672264B (zh) * 2009-09-30 2011-10-19 浙江鸿友压缩机制造有限公司 直线往复活塞式压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065124A (zh) * 1992-04-08 1992-10-07 纳森 数控液压传动自由活塞内燃机及其控制方法
US6948459B1 (en) * 2004-08-28 2005-09-27 Ford Global Technologies, Llc Position sensing for a free piston engine
CN101377150A (zh) * 2007-11-23 2009-03-04 清华大学深圳研究生院 双组元单活塞式液压自由活塞发动机
CN101566106A (zh) * 2008-12-12 2009-10-28 北京理工大学 两冲程液压自由活塞发动机压缩冲程实现装置
CN102518513A (zh) * 2011-12-19 2012-06-27 欧益忠 液控移动活塞式发动机

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2559852A (en) * 2016-12-21 2018-08-22 Jin Tian Huang Low-energy and high pressure, hydraulic, pneumatic engine
GB2559852B (en) * 2016-12-21 2020-02-12 Jin Tian Huang Low-energy and high pressure, hydraulic, pneumatic engine
DE102017130723B4 (de) 2016-12-21 2022-10-06 Jin-Tian Huang Hydraulik- und Pneumatikmotor mit einem niedrigen Energieverbrauch und einem hohen Gasdruck
CN111689341A (zh) * 2019-03-15 2020-09-22 上海煊凝机电制造有限公司 一种节能液压油缸升降系统
CN111765224A (zh) * 2020-06-03 2020-10-13 成都天高机电设备有限公司 平衡缸机构隔膜压缩机、泵、液压柱塞泵
CN111828164A (zh) * 2020-08-10 2020-10-27 中船动力研究院有限公司 一种液压增压装置
CN111828164B (zh) * 2020-08-10 2024-05-03 中船动力研究院有限公司 一种液压增压装置

Also Published As

Publication number Publication date
CN102518513A (zh) 2012-06-27
CN102518513B (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5411356B2 (ja) 点火燃焼及び充填モードを備える分割サイクル空気ハイブリッドエンジン
ES2401725T3 (es) Motor híbrido de aire de ciclo dividido
WO2013091438A1 (zh) 一种液控对置活塞式发动机
WO2013091440A1 (zh) 一种液控移动活塞式发动机
US8490584B2 (en) Air hybrid engine with dual chamber cylinder
RU2577912C2 (ru) Роторный двигатель и его роторный узел
JP2003518222A (ja) 平衡と過給の機能を有する往復動内燃機関
CN102939449B (zh) 改进的差动冲程内燃机
CN109139248B (zh) 一种高增压双缸四活塞三曲轴直线完全对称二冲程发动机
WO1999006682A2 (en) Supercharged internal combustion compound engine
WO2020015575A1 (zh) 一种多缸发动机系统
CN102287293A (zh) 气缸口封闭式发动机
RU2737461C1 (ru) Двигатель внутреннего сгорания двойного действия
WO2013107249A1 (zh) 八冲程发动机
CN1959081A (zh) 单一或多个摆动活塞串联为二缸或多缸四冲程内燃发动机
CN111120090B (zh) 一种储能式动力装置
CN211924327U (zh) 一种并列水平双缸下置平衡轴无人直升机发动机
WO2013169534A1 (en) Systems and methods for series-sequential turbocharging
CN101782014A (zh) 液压内燃机
CN112211723B (zh) 一种对置活塞单轴内燃机
CN2487878Y (zh) 一种活塞连杆式内燃机
CN221299312U (zh) 一种单叶旋转内燃发动机
CN111120083B (zh) 一种双转子活塞发动机
CN201794656U (zh) 二冲程液压内燃机
KR200173722Y1 (ko) 과급형 내연엔진

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858786

Country of ref document: EP

Kind code of ref document: A1