WO2013091259A1 - 微小型毫米波波导器件的制造方法 - Google Patents

微小型毫米波波导器件的制造方法 Download PDF

Info

Publication number
WO2013091259A1
WO2013091259A1 PCT/CN2011/084777 CN2011084777W WO2013091259A1 WO 2013091259 A1 WO2013091259 A1 WO 2013091259A1 CN 2011084777 W CN2011084777 W CN 2011084777W WO 2013091259 A1 WO2013091259 A1 WO 2013091259A1
Authority
WO
WIPO (PCT)
Prior art keywords
extrusion
die
temperature
preheating
waveguide device
Prior art date
Application number
PCT/CN2011/084777
Other languages
English (en)
French (fr)
Inventor
吴传志
Original Assignee
成都泰格微波技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都泰格微波技术股份有限公司 filed Critical 成都泰格微波技术股份有限公司
Publication of WO2013091259A1 publication Critical patent/WO2013091259A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/32Lubrication of metal being extruded or of dies, or the like, e.g. physical state of lubricant, location where lubricant is applied
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/002Manufacturing hollow waveguides

Definitions

  • the present invention relates to a method of fabricating a micro-miniature millimeter wave waveguide device.
  • the waveguide is a unique transmission device for microwave systems. Since microwave refers to electromagnetic waves in the range of 300MHz to 300GHz, the original transmission devices suitable for frequencies below 300MHz, such as: double core or cable, capacitor, inductor, etc., are difficult to apply. In the microwave system. At this time, the waveguide device has been able to show its talents.
  • the waveguide is generally a circular, rectangular tubular device and its adapter. It can be processed by cutting, stretching, die-casting, etc., and the surface of the waveguide needs to be sprayed, plated, etc. to increase it. The finish improves the electrical performance of the waveguide.
  • the original microwave communication system generally works in the frequency range of 0.3 GHz to 4 GHz.
  • the waveguide used in the early hundreds of MHz system has a diameter of half a person, a large volume, bulky, inconvenient to use, processing and installation. Still very difficult.
  • the amount of information that needs to be transmitted is increasing, and people have to repeatedly increase the operating frequency of microwave communication systems to adapt to the needs of development.
  • the operating frequency of a new generation of mobile communication base stations has exceeded 5 GHz, especially the current various radar devices, and many operating frequencies even exceed 15 GHz.
  • the increase in the operating frequency means that the wavelength of the transmitted electromagnetic wave is shortened, which inevitably causes the shape of the important transmission component, that is, the waveguide to become smaller and smaller, so that the processing of the waveguide becomes more and more difficult. If the small-sized waveguide still uses traditional machining methods such as cutting, drawing, and die-casting, it will inevitably lead to a large increase in the scrap rate, difficulty in processing, and low productivity. At the same time, as the size of the waveguide decreases, its Q value will be greatly reduced, which will affect the electrical performance of the waveguide and bring down the technical specifications of the overall communication system.
  • the traditional metal parts extrusion manufacturing method is divided into two types: hot extrusion and cold extrusion.
  • hot extrusion processing the parts are heated to above 1000 ° C, the parts have a process of cooling and recrystallization, and at the same time, the heat dissipation of the mold
  • the requirements are very high; the cold extrusion process is purely a severe test of the mold.
  • the deformation of the material of the part is too large, there is considerable stress, and completely eliminating these stresses is time-consuming and laborious, and it is easy to cause relatively large deformation.
  • the conventional waveguide device manufacturing method also has the following problems: the secondary reprocessing is required to ensure the surface finish of the product, the processing process is troublesome; the performance of the product is not satisfactory in all aspects; the loss of the material is large during the manufacturing process, and the material utilization is utilized. Low cost and high cost.
  • the object of the present invention is to solve the deficiencies of the prior art waveguide device manufacturing method, and to provide a novel manufacturing method of the micro-miniature millimeter wave waveguide device, which overcomes the need for the secondary reprocessing process to ensure the surface finish of the product, and the processing process. Trouble; the performance of all aspects of the product is not ideal; in the manufacturing process, the loss of materials, the low material utilization and high cost.
  • the object of the present invention is achieved by the following technical solution: a method for manufacturing a micro-miniature millimeter wave waveguide device, characterized in that it comprises the following steps:
  • the raw material is placed in an electric heating furnace for preheating, and the temperature of the precision blank is monitored by a non-contact thermometer to make the heating temperature between 425 and 435 ° C. After the preheating is completed, the fine blank is taken out on the surface. Spray the mixed lubricant evenly;
  • the extrusion time is 2S
  • the extrusion speed of 10-20m per minute is used in the first one third
  • the second two thirds are used.
  • Extrusion speed of 0.5 to 1 m per minute
  • the die material of the preforming die and the extrusion die according to the present invention is 5CrMnMo, and the punch material is 3Cr2W8V.
  • the non-contact thermometer of the present invention is an infrared thermometer.
  • the hybrid lubricant of the present invention is composed of water-based graphite or oil-based graphite plus cylinder oil plus tin stearate.
  • the processed parts have high dimensional accuracy, accuracy of 8 to 9 grades, high surface finish, and good high frequency characteristics without further processing;
  • the utilization rate of the extruded material is very high, up to 80%, which can minimize the consumption of materials and reduce the cost;
  • the energy consumption of the precise temperature extrusion processing technology is at least 24% lower than that of the traditional chip processing technology, which reduces the cost required for the production process.
  • Figure 1 is a flow chart of a manufacturing method of the present invention
  • Figure 2 shows the mechanical properties of 2A12 aluminum alloy at different temperatures.
  • a method of manufacturing a micro-miniature millimeter wave waveguide device includes the following steps:
  • the rough blank is placed in a preforming mold for cold heading processing to obtain a fine blank with a relatively accurate size.
  • the die material of the preforming die is made of die steel 5CrMnMo, and the punch material is die steel 3Cr2W8V;
  • the non-contact thermometer is an infrared thermometer, and the mixed lubricant is composed of water-based graphite plus cylinder oil plus tin stearate;
  • the extrusion time is 2S
  • the extrusion speed of 10m per minute is used in the first one third
  • 0.5m is used in the last two thirds. Extrusion speed per minute;
  • a method of manufacturing a micro-miniature millimeter wave waveguide device includes the following steps:
  • the rough blank is placed in a preforming mold for cold heading processing to obtain a fine blank with a relatively accurate size.
  • the die material of the preforming die is made of die steel 5CrMnMo, and the punch material is die steel 3Cr2W8V;
  • the raw material is placed in an electric heating furnace for preheating, and the temperature of the precision blank is monitored by a non-contact thermometer to make the heating temperature 435 ° C. After the preheating is completed, the fine blank is taken out, and the mixed lubrication is uniformly sprayed on the surface thereof.
  • the non-contact thermometer is an infrared thermometer, and the mixed lubricant is composed of oil-based graphite plus cylinder oil plus tin stearate;
  • the extrusion time is 2S
  • the extrusion speed of 20m per minute is used in the first one third, and 1m per second in the last two thirds. Minute extrusion speed;
  • a manufacturing method of a micro-miniature millimeter wave waveguide device includes the following steps:
  • the rough blank is placed in a preforming mold for cold heading processing to obtain a fine blank with a relatively accurate size.
  • the die material of the preforming die is made of die steel 5CrMnMo, and the punch material is die steel 3Cr2W8V;
  • the raw material is placed in an electric heating furnace for preheating, and the temperature of the precision blank is monitored by a non-contact thermometer to make the heating temperature 430 ° C. After the preheating is completed, the fine blank is taken out, and the mixed lubrication is uniformly sprayed on the surface thereof.
  • the non-contact thermometer is an infrared thermometer, and the mixed lubricant is composed of water-based graphite plus cylinder oil plus tin stearate;
  • the extrusion time is 2S
  • the extrusion speed of 15m per minute is used in the first one third, and 1m per second in the last two thirds. Minute extrusion speed;
  • Figure 2 is a table showing the mechanical properties of 2A12 aluminum alloy at different temperatures. As can be seen from Figure 2, the 2A12 aluminum alloy has good elongation, yield strength and strain rate when heated to 450 °C.
  • the rapid and slow extrusion speed is adopted, and the high speed of 10-20 m per minute is used in the initial stage of forming to achieve the purpose of improving productivity and refining the grain of the billet;
  • a slow speed of 0.5 to 1 m per minute is used to increase the plasticity of the part and reduce its stress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Of Metal (AREA)

Abstract

一种微小型毫米波波导器件的制造方法,包括以下步骤:选取合格的铝合金原材料;切割成粗坯料;加工成精坯料;采用热铁辐射的方法将挤压模具预热至440〜460°C,取出后喷涂上润滑剂;将精坯料置入电热炉中预热至425〜435°C,取出后喷涂上润滑剂;再将精坯料放入挤压模具中进行温挤压,挤压时间为2s,前三分之一的时间内采用10〜20m/分钟的速度,后三分之二的时间内采用0.5〜1m/分钟的速度;退火、冷却、后续加工获得成品。由于采用精确温挤压技术,加工出来的零件尺寸精度高,表面光洁度高;制造流程清晰、简单,生产效率高;还具有强度高、耗能少、材料利用率高和成本低等特点。

Description

微小型毫米波波导器件的制造方法 技术领域
本发明涉及一种微小型毫米波波导器件的制造方法。
背景技术
波导是微波系统特有的传输器件,由于微波是指在300MHz~300GHz范围内的电磁波,原有的适用于300MHz频率以下的传输器件,如:双芯或是电缆、电容、电感等,都难以应用在微波系统。这个时候,波导器件就得以大显身手了。波导一般是圆形、矩形的管状器件以及它的转接头等,它的加工可以采用切削、拉伸、压铸等机械方式,加工完毕还需要对波导表面进行喷涂、电镀等再加工,以增加它的光洁度提高波导的电气性能。
原有的微波通信系统一般都是工作在0.3GHz~4GHz的频段,在早初几百MHz系统所使用的波导其直径有半人多高,体积庞大,笨重、使用不便不说,加工和安装还十分困难。随着传输频道越来越多,需要传输的信息量越来越大,人们不得不一再提高微波通信系统的工作频率使之适应发展的需求。目前新一代的移动通信基站工作频率已经超过了5GHz,特别是现在的各种雷达设备,很多的工作频率甚至超过了15GHz。工作频率的提高就意味着传输的电磁波波长的缩短,势必造成其中重要的传输部件即波导的外形越来越小,这样一来,波导的加工越来越困难。小尺寸的波导如果仍然沿用切削、拉伸、压铸等传统的机械加工方式,势必会使废品率大大增加,加工难度大,生产率低。同时,随着波导尺寸的减小,其Q值会大幅降低,这些都会影响波导的电气性能,带来整体通信系统技术指标的降低。
传统的金属零件挤压制造方法分为热挤压和冷挤压两种,热挤压加工情况下,零件要被加热到1000℃以上,零件有冷却再结晶的过程,同时,对模具的散热要求很高;冷挤压加工过程纯粹就是对模具的严苛考验,同时,由于零件材料的变形太大,具有相当大的应力存在,完全消除这些应力费时费力,容易造成比较大的变形。此外,传统的波导器件制造方法还存在以下问题:需要经过二次再加工处理才能保证产品表面的光洁度,加工过程麻烦;产品各方面性能不理想;制造过程中,对材料的损耗大,材料利用率低和成本高等缺点。
技术问题
本发明的目的在于解决现有波导器件制造方法的不足,提供一种新型的微小型毫米波波导器件的制造方法,克服传统制造方法需要经过二次再加工处理才能保证产品表面的光洁度,加工过程麻烦;产品各方面性能不理想;制造过程中,对材料的损耗大,材料利用率低和成本高等缺点。
技术解决方案
本发明的目的是通过以下技术方案来实现的:微小型毫米波波导器件的制造方法,其特征在于:它包括以下步骤:
(1)取合格的2A12铝合金棒料作为原材料;
(2)将铝合金棒料原材料置于切割机上进行切割,得到粗坯料;
(3)将粗坯料置于预成型模具中进行冷镦加工,获得尺寸较为精确的精坯料;
(4)对挤压模具采用热铁辐射的方法进行预热,用温度测试仪监测挤压模具的温度,使加热温度在440~460℃之间,预热完成后取出挤压模具,在其表面均匀喷涂混合型润滑剂;
(5)将精坯料置入电热炉中进行预热,用非接触式测温仪监测精坯料的温度,使加热温度在425~435℃之间,预热完成后取出精坯料,在其表面均匀喷涂混合型润滑剂;
(6)将精坯料放入挤压模具进行温挤压,挤压时间为2S,前三分之一的时间内采用10~20m每分钟的挤压速度,后三分之二的时间内采用0.5~1m每分钟的挤压速度;
(7)挤压完成后进行退火、冷却,对零件进行钻孔和消除飞边等后续加工,最终获得成品波导器件。
本发明所述的预成型模具和挤压模具的凹模材料采用5CrMnMo,凸模材料采用3Cr2W8V。
本发明所述的非接触式测温仪为红外测温仪。
本发明所述的混合型润滑剂由水基石墨或油基石墨加上汽缸油再加上硬脂酸锡组合而成。
有益效果
本发明的有益效果是:
(1)采用精确温挤压技术,加工出来的零件尺寸精度高,精度可达8~9级,表面光洁度高,无需再进行加工处理就具有很好的高频特性;
(2)制造流程清晰、简单,生产效率高;
(3)挤压过程在三向压应力的作用下,变形后的材料组织结构致密,而且具有连续的纤维流向,因而产品的强度大大提高;
(4)挤压件材料的利用率很高,可达80%以上,能最大程度上减小材料的消耗、降低成本;
(5)生产同样一个零件,该精确温挤压加工技术的耗能要比传统切屑加工技术耗能节省至少在24%以上,降低了生产过程所需的成本。
附图说明
图1 为本发明的制造方法流程图;
图2 为2A12铝合金在不同温度下的机械性能表。
本发明的实施方式
下面结合附图和实施例进一步描述本发明的技术方案:
【实施例1】如图1所示,微小型毫米波波导器件的制造方法,它包括以下步骤:
(1)取合格的2A12铝合金棒料作为原材料;
(2)将铝合金棒料原材料置于切割机上进行切割,得到粗坯料;
(3)将粗坯料置于预成型模具中进行冷镦加工,获得尺寸较为精确的精坯料,预成型模具的凹模材料采用模具钢5CrMnMo,凸模材料采用模具钢3Cr2W8V;
(4)对挤压模具采用热铁辐射的方法进行预热,用温度测试仪监测挤压模具的温度,使加热温度440℃,预热完成后取出挤压模具,在其表面均匀喷涂混合型润滑剂,其中挤压模具的凸模和凹模也采用和预成型模具相同的模具钢;
(5)将精坯料置入电热炉中进行预热,用非接触式测温仪监测精坯料的温度,使加热温度425℃,预热完成后取出精坯料,在其表面均匀喷涂混合型润滑剂,所述的非接触式测温仪为红外测温仪,所述的混合型润滑剂由水基石墨加上汽缸油再加上硬脂酸锡组合而成;
(6)将精坯料放入挤压模具进行温挤压,挤压时间为2S,前三分之一的时间内采用10m每分钟的挤压速度,后三分之二的时间内采用0.5m每分钟的挤压速度;
(7)挤压完成后进行退火、冷却,对零件进行钻孔和消除飞边等后续加工,最终获得成品波导器件。
【实施例2】如图1所示,微小型毫米波波导器件的制造方法,它包括以下步骤:
(1)取合格的2A12铝合金棒料作为原材料;
(2)将铝合金棒料原材料置于切割机上进行切割,得到粗坯料;
(3)将粗坯料置于预成型模具中进行冷镦加工,获得尺寸较为精确的精坯料,预成型模具的凹模材料采用模具钢5CrMnMo,凸模材料采用模具钢3Cr2W8V;
(4)对挤压模具采用热铁辐射的方法进行预热,用温度测试仪监测挤压模具的温度,使加热温度460℃之间,预热完成后取出挤压模具,在其表面均匀喷涂混合型润滑剂,其中挤压模具的凸模和凹模也采用和预成型模具相同的模具钢;
(5)将精坯料置入电热炉中进行预热,用非接触式测温仪监测精坯料的温度,使加热温度435℃,预热完成后取出精坯料,在其表面均匀喷涂混合型润滑剂,所述的非接触式测温仪为红外测温仪,所述的混合型润滑剂由油基石墨加上汽缸油再加上硬脂酸锡组合而成;
(6)将精坯料放入挤压模具进行温挤压,挤压时间为2S,前三分之一的时间内采用20m每分钟的挤压速度,后三分之二的时间内采用1m每分钟的挤压速度;
(7)挤压完成后进行退火、冷却,对零件进行钻孔和消除飞边等后续加工,最终获得成品波导器件。
【实施例3】如图1所示,微小型毫米波波导器件的制造方法,它包括以下步骤:
(1)取合格的2A12铝合金棒料作为原材料;
(2)将铝合金棒料原材料置于切割机上进行切割,得到粗坯料;
(3)将粗坯料置于预成型模具中进行冷镦加工,获得尺寸较为精确的精坯料,预成型模具的凹模材料采用模具钢5CrMnMo,凸模材料采用模具钢3Cr2W8V;
(4)对挤压模具采用热铁辐射的方法进行预热,用温度测试仪监测挤压模具的温度,使加热温度450℃,预热完成后取出挤压模具,在其表面均匀喷涂混合型润滑剂,其中挤压模具的凸模和凹模也采用和预成型模具相同的模具钢;
(5)将精坯料置入电热炉中进行预热,用非接触式测温仪监测精坯料的温度,使加热温度430℃,预热完成后取出精坯料,在其表面均匀喷涂混合型润滑剂,所述的非接触式测温仪为红外测温仪,所述的混合型润滑剂由水基石墨加上汽缸油再加上硬脂酸锡组合而成;
(6)将精坯料放入挤压模具进行温挤压,挤压时间为2S,前三分之一的时间内采用15m每分钟的挤压速度,后三分之二的时间内采用1m每分钟的挤压速度;
(7)挤压完成后进行退火、冷却,对零件进行钻孔和消除飞边等后续加工,最终获得成品波导器件。
图2为2A12铝合金在不同温度下的机械性能表。 从图2可见,2A12铝合金在加热到450℃时,具有良好的延伸率、屈服强度和应变速率。
在挤压成型的过程中,采取先快速后慢速的挤压速度,在成形的初期是用10~20m每分钟的高速,可以达到提高生产率和细化坯料晶粒的目的;在成形的后期采用0.5~1m每分钟的慢速,以提高零件的塑性并降低它的应力。

Claims (1)

  1. 微小型毫米波波导器件的制造方法,其特征在于:它包括以下步骤:
    (1)取合格的2A12铝合金棒料作为原材料;
    (2)将铝合金棒料原材料置于切割机上进行切割,得到粗坯料;
    (3)将粗坯料置于预成型模具中进行冷镦加工,获得尺寸较为精确的精坯料;
    (4)对挤压模具采用热铁辐射的方法进行预热,用温度测试仪监测挤压模具的温度,使加热温度在440~460℃之间,预热完成后取出挤压模具,在其表面均匀喷涂混合型润滑剂;
    (5)将精坯料置入电热炉中进行预热,用非接触式测温仪监测精坯料的温度,使加热温度在425~435℃之间,预热完成后取出精坯料,在其表面均匀喷涂混合型润滑剂;
    (6)将精坯料放入挤压模具进行温挤压,挤压时间为2S,前三分之一的时间内采用10~20m每分钟的挤压速度,后三分之二的时间内采用0.5~1m每分钟的挤压速度;
    (7)挤压完成后进行退火、冷却,对零件进行钻孔和消除飞边等后续加工,最终获得成品波导器件。
    [2] 根据权利要求1所述的微小型毫米波波导器件的制造方法,其特征在于:所述的预成型模具和挤压模具的凹模材料采用5CrMnMo,凸模材料采用3Cr2W8V。
    [3] 根据权利要求1所述的微小型毫米波波导器件的制造方法,其特征在于:所述的非接触式测温仪为红外测温仪。
    [4] 根据权利要求1所述的微小型毫米波波导器件的制造方法,其特征在于:所述的混合型润滑剂由水基石墨或油基石墨加上汽缸油再加上硬脂酸锡组合而成。
PCT/CN2011/084777 2011-12-23 2011-12-27 微小型毫米波波导器件的制造方法 WO2013091259A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110438084.3 2011-12-23
CN2011104380843A CN102513393A (zh) 2011-12-23 2011-12-23 微小型毫米波波导器件的制造方法

Publications (1)

Publication Number Publication Date
WO2013091259A1 true WO2013091259A1 (zh) 2013-06-27

Family

ID=46284603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084777 WO2013091259A1 (zh) 2011-12-23 2011-12-27 微小型毫米波波导器件的制造方法

Country Status (2)

Country Link
CN (1) CN102513393A (zh)
WO (1) WO2013091259A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116135358A (zh) * 2023-03-13 2023-05-19 山东普瑞而机械制造有限公司 一种齿轮的温挤压制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761311B (zh) * 2012-07-20 2014-11-19 深圳市通创通信有限公司 毫米波电路微组装方法
CN103331580A (zh) * 2013-06-28 2013-10-02 大丰市中德精锻件有限公司 柴油机双燃料混合器的铝合金整体毛坯锻造工艺
CN110061338B (zh) * 2019-05-19 2021-01-01 苏州市浩海精密机械有限公司 微波隔离器腔体的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205231A (ja) * 1989-02-02 1990-08-15 Mitsui Eng & Shipbuild Co Ltd 導波管の製造方法
US5990768A (en) * 1996-11-28 1999-11-23 Matsushita Electric Industrial Co., Ltd. Millimeter waveguide and a circuit apparatus using the same
CN101037743A (zh) * 2007-05-09 2007-09-19 东北轻合金有限责任公司 一种高精度铝合金波导管及其制造方法
CN101068053A (zh) * 2007-04-29 2007-11-07 东北轻合金有限责任公司 扁矩形铝合金波导管的制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136425C1 (ru) * 1998-04-01 1999-09-10 Открытое акционерное общество "Всероссийский институт легких сплавов" Способ изготовления полых деталей из алюминиевых сплавов
CN101020197B (zh) * 2006-10-09 2010-09-01 北京科技大学 智能化无模拉拔成形设备及其工艺
CN100998997A (zh) * 2006-12-20 2007-07-18 中国电子科技集团公司第十四研究所 供货态铝合金超塑挤压成型的工艺方法
CN101670385B (zh) * 2009-08-31 2011-01-19 哈尔滨工业大学 一种脉冲电流辅助挤压成形装置及挤压成形方法
CN102059266A (zh) * 2010-11-23 2011-05-18 张文丛 一种铝合金型材挤压变形方法
CN102189145B (zh) * 2011-03-04 2013-07-31 中北大学 一种铝合金枝芽类壳体零件多向挤压成形工艺及模具
CN102228933B (zh) * 2011-04-27 2012-11-21 哈尔滨工业大学 电流辅助柔性压辊拉形钛合金的方法及压辊拉形的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205231A (ja) * 1989-02-02 1990-08-15 Mitsui Eng & Shipbuild Co Ltd 導波管の製造方法
US5990768A (en) * 1996-11-28 1999-11-23 Matsushita Electric Industrial Co., Ltd. Millimeter waveguide and a circuit apparatus using the same
CN101068053A (zh) * 2007-04-29 2007-11-07 东北轻合金有限责任公司 扁矩形铝合金波导管的制造方法
CN101037743A (zh) * 2007-05-09 2007-09-19 东北轻合金有限责任公司 一种高精度铝合金波导管及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116135358A (zh) * 2023-03-13 2023-05-19 山东普瑞而机械制造有限公司 一种齿轮的温挤压制造方法
CN116135358B (zh) * 2023-03-13 2024-05-07 山东普瑞而机械制造有限公司 一种齿轮的温挤压制造方法

Also Published As

Publication number Publication date
CN102513393A (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
CN105108456B (zh) 新能源汽车驱动电机轴的制造方法
WO2013091259A1 (zh) 微小型毫米波波导器件的制造方法
CN108746447A (zh) 一种高强耐蚀铝合金锻件制造工艺
CN104060203B (zh) 一种合金挤压棒材的生产工艺
CN100404196C (zh) 一种具有特殊层厚比例的铜/钼/铜电子封装复合材料的制备方法
CN102294376B (zh) 一种铅黄铜的连续挤压方法和设备
CN101502872A (zh) 一种短流程无氧铜带生产方法
CN104384701B (zh) 基于感应加热及电磁成形的镁合金/碳钢管件复合连接方法
CN102029381A (zh) 一种块体金属玻璃或其复合材料工件的加工成型方法
CN101927341B (zh) 一种霞石微晶玻璃与金属粉末复合材料的制备方法
CN103230955A (zh) 一种轻合金喇叭形管件热挤压成形模具
CN1408485A (zh) 铜-钼-铜三层复合板的制造方法
CN102717078A (zh) 一种高密度高性能钨合金旋锻棒工艺
CN103878551A (zh) 一种高强度铜镍硅引线框架材料的生产方法
CN101549459B (zh) 单体液压支柱活塞生产工艺
CN103934650A (zh) 一种活塞冷挤压成型工艺
CN101862949A (zh) 反挤压锻制方法
CN103567449A (zh) 粉末冶金联合收割机分离爪及其制造方法
CN101462167A (zh) 钼合金薄板生坯的辊轧制备方法
CN103406533A (zh) 一种粉末冶金及其制备方法
CN103230951A (zh) 一种轻合金喇叭形管件热挤压成形方法
CN106111728A (zh) 一种无缝管热挤压工艺
CN114654168A (zh) 一种航空航天用高锁螺母加工工艺
CN1959060A (zh) 一种制造套管接箍的工艺方法
CN111036882A (zh) 一种异型铜排的加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877675

Country of ref document: EP

Kind code of ref document: A1