WO2013089478A2 - 신규 o-포스포세린 설프하이드릴라아제를 이용하여 시스테인 또는 이의 유도체를 생산하는 방법 - Google Patents

신규 o-포스포세린 설프하이드릴라아제를 이용하여 시스테인 또는 이의 유도체를 생산하는 방법 Download PDF

Info

Publication number
WO2013089478A2
WO2013089478A2 PCT/KR2012/010900 KR2012010900W WO2013089478A2 WO 2013089478 A2 WO2013089478 A2 WO 2013089478A2 KR 2012010900 W KR2012010900 W KR 2012010900W WO 2013089478 A2 WO2013089478 A2 WO 2013089478A2
Authority
WO
WIPO (PCT)
Prior art keywords
opss
cysteine
ops
present
enzyme
Prior art date
Application number
PCT/KR2012/010900
Other languages
English (en)
French (fr)
Other versions
WO2013089478A3 (ko
Inventor
송병철
장진숙
조재현
김혜원
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR122019023670-4A priority Critical patent/BR122019023670B1/pt
Priority to US14/365,571 priority patent/US9243268B2/en
Priority to ES12858268.1T priority patent/ES2634683T3/es
Priority to RU2014125851/10A priority patent/RU2579689C1/ru
Priority to EP12858268.1A priority patent/EP2792748B1/en
Priority to JP2014547104A priority patent/JP5860550B2/ja
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to CA2859125A priority patent/CA2859125C/en
Priority to BR112014014762-0A priority patent/BR112014014762B1/pt
Priority to CN201280067058.7A priority patent/CN104039963B/zh
Publication of WO2013089478A2 publication Critical patent/WO2013089478A2/ko
Publication of WO2013089478A3 publication Critical patent/WO2013089478A3/ko
Priority to PH12014501353A priority patent/PH12014501353B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01065O-Phosphoserine sulfhydrylase (2.5.1.65)

Definitions

  • the present invention relates to a method for producing cysteine or derivatives thereof using novel O-phosphoserine sulfhydrylase.
  • Cysteine is an important amino acid in sulfur metabolism of all living organisms, and is used as a precursor for coenzyme A biosynthesis as well as in the synthesis of proteins in vivo, such as hair keratin, glutathione, biotin, methionine and other sulfur-containing metabolites. Cysteine biosynthesis is also known to be closely related to the biosynthesis of other amino acids such as serine, glycine, and methionine. Industrially, cysteines and derivatives thereof are used in the pharmaceutical field (treatment of bronchial diseases), in the cosmetic field (components of hair shampoos and permanent wave lotions) and in the food field (antioxidants, flavor enhancers and dough aids).
  • cysteine has been produced by chemical acid-hydrolysis process mainly based on human hair or animal feathers.
  • the yield of cysteine extracted from hair is very low (7 ⁇ 8%), and excessive environmental pollution waste is generated by using hydrochloric acid and sulfuric acid used during the extraction process.
  • using hair as a raw material can cause disgust to consumers. Due to these problems, the demand for development of environment-friendly cysteine production process has been increased, and thus a method for producing cysteine using microorganisms has been developed.
  • cysteine using microorganisms 1) First, a method of biologically converting D, L-ATC using microorganisms is known. However, this method has difficulty in industrialization due to low solubility of the precursors D and L-ATC. 2) Another method is known to produce cysteine by direct fermentation method using E. coli. This method can show intracellular toxicity when excessive accumulation of cysteine in microorganisms, and there is a limit in producing high concentrations of cysteine using microorganisms.
  • OAS O-acetyl-serine
  • OASS O-acetyl-serine sulfhydrylase
  • cysteine can be produced using OASS from microorganisms accumulating OAS and various sulfur donors (US Pat. No. 6,579,705).
  • OPS O-phosphoserine sulfhydrylase
  • the present inventors have made intensive efforts to develop a method for producing cysteine with high yield, and as a result, have identified a new OPSS having the activity of synthesizing cysteine using OPS as a substrate from various microorganisms, the new OPSS is known trichomonas exhaust blade
  • the present invention was completed by confirming that cysteine synthesis activity was increased than that of the OPSS of the lease.
  • OPS O-phosphoserine
  • OPSS novel O-phosphoserine sulfhydrylase
  • O-phosphoserine sulfhydrylase OPSS
  • OPSS O-phosphoserine sulfhydrylase
  • Figure 1 shows the results of measuring the cysteine conversion at 10 minutes, 30 minutes and 60 minutes using three types of OPSS.
  • Figure 2 shows the results of measuring the cysteine conversion for each pH to confirm the pH sensitivity of Dal-OPSS.
  • Figure 3 shows the results of measuring the cysteine conversion at 10 minutes, 30 minutes and 60 minutes using OPS fermentation broth and sulfide as three substrates using OPSS.
  • Figure 4 shows the results of measuring the cysteine conversion for each temperature of Dal-OPSS.
  • the present invention provides O-phosphoserine (O-phosphoserine sulfhydrylase (OPSS) having an amino acid sequence set forth in SEQ ID NO: 1 or 2 or O-phosphoserine (O) in the presence of a microorganism expressing it It provides a method for producing cysteine or derivatives thereof comprising the step of preparing a cysteine or derivatives thereof by reacting -phosphoserine, OPS) with a sulfide.
  • OPS O-phosphoserine sulfhydrylase
  • O-phosphoserine sulfhydrylase is to provide a thiol group (SH group) to O-phosphoserine (OPS) In other words, it refers to an enzyme having an activity of converting OPS to cysteine.
  • the OPSS may be an amino acid sequence set forth in SEQ ID NO: 1 or 2, which is OPSS newly identified by the present inventors.
  • the amino acid sequence set forth in SEQ ID NO: 1 or 2 has the activity of OPSS, and can be modified to some extent as long as it maintains the activity.
  • amino acid sequences that maintain at least 70%, preferably at least 80%, more preferably at least 90%, most preferably at least 95% homology by such artificial modifications are desired in the present invention. As long as it retains activity, it will be readily understood that it is equivalent to the amino acid sequence of the present invention.
  • cysteine synthesis activity based on purified OPS and OPS fermentation broth using Dac-OPSS having an amino acid sequence of SEQ ID NO: 1 and Dal-OPSS having an amino acid sequence of SEQ ID NO: 2 was evaluated. As a result, it was confirmed that the high cysteine conversion rate compared to the control Tva-OPSS, OPSS having the amino acid sequence of SEQ ID NO: 1 or 2 can be produced in high yield cysteine (Fig. 1, Fig. 3, Table 3 and Table 4).
  • homology refers to the percent sequence similarity between two polypeptide moieties. Sequence similarity from one moiety to another may be determined by known techniques. For example, homology can be determined by aligning sequence information and directly aligning sequence information between two polypeptide molecules using readily available computer programs. Homology can also be determined by hybridizing polynucleotides under conditions of stable double stranding between homologous regions, followed by digestion with single-strand-specific nucleases to determine the size of the digested fragments.
  • sequence similarity refers to the degree of identity or correspondence between the base sequence and amino acid sequence of a protein that may or may not share a common evolutionary origin.
  • two amino acid sequences have a polypeptide match of at least 21% (preferably at least about 50%, most preferably about 75%, 90%, 95%, 96%, 97) for a given length of amino acid sequence. % Or 99%), are "substantially homologous” or “substantially similar.”
  • Substantially homologous sequences can be identified using standard software used in data banks or by comparing the sequences, for example by hybridization experiments used under stringent conditions defined for a particular system. Appropriate hybridization conditions to be defined are within the technical scope (see for example Sambrook et al., 1989, infra).
  • cyste conversion refers to a reaction for converting OPS, which is a substrate, into a product cysteine, ie, a conversion of OPS to cysteine to obtain cysteine by the catalytic action of OPSS.
  • the term “cysteine conversion” also means the rate at which OPS is converted to cysteine.
  • OPSS according to the present invention is shorter than the metabolic pathway using OAS because it undergoes a process of converting OPS to cysteine, and is advantageous for precursor production, unlike the conventional OPSS of coenzymes (mec + and cys0 of M. tuberculosis) Without it, there is an advantage in producing cysteine by OPSS itself.
  • OPSS of the present invention may be encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 9 to 12.
  • the microorganism expressing the OPSS of the present invention may be a microorganism in which the microorganism expressing the OPSS of the present invention or the base sequence encoding the OPSS of the present invention is introduced in the form of a vector or inserted into a chromosome.
  • the microorganism expressing the OPSS may further enhance the activity of the OPSS.
  • vector refers to any medium for cloning and / or transferring bases using a host cell.
  • the vector may be a replica that other DNA fragments can bind to and result in replication of the bound fragments.
  • Replication unit refers to any genetic unit (e.g., plasmid, phage, cosmid, chromosome, virus) that functions as a self-unit of DNA replication in vivo, i.e., is replicable by its own regulation. .
  • the microorganism expressing the OPSS in the present invention may be a microorganism obtained by the method of transforming the vector containing the OPSS, the transformation method includes any method for introducing a base into the cell, known in the art Suitable standard techniques can be selected and performed. Examples include electroporation, calcium phosphate co-precipitation, retroviral infection, microinjection, DEAE-dextran, and cationic liposomes. cationic liposome), and the like.
  • the microorganisms expressing the OPSS can be both prokaryotic or eukaryotic, preferably enterobacteria and microorganisms or coryneform microorganisms, more preferably Escherichia microorganisms, Serratia microorganisms, and the like. E. coli.
  • the microorganisms expressing the newly isolated OPSS can be cultured to separate the OPSS from the culture solution. Any method commonly known in the art may be used, and in a specific embodiment of the present invention, a method of culturing microorganisms using a pET expression system manual (Novagen Inc.) and separating Ni-NTA columns was used.
  • the OPS used as a substrate of the new OPSS may use not only purified OPS commercially available, but also OPS fermentation broth prepared through fermentation.
  • the purified OPS can be purchased, for example, under the P0878 product number from Sigma-Aldrich or CAS407-41-0 product number from Wako.
  • the OPS fermentation broth is a microorganism having OPS production capacity, for example, Accession No. KCCM 11103P (CA07-0022 / pCL-prmf-serA * (G336V) -serC; see Republic of Korea Patent Publication No. 10-2012-0041115) It can be prepared by culturing the deposited microorganisms.
  • sulfide refers to a compound of sulfur and a more positive element, and is a compound used for preparing cysteine or a derivative thereof for the purpose of the present invention.
  • the sulfides are provided in the form of a liquid or a gas due to the difference in pH, pressure, and solubility as well as the solids commonly used in the art, so that sulfides (sulfide, S 2- ), thiolsulfate (S 2 O 3) Any sulfide that can be converted to a thiol group (SH group) in the form of 2- ) and the like can be used.
  • Na 2 S, H 2 S, NaSH, (NH 4 ) 2 S and S 2 O 3 can be used.
  • Na 2 S was used as the sulfur source.
  • the reaction of the present invention is to provide one thiol group in one OPS reactor to produce one cysteine or cysteine derivative, and the amount of sulfide added in the reaction is not limited thereto, but is 0.1 to 0.1 mole of the OPS molar concentration added during the reaction. 3 times is preferable and 1 to 2 times are more preferable.
  • the method for allowing the OPSS of the present invention to enable optimal enzyme conversion is applicable to various methods well known in the art. Examples of such methods include, but are not limited to, methods of characterizing OPSS enzymes, preferably OPSS enzyme optimal activity temperature, pH, presence and concentration of substrate inhibition, and thermal stability of OPSS enzyme itself. Methods for determining the optimal conditions of the enzyme conversion reaction, in particular, the optimal OPSS enzyme concentration used in the enzyme conversion reaction, the optimal balance concentration of the substrates used, the preference for sulfides used in the enzyme conversion reaction in addition to the OPS substrate, conversion reaction Buffer affinity used in the experiment, ion influence caused by this, and presence of coenzymes and determination of optimal concentration.
  • pyridoxal-5'-phosphate (PLP), dithiothreitol (DTT), or PLP and DTT may be added simultaneously as additional cofactors.
  • the cofactors can increase the efficiency in the cysteine conversion reaction, and in one specific embodiment of the present invention, it was confirmed that the cysteine conversion was increased when 0.2 mM PLP, 25 mM DTT, or two cofactors were added simultaneously (Table 5).
  • the PLP is not limited thereto, but may preferably be added in an amount of 0.001 to 2 mM, more preferably 0.01 to 1 mM.
  • the DTT is not limited thereto but preferably 0.001 to 100 mM may be added, and more preferably 0.01 to 50 mM may be added.
  • the method of the present invention may further comprise the step of separating and purifying the cysteine or derivatives thereof produced through the reaction step.
  • the desired cysteine can be separated and purified from the reaction solution by using a suitable method known in the art.
  • cysteine derivatives from cysteines produced by the methods of the present invention by known chemical synthesis methods.
  • Cysteine can be easily synthesized with N-acetylcysteine (NAC) by reacting with an acetylation agent, and with S-Carboxymetylcysteine (SCMC) by reacting with haloacetic acid under basic conditions.
  • NAC N-acetylcysteine
  • SCMC S-Carboxymetylcysteine
  • the cysteine derivative is mainly used as a pharmaceutical raw material for the treatment of antitussives, cough relieving agents, bronchitis, bronchial asthma and sore throat.
  • OPSS derived from Trichomonas vaginalis shows activity without coenzyme and shows optimal activity at 37 ° C, unlike OPSS of Aeropyrum pernix which shows optimal activity at 60 ° C. Reported.
  • the new OPSS has the amino acid sequences of SEQ ID NOs: 1 and 2, respectively, named Dac-OPSS and Dal-OPSS.
  • the novel OPSS having the amino acid sequence of SEQ ID NO: 1 and 2 is encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 9 and 10, respectively.
  • the two OPSS is not derived from E. coli, it may not be easy to express in E. coli.
  • the codon usage of the newly isolated OPSS was optimized. This was performed using Jcat, a codon usage optimization tool (www.jcat.de).
  • Jcat a codon usage optimization tool
  • SEQID Nos. 11 and 12 with optimal codon usage frequencies of SEQ ID NOs: 9 and 10 for the polynucleotide were obtained.
  • the polynucleotides having the nucleotide sequences of SEQ ID NOs: 11 and 12 were synthesized by providing the nucleotide sequences to Genotech Corp., and were supplied in the form of a vector through Topo TA cloning.
  • a pET28a (novagen) vector system was constructed, which is commonly used for enzyme expression.
  • a total of three OPSS enzyme expression vector names and each template and primer used to prepare the vectors are shown in Table 1 below.
  • Gene fragments and vector pET28a obtained by amplifying the respective OPSS genes by PCR and the template and primer combinations were treated with Nde I and Hind III restriction enzymes (37 ° C., 3 hours reaction). Each gene fragment was then inserted into the pET28a vector using conventional ligation techniques. Production of each enzyme expression vector and gene sequence were confirmed by sequencing technique.
  • the prepared enzyme expression vector was introduced into E. coli with the DE3 genotype to prepare a strain capable of obtaining a total of three OPSS enzymes.
  • Table 1 Enzyme Name Vector icon Used mold Primer used Tva-OPSS pET28a-Tva-OPSS Synthetic DNA SEQ ID NOs: 3 (F) and 4 (R) Dac-OPSS pET28a-Dac-OPSS Synthetic DNA SEQ ID NOs: 5 (F) and 6 (R) Dal-opss pET28a-Dal-OPSS Synthetic DNA SEQ ID NOs: 7 (F) and 8 (R)
  • Cysteine synthesis activity of all three OPSS enzymes was measured to determine whether OPS-based cysteine was synthesized. CysM enzyme assay conditions and methods are reported in the literature (Mino K and Ishikawa K, FEBS letters, 551: 133-138, 2003; Burns KE, Baumgart S, Dorrestein PC, Zhai H, McLafferty FW and Begley TP). , J. Am. Chem. Soc., 127: 11602-11603, 2005; Westrop GD, Goodall G, Mottram JC and Coombs GH, J. Biol. Chem., 281: 25062-25075, 2006). Cited. Conditions for measuring enzyme activity are shown in Table 2 below.
  • the reaction solution except for the enzyme was incubated at 37 ° C. for 5 minutes, and then 50 ⁇ g of purified OPSS was added thereto and reacted at 37 ° C., 100 ml of the enzyme reaction solution was mixed with time and mixed with 100 ml of 33.2% TCA to stop the reaction. .
  • the concentration of cysteine in the enzyme reaction solution was quantified by measuring absorbance at OD 560 wavelength by Gaitonde method.
  • Figure 1 and Table 3 shows the cysteine synthesis activity of the three OPSS, the cysteine synthesis titers of the OPSS was evaluated by comparing the cysteine conversion rate by reaction time.
  • Tva-OPSS has the activity of synthesizing cysteine using OPS as a substrate.
  • the cysteine synthesis activity of the new OPSS Dac-OPSS and Dal-OPSS was confirmed for the first time.
  • the use of Dac-OPSS and Dal-OPSS increased the cysteine conversion, especially in the case of Dal-OPSS was confirmed that the activity is significantly high.
  • the highest activity was shown between pH 7.0 ⁇ 7.4, the highest activity condition is Tris-HCl (pH 7.0), Na-citrate, almost no activity in Na-carbonate buffer .
  • the optimum pH for each buffer was different.
  • the serB and defect in E. coli strain W3110, a mutant serA * KCCM is introduced with the OPS-producing ability 11103P (CA07-0022 / pCL-prmf- serA * (G336V) - serC; Republic of Korea Patent Publication No. 10-2012-0041115 No. ) was plated in MMYE solid medium and incubated overnight in a 30 ° C. incubator. Strains incubated overnight in MMYE solid medium were inoculated with one platinum in 25 ml titer medium and then incubated for 48 hours in an incubator at 30 ° C. and 200 rpm.
  • the OPS fermentation broth prepared by the above method was used to determine the cysteine conversion rate of Tva-OPSS, Dac-OPSS and Dal-OPSS.
  • a cysteine conversion reaction was performed at 37 ° C. with 50 ⁇ g / ml of each OPSS concentration under 5.4 mM OPS fermentation broth, 10 mM Na 2 S, and 0.2 mM PLP.
  • the resulting cysteine was quantified by the Gaitonde method.
  • 3 and Table 4 show the cysteine conversion rate of the three OPSS at 37 °C, the highest conversion rate when using the Dal-OPSS of the three OPSS in the conversion reaction conditions.
  • the cysteine conversion rate according to the presence of PLP (pyridoxal-5'-phosphate) and DTT (dithiothreitol) was confirmed using Dal-OPSS.
  • PLP pyridoxal-5'-phosphate
  • DTT dithiothreitol
  • the cysteine conversion in the experimental group to which PLP and DTT was added was increased by 2.4 times compared to the control group to which PLP and DTT were not added.
  • the cysteine conversion was increased also in the experimental group to which PLP or DTT was added alone. That is, it was confirmed that PLP and DTT act positively on the reaction upon cysteine conversion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 신규 O-포스포세린 설프하이드릴라아제(O-phosphoserine sulfhydrylase)를 이용하여 시스테인 또는 이의 유도체를 생산하는 방법에 관한 것이다. 본 발명에 따라 신규 O-포스포세린 설프하이드릴라아제(O-phosphoserine sulfhydrylase, OPSS)를 이용하여 O-포스포세린을 기질로 하여 시스테인을 생산하는 방법을 제공함으로써, 이를 이용하여 간편한 방법으로 고수율로 친환경적인 시스테인을 용이하게 생산할 수 있다는 이점이 있다.

Description

신규 O-포스포세린 설프하이드릴라아제를 이용하여 시스테인 또는 이의 유도체를 생산하는 방법
본 발명은 신규 O-포스포세린 설프하이드릴라아제(O-phosphoserine sulfhydrylase)를 이용하여 시스테인 또는 이의 유도체를 생산하는 방법에 관한 것이다.
시스테인은 모든 생물체의 황 대사에 있어서 중요한 아미노산으로 모발의 케라틴 등 생체 내 단백질, 글루타치온, 바이오틴, 메치오닌 및 기타 황을 함유한 대사산물의 합성에 사용될 뿐만 아니라 코엔자임A 생합성의 전구물질로 사용된다. 또한, 시스테인 생합성은 세린, 글리신, 메치오닌 등 다른 아미노산의 생합성과 밀접한 관계가 있는 것으로 알려져 있다. 산업적으로, 시스테인 및 그 유도체는 제약분야(기관지질환 치료), 화장품 분야(헤어샴푸 및 퍼머웨이브로션의 성분) 및 식품분야(항산화제, 풍미증진제 및 반죽보조제)에 사용되고 있다.
지금까지 시스테인은 주로 사람의 머리카락이나, 동물의 깃털 등을 원료로 하여 화학적인 산-가수분해공정으로 생산되어 왔다. 그러나 머리카락으로부터 추출하는 시스테인의 생성 수율은 7~8%로 매우 낮으며, 추출과정 중 사용하는 염산과 황산의 사용으로 환경오염 폐기물이 과량 생성된다. 또한 원재료로 머리카락을 이용함으로 소비자들에게 혐오감을 불러 일으킬 수 있다. 이러한 문제들로 인해 친환경적 시스테인 생산공정의 개발요구가 높아졌으며, 이에 따라 미생물을 이용하여 시스테인을 생산하는 방법이 개발되었다.
미생물을 이용하여 시스테인을 생산하는 방법으로 1) 우선, D,L-ATC에 미생물을 이용하여 생물학적으로 전환하는 방법이 알려져 있다. 하지만 이 방법은 전구체인 D,L-ATC의 용해도가 낮아 산업화에 어려움이 있다. 2) 또 다른 방법은 대장균을 이용한 직접 발효법으로 시스테인을 생산하는 방법이 알려져 있다. 이 방법은 미생물 내 시스테인이 과량 축적될 경우 세포내 독성을 나타낼 수 있어, 미생물을 이용하여 높은 농도의 시스테인을 생산하는데 한계가 있다.
미생물 및 식물의 시스테인 생합성 경로 중 하나를 살펴보면, O-아세틸세린(O-acetyl-serine, OAS)은 시스테인의 탄소골격의 중간 전구물질로서 작용한다. OAS는 sulfur donor로 황화수소(Hydrogen sulfide)를 이용하여 O-아세틸세린 설프하이드릴라아제(O-acetyl-serine sulfhydrylase, OASS)에 의해 시스테인으로 전환된다. 그리하여 OAS를 축적하는 미생물과 다양한 sulfur donor로부터 OASS를 이용하여 시스테인을 생산할 수 있다(미국등록특허 US6,579,705).
본 발명자들은 이와는 다른 새로운 시스테인 생산 방법을 모색하던 중 특정 미생물에서는 O-포스포세린 (O-phospho-serine, OPS)을 이용하여 시스테인을 합성하는 효소(O-phosphoserine sulfhydrylase, OPSS)가 존재한다는 사실을 알게 되었다. OPS는 세린(L-serine)의 중간 전구물질이므로 OAS보다 대사경로가 짧아, OPS를 이용할 경우 OAS를 이용할 때보다 전구체 생산에 유리할 수 있다. 특히, 트리코모나스 배기날리스(Trichomonas vaginalis) 유래의 OPSS는 마이코박테리움 투베르큘로시스(Mycobacterium tuberculosis) 유래의 OPSS와 다르게 mec+ 및 cys0과 같이 황을 전달해주는 보조효소가 필요하지 않고, 에어로파이럼 퍼닉스 (Aeropyrum pernix)의 OPSS 와 다르게 37℃에서 최적 활성을 나타낸다는 것을 알게 되었다.
본 발명자들은 고수율로 시스테인을 생산하는 방법을 개발하기 위하여 예의 노력한 결과, 다양한 미생물로부터 OPS를 기질로 하여 시스테인을 합성하는 활성을 갖는 신규 OPSS를 동정하고, 상기 신규 OPSS가 기존에 알려진 트리코모나스 배기날리스의 OPSS보다 시스테인 합성 활성이 증가된 것을 확인함으로써, 본 발명을 완성하게 되었다.
본 발명의 목적은 신규 O-포스포세린 설프하이드릴라아제(O-phosphoserine sulfhydrylase, OPSS) 또는 이를 발현하는 미생물의 존재 하에, O-포스포세린(O-phosphoserine, OPS)을 황화물과 반응시켜 시스테인 또는 이의 유도체를 제조하는 단계를 포함하는, 시스테인 또는 이의 유도체의 생산방법을 제공하는 것이다.
본 발명에 따라 신규 O-포스포세린 설프하이드릴라아제(O-phosphoserine sulfhydrylase, OPSS)를 이용하여 O-포스포세린을 기질로 하여 시스테인을 생산하는 방법을 제공함으로써, 이를 이용하여 간편한 방법으로 고수율로 친환경적인 시스테인을 용이하게 생산할 수 있다는 이점이 있다.
도 1은 3종의 OPSS를 이용하여 10분, 30분 및 60분에 시스테인 전환율을 측정한 결과를 나타낸다.
도 2는 Dal-OPSS의 pH 민감성을 확인하기 위하여 pH별 시스테인 전환율을 측정한 결과를 나타낸다.
도 3은 OPS 발효액과 황화물을 기질로 3종의 OPSS를 이용하여 10분, 30분 및 60분에 시스테인 전환율을 측정한 결과를 나타낸다.
도 4는 Dal-OPSS의 온도별 시스테인 전환율을 측정한 결과를 나타낸다.
하나의 양태로서, 본 발명은 서열번호 1 또는 2로 기재된 아미노산 서열을 가지는 O-포스포세린 설프하이드릴라아제(O-phosphoserine sulfhydrylase, OPSS) 또는 이를 발현하는 미생물의 존재 하에, O-포스포세린(O-phosphoserine, OPS)을 황화물과 반응시켜 시스테인 또는 이의 유도체를 제조하는 단계를 포함하는, 시스테인 또는 이의 유도체의 생산방법을 제공한다.
본 발명에서 용어, "O-포스포세린 설프하이드릴라아제(O-phosphoserine sulfhydrylase, 이하 OPSS)"는 O-포스포세린(O-phosphoserine, 이하 OPS)에 티올 그룹(thiol group, SH기)을 제공함으로써, OPS를 시스테인으로 전환해주는 활성을 가지는 효소를 말한다.
본 발명에서 상기 OPSS는 서열번호 1 또는 2로 기재된 아미노산 서열일 수 있으며, 이는 본 발명자들에 의해 새롭게 동정된 OPSS이다. 상기 서열번호 1 또는 2로 기재된 아미노산 서열은 OPSS의 활성을 가지며, 그 활성을 유지하는 한 일정 정도 변형이 가능하다. 본 기술 분야의 당업자라면 이러한 인위적인 변형에 의해 70% 이상, 바람직하게는 80% 이상, 보다 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 상동성이 유지되는 아미노산 서열이 본 발명에서 목적하는 활성을 보유하는 한, 본 발명의 상기 아미노산 서열과 균등한 것임을 쉽게 이해할 것이다.
본 발명의 구체적인 일 실시예에서는 서열번호 1의 아미노산 서열을 갖는 Dac-OPSS 및 서열번호 2의 아미노산 서열을 갖는 Dal-OPSS를 이용하여 정제된 OPS 및 OPS 발효액을 기질로 한 시스테인 합성 활성을 평가한 결과, 대조군인 Tva-OPSS에 비하여 높은 시스테인 전환율을 보임을 확인함으로써, 상기 서열번호 1 또는 2의 아미노산 서열을 갖는 OPSS가 고수율로 시스테인을 생산할 수 있음을 확인하였다(도 1, 도 3, 표 3 및 표 4).
본 발명에서 용어, "상동성"은 두 개의 폴리펩티드 모이티 사이의 서열 유사성의 퍼센트를 말한다. 하나의 모이티로부터 다른 하나의 모이티까지의 서열 유사성은 알려진 당해 기술에 의해 결정될 수 있다. 예를 들면, 상동성은 서열 정보를 정렬하고 용이하게 입수 가능한 컴퓨터 프로그램을 이용하여 두 개의 폴리펩티드 분자 간의 서열 정보를 직접 정렬하여 결정될 수 있다. 또한, 상동성은 상동 영역간의 안정된 이중가닥을 이루는 조건하에서 폴리뉴클레오타이드를 혼성화한 후, 단일-가닥-특이적 뉴클레아제로 분해시켜 분해된 단편의 크기를 결정함으로써 결정할 수 있다.
본 발명에서 용어, "서열 유사성"은 공통 진화 기원을 공유하거나 하지 않을 수 있는 단백질의 염기 서열이나 아미노산 서열 간의 동일성이나 상응성 정도를 말한다. 하나의 구체예에서, 두 개의 아미노산 서열이 아미노산 서열의 소정의 길이에 대해 폴리펩티드 매치가 적어도 21%(바람직하게 적어도 약 50%, 가장 바람직하게 약 75%, 90%, 95%, 96%, 97% 또는 99%)일 때, "실질적으로 상동" 또는 "실질적으로 유사"하다. 실질적으로 상동인 서열은 데이터 은행에서 사용되는 표준 소프트웨어를 사용하거나, 예를 들면 특정한 시스템을 위해 정의된 엄격한 조건하에서 썼던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있다. 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이다(예. Sambrook et al., 1989,infra 참고).
본 발명에서 용어, "시스테인 전환"은 OPSS의 촉매 작용에 의해 기질인 OPS로부터 생산물인 시스테인으로 전환되는 반응, 즉 OPS를 시스테인으로 전환하여 시스테인을 수득하는 반응을 의미한다. 또한, 용어 "시스테인 전환율"은 OPS가 시스테인으로 전환된 비율을 의미한다. 최적의 반응 조건에서 OPS 1몰은 시스테인 1몰로 전환되면, 예를 들어 OPS 100몰로부터 전환반응을 거쳐 시스테인 100몰이 수득되었을 경우, 시스테인 전환율이 100%가 된다. 본 발명의 OPSS는 OPS를 시스테인으로 전환하는 과정을 거치므로 OAS를 이용하는 대사경로보다 짧아 전구체 생산에 유리할 뿐만 아니라, 기존의 OPSS와 달리 황을 전달해주는 보조효소(M. tuberculosis의 mec+ 및 cys0)의 존재 없이, OPSS 자체로 시스테인을 생산할 수 있는 이점이 있다.
본 발명의 OPSS는 서열번호 9 내지 12의 염기서열을 가지는 폴리뉴클레오타이드에 의해 코딩되는 것일 수 있다. 본 발명의 서열번호 1 또는 2의 아미노산 서열을 가지는 OPSS는 각각 서열번호 9 또는 10의 염기서열을 가지는 폴리뉴클레오타이드에 의해 코딩되는 것일 수 있으며, 보다 바람직하게는 이종 단백질을 대장균에서의 발현을 높이기 위하여 코돈 사용빈도(codon usage)가 대장균에 최적화된 서열번호 11 또는 12의 염기서열을 가지는 폴리뉴클레오타이드에 의해 코딩되는 것일 수 있다.
본 발명의 상기 OPSS를 발현하는 미생물은 내재적으로 본 발명의 OPSS를 발현하는 미생물 또는 본 발명의 OPSS를 코딩하는 염기서열이 벡터 형태로 또는 염색체 내에 삽입된 형태로 도입된 미생물일 수 있다. 상기 OPSS를 발현하는 미생물은 추가로 OPSS의 활성이 강화될 수 있다. OPSS 활성을 강화하는 방법으로는 OPSS를 코딩하는 염기서열을 가지는 폴리뉴클레오타이드를 포함하는 벡터를 상기 미생물에 도입하는 방법에 의하여 카피수를 증가시키는 방법, 상기 염기서열의 코돈 사용빈도(coodon usage)를 상기 미생물에서 주로 이용되는 코돈 사용빈도에 따라 최적화하는 방법, 상기 OPSS를 발현하는 미생물에서 상기 OPSS를 코딩하는 유전자의 프로코터를 강한 프로모터로 교체하는 방법, 상기 프로모터에 변이를 도입하는 방법 및 상기 OPSS의 활성이 강화되도록 상기 신규 분리한 OPSS를 코딩하는 유전자에 변이를 도입하는 방법 등이 있다.
본 발명에서 용어, "벡터"는 숙주 세포를 이용하여 염기의 클로닝 및/또는 전이를 위한 임의의 매개물을 말한다. 벡터는 다른 DNA 단편이 결합하여 결합된 단편의 복제를 가져올 수 있는 복제단위(replicon)일 수 있다. "복제단위"란 생체 내에서 DNA 복제의 자가 유닛으로서 기능하는, 즉, 스스로의 조절에 의해 복제가능한, 임의의 유전적 단위(예를 들면, 플라스미드, 파지, 코스미드, 염색체, 바이러스)를 말한다.
본 발명에서 상기 OPSS를 발현하는 미생물은 상기 OPSS를 포함한 벡터를 형질전환시키는 방법에 의해 얻어진 미생물일 수 있는데, 상기 형질전환의 방법은 염기를 세포 내로 도입하는 어떠한 방법도 포함되며, 당 분야에서 공지된 적합한 표준 기술을 선택하여 수행할 수 있다. 그 예로, 일렉트로포레이션 (electroporation), 칼슘 포스페이트 공동-침전 (calcium phosphate co-precipitation), 레트로바이러스 감염 (retroviral infection), 미세주입법 (microinjection), DEAE-덱스트란 (DEAE-dextran), 양이온 리포좀 (cationic liposome) 법 등이 있고, 이로 제한되지 않는다.
상기 OPSS를 발현하는 미생물은 원핵세포 또는 진핵세포 모두 가능하며, 바람직하게는 엔테로박테리아과 미생물 또는 코리네형 미생물 등, 더욱 바람직하게는 에스케리키아속 미생물, 세라티아속 미생물 등일 수 있으며, 가장 바람직하게는 대장균일 수 있다.
본 발명을 통해 상기의 신규 분리한 OPSS를 발현하는 미생물을 배양하여 그 배양액으로부터 OPSS를 분리시킬 수 있다. 당업계에서 통상적으로 알려져 있는 방법은 모두 사용될 수 있으며, 본 발명의 구체적인 실시예에서는 pET 발현 시스템 매뉴얼(Novagen Inc.)을 이용하여 미생물을 배양하고, Ni-NTA columns으로 분리하는 방법을 이용하였다.
본 발명에 있어서, 신규 OPSS의 기질로 사용되는 OPS는 시중에 판매되는 정제된 OPS 뿐만 아니라, 발효를 통해서 제조된 OPS 발효액을 사용할 수 있다. 상기 정제된 OPS는 예를 들어 Sigma-Aldrich 사의 P0878 제품번호 또는 Wako사의 CAS407-41-0 제품번호로 구매할 수 있다. 또한, 상기 OPS 발효액은 OPS 생산능을 가지는 미생물, 예를 들어 기탁번호 KCCM 11103P(CA07-0022/pCL-prmf-serA*(G336V)-serC; 대한민국 공개특허 제10-2012-0041115호 참조)로 수탁된 미생물을 배양함으로써 제조될 수 있다.
본 발명에서 용어, "황화물(sulfide)"은 황과 그보다 양성인 원소와의 화합물을 총칭한 것을 의미하며, 본 발명의 목적상 시스테인 또는 이의 유도체 제조시 사용되는 화합물이다. 상기 황화물은 당해 기술분야에서 통상적으로 사용하는 고형뿐 아니라, pH, 압력, 용해도의 차이로 인해 액체 또는 기체의 형태로 제공되어 설파이드 (sulfide, S2-), 티올설페이트(thiosulfate, S2O3 2-) 등의 형태로 티올그룹 (thiol group, SH기)으로 전환될 수 있는 모든 황화물이면 이용 가능하다. 바람직하게는 Na2S, H2S, NaSH, (NH4) 2S 및 S2O3를 이용할 수 있다. 본 발명의 구체적인 일 실시예에서는 Na2S을 황 소스로 사용하였다. 본 발명의 반응은 하나의 OPS 반응기에 하나의 티올기를 제공하여 하나의 시스테인 또는 시스테인 유도체를 제조하는 반응으로, 상기 반응시 황화물의 첨가량은 이에 제한되지는 않으나 반응시 첨가되는 OPS 몰 농도의 0.1 내지 3배가 바람직하며, 1 내지 2배가 보다 바람직하다.
본 발명의 OPSS가 최적의 효소 전환이 가능하도록 하는 방법은 당해 분야에서 잘 알려진 다양한 방법의 적용이 가능하다. 그 방법의 예는, 이에 제한되지는 않으나, OPSS 효소의 특성을 파악하는 방법, 바람직하게는 OPSS 효소 최적의 활성 온도, pH, 기질에 대한 저해 유무 및 농도 그리고 OPSS 효소 자체의 열 안정성 파악 등이 있으며, 효소 전환 반응의 최적 조건을 파악하는 방법, 특히 효소 전환 반응시 사용되는 최적의 OPSS 효소 농도 및 사용되는 기질들의 최적 발란스 농도, OPS 기질 외에 효소 전환 반응시 사용되는 황화물에 대한 선호도, 전환 반응시 사용되는 버퍼 선호도와 이로 인해 발생되는 이온영향성 그리고 보조효소 들의 존재 유무 및 최적 농도 파악 등이 있다.
본 발명의 구체적인 일 실시예에서는 Dal-OPSS를 이용하여 pH 및 온도별 시스테인 전환율을 확인한 결과, pH의 경우 7.0 내지 7.4에서 최적의 활성을 보이며(도 2), 온도의 경우 37℃에서 최적의 활성을 보임을 확인하였다(도 4).
본 발명에 있어서, 시스테인 전환 반응시 추가적인 보조인자(cofactor)로서 PLP(pyridoxal-5'-phosphate), DTT(dithiothreitol), 또는 PLP 및 DTT를 동시에 첨가할 수 있다. 상기 보조인자들은 시스테인 전환 반응에서 그 효율을 증가시킬 수 있으며, 본 발명의 구체적인 일 실시예에서는 0.2 mM PLP, 25 mM DTT, 또는 두 보조인자를 동시에 첨가하는 경우 시스테인 전환율이 증가하였음을 확인하였다(표 5). 상기 PLP는 이에 제한되지는 않으나 바람직하게는 0.001 내지 2 mM 첨가할 수 있으며, 보다 바람직하게는 0.01 내지 1 mM 첨가할 수 있다. 또한, 상기 DTT는 이에 제한되지는 않으나 바람직하게는 0.001 내지 100 mM 첨가할 수 있으며, 보다 바람직하게는 0.01 내지 50 mM 첨가할 수 있다.
본 발명의 방법은 상기 반응 단계를 통하여 생산된 시스테인 또는 이의 유도체를 분리 및 정제하는 단계를 추가로 포함할 수 있다. 상기 단계에서는 당해 분야에 공지된 적합한 방법을 이용하여 반응액으로부터 목적하는 시스테인을 분리 및 정제하여 수집할 수 있다.
당업자라면 공지된 화학적 합성 방법으로, 본 발명의 방법으로 제조된 시스테인으로부터 시스테인 유도체를 용이하게 합성할 수 있다. 시스테인은 아세틸레이션 에이젼트(acetylation agent)와 반응하여 NAC(N-acetylcysteine)로 쉽게 합성될 수 있으며, 염기성 조건에서는 할로아세틱 에시드(haloacetic acid)와 반응시킴으로써 SCMC(S-Carboxymetylcysteine)로 합성될 수 있다. 상기 시스테인 유도체는 주로 제약원료로써 진해제, 기침완화제, 기관지염, 기관지 천식과 인후염 등의 치료제로 사용된다.
이하 본 발명을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1: O-포스포세린 설프하이드릴라아제(O-phosphoserine sulfhydrylase, OPSS) 효소 동정
Trichomonas vaginalis 유래의 OPSS는 OPSS 외에 2가지의 보조효소가 필요한 Mycobacterium tuberculosis 유래의 OPSS와는 달리 보조효소 없이도 활성을 나타내며, 60℃에서 최적 활성을 나타내는 Aeropyrum pernix의 OPSS와는 달리 37℃에서 최적 활성을 나타내는 것으로 보고되었다. 상기 사실을 바탕으로 본 발명자들은 T. vaginalis의 OPSS 아미노산 서열을 기반으로 하여 이와 단백질 서열유사성이 높은 미생물 유래의 신규 OPSS를 확보하였다. 상기 신규 OPSS는 각각 서열번호 1 및 2의 아미노산 서열을 가지며, Dac-OPSS 및 Dal-OPSS로 명명하였다. 또한, 상기 서열번호 1 및 2의 아미노산 서열을 갖는 신규 OPSS는 각각 서열번호 9 및 10의 염기서열을 갖는 폴리뉴클레오티드에 의해 코딩된다.
상기 두 OPSS는 대장균 유래가 아니므로 대장균에서의 발현이 용이하지 않을 수 있다. 대장균에서의 발현을 용이하게 하기 위해 상기 신규 분리한 OPSS들의 코돈사용빈도 최적화를 진행하였으며, 이는 코돈사용빈도 최적화도구인 Jcat을 이용하였다(www.jcat.de). 이를 통해 상기 폴리뉴클레오티드에 대한 서열번호 9 및 10의 코돈사용빈도가 최적화된 서열번호 11 및 12를 획득하였다. 상기 서열번호 11 및 12의 염기서열을 갖는 폴리뉴클레오타이드는 제노텍(Genotech Corp.)에 상기 염기서열들을 제공하여 합성하였으며, Topo TA cloning을 통한 벡터 형태로 공급받았다. 각각의 균주로부터 OPSS 효소를 획득하기 위하여, 통상적으로 효소 발현을 위해 이용되는 pET28a (novagen) 벡터 시스템을 제작하였다.
총 3종의 OPSS 효소 발현 벡터명과 벡터를 제작하기 위해 사용한 각각의 주형 및 프라이머는 하기 표 1에 나타낸 바와 같다. 주형과 프라이머 조합을 맞추어 PCR 기법을 통해 각각의 OPSS 유전자를 증폭하여 얻은 유전자 단편과 벡터 pET28a를 NdeI과 HindIII 제한효소로 처리(37℃, 3시간 반응)하였다. 이후 통상적인 라이게이션 기법을 사용하여 pET28a 벡터에 각각의 유전자 단편을 삽입하였다. 각각의 효소 발현 벡터 제작 유무 및 유전자 서열은 시퀀싱 기법으로 모두 확인하였다. 상기 제작된 효소 발현 벡터를 DE3 유전자형을 가진 대장균에 도입하여 총 3종의 OPSS 효소를 획득할 수 있는 균주를 제작하였다.
표 1
효소명 벡터명 사용한 주형 사용한 프라이머
Tva-OPSS pET28a-Tva-OPSS 합성 DNA 서열번호 3(F) 및 4(R)
Dac-OPSS pET28a-Dac-OPSS 합성 DNA 서열번호 5(F) 및 6(R)
Dal-OPSS pET28a-Dal-OPSS 합성 DNA 서열번호 7(F) 및 8(R)
효소를 발현하기 위한 방법은 pET system 매뉴얼 (novagen)을 참조하였다. 평판 LB 배지에서 각각의 균주의 단일 콜로니를 선별하여 5ml LB 액체배지에 접종하여 37℃, 200 rpm 조건으로 16시간 배양하였다. 이를 다시 새로운 25 ml LB 액체배지(250 ml 용량의 플라스크)에 250 ml 재접종하여 OD600이 0.5~0.6가 되도록(2~3시간) 동일 배양 조건에서 키운 직후, 1 mM IPTG을 배지에 첨가하여 18℃, 120 rpm의 조건으로 18시간 배양하여 효소 발현을 유도하였다. 효소의 정제를 위한 방법은 his-tag을 이용하여 Ni-NTA columns으로 분리하였다. 정제 방법은 His spintrap(GE healthcare)을 이용하였다.
실시예 2: OPSS 효소의 시스테인 합성 활성 평가
OPS를 기질로 한 시스테인의 합성 여부를 파악하기 위해 확보한 총 3종의 OPSS 효소의 시스테인 합성 활성을 측정하였다. 시스테인 합성 활성 평가 (cysM enzyme assay) 조건 및 방법은 문헌 보고(Mino K and Ishikawa K, FEBS letters, 551: 133-138, 2003; Burns KE, Baumgart S, Dorrestein PC, Zhai H, McLafferty FW and Begley TP, J. Am. Chem. Soc., 127: 11602-11603, 2005; Westrop GD, Goodall G, Mottram JC and Coombs GH, J. Biol. Chem., 281: 25062-25075, 2006)에 기재된 방법을 인용하였다. 효소 활성을 측정하기 위한 조건은 하기 표 2와 같다.
표 2
Stock sol'n Final Conc. Blank OPSS
6xhis-enzyme - 40 (50 ㎍)
1 M HEPES(pH7.4) 100 mM HEPES 100 100
0.5 M Na2S 10 mM Na2S 20 20
10 mM PLP 0.2 mM PLP 20 20
100 mM OPS 5 mM OPS 0 50
DW 790 750
Total 1000 1000
효소를 제외한 반응액을 37℃에서 5분간 배양시킨 후, 정제된 OPSS 50 ㎍을 첨가하여 37℃에서 반응하여, 시간별로 효소 반응액 100 ml를 취하여 33.2% TCA 100 ml와 혼합하여 반응을 중지시켰다. 효소 반응액 내의 시스테인의 농도는 Gaitonde 방법으로 OD560 파장에서 흡광도를 측정하여 정량하였다. 도 1 및 하기 표 3은 3종의 OPSS들의 시스테인 합성 활성을 보여주며, 반응 시간별 시스테인 전환율을 비교하여 OPSS들의 시스테인 합성 역가를 평가하였다.
표 3
시스테인 전환율(%)
10분 30분 60분
Tva-OPSS 5.94 11.48 19.32
Dac-OPSS 19.47 26.47 40.26
Dal-OPSS 94.98 95.52 98.65
상기의 결과로부터, Tva-OPSS의 경우 OPS을 기질로 하여 시스테인을 합성하는 활성을 가지고 있음을 검증하였으며, 신규 OPSS인 Dac-OPSS 및 Dal-OPSS의 시스테인 합성 활성을 처음으로 확인하였다. 또한, Tva-OPSS에 비하여, Dac-OPSS 및 Dal-OPSS를 이용한 경우에 시스테인 전환율이 증가하였으며, 특히 Dal-OPSS의 경우에는 현저하게 그 활성이 높음을 확인하였다.
실시예 3: OPSS 효소의 pH 민감성
시스테인 합성 과정에서 pH가 어떠한 영향을 미치는지 알아보기 위하여, Dal-OPSS의 pH별 시스테인 전환율을 확인하였다. 100 mM 버퍼 조건에서 50 ㎍/ml 사용하여 37℃, 30분간 반응하였다. K-phosphate buffer pH 6.4 / 7.0 / 7.4 / 8.0, Tris-HCl buffer pH 7.0 / 7.4 / 8.0 / 8.5 / 8.8, Na-carbonate buffer 8.0 / 8.5 / 9.0 / 10.0 HEPES buffer 7.4, Na-citrate buffer 4.0 / 5.0 / 6.0을 사용하였다. 생성된 시스테인은 Gaitonde 방법으로 정량하였다. 도 2에 나타난 바와 같이, pH 7.0~7.4 사이에서 가장 높은 활성을 보였으며, 가장 높은 활성을 보인 조건은 Tris-HCl(pH 7.0)이고, Na-citrate, Na-carbonate 버퍼에서는 활성을 거의 보이지 않았다. 또한, 버퍼별로 최적 pH는 상이하였다.
실시예 4: OPS 발효액을 기질로 OPSS 효소를 이용한 시스테인 전환 반응
대장균 W3110 균주에 serB가 결손되고, 변이형 serA*가 도입되어 OPS 생산능을 가지는 KCCM 11103P(CA07-0022/pCL-prmf-serA*(G336V)-serC; 대한민국 공개특허 제10-2012-0041115호)를 MMYE 고체 배지에 도말한 후 30℃ 배양기에서 밤새 배양하였다. MMYE 고체 배지에서 밤새 배양한 균주를 25 ml 역가 배지에 한 백금이씩 접종한 다음, 이를 30℃, 200 rpm의 배양기에서 48 시간 배양하였다. 상기 방법으로 제조된 OPS 발효액을 기질로 Tva-OPSS, Dac-OPSS 및 Dal-OPSS의 시스테인 전환율을 확인하였다. 5.4 mM OPS 발효액, 10 mM Na2S, 0.2 mM PLP 조건에서 각 OPSS 농도를 50 ㎍/ml 조건으로 37℃에서 시스테인 전환 반응을 수행하였다. 생성된 시스테인은 Gaitonde 방법으로 정량하였다. 도 3 및 표 4는 37℃ 에서 3종의 OPSS의 시간별 시스테인 전환율을 보여주며, 상기 전환 반응 조건에서 3종의 OPSS 중 Dal-OPSS를 사용하였을 때 가장 높은 전환율을 보임을 확인하였다.
표 4
시스테인 전환율(%)
10분 30분 60분
Tva-OPSS 10.23 15.62 17.44
Dac-OPSS 10.87 17.43 21.11
Dal-OPSS 8.93 29.88 38.64
한편, 온도가 시스테인 합성 과정에서 어떠한 영향을 미치는지 알아보기 위하여, Dal-OPSS의 온도별 시스테인 전환율을 확인하였다. 상기 조건에서 온도 조건만을 각각 30℃, 37℃, 50℃, 65℃ 및 80℃로 변화시켜 시스테인 전환율을 측정하였다. 그 결과, 도 4에 나타난 바와 같이, Dal-OPSS를 각 온도별로 30분간 반응하였을 때, 37℃에서 활성이 가장 높은 것을 확인하였다.
실시예 5: OPSS의 보조인자(cofactor) 요구성
시스테인 전환반응에 있어 조효소의 요구성을 확인하기 위하여, Dal-OPSS를 이용하여 PLP(pyridoxal-5'-phosphate) 및 DTT(dithiothreitol)의 유무에 따른 시스테인 전환율을 확인하였다. 5.4 mM OPS 발효액, 10 mM Na2S 를 기질로 25 mM DTT 및/또는 0.2 mM PLP 조건에서 37℃에서 30분간 반응하였고 생성된 시스테인은 Gaitonde 방법으로 정량하였다. 그 결과를 하기 표 5에 나타내었다.
표 5
Dal-OPSS 시스테인 전환율(%)
(-) PLP, (-) DTT 12.88
(+) PLP, (-) DTT 20.15
(-) PLP, (+) DTT 24.32
(+) PLP, (+) DTT 31.54
표 5에 나타난 바와 같이, PLP 및 DTT가 첨가되지 않은 대조군에 비하여, PLP 및 DTT가 첨가된 실험군에서의 시스테인 전환율이 약 2.4배 증가하였다. 또한, PLP 또는 DTT가 각각 단독으로 첨가된 실험군에서도 시스테인 전환율이 증가함을 확인하였다. 즉, 시스테인 전환시 PLP 및 DTT가 반응에 긍정적으로 작용함을 확인하였다.

Claims (7)

  1. 서열번호 1 또는 2로 기재된 아미노산 서열을 가지는 O-포스포세린 설프하이드릴라아제(O-phosphoserine sulfhydrylase, OPSS), 또는 이를 발현하는 미생물의 존재 하에, O-포스포세린(O-phosphoserine, OPS)을 황화물과 반응시켜 시스테인 또는 이의 유도체를 제조하는 단계를 포함하는, 시스테인 또는 이의 유도체의 생산방법.
  2. 제1항에 있어서, 상기 OPSS는 서열번호 9 내지 12로 이루어진 군에서 선택되는 염기서열을 가지는 폴리뉴클레오타이드에 의해 코딩되는 것인 방법.
  3. 제1항에 있어서, 상기 OPS는 정제된 OPS 또는 OPS를 포함하는 미생물의 발효액인 것인 방법.
  4. 제1항에 있어서, 상기 황화물은 Na2S, H2S, NaSH, (NH4)2S 및 S2O3로 이루어진 군에서 선택되는 것인 방법.
  5. 제1항에 있어서, 상기 황화물의 첨가량은 반응시 첨가되는 OPS 몰 농도의 0.1 내지 3배인 것인 방법.
  6. 제1항에 있어서, 상기 반응시 보조인자로서 0.001 내지 2 mM의 PLP(pyridoxal-5'-phosphate) 또는 0.001 내지 100 mM의 DTT(dithiothreitol)를 추가로 첨가하는 것인 방법.
  7. 제1항에 있어서, 상기 시스테인 또는 이의 유도체를 분리 및 정제하는 단계를 추가로 포함하는 것인 방법.
PCT/KR2012/010900 2011-12-15 2012-12-14 신규 o-포스포세린 설프하이드릴라아제를 이용하여 시스테인 또는 이의 유도체를 생산하는 방법 WO2013089478A2 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US14/365,571 US9243268B2 (en) 2011-12-15 2012-12-14 Method for preparing cysteine or a derivative thereof using a novel O-phosphoserine sulfhydrylase
ES12858268.1T ES2634683T3 (es) 2011-12-15 2012-12-14 Método de preparación de cisteína o de un derivado de la misma utilizando una nueva O-fosfoserina sulfhidrilasa
RU2014125851/10A RU2579689C1 (ru) 2011-12-15 2012-12-14 Способ получения цистеина или его производного с использованием новой о-фосфосеринсульфгидрилазы
EP12858268.1A EP2792748B1 (en) 2011-12-15 2012-12-14 Method for preparing cysteine or a derivative thereof using a novel o-phosphoserine sulfhydrylase
JP2014547104A JP5860550B2 (ja) 2011-12-15 2012-12-14 新規なo−ホスホセリンスルフヒドリラーゼを用いたシステイン又はその誘導体の製造方法
BR122019023670-4A BR122019023670B1 (pt) 2011-12-15 2012-12-14 Método para a preparação de cisteína ou de um derivado desta usando uma nova ofosfoserina sulfidrilase
CA2859125A CA2859125C (en) 2011-12-15 2012-12-14 Method for preparing cysteine or a derivative thereof using a novel o-phosphoserine sulfhydrylase
BR112014014762-0A BR112014014762B1 (pt) 2011-12-15 2012-12-14 Método para a preparação de cisteína ou de um derivado desta usando uma nova o- fosfoserina sulfidrilase
CN201280067058.7A CN104039963B (zh) 2011-12-15 2012-12-14 利用新o-磷酸丝氨酸巯解酶生产半胱氨酸或其衍生物的方法
PH12014501353A PH12014501353B1 (en) 2011-12-15 2014-06-13 Method for preparing cysteine or a derivative thereof using a novel o-phosphoserine sulfhydrylase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110135665A KR101404376B1 (ko) 2011-12-15 2011-12-15 신규 o-포스포세린 설프하이드릴라아제를 이용하여 시스테인 또는 이의 유도체를 생산하는 방법
KR10-2011-0135665 2011-12-15

Publications (2)

Publication Number Publication Date
WO2013089478A2 true WO2013089478A2 (ko) 2013-06-20
WO2013089478A3 WO2013089478A3 (ko) 2013-08-22

Family

ID=48613316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010900 WO2013089478A2 (ko) 2011-12-15 2012-12-14 신규 o-포스포세린 설프하이드릴라아제를 이용하여 시스테인 또는 이의 유도체를 생산하는 방법

Country Status (12)

Country Link
US (1) US9243268B2 (ko)
EP (1) EP2792748B1 (ko)
JP (1) JP5860550B2 (ko)
KR (1) KR101404376B1 (ko)
CN (1) CN104039963B (ko)
BR (2) BR112014014762B1 (ko)
CA (2) CA2859125C (ko)
ES (1) ES2634683T3 (ko)
MY (2) MY164371A (ko)
PH (1) PH12014501353B1 (ko)
RU (1) RU2579689C1 (ko)
WO (1) WO2013089478A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013570A2 (ko) 2017-07-13 2019-01-17 씨제이제일제당 (주) 인산을 발효액 또는 발효 폐액으로부터 회수 및 재사용하는 방법
WO2019151769A1 (en) 2018-01-31 2019-08-08 Cj Cheiljedang Corporation Method for preparing natural l-cysteine hydrochloride hydrate crystals by continuous chromatography
WO2019151770A1 (en) 2018-01-31 2019-08-08 Cj Cheiljedang Corporation Method for preparing natural l-cysteine crystals by continuous chromatography
WO2023182744A1 (ko) 2022-03-24 2023-09-28 씨제이제일제당 (주) 인산을 발효액 또는 발효 폐액으로부터 회수 및 재사용하는 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101677328B1 (ko) * 2014-08-12 2016-11-18 씨제이제일제당 (주) O-포스포세린 생산 미생물 및 이를 이용한 o-포스포세린 또는 l-시스테인 생산 방법
KR101694632B1 (ko) 2015-09-11 2017-01-10 씨제이제일제당 (주) 신규 o-포스포세린 배출 단백질 변이체 및 이를 이용한 o-포스포세린, 시스테인 및 이의 유도체의 생산방법
KR101825310B1 (ko) 2016-12-29 2018-03-15 씨제이제일제당 (주) O-포스포세린을 생산하는 에스케리키아 속 미생물 및 이를 이용한 o-포스포세린 또는 l-시스테인을 생산하는 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579705B2 (en) 2001-04-04 2003-06-17 Consortium Fur Elektrochemische Industrie Gmbh Process for preparing non-proteinogenic L-amino acids
KR20120041115A (ko) 2010-10-20 2012-04-30 씨제이제일제당 (주) O-포스포세린 생산 균주 및 이로부터 생산된 o-포스포세린으로부터 l-시스테인 또는 이의 유도체의 생산방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1299128C (en) * 1986-11-19 1992-04-21 Tooru Miyahara Method of producing l-cystine
RU2279477C2 (ru) * 2003-12-05 2006-07-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Мутантная серинацетилтрансфераза, фрагмент днк, кодирующий мутантную серинацетилтрансферазу (варианты), бактерия, принадлежащая к роду escherichia, - продуцент l-цистеина, и способ продукции l-цистеина
DE102004035052A1 (de) * 2004-07-20 2006-02-16 Basf Ag Mikroorganismen zur Herstellung von schwefelhaltigen Verbindungen
JP2006304673A (ja) * 2005-04-28 2006-11-09 National Institute Of Advanced Industrial & Technology システイン合成酵素のホスホセリンに対する基質特異性を高める方法
AU2006261356A1 (en) 2005-06-17 2006-12-28 Microbia, Inc. Improved amino acid and metabolite biosynthesis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579705B2 (en) 2001-04-04 2003-06-17 Consortium Fur Elektrochemische Industrie Gmbh Process for preparing non-proteinogenic L-amino acids
KR20120041115A (ko) 2010-10-20 2012-04-30 씨제이제일제당 (주) O-포스포세린 생산 균주 및 이로부터 생산된 o-포스포세린으로부터 l-시스테인 또는 이의 유도체의 생산방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BURNS KE; BAUMGART S; DORRESTEIN PC; ZHAI H; MCLAFFERTY FW; BEGLEY TP, J. AM. CHEM. SOC., vol. 127, 2005, pages 11602 - 11603
MINO K; ISHIKAWA K, FEBS LETTERS, vol. 551, 2003, pages 133 - 138
WESTROP GD; GOODALL G; MOTTRAM JC; COOMBS GH, J. BIOL. CHEM., vol. 281, 2006, pages 25062 - 25075

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013570A2 (ko) 2017-07-13 2019-01-17 씨제이제일제당 (주) 인산을 발효액 또는 발효 폐액으로부터 회수 및 재사용하는 방법
WO2019151769A1 (en) 2018-01-31 2019-08-08 Cj Cheiljedang Corporation Method for preparing natural l-cysteine hydrochloride hydrate crystals by continuous chromatography
WO2019151770A1 (en) 2018-01-31 2019-08-08 Cj Cheiljedang Corporation Method for preparing natural l-cysteine crystals by continuous chromatography
US11427537B2 (en) 2018-01-31 2022-08-30 Cj Cheiljedang Corporation Method for preparing natural L-cysteine hydrochloride hydrate crystals by continuous chromatography
US11708591B2 (en) 2018-01-31 2023-07-25 Cj Cheiljedang Corporation Method for preparing natural L-cysteine crystals by continuous chromatography
WO2023182744A1 (ko) 2022-03-24 2023-09-28 씨제이제일제당 (주) 인산을 발효액 또는 발효 폐액으로부터 회수 및 재사용하는 방법

Also Published As

Publication number Publication date
BR112014014762A2 (ko) 2018-05-22
WO2013089478A3 (ko) 2013-08-22
CA2859125C (en) 2018-05-01
KR20130068135A (ko) 2013-06-25
US20150004657A1 (en) 2015-01-01
EP2792748B1 (en) 2017-04-26
CA2859125A1 (en) 2013-06-20
BR112014014762A8 (pt) 2019-11-19
US9243268B2 (en) 2016-01-26
EP2792748A4 (en) 2015-08-05
RU2579689C1 (ru) 2016-04-10
CA2914131C (en) 2018-05-01
ES2634683T3 (es) 2017-09-28
KR101404376B1 (ko) 2014-06-11
PH12014501353A1 (en) 2014-09-22
CN104039963B (zh) 2016-08-31
BR122019023670B1 (pt) 2021-06-29
PH12014501353B1 (en) 2014-09-22
EP2792748A2 (en) 2014-10-22
JP5860550B2 (ja) 2016-02-16
JP2015500039A (ja) 2015-01-05
BR112014014762B1 (pt) 2021-06-29
MY164371A (en) 2017-12-15
CA2914131A1 (en) 2013-06-20
MY176977A (en) 2020-08-28
CN104039963A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2013089478A2 (ko) 신규 o-포스포세린 설프하이드릴라아제를 이용하여 시스테인 또는 이의 유도체를 생산하는 방법
JP5789670B2 (ja) O−ホスホセリンスルフヒドリラーゼ変異体及びそれを用いたシステインの生成方法
EP1382684B1 (de) Verfahren zur fermentativen Herstellung von Aminosäuren und Aminosäure-Derivaten der Phosphoglycerat-Familie
KR19990007062A (ko) L-시스테인, l-시스틴, n-아세틸세린 또는 티아졸리딘 유도체의 발효제조용 미생물 및 그 발효제조방법
WO2014182125A1 (en) Novel o-phosphoserine export protein and the method of producing o-phosphoserine using the same
CN105377878B (zh) 新的RhtB蛋白变体和使用其产生O-磷酸丝氨酸的方法
WO2017122931A1 (ko) L-시스테인 생산용 변이미생물 및 이를 이용한 l-시스테인의 제조방법
WO2017065529A1 (ko) O-아세틸호모세린 설피드릴라제 변이체 및 이를 이용한 l-메치오닌 제조 방법
KR101404325B1 (ko) 신규 o-포스포세린 설프하이드릴라아제를 이용하여 시스테인 또는 이의 유도체를 생산하는 방법
WO2017065457A1 (ko) L-쓰레오닌 생산능을 가지는 미생물 및 그를 이용하여 l-쓰레오닌을 생산하는 방법
CN105189734A (zh) 提高l-半胱氨酸生产能力的属于肠杆菌科的细菌

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858268

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014547104

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2859125

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14365571

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 122019023670

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2012858268

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012858268

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014125851

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014014762

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014014762

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140616