WO2013089228A1 - フレーム構造およびそれを用いた自動車用部品 - Google Patents

フレーム構造およびそれを用いた自動車用部品 Download PDF

Info

Publication number
WO2013089228A1
WO2013089228A1 PCT/JP2012/082487 JP2012082487W WO2013089228A1 WO 2013089228 A1 WO2013089228 A1 WO 2013089228A1 JP 2012082487 W JP2012082487 W JP 2012082487W WO 2013089228 A1 WO2013089228 A1 WO 2013089228A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
frame member
sheet
frame structure
fiber reinforced
Prior art date
Application number
PCT/JP2012/082487
Other languages
English (en)
French (fr)
Inventor
山口晃司
清水信彦
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2013089228A1 publication Critical patent/WO2013089228A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/04Doors arranged at the vehicle sides
    • B60J5/042Reinforcement elements
    • B60J5/0422Elongated type elements, e.g. beams, cables, belts or wires
    • B60J5/0438Elongated type elements, e.g. beams, cables, belts or wires characterised by the type of elongated elements
    • B60J5/0443Beams
    • B60J5/0444Beams characterised by a special cross section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer

Definitions

  • the present invention relates to a frame structure and an automotive part using the same, and more particularly to a frame structure in which a resin frame member that receives an external load is reinforced with a sheet-like fiber reinforced resin molded article, and an automotive part using the same.
  • frame members used in various fields if they are formed only from resin, there is a possibility that the strength may be insufficient particularly when an external load is applied.
  • the frame member is made of metal or fiber reinforced resin.
  • the frame member is made of metal, it is difficult to reduce the weight, and when the frame member has a relatively complicated shape, it is difficult to ensure good moldability like a resin. If the entire frame member is made of fiber reinforced resin, the cost increases and the mechanical characteristics may be excessive, and the moldability is inferior compared to the case of being made only of resin.
  • Patent Documents 1 and 2 a method of manufacturing a composite molded body made of a fiber reinforced resin as a whole by joining a fiber reinforced resin of a thermosetting resin and a fiber reinforced resin of a thermoplastic resin is known (for example, Patent Documents 1 and 2). ).
  • the frame member is manufactured by such a method, as in the case where the entire frame member is made of a kind of fiber reinforced resin, the cost increases and the mechanical characteristics may be excessive.
  • the fiber reinforced resin members are molded in advance and then joined together, the manufacturing process becomes complicated, and this also increases the cost.
  • the laminated body structure of a glass fiber reinforced thermoplastic resin layer is also known (for example, patent document 3).
  • none of the structures described in Patent Documents 1 to 3 satisfy the desirable relational expression in the present invention as described later.
  • the object of the present invention is to effectively combine mechanical strength against external loads and the like based on the directivity of such technology by combining fiber reinforced resin as efficiently as necessary with frame members that have been basically composed of resin. It is an object of the present invention to provide a frame structure that can be improved in general and that can realize an inexpensive configuration while ensuring good moldability, and in particular, an automotive part using the frame structure.
  • a frame structure according to the present invention is arranged on the back side of the resin frame member A that receives an external load on the surface side, and the central part in the thickness direction viewed from the surface side of the resin frame member A.
  • the sheet-shaped fiber reinforced resin molded body B which is formed in advance in the longitudinal direction of the resin frame member A, is integrally molded.
  • the resin frame member A is located at a position on the back side with respect to the thickness direction viewed from the surface side receiving the external load, that is, on the back side with respect to the center portion.
  • a pre-formed sheet-like fiber reinforced resin molded body B is integrally formed with the resin frame member A at a position embedded in the thickness of the resin frame member A or a position on the back surface of the resin frame member A. Therefore, the resin frame member A is reinforced as much as necessary by the sheet-like fiber reinforced resin molded body B having a small thickness, and the mechanical characteristics capable of meeting the required specifications are efficiently obtained. Is granted.
  • a pre-molded molded body is used for the sheet-like fiber reinforced resin molded body B.
  • the resin frame member A is integrally formed with the molded body B, the entire frame member is formed only from the resin. As a result, good moldability is ensured, and a desired frame member can be manufactured at low cost without going through a complicated process. Further, since the sheet-like fiber reinforced resin molded body B for improving the mechanical properties is disposed on the back side from the center portion in the thickness direction as viewed from the surface side receiving the external load of the resin frame member A, the resin frame member When an external load is applied to the surface side of A, the sheet-like fiber reinforced resin molded body B arranged at a position away from the surface side has an excellent tensile strength, tensile elastic modulus, bending elastic modulus.
  • the mechanical properties of the frame member can be expressed particularly efficiently in the longitudinal direction, and the mechanical properties of the entire frame member can be effectively improved without excessive specifications with a thin and small amount of the fiber-reinforced resin molded product B. become. Furthermore, since the resin frame member A and the sheet-like fiber reinforced resin molded body B having a small thickness are combined, it is possible to respond to a request for sufficiently reducing the weight as compared with the case of metal.
  • a thermoplastic resin for placing a pre-molded sheet-like fiber reinforced resin molded body B in a mold and forming the resin frame member A in the mold. A molding technique for injecting resin can be applied.
  • the weight average fiber length of the reinforcing fibers contained in the sheet-like fiber-reinforced resin molded body B is preferably 1 mm or more.
  • the weight average fiber length is less than 1 mm, good formability of the sheet-like fiber reinforced resin molded product B itself can be obtained, but high mechanical properties are hardly obtained.
  • said sheet-like fiber reinforced resin molding B for example, (1) By a combination of a mat-like reinforcing fiber base material in which reinforcing fibers having a weight average fiber length in the range of 1 mm to 50 mm are substantially randomly oriented and a thermoplastic resin; (2) A molded body in which continuous reinforcing fibers extending in the longitudinal direction of the resin frame member A are disposed, Any of these, or the molded object which combined these can be comprised.
  • (1) for example, in a molded product of fiber reinforced resin using a thermoplastic resin, it is necessary that the length of the reinforced fiber is long to some extent in order to realize high mechanical properties required as a structural material.
  • a molded article using a reinforcing fiber base material of reinforcing fiber having a weight average fiber length in the range of 1 mm to 50 mm is preferable.
  • a combination of a mat-like base material in which reinforcing fibers having a fiber length in this range are oriented substantially randomly and a resin is preferable.
  • the continuous reinforcing fibers extending in the longitudinal direction of the resin frame member A are arranged so as to extend, for example, between the two ends of the molded body B.
  • a reinforced molded body is preferred.
  • seat of these both forms is also employable.
  • the sheet-like fiber reinforced resin molded product B can also adopt a form including a unidirectional fiber reinforced resin sheet in which continuous reinforcing fibers are arranged in parallel in one direction.
  • the mechanical properties in the extending direction of the continuous reinforcing fibers can be intentionally improved efficiently.
  • the length in the longitudinal direction of the resin frame member A of the sheet-like fiber reinforced resin molded body B can be appropriately set in consideration of the required reinforcing form, ease of integral molding, and the like.
  • the sheet-like fiber reinforced resin molded body B may have a structure extending between both ends in the longitudinal direction of the resin frame member A, or less than the distance between both ends in the longitudinal direction of the resin frame member A. That is, a structure in which at least one end of the sheet-like fiber-reinforced resin molded body B is embedded in the resin frame member A can be used.
  • the fiber weight content of the sheet-like fiber reinforced resin molded product B is preferably 30% or more. More preferably, the weight content is 50% or more. When the fiber weight content is less than 30%, it is difficult to obtain sufficiently high mechanical properties of the sheet-like fiber reinforced resin molded product B itself, and a sufficiently high reinforcing effect is obtained by arranging the sheet-like fiber reinforced resin molded product B. It's hard to be done.
  • the type of reinforcing fiber of the sheet-like fiber reinforced resin molded product B is not particularly limited, and carbon fiber, glass fiber, aramid fiber, and reinforcing fiber having a combination of these can be used. Considering the point that the mechanical characteristics of the frame member can be effectively improved, the ease of designing the mechanical characteristics, and the like, it is preferable that the structure includes carbon fibers as the reinforcing fibers of the sheet-like fiber-reinforced resin molded body B.
  • the resin frame member A is preferably formed by injection molding.
  • a fiber reinforced resin for injection molding, and as the reinforcing fiber, carbon fiber, glass fiber, aramid fiber, or a combination of these reinforcing fibers is preferably used. More preferred is a carbon fiber reinforced resin.
  • the weight fiber content (Wf) is preferably in the range of more than 0% and up to 60%.
  • the weight average fiber length after molding is preferably in the range of 0.05 to 4 mm, more preferably in the range of 0.7 to 2 mm. If it is less than 0.05 mm, it is difficult to exert the effect of fiber reinforcement, and if it exceeds 4 mm, problems such as difficulty in uniformly dispersing in the resin may occur.
  • the frame structure according to the present invention when it is assumed to be broken, it is desirable that the frame structure is surely stably broken (clogged and sequentially broken) from the side receiving the load.
  • a load is applied from the surface side of the resin frame member A, and a desirable relational expression that causes stable fracture in that case is also proposed.
  • the ratio RateE between the bending elastic modulus of the resin frame member A and the tensile elastic modulus of the sheet-like fiber-reinforced resin molded body B, the bending strength of the resin frame member A, and the sheet Ratio ⁇ of the tensile strength of the fiber reinforced resin molding B, the distance from the neutral axis in the thickness direction to the surface of the resin frame member A, and the distance from the neutral axis to the back surface of the sheet fiber reinforced resin molding B
  • the ratio RateT preferably satisfies the following relational expression. RateE ⁇ RateT ⁇ Rate ⁇ By satisfying such a relationship, even when broken, the breakage is surely started from the surface of the resin frame member A, and stable sequential breakage can be realized. A more detailed concept for deriving this relational expression will be described later.
  • the tensile elastic modulus of the sheet-like fiber reinforced resin molded body B is 50 GPa or more.
  • the distance ratio RateT is preferably in the range of 1 to 5.
  • the sheet-like fiber reinforced resin molded body B is integrally formed with the resin frame member A, it is also desired that the mechanical characteristics with respect to the external load and the like as the entire frame structure are secured sufficiently high. It is preferable that the tensile strength of the sheet-like fiber reinforced resin molded product B is 1000 MPa or more.
  • thermoplastic resin C is formed on at least a part of the surface of either the resin frame member A or the sheet-like fiber reinforced resin molded body B, or both of them, and the film of the thermoplastic resin C
  • the thermoplastic resin C and a part of the resin of the resin frame member A and the sheet-like fiber reinforced resin molded body B are melted by heating, so that the thermoplastic resin
  • the resin frame member A and the sheet-like fiber reinforced resin molded body B are integrally formed through a C film.
  • thermoplastic resin C As described above is interposed, the same resin can be used for the thermoplastic resin C and the resin frame member A. By using the same resin, at least the resin frame member A and the thermoplastic resin C can be joined together very easily.
  • thermoplastic resin C and the resin frame member A are mainly composed of a crystalline thermoplastic resin and have the following relationship may be employed.
  • the crystallization temperature of the resin C ⁇ the crystallization temperature of the resin of the resin frame member A.
  • the target resin is cooled at a constant rate (10 ° C./min) from the molten state by a differential scanning calorimeter (DSC), and the crystallization exothermic peak temperature [crystallization temperature] (Tc)] is measured to evaluate the crystallization rate (the higher the crystallization temperature (Tc), the faster the crystallization rate).
  • the following frame structure can be formed. That is, the resin a of the resin frame member A and the resin b of the sheet-like fiber reinforced resin molded body B are thermoplastic resins made of a homopolymer obtained by polymerizing a specific monomer, and the thermoplastic resin C is 2 A copolymer obtained by copolymerization of two or more different monomers, a thermoplastic resin comprising one of the two or more monomers containing the same monomer as resin a or resin b, or a resin blended with the copolymer It is the composition which is a composition.
  • the film of the thermoplastic resin C for example, a film using the resin C, for example, a film, or a non-woven fabric by melt blow or spun bond can be used.
  • a preform sheet-like fiber-reinforced resin molded body B
  • the preform be disposed on the surface and integrated in advance. In this case, even if the resin C and the resin b are partially mixed, the resin C may be partially exposed on the surface.
  • the frame structure according to the present invention as described above is a member that has been conventionally configured as a molded product made only of resin, and a member that is desired to efficiently improve mechanical properties at low cost against external loads,
  • it is suitable for members that are mass-produced, and can be applied to members in all fields.
  • it is suitable for automobile parts, particularly door beams, bumper reinforcements, seat frames, side sills and the like.
  • an external load or the like can be obtained by integrally molding a thin frame-like fiber reinforced resin molded body B in combination with a resin frame member that has been basically made of resin. Therefore, the frame member having the desired characteristics can be manufactured at low cost while ensuring good moldability. By utilizing this frame structure, it is possible to provide a desired part for automobile.
  • FIG. 1 shows a frame structure according to an embodiment of the present invention
  • (A) and (B) show cross sections viewed from directions orthogonal to each other (similarly in FIGS. 2 to 5).
  • (A) and (B) show cross sections viewed from directions orthogonal to each other.
  • reference numeral 1 denotes an entire frame member having a frame structure according to an embodiment of the present invention.
  • the frame member 1 includes a resin frame member A (2) that receives an external load F on the surface side, and the resin.
  • Pre-molded sheet-like fiber reinforced resin molding that is disposed on the back side of the center portion 3 in the thickness direction as viewed from the front surface side of the frame member A (2) and extends in the longitudinal direction XX of the resin frame member A (2).
  • the body B (4) is integrally molded.
  • the sheet-like fiber reinforced resin molded product B (4) is embedded in the resin frame member A (2) and extends between both end portions in the longitudinal direction of the resin frame member A (2). .
  • the resin frame member A (2) is reinforced by a pre-molded sheet-like fiber reinforced resin molded body B (4) disposed on the back side of the center portion 3.
  • the mechanical characteristics of the integrally formed frame member 1 can be improved efficiently.
  • the resin frame member A (2) can be easily molded by injection molding or the like in a state where the sheet-like fiber reinforced resin molded body B (4) is disposed in the mold, so that the frame member 1 as a whole consists of only resin. It can be molded easily and inexpensively like the member.
  • the frame member 1 appropriately reinforced by the presence of the sheet-like fiber reinforced resin molded body B (4) can exhibit high mechanical properties with respect to the external load F, and in particular, the sheet-like fiber reinforced resin molded body B (4).
  • the resin molded body B (4) can exhibit high tensile strength, tensile elastic modulus, and bending elastic modulus. Moreover, since the frame member 1 consists of resin frame member A (2) and the thin sheet-like fiber reinforced resin molding B (4), it is very lightweight.
  • the frame member 11 shown in FIG. 2 illustrates frame structures according to other embodiments of the present invention.
  • the frame member 11 includes a resin frame member A (12) and a center in the thickness direction as viewed from the surface side of the resin frame member A (12). It has a configuration in which a sheet-shaped fiber-reinforced resin molded body B (14), which is arranged on the back side of the portion 13 and extends in the longitudinal direction of the resin frame member A (12), is integrally molded.
  • the sheet-like fiber reinforced resin molded product B (14) is provided on the back surface of the resin frame member A (12).
  • the frame member 21 includes a resin frame member A (22) and a center in the thickness direction as viewed from the surface side of the resin frame member A (22). It has a configuration in which a sheet-shaped fiber-reinforced resin molded body B (24) formed in advance in the longitudinal direction of the resin frame member A (22) is integrally molded with the back side of the portion 23.
  • the sheet-like fiber-reinforced resin molded body B (24) is molded short in the longitudinal direction and the width direction, and the resin frame member is formed at both ends by integral molding with the resin frame member A (12). It is completely buried in A (12).
  • the frame member 31 includes a resin frame member A (32) and a center in the thickness direction as viewed from the surface side of the resin frame member A (32). It has a configuration in which a sheet-shaped fiber-reinforced resin molded body B (34) formed in advance in the longitudinal direction of the resin frame member A (32) is integrally molded with the back side of the portion 33.
  • a plurality of holes 35 extending in the thickness direction of the resin frame member A (32) are provided on both sides of the sheet-like fiber reinforced resin molded product B (34). These holes 35 can be used as mounting holes for other members to the frame member 31 or mounting holes for other members to the frame member 31.
  • Other configurations and operations are in accordance with the embodiment shown in FIG.
  • the frame member 41 includes a resin frame member A (42) and a center in the thickness direction as viewed from the surface side of the resin frame member A (42).
  • Pre-molded sheet-like fiber reinforced resin that is disposed on the back side of the portion 43 (in the illustrated example, disposed on the back surface of the resin frame member A (42)) and extends in the longitudinal direction of the resin frame member A (32)
  • it has the structure formed by integrally molding the molded body B (44)
  • a layer of thermoplastic resin C (45) having a lower crystallization temperature than that of the resin constituting the resin frame member A (32) is interposed.
  • both of the resin frame member A (32) and the sheet-like fiber reinforced resin molded body B (44) are integrally formed by the intervention of the layer of the thermoplastic resin C (45) having such a low crystallization temperature.
  • the joint strength can be significantly improved.
  • Other configurations and operations are in accordance with the embodiment shown in FIG.
  • the frame structure according to the present invention can take various forms, and can take various forms other than the illustrated example.
  • 1 to 5 exemplify simple outer shapes, but of course, more complicated shapes can be adopted according to the outer shape of the frame member to be molded.
  • RateE Ratio of the bending elastic modulus of the resin frame member A and the tensile elastic modulus of the sheet-like fiber reinforced resin molding
  • RateT Distance from the neutral axis to the surface of the resin frame member A in the thickness direction and the sheet-like fiber reinforced resin from the neutral axis Ratio of distance to back surface of molded body
  • Rate ⁇ Ratio of bending strength of resin frame member A and tensile strength of sheet-like fiber reinforced resin molded body B
  • thermosetting CFRP prepreg CFRP: carbon fiber reinforced plastic, the same shall apply hereinafter
  • CFRP carbon fiber reinforced plastic
  • the resin frame member A was a thermoplastic CFRP injection material (pseudo isotropic lamination, bending elastic modulus 15 GPa, bending strength 410 MPa).
  • thermoplastic GFRP glass fiber reinforced plastic, the same hereafter
  • textile material pseudo isotropic lamination, tensile elastic modulus 30 GPa, tensile
  • the strength is 600 MPa.
  • thermoplastic GFRP woven material was used. Table 1 shows the calculation results of RateE ⁇ RateT and Rate ⁇ .
  • the frame structure according to the present invention can be applied to resin members in all fields where it is desired to efficiently improve the mechanical characteristics at low cost against external loads, and is suitable for various automotive parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Chair Legs, Seat Parts, And Backrests (AREA)
  • Seats For Vehicles (AREA)
  • Body Structure For Vehicles (AREA)
  • Laminated Bodies (AREA)

Abstract

 表面側に外部荷重を受ける樹脂フレーム部材Aと、該樹脂フレーム部材Aの表面側からみた厚み方向における中心部よりも背面側に配置され、樹脂フレーム部材Aの長手方向に延びる予め成形されたシート状繊維強化樹脂成形体Bとを一体成形してなることを特徴とするフレーム構造、およびそれを用いた自動車用部品。従来基本的に樹脂で構成されていた樹脂製フレーム部材に薄いシート状繊維強化樹脂成形体Bを組み合わせて一体成形することにより、外部荷重等に対するフレーム部材の機械特性を効率よく向上することができ、しかも、良好な成形性を確保しつつ所望の特性を有するフレーム部材を安価に製造することができる。このフレーム構造を利用して、望ましい形態の自動車用部品を提供できる。

Description

フレーム構造およびそれを用いた自動車用部品
 本発明は、フレーム構造およびそれを用いた自動車用部品に関し、とくに、外部荷重を受ける樹脂フレーム部材をシート状繊維強化樹脂成形体で補強したフレーム構造、およびそれを用いた自動車用部品に関する。
 各種分野に使用されるフレーム部材に関して、樹脂のみから形成すると、とくに外部荷重を受けたときに強度的に不足するおそれが生じる場合がある。このようなおそれを除去したり、軽減したりするためには、フレーム部材の素材を金属にしたり、繊維強化樹脂にしたりすることが考えられる。しかし、フレーム部材を金属製にすると、軽量化が難しくなるとともに、比較的複雑な形状になった場合、樹脂のような良好な成形性を確保することが難しくなる。フレーム部材の全体を繊維強化樹脂製にすると、コストが嵩むとともに機械特性的には過剰な仕様になることもあり、また、樹脂のみからなる場合に比べれば成形性は劣る。
 また、熱硬化性樹脂の繊維強化樹脂と熱可塑性樹脂の繊維強化樹脂とを接合し、全体として繊維強化樹脂からなる複合成形体を製造する方法は知られている(例えば、特許文献1、2)。しかし、このような方法でフレーム部材を製造すると、上記のフレーム部材の全体を一種の繊維強化樹脂製で形成する場合と同様、コストが嵩むとともに機械特性的には過剰な仕様になることもあり、さらに、繊維強化樹脂部材を予め成形し、しかる後にそれらを接合するため、製造工程が煩雑になり、この面からもコストの増大を招く。さらに、ガラス繊維強化熱可塑性樹脂層の積層体構造も知られている(例えば、特許文献3)。しかしこれら特許文献1~3に記載の構造体は、いずれも、後述の如く本発明における望ましい関係式を満たさない。
特許第3906319号公報 特許第4543696号公報 特開平5-147169号公報
 上記のような実情から、樹脂のみからなるフレーム部材の優れた成形性を残しつつ、対象とするフレーム部材にとって望ましい機械特性を過剰仕様にならないよう必要なだけ付与するために、効率よく繊維強化樹脂を組み合わせることができれば、少なくとも成形上も、コスト的にも、好ましいフレーム部材が得られる可能性が高くなる。
 そこで本発明の課題は、このような技術の指向性に基づき、従来基本的に樹脂で構成されていたフレーム部材に必要なだけ効率よく繊維強化樹脂を組み合わせて、外部荷重等に対する機械特性を効果的に向上でき、かつ、良好な成形性を確保しつつ安価な構成を実現できるフレーム構造と、特にそれを用いた自動車用部品を提供することにある。
 上記課題を解決するために、本発明に係るフレーム構造は、表面側に外部荷重を受ける樹脂フレーム部材Aと、該樹脂フレーム部材Aの表面側からみた厚み方向における中心部よりも背面側に配置され、前記樹脂フレーム部材Aの長手方向に延びる予め成形されたシート状繊維強化樹脂成形体Bとを一体成形してなることを特徴とするものからなる。
 このような本発明に係るフレーム構造においては、樹脂フレーム部材Aに対して、その外部荷重を受ける表面側からみた厚み方向における中心部よりも背面側の位置に、つまり、中心部よりも背面側の樹脂フレーム部材Aの肉厚内に埋設される位置あるいは樹脂フレーム部材Aの背面上の位置に、配置される予め成形されたシート状繊維強化樹脂成形体Bが樹脂フレーム部材Aと一体成形された構成を有するので、樹脂フレーム部材Aが厚みの小さいシート状の形態の繊維強化樹脂成形体Bによって、必要なだけ補強されることになり、要求仕様に応えることが可能な機械特性が効率よく付与される。シート状繊維強化樹脂成形体Bには予め成形された成形体が用いられるが、樹脂フレーム部材Aがこの成形体Bと一体成形されるので、フレーム部材全体の成形においては、樹脂のみから構成される場合と同様の良好な成形性が確保され、複雑な工程を経ることなく安価に所望のフレーム部材の製作が可能である。また、機械特性を向上するためのシート状繊維強化樹脂成形体Bは、樹脂フレーム部材Aの外部荷重を受ける表面側からみた厚み方向における中心部よりも背面側に配置されるので、樹脂フレーム部材Aの表面側に外部荷重が作用する際、その表面側とは反対側に離れた位置に配置されたシート状繊維強化樹脂成形体Bは、その優れた引張強度、引張弾性率、曲げ弾性率等の機械特性をとくに長手方向に効率よく発現でき、薄く少ない量の繊維強化樹脂成形体Bにて、フレーム部材全体の機械特性を、過剰仕様にすることなく効果的に向上することができるようになる。さらに、樹脂フレーム部材Aと、厚みの小さいシート状繊維強化樹脂成形体Bとの複合構成であるので、金属製の場合に比べ、十分に軽量化要請にも応えることができる。なお、本発明における一体成形の手法としては、例えば、予め成形されたシート状繊維強化樹脂成形体Bを成形型内に配置し、該成形型内に樹脂フレーム部材Aを構成するための熱可塑性樹脂を射出する成形手法を適用できる。
 上記のような本発明に係るフレーム構造においては、上記シート状繊維強化樹脂成形体B内に含まれる強化繊維の重量平均繊維長は1mm以上であることが好ましい。重量平均繊維長が1mm未満であると、シート状繊維強化樹脂成形体B自体の良好な成形性は得られるものの、高い機械特性が得られにくくなる。
 また、上記シート状繊維強化樹脂成形体Bとしては、例えば、
(1)重量平均繊維長が1mm~50mmの範囲の強化繊維が実質上ランダムに配向したマット状強化繊維基材と熱可塑性樹脂との組み合わせによるもの、
(2)上記樹脂フレーム部材Aの長手方向に延びる連続強化繊維が配置された成形体、
のいずれか、または、これらが組み合わされた成形体に構成できる。(1)の形態に関しては、例えば熱可塑性樹脂を用いた繊維強化樹脂の成形品では、構造材として求められる高い機械特性の発現を実現するためには、強化繊維長がある程度長いことが必要となるので、重量平均繊維長1mm以上の強化繊維、とくに成形性等を考慮して、重量平均繊維長が1mm~50mmの範囲の強化繊維の強化繊維基材を用いた成形品であることが好ましく、この範囲の繊維長の強化繊維が実質上ランダムに配向したマット状基材と樹脂の組み合わせによるものが好ましい。(2)の形態に関しては、予め成形されたシート状繊維強化樹脂成形体Bとして、樹脂フレーム部材Aの長手方向に延びる連続強化繊維が例えば成形体Bの2端部間にわたって延びるように配置されて強化された成形体が好ましい。さらには、これらが組み合わされた形態、例えばこれら両形態のシートの積層体からなる成形体も採用できる。
 また、上記シート状繊維強化樹脂成形体Bが、連続強化繊維が一方向に並行に配置された一方向繊維強化樹脂シートを含む形態を採用することもできる。このような構成においては、とくに連続強化繊維の延設方向における機械特性を意図的に効率よく向上できる。
 また、上記シート状繊維強化樹脂成形体Bの上記樹脂フレーム部材Aの長手方向における長さに関しては、要求される補強形態や一体成形のしやすさ等を考慮して適宜設定できる。たとえば、上記シート状繊維強化樹脂成形体Bの上記樹脂フレーム部材Aの長手方向における両端部間にわたって延びている構造とすることもできるし、樹脂フレーム部材Aの長手方向における両端部間の距離未満の長さを有する構造、すなわち、シート状繊維強化樹脂成形体Bの少なくともいずれか一方の端部が樹脂フレーム部材A内に埋設されている構造とすることもできる。
 また、本発明に係るフレーム構造において、上記シート状繊維強化樹脂成形体Bの繊維重量含有率としては30%以上であることが好ましい。さらに好ましくは、重量含有率50%以上である。繊維重量含有率が30%未満では、シート状繊維強化樹脂成形体B自体の十分に高い機械特性が得られにくく、シート状繊維強化樹脂成形体Bを配置したことによる十分に高い補強効果が得られにくい。
 また、上記シート状繊維強化樹脂成形体Bの強化繊維の種類としてはとくに限定されず、炭素繊維やガラス繊維、アラミド繊維、さらにはこれらの組み合わせ構成を有する強化繊維等が使用可能であるが、フレーム部材の機械特性を効果的に向上できる点、機械特性の設計のしやすさ等を考慮すれば、シート状繊維強化樹脂成形体Bの強化繊維として炭素繊維を含む構成であることが好ましい。
 また、上記樹脂フレーム部材Aとしては、射出成形により形成されることが好ましい。この場合、射出成形には繊維強化樹脂を用いることが好ましく、その強化繊維としては、炭素繊維やガラス繊維、アラミド繊維等や、これらの強化繊維の組み合わせ等が好適に用いられる。より好ましくは炭素繊維強化樹脂である。繊維強化樹脂を用いる場合、重量繊維含有率(Wf)は0%を超え、60%までの範囲であることが好ましい。また、成形後の重量平均繊維長は、0.05~4mmの範囲にあることが好ましく、0.7~2mmの範囲がより好ましい。0.05mm未満であると繊維強化の効果が発揮しづらく、また4mmを超えると、樹脂内に均一に分散しにくくなる等の不都合が生じうる。
 また、本発明に係るフレーム構造においては、破壊されることを想定した場合、荷重を受けた側から確実に安定破壊(つめり、逐次破壊)されることが望ましい。本発明では、樹脂フレーム部材Aの表面側から荷重がかかることを想定し、その場合に安定破壊となるような望ましい関係式についても提案する。
 すなわち、本発明に係るフレーム構造においては、上記樹脂フレーム部材Aの曲げ弾性率と上記シート状繊維強化樹脂成形体Bの引張弾性率の比RateEと、上記樹脂フレーム部材Aの曲げ強度と上記シート状繊維強化樹脂成形体Bの引張強度の比Rateσと、厚み方向における中立軸から上記樹脂フレーム部材Aの表面まで距離と該中立軸から上記シート状繊維強化樹脂成形体Bの背面までの距離の比RateTが、以下の関係式を満たすことが好ましい。
   RateE ×RateT ≧ Rateσ
 このような関係を満たすことにより、破壊される場合にも、破壊が確実に樹脂フレーム部材Aの表面から開始され、安定した逐次破壊の実現が可能になる。この関係式導出のより詳細な概念については後述する。
 さらに、樹脂フレーム部材Aの表面側からの破壊開始をより確実にするためには、シート状繊維強化樹脂成形体Bの引張弾性率が50GPa以上であることが好ましい。また、上記距離の比RateTは、1~5の範囲にあることが好ましい。
 また同時に、シート状繊維強化樹脂成形体Bが樹脂フレーム部材Aと一体成形されていることによって、フレーム構造全体としての外部荷重等に対する機械特性が十分に高く確保されることも望まれるので、そのためには、シート状繊維強化樹脂成形体Bの引張強度が1000MPa以上であることが好ましい。
 また、本発明に係るフレーム構造においては、樹脂フレーム部材Aとシート状繊維強化樹脂成形体Bの一体成形に際して、両者の間に接合用の薄膜を介在させた構造を採用することも可能である。例えば、上記樹脂フレーム部材Aまたはシート状繊維強化樹脂成形体Bのいずれか、あるいはそれらの両方の表面の少なくとも一部に熱可塑性樹脂Cの膜が形成されており、該熱可塑性樹脂Cの膜が接合の境界面に配置された状態で、加熱により該熱可塑性樹脂Cおよび、上記樹脂フレーム部材Aおよびシート状繊維強化樹脂成形体Bの樹脂の一部が溶融されることにより、熱可塑性樹脂Cの膜を介して上記樹脂フレーム部材Aとシート状繊維強化樹脂成形体Bが一体成形されてなる構成を採用することが可能である。このような薄膜の熱可塑性樹脂Cの介在により、樹脂フレーム部材Aとシート状繊維強化樹脂成形体Bとの一体接合をより容易に行うことができる場合がある。
 上記のような熱可塑性樹脂Cを介在させる場合、熱可塑性樹脂Cと、上記樹脂フレーム部材Aの樹脂とに同一の樹脂を使用することができる。同一の樹脂であることにより、少なくとも樹脂フレーム部材Aと熱可塑性樹脂Cとの一体接合が極めて容易に行われる。
 あるいは、上記熱可塑性樹脂Cと上記樹脂フレーム部材Aの樹脂が、結晶性の熱可塑性樹脂を主成分とし、かつ以下の関係を有する構成を採用することもできる。
 樹脂Cの結晶化温度<樹脂フレーム部材Aの樹脂の結晶化温度
 このように結晶化温度に高低の差をつける形態を採用することにより、とくに、接合の境界面に位置する樹脂Cの結晶化温度を相対的に低くして結晶化速度を遅くすることが可能になり(結晶化温度が高いものほど結晶化速度が速い)、接合面を加熱した際に、境界面の樹脂Cを結晶化前に十分に溶融させ、被接合部位同士を圧着などして境界面がなじむ時間を得ることができる。これにより高い接合強度をもって接合した一体成形体の製造が可能になる。なお、この結晶化温度(Tc)の測定に関しては、対象樹脂を、示差走査熱量計(DSC)により溶融状態から一定速度(10℃/分)で冷却し、結晶化発熱ピーク温度〔結晶化温度(Tc)〕を測定することにより、上記結晶化速度を評価する(結晶化温度(Tc)が高いものほど結晶化速度が速い。)。
 また、上記のような結晶化温度特性を満たすために、あるいは、上記結晶化温度特性とは別に、次のようなフレーム構造に構成することができる。すなわち、上記樹脂フレーム部材Aの樹脂aおよびシート状繊維強化樹脂成形体Bの樹脂bが、特定のモノマーを重合したホモポリマーからなる熱可塑性樹脂であり、かつ、上記熱可塑性樹脂Cが、2種類以上の異なったモノマーの共重合によるコポリマーで、その2種類以上のモノマーのひとつに樹脂aもしくは樹脂bと同一のモノマーを含んでいるコポリマーからなる熱可塑性樹脂、またはそのコポリマーがブレンドされた樹脂組成物である構成である。このような形態においては、樹脂C側の結晶化温度を樹脂aや樹脂b側に比較して低くすることが可能となり、その結晶化速度が遅い樹脂Cが、より長い時間にわたって樹脂aおよび樹脂bに溶融状態で接することなり、樹脂aや樹脂bとの高強度接合を狙うことが可能となる。すなわち高い接合強度をもって接合した一体成形体の製造が可能となる。なお、樹脂a、樹脂bおよび樹脂Cの全ての樹脂の結晶化温度を下げて、系全体の結晶化速度を遅くすることは可能である。しかしながら結晶化速度を下げる特別な手法を系全体に採用すればコストアップが避けられず、この方法は工業的に有利な方法とは言えない。結晶化温度が相対的に低い樹脂Cを接合の境界面のみに使用することで、両者の十分な接合強度を得ると共に、大きなコストアップを避けることができる。
 なお、上記熱可塑性樹脂Cの膜としては、例えば、樹脂Cを使用した、例えばフィルムや、あるいはメルトブローやスパンボンドなどによる不織布を使用することができる。これを、例えばプレスなどで事前に予備成形体(シート状繊維強化樹脂成形体B)を得る際に、表面に配置しておき、あらかじめ一体化しておくのが望ましい。この場合、樹脂Cと、樹脂bが部分的に混合されてしまっても、樹脂Cが表面に一部でも露出していればかまわない。
 上記のような本発明に係るフレーム構造は、とくに従来樹脂のみからなる成形品として構成されていた部材で、外部からの荷重に対して機械特性を安価に効率よく向上させることが望まれる部材、さらに加えて大量生産されている部材に好適なもので、あらゆる分野の部材に適用できる。例えば、自動車用部品、中でも、ドアビーム、バンパーリインフォース、シートフレーム、サイドシル等に好適なものである。
 このように、本発明に係るフレーム構造によれば、従来基本的に樹脂で構成されていた樹脂製フレーム部材に薄いシート状繊維強化樹脂成形体Bを組み合わせて一体成形することにより、外部荷重等に対するフレーム部材の機械特性を効率よく向上することができ、しかも、良好な成形性を確保しつつ所望の特性を有するフレーム部材を安価に製造することができる。このフレーム構造を利用して、望ましい形態の自動車用部品を提供することができる。
本発明の一実施態様に係るフレーム構造の概略断面図である。 本発明の別の実施態様に係るフレーム構造の概略断面図である。 本発明のさらに別の実施態様に係るフレーム構造の概略断面図である。 本発明のさらに別の実施態様に係るフレーム構造の概略断面図である。 本発明のさらに別の実施態様に係るフレーム構造の概略断面図である。 本発明での安定破壊を説明するためのフレームの概略断面図である。
 以下に、本発明の実施の形態について、図面を参照しながら説明する。
 図1は、本発明の一実施態様に係るフレーム構造を示しており、(A)と(B)は互いに直交する方向から見た断面を示している(図2~図5においても同様に、(A)と(B)は互いに直交する方向から見た断面を示している)。図1において、1は本発明の一実施態様に係るフレーム構造を有するフレーム部材全体を示しており、フレーム部材1は、表面側に外部荷重Fを受ける樹脂フレーム部材A(2)と、該樹脂フレーム部材A(2)の表面側からみた厚み方向における中心部3よりも背面側に配置され、樹脂フレーム部材A(2)の長手方向X-Xに延びる予め成形されたシート状繊維強化樹脂成形体B(4)とを一体成形してなる構成を有している。本実施態様では、シート状繊維強化樹脂成形体B(4)は、樹脂フレーム部材A(2)中に埋設されており、樹脂フレーム部材A(2)の長手方向における両端部間にわたって延びている。
 このように一体成形されたフレーム部材1においては、中心部3よりも背面側に配置された予め成形されたシート状繊維強化樹脂成形体B(4)によって樹脂フレーム部材A(2)が補強され、一体成形されたフレーム部材1全体の機械特性が効率よく向上される。樹脂フレーム部材A(2)は、シート状繊維強化樹脂成形体B(4)を型内に配置した状態で射出成形等により容易に成形できるので、フレーム部材1全体としても、単に樹脂のみからなる部材と同様に容易にかつ安価に成形できる。シート状繊維強化樹脂成形体B(4)の存在によって適切に補強されたフレーム部材1は、外部荷重Fに対して高い機械特性を発現でき、とくに、シート状繊維強化樹脂成形体B(4)が中心部3よりも背面側に配置されているので、外部荷重Fによりフレーム部材1が図の下方に向けて湾曲変形しようとする際、フレーム部材1の表面から離れて位置するシート状繊維強化樹脂成形体B(4)は、高い引張強度、引張弾性率、曲げ弾性率を発現できる。また、フレーム部材1は樹脂フレーム部材A(2)と薄いシート状繊維強化樹脂成形体B(4)からなるので、極めて軽量である。
 図2~図5に、本発明の他の実施態様に係るフレーム構造を例示する。図2に示すフレーム部材11においては、図1に示した実施態様同様、フレーム部材11は、樹脂フレーム部材A(12)と、該樹脂フレーム部材A(12)の表面側からみた厚み方向における中心部13よりも背面側に配置され、樹脂フレーム部材A(12)の長手方向に延びる予め成形されたシート状繊維強化樹脂成形体B(14)とを一体成形してなる構成を有しているが、本実施態様では、シート状繊維強化樹脂成形体B(14)が、樹脂フレーム部材A(12)の背面上に設けられている。このような構成においては、樹脂フレーム部材A(12)とシート状繊維強化樹脂成形体B(14)とを一体成形するに際し、予め成形されたシート状繊維強化樹脂成形体B(14)を型内に配置して樹脂フレーム部材A(12)を構成する樹脂を射出成形する場合、シート状繊維強化樹脂成形体B(14)を型内面に沿わせて配置、保持させておけばよいので、極めて容易に一体成形を行うことができる。その他の構成、作用は図1に示した実施態様に準じる。
 図3に示すフレーム部材21においては、図1に示した実施態様同様、フレーム部材21は、樹脂フレーム部材A(22)と、該樹脂フレーム部材A(22)の表面側からみた厚み方向における中心部23よりも背面側に配置され、樹脂フレーム部材A(22)の長手方向に延びる予め成形されたシート状繊維強化樹脂成形体B(24)とを一体成形してなる構成を有しているが、本実施態様では、シート状繊維強化樹脂成形体B(24)が、長手方向および幅方向に短く成形されており、樹脂フレーム部材A(12)との一体成形により両端部とも樹脂フレーム部材A(12)中に完全に埋設されている。このような構成においては、一体成形された樹脂フレーム部材A(12)とシート状繊維強化樹脂成形体B(14)との間に剥離が極めて生じにくくなり、また外面が樹脂フレーム部材A(12)を構成する樹脂で覆われるので、優れた外観が得られる。その他の構成、作用は図1に示した実施態様に準じる。
 図4に示すフレーム部材31においては、図1に示した実施態様同様、フレーム部材31は、樹脂フレーム部材A(32)と、該樹脂フレーム部材A(32)の表面側からみた厚み方向における中心部33よりも背面側に配置され、樹脂フレーム部材A(32)の長手方向に延びる予め成形されたシート状繊維強化樹脂成形体B(34)とを一体成形してなる構成を有しているが、本実施態様では、シート状繊維強化樹脂成形体B(34)の両面側に樹脂フレーム部材A(32)の厚み方向に延びる複数の孔35が設けられている。これらの孔35は、フレーム部材31の他部材等への取付孔や、フレーム部材31への他部材等の取付孔に利用することが可能である。その他の構成、作用は図1に示した実施態様に準じる。
 図5に示すフレーム部材41においては、図2に示した実施態様同様、フレーム部材41は、樹脂フレーム部材A(42)と、該樹脂フレーム部材A(42)の表面側からみた厚み方向における中心部43よりも背面側に配置され(図示例では、樹脂フレーム部材A(42)の背面上に配置され)、樹脂フレーム部材A(32)の長手方向に延びる予め成形されたシート状繊維強化樹脂成形体B(44)とを一体成形してなる構成を有しているが、本実施態様では、樹脂フレーム部材A(32)とシート状繊維強化樹脂成形体B(44)との間に、接合用の、好ましくは樹脂フレーム部材A(32)を構成する樹脂よりも低い結晶化温度の熱可塑性樹脂C(45)の層が介在されている。このような低結晶化温度の熱可塑性樹脂C(45)の層の介在により、前述の如く、樹脂フレーム部材A(32)とシート状繊維強化樹脂成形体B(44)との一体成形における両者の接合強度を格段に向上することができる。その他の構成、作用は図1に示した実施態様に準じる。
 このように、本発明に係るフレーム構造は種々の形態を採り得、上記図示例以外にも各種形態を採り得る。なお、図1~図5には、単純な外形形状を例示したが、もちろん、成形しようとするフレーム部材の外形形状に応じてより複雑な形状を採り得る。
 本発明においては、前述したように、
   RateE ×RateT ≧ Rateσ
の関係式を満たすことが好ましい。
RateE:樹脂フレーム部材Aの曲げ弾性率とシート状繊維強化樹脂成形体Bの引張弾性率の比
RateT:厚み方向における中立軸から樹脂フレーム部材Aの表面まで距離と中立軸からシート状繊維強化樹脂成形体Bの背面までの距離の比
Rateσ:樹脂フレーム部材Aの曲げ強度とシート状繊維強化樹脂成形体Bの引張強度の比
 上記関係式は次のような概念に基づいて導き出される。すなわち、図2に示した形態を単純化した、図6に示すフレームモデルを用いて説明するに、図6に示すモデルの上方からそのモデルの上面に荷重がかかることを想定すると、材料Aに発生する最大曲げ応力σaは、
 σa= Ea × εa
材料Bに発生する最大引張応力σbは、
 σb= Eb × εb
となる。ここで、Eaは、材料Aの曲げ弾性率、Ebは、材料Bの引張弾性率、εa、εbは、材料A、材料Bのひずみである。材料Aの曲げ強度をσac、材料Bの引張り強度をσbcとすると、材料Aの表面側から破壊が安定して発生するためには、
 σa ≧ σac
 σb ≦ σbc
が成立することが必要である。そして、図6に示すように、厚み方向における中立軸Cから材料Aの表面まで距離をTa、中立軸Cから材料Bの背面までの距離をTbとすると、
 σa/σb=Ea/Eb×(εa/εb)=Ea/Eb×(Ta/Tb)≧σac/σbc
が成立することが必要になる。この式のEa/Eb×(Ta/Tb)≧σac/σbcが、上記した関係式である。
 上記の関係式について、前述の特許文献1、2から導き出される代表的な形態(比較例1)と、前述の特許文献3から導き出される代表的な形態(比較例2)と、本発明の図2に示した形態において樹脂フレーム部材Aとシート状繊維強化樹脂成形体Bとに適切な材料を用いたもの(実施例1)とを比較した。後述の表1に示すように、本発明の実施例1のみ、上述の関係式(RateE×RateT≧Rateσ)を満たすが、比較例1、2ではこの関係式を満たさない。
 なお、特許文献1、2に対応するものにおいては、シート状繊維強化樹脂成形体Bとして、熱硬化CFRPプリプレグ(CFRP:炭素繊維強化プラスチック、以下同じ)(擬似等方積層、引張弾性率47GPa、引張強度940MPa)を用い、樹脂フレーム部材Aとして、熱可塑CFRP射出材(擬似等方積層、曲げ弾性率15GPa、曲げ強度410MPa)を用いた。また、特許文献3に対応するものにおいては、シート状繊維強化樹脂成形体Bとして、熱可塑GFRP(GFRP:ガラス繊維強化プラスチック、以下同じ)織物材(擬似等方積層、引張弾性率30GPa、引張強度600MPa)を用い、樹脂フレーム部材Aとして、
熱可塑GFRP織物材(擬似等方積層、曲げ弾性率30GPa、曲げ強度800MPa)を用いた。RateE×RateTと、Rateσの計算結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 本発明に係るフレーム構造は、外部からの荷重に対して機械特性を安価に効率よく向上させることが望まれるあらゆる分野の樹脂部材に適用でき、各種自動車用部品等に好適なものである。
1,11、21、31、41 フレーム部材
2、12、22、32、42 樹脂フレーム部材A
3、13、23、33、43 厚み方向における中心部
4、14、24、34、44 シート状繊維強化樹脂成形体B
35 孔
45 熱可塑性樹脂C

Claims (18)

  1.  表面側に外部荷重を受ける樹脂フレーム部材Aと、該樹脂フレーム部材Aの表面側からみた厚み方向における中心部よりも背面側に配置され、前記樹脂フレーム部材Aの長手方向に延びる予め成形されたシート状繊維強化樹脂成形体Bとを一体成形してなるフレーム構造。
  2.  前記シート状繊維強化樹脂成形体B内に含まれる強化繊維の重量平均繊維長が1mm以上である、請求項1に記載のフレーム構造。
  3.  前記シート状繊維強化樹脂成形体Bが、
    (1)重量平均繊維長が1mm~50mmの範囲の強化繊維が実質上ランダムに配向したマット状強化繊維基材と熱可塑性樹脂との組み合わせによるもの、
    (2)前記樹脂フレーム部材Aの長手方向に延びる連続強化繊維が配置された成形体、
    のいずれか、または、これらが組み合わされた成形体である、請求項1または2に記載のフレーム構造。
  4.  前記シート状繊維強化樹脂成形体Bが、連続強化繊維が一方向に並行に配置された一方向繊維強化樹脂シートを含む、請求項1~3のいずれかに記載のフレーム構造。
  5.  前記シート状繊維強化樹脂成形体Bが、前記樹脂フレーム部材Aの長手方向における両端部間にわたって延びている、請求項1~4のいずれかに記載のフレーム構造。
  6.  前記シート状繊維強化樹脂成形体Bが、前記樹脂フレーム部材Aの長手方向における両端部間の距離未満の長さを有する、請求項1~4のいずれかに記載のフレーム構造。
  7.  前記シート状繊維強化樹脂成形体Bの繊維重量含有率が30%以上である、請求項1~6のいずれかに記載のフレーム構造。
  8.  前記シート状繊維強化樹脂成形体Bが強化繊維として炭素繊維を含む、請求項1~7のいずれかに記載のフレーム構造。
  9.  前記樹脂フレーム部材Aが射出成形してなることを特徴とする、請求項1~8のいずれかに記載のフレーム構造。
  10.  繊維強化樹脂を射出成形してなる、請求項9に記載のフレーム構造。
  11.  前記樹脂フレーム部材Aの曲げ弾性率と前記シート状繊維強化樹脂成形体Bの引張弾性率の比RateEと、前記樹脂フレーム部材Aの曲げ強度と前記シート状繊維強化樹脂成形体Bの引張強度の比Rateσと、厚み方向における中立軸から前記樹脂フレーム部材Aの表面まで距離と該中立軸から前記シート状繊維強化樹脂成形体Bの背面までの距離の比RateTが、以下の関係式を満たすことを特徴とする、請求項1~10のいずれかに記載のフレーム構造。
       RateE ×RateT ≧ Rateσ
  12.  前記シート状繊維強化樹脂成形体Bの引張強度が1000MPa以上である、請求項1~11のいずれかに記載のフレーム構造。
  13.  前記樹脂フレーム部材Aまたはシート状繊維強化樹脂成形体Bのいずれか、あるいはそれらの両方の表面の少なくとも一部に熱可塑性樹脂Cの膜が形成されており、該熱可塑性樹脂Cの膜が接合の境界面に配置された状態で、加熱により該熱可塑性樹脂Cおよび、前記樹脂フレーム部材Aおよびシート状繊維強化樹脂成形体Bの樹脂の一部が溶融されることにより、熱可塑性樹脂Cの膜を介して前記樹脂フレーム部材Aとシート状繊維強化樹脂成形体Bが一体成形されてなる、請求項1~12のいずれかに記載のフレーム構造。
  14.  前記熱可塑性樹脂Cと、前記樹脂フレーム部材Aの樹脂とが同一の樹脂である、請求項13に記載のフレーム構造。
  15.  前記熱可塑性樹脂Cと前記樹脂フレーム部材Aの樹脂が、結晶性の熱可塑性樹脂を主成分とし、かつ以下の関係を有する、請求項13に記載のフレーム構造。
     樹脂Cの結晶化温度<樹脂フレーム部材Aの樹脂の結晶化温度
  16.  前記樹脂フレーム部材Aの樹脂aおよびシート状繊維強化樹脂成形体Bの樹脂bが、特定のモノマーを重合したホモポリマーからなる熱可塑性樹脂であり、かつ、前記熱可塑性樹脂Cが、2種類以上の異なったモノマーの共重合によるコポリマーで、その2種類以上のモノマーのひとつに樹脂aもしくは樹脂bと同一のモノマーを含んでいるコポリマーからなる熱可塑性樹脂、またはそのコポリマーがブレンドされた樹脂組成物である、請求項13または15に記載のフレーム構造。
  17.  請求項1~16のいずれかに記載のフレーム構造を使用した自動車用部品。
  18.  ドアビーム、バンパーリインフォース、シートフレーム、サイドシルのいずれかからなる、請求項17に記載の自動車用部品。
PCT/JP2012/082487 2011-12-16 2012-12-14 フレーム構造およびそれを用いた自動車用部品 WO2013089228A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-275821 2011-12-16
JP2011275821 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013089228A1 true WO2013089228A1 (ja) 2013-06-20

Family

ID=48612667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082487 WO2013089228A1 (ja) 2011-12-16 2012-12-14 フレーム構造およびそれを用いた自動車用部品

Country Status (2)

Country Link
JP (1) JPWO2013089228A1 (ja)
WO (1) WO2013089228A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230788A (ja) * 2012-05-01 2013-11-14 Toyota Boshoku Corp 樹脂成形品の強化構造
JP2016097795A (ja) * 2014-11-21 2016-05-30 アイシン精機株式会社 車両用バンパ装置
JP2017525612A (ja) * 2014-09-24 2017-09-07 エルジー・ハウシス・リミテッドLg Hausys,Ltd. シートバッグフレーム、この製造方法及び車両用シートバッグ
JP2021045865A (ja) * 2019-09-18 2021-03-25 株式会社八木熊 プラスチック製フレーム、ラックギア、及びスライドレール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487855A (ja) * 1990-07-30 1992-03-19 Polyplastics Co バンパービームおよびその製造法
JP2000065115A (ja) * 1998-08-21 2000-03-03 Sumitomo Chem Co Ltd 衝撃吸収部品、その製法及びその用途
JP2004269878A (ja) * 2003-02-21 2004-09-30 Toray Ind Inc 繊維強化複合材料およびその製造方法並びに一体化成形品
JP2006188141A (ja) * 2005-01-06 2006-07-20 Honda Motor Co Ltd 衝撃吸収部材
JP2012214199A (ja) * 2011-03-31 2012-11-08 Uchihama Kasei Kk 車両用のドア構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487855A (ja) * 1990-07-30 1992-03-19 Polyplastics Co バンパービームおよびその製造法
JP2000065115A (ja) * 1998-08-21 2000-03-03 Sumitomo Chem Co Ltd 衝撃吸収部品、その製法及びその用途
JP2004269878A (ja) * 2003-02-21 2004-09-30 Toray Ind Inc 繊維強化複合材料およびその製造方法並びに一体化成形品
JP2006188141A (ja) * 2005-01-06 2006-07-20 Honda Motor Co Ltd 衝撃吸収部材
JP2012214199A (ja) * 2011-03-31 2012-11-08 Uchihama Kasei Kk 車両用のドア構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230788A (ja) * 2012-05-01 2013-11-14 Toyota Boshoku Corp 樹脂成形品の強化構造
JP2017525612A (ja) * 2014-09-24 2017-09-07 エルジー・ハウシス・リミテッドLg Hausys,Ltd. シートバッグフレーム、この製造方法及び車両用シートバッグ
US10118523B2 (en) 2014-09-24 2018-11-06 Lg Hausys, Ltd. Seat-back frame, method for preparing the same, and seat-back for vehicle
JP2016097795A (ja) * 2014-11-21 2016-05-30 アイシン精機株式会社 車両用バンパ装置
JP2021045865A (ja) * 2019-09-18 2021-03-25 株式会社八木熊 プラスチック製フレーム、ラックギア、及びスライドレール

Also Published As

Publication number Publication date
JPWO2013089228A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
KR101886897B1 (ko) 차량 골격 부재
US9073288B2 (en) Method of producing a fiber-reinforced plastic
US9821739B2 (en) Automobile bumper
JP6235375B2 (ja) 自動車の車体構造
US9487118B2 (en) Frame structure for backrest and method for manufacturing the same
US10052842B2 (en) Composite structure and manufacturing method thereof
KR101396822B1 (ko) 연속섬유 강화 프리프레그 시트를 이용한 열가소성 복합소재 제조방법
WO2013089228A1 (ja) フレーム構造およびそれを用いた自動車用部品
JP6648768B2 (ja) 繊維強化樹脂成形品および繊維強化樹脂成形品の製造方法
JP2017061068A (ja) 金属−cfrp複合部材
WO2013133146A1 (ja) ビーム成形品およびそれを用いたバンパレインフォース
US10414445B2 (en) Hybrid component for a vehicle
JP2012121560A (ja) 多重ガラス纎維接合式高強度プラスチックバックビーム
US20140246881A1 (en) Side panel
KR101721727B1 (ko) 연속섬유강화 열가소성 플라스틱을 이용한 헤드레스트 일체형 3열 시트 백 프레임 및 그 제조방법
KR102019112B1 (ko) 자동차용 시트백 프레임 및 그 제조 방법
KR20180060504A (ko) 차량용 도어 바디 및 이의 제조 방법
KR102284616B1 (ko) 자동차 부품용 하이브리드 섬유강화 복합재
KR102152204B1 (ko) 섬유강화복합소재의 인서트 오버몰딩을 포함하는 자동차용 현가장치 제조방법 및 이를 통해 제조된 자동차용 현가장치
JP6600942B2 (ja) 車体用骨格部材の接合構造
JP4316125B2 (ja) 樹脂成形体及びその成形方法
KR102009793B1 (ko) 시트백 프레임 및 그 제조방법
KR20190017434A (ko) 차량용 에어백 하우징 및 이의 제조방법
JP2008110690A (ja) 繊維強化プラスチック製補剛部材
JP5780944B2 (ja) 繊維強化樹脂部材および繊維強化樹脂部材の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012558105

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858047

Country of ref document: EP

Kind code of ref document: A1