WO2013088920A1 - 冷凍ストレス耐性を有する酵母 - Google Patents

冷凍ストレス耐性を有する酵母 Download PDF

Info

Publication number
WO2013088920A1
WO2013088920A1 PCT/JP2012/080058 JP2012080058W WO2013088920A1 WO 2013088920 A1 WO2013088920 A1 WO 2013088920A1 JP 2012080058 W JP2012080058 W JP 2012080058W WO 2013088920 A1 WO2013088920 A1 WO 2013088920A1
Authority
WO
WIPO (PCT)
Prior art keywords
yeast
gene
amino acid
polynucleotide
pog1
Prior art date
Application number
PCT/JP2012/080058
Other languages
English (en)
French (fr)
Inventor
博史 高木
佑 笹野
純 島
豊 灰谷
Original Assignee
国立大学法人 奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 奈良先端科学技術大学院大学 filed Critical 国立大学法人 奈良先端科学技術大学院大学
Priority to CA2857622A priority Critical patent/CA2857622C/en
Priority to EP12857491.0A priority patent/EP2792740B1/en
Priority to US14/364,411 priority patent/US9510601B2/en
Priority to JP2013549181A priority patent/JP6032652B2/ja
Publication of WO2013088920A1 publication Critical patent/WO2013088920A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/02Methods for preparing dough; Treating dough prior to baking
    • A21D8/04Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes
    • A21D8/047Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes with yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/04Preserving or maintaining viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts

Definitions

  • the present invention relates to the field of yeast breeding. Furthermore, the present invention relates to baker's yeast having high resistance to freezing stress, a method for producing the yeast, a method for producing bread dough using the yeast, bread and the like, and products produced by these production methods.
  • the bakery industry and the yeast manufacturing industry are working on environmental stresses that are imposed on baker's yeast during bread making and limit fermentation, and many of them try to solve the problem by creating baker's yeast that is resistant to these environmental stresses. ing.
  • N-acetyltransferase Mpr1 protects yeast from oxidative stress such as heat shock, hydrogen peroxide treatment, ethanol, and low temperature (Non-Patent Documents 2 to 4), and yeast that efficiently expresses mutant Mpr1 It is known to have resistance to drying and high temperature (Patent Document 3).
  • Non-patent Document 5 CBS2 gene deficiency leads to drought stress sensitivity
  • DBF2 gene disruption causes sorbitol stress sensitivity
  • Non-patent Document 6 genes related to aromatic amino acid synthesis
  • High-sucrose stress tolerance is significantly impaired in disrupted strains (such as ARO1), and BUD23, GON7, and SPT20 gene-disrupted strains are highly sensitive to high sucrose stress
  • Non-patent Document 7 dephosphorylation of phosphate proteins It has been known that high sucrose stress tolerance is enhanced in an OCA1 gene or OCA2 gene encoding a phosphatase that uses phosphorylation as a substrate, or a disrupted strain of the ALD2 gene (Patent Document 4).
  • frozen dough stress resistance and high sucrose stress resistance are increased in a disrupted strain of the ATH1 gene encoding acid trehalase (Patent Document 5), and a disrupted strain of the CAR1 gene encoding arginase It is known that a large amount of highly polar amino acids are accumulated to increase the resistance to freezing stress (Patent Document 6), and that the frozen stress resistance is impaired by a disrupted strain of PMR1 gene or SNF5 gene (Non-Patent Document 8). .
  • the present invention has been made in view of the above-mentioned problems, and the purpose thereof is a yeast that can sufficiently maintain a fermenting power even in a frozen environment that is an environmental stress of yeast fermentation in a frozen dough breadmaking method, that is, sufficient It is to provide a yeast having high resistance to freezing stress, to provide a method for breeding such yeast, and to provide a bread dough and a method for producing bread using such yeast.
  • the present inventors focused on the POG1 gene. It is known in laboratory yeast strains that a POG1 gene overexpression strain exhibits a phenotype resistant to lithium chloride (Demae et al., FEMS microbiol. Lett., 277, 70-78 (2007)). The present inventors have found that the ability of yeast to resist refrigeration stress can be enhanced by inactivating the POG1 gene in yeast, and have completed the present invention. That is, the present invention has the following configuration.
  • a yeast with enhanced resistance to freezing stress wherein the POG1 gene is inactivated.
  • the POG1 gene is composed of any of the following polynucleotides: (A) a polynucleotide encoding the amino acid sequence set forth in SEQ ID NO: 1; (B) a polynucleotide encoding a protein having 80% or more homology with the amino acid sequence set forth in SEQ ID NO: 1; (C) a polynucleotide encoding a protein comprising an amino acid sequence in which one or several amino acid residues are deleted, substituted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 1; (D) a polynucleotide comprising the base sequence set forth in SEQ ID NO: 2; (E) a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a base sequence complementary to the polynucleotide
  • the POG1 gene comprises any of the following polynucleotides: (A) a polynucleotide encoding the amino acid sequence set forth in SEQ ID NO: 1; (B) a polynucleotide encoding a protein having 80% or more homology with the amino acid sequence set forth in SEQ ID NO: 1; (C) a polynucleotide encoding a protein comprising an amino acid sequence in which one or more amino acid residues are deleted, substituted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 1; (D) a polynucleotide comprising the base sequence set forth in SEQ ID NO: 2; (E) a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a base sequence complementary to the polynucleotide of any one of (a) to (d) above.
  • a yeast strain that is more resistant to freezing stress can be easily obtained. Furthermore, according to the present invention, a predetermined yeast strain can be simply made into a frozen stress resistant strain. For this reason, the yeast of this invention is suitable for manufacture of frozen bread dough etc.
  • FIG. 1 is a diagram showing a method for producing a POG1 gene disruption strain.
  • FIG. 2 is a diagram showing experimental results for confirming the production of a POG1 gene disrupted strain.
  • FIG. 3 is a diagram showing the results of comparison of fermentative power under non-stress conditions and stress conditions. a) is non-stressed, b) is thawed 1 week after freezing stress, and c) is the amount of carbon dioxide generated per fermentation time (mL) under the conditions of thawing 3 weeks after freezing stress. Wild represents a wild strain, POG1 represents a POG1 gene highly expressing strain, and ⁇ pog1 represents a POG1 gene disrupted strain.
  • FIG. 1 is a diagram showing a method for producing a POG1 gene disruption strain.
  • FIG. 2 is a diagram showing experimental results for confirming the production of a POG1 gene disrupted strain.
  • FIG. 3 is a diagram showing the results of comparison of fermentative power under non-stress
  • FIG. 4 is a diagram showing the results of comparison of fermentation power under stress conditions.
  • the ratio of the carbon dioxide generation amount under freezing stress conditions to the carbon dioxide generation amount under non-stress conditions of the wild strain (Wild) is set to 100, and the POG1 gene high expression strain (POG1) and the POG1 gene disruption strain ( ⁇ pog1) are frozen.
  • POG1 gene high expression strain (POG1) and the POG1 gene disruption strain ( ⁇ pog1) are frozen.
  • a relative comparison with the rate of change in carbon dioxide generation before and after stress is shown.
  • a) is the result of thawing 1 week after freezing stress
  • b) is the result of thawing conditions 3 weeks after freezing stress.
  • the base and amino acid notation uses the one-letter notation or the three-letter notation determined by IUPAC and IUB as appropriate.
  • protein is used interchangeably with “peptide” or “polypeptide”.
  • polynucleotide is also used interchangeably with “gene”, “nucleic acid” or “nucleic acid molecule” and is intended to be a polymer of nucleotides.
  • the gene may be present in the form of DNA (eg, cDNA or genomic DNA) or RNA (eg, mRNA). DNA or RNA may be double-stranded or single-stranded.
  • Single-stranded DNA or RNA may be a coding strand (sense strand) or a non-coding strand (antisense strand).
  • the gene may be chemically synthesized, and the codon usage may be changed so that expression of the encoded protein is improved. Of course, it is possible to replace codons that encode the same amino acid.
  • DNA having an arbitrary base sequence based on the degeneracy of the genetic code is included.
  • yeast refers to a fungus that passes most life cycles in a single cell.
  • Representative yeasts include yeasts belonging to the genus Saccharomyces and Schizosaccharomyces, in particular Saccharomyces cerevisiae, Saccharomyces ludwigii, and Schizosaccharomyces pombe.
  • bake yeast refers to a yeast belonging to Saccharomyces cerevisiae used for bread production and used for bread production.
  • sucrose concentration (%) refers to the relative concentration of sucrose with respect to the flour in the material to be fermented, unless specifically stated, more specifically 100 g flour. Refers to the number of grams of sucrose added to
  • freeze stress refers to freezing yeast at 0 ° C. or lower. Any temperature below 0 ° C. can be used as long as the yeast is frozen.
  • freezing stress resistance refers to a characteristic of a yeast that exhibits a higher fermenting power compared to wild-type yeast under freezing stress conditions. Typically, as to whether or not the mutant yeast has “freezing stress tolerance”, the fermentative power under freezing stress is determined using the amount of carbon dioxide generated by the yeast as an index.
  • “fermentation power” refers to the ability to produce a metabolite obtained by anaerobically degrading carbohydrates when yeast is cultured.
  • yeast fermentation includes, but is not limited to, alcohol fermentation, glycerol fermentation, and the like.
  • an index indicating the fermenting power for example, a method of measuring the fermenting power of the bread dough by using a machine called a farmograph that measures the amount of carbon dioxide generated from the yeast in the bread dough can be used.
  • the OD 600 can be used carbon dioxide gas amount of yeast will occur it is 100 as ml / 100OD 600, but is not limited thereto.
  • indices other than those described above include, but are not limited to, fermenting power (F10) under low sugar conditions, fermenting power (F40) under high sugar conditions, and maltose fermenting power (Fm).
  • seed dough includes not only materials used for bread fermentation but also “seed dough” added to bread dough.
  • seed dough refers to a seed (starter) that is added to perform fermentation of bread dough, and includes a dough that contains at least a part of the fungi necessary for fermentation and compounded raw materials.
  • fixation refers to a phenomenon in which at least a part of substances in a compounded raw material is degraded by bacteria.
  • activation of a gene refers to gene disruption (eg, Methods in enzymology, 194, 281-301 (1991)), introduction of a transposable element into a gene (eg, Methods in enzymology, 194, 342-361 (1991)), introduction and expression of gene antisense genes (for example, JP 7-40943, 23rd ⁇ European Brewery Conv. Proc., 297-304 (1991)), for silencing near the gene Introduction of DNA involved (eg, Cell, 75, 531-541 (1993)), treatment of an antibody against the polypeptide encoded by the gene (eg, European J. Biochem., 231, 329-336 (1995)), etc. It means to reduce or inactivate a function inherent to a gene or a polypeptide encoded by the gene using a genetic engineering technique or a biotechnological technique.
  • stringent conditions refers to conditions under which a so-called base sequence-specific double-stranded polynucleotide is formed and a non-specific double-stranded polynucleotide is not formed.
  • the hybridization can be carried out in a general hybridization buffer at 68 ° C. for 20 hours.
  • the temperature is 60 to 68 ° C., preferably 65 ° C., more preferably 68 ° C.
  • Other examples include 25% formamide, 50% formamide under more severe conditions, 4 ⁇ SSC (sodium chloride / sodium citrate), 50 mM HEPES pH 7.0, 10 ⁇ Denhardt's solution, high containing 20 ⁇ g / ml denatured salmon sperm DNA. After prehybridization is performed overnight in a hybridization solution at 42 ° C., a labeled probe is added, and hybridization is performed by incubation at 42 ° C. overnight. The cleaning solution and temperature conditions in the subsequent cleaning are about “1 ⁇ SSC, 0.1% SDS, 37 ° C.”, and more severe conditions are about “0.5 ⁇ SSC, 0.1% SDS, 42 ° C.”.
  • sequences refers to the degree of identity of two or more sequences with respect to each other.
  • identity refers to the degree of two or more comparable sequences with respect to each other (individual nucleic acids, amino acids, etc.). Therefore, the higher the homology between two genes, the higher the sequence identity or similarity.
  • similarity refers to the degree of identity of two or more gene sequences to each other when conservative substitutions are considered to be the same in the above homology. .
  • Whether two genes have homology can be determined by direct comparison of the sequences or, in the case of nucleic acids, hybridization methods under stringent conditions. Comparison of the identity and homology of amino acid sequences and base sequences can be determined by FASTA search and BLAST search which are tools for sequence analysis.
  • the POG1 gene is inactivated.
  • the POG1 gene encodes a protein Pog1 having a molecular weight of about 39 kDa, as estimated from the DNA sequence.
  • a transcription factor Maria, A. et al., Genetics, 151; 531-543 (1999)
  • the DNA binding characteristic of transcription factors on the amino acid sequence Since the motif is not found and there is no report that it actually controls gene transcription, its function remains unclear.
  • no gene having homology at the deduced amino acid sequence level has been found in all living species, not only yeast.
  • the POG1 gene was obtained as a multicopy suppressor that complements the stress sensitivity of the yeast ubiquitin ligase Rsp5 mutant, it is known in laboratory yeast strains that an overexpressing strain of the gene exhibits a lithium chloride resistant phenotype ( Demae et al., FEMS Microbiol. Lett., 277, 70-78 (2007)), it was completely unexpected that the inactivation of the POG1 gene resulted in an improvement in freezing stress tolerance.
  • the POG1 gene is not particularly limited as long as it is defined as described above, but preferably comprises any of the following polynucleotides: (A) a polynucleotide encoding the amino acid sequence set forth in SEQ ID NO: 1; (B) a polynucleotide encoding a protein having 80% or more homology with the amino acid sequence set forth in SEQ ID NO: 1; (C) a polynucleotide encoding a protein comprising an amino acid sequence in which one or several amino acid residues are deleted, substituted, inserted and / or added in the amino acid sequence of SEQ ID NO: 1.
  • the polynucleotide (b) has a certain degree of homology with the amino acid sequence represented by SEQ ID NO: 1.
  • the certain homology is at least 80% or more, preferably 85% or more, more preferably 90% or more, further preferably 95%, 96%, 97%, 98 with the amino acid sequence represented by SEQ ID NO: 1. %, 99%, 99.5% or more sequence identity.
  • the number of amino acids that may be deleted, substituted, or added is not limited as long as the function is not lost, but site-directed mutagenesis, etc.
  • the number that can be deleted, substituted, or added by a known mutagenesis method is within 30 amino acids, preferably within 20 amino acids, more preferably within 10 amino acids, and most preferably within 5 amino acids (for example, 5, 4, 3, 2, 1 amino acids).
  • Whether or not a protein into which a mutation has been introduced imparts a desired trait to yeast can be determined by inactivating a gene encoding the protein and examining whether or not the yeast has enhanced resistance to freezing stress.
  • the “mutation” here means a mutation artificially introduced mainly by site-directed mutagenesis or the like, but may be a similar naturally occurring mutation.
  • the amino acid residue to be mutated is preferably mutated to another amino acid that preserves the properties of the amino acid side chain.
  • hydrophobic amino acids A, I, L, M, F, P, W, Y, V
  • hydrophilic amino acids R, D, N, C, E, Q, G, H, K, S, T
  • amino acids having aliphatic side chains G, A, V, L, I, P
  • amino acids having hydroxyl group-containing side chains S, T, Y
  • sulfur atom-containing side chains An amino acid (C, M) having a carboxylic acid and an amide-containing side chain (D, N, E, Q), an amino acid having a base-containing side chain (R, K, H), an aromatic-containing side chain
  • the amino acid (H, F, Y, W) which has can be mentioned.
  • aliphatic amino acids L, I, V
  • aromatic amino acids H, W, Y, F
  • charged amino acids D, E, R, K, H
  • positively charged amino acids R, K, H
  • negatively charged amino acids D, E
  • hydrophobic amino acids H, W, Y, F, M, L, I, V, C, A, G, T, K
  • polar amino acids T, S, N, D, E, Q, R, K, H, W, Y
  • small amino acids P, V, C, A, G, T, S, N, D
  • minute amino acids A, G, S
  • large (non-small) amino acids Q, E, R, K, H, W, Y, F, M, L, I).
  • all the inside of the said parenthesis represents the single letter mark of an amino acid.
  • polypeptide having an amino acid sequence modified by deletion, addition and / or substitution with other amino acids of one or more amino acid residues to a certain amino acid sequence maintains its biological activity. Yes. Furthermore, the target amino acid residue is more preferably mutated to an amino acid residue having as many common properties as possible.
  • the polynucleotide (e) is at least 80% or more, preferably 85% or more, more preferably 90% or more in homology with the polynucleotide (d) (base sequence described in SEQ ID NO: 2). More preferably, it has 95%, 96%, 97%, 98%, 99% or more sequence identity.
  • the yeast is not particularly limited, but is preferably a yeast belonging to Saccharomyces cerevisiae, more preferably a baker's yeast, and still more preferably a diploid baker's yeast.
  • such yeast has resistance to freezing stress, and in the presence of freezing stress, the yeast has an enhanced fermenting power compared to a wild strain that does not inactivate the POG1 gene. ing.
  • yeast with enhanced resistance to freezing stress of the present invention may have a POG1 gene inactivated by natural mutation.
  • the method for producing yeast with enhanced resistance to freezing stress according to the present invention includes a step of inactivating the POG1 gene using a gene recombination technique.
  • the method for inactivating the POG1 gene in yeast is to destroy the gene (for example, Methods in enzymology, 194, 281-) as long as the function of the POG1 gene or the protein Pog1 encoded by the POG1 gene is reduced or inactivated.
  • 301 (1991) introduction of transposable elements into genes (eg, Methods in enzymology, 194, 342-361 (1991)), introduction and expression of antisense genes (eg, Japanese Patent Publication No. 7-40943, 23rd European) Brewery Conv.
  • yeast used for inactivation of POG1 gene
  • yeast which belongs to Saccharomyces cerevisiae, More preferably, it is baker's yeast.
  • POG1 gene disruption refers to the introduction of a DNA that has a homologous base sequence to the POG1 gene, but has a mutation such as addition, deletion, substitution, etc. and cannot function as the POG1 gene into a yeast cell. It means that the mutation is introduced and this mutation is incorporated into a gene on the genome.
  • DNA used for gene disruption for example, a gene that complements low-temperature sensitivity is cleaved with a restriction enzyme or the like, and DNA is added, deleted, substituted, or the like.
  • the method of mutating with (in vitro mutagenesis) is used.
  • a method of adding or replacing DNA a method of inserting a marker gene or the like may be used.
  • any part such as the promoter part, open reading frame (ORF) part, and terminator part of the POG1 gene may be destroyed, or the parts may be destroyed in combination.
  • the gene can also be destroyed by deleting the entire POG1 gene.
  • a plasmid or plasmid fragment for disrupting the POG1 gene is transformed into yeast, and the DNA fragment contained in the transformed plasmid or plasmid fragment is transformed into a gene on the yeast genome. And can be performed by causing homologous recombination.
  • the POG1 gene disruption plasmid or fragment thereof and the POG1 gene on the yeast genome should be homologous to the extent that homologous recombination can occur. Whether it is a DNA fragment that causes homologous recombination can be determined by introducing the DNA fragment into yeast and isolating the strain that has undergone homologous recombination, that is, whether or not a strain whose fermentation power exhibits resistance to freezing stress can be isolated. Can be confirmed.
  • vectors that can be maintained in yeast such as YEp, YCp, YIp, etc., as well as vectors that can be maintained in E. coli, for example, Any of pGEM-T, pUC, pBluescript, etc. may be used.
  • the marker gene if it is a marker gene that can be used in yeast, for example, a gene that complements an auxotrophic mutation such as URA3, TRP1, LEU2, and HIS3, a chemical substance such as G418, hygromycin B, cerulenin, and parafluorophenylalanine Any gene such as J. Ferment. Bioeng., 76, 60-63 (1993), Enzyme and Microb. Technol., 15, 874-876 (1993), etc. may be used.
  • the disruption of the POG1 gene on the yeast genome can be performed by transforming the yeast with a plasmid for disrupting the POG1 gene.
  • yeast transformation methods commonly used in the field of genetic engineering or biotechnology, such as the spheroplast method (Proc. Natl. Acad. Sci. USA, 84, 1929 (1978)), the lithium acetate method (J. Bacteriol., 153, 163 (1983), Proc. Natl. Acad. Sci. USA, 75, 1929 (1978)), electroporation method (Methods. Enzymol., 194, 182 (1990)) and the like.
  • transformants By introducing a marker gene into the plasmid for disrupting the POG1 gene, transformants can be easily isolated using the marker as an index. Moreover, a transformant can also be isolated by using as an index that fermenting power is enhanced under freezing stress when the POG1 gene on the yeast genome is disrupted. Confirmation of the freezing stress tolerance of the strain in which the POG1 gene is disrupted can be performed by examining the fermentative power of the yeast under freezing stress.
  • the above-mentioned POG1 gene disruption strain is preferably made by a self-cloning technique which consists entirely of yeast genes and does not contain any foreign genes. This is because yeast produced by the self-cloning technique can be handled in the same manner as normal food microorganisms.
  • a marker gene such as URA3 to be introduced is preferably Saccharomyces cerevisiae, particularly baker's yeast, in order to achieve self-cloning.
  • the POG1 gene disruption strain can also be obtained by selecting from among the yeasts that have been subjected to mutation treatment. That is, in the method of the present invention, the POG1 gene may be disrupted by mutation treatment.
  • the method of the mutation treatment is not particularly limited, and any of physical mutation treatment such as ultraviolet irradiation and radiation irradiation and chemical mutation treatment in which treatment is performed with a mutation agent such as ethylmethanesulfonic acid may be used.
  • a POG1 gene disruption strain can be selected from among the mutant strains obtained by the mutation treatment, using as an index the enhancement of fermentation power under freezing stress.
  • the yeast according to the present invention is preferably diploid.
  • a diploid homozygous mutant of the POG1 gene can be obtained by a known conventional method. For example, (1) haploid mutants of POG1 gene are prepared from different mating haploids (a type and ⁇ type), and these haploid mutants are crossed to produce a diploid mutant. And (2) using two different selectable markers, introducing a mutation into the first allele using the first selectable marker, and then using the mutant strain to introduce a second selectable marker Methods of using and introducing mutations to the second allele, but are not limited thereto.
  • yeast with enhanced resistance to freezing stress can be produced.
  • the yeast of the present invention has an inactivated POG1 gene and is extremely excellent in resistance to freezing stress, particularly in freezing bread dough. Therefore, the baker's yeast according to the present invention can effectively exhibit its ability when it is well-tolerated and fermented with frozen stress in a frozen dough, and various delicious breads can be obtained when baked.
  • the frozen dough according to the present invention may be produced in accordance with a conventional method except that the frozen stress-resistant baker's yeast in which the POG1 gene is inactivated is used, and the bread is also produced in the frozen stress resistant in which the POG1 gene is inactivated. Other than using baker's yeast, it may be carried out according to a conventional method.
  • POG1 + URA3-Fw primer having a nucleic acid sequence (CCTGCGCTTAACTCATACAAAAAGGCGCAAAACATTTCAAGAGTCCCACGATTAATTGCAGAAATTGAAAgattcggtaatctccgag: SEQ ID NO: 5) as a forward primer in which a part of the POG1 gene is added to the 5 ′ end using the amplified fragment as a template, and the POG1 gene at the 5 ′ end
  • the POG1 gene disruption fragment was amplified using a POG1 + URA3-Rv primer having a nucleic acid sequence (TGAACTGAAGTAAGGTGGACGGATGCATCGAATGAAGGTTAGGAAGGGATATAGTTTTAGAAATTAGGTGgtaataactgatataattaaattg: SEQ ID NO: 6) as a reverse primer with a part added.
  • the amplified fragment was transformed into baker's yeast haploid uracil-requiring strains (3346 Ura3-, 3347Ura3-), and the POG1 gene disruption strain was isolated using uracil non-requiring as an indicator. It was confirmed by PCR using a POG1upstream-Fw primer (TTAAAGGCTACGCAGAAGAGG: SEQ ID NO: 7) and a URA3ORF-Rv primer (GGCCTCTAGGTTCCTTTGTTACTTC: SEQ ID NO: 8) that a POG1 gene-disrupted strain was produced.
  • a diploid strain was prepared by joining POG1 gene-disrupted strains prepared in a haploid of each of a-type and ⁇ -type. The production of a diploid strain was confirmed by sporulation on a sporulation medium (0.05% glucose, 0.1% yeast extract, 1% potassium acetate, 2% agar).
  • the baked yeast diploid strain in which the POG1 gene was disrupted had a fermentative power in frozen dough of about 56% after 1 week and about 72% after 3 weeks compared to the wild strain. it was high. From this, it was shown that POG1 gene disruption is a suitable method for producing frozen dough-resistant practical baker's yeast.
  • the yeast of the present invention it is possible to isolate a yeast that exhibits a high fermentative power even under freezing stress conditions. By using such a yeast, it is possible to increase the efficiency of fermentation in a frozen environment such as a frozen dough baking method, which has heretofore been difficult to perform sufficient fermentation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Abstract

 POG1遺伝子が不活性化されていることを特徴とする、冷凍ストレス耐性が増強された酵母、および、そのような酵母を生産する方法、さらに該酵母の食品製造への利用方法を提供する。

Description

冷凍ストレス耐性を有する酵母
 本発明は、酵母育種の分野に関する。さらに、本発明は、冷凍ストレスに対する耐性の高いパン酵母、該酵母の製造方法、該酵母を用いるパン生地、パン等の製造方法、ならびに、これら製造方法によって生産された製品に関する。
 パンは、その製品の製造過程でパン酵母の発酵による生地膨張を行う必要があるが、一定した品質のパンを提供するためには、パン酵母、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)の発酵の綿密な制御が必要となる。パン酵母細胞は、製パン過程において、凍結、乾燥、高温、および高浸透圧などの多くの環境ストレスに曝されており、(非特許文献1)、これらの環境ストレスは、酵母の発酵力の低下をもたらす。このため、環境ストレスに対する高度な耐性を有する酵母株の作出技術の確立が望まれており、近年、冷凍生地製パン法が急速に普及したことから、該方法で付加される冷凍ストレスに対する耐性を有する酵母株の作出が、特に望まれている。
 製パン業界及びイースト製造業界では、製パン時にパン酵母に負荷され発酵を制限する環境ストレスに対する取り組みを行っており、その多くは、これら環境ストレスに対する耐性を有するパン酵母の作出によって問題解決を試みている。
 一方、ストレス耐性機構に対する知見の蓄積に伴い、耐性関連遺伝子を改変することにより耐性を増強する試みもなされている。
 例えば、アミノ酸の1つであるプロリンは、冷凍や乾燥・酸化等のストレスから酵母を防御する性質を有し(特許文献1)、変異型のγ-グルタミルキナーゼをコードするPRO1遺伝子を発現し、プロリンオキシダーゼをコードするPUT1遺伝子の破壊株が細胞にプロリンを蓄積することでエタノール耐性となることが知られている(特許文献2)。
 また、N-アセチルトランスフェラーゼMpr1は、酵母を、熱ショック、過酸化水素処理、エタノール、および低温などの酸化ストレスから防御し(非特許文献2から4)、変異型Mpr1を効率よく発現した酵母が乾燥、高温に対する耐性を有することが知られている(特許文献3)。
 その他にも、CBS2遺伝子の欠損により、乾燥ストレス感受性になること(非特許文献5)、DBF2遺伝子の破壊により、ソルビトールストレス高感受性になること(非特許文献6)、芳香族アミノ酸合成関連の遺伝子(ARO1など)の破壊株で高ショ糖ストレス耐性が著しく損なわれ、BUD23、GON7、SPT20の遺伝子破壊株が高ショ糖ストレスに高い感受性を示すこと(非特許文献7)、リン酸タンパク質の脱リン酸化を基質とするホスファターゼをコードするOCA1遺伝子またはOCA2遺伝子、あるいはALD2遺伝子の破壊株では高ショ糖ストレス耐性が高まること(特許文献4)等が知られている。
 冷凍ストレス耐性に関しては、酸性トレハラーゼをコードするATH1遺伝子の破壊株で冷凍生地ストレス耐性及び高ショ糖ストレス耐性が高まること(特許文献5)、アルギナーゼをコードするCAR1遺伝子の破壊株で、細胞内に極性の高いアミノ酸が著量蓄積され、冷凍ストレス耐性が高まること(特許文献6)、PMR1遺伝子またはSNF5遺伝子の破壊株で冷凍ストレス耐性が損なわれること(非特許文献8)等が知られている。
特開平9-234058号公報 特開2006-67806号公報 特開2010-183887号公報 特開2008-148688号公報 特開平11-169180号公報 特開2001-238665号公報
Attfield, Nat. Biotechnol. 15:1351-1357 (1997) Du and Takagi, Appl. Microbiol. Biotechnol. 75:1343-1351 (2007) Du and Takagi, J. Biochem. 138:391-397 (2005) Nomura and Takagi, Proc. Natl. Acad. Sci. U.S.A. 101:12616-12621 (2004) Shima et al., Yeast(2008)25:179-190) Makrantoni et al., Microbilogy 153:4016-4026 (2007) Ando et al.,FEMS Yeast Res 6:249-267 (2006) Ando et al., FEMS Yeast Res 7:244-253 (2007)
 しかしながら、ストレス耐性を有するパン酵母の探索はいまだ十分とはいえない。このためにストレス耐性に関与する遺伝子を見出し、より高いストレス耐性を有する酵母または、そのような酵母の育種法の開発が強く求められている。
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、冷凍生地製パン法などにおける酵母発酵の環境ストレスである冷凍環境においても十分に発酵力を維持できる酵母、すなわち、十分に高い冷凍ストレス耐性を有する酵母を提供すること、および、そのような酵母の育種法を提供すること、さらに、そのような酵母を用いるパン生地、パンの製造方法を提供することにある。
 本発明者らは、POG1遺伝子に着目した。POG1遺伝子の過剰発現株は塩化リチウム耐性の表現型を示すことが実験室酵母株で知られている (Demae et al., FEMS Microbiol. Lett., 277, 70-78 (2007))。本発明者らは、酵母においてPOG1遺伝子を不活性化することによって酵母の冷凍ストレス耐性能を増強できることを見出し、本発明を完成させるに至った。すなわち本発明は以下の構成からなるものである。
(1)POG1遺伝子が不活性化されていることを特徴とする、冷凍ストレス耐性が増強された酵母。
(2)POG1遺伝子が以下のいずれかのポリヌクレオチドからなる、上記(1)に記載の酵母:
(a)配列番号1に記載のアミノ酸配列をコードするポリヌクレオチド;
(b)配列番号1に記載のアミノ酸配列と80%以上の相同性を有するタンパク質をコードするポリヌクレオチド;
(c)配列番号1に記載のアミノ酸配列において1又は数個以上のアミノ酸残基が欠失、置換、挿入及び/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(d)配列番号2に記載の塩基配列からなるポリヌクレオチド;
(e)上記(a)~(d)のいずれかのポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド。
(3)前記酵母はパン酵母である、上記(1)~(2)のいずれかに記載の酵母。
(4)上記(1)~(3)のいずれかに記載の酵母を用いる、パン生地の製造方法。
(5)上記(1)~(3)のいずれかに記載の酵母を用いる、パンの製造方法。
(6)POG1遺伝子を不活性化する工程を含む冷凍ストレス耐性が増強された酵母の作製方法。
(7)POG1遺伝子が以下のいずれかのポリヌクレオチドからなる、上記(6)に記載の方法:
(a)配列番号1に記載のアミノ酸配列をコードするポリヌクレオチド;
(b)配列番号1に記載のアミノ酸配列と80%以上の相同性を有するタンパク質をコードするポリヌクレオチド;
(c)配列番号1に記載のアミノ酸配列において1又は数個以上のアミノ酸残基が欠失、置換、挿入及び/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
(d)配列番号2に記載の塩基配列からなるポリヌクレオチド;
(e)上記(a)~(d)のいずれかのポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド。
(8)上記(6)または(7)に記載の方法であって、さらに、
POG1遺伝子を不活性化した酵母とPOG1遺伝子を不活性化していない酵母とを冷凍ストレス耐性について比較する工程、
を包含する方法。
(9)上記(8)に記載の方法であって、さらに、
冷凍ストレス耐性の向上した酵母を選択する工程、
を包含する方法。
 本発明により、冷凍ストレスに対しより耐性を有する酵母株を容易に得ることできる。さらに、本発明によって、所定の酵母株を簡便に冷凍ストレス耐性株とすることも可能である。このため本発明の酵母は、冷凍パン生地などの製造に好適である。
図1は、POG1遺伝子破壊株の作製法を示す図である。 図2は、POG1遺伝子破壊株作製を確認する実験結果を示す図である。 図3は、非ストレス条件およびストレス条件における発酵力を比較した結果を示す図である。a)は非ストレス、b)は冷凍ストレス後1週間後に解凍、c)は冷凍ストレス後3週間後に解凍の条件での発酵時間当たりの炭酸ガス発生量(mL)を示す。Wildは野生株、POG1はPOG1遺伝子高発現株、Δpog1はPOG1遺伝子破壊株を示す。 図4は、ストレス条件における発酵力を比較した結果を示す図である。野生株(Wild)の非ストレス条件下での炭酸ガス発生量に対する冷凍ストレス条件下の炭酸ガス発生量の割合を100とし、POG1遺伝子高発現株(POG1)およびPOG1遺伝子破壊株(Δpog1)の冷凍ストレス前後での炭酸ガス発生量の変化の割合との相対比較を示す。a)は冷凍ストレス後1週間後に解凍、b)は冷凍ストレス後3週間後に解凍の条件での結果である。
 本発明の実施形態について、以下に詳細に説明する。なお、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考として援用される。本明細書において特記しない限り、数値範囲を示す「A~B」は、「A以上B以下」を意味する。
 また、本明細書中で使用される場合、塩基およびアミノ酸の表記は、適宜IUPACおよびIUBの定める1文字表記または3文字表記を使用する。本明細書において使用される場合、用語「タンパク質」は、「ペプチド」または「ポリペプチド」と交換可能に使用される。また、用語「ポリヌクレオチド」は、「遺伝子」、「核酸」又は「核酸分子」と交換可能に使用され、ヌクレオチドの重合体が意図される。ここで、遺伝子は、DNAの形態(例えば、cDNAもしくはゲノムDNA)、又はRNA(例えば、mRNA)の形態で存在し得る。DNA又はRNAは、二本鎖であっても、一本鎖であってもよい。一本鎖DNA又はRNAは、コード鎖(センス鎖)であっても、非コード鎖(アンチセンス鎖)であってもよい。また、遺伝子は化学的に合成してもよく、コードするタンパク質の発現が向上するように、コドンユーセージ(Codon usage)を変更してもよい。勿論、同じアミノ酸をコードするコドン同士であれば置換することも可能である。また、遺伝子は、タンパク質をコードするものであれば、遺伝暗号の縮重に基づく任意の塩基配列を有するDNAが含まれる。
<1.用語の定義>
以下に本明細書において特に使用される用語の定義を列挙する。
本明細書において「酵母」とは、大部分の生活環を単細胞で経過する菌類をいう。代表的な酵母としては、Saccharomyces属、Schizosaccharomyces属に属する酵母、特にSaccharomyces cerevisiae、Saccharomyces ludwigii、およびSchizosaccharomyces pombeが挙げられる。
本明細書において「パン酵母」とは、パンの製造に使用される、Saccharomyces cerevisiaeに属し、パンの製造に使用される酵母をいう。
本明細書において使用する場合、用語「ショ糖濃度(%)」とは、特に単位を記載しない限り、発酵する材料中の小麦粉に対するショ糖の相対濃度をいい、より具体的には、小麦粉100gに対して添加されるショ糖のグラム数をいう。
本明細書において「冷凍ストレス」とは、0℃以下にて酵母を冷凍することをいう。酵母が冷凍される限り、0℃以下の任意の温度が使用されうる。また、「冷凍ストレス耐性」とは、冷凍ストレス条件下で、野生型酵母と比較してより高い発酵力を示す酵母の特性をいう。代表的には、変異型酵母が「冷凍ストレス耐性」を有するか否かについては、冷凍ストレス下における発酵力を酵母が発生する炭酸ガスの発生量を指標として決定する。
本明細書において「発酵力」とは、酵母を培養した場合に、糖質を無酸素的に分解した代謝産物を生じる能力をいう。酵母の発酵には、代表的には、アルコール発酵、グリセロール発酵などが挙げられるが、これらに限定されない。発酵力を示す指標としては、例えば、パン生地中の酵母から生じる炭酸ガス量を測定するファーモグラフという機械を使用することで、パン生地の発酵力を測定する方法が使用可能である。その単位としては、例えば、OD600が100である酵母が発生する炭酸ガス量をml/100OD600として用いることができるが、これに限定されない。上記以外の指標としては、例えば、低糖条件における発酵力(F10)、高糖状態における発酵力(F40)、およびマルトース発酵力(Fm)などが挙げられるが、これらに限定されない。
本明細書において「生地」とは、パン類の発酵に供される材料のみならず、パン類の生地に添加される「種生地」をも含む。本明細書において使用する場合、用語「種生地」とは、パン生地の発酵を行うために添加される種(スタータ)であって、発酵に必要な菌および配合原材料の少なくとも一部を含む生地をいう。
本明細書において「発酵」とは、配合原材料中の物質の少なくとも一部が、菌によって分解される現象をいう。
本明細書において遺伝子の「不活性化」とは、遺伝子の破壊(例えば、Methods in enzymology, 194, 281-301 (1991))、遺伝子への転移因子の導入(例えば、Methods in enzymology, 194, 342-361 (1991))、遺伝子のアンチセンス遺伝子の導入・発現(例えば、特公平7-40943、23rd European Brewery Conv. Proc., 297-304 (1991))、遺伝子の近傍へのサイレンシングに関与するDNAの導入(例えば、Cell, 75, 531-541 (1993))、遺伝子のコードするポリペプチドに対する抗体の処理(例えば、European J. Biochem., 231, 329-336 (1995))等、遺伝子工学的手法または生物工学的手法を用いて、遺伝子または該遺伝子のコードするポリペプチドが本来有する機能を低下または失活させることを意味する。
本明細書において「ストリンジェントな条件」とは、いわゆる塩基配列に特異的な2本鎖のポリヌクレオチドが形成され、非特異的な2本鎖のポリヌクレオチドが形成されない条件をいう。換言すれば、相同性が高い核酸同士、例えば完全にマッチしたハイブリッドの融解温度(Tm値)から15℃、好ましくは10℃、更に好ましくは5℃低い温度までの範囲の温度でハイブリダイズする条件ともいえる。例えば、一般的なハイブリダイゼーション用緩衝液中で、68℃、20時間の条件でハイブリダイズする条件を挙げることができる。一例を示すと、0.25MNaHPO,pH7.2,7%SDS,1mM EDTA,1×デンハルト溶液からなる緩衝液中で温度が60~68℃、好ましくは65℃、さらに好ましくは68℃の条件下で16~24時間ハイブリダイズさせ、さらに20mMNaHPO,pH7.2,1%SDS,1mM EDTAからなる緩衝液中で温度が60~68℃、好ましくは65℃、さらに好ましくは68℃の条件下で15分間の洗浄を2回行う条件を挙げることができる。他の例としては、25%ホルムアミド、より厳しい条件では50%ホルムアミド、4×SSC(塩化ナトリウム/クエン酸ナトリウム)、50mMHEPES pH7.0、10×デンハルト溶液、20μg/ml変性サケ精子DNAを含むハイブリダイゼーション溶液中、42℃で一晩プレハイブリダイゼーションを行った後、標識したプローブを添加し、42℃で一晩保温することによりハイブリダイゼーションを行う。その後の洗浄における洗浄液および温度条件は、「1×SSC、0.1%SDS、37℃」程度で、より厳しい条件としては「0.5×SSC、0.1%SDS、42℃」程度で、さらに厳しい条件としては「0.2×SSC、0.1%SDS、65℃」程度で実施することができる。このようにハイブリダイゼーションの洗浄の条件が厳しくなるほどプローブ配列と高い相同性を有するDNAの単離を期待し得る。ただし、上記SSC、SDSおよび温度の条件の組み合わせは例示であり、当業者であれば、ハイブリダイゼーションのストリンジェンシーを決定する上記若しくは他の要素(例えば、プローブ濃度、プローブの長さ、ハイブリダイゼーション反応時間など)を適宜組み合わせることにより、上記と同様のストリンジェンシーを実現することが可能である。例えば、当業者であれば、Molecular Cloning(Sambrook and Russell, Molecular Cloning :A Laboratory Manual 3rd ed., Cold Spring Harbor Laboratory Press, Woodbury, NY (2001))等を参照することにより、こうした遺伝子を容易に取得することができる。
本明細書において配列(核酸配列、アミノ酸配列など)の「相同性」とは、2以上の配列の、互いに対する同一性の程度をいう。また、本明細書において配列(核酸配列、アミノ酸配列など)の「同一性」とは、2以上の対比可能な配列の、互いに対する同一の配列(個々の核酸、アミノ酸など)の程度をいう。従って、ある2つの遺伝子の相同性が高いほど、それらの配列の同一性または類似性は高い。配列(例えば、核酸配列、アミノ酸配列など)の「類似性」とは、上記相同性において、保存的置換を同一とみなした場合の、2以上の遺伝子配列の、互いに対する同一性の程度をいう。2種類の遺伝子が相同性を有するか否かは、配列の直接の比較、または核酸の場合ストリンジェントな条件下でのハイブリダイゼーション法によって調べ得る。アミノ酸配列および塩基配列の同一性および相同性の比較は、配列分析用ツールである、FASTA検索やBLAST検索により決定することができる。
<2.冷凍ストレス耐性が増強された酵母>
本発明における酵母では、POG1遺伝子が不活性化されている。POG1遺伝子は、DNA配列から推定すると、分子量約39kDaのタンパク質Pog1をコードしている。これまで転写因子として酵母の細胞周期制御に関わるという報告があるが(Maria, A. et al., Genetics, 151;531-543 (1999))、アミノ酸配列上に転写因子の特徴であるDNA結合モチーフは見出されず、実際に遺伝子の転写を制御しているという報告もないため、その機能は未だに不明のままである。またこれまでに、推定アミノ酸配列レベルで相同性のある遺伝子は、酵母のみならず、すべての生物種で見つかっていない。POG1遺伝子は酵母ユビキチンリガーゼRsp5変異株のストレス感受性を相補するマルチコピーサプレッサーとして取得され、同遺伝子の過剰発現株が塩化リチウム耐性の表現型を示すことが実験室酵母株で知られているが (Demae et al., FEMS Microbiol. Lett., 277, 70-78 (2007)) 、POG1遺伝子の不活性化によって冷凍ストレス耐性の向上が得られたことは全く予想外であった。
POG1遺伝子は、上記のように定義づけされるものであれば、特に限定しないが、好ましくは以下のいずれかのポリヌクレオチドからなる:
(a)配列番号1に記載のアミノ酸配列をコードするポリヌクレオチド;
(b)配列番号1に記載のアミノ酸配列と80%以上の相同性を有するタンパク質をコードするポリヌクレオチド;
(c)配列番号1に記載のアミノ酸配列において1又は数個以上のアミノ酸残基が欠失、置換、挿入及び/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド。
(d)配列番号2に記載の塩基配列からなるポリヌクレオチド;
(e)上記(a)~(d)のいずれかのポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド。
上記(b)のポリヌクレオチドは、配列番号1で表されるアミノ酸配列と一定以上の相同性を有しているものである。一定以上の相同性とは、配列番号1で表されるアミノ酸配列と少なくとも80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは、95%、96%、97%、98%、99%、99.5%以上の配列の同一性をいう。
上記(c)のポリヌクレオチドにおいて、欠失、置換、若しくは付加されてもよいアミノ酸の数としては、その機能を失わせない限り、その個数は制限されないが、部位特異的突然変異誘発法等の公知の変異導入法により欠失、置換、若しくは付加できる程度の数をいう。通常は、30アミノ酸以内であり、好ましくは20アミノ酸以内であり、さらに好ましくは10アミノ酸以内であり、最も好ましくは5アミノ酸以内(例えば、5,4,3,2,1アミノ酸)である。変異を導入したタンパク質が酵母に所望の形質を付与するかどうかは、そのタンパク質をコードする遺伝子を不活性化し、その酵母の冷凍ストレス耐性が増強されているかどうか調べることにより判断できる。また、ここでいう「変異」は、主には部位特異的突然変異誘発法等により人為的に導入された変異を意味するが、天然に存在する同様の変異であってもよい。
変異するアミノ酸残基においては、アミノ酸側鎖の性質が保存されている別のアミノ酸に変異されることが好ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P,W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q,G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L,I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸及びアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ酸(R、K、H)、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)を挙げることができる。さらに、例えば、変異マトリクス(mutational matrix)によってアミノ酸を分類することも周知である(Taylor 1986, J, Theor. Biol. 119, 205-218; Sambrook and Russell, Molecular Cloning 3rd ed. A7.6-A7.9, Cold Spring Harbor Laboratory Press, 2001)。この分類を以下に要約すると、脂肪族アミノ酸(L、I、V)、芳香族アミノ酸(H、W、Y、F)、荷電アミノ酸(D、E、R、K、H)、正荷電アミノ酸(R、K、H)、負荷電アミノ酸(D、E)、疎水性アミノ酸(H、W、Y、F、M、L,I、V、C、A,G、T、K)、極性アミノ酸(T、S、N、D、E、Q、R、K、H、W、Y)、小型アミノ酸(P、V、C、A、G、T、S、N、D)、微小アミノ酸(A、G、S)及び大型(非小型)アミノ酸(Q、E、R、K、H、W、Y、F、M、L、I)が挙げられる。なお、上記括弧内はいずれもアミノ酸の一文字標記を表す。
あるアミノ酸配列に対する1又は複数個のアミノ酸残基の欠失、付加及び/又は他のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチドがその生物学的活性を維持することはすでに知られている。さらに、標的アミノ酸残基は、共通した性質をできるだけ多く有するアミノ酸残基に変異させることがより好ましい。
また、上記(e)のポリヌクレオチドは、上記(d)のポリヌクレオチド(配列番号2に記載の塩基配列)と相同性において少なくとも80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは、95%、96%、97%、98%、99%以上の配列の同一性を有することが好ましい。
酵母は、特に限定されないが、好ましくはSaccharomyces cerevisiaeに属する酵母であり、より好ましくは、パン酵母であり、さらに好ましくは二倍体パン酵母である。
このような酵母は、実施例において示すように、冷凍ストレスに対して耐性能を有し、冷凍ストレスの存在下において、POG1遺伝子を不活性化しない野生株と比較して、発酵力が増強している。
 また、本発明の冷凍ストレス耐性が増強された酵母は、自然変異によりPOG1遺伝子が不活性化されているものであってもよい。
<3.冷凍ストレス耐性が増強された酵母の作製方法>
本発明の冷凍ストレス耐性が増強された酵母の作製方法は遺伝子組換え技術を用いて、POG1遺伝子を不活性化させる工程を含む。
POG1遺伝子の不活性化に用いる、遺伝子工学または生物工学に関する基本的操作については、市販の実験書、例えば、Molecular Cloning, Cold Spring Harbor Laboratory (1982)、Molecular Cloning: A Laboratory Manual 3rd ed., Cold Spring Harbor Laboratory Press, Woodbury, NY (2001) 、Methods in Enzymology, 194 (1991) 、実験医学別冊・酵母による遺伝子実験法羊土社(1994)等に記載された方法に従って行うことができる。
POG1遺伝子を酵母内で不活性化させる方法は、POG1遺伝子またはPOG1遺伝子がコードするタンパク質Pog1の機能を低下、失活させる方法であれば、遺伝子の破壊(例えば、Methods in enzymology, 194, 281-301 (1991))、遺伝子への転移因子の導入(例えば、Methods in enzymology, 194, 342-361 (1991))、遺伝子のアンチセンス遺伝子の導入・発現(例えば、特公平7-40943、23rd European Brewery Conv. Proc., 297-304 (1991))、遺伝子の近傍へのサイレンシングに関与するDNAの導入(例えば、Cell, 75, 531-541 (1993))、遺伝子のコードするポリペプチドに対する抗体の処理(例えば、European J. Biochem., 231, 329-336 (1995))等、いずれの手法を用いてもよい。
POG1遺伝子の不活性化に用いられる酵母としては、特に限定されないが、好ましくはSaccharomyces cerevisiaeに属する酵母であり、より好ましくは、パン酵母である。
POG1遺伝子の破壊とは、POG1遺伝子と相同的な塩基配列を有するが付加、欠失、置換などの変異を起こしてPOG1遺伝子として働き得ないDNAを、酵母の細胞中へ導入して相同的組換えを起こさせ、この変異をゲノム上の遺伝子に取込ませることをいう。
遺伝子の破壊に用いるDNAの作製方法としては、例えば制限酵素等により低温感受性を相補する遺伝子を切断して、DNAを付加、欠失、置換等を行う方法または低温感受性を相補する遺伝子を細胞外で変異(インビトロ・ミュータジェネシス)させる方法などが用いられる。DNAを付加、置換する方法としては、マーカー遺伝子を挿入する方法などを用いてもよい。
POG1遺伝子を破壊するには、POG1遺伝子のプロモーター部分、オープン・リーディング・フレーム(ORF)部分、ターミネーター部分等いずれの部位を破壊してもよく、各部位を組み合わせて破壊してもよい。また、POG1遺伝子全体を欠失させることによっても遺伝子を破壊することができる。
POG1遺伝子を破壊するには、例えば、POG1遺伝子を破壊するためのプラスミドあるいはプラスミドの断片を酵母に形質転換し、形質転換されたプラスミドあるいはプラスミドの断片に含まれるDNA断片が酵母のゲノム上の遺伝子と相同組換えを起こすことによって行うことができる。相同組換えを起こすDNA断片としては、POG1遺伝子の破壊用プラスミドまたはその断片と酵母のゲノム上のPOG1遺伝子とが、相同組換えを起こせる程度に相同性を持っていればよい。相同組換えを起こすDNA断片であるかどうかは、該DNA断片を酵母に導入し、相同組換えを起こした株が分離できるかどうか、すなわち発酵力が冷凍ストレス耐性を示す株が分離できるかどうかで確認することができる。
POG1遺伝子の破壊用プラスミドを作製するために用いるベクターとしては、酵母中で保持することが可能なベクター、例えば、YEp、YCp、YIpなどの他、大腸菌中で保持することが可能なベクター、例えばpGEM-T、pUC、pBluescriptなど、いずれを用いてもよい。
マーカー遺伝子としては、酵母において用いることのできるマーカー遺伝子であれば、例えばURA3、TRP1、LEU2、HIS3等の栄養要求性変異を相補する遺伝子、G418、ヒグロマイシンB、セルレニン、パラフルオロフェニルアラニン等の化学物質に対する耐性遺伝子(例えば、J. Ferment. Bioeng., 76, 60-63 (1993)、Enzyme and Microb. Technol., 15, 874-876 (1993))等など、いずれを用いてもよい。
酵母のゲノム上のPOG1遺伝子の破壊は、POG1遺伝子の破壊用プラスミドで酵母を形質転換することによって行うことができる。酵母の形質転換は、遺伝子工学ないし生物工学の分野で慣用されている方法、例えばスフェロプラスト法(Proc.Natl.Acad.Sci.USA,84,1929(1978))、酢酸リチウム法(J.Bacteriol.,153,163(1983), Proc.Natl.Acad.Sci.USA,75,1929(1978))、エレクトロポーレーション法(Methods.Enzymol.,194,182(1990))等によって行うことができる。
POG1遺伝子の破壊用プラスミドにマーカー遺伝子を導入することにより、そのマーカーを指標にして、容易に形質転換体を分離することができる。また、酵母のゲノム上のPOG1遺伝子が破壊されると冷凍ストレス下で発酵力が増強することを指標にして、形質転換体を分離することもできる。POG1遺伝子が破壊された株の冷凍ストレス耐性の確認は、当該酵母の冷凍ストレス下での発酵力を調べることによって行うことができる。
 上記POG1遺伝子破壊株の作製は、すべて酵母の遺伝子からなり、外来遺伝子を一切含まないセルフクローニング技術で作製されることが好ましい。セルフクローニング技術で作製された酵母は、通常の食品微生物と同様に扱うことが出来るためである。このとき、導入するURA3等のマーカー遺伝子は、セルフクローニングを達成するためにサッカロミセス・セレビシエ、特にパン酵母のものが好ましい。
また、POG1遺伝子破壊株は、変異処理を行なった酵母の中から選択して得ることもできる。すなわち、本発明の方法においては、変異処理によりPOG1遺伝子を破壊してもよい。変異処理の方法は特に限定されず、紫外線照射、放射線照射等の物理的変異処理、及びエチルメタンスルフォン酸等の変異剤で処理する化学的変異処理のいずれであってもよい。変異処理により得られた変異株の中から、冷凍ストレス下で発酵力が増強することを指標として、POG1遺伝子破壊株を選択することができる。
本発明に係る酵母は好ましくは二倍体である。POG1遺伝子の二倍体ホモ接合型変異株は、周知の常法により得ることができる。例えば、(1)POG1遺伝子の一倍体変異株を異なる接合型の一倍体(a型及びα型)より作製し、それらの一倍体変異株を交雑して二倍体変異株を作製する方法、および、(2)異なる2つの選択マーカーを用い、第一の選択マーカーを用いて第一の対立遺伝子に変異を導入し、その後、その変異株を用いて、第二の選択マーカーを用いて第二の対立遺伝子に変異を導入する方法、が挙げられるがこれらに限定されない。
以上の操作によって、冷凍ストレス耐性が増強された酵母を作製することができる。
<4.パン生地の製造方法、パンの製造方法>
本発明の酵母は、POG1遺伝子が不活性化されており、冷凍ストレス耐性、特に冷凍パン生地における冷凍ストレス耐性にきわめてすぐれている。したがって、本発明に係るパン酵母は、冷凍パン生地において、冷凍ストレスによく耐え、発酵させたときに、良くその能力を発揮し、これを焼き上げたときに、美味な各種パンを得ることができる。本発明に係る冷凍生地は、POG1遺伝子が不活性化された冷凍ストレス耐性パン酵母を使用するほかは、定法にしたがって製造すればよく、パンの製造もPOG1遺伝子が不活性化された冷凍ストレス耐性パン酵母を使用するほかは、定法にしたがっておこなえばよい。
本発明は、以上説示した各構成に限定されるものではなく、明細書に記載した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。以下、実施例を示して本発明をさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。
以下に実施例を示して本発明をさらに詳しく説明するが、この発明は以下の例に限定されるものではない。
(1)実用酵母を用いるPOG1遺伝子破壊二倍体酵母の作製: 
POG1遺伝子破壊株の作製法を図1に示す。URA3遺伝子領域を増幅するために、正方向プライマーとして核酸配列(CTAGGGAAGACAAGCAACGAAACG:配列番号3)を有するURA3up-Fwプライマー、および、逆方向プライマーとして核酸配列(GGGCGGGTTATCAGATATTATCAGG:配列番号4)を有するURA3down-Rvプライマーを用いた。S.cerevisiaeのパン酵母株の染色体DNAを鋳型としてこれらプライマー対を用いて、URA3遺伝子領域を増幅した。増幅断片を鋳型として、5‘末端にPOG1遺伝子の一部を付加した正方向プライマーとして核酸配列(CCTGCGCTTAACTCATACAAAAAGGCGCAAAACATTTCAAGAGTCCCACGATTAATTGCAGAAATTGAAAgattcggtaatctccgag:配列番号5)を有するPOG1+URA3-Fwプライマー、および、同じく5‘末端にPOG1遺伝子の一部を付加した逆方向プライマーとして核酸配列(TGAACTGAAGTAAGGTGGACGGATGCATCGAATGAAGGTTAGGAAGGGATATAGTTTTAGAAATTAGGTGgtaataactgatataattaaattg:配列番号6)を有するPOG1+URA3-Rvプライマーを用いて、POG1遺伝子破壊用断片を増幅した。増幅断片をパン酵母一倍体ウラシル要求性株(3346 Ura3-、3347Ura3-)に形質転換し、POG1遺伝子破壊株を、ウラシル非要求性を指標に単離した。POG1遺伝子破壊株が作製されたことを、POG1upstream-Fwプライマー(TTAAAGGCTACGCAGAAGAGG:配列番号7)およびURA3ORF-Rvプライマー(GGCCTCTAGGTTCCTTTGTTACTTC:配列番号8)を用いるPCRによって確認した。a型とα型それぞれの一倍体において作製したPOG1遺伝子破壊株同士を接合させることにより二倍体株を作製した。二倍体株が作製出来たことは、胞子形成培地上(0.05%グルコース、0.1%Yeast extract、1%酢酸カリウム、2%寒天)での胞子形成により確認した。
(2)POG1遺伝子破壊二倍体酵母の冷凍ストレス耐性:
実施例1において作製した変異株の冷凍ストレス耐性の評価を行った。
野生株、POG1遺伝子破壊株、およびPOG1遺伝子高発現株を、廃糖蜜培地(5.88%廃糖蜜、0.214%尿素、0.051%リン酸二水素カリウム)で定常期まで培養した後培養した細胞を、磁器乾燥版(ニッカトー株式会社)を使用して、含水量が66%になるまで脱水した。この酵母をパン生地用小麦粉100gに対して5gのショ糖、2gの塩化ナトリウム、水68mLを含む高糖パン生地に4g加えた。これら混合物をスワンソンタイプミキサー(National Mfg. Co., Ltd.)を用いて100rpmで3分間攪拌した後、40gずつに小分けし、スクリューキャップボトルに封をして入れ、30℃、120分間の前発酵を行い、その後パン生地ごと―20℃で冷凍した。冷凍後1及び3週間後、30℃で30分間解凍した後、炭酸ガス発生量をファーモグラフII(アトー株式会社)にて測定した。結果をそれぞれ図3b)、c)および図4a)、b)に示す。また、冷凍を行わずに前発酵後すぐに炭酸ガス発生量を測定した結果は図3a)に示す。
表1 本発明のPOG1遺伝子破壊株の野生株に対する発酵力の比
Figure JPOXMLDOC01-appb-I000001
その結果、POG1遺伝子を破壊した実用パン酵母二倍体株は、冷凍後のパン生地中での発酵力が野生株と比較して1週間後では約56%、3週間後では約72%有意に高かった。このことから、POG1遺伝子破壊は冷凍生地耐性実用パン酵母の作製に適する方法であることが示された。
本発明の酵母を用いることによって、冷凍ストレス条件下であっても高い発酵力を発揮する酵母を単離することが可能となる。そのような酵母を用いることによって、従来、十分な発酵を行うことが困難であった冷凍生地製パン法などの冷凍環境での発酵の効率を高めることが可能となる。
配列番号3~8:プライマー

Claims (9)

  1. POG1遺伝子が不活性化されていることを特徴とする、冷凍ストレス耐性が増強された酵母。
  2. POG1遺伝子が以下のいずれかのポリヌクレオチドからなる、請求項1に記載の酵母:
    (a)配列番号1に記載のアミノ酸配列をコードするポリヌクレオチド;
    (b)配列番号1に記載のアミノ酸配列と80%以上の相同性を有するタンパク質をコードするポリヌクレオチド;
    (c)配列番号1に記載のアミノ酸配列において1又は数個以上のアミノ酸残基が欠失、置換、挿入及び/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
    (d)配列番号2に記載の塩基配列からなるポリヌクレオチド;
    (e)上記(a)~(d)のいずれかのポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド。
  3. 前記酵母はパン酵母である、請求項1~請求項2のいずれかに記載の酵母。
  4. 請求項1~請求項3のいずれかに記載の酵母を用いる、パン生地の製造方法。
  5. 請求項1~請求項3のいずれかに記載の酵母を用いる、パンの製造方法。
  6. POG1遺伝子を不活性化する工程を含む冷凍ストレス耐性が増強された酵母の作製方法。
  7. POG1遺伝子が以下のいずれかのポリヌクレオチドからなる、請求項6に記載の方法:
    (a)配列番号1に記載のアミノ酸配列をコードするポリヌクレオチド;
    (b)配列番号1に記載のアミノ酸配列と80%以上の相同性を有するタンパク質をコードするポリヌクレオチド;
    (c)配列番号1に記載のアミノ酸配列において1又は数個以上のアミノ酸残基が欠失、置換、挿入及び/または付加されたアミノ酸配列からなるタンパク質をコードするポリヌクレオチド;
    (d)配列番号2に記載の塩基配列からなるポリヌクレオチド;
    (e)上記(a)~(d)のいずれかのポリヌクレオチドと相補的な塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチド。
  8. 請求項6または7に記載の方法であって、さらに、
    POG1遺伝子を不活性化した酵母とPOG1遺伝子を不活性化していない酵母とを冷凍ストレス耐性について比較する工程、
    を包含する方法。
  9.  請求項8に記載の方法であって、さらに、
    冷凍ストレス耐性の向上した酵母を選択する工程、
    を包含する方法。
PCT/JP2012/080058 2011-12-15 2012-11-20 冷凍ストレス耐性を有する酵母 WO2013088920A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2857622A CA2857622C (en) 2011-12-15 2012-11-20 Yeast having resistance to freezing stress
EP12857491.0A EP2792740B1 (en) 2011-12-15 2012-11-20 Yeast having freezing stress resistance
US14/364,411 US9510601B2 (en) 2011-12-15 2012-11-20 Yeast having resistance to freezing stress
JP2013549181A JP6032652B2 (ja) 2011-12-15 2012-11-20 冷凍ストレス耐性を有する酵母

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011274519 2011-12-15
JP2011-274519 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013088920A1 true WO2013088920A1 (ja) 2013-06-20

Family

ID=48612375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080058 WO2013088920A1 (ja) 2011-12-15 2012-11-20 冷凍ストレス耐性を有する酵母

Country Status (5)

Country Link
US (1) US9510601B2 (ja)
EP (1) EP2792740B1 (ja)
JP (1) JP6032652B2 (ja)
CA (1) CA2857622C (ja)
WO (1) WO2013088920A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207779A1 (ja) * 2017-05-09 2018-11-15 株式会社カネカ 新規パン酵母

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752647A (zh) * 2022-04-08 2022-07-15 青岛啤酒股份有限公司 利用群体异质性评价酵母菌株抗逆性的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740943A (ja) 1993-07-26 1995-02-10 Nakayama:Kk フラワーパッキング作業台
JPH09234058A (ja) 1996-03-04 1997-09-09 Ajinomoto Co Inc 新規酵母および該酵母を含有するパンの製造方法
JPH11169180A (ja) 1997-12-08 1999-06-29 Natl Food Res Inst 冷凍生地耐性および高糖生地耐性実用パン酵母
JP2001238665A (ja) 2000-03-02 2001-09-04 Natl Food Res Inst アミノ酸高蓄積実用パン酵母
JP2006067806A (ja) 2004-08-31 2006-03-16 Fukui Prefecture プロリン蓄積型形質転換酵母とその作成方法及び該酵母を用いた清酒の製造方法
JP2008148688A (ja) 2006-11-24 2008-07-03 National Agriculture & Food Research Organization 高ショ糖耐性酵母の製造方法およびこの方法によって製造された酵母
JP2010183887A (ja) 2009-02-13 2010-08-26 Nara Institute Of Science & Technology ドライイースト製造用組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352606A (en) * 1989-03-14 1994-10-04 Asahi Kasei Kogyo Kabushiki Kaisha Freeze resistant bakers' yeast
JP2013118851A (ja) * 2011-12-08 2013-06-17 Nara Institute Of Science & Technology 高ショ糖ストレス耐性を有する酵母

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740943A (ja) 1993-07-26 1995-02-10 Nakayama:Kk フラワーパッキング作業台
JPH09234058A (ja) 1996-03-04 1997-09-09 Ajinomoto Co Inc 新規酵母および該酵母を含有するパンの製造方法
JPH11169180A (ja) 1997-12-08 1999-06-29 Natl Food Res Inst 冷凍生地耐性および高糖生地耐性実用パン酵母
JP2001238665A (ja) 2000-03-02 2001-09-04 Natl Food Res Inst アミノ酸高蓄積実用パン酵母
JP2006067806A (ja) 2004-08-31 2006-03-16 Fukui Prefecture プロリン蓄積型形質転換酵母とその作成方法及び該酵母を用いた清酒の製造方法
JP2008148688A (ja) 2006-11-24 2008-07-03 National Agriculture & Food Research Organization 高ショ糖耐性酵母の製造方法およびこの方法によって製造された酵母
JP2010183887A (ja) 2009-02-13 2010-08-26 Nara Institute Of Science & Technology ドライイースト製造用組成物

Non-Patent Citations (30)

* Cited by examiner, † Cited by third party
Title
"Methods in Enzymology", 1994, YOUDOSHA
"Molecular Cloning", 1982, COLD SPRING HARBOR LABORATORY
"Molecular Cloning: A laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
23RD EUROPEAN BREWERY CONV. PROC., 1991, pages 297 - 304
ANDO ET AL., FEMS YEAST RES 6, 2006, pages 249 - 267
ANDO ET AL., FEMS YEAST RES, vol. 7, 2007, pages 244 - 253
ATTFIELD, NAT. BIOTECHNOL., vol. 15, 1997, pages 1351 - 1357
CELL, vol. 75, 1993, pages 531 - 541
DAMAE ET AL., FEMS MICROBIOL. LETT., vol. 277, 2007, pages 70 - 78
DEMAE ET AL., FEMS MICROBIOL. LETT., vol. 277, 2007, pages 70 - 78
DEMAE, M. ET AL.: "Overexpression of two transcriptional factors, Kin28 and Pog1, suppresses the stress sensitivity caused by the rsp5 mutation in Saccharomyces cerevisiae", FEMS MICROBIOLOGY LETTERS, vol. 277, no. 1, December 2007 (2007-12-01), pages 70 - 78, XP055152525 *
DU; TAKAGI, APPL. MICROBIOL. BIOTECHNOL., vol. 75, 2007, pages 1343 - 1351
DU; TAKAGI, J. BIOCHEM., vol. 138, 2005, pages 391 - 397
ENZYME AND MICROB. TECHNOL., vol. 15, 1993, pages 874 - 876
EUROPEAN J. BIOCHEM., vol. 231, 1995, pages 329 - 336
J. BACTERIOL., vol. 153, 1983, pages 163
J. FERMENT. BIOENG., vol. 76, 1993, pages 60 - 63
LEZA, M, A. ET AL.: "POG1, a Novel Yeast Gene, Promotes Recovery From Pheromone Arrest via the G1 Cyclin CLN2", GENETICS, vol. 151, no. 2, February 1999 (1999-02-01), pages 531 - 543, XP055152523 *
MAKRANTONI ET AL., MICROBIOLOGY, vol. 153, 2007, pages 4016 - 4026
MARIA, A. ET AL., GENETICS, vol. 151, 1999, pages 531 - 543
METHODS ENZYMOL., vol. 194, 1990, pages 182
METHODS IN ENZYMOLOGY, vol. 194, 1991, pages 281 - 301
METHODS IN ENZYMOLOGY, vol. 194, 1991, pages 342 - 361
NOMURA; TAKAGI, PROC. NATL. ACAD. SCI. U.S.A., vol. 101, 2004, pages 12616 - 12621
PROC. NATL. ACAD, SCI. USA, vol. 84, 1978, pages 1929
SAMBROOK; RUSSELL: "Molecular Cloning", 2001, COLD SPRING HARBOR LABORATORY PRESS, pages: A7.6 - A7.9
SAMBROOK; RUSSELL: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP2792740A4
SHIMA ET AL., YEAST, vol. 25, 2008, pages 179 - 190
TAYLOR, J. THEOR. BIOL., vol. 119, 1986, pages 205 - 218

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207779A1 (ja) * 2017-05-09 2018-11-15 株式会社カネカ 新規パン酵母

Also Published As

Publication number Publication date
CA2857622C (en) 2019-08-27
US20140377408A1 (en) 2014-12-25
EP2792740A1 (en) 2014-10-22
CA2857622A1 (en) 2013-06-20
EP2792740B1 (en) 2017-01-04
JPWO2013088920A1 (ja) 2015-04-27
JP6032652B2 (ja) 2016-11-30
EP2792740A4 (en) 2015-08-12
US9510601B2 (en) 2016-12-06

Similar Documents

Publication Publication Date Title
US9617570B2 (en) Acid resistant yeast cell and use thereof
EP2468860A9 (en) Transformant and process for production thereof, and process for production of lactic acid
Swinnen et al. Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae
CN112789353A (zh) 抑制乙醇产生的重组耐酸酵母以及使用其制备乳酸的方法
JP6032652B2 (ja) 冷凍ストレス耐性を有する酵母
US20140162335A1 (en) Recombinant Yeast Expressing AGT1
JP2013118851A (ja) 高ショ糖ストレス耐性を有する酵母
JP5682866B2 (ja) 優れたストレス耐性を有する酵母の分子育種法及び遺伝子改変酵母
Hernandez‐Lopez et al. Isolation and characterization of the gene URA3 encoding the orotidine‐5′‐phosphate decarboxylase from Torulaspora delbrueckii
JP4563228B2 (ja) キャンディダ・ユティリス由来のars遺伝子
US20230220426A1 (en) Methods and compositions for enhanced ethanol production in yeast cells
Zhang et al. Modification of the second PEP4-allele enhances citric acid stress tolerance during cultivation of an industrial rice wine yeast strain with one PEP4-allele disrupted
US9809830B2 (en) Mutant NNK1 allele and its use
An et al. Transformation of terpene synthase from Polyporus brumalis in Pichia pastoris for recombinant enzyme production
Higgins et al. Leu343Phe substitution in the Malx3 protein of Saccharomyces cerevisiae increases the constitutivity and glucose insensitivity of MAL gene expression
JP5230224B2 (ja) 新規冷凍耐性パン酵母
JP5413949B2 (ja) ドライイースト製造用組成物
JP5190819B2 (ja) 高ショ糖耐性酵母の製造方法およびこの方法によって製造された酵母
Jayaprakash et al. Establishment of a novel CRISPR-Cas9 system in the hybrid yeast Zygosaccharomyces parabailii reveals allele exchange mechanism
Park et al. Cloning and characterization of the orotidine-5'-phosphate decarboxylase gene (URA3) from the osmotolerant yeast Candida magnoliae
WO2023220544A1 (en) Genetically modified yeast and fermentation processes for the production of ribitol
CN118302514A (zh) 一种高产l-苹果酸的耐酸酵母菌株及其构建方法和应用
KR101467448B1 (ko) 아스퍼질러스 니둘란스의 aqpA 유전자 및 이의 결손 돌연변이주
Štafa et al. Novi pristup u konstrukciji hibridnih sojeva kvasca Saccharomyces cerevisiae za proizvodnju bioetanola
CN117467551A (zh) 一种高产l-苹果酸的耐酸酵母菌株及其构建方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857491

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013549181

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2857622

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2012857491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012857491

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14364411

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE