WO2013088850A1 - Aqueous urea-spraying structure - Google Patents

Aqueous urea-spraying structure Download PDF

Info

Publication number
WO2013088850A1
WO2013088850A1 PCT/JP2012/078166 JP2012078166W WO2013088850A1 WO 2013088850 A1 WO2013088850 A1 WO 2013088850A1 JP 2012078166 W JP2012078166 W JP 2012078166W WO 2013088850 A1 WO2013088850 A1 WO 2013088850A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
urea water
exhaust gas
evaporation pipe
pipe
Prior art date
Application number
PCT/JP2012/078166
Other languages
French (fr)
Japanese (ja)
Inventor
重樹 岡崎
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to KR1020147010650A priority Critical patent/KR102001477B1/en
Priority to CH00885/14A priority patent/CH707487B1/en
Priority to CN201280050990.9A priority patent/CN103890335B/en
Publication of WO2013088850A1 publication Critical patent/WO2013088850A1/en
Priority to DKPA201470377A priority patent/DK178838B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • F01N2610/085Controlling the air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/102Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance after addition to exhaust gases, e.g. by a passively or actively heated surface in the exhaust conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention is an exhaust gas that purifies by reacting nitrogen oxide (hereinafter referred to as “NOx”) in exhaust gas discharged from an internal combustion engine with a reducing agent under a selective reduction catalyst (hereinafter referred to as “SCR catalyst”).
  • NOx nitrogen oxide
  • SCR catalyst selective reduction catalyst
  • a denitration reactor equipped with an SCR catalyst is installed downstream of the exhaust pipe of the engine, and ammonia gas is added as a reducing agent to the exhaust passage upstream of the denitration reactor, so that NOx in the exhaust gas is removed in the denitration reactor.
  • a technique for purification is disclosed (Patent Document 1).
  • the ammonia gas generated by the hydrolysis is supplied to the SCR catalyst, whereby a denitration reaction such as the following formulas (2) and (3) is performed between ammonia and NOx in the exhaust gas on the SCR catalyst, NOx is decomposed into nitrogen and water and detoxified.
  • a denitration reaction such as the following formulas (2) and (3) is performed between ammonia and NOx in the exhaust gas on the SCR catalyst, NOx is decomposed into nitrogen and water and detoxified.
  • a muffler is provided as a means for promoting the generation of ammonia between the urea water addition nozzle and the NOx soot catalytic converter.
  • a nozzle for spraying urea water provided in the exhaust passage 104 upstream of the turbine 103 a of the turbocharger 103.
  • An evaporation pipe 107 for promoting hydrolysis of urea water sprayed from the nozzle 105 may be provided between the 105 and the SCR catalyst 106.
  • ammonia generated by hydrolysis of urea water is not uniformly diffused in the exhaust gas, and is supplied to the SCR catalyst 106 in a nonuniform state.
  • the progress of the denitration reaction of the above formulas (2) and (3) may be insufficient.
  • the conventional exhaust gas purifying apparatus uses a fuel containing a large amount of sulfur, the temperature of the exhaust gas is lowered by spraying urea water in an atmosphere where the ratio of SO 3 contained in the exhaust gas is high, ammonium sulfate, Byproducts such as acidic ammonium sulfate are likely to be produced. Further, in the conventional exhaust gas purifying apparatus, the sprayed urea water adheres to the wall surface, so that by-products such as cyanuric acid are easily generated.
  • the problem to be solved by the present invention is that the above-mentioned by-products have caused problems such as corrosion and blockage of the exhaust passage and degradation of the performance of the SCR catalyst.
  • the urea water spray structure of the present invention is An exhaust gas purification apparatus having a denitration reactor provided between an exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of an engine and an exhaust passage upstream of a turbine of a turbocharger
  • a urea spray structure capable of supplying ammonia to the SCR catalyst of the denitration reactor,
  • an evaporation pipe connected to the branch pipe branched from the air supply passage on the downstream side of the turbocharger compressor is disposed, and The most important feature point is that the evaporation pipe is provided with a nozzle for spraying urea water to the air introduced into the evaporation pipe through the branch pipe.
  • an evaporation pipe connected to a branch pipe branched from an air supply passage on the downstream side of a turbocharger compressor is arranged in an exhaust manifold, and urea water spray and ammonia are arranged in the evaporation pipe.
  • urea water spray and ammonia are arranged in the evaporation pipe.
  • the wall surface of the evaporation pipe provided in the exhaust manifold is sufficiently heated by the high-temperature exhaust gas immediately after being discharged from the exhaust communication pipe, and the temperature is also increased in the region where the urea water is sprayed. Therefore, it is possible to prevent the formation of by-products such as cyanuric acid. Also, even if a by-product is generated and adheres to the wall surface of the evaporation tube when the engine is in a low load state, the wall surface of the evaporation tube becomes hot again if the engine is in a high load state. Temporarily adhered by-products can be decomposed.
  • the present invention provides an exhaust gas purifying apparatus in which, when the proportion of SO 3 contained in the exhaust gas is high, or even when urea water is sprayed in a region where the temperature of the exhaust gas is lowered, secondary substances such as ammonium sulfate, acidic ammonium sulfate, and cyanuric acid are used.
  • An exhaust gas purification apparatus having a denitration reactor provided between an exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of an engine and an exhaust passage upstream of a turbine of a turbocharger
  • a urea spray structure capable of supplying ammonia to the SCR catalyst of the denitration reactor
  • an evaporation pipe connected to the branch pipe branched from the air supply passage on the downstream side of the turbocharger compressor is disposed, and This is realized by adopting a urea water spraying structure in which a nozzle for spraying urea water to the air introduced into the evaporation pipe through the branch pipe is provided in the evaporation pipe.
  • reference numeral 1 denotes a 4-cylinder marine diesel engine to which the urea water spray structure of the present invention is applied, which is discharged from an exhaust communication pipe 2 connected to an exhaust port 1a provided in each cylinder head.
  • An exhaust manifold 3 that collects high-temperature exhaust gas and guides it to an exhaust passage 5 upstream of the turbine 4 a of the turbocharger 4 is provided.
  • the main part of the urea water spray structure of the present invention is mounted inside the exhaust manifold 3, is continuously disposed in the exhaust manifold 3, and is a denitration reactor provided between the exhaust passage 5 on the upstream side of the turbine 4 a.
  • 6 constitutes an exhaust gas purification device 7.
  • Reference numeral 4b denotes a compressor of the turbocharger 4
  • 8 denotes an air supply passage through which air compressed by the compressor 4b is sent.
  • an evaporation pipe 10 connected to a branch pipe 9 branched from a branch portion 8a of an air supply passage 8 on the downstream side of the compressor 4b is disposed.
  • the evaporation pipe 10 has one end connected to the branch pipe 9 and the other end opened to the exhaust manifold 3 through the ejection hole 10a.
  • Reference numeral 11 denotes a nozzle for spraying urea water to the air introduced into the evaporation pipe 10 through the branch pipe 9.
  • the air passing through the evaporation pipe 10 is compressed by the compressor 4b and is in a high temperature state, but this air is not introduced into the intake port of the engine 1 and does not contain SO 3 .
  • the urea water spray structure of the present embodiment introduces high-temperature air that does not contain SO 3 into the evaporation pipe 10 and promotes hydrolysis of urea water by spraying urea water on the air in the evaporation pipe 10. Even when a fuel containing a large amount of sulfur is used, it is possible to suppress the generation of by-products resulting from the reaction between ammonia and SO 3 .
  • the position where the nozzle 11 is provided is a region where the evaporation pipe 10 exists in the exhaust manifold 3 (an area other than A) rather than the area where the evaporation pipe 10 protrudes outside the exhaust manifold 3 (area A). ) Is preferable. This is because the wall surface of the evaporation pipe 10 can always be kept at a high temperature by direct contact with the high-temperature exhaust gas immediately after being discharged from the exhaust port of the exhaust communication pipe 2, so that the production of by-products due to the low temperature can be suppressed.
  • the evaporation pipe 10 is arranged so that the longitudinal direction of the evaporation pipe 10 is parallel to the direction in which the exhaust ports of the exhaust communication pipe 2 connected to the exhaust port 1a of each cylinder of the engine 1 are arranged.
  • the position of the nozzle 11 may be determined so that the region B where the urea water sprayed from the nozzle 11 flows faces the exhaust port of the exhaust communication pipe 2.
  • the SCR catalyst 6a that selectively reduces and removes NOx soot that is contained in the exhaust gas discharged from the engine 1 and causes environmental pollution such as acid rain and photochemical smog is interposed in the denitration reactor 6.
  • a desired catalyst such as a metal oxide catalyst such as alumina, zirconia, vanadia / titania or a zeolite catalyst may be used, and these catalysts may be combined.
  • the SCR catalyst 6a may be carried on a catalyst carrier having a honeycomb structure, for example, or may be charged in a cylinder and caged.
  • the urea water spray structure of the present invention supplies ammonia in a completely hydrolyzed state to the SCR catalyst 6a.
  • a hydrolysis catalyst 12 for promoting the hydrolysis of urea water is provided inside the evaporation pipe 10 and downstream of the nozzle 11 so as to further increase the efficiency of hydrolysis.
  • the hydrolysis catalyst 12 may be any catalyst that has an action of promoting ammonia generation.
  • a desired catalyst such as a titanium oxide catalyst or an alkali metal catalyst can be used.
  • an ejection hole 10a for ejecting ammonia generated by hydrolysis of urea water toward the SCR catalyst 6a is provided on the downstream side of the hydrolysis catalyst 12 of the evaporation pipe 10. Therefore, the ammonia gas generated by hydrolysis in the evaporation pipe 10 is ejected at a high pressure into the exhaust gas in the exhaust manifold 3 through the small-diameter ejection hole 10a, and is sufficiently diffused in the exhaust gas. Therefore, the progress of the denitration reaction does not become insufficient.
  • the evaporation pipe 10 including the nozzle 11 and the hydrolysis catalyst 12 is incorporated in the exhaust manifold 3, the evaporation pipe is provided in the exhaust passage 5 on the upstream side of the turbine 4a.
  • Space saving can be achieved compared with the conventional apparatus.
  • the exhaust passage leading to the turbocharger 4 can be shortened as compared with the conventional device in which the exhaust manifold and the exhaust pipe are arranged side by side, thereby reducing the loss of air pressure in the exhaust passage. This is also advantageous.
  • FIG. 13 indicates an air cooler provided in the air supply passage 8.
  • the air compressed by the compressor 4b rises in temperature and tends to expand. However, if expanded, the density of the air decreases and the amount of air decreases. 1 is supplied with air.
  • the position where the branch pipe 9 is branched from the air supply passage 8 (the position of the branch portion 8 a) is upstream of the air cooler 13. Is preferred. This is because, in the present invention, feeding hot air to the evaporation pipe 10 is advantageous in promoting hydrolysis of urea water.
  • the air supply 14 denotes a receiver tank provided on the downstream side of the air cooler 13.
  • the air is quickly supplied from the receiver tank 14, and when the pressure in the receiver tank decreases thereafter, the decrease is replenished by supply from the compressor 4b. Even when a large amount of air exceeding the capacity is needed instantaneously, the air supply is kept short.
  • the evaporation pipe connected to the branch pipe branched from the air supply passage on the downstream side of the compressor of the turbocharger is arranged in the exhaust manifold, Since the hydrolysis to ammonia is completed by spraying urea water, it is possible to suppress the formation of by-products such as ammonium sulfate and acidic ammonium sulfate even when using a fuel containing a large amount of sulfur.
  • the wall surface of the evaporation pipe provided in the exhaust manifold is sufficiently heated by the high-temperature exhaust gas immediately after being discharged from the exhaust communication pipe, the temperature does not become insufficient even in the area where the urea water is sprayed, such as cyanuric acid. It is possible to prevent the formation of by-products.
  • the urea water spray structure of the present invention can be applied not only to marine diesel engines but also to automobile diesel engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

[Problem] To limit the generation of by-products even when the proportion of SO3 contained in the exhaust gas is high or when the aqueous urea is sprayed in a reduced exhaust gas temperature region. [Solution] An aqueous urea-spraying structure capable of supplying ammonia to an SCR catalyst (6a) of a denitrogenation reactor (6) of an exhaust gas-cleaning device (7) equipped with a denitrogenation reactor (6) provided between an exhaust manifold (3) that collects exhaust gas exhausted from exhaust connection tubes (2) that are connected to the exhaust ports (1a) of an engine (1), and an exhaust pathway (5) upstream of a turbine (4a) of a turbocharger (4). An evaporation tube (10) connected to a branching pipe (9) branching from a gas supply pathway (8) downstream from the compressor (4b) of the turbocharger (4) is disposed inside the exhaust manifold (3) and a nozzle (11) that sprays aqueous urea into the air passing through the evaporation tube (10) is provided. [Effect] The present invention prevents corrosion and occlusion of the exhaust pathway and is also able to maintain favorable SCR catalyst performance.

Description

尿素水噴霧構造Urea water spray structure
 本発明は、内燃機関から排出される排ガス中の窒素酸化物(以下「NOx 」という。)を選択還元型触媒(以下「SCR触媒」という。)の下で還元剤と反応させて浄化する排ガス浄化装置における尿素水の噴霧構造に関するものである。 The present invention is an exhaust gas that purifies by reacting nitrogen oxide (hereinafter referred to as “NOx”) in exhaust gas discharged from an internal combustion engine with a reducing agent under a selective reduction catalyst (hereinafter referred to as “SCR catalyst”). The present invention relates to a spray structure of urea water in a purification device.
 エンジンの排気管の下流にSCR触媒を介装した脱硝反応器を設けると共に、この脱硝反応器の上流側の排気通路に還元剤としてアンモニアガスを添加し、脱硝反応器中で排ガス中のNOx を浄化する技術が開示されている(特許文献1)。 A denitration reactor equipped with an SCR catalyst is installed downstream of the exhaust pipe of the engine, and ammonia gas is added as a reducing agent to the exhaust passage upstream of the denitration reactor, so that NOx in the exhaust gas is removed in the denitration reactor. A technique for purification is disclosed (Patent Document 1).
 しかし、アンモニアガスやアンモニア水は毒性が強く危険であり、臭気等の問題もあるため、船舶等への搭載には厳しい制約がある。そこで、従来、SCR触媒を用いた排ガス浄化装置では、化学的に安定な尿素を還元剤前駆体として使用し、尿素水の状態でタンクに収容しておき、ノズルを用いて脱硝反応器の上流側の排気通路内に噴霧する構成が多く採用されている(例えば、特許文献2)。 However, since ammonia gas and ammonia water are highly toxic and dangerous, and have problems such as odor, there are severe restrictions on mounting them on ships. Therefore, conventionally, in an exhaust gas purification apparatus using an SCR catalyst, chemically stable urea is used as a reducing agent precursor, stored in a tank in a state of urea water, and upstream of the denitration reactor using a nozzle. Many configurations have been adopted in which spraying is performed in the exhaust passage on the side (for example, Patent Document 2).
 上記構成の場合、ノズルから排気通路内に噴霧された尿素水は、排気通路内の温度が十分に高ければSCR触媒に到達するまでの間に下記の式(1)のように加水分解され、アンモニアガス(NH3)が生成される。
 (NH22CO+H2O→2NH3 +CO2 ・・・・(1)
In the case of the above configuration, the urea water sprayed from the nozzle into the exhaust passage is hydrolyzed as shown in the following formula (1) before reaching the SCR catalyst if the temperature in the exhaust passage is sufficiently high, Ammonia gas (NH 3 ) is generated.
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 ... (1)
 そして、加水分解により発生したアンモニアガスはSCR触媒に供給され、これによりSCR触媒上でアンモニアと排ガス中のNOx の間に次の式(2)及び(3)のような脱硝反応が行われ、NOx は窒素と水に分解されて無害化される。
 4NH3+4NO+O2 →4N2+6H2O・・・・(2)
 2NH3+NO+NO2 →2N2+3H2O・・・・(3)
The ammonia gas generated by the hydrolysis is supplied to the SCR catalyst, whereby a denitration reaction such as the following formulas (2) and (3) is performed between ammonia and NOx in the exhaust gas on the SCR catalyst, NOx is decomposed into nitrogen and water and detoxified.
4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O (2)
2NH 3 + NO + NO 2 → 2N 2 + 3H 2 O (3)
 このように、SCR触媒を用いた排ガス浄化装置において、安全上の必要性から尿素水を用いる場合は、噴霧した尿素水が排気通路内を流動中に上記式(1)の加水分解反応が確実に行われる必要がある。そのため、従来、例えば特許文献2のNOx 浄化装置では、尿素水添加ノズルとNOx 触媒コンバータの間に、アンモニアの生成を促進するための手段としてマフラーを設けるようにしている。 Thus, in the exhaust gas purification apparatus using the SCR catalyst, when urea water is used for safety reasons, the hydrolysis reaction of the above formula (1) is surely performed while the sprayed urea water flows in the exhaust passage. Need to be done. Therefore, conventionally, for example, in the NOx soot purifying device of Patent Document 2, a muffler is provided as a means for promoting the generation of ammonia between the urea water addition nozzle and the NOx soot catalytic converter.
 また、従来、例えば図2に示すような、排気マニホールド101を備えた4気筒の舶用ディーゼルエンジン102においても、ターボチャージャー103のタービン103aの上流側の排気通路104に設けた尿素水噴霧用のノズル105とSCR触媒106との間に、ノズル105から噴霧された尿素水の加水分解を促進するための蒸発管107を設ける場合がある。 Conventionally, for example, in a four-cylinder marine diesel engine 102 having an exhaust manifold 101 as shown in FIG. 2, a nozzle for spraying urea water provided in the exhaust passage 104 upstream of the turbine 103 a of the turbocharger 103. An evaporation pipe 107 for promoting hydrolysis of urea water sprayed from the nozzle 105 may be provided between the 105 and the SCR catalyst 106.
 しかしながら、燃料中に硫黄分が多く含まれる例えばC重油を使用したディーゼルエンジンの場合、排ガス中に含まれるSO3 の割合が高くなるところ、尿素水の噴霧によってさらに温度が低下した領域で排ガス中のSO3 と尿素水の加水分解により生じたアンモニアが接触すると、例えば硫酸アンモニウム((NH42SO4)や酸性硫安(NH4HSO4)などの塩が副生成物として生成される。これらの副生成物は、排気通路に堆積すると排気通路の腐食や閉塞の原因となり、またSCR触媒上にも堆積するとSCR触媒の触媒活性が低下するという問題もある。 However, in the case of a diesel engine using heavy fuel oil such as C heavy oil that contains a large amount of sulfur in the fuel, the ratio of SO 3 contained in the exhaust gas increases. When ammonia produced by hydrolysis of SO 3 and urea water is brought into contact, salts such as ammonium sulfate ((NH 4 ) 2 SO 4 ) and acidic ammonium sulfate (NH 4 HSO 4 ) are produced as by-products. When these by-products are deposited in the exhaust passage, they cause corrosion and blockage of the exhaust passage, and when they are deposited on the SCR catalyst, there is a problem that the catalytic activity of the SCR catalyst is lowered.
 特に、特許文献2のマフラーや図2の蒸発管107のような構成を用いる場合、エンジンの排気ポートから排出された直後の例えば300~450℃の高温の排ガスが存在する排気マニホールドよりも下流側の、排ガスの温度が低下した領域で尿素水が噴霧されるため、尿素水のミストが壁面に付着して壁面温度が低下することで、副生成物が生成されやすい。例えばC重油を使用していないエンジンでも、壁面に尿素水が付着し、壁面温度が低下することで、尿素水の加水分解が進行せずに副生成物としてシアヌル酸が生成され、排気通路への堆積等の原因となる。 In particular, when a configuration such as the muffler of Patent Document 2 or the evaporation pipe 107 of FIG. Since urea water is sprayed in the region where the temperature of the exhaust gas is lowered, mist of urea water adheres to the wall surface and the wall surface temperature is lowered, so that a by-product is easily generated. For example, even in an engine that does not use C heavy oil, urea water adheres to the wall surface and the wall surface temperature decreases, so that hydrolysis of urea water does not proceed and cyanuric acid is generated as a by-product, and the exhaust passage goes to the exhaust passage. Cause accumulation of water.
 また、図2の蒸発管107のような構成を用いる場合は、尿素水の加水分解により生じたアンモニアが排ガス中に均一に拡散されず、ムラがある状態のままSCR触媒106に供給されるために、上記式(2)及び(3)の脱硝反応の進行が不十分となる場合もある。 In the case of using a configuration such as the evaporation pipe 107 in FIG. 2, ammonia generated by hydrolysis of urea water is not uniformly diffused in the exhaust gas, and is supplied to the SCR catalyst 106 in a nonuniform state. In addition, the progress of the denitration reaction of the above formulas (2) and (3) may be insufficient.
実開平2-115912号公報Japanese Utility Model Publication No. 2-115912 特開2003-293739号公報JP 2003-293739 A
 従来の排ガス浄化装置は、硫黄分が多く含まれる燃料を使用しているために排ガス中に含まれるSO3 の割合が高い雰囲気で尿素水を噴霧することで排ガスの温度が低下し、硫酸アンモニウム、酸性硫安などの副生成物が生成されやすくなる。また、従来の排ガス浄化装置は、噴霧された尿素水が壁面に付着することでシアヌル酸などの副生成物が生成されやすくなる。本発明が解決しようとする課題は、以上の副生成物が原因で、排気通路の腐食や閉塞、SCR触媒の性能低下などの問題を生じていた点である。 Since the conventional exhaust gas purifying apparatus uses a fuel containing a large amount of sulfur, the temperature of the exhaust gas is lowered by spraying urea water in an atmosphere where the ratio of SO 3 contained in the exhaust gas is high, ammonium sulfate, Byproducts such as acidic ammonium sulfate are likely to be produced. Further, in the conventional exhaust gas purifying apparatus, the sprayed urea water adheres to the wall surface, so that by-products such as cyanuric acid are easily generated. The problem to be solved by the present invention is that the above-mentioned by-products have caused problems such as corrosion and blockage of the exhaust passage and degradation of the performance of the SCR catalyst.
 本発明の尿素水噴霧構造は、
 エンジンの排気ポートに接続された排気連絡管から排出された排ガスを集合する排気マニホールドと、ターボチャージャーのタービンの上流側の排気通路との間に設けられた脱硝反応器を備えた排ガス浄化装置の、前記脱硝反応器のSCR触媒に対してアンモニアを供給可能な尿素水噴霧構造であって、
 前記排気マニホールド内に、ターボチャージャーのコンプレッサの下流側の給気通路から分岐された分岐管と接続された蒸発管を配置すると共に、
 前記蒸発管に、前記分岐管を介して前記蒸発管内に導入する空気に対して尿素水を噴霧するノズルを設けたことを最も主要な特徴点としている。
The urea water spray structure of the present invention is
An exhaust gas purification apparatus having a denitration reactor provided between an exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of an engine and an exhaust passage upstream of a turbine of a turbocharger A urea spray structure capable of supplying ammonia to the SCR catalyst of the denitration reactor,
In the exhaust manifold, an evaporation pipe connected to the branch pipe branched from the air supply passage on the downstream side of the turbocharger compressor is disposed, and
The most important feature point is that the evaporation pipe is provided with a nozzle for spraying urea water to the air introduced into the evaporation pipe through the branch pipe.
 本発明の尿素水噴霧構造は、ターボチャージャーのコンプレッサの下流側の給気通路から分岐された分岐管と接続された蒸発管を排気マニホールド内に配置し、この蒸発管内で尿素水の噴霧とアンモニアへの加水分解を完了するものである。蒸発管の内部にはコンプレッサによって圧縮された高温の空気が通過するが、この空気はエンジンの給気ポートに導入される前のものでSO3を含まないので、硫黄分が多く含まれる燃料を使用する場合でも、硫酸アンモニウムや酸性硫安などの副生成物の生成を抑制できる。 In the urea water spray structure of the present invention, an evaporation pipe connected to a branch pipe branched from an air supply passage on the downstream side of a turbocharger compressor is arranged in an exhaust manifold, and urea water spray and ammonia are arranged in the evaporation pipe. To complete hydrolysis. High-temperature air compressed by a compressor passes through the inside of the evaporation pipe, but this air is not introduced into the intake port of the engine and does not contain SO 3. Even when used, the production of by-products such as ammonium sulfate and acidic ammonium sulfate can be suppressed.
 加えて、本発明の尿素水噴霧構造では、排気連絡管から排出された直後の高温の排ガスによって排気マニホールド内に設けた蒸発管の壁面が十分に加熱され、尿素水を噴霧する領域においても温度が不足しないので、シアヌル酸などの副生成物の生成も防止できる。また、仮に、エンジンが低負荷の状態のときに副生成物が生成されて蒸発管の壁面に付着したとしても、エンジンが高負荷の状態になれば蒸発管の壁面は再び高温になるため、一時的に付着した副生成物を分解できる。 In addition, in the urea water spray structure of the present invention, the wall surface of the evaporation pipe provided in the exhaust manifold is sufficiently heated by the high-temperature exhaust gas immediately after being discharged from the exhaust communication pipe, and the temperature is also increased in the region where the urea water is sprayed. Therefore, it is possible to prevent the formation of by-products such as cyanuric acid. Also, even if a by-product is generated and adheres to the wall surface of the evaporation tube when the engine is in a low load state, the wall surface of the evaporation tube becomes hot again if the engine is in a high load state. Temporarily adhered by-products can be decomposed.
 よって、本発明によれば、硫酸アンモニウム、酸性硫安、シアヌル酸などの副生成物の生成を抑制し、排気通路の腐食や閉塞を防止することができ、SCR触媒の性能も良好に維持できる。 Therefore, according to the present invention, generation of by-products such as ammonium sulfate, acidic ammonium sulfate, and cyanuric acid can be suppressed, corrosion and blockage of the exhaust passage can be prevented, and the performance of the SCR catalyst can be maintained well.
本発明の尿素水噴霧構造を有する排ガス浄化装置の構成の一例を説明する図である。It is a figure explaining an example of composition of an exhaust gas purification device which has urea water spray structure of the present invention. 従来の舶用ディーゼルエンジンの構成を示した概略図である。It is the schematic which showed the structure of the conventional marine diesel engine.
 本発明は、排ガス浄化装置において、排ガス中に含まれるSO3 の割合が高い場合や、排ガスの温度が低下した領域で尿素水が噴霧される場合でも、硫酸アンモニウム、酸性硫安、シアヌル酸などの副生成物の生成を抑制するという目的を、
 エンジンの排気ポートに接続された排気連絡管から排出された排ガスを集合する排気マニホールドと、ターボチャージャーのタービンの上流側の排気通路との間に設けられた脱硝反応器を備えた排ガス浄化装置の、前記脱硝反応器のSCR触媒に対してアンモニアを供給可能な尿素水噴霧構造であって、
 前記排気マニホールド内に、ターボチャージャーのコンプレッサの下流側の給気通路から分岐された分岐管と接続された蒸発管を配置すると共に、
 前記蒸発管に、前記分岐管を介して前記蒸発管内に導入する空気に対して尿素水を噴霧するノズルを設けた尿素水噴霧構造を採用することによって実現した。
The present invention provides an exhaust gas purifying apparatus in which, when the proportion of SO 3 contained in the exhaust gas is high, or even when urea water is sprayed in a region where the temperature of the exhaust gas is lowered, secondary substances such as ammonium sulfate, acidic ammonium sulfate, and cyanuric acid are used. The purpose of suppressing the production of products,
An exhaust gas purification apparatus having a denitration reactor provided between an exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of an engine and an exhaust passage upstream of a turbine of a turbocharger A urea spray structure capable of supplying ammonia to the SCR catalyst of the denitration reactor,
In the exhaust manifold, an evaporation pipe connected to the branch pipe branched from the air supply passage on the downstream side of the turbocharger compressor is disposed, and
This is realized by adopting a urea water spraying structure in which a nozzle for spraying urea water to the air introduced into the evaporation pipe through the branch pipe is provided in the evaporation pipe.
 以下、本発明を実施するための最良の形態を、図1を用いて詳細に説明する。図1において、1は、本発明の尿素水噴霧構造が適用される4気筒の舶用ディーゼルエンジンであり、各シリンダヘッドに設けられた排気ポート1aに夫々接続された排気連絡管2から排出された高温の排ガスを集合し、ターボチャージャー4のタービン4aの上流側の排気通路5に導く排気マニホールド3を備えている。本発明の尿素水噴霧構造の主要部はこの排気マニホールド3の内部に実装されており、排気マニホールド3に連続配置され、タービン4aの上流側の排気通路5との間に設けられた脱硝反応器6とで排ガス浄化装置7を構成している。なお、4bはターボチャージャー4のコンプレッサを、8はコンプレッサ4bによって圧縮された空気が送り込まれる給気通路を示している。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to FIG. In FIG. 1, reference numeral 1 denotes a 4-cylinder marine diesel engine to which the urea water spray structure of the present invention is applied, which is discharged from an exhaust communication pipe 2 connected to an exhaust port 1a provided in each cylinder head. An exhaust manifold 3 that collects high-temperature exhaust gas and guides it to an exhaust passage 5 upstream of the turbine 4 a of the turbocharger 4 is provided. The main part of the urea water spray structure of the present invention is mounted inside the exhaust manifold 3, is continuously disposed in the exhaust manifold 3, and is a denitration reactor provided between the exhaust passage 5 on the upstream side of the turbine 4 a. 6 constitutes an exhaust gas purification device 7. Reference numeral 4b denotes a compressor of the turbocharger 4, and 8 denotes an air supply passage through which air compressed by the compressor 4b is sent.
 排気マニホールド3の内部には、コンプレッサ4bの下流側の給気通路8の分岐部8aから分岐された分岐管9と接続された蒸発管10が配置されている。蒸発管10は、一端が分岐管9と接続され他端は噴出孔10aを介して排気マニホールド3内に開放された状態となっている。 Inside the exhaust manifold 3, an evaporation pipe 10 connected to a branch pipe 9 branched from a branch portion 8a of an air supply passage 8 on the downstream side of the compressor 4b is disposed. The evaporation pipe 10 has one end connected to the branch pipe 9 and the other end opened to the exhaust manifold 3 through the ejection hole 10a.
 11は、前記分岐管9を介して前記蒸発管10内に導入する空気に対して尿素水を噴霧するノズルを示している。蒸発管10内を通過する空気は、コンプレッサ4bにより圧縮されて高温の状態になっているが、この空気はエンジン1の給気ポートに導入される前のものでSO3を含まない。本実施例の尿素水噴霧構造は、このSO3が存在しない高温空気を蒸発管10に導入し、蒸発管10内の空気に尿素水を噴霧することで尿素水の加水分解を促進するので、硫黄分を多く含む燃料を用いた場合でも、アンモニアとSO3が反応することに起因する副生成物の生成を抑制できる。 Reference numeral 11 denotes a nozzle for spraying urea water to the air introduced into the evaporation pipe 10 through the branch pipe 9. The air passing through the evaporation pipe 10 is compressed by the compressor 4b and is in a high temperature state, but this air is not introduced into the intake port of the engine 1 and does not contain SO 3 . The urea water spray structure of the present embodiment introduces high-temperature air that does not contain SO 3 into the evaporation pipe 10 and promotes hydrolysis of urea water by spraying urea water on the air in the evaporation pipe 10. Even when a fuel containing a large amount of sulfur is used, it is possible to suppress the generation of by-products resulting from the reaction between ammonia and SO 3 .
 ここで、ノズル11を設ける位置は、蒸発管10が排気マニホールド3の外部に突出した領域(Aの領域)に設けるよりも、蒸発管10が排気マニホールド3内に存在する領域(A以外の領域)に設ける方が好ましい。排気連絡管2の排気口から排出された直後の高温の排ガスが直接当たることによって蒸発管10の壁面を常に高温に保つことができるので、低温による副生成物の生成を抑制できるからである。 Here, the position where the nozzle 11 is provided is a region where the evaporation pipe 10 exists in the exhaust manifold 3 (an area other than A) rather than the area where the evaporation pipe 10 protrudes outside the exhaust manifold 3 (area A). ) Is preferable. This is because the wall surface of the evaporation pipe 10 can always be kept at a high temperature by direct contact with the high-temperature exhaust gas immediately after being discharged from the exhaust port of the exhaust communication pipe 2, so that the production of by-products due to the low temperature can be suppressed.
 より具体的には、蒸発管10は、蒸発管10の長手方向がエンジン1の各シリンダの排気ポート1aに接続された排気連絡管2の排気口の列設方向と平行となるように配置した上で、ノズル11から噴霧された尿素水が流れるBの領域が排気連絡管2の排気口に夫々対向するように、ノズル11の位置を決定すれば良い。 More specifically, the evaporation pipe 10 is arranged so that the longitudinal direction of the evaporation pipe 10 is parallel to the direction in which the exhaust ports of the exhaust communication pipe 2 connected to the exhaust port 1a of each cylinder of the engine 1 are arranged. Above, the position of the nozzle 11 may be determined so that the region B where the urea water sprayed from the nozzle 11 flows faces the exhaust port of the exhaust communication pipe 2.
 脱硝反応器6には、エンジン1から排出される排ガス中に含まれ、酸性雨や光化学スモッグなどの環境汚染の原因となるNOx を選択的に還元除去するSCR触媒6aが介装されている。SCR触媒6aは、例えばアルミナ、ジルコニア、バナジア/チタニア等の金属酸化物系触媒やゼオライト系触媒など所望の触媒を使用することができ、これらの触媒を組み合わせても良い。また、SCR触媒6aは、例えばハニカム構造を有する触媒担体に担持させても良いし、筒体に装入してケージングさせても良い。本発明の尿素水噴霧構造は、このSCR触媒6aに対し、完全に加水分解した状態のアンモニアを供給するものである。 The SCR catalyst 6a that selectively reduces and removes NOx soot that is contained in the exhaust gas discharged from the engine 1 and causes environmental pollution such as acid rain and photochemical smog is interposed in the denitration reactor 6. As the SCR catalyst 6a, for example, a desired catalyst such as a metal oxide catalyst such as alumina, zirconia, vanadia / titania or a zeolite catalyst may be used, and these catalysts may be combined. Further, the SCR catalyst 6a may be carried on a catalyst carrier having a honeycomb structure, for example, or may be charged in a cylinder and caged. The urea water spray structure of the present invention supplies ammonia in a completely hydrolyzed state to the SCR catalyst 6a.
 本実施例では、蒸発管10の内部であってノズル11よりも下流側に、尿素水の加水分解を促進するための加水分解触媒12を設け、加水分解の効率をより高めるようにしている。加水分解触媒12は、アンモニア生成を促す作用を有する触媒であれば良く、例えば酸化チタン系の触媒やアルカリ金属系の触媒など所望の触媒を使用できる。 In this embodiment, a hydrolysis catalyst 12 for promoting the hydrolysis of urea water is provided inside the evaporation pipe 10 and downstream of the nozzle 11 so as to further increase the efficiency of hydrolysis. The hydrolysis catalyst 12 may be any catalyst that has an action of promoting ammonia generation. For example, a desired catalyst such as a titanium oxide catalyst or an alkali metal catalyst can be used.
 また、本実施例では、蒸発管10の加水分解触媒12よりも下流側に、尿素水の加水分解よって生成されたアンモニアをSCR触媒6aに向けて噴出する噴出孔10aを設けている。そのため、蒸発管10内で加水分解によって生じたアンモニアガスは、小径の噴出孔10aを通って排気マニホールド3内の排ガス中に高圧で噴出され、排ガス中に十分に拡散された状態でSCR触媒6aに供給されるので、脱硝反応の進行が不十分となることもない。 Further, in this embodiment, an ejection hole 10a for ejecting ammonia generated by hydrolysis of urea water toward the SCR catalyst 6a is provided on the downstream side of the hydrolysis catalyst 12 of the evaporation pipe 10. Therefore, the ammonia gas generated by hydrolysis in the evaporation pipe 10 is ejected at a high pressure into the exhaust gas in the exhaust manifold 3 through the small-diameter ejection hole 10a, and is sufficiently diffused in the exhaust gas. Therefore, the progress of the denitration reaction does not become insufficient.
 なお、本実施例では、排気マニホールド3の内部にノズル11及び加水分解触媒12を備えた蒸発管10が組み込まれているので、タービン4aの上流側の排気通路5に蒸発管が設けられていた従来の装置と比較すると省スペース化が図れる。また、本実施例では、排気マニホールドと排気管が並設されていた従来の装置と比較すると、ターボチャージャー4に至るまでの排気通路を短くすることができるので、排気通路における空気圧の損失を低減できる点でも有利である。 In the present embodiment, since the evaporation pipe 10 including the nozzle 11 and the hydrolysis catalyst 12 is incorporated in the exhaust manifold 3, the evaporation pipe is provided in the exhaust passage 5 on the upstream side of the turbine 4a. Space saving can be achieved compared with the conventional apparatus. Further, in this embodiment, the exhaust passage leading to the turbocharger 4 can be shortened as compared with the conventional device in which the exhaust manifold and the exhaust pipe are arranged side by side, thereby reducing the loss of air pressure in the exhaust passage. This is also advantageous.
 13は、給気通路8に設けられたエアクーラーを示している。コンプレッサ4bによって圧縮された空気は温度が上昇し、膨張しようとするが、膨張すると空気の密度が低くなり、空気の量が減ってしまうため、エアクーラー13で冷却して温度を下げてからエンジン1に空気を供給するものである。 13 indicates an air cooler provided in the air supply passage 8. The air compressed by the compressor 4b rises in temperature and tends to expand. However, if expanded, the density of the air decreases and the amount of air decreases. 1 is supplied with air.
 本発明の尿素水噴霧構造では、給気通路8にエアクーラー13を設ける場合、給気通路8から分岐管9を分岐する位置(分岐部8aの位置)は、エアクーラー13よりも上流側とする方が好ましい。本発明においては、高温の空気を蒸発管10に送り込む方が尿素水の加水分解を促進する上で有利であるからである。 In the urea water spray structure of the present invention, when the air cooler 13 is provided in the air supply passage 8, the position where the branch pipe 9 is branched from the air supply passage 8 (the position of the branch portion 8 a) is upstream of the air cooler 13. Is preferred. This is because, in the present invention, feeding hot air to the evaporation pipe 10 is advantageous in promoting hydrolysis of urea water.
 14は、エアクーラー13の下流側に設けられたレシーバタンクを示している。エンジン1が空気の使用を開始し始めたとき、その空気をレシーバタンク14から速やかに供給し、その後レシーバタンクの圧力が低下すると、その低下分をコンプレッサ4bからの供給によって補充するようにして、瞬間的に能力を超える大量の空気が必要になった場合でも給気が不足しないようにしている。 14 denotes a receiver tank provided on the downstream side of the air cooler 13. When the engine 1 starts to use air, the air is quickly supplied from the receiver tank 14, and when the pressure in the receiver tank decreases thereafter, the decrease is replenished by supply from the compressor 4b. Even when a large amount of air exceeding the capacity is needed instantaneously, the air supply is kept short.
 以上説明したように、本発明の尿素水噴霧構造は、ターボチャージャーのコンプレッサの下流側の給気通路から分岐された分岐管と接続された蒸発管を排気マニホールド内に配置し、この蒸発管内に尿素水を噴霧してアンモニアへの加水分解を完了するので、硫黄分が多く含まれる燃料を使用する場合でも、硫酸アンモニウムや酸性硫安などの副生成物の生成を抑制できる。また、排気連絡管から排出された直後の高温の排ガスによって排気マニホールド内に設けた蒸発管の壁面が十分に加熱されるので、尿素水を噴霧する領域においても温度が不足せず、シアヌル酸などの副生成物の生成も防止できる。 As described above, in the urea water spray structure of the present invention, the evaporation pipe connected to the branch pipe branched from the air supply passage on the downstream side of the compressor of the turbocharger is arranged in the exhaust manifold, Since the hydrolysis to ammonia is completed by spraying urea water, it is possible to suppress the formation of by-products such as ammonium sulfate and acidic ammonium sulfate even when using a fuel containing a large amount of sulfur. Moreover, since the wall surface of the evaporation pipe provided in the exhaust manifold is sufficiently heated by the high-temperature exhaust gas immediately after being discharged from the exhaust communication pipe, the temperature does not become insufficient even in the area where the urea water is sprayed, such as cyanuric acid. It is possible to prevent the formation of by-products.
 本発明は、前記の実施例に限るものではなく、各請求項に記載の技術的思想の範囲内において、適宜実施の形態を変更しても良いことは言うまでもない。 The present invention is not limited to the above-described embodiments, and it is needless to say that the embodiments may be appropriately changed within the scope of the technical idea described in each claim.
 例えば、前記の実施例では、給気通路8から分岐管9を介して一定量の空気を蒸発管10へ導入する構成を示したが、船舶が走行する海域によってはSCR触媒6aによる脱硝処理が不要な場合もあるため、分岐部8aに切換弁を設けることにより、必要に応じて分岐管9の入口を密閉し、脱硝処理が不要な場合は全ての空気をエアクーラー13の方に送るように構成しても良い。 For example, in the above-described embodiment, a configuration in which a constant amount of air is introduced from the air supply passage 8 through the branch pipe 9 to the evaporation pipe 10 is shown. However, depending on the sea area where the ship travels, denitration processing by the SCR catalyst 6a may be performed. Since there is a case where it is not necessary, by providing a switching valve in the branch portion 8a, the inlet of the branch pipe 9 is sealed as necessary, and if no denitration treatment is required, all air is sent to the air cooler 13. You may comprise.
 本発明の尿素水噴霧構造は、舶用ディーゼルエンジンに限らず、自動車用ディーゼルエンジンにも適用可能である。 The urea water spray structure of the present invention can be applied not only to marine diesel engines but also to automobile diesel engines.
 1 エンジン
 1a 排気ポート
 2 排気連絡管
 3 排気マニホールド
 4 ターボチャージャー
 4a タービン
 4b コンプレッサ
 5 排気通路
 6 脱硝反応器
 6a SCR触媒
 7 排ガス浄化装置
 8 給気通路
 9 分岐管
 10 蒸発管
 10a 噴出孔
 11 ノズル
 12 加水分解触媒
 13 エアクーラー
DESCRIPTION OF SYMBOLS 1 Engine 1a Exhaust port 2 Exhaust communication pipe 3 Exhaust manifold 4 Turbocharger 4a Turbine 4b Compressor 5 Exhaust passage 6 Denitration reactor 6a SCR catalyst 7 Exhaust gas purification device 8 Supply passage 9 Branch pipe 10 Evaporating pipe 10a Ejection hole 11 Nozzle 12 Water Decomposition catalyst 13 Air cooler

Claims (5)

  1.  エンジンの排気ポートに接続された排気連絡管から排出された排ガスを集合する排気マニホールドと、ターボチャージャーのタービンの上流側の排気通路との間に設けられた脱硝反応器を備えた排ガス浄化装置の、前記脱硝反応器のSCR触媒に対してアンモニアを供給可能な尿素水噴霧構造であって、
     前記排気マニホールド内に、ターボチャージャーのコンプレッサの下流側の給気通路から分岐された分岐管と接続された蒸発管を配置すると共に、
     前記蒸発管に、前記分岐管を介して前記蒸発管内に導入する高温空気に対して尿素水を噴霧するノズルを設けたことを特徴とする尿素水噴霧構造。
    An exhaust gas purification apparatus having a denitration reactor provided between an exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of an engine and an exhaust passage upstream of a turbine of a turbocharger A urea spray structure capable of supplying ammonia to the SCR catalyst of the denitration reactor,
    In the exhaust manifold, an evaporation pipe connected to the branch pipe branched from the air supply passage on the downstream side of the turbocharger compressor is disposed, and
    A urea water spray structure characterized in that a nozzle for spraying urea water to high-temperature air introduced into the evaporation pipe through the branch pipe is provided in the evaporation pipe.
  2.  前記ノズルは、前記蒸発管が前記排気マニホールド内に存在する領域に設けたことを特徴とする請求項1に記載の尿素水噴霧構造。 The urea water spray structure according to claim 1, wherein the nozzle is provided in a region where the evaporation pipe is present in the exhaust manifold.
  3.  前記蒸発管の内部であって前記ノズルよりも下流側に、尿素水の加水分解を促進するための加水分解触媒を設けたことを特徴とする請求項1又は2に記載の尿素水噴霧構造。 The urea water spray structure according to claim 1 or 2, wherein a hydrolysis catalyst for accelerating hydrolysis of urea water is provided inside the evaporation pipe and downstream of the nozzle.
  4.  前記蒸発管の前記加水分解触媒よりも下流側に、尿素水の加水分解よって生成されたアンモニアを前記SCR触媒に向けて噴出する噴出孔を設けたことを特徴とする請求項3に記載の尿素水噴霧構造。 4. The urea according to claim 3, wherein an ejection hole for ejecting ammonia generated by hydrolysis of urea water toward the SCR catalyst is provided downstream of the hydrolysis catalyst in the evaporation pipe. Water spray structure.
  5.  前記給気通路にエアクーラーを設けると共に、前記給気通路から前記分岐管を分岐する位置は、前記エアクーラーよりも上流側としたことを特徴とする請求項1~4の何れかに記載の尿素水噴霧構造。 The air cooler is provided in the air supply passage, and a position where the branch pipe is branched from the air supply passage is located upstream of the air cooler. Urea water spray structure.
PCT/JP2012/078166 2011-12-13 2012-10-31 Aqueous urea-spraying structure WO2013088850A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147010650A KR102001477B1 (en) 2011-12-13 2012-10-31 Aqueous urea-spraying structure
CH00885/14A CH707487B1 (en) 2011-12-13 2012-10-31 Urea solution spray assembly.
CN201280050990.9A CN103890335B (en) 2011-12-13 2012-10-31 Urea water spray structure
DKPA201470377A DK178838B1 (en) 2011-12-13 2014-06-23 Urea solution spraying structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011272391A JP5753485B2 (en) 2011-12-13 2011-12-13 Urea water spray structure
JP2011-272391 2011-12-13

Publications (1)

Publication Number Publication Date
WO2013088850A1 true WO2013088850A1 (en) 2013-06-20

Family

ID=48612307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078166 WO2013088850A1 (en) 2011-12-13 2012-10-31 Aqueous urea-spraying structure

Country Status (6)

Country Link
JP (1) JP5753485B2 (en)
KR (1) KR102001477B1 (en)
CN (1) CN103890335B (en)
CH (1) CH707487B1 (en)
DK (1) DK178838B1 (en)
WO (1) WO2013088850A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103883377A (en) * 2014-04-09 2014-06-25 成都沐杰科技有限公司 Urea solution quick hydrolyzing device
EP3029289A1 (en) * 2014-12-03 2016-06-08 MAN Truck & Bus AG Exhaust gas aftertreatment system of a vehicle powered by a combustion engine, in particular for a ship
CN109395581A (en) * 2018-12-17 2019-03-01 青岛双瑞海洋环境工程股份有限公司 Marine exhaust denitrating system

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9464539B2 (en) 2010-12-17 2016-10-11 Samsung Heavy Ind. Co., Ltd Waste heat recovery device for a marine vessel
JPWO2014054607A1 (en) * 2012-10-02 2016-08-25 日揮触媒化成株式会社 Marine exhaust gas treatment equipment
CN103488824A (en) * 2013-09-06 2014-01-01 广东电网公司电力科学研究院 Field operation optimization method for SCR (selective catalytic reduction) denitration system
GB2518360B (en) 2013-09-17 2018-01-24 Jaguar Land Rover Ltd Exhaust treatment apparatus and method
JP6136960B2 (en) 2014-01-31 2017-05-31 トヨタ自動車株式会社 Exhaust system structure of internal combustion engine
JP5801449B1 (en) * 2014-06-10 2015-10-28 サムソン ヘビー インダストリーズ カンパニー,リミテッド Marine waste heat recovery system
US9850818B2 (en) 2015-06-29 2017-12-26 General Electric Company Power generation system exhaust cooling
US10060316B2 (en) 2015-06-29 2018-08-28 General Electric Company Power generation system exhaust cooling
US9752503B2 (en) 2015-06-29 2017-09-05 General Electric Company Power generation system exhaust cooling
US9840953B2 (en) 2015-06-29 2017-12-12 General Electric Company Power generation system exhaust cooling
US10215070B2 (en) 2015-06-29 2019-02-26 General Electric Company Power generation system exhaust cooling
US10077694B2 (en) 2015-06-29 2018-09-18 General Electric Company Power generation system exhaust cooling
US10030558B2 (en) 2015-06-29 2018-07-24 General Electric Company Power generation system exhaust cooling
US9752502B2 (en) 2015-06-29 2017-09-05 General Electric Company Power generation system exhaust cooling
US10087801B2 (en) 2015-06-29 2018-10-02 General Electric Company Power generation system exhaust cooling
US20160376908A1 (en) * 2015-06-29 2016-12-29 General Electric Company Power generation system exhaust cooling
US9856768B2 (en) 2015-06-29 2018-01-02 General Electric Company Power generation system exhaust cooling
US9938874B2 (en) 2015-06-29 2018-04-10 General Electric Company Power generation system exhaust cooling
US9850794B2 (en) 2015-06-29 2017-12-26 General Electric Company Power generation system exhaust cooling
CN105673159A (en) * 2016-02-02 2016-06-15 潍柴动力股份有限公司 Engine exhaust system and engine applying same
DE102016205299A1 (en) * 2016-03-31 2017-10-05 Man Diesel & Turbo Se Internal combustion engine with exhaust aftertreatment system
KR20170135093A (en) * 2016-05-30 2017-12-08 두산엔진주식회사 Reducing agent decomposition system
US10316759B2 (en) 2016-05-31 2019-06-11 General Electric Company Power generation system exhaust cooling
KR102137323B1 (en) * 2018-11-20 2020-07-23 에이치에스디엔진 주식회사 Selective catalytic reduction system
KR102117663B1 (en) * 2019-07-25 2020-06-01 이승엽 Spraying device for Chemical Material Using Compressed Air
JP7254010B2 (en) * 2019-11-19 2023-04-07 日立造船株式会社 Hydrolysis system, denitrification equipment, and control method for hydrolysis system
CN113184879A (en) * 2021-05-20 2021-07-30 山东省中医药研究院 Method for catalyzing urea hydrolysis by using nano-alumina

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512165A (en) * 1995-08-23 1999-10-19 シーメンス アクチエンゲゼルシヤフト Method and apparatus for reducing nitrogen oxides in exhaust gas of an internal combustion engine
JP2000120426A (en) * 1998-10-12 2000-04-25 Man B & W Diesel As INTERNAL COMBUSTION ENGINE HAVING REACTOR FOR REDUCING NOx CONTENT IN EXHAUST GAS AND NOx REDUCING METHOD
JP2004211635A (en) * 2003-01-07 2004-07-29 Toyota Industries Corp Exhaust emission control device and exhaust emission control method for engine
WO2005095767A1 (en) * 2004-04-02 2005-10-13 Komatsu Ltd. Exhaust emission control device of internal combustion engine
JP2011220280A (en) * 2010-04-13 2011-11-04 Hitachi Zosen Corp Exhaust emission control device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592768B2 (en) * 1976-02-10 1984-01-20 株式会社日立製作所 Gas turbine exhaust gas treatment method and device
DE3821832C1 (en) * 1988-06-29 1989-11-02 Krupp Mak Maschinenbau Gmbh, 2300 Kiel, De Exhaust system for a piston internal combustion engine
JPH02115912U (en) 1989-03-06 1990-09-17
KR100229731B1 (en) * 1990-07-27 1999-11-15 브룬너 하인리히 페터 울리히 A large diesel engine
DK169185B1 (en) * 1992-08-13 1994-09-05 Man B & W Diesel Gmbh Process for controlling a large two-stroke turbocharged internal combustion engine and engine for use in the practice of the method
JP2003293739A (en) 2002-04-02 2003-10-15 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
DE102004027593A1 (en) * 2004-06-05 2005-12-29 Man B & W Diesel Ag Automotive diesel or petrol engine with exhaust system with selective catalytic reduction
JP2006283604A (en) * 2005-03-31 2006-10-19 Daihatsu Motor Co Ltd Internal combustion engine
JP2011149402A (en) * 2010-01-25 2011-08-04 Isuzu Motors Ltd Auxiliary system for starting vehicle
DK177631B1 (en) * 2010-05-10 2014-01-06 Man Diesel & Turbo Deutschland Large two-stroke diesel engine with exhaust gas purification system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512165A (en) * 1995-08-23 1999-10-19 シーメンス アクチエンゲゼルシヤフト Method and apparatus for reducing nitrogen oxides in exhaust gas of an internal combustion engine
JP2000120426A (en) * 1998-10-12 2000-04-25 Man B & W Diesel As INTERNAL COMBUSTION ENGINE HAVING REACTOR FOR REDUCING NOx CONTENT IN EXHAUST GAS AND NOx REDUCING METHOD
JP2004211635A (en) * 2003-01-07 2004-07-29 Toyota Industries Corp Exhaust emission control device and exhaust emission control method for engine
WO2005095767A1 (en) * 2004-04-02 2005-10-13 Komatsu Ltd. Exhaust emission control device of internal combustion engine
JP2011220280A (en) * 2010-04-13 2011-11-04 Hitachi Zosen Corp Exhaust emission control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103883377A (en) * 2014-04-09 2014-06-25 成都沐杰科技有限公司 Urea solution quick hydrolyzing device
CN103883377B (en) * 2014-04-09 2016-06-01 成都沐杰科技有限公司 A kind of urea soln fast hydrolyzing device
EP3029289A1 (en) * 2014-12-03 2016-06-08 MAN Truck & Bus AG Exhaust gas aftertreatment system of a vehicle powered by a combustion engine, in particular for a ship
CN109395581A (en) * 2018-12-17 2019-03-01 青岛双瑞海洋环境工程股份有限公司 Marine exhaust denitrating system
CN109395581B (en) * 2018-12-17 2024-03-22 青岛双瑞海洋环境工程股份有限公司 Ship exhaust gas denitration system

Also Published As

Publication number Publication date
JP2013124555A (en) 2013-06-24
CN103890335A (en) 2014-06-25
DK201470377A (en) 2014-06-23
CH707487B1 (en) 2017-05-15
CN103890335B (en) 2017-06-09
KR102001477B1 (en) 2019-07-18
KR20140105435A (en) 2014-09-01
JP5753485B2 (en) 2015-07-22
DK178838B1 (en) 2017-03-13

Similar Documents

Publication Publication Date Title
JP5753485B2 (en) Urea water spray structure
JP5781290B2 (en) Exhaust gas purification device
KR101619098B1 (en) Exhaust gas purification device
KR101983520B1 (en) Exhaust gas purifier of ship
JP2009114910A (en) Exhaust gas cleaning apparatus
WO2017064877A1 (en) Exhaust gas purification device for ship
JP2015086726A (en) Exhaust emission control system and ship equipped with the same
JP5582854B2 (en) Exhaust gas purification device
JP2009091976A (en) Exhaust emission control device for internal combustion engine
KR102350269B1 (en) Plasma nitrogen oxide control method and apparatus for ships using SNCR
EP2754865B1 (en) Exhaust gas purifying apparatus
JP7319653B2 (en) Exhaust gas treatment method, exhaust gas treatment system and ship equipped with exhaust gas treatment system
WO2021199858A1 (en) Exhaust gas denitration device
US20230383682A1 (en) Device and method for suppressing formation of high-melting-point pipe-clogging substance
JP2022068826A (en) Exhaust emission control device
CN111566322A (en) Exhaust gas purification device
JP2019183665A (en) Exhaust emission control device
JP2019011684A (en) Exhaust emission control system
KR20170099114A (en) Scr system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147010650

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10201400000885

Country of ref document: CH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857039

Country of ref document: EP

Kind code of ref document: A1