JP2011149402A - Auxiliary system for starting vehicle - Google Patents

Auxiliary system for starting vehicle Download PDF

Info

Publication number
JP2011149402A
JP2011149402A JP2010013415A JP2010013415A JP2011149402A JP 2011149402 A JP2011149402 A JP 2011149402A JP 2010013415 A JP2010013415 A JP 2010013415A JP 2010013415 A JP2010013415 A JP 2010013415A JP 2011149402 A JP2011149402 A JP 2011149402A
Authority
JP
Japan
Prior art keywords
exhaust gas
vehicle
turbocharger
purification device
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010013415A
Other languages
Japanese (ja)
Inventor
Ryusuke Fujino
竜介 藤野
Yoshihisa Tashiro
欣久 田代
Kazuo Osumi
和生 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2010013415A priority Critical patent/JP2011149402A/en
Publication of JP2011149402A publication Critical patent/JP2011149402A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to improve an output power at the start of a vehicle as well as performing a recovery operation of an exhaust gas control system, on the premise that a turbocharger and an exhaust gas control system of which mountings hereafter become essential for a vehicle has been mounted on an engine. <P>SOLUTION: There is provided an auxiliary system for starting a vehicle in which a turbocharger 15 is mounted on an engine 10 and besides an exhaust gas control system 16 needed to be subjected to a recovery operation is arranged on the more downstream side of an exhaust gas flow than the turbocharger 15 in the exhaust passage 11 of the engine 10. In the auxiliary system for starting a vehicle, a preceding-stage oxidation catalyst 27, required to react added fuel and thereby increase an exhaust gas temperature in performing the recovery operation of the exhaust gas control system 16, is arranged on the more upstream side of the exhaust gas flow than the turbocharger 15 of the exhaust passage 11. Then, by supplying the added fuel to the preceding-stage oxidation catalyst 27 at the start of the vehicle to perform the recovery operation of the exhaust gas control system 16, the added fuel is reacted with the preceding-stage oxidation catalyst 27, increasing the exhaust gas temperature introduced into the turbocharger 15. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ターボチャージャ及び排ガス浄化装置をエンジンに装着した車両の発進補助システムに関する。   The present invention relates to a vehicle start assist system in which a turbocharger and an exhaust gas purification device are mounted on an engine.

燃費向上の為にディーゼルエンジンでは、ターボチャージャと称される過給装置の付加が進んでいる。また、ダウンサイジングと称される小排気量化も進んでいる。それら過給装置の付加及び小排気量化に伴う弊害の一つが車両発進時の出力不足である。その車両発進時の出力不足を改善するために、ハイブリッド化による電気モータによる発進補助や、ターボチャージャの改良による車両発進時の出力向上などが行われている。   In order to improve fuel efficiency, a turbocharger called a turbocharger has been added to diesel engines. In addition, downsizing, which is called downsizing, is also progressing. One of the harmful effects associated with the addition of these supercharging devices and the reduction in displacement is the lack of output when the vehicle starts. In order to improve the output shortage at the start of the vehicle, start assistance by an electric motor by hybridization, improvement of output at the start of the vehicle by improvement of a turbocharger, and the like are performed.

また、ディーゼルエンジンでは、排ガス中の窒素酸化物(NOx)及び粒子状物質(PM)を浄化する排ガス浄化装置の付加も進んでいる(特許文献1参照)。この排ガス浄化装置は、その役割と機能を保つために再生操作が必要である。   In addition, in diesel engines, addition of exhaust gas purification devices that purify nitrogen oxides (NOx) and particulate matter (PM) in exhaust gas is also progressing (see Patent Document 1). This exhaust gas purification device requires a regenerating operation in order to maintain its role and function.

特開2008−101535号公報JP 2008-101535 A

車両発進時の補助として行われている電気モータによる発進補助は、車両がハイブリッド車であることが必須である。また、ハイブリッド車自体の生産工程が複雑であるため、ハイブリッド車は高価で生産効率が低く車両の主流となることが不可能であると思われる。   For the start assistance by the electric motor, which is performed as assistance when starting the vehicle, it is essential that the vehicle is a hybrid vehicle. In addition, since the production process of the hybrid vehicle itself is complicated, it seems that the hybrid vehicle is expensive, has low production efficiency, and cannot be mainstream.

ターボチャージャの改良による車両発進時の出力向上は、一定の効果を収めることが出来る。しかし、車両発進時という、ターボチャージャが最も苦手とするアイドリング状態からの過渡条件であるため、ターボチャージャの改良による車両発進時の出力向上には限界があり、排ガス悪化も招いてしまう虞がある。   The output improvement at the start of the vehicle by improving the turbocharger can have a certain effect. However, since it is a transient condition from the idling state where the turbocharger is not good at the time of starting the vehicle, there is a limit to improving the output at the time of starting the vehicle by improving the turbocharger, which may cause exhaust gas deterioration. .

そこで、本発明の目的は、今後車両への取り付けが必須となるターボチャージャ及び排ガス浄化装置がエンジンに装着されていることを前提として、排ガス浄化装置の再生操作を行うと共に、車両発進時の出力向上を可能とすることにある。   Therefore, an object of the present invention is to perform regeneration operation of the exhaust gas purification device and output at the time of starting the vehicle on the assumption that the turbocharger and exhaust gas purification device that will be required to be mounted on the vehicle in the future are mounted on the engine. It is to enable improvement.

上記目的を達成するために、本発明は、ターボチャージャをエンジンに装着し、且つ再生操作が必要な排ガス浄化装置を前記エンジンの排気通路の前記ターボチャージャよりも排ガス流下流側に配設した車両の発進補助システムであって、前記排ガス浄化装置の再生操作を行う際に付加燃料を反応させて排ガスの温度を上昇させるために必要な前段酸化触媒を、前記排気通路の前記ターボチャージャよりも排ガス流上流側に配設し、前記車両の発進時に付加燃料を前記前段酸化触媒に供給して前記排ガス浄化装置の再生操作を行うことで、付加燃料を前記前段酸化触媒で反応させて、前記ターボチャージャに導入される排ガスの温度を上昇させるようにしたものである。   In order to achieve the above object, the present invention provides a vehicle in which a turbocharger is mounted on an engine, and an exhaust gas purifying device that requires regeneration operation is disposed downstream of the turbocharger in the exhaust passage of the engine. A starter oxidation catalyst required for reacting additional fuel to raise the temperature of the exhaust gas when the regeneration operation of the exhaust gas purification device is performed. The additional fuel is disposed on the upstream side of the vehicle, and when the vehicle starts, the additional fuel is supplied to the front-stage oxidation catalyst and the exhaust gas purification device is regenerated. The temperature of the exhaust gas introduced into the charger is increased.

前記排ガス浄化装置は、排ガス中の窒素酸化物を浄化するためのNOx浄化装置と、排ガス中の粒子状物質を浄化するためのPM浄化装置とを有しても良い。   The exhaust gas purification device may include a NOx purification device for purifying nitrogen oxides in the exhaust gas and a PM purification device for purifying particulate matter in the exhaust gas.

前記前段酸化触媒への付加燃料の供給は、前記エンジンの燃焼室内に燃料を噴射する燃料噴射ノズルから燃料を噴射することで行うようにしても良い。   The supply of additional fuel to the pre-stage oxidation catalyst may be performed by injecting fuel from a fuel injection nozzle that injects fuel into the combustion chamber of the engine.

前記排気通路に排気管燃料噴射インジェクタを設け、前記前段酸化触媒への付加燃料の供給は、前記排気管燃料噴射インジェクタから燃料を噴射することで行うようにしても良い。   An exhaust pipe fuel injection injector may be provided in the exhaust passage, and supply of additional fuel to the pre-stage oxidation catalyst may be performed by injecting fuel from the exhaust pipe fuel injection injector.

本発明によれば、今後車両への取り付けが必須となるターボチャージャ及び排ガス浄化装置がエンジンに装着されていることを前提として、排ガス浄化装置の再生操作を行うと共に、車両発進時の出力向上を可能とするという優れた効果を奏する。   According to the present invention, on the assumption that a turbocharger and an exhaust gas purification device that will be required to be mounted on a vehicle in the future are mounted on the engine, the regeneration operation of the exhaust gas purification device is performed, and the output at the start of the vehicle is improved. There is an excellent effect of making it possible.

図1は、本発明の一実施形態に係る発進補助システムの概略図である。FIG. 1 is a schematic view of a starting assistance system according to an embodiment of the present invention. 図2は、他の実施形態に係る発進補助システムの概略図である。FIG. 2 is a schematic view of a starting assistance system according to another embodiment. 図3は、他の実施形態に係る発進補助システムの概略図である。FIG. 3 is a schematic view of a starting assistance system according to another embodiment. 図4(a)は車両発進時のトルク変化を示すグラフであり、図4(b)は車両発進時のスモーク排出量変化を示すグラフであり、図4(c)は車両発進時のターボチャージャ回転速度変化を示すグラフである。FIG. 4A is a graph showing a change in torque at the start of the vehicle, FIG. 4B is a graph showing a change in smoke emission amount at the start of the vehicle, and FIG. 4C is a turbocharger at the start of the vehicle. It is a graph which shows a rotational speed change.

以下、本発明の好適な実施形態を添付図面に基づいて詳述する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1に示すように、本実施形態に係る発進補助システムでは、エンジン(例えば、ディーゼルエンジン)10の排気通路11に配設されるタービン12とエンジン10の吸気通路13に配設されるコンプレッサ14とを有するターボチャージャ15がエンジン10に装着されており、排気通路11のターボチャージャ15(タービン12)よりも排ガス流下流側に、再生操作が必要な排ガス浄化装置16が配設されている。また、排気通路11と吸気通路13とは、排気通路11内の排ガスの一部をEGRガスとして吸気通路13に導入するためにEGR通路17で連通されており、EGR通路17にはEGRバルブ18とEGRクーラ(図示せず)とが設けられている。   As shown in FIG. 1, in the start assist system according to the present embodiment, a turbine 12 disposed in an exhaust passage 11 of an engine (for example, a diesel engine) 10 and a compressor 14 disposed in an intake passage 13 of the engine 10. The exhaust gas purification device 16 that needs to be regenerated is disposed downstream of the turbocharger 15 (turbine 12) in the exhaust passage 11 from the exhaust gas flow. Further, the exhaust passage 11 and the intake passage 13 communicate with each other through an EGR passage 17 in order to introduce a part of the exhaust gas in the exhaust passage 11 into the intake passage 13 as EGR gas, and an EGR valve 18 is connected to the EGR passage 17. And an EGR cooler (not shown).

本実施形態では、排気通路11は、エンジン10に装着された排気マニホールド19と、排気マニホールド19に接続された排気管20とから構成されており、タービン12及び排ガス浄化装置16は排気管20に配設されている。また、吸気通路13は、エンジン10に装着された吸気マニホールド21と、吸気マニホールド21に接続された吸気管22とから構成されており、コンプレッサ14は吸気管22に配設されている。また、EGR通路17は、一端が排気マニホールド19に接続され且つ他端が吸気管22に接続されたEGR管23から構成されている。   In the present embodiment, the exhaust passage 11 includes an exhaust manifold 19 attached to the engine 10 and an exhaust pipe 20 connected to the exhaust manifold 19. The turbine 12 and the exhaust gas purification device 16 are connected to the exhaust pipe 20. It is arranged. The intake passage 13 includes an intake manifold 21 attached to the engine 10 and an intake pipe 22 connected to the intake manifold 21, and the compressor 14 is disposed in the intake pipe 22. The EGR passage 17 includes an EGR pipe 23 having one end connected to the exhaust manifold 19 and the other end connected to the intake pipe 22.

排ガス浄化装置16は、排ガス中の窒素酸化物(NOx)を浄化するNOx浄化触媒(例えば、LNT、NAC、NSC等のNOx吸蔵触媒、尿素や炭化水素を付加してNOxを還元させる選択型NOx還元触媒(SCR)等)を有するNOx浄化装置24と、排ガス中の粒子状物質(PM)を浄化するPMフィルタ(例えば、DPF、DPD、C−DPF、CRT等)を有するPM浄化装置25とを備えて構成される。本実施形態では、前記NOx浄化触媒がSCRであり、前記PMフィルタがDPFである。   The exhaust gas purification device 16 is a NOx purification catalyst that purifies nitrogen oxides (NOx) in the exhaust gas (for example, a NOx storage catalyst such as LNT, NAC, NSC, etc., selective NOx that adds urea or hydrocarbons to reduce NOx. A NOx purification device 24 having a reduction catalyst (SCR) and the like, and a PM purification device 25 having a PM filter (for example, DPF, DPD, C-DPF, CRT, etc.) for purifying particulate matter (PM) in the exhaust gas. It is configured with. In the present embodiment, the NOx purification catalyst is SCR, and the PM filter is DPF.

本実施形態では、排ガス流上流側から順に、PM浄化装置25とNOx浄化装置24とを排気管20に配設しているが、これとは逆に、排ガス流上流側から順に、NOx浄化装置24とPM浄化装置25とを排気管20に配設しても良い。   In the present embodiment, the PM purification device 25 and the NOx purification device 24 are arranged in the exhaust pipe 20 in order from the upstream side of the exhaust gas flow, but on the contrary, the NOx purification device in order from the upstream side of the exhaust gas flow. 24 and the PM purification device 25 may be disposed in the exhaust pipe 20.

また、本実施形態では、エンジン10の排気通路11のNOx浄化装置24(SCR)よりも排ガス流上流側に、排気通路11内に尿素を噴射する尿素噴射インジェクタ26を配設している。尿素噴射インジェクタ26は、ターボチャージャ15(タービン12)とPM浄化装置25との間で排気管20に装着されている。本実施形態では、排気温度センサ(図示せず)により検出されるNOx浄化装置24(SCR)の入口の排気温度がSCRの活性温度に達したとき、排ガス中の窒素酸化物の量に応じた量の尿素が尿素噴射インジェクタ26から噴射される。排気管20内に噴射された尿素は加水分解されてアンモニア(NH3)となり、このアンモニアをNOx浄化装置24(SCR)で窒素酸化物と反応させて、窒素酸化物を還元させるようになっている。 In the present embodiment, a urea injector 26 that injects urea into the exhaust passage 11 is disposed upstream of the NOx purification device 24 (SCR) in the exhaust passage 11 of the engine 10. The urea injection injector 26 is attached to the exhaust pipe 20 between the turbocharger 15 (turbine 12) and the PM purification device 25. In the present embodiment, when the exhaust temperature at the inlet of the NOx purification device 24 (SCR) detected by an exhaust temperature sensor (not shown) reaches the activation temperature of the SCR, it corresponds to the amount of nitrogen oxides in the exhaust gas. An amount of urea is injected from the urea injector 26. The urea injected into the exhaust pipe 20 is hydrolyzed to ammonia (NH 3 ), and this ammonia is reacted with nitrogen oxides by the NOx purification device 24 (SCR) to reduce the nitrogen oxides. Yes.

さらに、本実施形態では、排ガス浄化装置16の再生操作を行う際に付加燃料を反応させて排ガスの温度を上昇させるために必要な前段酸化触媒27が、排気マニホールド19の前後やタービン12の入口前のように、エンジン10の排気通路11のターボチャージャ15(タービン12)よりも排ガス流上流側に配設されており、エンジン10の排気通路11の排ガス浄化装置16よりも排ガス流下流側に後段酸化触媒28が配設されている。前段酸化触媒27は、排気マニホールド19の入口部に気筒毎に装着された第一酸化触媒29と、タービン12の入口前で排気管20に装着された第二酸化触媒30とから構成されている。本実施形態では、後段酸化触媒28は、余剰のアンモニアを分解するものであり、排気管20に装着されている。   Further, in the present embodiment, when the regeneration operation of the exhaust gas purification device 16 is performed, the pre-stage oxidation catalyst 27 necessary for reacting the additional fuel to raise the temperature of the exhaust gas is provided before and after the exhaust manifold 19 and the inlet of the turbine 12. As before, it is disposed on the exhaust gas flow upstream side of the turbocharger 15 (turbine 12) of the exhaust passage 11 of the engine 10, and on the exhaust gas flow downstream side of the exhaust gas purification device 16 of the exhaust passage 11 of the engine 10. A post-stage oxidation catalyst 28 is provided. The front-stage oxidation catalyst 27 is composed of a first oxidation catalyst 29 mounted for each cylinder at the inlet of the exhaust manifold 19 and a second dioxide catalyst 30 mounted on the exhaust pipe 20 before the inlet of the turbine 12. In this embodiment, the post-stage oxidation catalyst 28 decomposes excess ammonia and is attached to the exhaust pipe 20.

EGRバルブ18、尿素噴射インジェクタ26及びエンジン10の燃焼室内に燃料を噴射する燃料噴射ノズル31等が制御手段としてのECU(エンジン制御ユニット又は電子制御ユニット)32に電気的に接続されており、ECU32により、EGRバルブ18、尿素噴射インジェクタ26及び燃料噴射ノズル31等が制御されるようになっている。   An EGR valve 18, a urea injector 26, a fuel injection nozzle 31 for injecting fuel into the combustion chamber of the engine 10, and the like are electrically connected to an ECU (engine control unit or electronic control unit) 32 as control means. Thus, the EGR valve 18, the urea injector 26, the fuel injection nozzle 31 and the like are controlled.

そして、本実施形態では、アイドリングをしている車両停止時からアクセル開度及び車速が増加する発進加速を行う時(つまり、車両の発進時)に、排ガス浄化装置16の再生操作を行う。排ガス浄化装置16の再生操作を行う際には、排ガスが悪化しない条件で付加燃料を前段酸化触媒27に供給する。一般には、前段酸化触媒27への付加燃料の供給は、ポスト噴射と称される、エンジンサイクルが燃焼行程から排気行程にさしかかるところで、燃料噴射ノズル31から燃料を噴射する方法、または排気マニホールド19に設けた排気管燃料噴射インジェクタ33(図2参照)から燃料を噴射する方法が採られている。本実施形態では、前段酸化触媒27への付加燃料の供給は、燃料噴射ノズル31から燃料を噴射(ポスト噴射)する方法を採る。   In this embodiment, the regeneration operation of the exhaust gas purification device 16 is performed when starting acceleration in which the accelerator opening and the vehicle speed are increased from when the vehicle is idling (that is, when starting the vehicle). When the regeneration operation of the exhaust gas purification device 16 is performed, the additional fuel is supplied to the pre-stage oxidation catalyst 27 under the condition that the exhaust gas does not deteriorate. In general, the supply of additional fuel to the pre-stage oxidation catalyst 27 is referred to as post-injection, where the engine cycle starts from the combustion stroke to the exhaust stroke, or fuel is injected from the fuel injection nozzle 31 or to the exhaust manifold 19. A method of injecting fuel from the provided exhaust pipe fuel injection injector 33 (see FIG. 2) is employed. In the present embodiment, the supply of additional fuel to the pre-stage oxidation catalyst 27 employs a method of injecting fuel (post injection) from the fuel injection nozzle 31.

車両発進時の排ガス浄化装置16の再生操作による付加燃料は、前段酸化触媒27(第一酸化触媒29、第二酸化触媒30)で反応し、排ガスの温度を上昇させる。高温となり膨張した排ガスは、ターボチャージャ15(タービン12)に導入され、ターボチャージャ15の回転速度を素早く増加させて過給圧を素早く上昇させる。ターボチャージャ15の回転速度を増加させて過給圧を上昇させることにより、車両発進時の出力は素早く上昇する。また、エンジン10に供給される空気量も増加するので、出力自体も高めることができる。よって、車両発進時というターボチャージャ15の苦手とする条件においても、ターボチャージャ15の改良無しにターボ効率を向上させることが可能である。   The additional fuel by the regeneration operation of the exhaust gas purification device 16 at the time of starting of the vehicle reacts with the pre-stage oxidation catalyst 27 (first oxidation catalyst 29, second dioxide catalyst 30) to raise the temperature of the exhaust gas. The exhaust gas that has become hot and expanded is introduced into the turbocharger 15 (the turbine 12), and the turbocharger 15 is rapidly increased in rotation speed to quickly increase the supercharging pressure. By increasing the supercharging pressure by increasing the rotational speed of the turbocharger 15, the output at the start of the vehicle quickly increases. Further, since the amount of air supplied to the engine 10 increases, the output itself can be increased. Therefore, it is possible to improve the turbo efficiency without improving the turbocharger 15 even under the condition that the turbocharger 15 is not good at the time of starting the vehicle.

付加燃料による排ガス性状の変化は、排ガス浄化装置16の再生(PM浄化装置25のPMフィルタで捕集した粒子状物質の燃焼)も行うことができるため、車両を停車させて行う必要がある排ガス浄化装置16の強制再生の頻度を減少させることが出来る。つまり、ドライバが意図せず排ガス浄化装置16が再生されることが多くなり、排ガス浄化装置16の浄化率維持のためのユーザ負担が低減する。   The change in the exhaust gas properties due to the additional fuel can also be performed by regeneration of the exhaust gas purification device 16 (combustion of particulate matter collected by the PM filter of the PM purification device 25). The frequency of forced regeneration of the purification device 16 can be reduced. That is, the exhaust gas purification device 16 is often regenerated without the driver's intention, and the user burden for maintaining the purification rate of the exhaust gas purification device 16 is reduced.

次に、本実施形態に係る発進補助システムの優位性を図4を用いて説明する。   Next, the superiority of the starting assistance system according to the present embodiment will be described with reference to FIG.

図4に示すように、本実施形態では、発進加速を想定してアクセル開度を時刻t1から時刻t2までの間(例えば、2秒間)で0%から所定開度(例えば、60%)まで開け、時刻t2以降はアクセル開度を前記所定開度(60%)で一定とした。他方、車両の発進時に排ガス浄化装置16の再生操作を行う場合には、アクセルONとなる時刻t1で排ガス浄化装置16の再生操作を開始し、時刻t3でその再生操作を終了した。   As shown in FIG. 4, in the present embodiment, the accelerator opening is assumed to be 0% to a predetermined opening (for example, 60%) between time t1 and time t2 (for example, 2 seconds) assuming start acceleration. After opening, the accelerator opening is made constant at the predetermined opening (60%) after time t2. On the other hand, when the regeneration operation of the exhaust gas purification device 16 is performed at the start of the vehicle, the regeneration operation of the exhaust gas purification device 16 is started at time t1 when the accelerator is turned on, and the regeneration operation is terminated at time t3.

また、本実施形態では、排ガス浄化装置16の再生操作を行っている間(つまり、時刻t1から時刻t3までの間)は、EGR率又はEGR量が低くなるようにEGRバルブ18を制御した。   Further, in the present embodiment, the EGR valve 18 is controlled so that the EGR rate or the EGR amount becomes low during the regeneration operation of the exhaust gas purification device 16 (that is, from the time t1 to the time t3).

車両の発進時に排ガス浄化装置16の再生操作を行った場合(再生操作有りの場合)、車両の発進時に排ガス浄化装置16の再生操作を行わなかった場合(再生操作無しの場合)と比較して、図4(c)に示すようにターボチャージャ15の回転速度が素早く増加し、またエンジン10に供給される空気量も増加するので、図4(a)に示すようにトルク増加の効果が得られ、図4(b)に示すようにスモーク低減の効果も得られる。   Compared to the case where the regeneration operation of the exhaust gas purification device 16 is performed when the vehicle starts (when the regeneration operation is performed) and the case where the regeneration operation of the exhaust gas purification device 16 is not performed when the vehicle starts (the case where there is no regeneration operation). As shown in FIG. 4 (c), the rotational speed of the turbocharger 15 increases rapidly and the amount of air supplied to the engine 10 also increases, so that the effect of increasing torque is obtained as shown in FIG. 4 (a). As shown in FIG. 4B, the effect of reducing smoke is also obtained.

以上要するに、本実施形態に係る発進補助システムによれば、排ガス浄化装置16の再生操作を行う際に付加燃料を反応させて排ガスの温度を上昇させるために必要な前段酸化触媒27を、エンジン10の排気通路11のターボチャージャ15よりも排ガス流上流側に配設し、前記車両の発進時に付加燃料を前段酸化触媒27に供給して排ガス浄化装置16の再生操作を行うことで、付加燃料を前段酸化触媒27で反応させて、ターボチャージャ15に導入される排ガスの温度を上昇させるようにしたので、車両発進時に排ガス浄化装置16の再生操作を行うと共に、車両発進時の出力向上を可能とすることができる。   In short, according to the start assist system according to the present embodiment, the pre-stage oxidation catalyst 27 necessary for reacting the additional fuel and raising the temperature of the exhaust gas when the regeneration operation of the exhaust gas purification device 16 is performed is performed on the engine 10. The exhaust passage 11 is disposed on the upstream side of the exhaust gas flow with respect to the turbocharger 15, and when the vehicle starts, the additional fuel is supplied to the pre-stage oxidation catalyst 27 to perform the regeneration operation of the exhaust gas purification device 16. Since the temperature of the exhaust gas introduced into the turbocharger 15 is increased by reacting with the front-stage oxidation catalyst 27, the regeneration operation of the exhaust gas purification device 16 can be performed when the vehicle starts, and the output when starting the vehicle can be improved. can do.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず他の様々な実施形態を採ることが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments, and various other embodiments can be adopted.

例えば、上述の実施形態では、NOx浄化装置24のNOx浄化触媒がSCRであるとしたが、これには限定はされず、例えば、図2及び図3に示すように、前記NOx浄化触媒がLNT、NAC、NSC等のNOx吸蔵触媒(図示例では、LNT)であっても良い。また、図2及び図3に示す発進補助システムの場合、前段酸化触媒27への付加燃料の供給は、図2に示すように、排気マニホールド19に排気管燃料噴射インジェクタ33を設け、排気管燃料噴射インジェクタ33から燃料を噴射するようにしても良く、図3に示すように、排気管燃料噴射インジェクタ33を設けず、エンジン10の燃焼室内に燃料を噴射する燃料噴射ノズル31から燃料を噴射(ポスト噴射)するようにしても良い。   For example, in the above-described embodiment, the NOx purification catalyst of the NOx purification device 24 is SCR. However, the present invention is not limited to this. For example, as shown in FIGS. 2 and 3, the NOx purification catalyst is LNT. NOx storage catalyst (LNT in the illustrated example) such as NAC, NAC, etc. In addition, in the case of the start assist system shown in FIGS. 2 and 3, the supply of additional fuel to the pre-stage oxidation catalyst 27 is performed by providing an exhaust pipe fuel injection injector 33 in the exhaust manifold 19 as shown in FIG. The fuel may be injected from the injection injector 33, and as shown in FIG. 3, the exhaust pipe fuel injection injector 33 is not provided, and the fuel is injected from the fuel injection nozzle 31 that injects fuel into the combustion chamber of the engine 10 ( Post injection) may be performed.

10 エンジン
11 排気通路
13 吸気通路
15 ターボチャージャ
16 排ガス浄化装置
24 NOx浄化装置
25 PM浄化装置
27 前段酸化触媒
31 燃料噴射ノズル
33 排気管燃料噴射インジェクタ
10 Engine 11 Exhaust passage 13 Intake passage 15 Turbocharger 16 Exhaust gas purification device 24 NOx purification device 25 PM purification device 27 Pre-stage oxidation catalyst 31 Fuel injection nozzle 33 Exhaust pipe fuel injection injector

Claims (4)

ターボチャージャをエンジンに装着し、且つ再生操作が必要な排ガス浄化装置を前記エンジンの排気通路の前記ターボチャージャよりも排ガス流下流側に配設した車両の発進補助システムであって、
前記排ガス浄化装置の再生操作を行う際に付加燃料を反応させて排ガスの温度を上昇させるために必要な前段酸化触媒を、前記排気通路の前記ターボチャージャよりも排ガス流上流側に配設し、
前記車両の発進時に付加燃料を前記前段酸化触媒に供給して前記排ガス浄化装置の再生操作を行うことで、付加燃料を前記前段酸化触媒で反応させて、前記ターボチャージャに導入される排ガスの温度を上昇させるようにしたことを特徴とする車両の発進補助システム。
A start assist system for a vehicle in which a turbocharger is attached to an engine and an exhaust gas purifying device that requires regeneration operation is disposed on the exhaust gas flow downstream side of the turbocharger in the exhaust passage of the engine,
A pre-stage oxidation catalyst required for reacting additional fuel to raise the temperature of exhaust gas when performing a regeneration operation of the exhaust gas purification device is disposed upstream of the exhaust gas flow in the exhaust passage from the turbocharger,
The temperature of the exhaust gas introduced into the turbocharger by reacting the additional fuel with the front-stage oxidation catalyst by supplying the additional fuel to the front-stage oxidation catalyst at the start of the vehicle and performing the regeneration operation of the exhaust gas purification device. A starting assistance system for a vehicle, characterized in that the vehicle is raised.
前記排ガス浄化装置は、排ガス中の窒素酸化物を浄化するためのNOx浄化装置と、排ガス中の粒子状物質を浄化するためのPM浄化装置とを有する請求項1に記載の車両の発進補助システム。   2. The vehicle start assist system according to claim 1, wherein the exhaust gas purification device includes a NOx purification device for purifying nitrogen oxides in the exhaust gas and a PM purification device for purifying particulate matter in the exhaust gas. . 前記前段酸化触媒への付加燃料の供給は、前記エンジンの燃焼室内に燃料を噴射する燃料噴射ノズルから燃料を噴射することで行うようにした請求項1又は2に記載の車両の発進補助システム。   The vehicle start assist system according to claim 1 or 2, wherein the supply of the additional fuel to the front-stage oxidation catalyst is performed by injecting fuel from a fuel injection nozzle that injects fuel into a combustion chamber of the engine. 前記排気通路に排気管燃料噴射インジェクタを設け、
前記前段酸化触媒への付加燃料の供給は、前記排気管燃料噴射インジェクタから燃料を噴射することで行うようにした請求項1又は2に記載の車両の発進補助システム。
An exhaust pipe fuel injection injector is provided in the exhaust passage;
The vehicle start assist system according to claim 1 or 2, wherein the supply of the additional fuel to the front-stage oxidation catalyst is performed by injecting fuel from the exhaust pipe fuel injection injector.
JP2010013415A 2010-01-25 2010-01-25 Auxiliary system for starting vehicle Pending JP2011149402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013415A JP2011149402A (en) 2010-01-25 2010-01-25 Auxiliary system for starting vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013415A JP2011149402A (en) 2010-01-25 2010-01-25 Auxiliary system for starting vehicle

Publications (1)

Publication Number Publication Date
JP2011149402A true JP2011149402A (en) 2011-08-04

Family

ID=44536586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013415A Pending JP2011149402A (en) 2010-01-25 2010-01-25 Auxiliary system for starting vehicle

Country Status (1)

Country Link
JP (1) JP2011149402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120247091A1 (en) * 2011-03-29 2012-10-04 Ibiden Co., Ltd. Exhaust gas conversion system and exhaust gas conversion method
KR20140105435A (en) * 2011-12-13 2014-09-01 히다치 조센 가부시키가이샤 Aqueous urea-spraying structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120247091A1 (en) * 2011-03-29 2012-10-04 Ibiden Co., Ltd. Exhaust gas conversion system and exhaust gas conversion method
KR20140105435A (en) * 2011-12-13 2014-09-01 히다치 조센 가부시키가이샤 Aqueous urea-spraying structure
KR102001477B1 (en) * 2011-12-13 2019-07-18 히다치 조센 가부시키가이샤 Aqueous urea-spraying structure

Similar Documents

Publication Publication Date Title
US8117833B2 (en) Method and system using a reduction catalyst to reduce nitrate oxide
US8176729B2 (en) Perturbation control strategy for low-temperature urea SCR NOx reduction
US8621854B2 (en) System and method for determining an age of and controlling a selective catalytic reduction catalyst
JP4521824B2 (en) Exhaust purification device
US8505277B2 (en) System and methods for controlling selective catalytic reduction systems
US9695729B2 (en) Reduced emissions internal combustion engine systems
JP2014077446A (en) Internal combustion engine
CN211819579U (en) Diesel engine and aftertreatment system thereof
JP2006200473A (en) Control device for engine with exhaust gas after-treating device
JP2011111945A (en) Exhaust emission control device
EP3133258B1 (en) Control system for internal combustion engine and control method
CN113272536A (en) Engine tail gas aftertreatment device and method
US11047282B2 (en) Exhaust gas purification device
JP6213015B2 (en) Exhaust gas purification device for internal combustion engine
EP2682580B1 (en) Exhaust emission control system for internal combustion engine, and control method for exhaust emission control system
JP2008045462A (en) Exhaust emission control device
JP2011149402A (en) Auxiliary system for starting vehicle
JP6421798B2 (en) Engine control device
JP2016079861A (en) NOx PURIFICATION SYSTEM FOR INTERNAL COMBUSTION ENGINE
JP2010090875A (en) Exhaust gas control device for internal combustion engine
JP2014156786A (en) Exhaust emission control device of engine
JP6071636B2 (en) Control device and control method for internal combustion engine
JP2012167562A (en) Diesel engine
JP5737429B2 (en) Exhaust gas purification device for internal combustion engine
JP5834978B2 (en) Exhaust gas purification device for internal combustion engine