JPWO2014054607A1 - Marine exhaust gas treatment equipment - Google Patents

Marine exhaust gas treatment equipment Download PDF

Info

Publication number
JPWO2014054607A1
JPWO2014054607A1 JP2013548643A JP2013548643A JPWO2014054607A1 JP WO2014054607 A1 JPWO2014054607 A1 JP WO2014054607A1 JP 2013548643 A JP2013548643 A JP 2013548643A JP 2013548643 A JP2013548643 A JP 2013548643A JP WO2014054607 A1 JPWO2014054607 A1 JP WO2014054607A1
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
urea
gas treatment
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013548643A
Other languages
Japanese (ja)
Inventor
足立 健太郎
健太郎 足立
呂 周
呂 周
彰一 茨木
彰一 茨木
潤一 林
潤一 林
清大 田中
清大 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
JGC Catalysts and Chemicals Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd, JGC Catalysts and Chemicals Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Publication of JPWO2014054607A1 publication Critical patent/JPWO2014054607A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/40Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

[課題]船舶内という限られたスペースにおいて、排ガスの処理効率を高め、内燃機関の排ガス処理装置に関する。[解決手段]重油を燃料とする船舶用内燃機関の排ガス系に設けられてなり、排ガス中のNOxを選択還元する装置(A)と、該装置(A)の上流側に、尿素を加水分解してNOx除去用ガスとする尿素加水分解装置(B)を内包した装置(C)とからなり、装置(B)が、尿素水および空気投入手段と、尿素加水分解触媒とを備え、装置(C)内で排ガスと接触しないよう設けられ、排ガスは、装置(C)内を通り、装置(A)にて、装置(B)より供給されたNOx除去用ガスと接触するように構成されてなることを特徴とする船舶用排ガス処理装置。[PROBLEMS] To improve exhaust gas processing efficiency in a limited space in a ship and to provide an exhaust gas processing apparatus for an internal combustion engine. [Solution] An apparatus (A) for selectively reducing NOx in exhaust gas, which is provided in an exhaust gas system of a marine internal combustion engine using heavy oil as fuel, and hydrolyzing urea upstream of the apparatus (A) And a device (C) containing a urea hydrolysis device (B) as a NOx removal gas, and the device (B) comprises urea water and air input means, and a urea hydrolysis catalyst, C) is provided so as not to come into contact with exhaust gas, and the exhaust gas is configured to pass through the device (C) and contact with the NOx removal gas supplied from the device (B) in the device (A). An exhaust gas treatment apparatus for a ship characterized by comprising:

Description

本発明は、船舶内という限られたスペースにおいて、排ガスの処理効率を高め、内燃機関の排ガス処理装置に関する。特に、重油を燃料とする船舶用内燃機関の排ガス処理装置に関する。   The present invention relates to an exhaust gas treatment apparatus for an internal combustion engine by improving the exhaust gas treatment efficiency in a limited space in a ship. In particular, the present invention relates to an exhaust gas treatment device for a marine internal combustion engine using heavy oil as fuel.

ディーゼルエンジンから排出される排ガスには、HC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)およびPM(Particulate Matter:パーティキュレート)等の汚染物質が含まれる。これらの汚染物質の中でもNOxは、酸化触媒やガソリン自動車で実用化されている三元触媒では浄化が難しく、NOxを浄化することができる有望な触媒として選択還元型NOx触媒(以下、SCR触媒という)の開発が行われている。   The exhaust gas discharged from the diesel engine contains contaminants such as HC (hydrocarbon), CO (carbon monoxide), NOx (nitrogen oxide), and PM (Particulate Matter). Among these pollutants, NOx is difficult to purify with an oxidation catalyst or a three-way catalyst put to practical use in gasoline automobiles. As a promising catalyst capable of purifying NOx, a selective reduction type NOx catalyst (hereinafter referred to as SCR catalyst). ) Is being developed.

SCR触媒としては、TiO2あるいはSiO2−TiO2、WO3−TiO2、SiO2−TiO2などの二元系複合酸化物、または、WO3−SiO2−TiO2、MoO3−SiO2−TiO2などの三元系複合酸化物などの担体に、V,Cr,Mo,Mn,Fe,Ni,Cu,Ag,Au,Pd,Y,Ce,Nd,W,In,Irなどの活性成分を担持してなるハニカム構造を有し、アンモニアなどの還元剤の存在下でNOxを還元して窒素ガスに変換して浄化する触媒が知られている。
4NO+4NH3+O2 → 4N2+6H2O ・・・・(1)
NO+NO2+2NH3 → 2N2+3H2O ・・・・(2)
6NO2 + 8NH3 → 7N2+12H2O ・・・・(3)
また、モノリシス担体にゼオライト等の触媒活性を有する微粒子の担持層を形成した触媒も知られている。
Examples of the SCR catalyst include binary composite oxides such as TiO 2 or SiO 2 —TiO 2 , WO 3 —TiO 2 , SiO 2 —TiO 2 , or WO 3 —SiO 2 —TiO 2 , MoO 3 —SiO 2. -Supports such as ternary complex oxides such as TiO 2 , V, Cr, Mo, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, W, In, Ir, etc. 2. Description of the Related Art A catalyst having a honeycomb structure that supports components and reducing NOx in the presence of a reducing agent such as ammonia and converting it into nitrogen gas is known.
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1)
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (2)
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O (3)
Also known is a catalyst in which a carrier layer of fine particles having catalytic activity such as zeolite is formed on a monolysis support.

このとき、還元剤としてのアンモニアを供給する方法として、尿素水タンクからSCR触媒の上流側の排気系に尿素を添加し、アンモニアを生成させて用いる方法が知られている。尿素は、排ガスの熱により、あるいは加水分解触媒により加水分解されアンモニアを生成するが、排ガスの熱による尿素の熱分解では、シアヌル酸、イソシアン酸、メラミン等の高融点物質に変化し、分解効率が低下したり、下流のNOx除去性能を低下させるなどの問題があり、さらに、これらの物質は煙道内を閉塞させることが知られている。   At this time, as a method for supplying ammonia as a reducing agent, a method is known in which urea is added from an aqueous urea tank to an exhaust system upstream of the SCR catalyst to generate ammonia. Urea is hydrolyzed by the heat of exhaust gas or by a hydrolysis catalyst to produce ammonia, but the thermal decomposition of urea by the heat of exhaust gas changes to high melting point substances such as cyanuric acid, isocyanic acid, melamine, etc., and decomposition efficiency It is known that these substances clog the inside of the flue, and there is a problem that the NOx removal performance is lowered or the downstream NOx removal performance is lowered.

特開2005−344597号公報:(特許文献1)には、尿素水を気化して供給し、ハニカム状、板状、粒状の触媒により尿素をアンモニアに加水分解して用いることが提案されている。しかしながら、この方法でも、シアヌル酸、イソシアン酸、メラミン等の高融点物質の生成を大幅に抑制することは困難であった。また、何らかの原因で温度管理等に不調が生じると、気化が不十分となり、尿素が析出し、尿素が高融点物質に変化したり、触媒性能が充分発揮できない場合があり、このためアンモニアの供給が不安定になることがあった。   Japanese Patent Application Laid-Open No. 2005-344597: (Patent Document 1) proposes that urea water is vaporized and supplied, and urea is hydrolyzed to ammonia with a honeycomb-shaped, plate-shaped or granular catalyst. . However, even with this method, it has been difficult to significantly suppress the formation of high melting point substances such as cyanuric acid, isocyanic acid, and melamine. In addition, if the temperature control, etc., is unsatisfactory for some reason, vaporization will be insufficient, urea may precipitate, urea may change to a high melting point material, and catalyst performance may not be fully demonstrated. Sometimes became unstable.

また、尿素を固体の状態でゼオライトとともに貯蔵したカートリッジに、加熱下、貯蔵した水を供給して加水分解してアンモニアを供給する方法が開示されている。(特開2002−89241号公報:特許文献2)
しかしながら、この方法は、尿素を固体の状態でゼオライトとともに貯蔵したカートリッジを、エンジン(内燃機関)の排気量、走行距離によって異なるが、頻繁に取り替える必要があり、また、固体尿素とゼオライトの共存状態によって性能が変化し、安定的な排ガス処理性能が得られない場合や、走行開始時から安定走行にいたる間、安定的な排ガス処理性能が得られない場合があった。また、高融点物質の生成を完全に抑制することが困難で、アンモニアの生成効率が低下したり有害物質が生成する問題があった。さらに、反応温度領域が90〜100℃と狭く、反応速度も遅いために、還元剤としてのアンモニアを供給する方法としては必ずしも満足のいく方法ではなかった。
In addition, a method is disclosed in which ammonia is supplied to a cartridge in which urea is stored together with zeolite in a solid state by supplying the stored water under heating to cause hydrolysis. (Japanese Patent Laid-Open No. 2002-89241: Patent Document 2)
However, in this method, the cartridge in which urea is stored in a solid state together with the zeolite varies depending on the displacement of the engine (internal combustion engine) and the travel distance, but needs to be replaced frequently, and the coexistence state of the solid urea and the zeolite As a result, the exhaust gas treatment performance could not be obtained, and the stable exhaust gas treatment performance could not be obtained during the period from the start of running to the stable running. Further, it is difficult to completely suppress the production of the high melting point substance, and there is a problem in that the production efficiency of ammonia is reduced and harmful substances are produced. Furthermore, since the reaction temperature range is as narrow as 90 to 100 ° C. and the reaction rate is slow, the method for supplying ammonia as a reducing agent is not always satisfactory.

また、特開2001−27112号公報(特許文献3)には、排ガスが流通する配管内にゼオライトの粒子が充填された気化器容器を配置し、気化器容器に配管外方より尿素水と水とを注入し、排ガスから供給される熱によって尿素をアンモニアに分解して排出し、このアンモニアと排ガスとを混合して脱硝触媒と接触させる脱硝装置において、気化器内の温度を60〜140℃になるように、気化器内に水を供給する脱硝装置が開示されている。   Japanese Patent Application Laid-Open No. 2001-27112 (Patent Document 3) arranges a vaporizer container filled with zeolite particles in a pipe through which exhaust gas flows, and urea water and water from the outside of the pipe are placed in the vaporizer container. In the denitration apparatus in which urea is decomposed and discharged by heat supplied from the exhaust gas, and the ammonia and the exhaust gas are mixed and brought into contact with the denitration catalyst, the temperature in the vaporizer is 60 to 140 ° C. Thus, a denitration device that supplies water into the vaporizer is disclosed.

しかしながら、この方法では、アンモニアの発生量を任意に制御することが困難で、アンモニアの生成量が少ない場合、目的の脱硝性能が得られない場合があり、一方で過剰なアンモニアが生成した場合、過剰のアンモニアが大気にリークする問題がある。また、気化器内の触媒であるゼオライトが排ガスとは完全に隔絶しておらず、気化器への排ガスの混入により触媒の劣化が生じる場合がある。   However, in this method, it is difficult to arbitrarily control the amount of ammonia generated, and if the amount of ammonia produced is small, the target denitration performance may not be obtained, while if excessive ammonia is produced, There is a problem that excess ammonia leaks to the atmosphere. Further, the zeolite as the catalyst in the vaporizer is not completely isolated from the exhaust gas, and the catalyst may be deteriorated due to the mixture of the exhaust gas into the vaporizer.

さらに、金属錯体樹脂あるいはウレアーゼを触媒として用い、尿素を反応温度70℃以下で、水への溶解性が高く比較的低温でアンモニアを生成する炭酸アンモニウムに変換して用いる方法が提案されている。(特開2005−273509号公報(特許文献4)
しかしながら、高融点物質の生成を抑制できるものの、この様な錯体触媒あるいは酵素触媒を塊にして用いても、使用時間の経過とともに粉末化し、配管の目詰まりを起こすことがあり、さらに、触媒性能も徐々に低下し、安定的に長期使用できない問題があった。
Further, a method has been proposed in which a metal complex resin or urease is used as a catalyst, and urea is converted to ammonium carbonate that has a reaction temperature of 70 ° C. or less and is highly soluble in water and generates ammonia at a relatively low temperature. (Japanese Unexamined Patent Application Publication No. 2005-273509 (Patent Document 4))
However, although the generation of high-melting point substances can be suppressed, even if such complex catalysts or enzyme catalysts are used in a lump, they may become powdered over time and cause clogging of the piping. Gradually decreased, and there was a problem that it could not be used stably for a long time.

このような問題点を改良するために、本願出願人はステンレス製のハニカム基材を、ペルオキシ化合物を含むゼオライト粒子分散液に浸漬し、ハニカム基材表面にゼオライト薄膜を電着させて得た触媒は、高融点物質の生成を抑制することができるとともに、尿素を効率的に分解することができ、且つ、配管等の目詰まりもなく安定的にアンモニアを供給できることを開示している。(特開2009−197762号公報:特許文献5)
さらに、本願出願人は、ステンレス製のハニカム基材をペルオキシ化合物または繊維状物質を含む金属酸化物微粒子分散液に浸漬し、ハニカム基材表面に金属酸化物微粒子を電着させて金属酸化物微粒子層を形成した触媒は、基材への密着性や、耐摩耗性、強度等に優れ、尿素の加水分解に用いた場合、高融点物質の生成を抑制することができるとともに、尿素を効率的に分解することができ、且つ、配管等の目詰まりもなく安定的にアンモニアを供給できることを開示している。(特開2009−214045号公報:特許文献6)
In order to improve such problems, the applicant of the present application has prepared a catalyst obtained by immersing a stainless steel honeycomb substrate in a zeolite particle dispersion containing a peroxy compound and electrodepositing a zeolite thin film on the honeycomb substrate surface. Discloses that generation of a high melting point substance can be suppressed, urea can be efficiently decomposed, and ammonia can be stably supplied without clogging of piping and the like. (Japanese Unexamined Patent Application Publication No. 2009-197762: Patent Document 5)
Further, the applicant of the present application immerses a honeycomb substrate made of stainless steel in a metal oxide fine particle dispersion containing a peroxy compound or a fibrous substance, and electrodeposits metal oxide fine particles on the surface of the honeycomb substrate to form metal oxide fine particles. The catalyst in which the layer is formed is excellent in adhesion to the base material, wear resistance, strength, etc., and when used for hydrolysis of urea, it can suppress the formation of a high melting point substance and efficiently use urea. It is disclosed that ammonia can be stably supplied without clogging of piping and the like. (Japanese Unexamined Patent Application Publication No. 2009-214045: Patent Document 6)

特開2005−344597号公報JP 2005-344597 A 特開2002−89241号公報JP 2002-89241 A 特開2001−27112号公報JP 2001-271112 A 特開2005−273509号公報JP 2005-273509 A 特開2009−197762号公報JP 2009-197762 A 特開2009−214045号公報JP 2009-214045 A

上記で開示された従来技術は、いずれも軽油を燃料とする回転数の高いディーゼルエンジンを搭載した自動車用排ガス処理に関するもので、船舶用排ガスの処理に関する提案はされていない。特に、船舶用ディーゼルエンジン排ガス処理は、船舶という特殊条件のため、限られたスペースであり、船舶には燃料に、主として重油が使用され、軽油に比べて硫黄含有量が多く、また芳香族炭化水素等が多いために排ガスにはNOxに加えて硫黄や炭素質を核にしたダストが多量に排出される。   The prior arts disclosed above all relate to the exhaust gas treatment for automobiles equipped with diesel engines with a high rotational speed using light oil as fuel, and no proposal has been made regarding the treatment of exhaust gas for ships. In particular, exhaust gas treatment for marine diesel engines is a limited space due to the special conditions of marine vessels, and heavy oil is mainly used for fuel in the marine vessels, which has a higher sulfur content than light oil, and aromatic carbonization. Due to the large amount of hydrogen and the like, a large amount of dust having sulfur and carbonaceous matter as the core is discharged in addition to NOx.

また、船舶用ディーゼルエンジン、特に大型船等の主機に用いられる低速2サイクルエンジンでは排ガスの温度が概ね200℃程度と低く、低い温度であっても処理できることが望まれている。   Further, in a low-speed two-cycle engine used for a marine diesel engine, particularly a main engine such as a large ship, it is desired that the temperature of the exhaust gas is as low as about 200 ° C. and can be processed even at a low temperature.

このような状況のもと、船舶用排ガス処理装置では、従来公知の自動車用排ガス処理装置をそのまま転用しても、処理が困難となることが予測される。また、単に排ガス処理装置自体を大きくすることは、スペースの限られた船舶内では限界がある。これらを鑑み、処理スペース、反応温度などの観点で、尿素の添加方法が重要となることを本発明者らは見出した。   Under such circumstances, in the exhaust gas treatment apparatus for ships, it is predicted that the processing becomes difficult even if the conventionally known automobile exhaust gas treatment apparatus is diverted as it is. Further, simply increasing the size of the exhaust gas treatment device itself has a limit in a ship with limited space. In view of these, the present inventors have found that the method of adding urea is important from the viewpoint of processing space, reaction temperature, and the like.

まず、本願発明者等は、加水分解触媒により尿素を加水分解することなく、尿素水タンクからSCR触媒の上流側の排気系に尿素を直接供給する方法でテストを実施したところ、船舶上であるために、反応温度に制限があり、尿素の加水分解が不充分となり、NOxの除去性能も不十分となり、しかも長期運転には耐えられないものであった。   First, the inventors of the present application conducted a test by directly supplying urea from the urea water tank to the exhaust system upstream of the SCR catalyst without hydrolyzing urea with the hydrolysis catalyst. Therefore, the reaction temperature is limited, urea is not sufficiently hydrolyzed, the NOx removal performance is insufficient, and it cannot withstand long-term operation.

そこで、予め、排気系の外部で尿素加水分解触媒を備えた加水分解装置で尿素を分解してアンモニアを供給することを考えたが、船舶においては、外部に加水分解装置を設けるにはスペースに問題があり、また、加水分解用の熱源が別途必要となり、船舶に搭載されるエネルギー源も限られているので、アンモニアの供給が不十分となったり、NOx除去性能が不十分になったりすることがあった。   Therefore, we considered in advance that urea is decomposed by a hydrolysis apparatus equipped with a urea hydrolysis catalyst outside the exhaust system and ammonia is supplied, but in ships, it is necessary to provide a space to install a hydrolysis apparatus outside. There is a problem, and a separate heat source for hydrolysis is required, and since the energy source mounted on the ship is limited, the supply of ammonia becomes insufficient and the NOx removal performance becomes insufficient. There was a thing.

さらに、排気系の内部であって、SCR触媒の上流側に加水分解装置を設けて排ガスの熱を有効に利用する方法を採用したが、前記の硫黄や炭素質を核にしたダストにより加水分解触媒層が目詰まりしたり、加水分解活性が急速に低下したり、長時間の運転に対応できないことが判明した。   Furthermore, a method for effectively utilizing the heat of exhaust gas by providing a hydrolysis device inside the exhaust system upstream of the SCR catalyst was adopted. It has been found that the catalyst layer is clogged, the hydrolysis activity rapidly decreases, and it cannot cope with long-time operation.

上記経過に基づき、加水分解装置を排ガスから隔絶し、排ガスの熱を利用して尿素を加水分解してアンモニアを供給する排ガス処理方法を採用したところ、硫黄や炭素質を核にしたダストの影響が無くなり、尿素の加水分解性能は自動車用ディーゼルエンジン排ガス処理時と同様の性能が発揮され、アンモニアが充分供給できることからNOx除去性能が向上するとともに長時間維持することを見出して本発明を完成するに至った。
[1]重油を燃料とする船舶用内燃機関の排ガス系に設けられてなり、排ガス中のNOxを選択還元する装置(A)と、該装置(A)の上流側に、尿素を加水分解してNOx除去用ガスとする尿素加水分解装置(B)を内包した装置(C)とからなり、
装置(B)が、尿素水および空気投入手段と、尿素加水分解触媒とを備え、装置(C)内で排ガスと接触しないよう設けられ、
排ガスは、装置(C)内を通り、装置(A)にて、装置(B)より供給されたNOx除去用ガスと接触するように構成されてなることを特徴とする船舶用排ガス処理装置。
[2]前記装置(B)を内包する装置(C)の上流に過給機が設けられている[1]の船舶用排ガス処理装置。
[3]前記内燃機関の定格回転数が50〜250rpmの範囲にある[1]または[2]の船舶用排ガス処理装置。
[4]前記装置(B)の尿素分解触媒が、酸化チタン系触媒であり、該酸化チタン系触媒が酸化チタン系担体に活性成分としてV、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irからなる群から選ばれる1種以上の金属または金属酸化物が担持されている[1]の船舶用排ガス処理装置。
[5]前記酸化チタン系担体が、酸化チタン、または酸化チタンとともにSi、W、Mo、Zr、Baから選ばれる元素の少なくとも一種以上の酸化物を含む酸化チタン複合酸化物である[4]の船舶用排ガス処理装置。
[6]前記酸化チタン系触媒がハニカム状成形体、膜状成形体、コルゲート状成型体または粒状成形体である[4]または[5]の船舶用排ガス処理装置。
[7]前記装置(B)の尿素分解触媒がゼオライト系触媒であり、該ゼオライト系触媒がハニカム状成形体、膜状成形体、コルゲート状成型体または粒状成形体である[1]または[4]の船舶用排ガス処理装置。
[8]前記装置(B)の尿素分解触媒が、導電性を有するハニカム基材、コルゲート状基材または網状支持体に金属酸化物微粒子が付着した触媒であり、該金属酸化物微粒子がMg、Ca、Ba、La、Ce、Ti、Zr、V、Cr、Mo、W、Mn、Zn、Al、Si、P、Sb 、Cu、Fe、Ru、Co、Reからなる群から選ばれる1種以上の金属酸化物からなる[1]または[4]の船舶用排ガス処理装置。
[9]前記装置(B)の尿素分解触媒の基材がコルゲート状基材である[8]に記載の船舶用排ガス処理装置。
[10]前記装置(B)の尿素を分解する際の反応温度が150〜280℃の範囲にある[1]または[4]の船舶用排ガス処理装置。
[11]前記装置(A)はNOx除去触媒を備え、該触媒が酸化チタン系触媒であり、該酸化チタン系触媒が酸化チタン系担体に活性成分としてV、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irからなる群から選ばれる1種以上の金属がまたは金属酸化物が担持されている[1]の船舶用排ガス処理装置。
Based on the above process, the hydrolysis equipment was isolated from the exhaust gas, and the exhaust gas treatment method was used to hydrolyze urea using the heat of the exhaust gas to supply ammonia. The effect of dust with sulfur and carbonaceous matter as the core The urea hydrolysis performance is the same as that of exhaust gas treatment for automobile diesel engines, and ammonia can be sufficiently supplied, so that NOx removal performance is improved and it is maintained for a long time to complete the present invention. It came to.
[1] An apparatus (A) that is provided in an exhaust gas system of a marine internal combustion engine that uses heavy oil as fuel, selectively hydrolyzes NOx in the exhaust gas, and hydrolyzes urea upstream of the apparatus (A). And a device (C) containing a urea hydrolysis device (B) as a NOx removal gas.
The device (B) includes urea water and air input means, and a urea hydrolysis catalyst, and is provided so as not to come into contact with exhaust gas in the device (C).
An exhaust gas treatment apparatus for a ship, characterized in that the exhaust gas passes through the apparatus (C) and is in contact with the NOx removal gas supplied from the apparatus (B) in the apparatus (A).
[2] The marine exhaust gas treatment device according to [1], wherein a supercharger is provided upstream of the device (C) containing the device (B).
[3] The marine exhaust gas treatment device according to [1] or [2], wherein the rated rotational speed of the internal combustion engine is in a range of 50 to 250 rpm.
[4] The urea decomposition catalyst of the apparatus (B) is a titanium oxide catalyst, and the titanium oxide catalyst serves as an active ingredient in a titanium oxide support as V, W, Mo, Cr, Mn, Fe, Ni, Cu. [1] A marine exhaust gas treatment device on which one or more metals or metal oxides selected from the group consisting of Ag, Au, Pd, Y, Ce, Nd, In, and Ir are supported.
[5] The titanium oxide-based support is titanium oxide or a titanium oxide composite oxide containing at least one oxide selected from Si, W, Mo, Zr, and Ba together with titanium oxide. Ship exhaust gas treatment equipment.
[6] The marine exhaust gas treatment device according to [4] or [5], wherein the titanium oxide-based catalyst is a honeycomb-shaped molded body, a film-shaped molded body, a corrugated molded body, or a granular molded body.
[7] The urea decomposition catalyst of the apparatus (B) is a zeolitic catalyst, and the zeolitic catalyst is a honeycomb-shaped molded body, a film-shaped molded body, a corrugated molded body, or a granular molded body [1] or [4] ] Exhaust gas treatment equipment for ships.
[8] The urea decomposition catalyst of the device (B) is a catalyst in which metal oxide fine particles are attached to a conductive honeycomb substrate, corrugated substrate or network support, and the metal oxide particles are Mg, One or more selected from the group consisting of Ca, Ba, La, Ce, Ti, Zr, V, Cr, Mo, W, Mn, Zn, Al, Si, P, Sb, Cu, Fe, Ru, Co, Re [1] or [4] a marine exhaust gas treatment apparatus comprising the above metal oxide.
[9] The marine exhaust gas treatment device according to [8], wherein the base material of the urea decomposition catalyst of the device (B) is a corrugated base material.
[10] The marine exhaust gas treatment device according to [1] or [4], wherein the reaction temperature when decomposing urea in the device (B) is in the range of 150 to 280 ° C.
[11] The apparatus (A) includes a NOx removal catalyst, the catalyst being a titanium oxide catalyst, and the titanium oxide catalyst as an active ingredient in a titanium oxide carrier as V, W, Mo, Cr, Mn, Fe Exhaust gas treatment equipment for ships according to [1], in which one or more metals selected from the group consisting of Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir or a metal oxide are supported .

本発明によれば、重油を燃料とする低速の船舶用内燃機関の排気系に設けられ、低温条件であっても、尿素加水分解装置が目詰まりや短時間での失活が抑制され、尿素を選択的にアンモニアに加水分解することができ、このため安定的に排ガス中のNOxを選択還元して除去できる船舶用排ガス処理装置を提供することができる。   According to the present invention, the urea hydrolyzer is provided in the exhaust system of a low-speed marine internal combustion engine that uses heavy oil as fuel, and the urea hydrolyzer is suppressed from clogging and deactivation in a short time even under low temperature conditions. Can be selectively hydrolyzed to ammonia, so that it is possible to provide a marine exhaust gas treatment device that can stably selectively reduce NOx in exhaust gas and remove it.

図1は、NOx選択除去装置の模式図を示す。FIG. 1 is a schematic diagram of a NOx selective removal apparatus. 図2は、NOx除去テスト用装置のフローモデルを示すFIG. 2 shows a flow model of the NOx removal test apparatus. 図3は、NOx除去テスト用装置のフローモデルを示す。FIG. 3 shows a flow model of the NOx removal test apparatus. 図4は、NOx除去テスト用装置のフローモデルを示す。FIG. 4 shows a flow model of the NOx removal test apparatus.

以下、本発明の排ガス処理装置について具体的に説明する。
[船舶用排ガス処理装置]
本発明に係る船舶用排ガス処理装置は、重油を燃料とする船舶用内燃機関の排ガス系に設けられてなる。
Hereinafter, the exhaust gas treatment apparatus of the present invention will be specifically described.
[Ship exhaust gas treatment equipment]
The marine exhaust gas treatment apparatus according to the present invention is provided in an exhaust gas system of a marine internal combustion engine using heavy oil as fuel.

装置(C)内に、尿素水および空気投入手段と、必要に応じて熱交換手段と、尿素加水分解触媒とを備えた装置(B)が、排ガスと接触しないよう設けられ、排ガスは、装置(C)内を通り、装置(A)にて、装置(B)より供給されたNOx除去用ガスと接触するように構成されている。   In the device (C), a device (B) provided with urea water and air input means, heat exchange means and, if necessary, urea hydrolysis catalyst is provided so as not to come into contact with the exhaust gas. It passes through (C) and is configured to contact the NOx removal gas supplied from the device (B) in the device (A).

このような本発明に係る装置の概略図を図1に示す。   A schematic diagram of such an apparatus according to the present invention is shown in FIG.

本発明で、排ガス処理装置が設けられる内燃機関に使用される燃料は、重油が好適である。重油として、代表的にはA重油(軽油90%と残渣油10%の混合油)、B重油(通常、軽油50%と残渣油50%の混合油)等があるが、本発明ではA重油あるいは概ねA重油と同程度の重油が好ましい。なお、軽油を用いることもでき、さらには、必要に応じて軽油を混合して用いることもできる。   In the present invention, the fuel used in the internal combustion engine provided with the exhaust gas treatment device is preferably heavy oil. As the heavy oil, there are typically A heavy oil (mixed oil of 90% light oil and 10% residual oil), B heavy oil (usually mixed oil of 50% light oil and 50% residual oil), etc. Or the heavy oil of the same grade as A heavy oil is preferable. In addition, light oil can also be used, and furthermore, light oil can also be mixed and used as needed.

本発明に用いる重油の沸点範囲は概ね300〜400℃であるが、これに限定するものではない。好ましい沸点範囲は概ね300〜380℃である。なお、比較のために、軽油の沸点範囲は概ね180〜350℃である。また、軽油中の硫黄濃度はSとして50ppm以下とされている。   The boiling point range of heavy oil used in the present invention is approximately 300 to 400 ° C., but is not limited thereto. A preferred boiling range is approximately 300 to 380 ° C. For comparison, the boiling point range of light oil is approximately 180 to 350 ° C. Moreover, the sulfur concentration in light oil is set to 50 ppm or less as S.

船舶用の内燃機関の定格回転数は、内燃機関の排気量によっても異なるが、概ね50〜250rpm、さらには55〜200rpmの範囲にあることが好ましい。   The rated rotational speed of the marine internal combustion engine varies depending on the displacement of the internal combustion engine, but is preferably in the range of 50 to 250 rpm, more preferably 55 to 200 rpm.

本発明はこのような回転数における排ガス処理に極めて有効である。   The present invention is extremely effective for exhaust gas treatment at such a rotational speed.

定常運行時に、回転数が250rpmを大きく超えることはない。   During steady operation, the rotational speed does not greatly exceed 250 rpm.

通常、内燃機関には燃焼効率、エネルギー効率等を高めるために過給機が設けられているが、本発明の船舶用排ガス処理装置では、前記船舶用内燃機関の下流であって、前記装置(B)を内包する装置(C)の上流に過給機が設けられていることが好ましい。   Usually, an internal combustion engine is provided with a supercharger in order to increase combustion efficiency, energy efficiency, etc., but in the ship exhaust gas treatment device of the present invention, it is downstream of the ship internal combustion engine, and the device ( A supercharger is preferably provided upstream of the device (C) containing B).

過給機の前(上流)にNOx選択除去装置を設けた場合、高温で排ガスを処理することができるためにNOx選択還元効率が高いものの、一方で高温のために硫黄成分の酸化率が高くなり過給機への硫黄化合物の堆積の問題が生じる、また、NOx選択除去装置の熱容量により排ガスのエネルギーが奪われるため、エンジン負荷を上げても、目的の排ガス量が、すぐに過給機へ流入せず、さらにエンジン負荷を下げても、過給機の排ガスの流入がすぐに下がらないため、過給機自体の応答性が極めて悪くなる。さらにはNOx選択除去装置が高圧装置となるため、高価であったり、維持費用が掛かるというコストの問題が挙げられる。さらに、後述する本発明のように隔絶した尿素加水分解装置(B)とNOx選択除去装置(A)を一体的に、コンパクトにできない欠点がある。   When the NOx selective removal device is installed in front of the supercharger (upstream), exhaust gas can be treated at high temperature, so the NOx selective reduction efficiency is high, but on the other hand, the oxidation rate of the sulfur component is high due to the high temperature The problem of accumulation of sulfur compounds in the turbocharger occurs, and the exhaust gas energy is taken away by the heat capacity of the NOx selective removal device, so even if the engine load is increased, the target exhaust gas amount is immediately Even if the engine load is further reduced, the inflow of exhaust gas from the supercharger does not decrease immediately, and the responsiveness of the supercharger itself becomes extremely poor. Furthermore, since the NOx selective removal device becomes a high-pressure device, there is a problem of cost that it is expensive and requires maintenance costs. Furthermore, there is a drawback that the urea hydrolysis apparatus (B) and the NOx selective removal apparatus (A) which are isolated as in the present invention described later cannot be made compact in an integrated manner.

本発明では、過給機の下流側にNOx選択除去装置を設けるが、このとき、還元剤としてアンモニアガスを供給するために、NOx選択除去装置(A)の上流に尿素加水分解装置(B)を排ガスと直接接触することが無いように隔絶して設けられている。   In the present invention, the NOx selective removal device is provided on the downstream side of the supercharger. At this time, in order to supply ammonia gas as a reducing agent, the urea hydrolysis device (B) is disposed upstream of the NOx selective removal device (A). Are separated from each other so as not to come into direct contact with the exhaust gas.

重油を内燃機関で燃焼後の排ガスは、まず装置(C)に送られる。装置(C)内には、排ガスと接触することなく、尿素を分解してNOx除去用ガスのアンモニアとする尿素加水分解装置(B)が設けられている。   The exhaust gas after burning heavy oil in the internal combustion engine is first sent to the device (C). In the apparatus (C), there is provided a urea hydrolysis apparatus (B) that decomposes urea into ammonia as a NOx removal gas without contacting with the exhaust gas.

尿素加水分解装置(B)
装置(B)内では、排ガスと接触することなく、加水分解反応によりアンモニアガスと炭酸ガスに変換し、このアンモニアガスを下流の排ガス中のNOxを選択還元する装置(A)に供給する。空気と尿素は、装置(C)内に設けられた、装置(B)に直接導入される。
Urea hydrolysis equipment (B)
In the apparatus (B), ammonia gas and carbon dioxide gas are converted by hydrolysis reaction without contacting with the exhaust gas, and this ammonia gas is supplied to the apparatus (A) for selectively reducing NOx in the downstream exhaust gas. Air and urea are directly introduced into the device (B) provided in the device (C).

装置(B)に充填する触媒の量は、船舶用の燃料の種類、排気量等によって適宜設計して用いる。   The amount of catalyst to be charged in the device (B) is appropriately designed and used according to the type of fuel for the ship, the displacement, etc.

尿素は水溶液として供給することが好ましく、尿素水の濃度は概ね10〜50質量%の範囲である。   Urea is preferably supplied as an aqueous solution, and the concentration of urea water is generally in the range of 10 to 50% by mass.

尿素水の濃度が高いと、反応温度によっても異なるが高融点物質が生成するためかアンモニア生成率が低下する場合があり、尿素水の濃度が低すぎても、水が過剰であり、水の加熱エネルギー、尿素水の供給量等の点から効率的でない。   If the concentration of urea water is high, it may vary depending on the reaction temperature, but the ammonia production rate may decrease due to the formation of a high melting point substance. Even if the concentration of urea water is too low, water is excessive, Inefficient in terms of heating energy, urea water supply, etc.

なお、別途、尿素加水分解装置(B)に代えてアンモニアガスを直接供給することも可能であるが、高価であったり、船上ということもあり高圧ガスであるために安全性に懸念があり、また、アンモニアガス自体がきわめて強い毒性を有する問題がある。   In addition, it is possible to supply ammonia gas directly instead of the urea hydrolysis apparatus (B) separately, but there are concerns about safety because it is expensive or high-pressure gas on board, In addition, there is a problem that ammonia gas itself has extremely strong toxicity.

尿素を分解する際の反応温度は150〜280℃、さらには180〜280℃の範囲にあることが好ましい。温度が低い場合はアンモニアの生成率が低く、排ガス中のNOxの選択還元が不十分となることがある。船舶用内燃機関の排ガスでは前記範囲を超えて加熱するのは困難であり、できたとしてもシアヌル酸、イソシアン酸、メラミン等の高融点物質が生成するためかアンモニア生成率が低下する傾向にある。   The reaction temperature for decomposing urea is preferably 150 to 280 ° C, more preferably 180 to 280 ° C. When the temperature is low, the ammonia production rate is low, and the selective reduction of NOx in the exhaust gas may be insufficient. It is difficult to heat the exhaust gas of a marine internal combustion engine beyond the above range, and even if it is possible, the ammonia production rate tends to decrease due to the formation of high melting point substances such as cyanuric acid, isocyanic acid and melamine. .

なお、過給機の下流での排ガス温度は概ね150〜280℃である。   The exhaust gas temperature downstream of the supercharger is approximately 150 to 280 ° C.

また必要に応じて、装置(B)を加熱してもよく、加熱は、装置(B)外部に設けられた熱交換器に排ガスを接触することで行うことができる。また必要に応じて、別途加熱手段を設けても良い。加熱手段としては、電熱線などが挙げられる。なお、排ガス温度によっては必ずしも加熱を必要としない場合もある。   Moreover, you may heat an apparatus (B) as needed, and heating can be performed by contacting waste gas with the heat exchanger provided in the apparatus (B) exterior. Moreover, you may provide a heating means separately as needed. Examples of the heating means include a heating wire. Depending on the exhaust gas temperature, heating may not always be necessary.

装置(B)に用いる尿素分解触媒
触媒としては、以下の(1)〜(3)が使用される(これらを順に、第1態様、第2態様、第3態様とする)。
(1)酸化チタン系触媒
装置(B)に用いる尿素分解触媒の第1の態様は、酸化チタン系触媒であり、該酸化チタン系触媒が酸化チタン系担体に活性金属成分としてV、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irからなる群から選ばれる1種以上の金属が担持されていることが好ましい。
As the urea decomposition catalyst used in the apparatus (B) , the following (1) to (3) are used (these are referred to as a first aspect, a second aspect, and a third aspect in order).
(1) Titanium oxide-based catalyst The first aspect of the urea decomposition catalyst used in the device (B) is a titanium oxide-based catalyst, and the titanium oxide-based catalyst has V, W, Mo as active metal components on the titanium oxide-based support. It is preferable that one or more metals selected from the group consisting of Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir are supported.

酸化チタン系担体としては、酸化チタンまたはSi、W、Mo、Zr、Baから選ばれる元素の少なくとも一種以上の酸化物を含む酸化チタン複合酸化物であることが好ましい。   The titanium oxide carrier is preferably titanium oxide or a titanium oxide composite oxide containing at least one oxide selected from Si, W, Mo, Zr, and Ba.

具体的には、TiO2、TiO2−SiO2、TiO2−WO3、TiO2−MoO3、TiO2−ZrO2、TiO2−SiO2−WO3、TiO2−SiO2−MoO3等が挙げられる。 Specifically, TiO 2, TiO 2 -SiO 2 , TiO 2 -WO 3, TiO 2 -MoO 3, TiO 2 -ZrO 2, TiO 2 -SiO 2 -WO 3, TiO 2 -SiO 2 -MoO 3 , etc. Is mentioned.

Si、W、Mo、Zr、Baから選ばれる元素の少なくとも一種以上の酸化物を含む酸化チタン系担体中の酸化チタン以外の酸化物の含有量は酸化物として1〜40質量%、さらには2〜30質量%の範囲にあることが好ましい。この範囲にあると触媒性能が高くなる。   The content of oxide other than titanium oxide in the titanium oxide-based carrier containing at least one oxide of an element selected from Si, W, Mo, Zr, and Ba is 1 to 40% by mass as an oxide, and further 2 It is preferable to be in the range of ˜30% by mass. When it is within this range, the catalyst performance becomes high.

活性金属としては、V、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irからなる群から選ばれる1種以上の金属が好ましい。活性金属成分の担持量は、得られる触媒中に金属として0.1〜20質量%、さらには0.5〜10質量%の範囲にあることが好ましい。この範囲にあると尿素の分解活性が高くなる。   The active metal is preferably one or more metals selected from the group consisting of V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir. The supported amount of the active metal component is preferably in the range of 0.1 to 20% by mass, more preferably 0.5 to 10% by mass as a metal in the obtained catalyst. If it is within this range, the decomposition activity of urea increases.

活性金属成分の担持方法は、酸化チタン系担体に所定量の金属を担持することができれば特に制限はなく、従来公知の方法を採用することができる。例えば、含浸法、混練法、ディプコーティング法等が挙げられる。また、酸化チタン系触媒の比表面積は概ね50〜350m2/g、さらには100〜300m2/gの範囲にあることが好ましい。この範囲にあると、固体酸点が多く、且つ活性金属の分散性がよいので、充分な加水分解性能が発揮される。There are no particular limitations on the method for supporting the active metal component as long as a predetermined amount of metal can be supported on the titanium oxide-based carrier, and a conventionally known method can be employed. For example, an impregnation method, a kneading method, a dip coating method and the like can be mentioned. The specific surface area of the titanium oxide-based catalyst is generally 50~350m 2 / g, more preferably in the range of 100 to 300 m 2 / g. Within this range, there are many solid acid sites and good dispersibility of the active metal, so that sufficient hydrolysis performance is exhibited.

本発明では、比表面積は周知のBET法によって測定される。   In the present invention, the specific surface area is measured by the well-known BET method.

前記酸化チタン系触媒は成型体として用いるが、ハニカム状成形体、コルゲート状成型体あるいは粒状成形体(ペレット)等の従来公知の成型体を用いることができる。
(2)ゼオライト系触媒
つぎに、装置(B)に用いる尿素分解触媒の第2の態様としては、本願出願人の出願による特開2009−197762号公報に開示したゼオライト系触媒等が挙げられる。
The titanium oxide-based catalyst is used as a molded body, and a conventionally known molded body such as a honeycomb-shaped molded body, a corrugated molded body, or a granular molded body (pellet) can be used.
(2) Zeolite Catalyst Next, as a second embodiment of the urea decomposition catalyst used in the apparatus (B), there is a zeolite catalyst disclosed in Japanese Patent Application Laid-Open No. 2009-197762 filed by the applicant of the present application.

ゼオライトとしては従来公知の合成ゼオライト、天然ゼオライトを用いることができる。また、通常ゼオライトは狭義には結晶性アルミノシリケートであるが、これに限定するものではなく、結晶性アルミノシリケートフォスフェート(SAPO)、結晶性アルミノシフォスフェート(ALPO)、結晶性チタノシリケート(TS)なども用いることができる。これらのなかでも、ZSM−5型ゼオライト、モルデナイト型ゼオライト、フォージャサイト型ゼオライト、A型ゼオライト、L型ゼオライト、βゼオライトから選ばれる1種または2種以上であることが好ましい。これらのゼオライトは尿素分解に優れている。   Conventionally known synthetic zeolite and natural zeolite can be used as the zeolite. In addition, zeolite is usually crystalline aluminosilicate in a narrow sense, but is not limited to this. Crystalline aluminophosphate (SAPO), crystalline aluminophosphate (ALPO), crystalline titanosilicate ( TS) can also be used. Among these, one or more selected from ZSM-5 type zeolite, mordenite type zeolite, faujasite type zeolite, A type zeolite, L type zeolite, and β zeolite are preferable. These zeolites are excellent for urea decomposition.

ゼオライト粒子の平均粒子径は0.01〜10μm、さらには0.02〜5μmの範囲にあることが好ましい。この範囲にあると、触媒層の形成が容易であり、基材との接着性にも優れている。   The average particle size of the zeolite particles is preferably in the range of 0.01 to 10 μm, more preferably 0.02 to 5 μm. When it is in this range, the catalyst layer can be easily formed and the adhesiveness to the substrate is excellent.

ゼオライト系触媒もハニカム状成型体、膜状成型体、コルゲート状成形体、粒状成型体等であることが好ましい。   The zeolite-based catalyst is also preferably a honeycomb-shaped molded body, a film-shaped molded body, a corrugated molded body, a granular molded body, or the like.

ハニカム状成形体は、公知のハニカム基材にゼオライト触媒層が形成されたものである。   The honeycomb-shaped formed body is obtained by forming a zeolite catalyst layer on a known honeycomb substrate.

ゼオライト触媒層の厚さは0.1μm〜5mm、さらには0.2μm〜2mmの範囲にあることが好ましい。この範囲にあると高い加水分解性能と十分な強度、耐摩耗性を有する。   The thickness of the zeolite catalyst layer is preferably in the range of 0.1 μm to 5 mm, more preferably 0.2 μm to 2 mm. Within this range, it has high hydrolysis performance, sufficient strength, and wear resistance.

ゼオライト触媒層はゼオライトとバインダーとして作用する無機酸化物を含んでいてもよく、無機酸化物はペルオキソ化合物に由来する無機酸化物であることが好ましい。   The zeolite catalyst layer may contain an inorganic oxide that acts as a zeolite and a binder, and the inorganic oxide is preferably an inorganic oxide derived from a peroxo compound.

ゼオライト触媒層中のゼオライトの含有量は固形分として50〜99質量%、さらには70〜98質量%の範囲にあることが好ましく、ペルオキソ化合物に由来する無機酸化物の含有量が固形分として1〜50質量%、さらには2〜30の範囲にあることが好ましい。   The zeolite content in the zeolite catalyst layer is preferably in the range of 50 to 99 mass%, more preferably 70 to 98 mass% as the solid content, and the content of the inorganic oxide derived from the peroxo compound is 1 as the solid content. It is preferable to be in the range of ˜50 mass%, more preferably 2˜30.

なお、本発明では、前記ゼオライトおよびバインダーとして作用する無機酸化物以外に繊維状シリカ、繊維状アルミナ、繊維状酸化チタン、繊維状シリカアルミナ等の繊維状微粒子を含んでいてもよい。   In the present invention, fibrous fine particles such as fibrous silica, fibrous alumina, fibrous titanium oxide, and fibrous silica alumina may be included in addition to the zeolite and the inorganic oxide that acts as a binder.

さらに、ゼオライト触媒層中には平均粒子径が2〜300nm、好ましくは5〜100nmの範囲にあるコロイド粒子を含んでいても良い。   Furthermore, the zeolite catalyst layer may contain colloidal particles having an average particle diameter of 2 to 300 nm, preferably 5 to 100 nm.

このような繊維状微粒子、コロイド粒子の含有量は、ゼオライト触媒層中のゼオライトの含有量が固形分として50〜99質量%の範囲にあり、ペルオキソ化合物に由来する無機酸化物の含有量が固形分として1〜50質量%の範囲であれば特に制限無く用いることができる。ゼオライト触媒層を有するハニカム状成形体は、前記した導電性を有する金属製ハニカム基材を、ペルオキソ化合物を含むゼオライト粒子分散液に浸漬し、導電性基材と分散液に直流電圧を印加することで製造できる。   The content of such fibrous fine particles and colloidal particles is such that the zeolite content in the zeolite catalyst layer is in the range of 50 to 99% by mass as the solid content, and the content of the inorganic oxide derived from the peroxo compound is solid. If it is the range of 1-50 mass% as a minute, it can use without a restriction | limiting especially. A honeycomb formed body having a zeolite catalyst layer is obtained by immersing a metal honeycomb substrate having conductivity described above in a zeolite particle dispersion containing a peroxo compound, and applying a DC voltage to the conductive substrate and the dispersion. Can be manufactured.

膜状成形体は基材には網状でかつ、銅、ニッケル、アルミニウム、ステンレスなどの導電性支持体を用い、基材表面に触媒層を形成したものである。網状支持体の材質は前記したハニカム基材と同様である。網状支持体は導電性を有し、網目の大きさ(目開きということがある)が0.03〜10mm、さらには0.1〜5mmの範囲にある網状支持体を用いることが好ましい。この範囲の網目を有すると、支持体の強度が高く、また通気も十分に行えるので、反応活性が高い。   The film-shaped molded body is a substrate having a net-like shape and using a conductive support such as copper, nickel, aluminum, and stainless steel, and a catalyst layer is formed on the surface of the substrate. The material of the net-like support is the same as that of the honeycomb substrate described above. The mesh support has conductivity, and a mesh support having a mesh size (sometimes referred to as an opening) of 0.03 to 10 mm, more preferably 0.1 to 5 mm is preferably used. When the mesh in this range is used, the strength of the support is high and sufficient ventilation can be achieved, so that the reaction activity is high.

ゼオライト触媒層の厚さはハニカム状成形体と同様に0.1μm〜5mm、さらには0.2μm〜2mmの範囲にあることが好ましい。このようなゼオライト触媒層を有する膜状成形体の製造方法は、ハニカム状成形体の製造におけるハニカム基材に代えて前記網状支持体を用いる以外は同様にして製造することができる。   The thickness of the zeolite catalyst layer is preferably in the range of 0.1 μm to 5 mm, more preferably 0.2 μm to 2 mm, as in the honeycomb formed body. Such a method for producing a film-like formed body having a zeolite catalyst layer can be produced in the same manner except that the above-mentioned reticulated support is used in place of the honeycomb substrate in the production of the honeycomb-shaped formed body.

コルゲート成形体の場合、その形状は、波状のセラミック繊維や硝子繊維等の薄板を積層して、貫通孔を設けたもので、波状のピッチを変更することで、貫通孔のサイズを変更することができる。貫通孔の密度としては20セル/inch2から500セル/inch2を上回るものもあり、船舶の規模や、本発明の装置を設置する面積などに応じて適宜選択される。In the case of a corrugated body, the shape is a laminate of thin plates of corrugated ceramic fibers or glass fibers, and through holes are provided, and the size of the through holes can be changed by changing the corrugated pitch. Can do. The density of the through holes may be 20 cells / inch 2 to more than 500 cells / inch 2 and is appropriately selected according to the scale of the ship, the area where the apparatus of the present invention is installed, and the like.

ゼオライト触媒層の厚さはハニカム状成形体と同様に0.1μm〜5mm、さらには0.2μm〜2mmの範囲にあることが好ましい。このようなゼオライト触媒層を有するコルゲート状成形体の製造方法は、ハニカム状成形体の製造におけるハニカム基材に代えて前記コルゲート状基材を用いる以外は同様にして製造することができる。   The thickness of the zeolite catalyst layer is preferably in the range of 0.1 μm to 5 mm, more preferably 0.2 μm to 2 mm, as in the honeycomb formed body. The method for producing a corrugated shaped body having such a zeolite catalyst layer can be produced in the same manner except that the corrugated base material is used instead of the honeycomb base material in the production of the honeycomb shaped body.

粒状成形体としては、本願出願人の出願による、特開2004−238209号公報に開示した、ゼオライトとバインダーとからなる成形体であって、(i)平均粒子径(D)が0.5〜5mmの範囲にあるゼオライト微小球状成形体は好適に用いることができる。この場合も、ゼオライトの種類、粒子径等は前記と同様のゼオライトが用いられる。   As a granular molded object, it is a molded object which consists of a zeolite and a binder disclosed by Unexamined-Japanese-Patent No. 2004-238209 by application of the present applicant, (i) Average particle diameter (D) is 0.5-0.5. Zeolite microspheres in the range of 5 mm can be suitably used. Also in this case, the same zeolite as described above is used for the type of zeolite, the particle diameter, and the like.

粒状成形体では、ゼオライト粒子間に存在して、成型時の可塑性を増して成形性を良くし、また得られる粒状成形体の圧縮強度および耐摩耗性を高めるためのバインダーを含有してもよく、具体的には、カオリン、モンモリロナイト、ベントナイト、アロフェン、セピオライト等の粘土鉱物の他、アルミナ、シリカ、ジルコニア、チタニア、シリカ・アルミナ、シリカ・ジルコニア等の酸化物微粒子、複合酸化物微粒子が挙げられる。このようなバインダーは、粒子径が概ね10nm〜5μmの範囲にあることが好ましく、また用いるゼオライトの粒子径より小さいことが好ましい。またその形状は特に制限されるものではなく、球状、繊維状、不定形等のいずれであってもよい。   In the granular compact, it may be present between the zeolite particles to increase the plasticity at the time of molding to improve the moldability, and may contain a binder for increasing the compression strength and wear resistance of the resulting granular compact. Specific examples include clay minerals such as kaolin, montmorillonite, bentonite, allophane, and sepiolite, as well as oxide particles such as alumina, silica, zirconia, titania, silica / alumina, silica / zirconia, and composite oxide particles. . Such a binder preferably has a particle size in the range of about 10 nm to 5 μm, and preferably smaller than the particle size of the zeolite used. Further, the shape is not particularly limited, and may be any of spherical, fibrous, and irregular shapes.

粒状成形体中のゼオライトの含有量が60〜98質量%、さらには75〜95質量%の範囲にあることが好ましく、バインダーの含有量が2〜40質量%、さらには5〜25質量%の範囲にあることが好ましい。このような範囲でバインダーを含むと、加水分解性能が高く、また、得られる粒状成形体の圧縮強度や耐摩耗性を高くすることができる。
(3)金属酸化物微粒子付着触媒
前記装置(B)の尿素分解触媒の第3の態様は、アルミニウム、錫、各種ステンレス等の導電性を有する材料からなるハニカム基材、コルゲート状基材または網状支持体に金属酸化物微粒子が付着した金属酸化物微粒子付着触媒である。このような金属酸化物微粒子付着触媒としては、本願出願人の出願による特開2009−214045号公報に開示した金属酸化物微粒子付着触媒が挙げられる。
The zeolite content in the granular compact is preferably in the range of 60 to 98% by mass, more preferably 75 to 95% by mass, and the binder content is 2 to 40% by mass, more preferably 5 to 25% by mass. It is preferable to be in the range. When the binder is contained within such a range, the hydrolysis performance is high, and the compression strength and wear resistance of the obtained granular molded body can be increased.
(3) Metal oxide fine particle adhesion catalyst The third aspect of the urea decomposition catalyst of the apparatus (B) is a honeycomb substrate made of a conductive material such as aluminum, tin, various stainless steels, a corrugated substrate or a net-like catalyst. A metal oxide fine particle adhesion catalyst in which metal oxide fine particles adhere to a support. Examples of such a metal oxide fine particle adhesion catalyst include the metal oxide fine particle adhesion catalyst disclosed in Japanese Patent Application Laid-Open No. 2009-214045 filed by the applicant of the present application.

本発明に用いる金属酸化物微粒子としては、Mg、Ca、Ba、La、Ce、Ti、Zr、V、Nb、Cr、Mo、W、Mn、Zn、Al、Si、P、Sb、Cu、Fe、Ru、Co、Reから選ばれる1種または2種以上の元素の金属酸化物からなる金属酸化物粒子(複合金属酸化物微粒子を含む)が挙げられる。これらのなかでも、前記金属酸化物微粒子がSiO2、Al23、TiO2、ZrO2、NiO、Fe23、CoO、RuO2、CuO、Re23、WO3、V25、Nb25、MnO2から選ばれる1種以上が好ましい。このような金属酸化物微粒子は直流電圧の印加により基材や支持体に付着させることができ、また尿素の加水分解反応に高い活性を有し好適に用いることができる。The metal oxide fine particles used in the present invention include Mg, Ca, Ba, La, Ce, Ti, Zr, V, Nb, Cr, Mo, W, Mn, Zn, Al, Si, P, Sb, Cu, and Fe. , Metal oxide particles (including composite metal oxide fine particles) made of a metal oxide of one or more elements selected from Ru, Co, and Re. Among these, the metal oxide fine particles SiO 2, Al 2 O 3, TiO 2, ZrO 2, NiO, Fe 2 O 3, CoO, RuO 2, CuO, Re 2 O 3, WO 3, V 2 O One or more selected from 5 , Nb 2 O 5 and MnO 2 are preferred. Such metal oxide fine particles can be attached to a substrate or a support by applying a DC voltage, and have high activity in urea hydrolysis reaction, and can be suitably used.

金属酸化物微粒子の平均粒子径は10nm〜10μm、さらには20nm〜5μmの範囲にあることが好ましい。この範囲にあると、微粒子層にクラックが生じることもなく、基材との密着性、強度、耐摩耗性の高い加水分解反応用触媒を製造できる。   The average particle diameter of the metal oxide fine particles is preferably in the range of 10 nm to 10 μm, more preferably 20 nm to 5 μm. Within this range, the catalyst for hydrolysis reaction having high adhesion, strength, and wear resistance to the substrate can be produced without causing cracks in the fine particle layer.

金属酸化物微粒子層の厚さは0.1μm〜5mm、さらには0.2μm〜2mmの範囲にあることが好ましい。この範囲に暑さにあれば、十分な加水分解性能を発揮できる。   The thickness of the metal oxide fine particle layer is preferably in the range of 0.1 μm to 5 mm, more preferably 0.2 μm to 2 mm. If the temperature is within this range, sufficient hydrolysis performance can be exhibited.

金属酸化物微粒子層中の金属酸化物微粒子の含有量は固形分として50〜99質量%、さらには70〜98質量%の範囲にあることが好ましい。この範囲にあれば、基材との密着性が高く、また強度、耐摩耗性に優れ、しかも、金属酸化物微粒子層の緻密性、強度、耐摩耗性等も高い。   The content of the metal oxide fine particles in the metal oxide fine particle layer is preferably in the range of 50 to 99% by mass, more preferably 70 to 98% by mass as the solid content. Within this range, the adhesion to the substrate is high, the strength and wear resistance are excellent, and the metal oxide fine particle layer has high density, strength, wear resistance and the like.

本発明では、触媒層と基材との密着性を向上するために、金属酸化物微粒子以外に繊維状微粒子を含んでいてもよい。繊維状微粒子としては繊維状シリカ、繊維状アルミナ、繊維状酸化チタン、繊維状シリカアルミナ等が挙げられる。   In the present invention, in order to improve the adhesion between the catalyst layer and the substrate, fibrous fine particles may be included in addition to the metal oxide fine particles. Examples of the fibrous fine particles include fibrous silica, fibrous alumina, fibrous titanium oxide, and fibrous silica alumina.

繊維状微粒子は長さが50nm〜10μm、好ましくは100nm〜5μmの範囲にあり、径が10nm〜2μm、好ましくは20nm〜2μmの範囲にあり、アスペクト比長さ/径が5〜1,000、好ましくは10〜500の範囲である。   The fibrous fine particles have a length of 50 nm to 10 μm, preferably 100 nm to 5 μm, a diameter of 10 nm to 2 μm, preferably 20 nm to 2 μm, and an aspect ratio length / diameter of 5 to 1,000, Preferably it is the range of 10-500.

繊維状微粒子の大きさが上記範囲にあると形成される金属酸化物微粒子層とハニカム基材との密着性、強度、耐摩耗性等に優れている。   When the size of the fibrous fine particles is in the above range, the adhesion between the metal oxide fine particle layer formed and the honeycomb substrate is excellent in strength, wear resistance, and the like.

繊維状微粒子の使用量は、金属酸化物微粒子の0.1〜20質量%、さらには0.5〜10質量%の範囲にあることが好ましい。この範囲にあれば、繊維状微粒子の量が多すぎることもないので、尿素の加水分解性能が高く、基材との密着性も高い。   The amount of fibrous fine particles used is preferably in the range of 0.1 to 20 mass%, more preferably 0.5 to 10 mass% of the metal oxide fine particles. If it is in this range, the amount of fibrous fine particles will not be too much, so the hydrolysis performance of urea is high and the adhesion to the substrate is also high.

さらに、本発明では平均粒子径が2〜300nm、好ましくは5〜100nmの範囲にあるコロイド粒子を用いることができる。コロイド粒子としては粒子表面に帯電した粒子であれば特に制限はないが酸化チタン、アルミナ、シリカ、シリカ・アルミナ、ジルコニア等のコロイド粒子が挙げられる。このようなコロイド粒子を含んでいると後述する製造方法において直流電圧を印加して金属酸化物微粒子を積層させる際に金属酸化物微粒子の積層が促進される傾向があり、また形成された金属酸化物微粒子層の緻密度が向上するとともに強度、耐摩耗性が向上する傾向がある。   Further, in the present invention, colloidal particles having an average particle diameter of 2 to 300 nm, preferably 5 to 100 nm can be used. The colloidal particle is not particularly limited as long as it is a particle charged on the particle surface, and examples thereof include colloidal particles such as titanium oxide, alumina, silica, silica / alumina, and zirconia. When such colloidal particles are included, the metal oxide fine particles tend to be laminated when the direct current voltage is applied and the metal oxide fine particles are laminated in the manufacturing method described later. There is a tendency that the density of the fine particle layer is improved and the strength and wear resistance are improved.

さらに、金属酸化物微粒子層は前記繊維状微粒子、コロイド粒子以外にバインダーとして作用する無機酸化物を含んでいてもよく、ペルオキソ化合物に由来する無機酸化物であることが好ましい。ペルオキソ化合物としてはペルオキソチタン酸、ペルオキソニオブ酸、ペルオキソタングステン酸、ペルオキソモリブデン酸およびこれらの塩等が挙げられる。   Furthermore, the metal oxide fine particle layer may contain an inorganic oxide that acts as a binder in addition to the fibrous fine particles and colloidal particles, and is preferably an inorganic oxide derived from a peroxo compound. Examples of peroxo compounds include peroxotitanic acid, peroxoniobic acid, peroxotungstic acid, peroxomolybdic acid, and salts thereof.

金属酸化物微粒子層中のペルオキソ化合物に由来する無機酸化物の含有量が固形分として1〜50質量%、さらには2〜30質量%の範囲にあることが好ましい。このような繊維状微粒子、コロイド粒子および前記無機酸化物の含有量は、金属酸化物微粒子層中の金属酸化物微粒子の含有量が固形分として50〜99質量%の範囲にあれば、前記個別の含有量の範囲で特に制限無く用いることができる。   The content of the inorganic oxide derived from the peroxo compound in the metal oxide fine particle layer is preferably in the range of 1 to 50% by mass, more preferably 2 to 30% by mass as the solid content. The content of such fibrous fine particles, colloidal particles, and the inorganic oxide is determined as long as the content of the metal oxide fine particles in the metal oxide fine particle layer is in the range of 50 to 99% by mass as a solid content. It can be used without particular limitation in the range of the content of.

上記した金属酸化物微粒子層を有する触媒の製造方法は、前記した導電性を有する金属製基材や膜状支持体を、必要に応じて繊維状微粒子、コロイド粒子、ペルオキソ化合物を含む金属酸化物微粒子分散液に浸漬し、導電性基材と分散液に直流電圧を印加する。   The above-described method for producing a catalyst having a metal oxide fine particle layer includes a metal substrate or a film-like support having conductivity described above, and a metal oxide containing fibrous fine particles, colloidal particles, and a peroxo compound as necessary. It is immersed in the fine particle dispersion and a DC voltage is applied to the conductive substrate and the dispersion.

本発明では、前記第1の態様の触媒、第2の態様の触媒、第3の態様の触媒のいずれの触媒においても、少なくとも一部に波状の構造を有するコルゲート状基材を用いたコルゲート状成型体触媒を用いることが好ましい。   In the present invention, in any of the catalyst of the first aspect, the catalyst of the second aspect, and the catalyst of the third aspect, a corrugated structure using a corrugated substrate having a wavy structure at least in part. It is preferable to use a molded body catalyst.

コルゲート状成型体触媒は、セラミックを押し出し成型したハニカム担体等に比べ、軽量で、空隙率が大きく、熱衝撃にも強く、クラックを生じにくい等の点で優れており、排ガス処理触媒用成型体触媒として好適に用いることができる。また、複雑な構造であっても加工が比較的容易であり、触媒層の隔壁の厚さを薄くすることができ、差圧を生じ難く、パーティキュレート等による目詰まりを抑制することができ、成型体触媒の体積当たりの幾何学的表面積が大きく、スペースの限られた船舶用排ガス処理に好適に用いることができる。   The corrugated shaped catalyst is superior to honeycomb carriers made by extruding ceramic, and is superior in terms of light weight, large porosity, resistance to thermal shock, and resistance to cracking. It can be suitably used as a catalyst. Moreover, even if it is a complicated structure, the processing is relatively easy, the thickness of the partition wall of the catalyst layer can be reduced, it is difficult to generate a differential pressure, and clogging due to particulates or the like can be suppressed, Since the geometric surface area per volume of the molded catalyst is large, it can be suitably used for exhaust gas treatment for ships with limited space.

このようなコルゲート状成型体は、セラミック繊維や、ガラス繊維等の無機繊維シートからなる積層コルゲート基材に、たとえば第1の態様の触媒であれば、前記酸化チタン系複合酸化物層を形成し、金属を担持して製造することができる。   Such a corrugated molded body is formed by forming the titanium oxide-based composite oxide layer on a laminated corrugated base material made of an inorganic fiber sheet such as ceramic fiber or glass fiber, for example, in the case of the catalyst of the first aspect. It can be produced by supporting a metal.

具体的には、例えば、第1の態様の触媒では以下のようにして調製することができるが、これに限定するものではない。   Specifically, for example, the catalyst of the first aspect can be prepared as follows, but is not limited thereto.

平均粒子径が概ね0.5〜2.0μmの酸化チタン系粒子と、結合剤としてシリカゾル、アルミナゾル、シリカ・アルミナゾル、ジルコニアゾル、チタニアゾル等の無機酸化物ゾルを混合して酸化チタン系担体用スラリーを調製する。この時、酸化チタン系担体用スラリー(混合物)の濃度は固形分として概ね1〜50質量%、さらには20〜40質量%の範囲にあることが好ましい。この時、結合材の含有量が全固形分中に1〜10質量%、さらには2〜5質量%の範囲にあることが好ましい。   Titanium oxide particles having an average particle size of approximately 0.5 to 2.0 μm and a slurry for a titanium oxide carrier by mixing inorganic sols such as silica sol, alumina sol, silica / alumina sol, zirconia sol, and titania sol as a binder. To prepare. At this time, the concentration of the slurry (mixture) for the titanium oxide-based carrier is preferably in the range of about 1 to 50% by mass, more preferably 20 to 40% by mass as the solid content. At this time, the content of the binder is preferably in the range of 1 to 10% by mass, more preferably 2 to 5% by mass in the total solid content.

別途、メタバナジン酸アンモン粉末(AMV)、パラタングステン酸アンモニウム粉末(APT)などの活性金属成分前駆体と、モノエタノールアミン溶液(MEA)を水に混合して分散液を調製し、ついで、加温して各粉末(活性金属成分粉末)の溶解溶液を調製する。   Separately, an active metal component precursor such as ammonium metavanadate powder (AMV) and ammonium paratungstate powder (APT) and a monoethanolamine solution (MEA) are mixed with water to prepare a dispersion, and then heated. Then, a dissolving solution of each powder (active metal component powder) is prepared.

ついで、酸化チタン系担体用スラリーに活性金属成分の溶解溶液を混合して触媒調製用スラリーを調製する。触媒調製用スラリーも固形分濃度は1〜50質量%、さらには20〜40質量%の範囲にあることが好ましい。   Next, a slurry for preparing a catalyst is prepared by mixing a solution of the active metal component with the slurry for a titanium oxide carrier. The catalyst preparation slurry also preferably has a solid concentration in the range of 1 to 50 mass%, more preferably 20 to 40 mass%.

つぎに、触媒調製用スラリーにコルゲート状基材を浸漬し、ついで、コルゲート状基材を引き上げ、乾燥してコルゲート状基材に触媒層を形成する。なお、触媒層の形成量は引き上げ速度、あるいは浸漬回数によって適宜調整することができる。   Next, the corrugated substrate is immersed in the slurry for catalyst preparation, and then the corrugated substrate is pulled up and dried to form a catalyst layer on the corrugated substrate. The formation amount of the catalyst layer can be appropriately adjusted depending on the pulling speed or the number of immersions.

その後、加熱処理して尿素加水分解用のコルゲート状成型体触媒を調製することができる。このときの加熱処理温度は150〜700℃、さらに300〜550℃の範囲にあることが好ましい。   Thereafter, a corrugated shaped catalyst for urea hydrolysis can be prepared by heat treatment. The heat treatment temperature at this time is preferably in the range of 150 to 700 ° C, more preferably 300 to 550 ° C.

この時、コルゲート状基材に対する触媒層の形成量は概ね100〜500質量%、さらには250〜400質量%の範囲にあることが好ましい。   At this time, the formation amount of the catalyst layer with respect to the corrugated substrate is preferably in the range of about 100 to 500% by mass, more preferably 250 to 400% by mass.

本発明では排ガスは、装置(C)内を通り、装置(A)にて、装置(B)より供給されたNOx除去用ガスと接触するように構成されている。   In the present invention, the exhaust gas passes through the device (C), and is configured to contact the NOx removing gas supplied from the device (B) in the device (A).

装置(A)内には、NOx除去触媒が装填され、排ガスNOxが還元除去される。   The device (A) is loaded with a NOx removal catalyst, and exhaust gas NOx is reduced and removed.

NOx除去触媒
装置(A)に用いるNOx除去触媒としては、従来、固定発生源からのNOx排ガス処理に用いられる触媒を用いることができる。たとえば、特開平11−342333号公報、特開2003−93880号公報、特開2009−45586号公報等に開示された従来公知のNOx除去触媒を用いることができる。具体的には、前記装置(B)に用いる第1の態様の尿素分解触媒である酸化チタン系触媒を好適に用いることができる。
As the NOx removal catalyst used in the NOx removal catalyst device (A), a catalyst conventionally used for treating NOx exhaust gas from a fixed generation source can be used. For example, conventionally known NOx removal catalysts disclosed in JP-A-11-342333, JP-A-2003-93880, JP-A-2009-45586 and the like can be used. Specifically, the titanium oxide catalyst that is the urea decomposition catalyst according to the first aspect used in the apparatus (B) can be suitably used.

本発明の排ガス処理装置によれば、排ガス中に含まれるNOx量を20%以下まで減らすことが可能である。   According to the exhaust gas treatment apparatus of the present invention, it is possible to reduce the amount of NOx contained in the exhaust gas to 20% or less.

[実施例]
以下、実施例により説明するが、本発明はこれらの実施例により限定されるものではない。
[実施例1]
尿素加水分解用触媒(1)の調製
酸化チタン粉末((石原産業(株)製:CTAC115、TiO2:90質量%、SiO2:5質量%、WO3:5質量%、平均粒子径1μm、比表面積102m2/g)9.7kgと、シリカゾル(日揮触媒化成(株)製:cataloid-S、SiO2:20質量%)2.7kgとを水21.7kgに分散させて固形分濃度30重量%の酸化チタン系担体用スラリー(1)を調製した。
[Example]
Hereinafter, although an example explains, the present invention is not limited by these examples.
[Example 1]
Preparation of catalyst for urea hydrolysis (1) Titanium oxide powder (manufactured by Ishihara Sangyo Co., Ltd .: CTAC115, TiO 2 : 90% by mass, SiO 2 : 5% by mass, WO 3 : 5% by mass, average particle diameter 1 μm, 9.7 kg of specific surface area 102 m 2 / g) and 2.7 kg of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: catalyst-S, SiO 2 : 20% by mass) are dispersed in 21.7 kg of water to obtain a solid concentration of 30 A slurry (1) of titanium oxide carrier for weight% was prepared.

別途、メタバナジン酸アンモン粉末(AMV)1.2kg、パラタングステン酸アンモニウム粉末(APT)0.8kgをモノエタノールアミン溶液(MEA)0.8kg、水2.7kgに混合して分散液を調製し、ついで、加温して固形分濃度30重量%の活性金属成分粉末の溶解溶液(1)を調製した。   Separately, 1.2 kg of ammonium metavanadate powder (AMV), 0.8 kg of ammonium paratungstate powder (APT) were mixed with 0.8 kg of monoethanolamine solution (MEA) and 2.7 kg of water to prepare a dispersion, Subsequently, the solution was heated to prepare a dissolution solution (1) of active metal component powder having a solid content concentration of 30% by weight.

ついで、酸化チタン系担体用スラリー(1)に活性金属成分溶解溶液(1)を重量比10:1で混合し、ついで、3時間撹拌して固形分濃度30重量%の触媒調製用スラリー(1)を調製した。   Next, the active metal component-dissolved solution (1) was mixed with the titanium oxide support slurry (1) at a weight ratio of 10: 1, and then stirred for 3 hours to prepare a catalyst preparation slurry (1 ) Was prepared.

その時の触媒成分比はTiO2:77.5質量%、SiO2:9.1質量%、WO3:8.2質量%、V25:5.2質量%である。The catalyst component ratios at that time were TiO 2 : 77.5% by mass, SiO 2 : 9.1% by mass, WO 3 : 8.2% by mass, and V 2 O 5 : 5.2% by mass.

ついで、コルゲート状基材(西部技研(株)製:主成分:セラミックス製、形状:コルゲート状ハニカム積層体(形状:120cpsi、30mm□、40mmL、P=4.2mm、H=2.5mm)を触媒調製用スラリー(1)に15分間浸漬した後、引き上げ、ついで、110℃で12時間乾燥した。   Next, a corrugated base material (manufactured by Seibu Giken Co., Ltd .: main component: ceramics, shape: corrugated honeycomb laminate (shape: 120 cpsi, 30 mm □, 40 mmL, P = 4.2 mm, H = 2.5 mm) After being immersed in the slurry for catalyst preparation (1) for 15 minutes, it was lifted and then dried at 110 ° C. for 12 hours.

その後、上記と同様に、浸漬、乾燥を3回繰り返した後、500℃で5時間焼成して尿素加水分解用触媒(1)を調製した。   Thereafter, in the same manner as above, immersion and drying were repeated three times, and then calcined at 500 ° C. for 5 hours to prepare a catalyst for urea hydrolysis (1).

得られた尿素加水分解用触媒(1)のコルゲート状基材の単位重量当たりの触媒層形成量は400重量%であった。   The amount of catalyst layer formed per unit weight of the corrugated substrate of the obtained catalyst for hydrolysis of urea (1) was 400% by weight.

また、触媒層の組成を分析し、比表面積、細孔容積を測定し、結果を表に示す。   Further, the composition of the catalyst layer was analyzed, the specific surface area and the pore volume were measured, and the results are shown in the table.

NOx除去反応
ディーゼルエンジン(定格出力:1万kw)の排ガスラインの下流に、過給機を有し、該過給機の下流に、装置(B)を内包する装置(C)と装置(A)が連結した触媒装置を設けた。
A device (C) and a device (A) having a supercharger downstream of the exhaust gas line of a NOx removal reaction diesel engine (rated output: 10,000 kw), and containing the device (B) downstream of the supercharger ) Was connected.

装置(B)は、前記尿素加水分解用触媒(1)37ミリリットルを充填し、排ガスと接触することない、角柱状反応器(50mm□、60mmL)である。その下流に設けられた装置(A)は、排ガスライン中にハニカム型NOx除去触媒(1)(日揮触媒化成(株)製:SNR−5、58cpsi、150mm□、350mmL)7.78リットルを充填し、加熱装置(電気炉)を設けた角柱状反応器(250mm□、500mmL)である。このNOx除去テスト用装置のフローモデルを図2に示す。   The apparatus (B) is a prismatic reactor (50 mm □, 60 mmL) which is filled with 37 ml of the urea hydrolysis catalyst (1) and does not come into contact with exhaust gas. A device (A) provided downstream of the exhaust gas line is filled with 7.78 liters of honeycomb type NOx removal catalyst (1) (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SNR-5, 58 cpsi, 150 mm □, 350 mmL). And a prismatic reactor (250 mm □, 500 mmL) provided with a heating device (electric furnace). A flow model of this NOx removal test apparatus is shown in FIG.

ついで、燃料としてA重油(硫黄濃度:0.4質量%、芳香族濃度28質量%、残留炭素濃度0.3質量%)を用い、エンジンを稼働させた。ついで、エンジンの回転数を120rpmで一定させ、排ガスの一部(910NL/min)を装置(C)から下流の装置(A)に供給し、残りの排ガスは系外に排気した。このとき、過給機出口の排ガスの温度は240℃であった。   Subsequently, A heavy oil (sulfur concentration: 0.4 mass%, aromatic concentration 28 mass%, residual carbon concentration 0.3 mass%) was used as the fuel, and the engine was operated. Next, the engine speed was fixed at 120 rpm, a part of the exhaust gas (910 NL / min) was supplied from the device (C) to the downstream device (A), and the remaining exhaust gas was exhausted outside the system. At this time, the temperature of the exhaust gas at the supercharger outlet was 240 ° C.

また、装置(B)に濃度25質量%の尿素水を295g/Hrの一定速度で供給しながら運転した。また装置(A)のNOx除去触媒(1)の触媒層の温度を270℃に一定で調整した。運転開始から2時間経過後、装置(B)の触媒層の温度が240℃で一定となった。このときの装置(B)の出口におけるアンモニアガスを10分間採取し、アンモニア濃度を測定し、アンモニアの生成率を求め、結果を表に示す。   The apparatus (B) was operated while supplying urea water having a concentration of 25% by mass at a constant rate of 295 g / Hr. Further, the temperature of the catalyst layer of the NOx removal catalyst (1) of the apparatus (A) was adjusted to be constant at 270 ° C. After 2 hours from the start of operation, the temperature of the catalyst layer of the apparatus (B) became constant at 240 ° C. The ammonia gas at the outlet of the apparatus (B) at this time was collected for 10 minutes, the ammonia concentration was measured, the ammonia production rate was determined, and the results are shown in the table.

なお、アンモニアの生成率(%)は、10分間のアンモニア生成量(等量)/10分間の供給尿素(等量)×100で表示した。   The production rate (%) of ammonia was expressed as 10 minutes of ammonia production (equal amount) / 10 minutes of supplied urea (equal amount) × 100.

一方、装置(A)の出口におけるNOxガス濃度をNOx分析装置(ヤナコ(株)製:ECL−88AO)により分析し、NOx除去率とともに表に示す。 また引き続き、300時間運転したのち、同様にアンモニア濃度、アンモニア生成率およびNOxガス濃度、NOx除去率を測定し、結果を表に示す。
[実施例2]
NOx除去反応
実施例1において、燃料として低硫黄A重油(硫黄濃度:0.05質量%、芳香族濃度14質量%、残留炭素濃度0.2質量%)を用いた以外は同様にしてNOx除去反応を行った。装置(A)の出口におけるNOxガス濃度およびNOx除去率を表に示す。
[実施例3]
NOx除去反応
実施例1において、燃料油としてC重油(硫黄濃度:2.5質量%、芳香族濃度30質量%、残留炭素濃度2質量%)を用いた以外は同様にしてNOx除去反応を行った。装置(A)の出口におけるNOxガス濃度およびNOx除去率を表に示す。
[実施例4]
NOx除去反応
実施例1において、エンジンの回転数を177rpmに調整し、排ガスの一部(910NL/min)を下流の装置(A)に供給し、残りの排ガスは系外に排気した。
On the other hand, the NOx gas concentration at the outlet of the device (A) was analyzed with a NOx analyzer (manufactured by Yanaco Co., Ltd .: ECL-88AO) and shown together with the NOx removal rate in the table. Further, after 300 hours of operation, ammonia concentration, ammonia generation rate, NOx gas concentration, and NOx removal rate were measured in the same manner, and the results are shown in the table.
[Example 2]
NOx removal reaction In Example 1, NOx removal was performed in the same manner except that low-sulfur A heavy oil (sulfur concentration: 0.05 mass%, aromatic concentration 14 mass%, residual carbon concentration 0.2 mass%) was used as the fuel. Reaction was performed. The table shows the NOx gas concentration and NOx removal rate at the outlet of the apparatus (A).
[Example 3]
NOx removal reaction In Example 1, the NOx removal reaction was performed in the same manner except that C heavy oil (sulfur concentration: 2.5 mass%, aromatic concentration 30 mass%, residual carbon concentration 2 mass%) was used as the fuel oil. It was. The table shows the NOx gas concentration and NOx removal rate at the outlet of the apparatus (A).
[Example 4]
NOx removal reaction In Example 1, the engine speed was adjusted to 177 rpm, a part of the exhaust gas (910 NL / min) was supplied to the downstream device (A), and the remaining exhaust gas was exhausted outside the system.

また、装置(B)に濃度25質量%の尿素水を295g/Hrの一定速度で供給しながら運転した。NOx除去触媒(1)の触媒層の温度を270℃に一定で調整した。運転開始から2時間経過後、装置(B)の触媒層の温度が280℃で一定となった。ついで、同様にしてNOx除去反応を行った。   The apparatus (B) was operated while supplying urea water having a concentration of 25% by mass at a constant rate of 295 g / Hr. The temperature of the catalyst layer of the NOx removal catalyst (1) was adjusted to a constant 270 ° C. After 2 hours from the start of operation, the temperature of the catalyst layer of the device (B) became constant at 280 ° C. Subsequently, a NOx removal reaction was performed in the same manner.

装置(B)の出口におけるアンモニアガスを10分間採取し、アンモニア濃度を測定し、アンモニアの生成率を求め、結果を表に示す。また、装置(A)の出口におけるNOxガス濃度およびNOx除去率を表に示す。
[実施例5]
NOx除去反応
実施例1において、エンジンの回転数を55rpmに調整し、排ガスの一部(910NL/min)を下流の装置(A)に供給し、残りの排ガスは系外に排気した。
Ammonia gas at the outlet of the apparatus (B) was collected for 10 minutes, the ammonia concentration was measured, the ammonia production rate was determined, and the results are shown in the table. Further, the table shows the NOx gas concentration and the NOx removal rate at the outlet of the apparatus (A).
[Example 5]
In NOx removal reaction Example 1, the engine speed was adjusted to 55 rpm, a part of exhaust gas (910 NL / min) was supplied to the downstream device (A), and the remaining exhaust gas was exhausted outside the system.

また、装置(B)に濃度25質量%の尿素水を295g/Hrの一定速度で供給しながら運転した。NOx除去触媒(1)の触媒層の温度を220℃に一定で調整した。運転開始から2時間経過後、装置(B)の触媒層の温度が230℃で一定となった後、NOx除去反応を行った。   The apparatus (B) was operated while supplying urea water having a concentration of 25% by mass at a constant rate of 295 g / Hr. The temperature of the catalyst layer of the NOx removal catalyst (1) was adjusted to 220 ° C. Two hours after the start of operation, the temperature of the catalyst layer of the device (B) became constant at 230 ° C., and then the NOx removal reaction was performed.

装置(B)の出口におけるアンモニアガスを10分間採取し、アンモニア濃度を測定し、アンモニアの生成率を求め、結果を表に示す。また、装置(A)の出口におけるNOxガス濃度およびNOx除去率を表に示す。
[実施例6]
尿素加水分解用触媒(2)の調製
実施例1において、コルゲート状基材を触媒調製用スラリー(1)に2回浸漬した以外は同様にして尿素加水分解用触媒(2)を調製した。
Ammonia gas at the outlet of the apparatus (B) was collected for 10 minutes, the ammonia concentration was measured, the ammonia production rate was determined, and the results are shown in the table. Further, the table shows the NOx gas concentration and the NOx removal rate at the outlet of the apparatus (A).
[Example 6]
Preparation of Urea Hydrolysis Catalyst (2) A urea hydrolysis catalyst (2) was prepared in the same manner as in Example 1 except that the corrugated substrate was immersed twice in the catalyst preparation slurry (1).

得られた尿素加水分解用触媒(2)のコルゲート状基材の単位重量当たりの触媒層形成量は200質量%であった。   The amount of catalyst layer formed per unit weight of the corrugated substrate of the obtained catalyst for hydrolysis of urea (2) was 200% by mass.

また、触媒層の組成を分析し、比表面積、細孔容積を測定し、結果を表に示す。
NOx除去反応
実施例1において、尿素加水分解用触媒(2)を充填した以外は同様にしてNOx除去テスト用装置を準備した。
Further, the composition of the catalyst layer was analyzed, the specific surface area and the pore volume were measured, and the results are shown in the table.
NOx removal reaction In Example 1, a NOx removal test apparatus was prepared in the same manner except that the urea hydrolysis catalyst (2) was charged.

ついで、燃料としてA重油(硫黄濃度:0.4質量%、芳香族濃度28質量%、残留炭素濃度0.3質量%)を用い、エンジンを稼働させた。ついで、エンジンの回転数を120rpmで一定させ、排ガスの一部(910NL/min)を下流の装置(A)に供給し、残りの排ガスは系外に排気した。   Subsequently, A heavy oil (sulfur concentration: 0.4 mass%, aromatic concentration 28 mass%, residual carbon concentration 0.3 mass%) was used as the fuel, and the engine was operated. Next, the engine speed was fixed at 120 rpm, a part of the exhaust gas (910 NL / min) was supplied to the downstream device (A), and the remaining exhaust gas was exhausted outside the system.

装置(B)に濃度25質量%の尿素水を295g/Hrの一定速度で供給しながら運転した。NOx除去触媒(1)の触媒層の温度を270℃に一定で調整した。運転開始から2時間経過後、装置(B)の触媒層の温度が240℃で一定となった。ついで、同様にしてNOx除去反応を行った。   The apparatus (B) was operated while supplying urea water having a concentration of 25% by mass at a constant rate of 295 g / Hr. The temperature of the catalyst layer of the NOx removal catalyst (1) was adjusted to a constant 270 ° C. After 2 hours from the start of operation, the temperature of the catalyst layer of the apparatus (B) became constant at 240 ° C. Subsequently, a NOx removal reaction was performed in the same manner.

装置(B)の出口におけるアンモニアガスを10分間採取し、アンモニア濃度を測定し、アンモニアの生成率を求め、結果を表に示す。また、装置(A)の出口におけるNOxガス濃度およびNOx除去率を表に示す。
[実施例7]
尿素加水分解用触媒(3)の調製
実施例1において、コルゲート状基材を触媒調製用スラリー(1)に6回浸漬した以外は同様にして尿素加水分解用触媒(3)を調製した。
Ammonia gas at the outlet of the apparatus (B) was collected for 10 minutes, the ammonia concentration was measured, the ammonia production rate was determined, and the results are shown in the table. Further, the table shows the NOx gas concentration and the NOx removal rate at the outlet of the apparatus (A).
[Example 7]
Preparation of Urea Hydrolysis Catalyst (3) A urea hydrolysis catalyst (3) was prepared in the same manner as in Example 1 except that the corrugated substrate was immersed 6 times in the catalyst preparation slurry (1).

得られた尿素加水分解用触媒(3)のコルゲート状基材の単位重量当たりの触媒層形成量は600質量%であった。   The catalyst layer formation amount per unit weight of the corrugated substrate of the obtained catalyst for urea hydrolysis (3) was 600% by mass.

また、触媒層の組成を分析し、比表面積、細孔容積を測定し、結果を表に示す。
NOx除去反応
実施例1において、尿素加水分解用触媒(3)を充填した以外は同様にしてNOx除去テスト用装置を準備した。
Further, the composition of the catalyst layer was analyzed, the specific surface area and the pore volume were measured, and the results are shown in the table.
NOx removal reaction In Example 1, a NOx removal test apparatus was prepared in the same manner except that the catalyst for urea hydrolysis (3) was charged.

ついで、燃料としてA重油(硫黄濃度:0.4質量%、芳香族濃度28質量%、残留炭素濃度0.3質量%)を用い、エンジンを稼働させた。ついで、エンジンの回転数を120rpmで一定させ、排ガスの一部(910NL/min)を下流の装置(A)に供給し、残りの排ガスは系外に排気した。   Subsequently, A heavy oil (sulfur concentration: 0.4 mass%, aromatic concentration 28 mass%, residual carbon concentration 0.3 mass%) was used as the fuel, and the engine was operated. Next, the engine speed was fixed at 120 rpm, a part of the exhaust gas (910 NL / min) was supplied to the downstream device (A), and the remaining exhaust gas was exhausted outside the system.

装置(B)に濃度25質量%の尿素水を295g/Hrの一定速度で供給しながら運転した。NOx除去触媒(1)の触媒層の温度を270℃に一定で調整した。運転開始から2時間経過後、装置(B)の触媒層の温度が240℃で一定となった。ついで、同様にしてNOx除去反応を行った。   The apparatus (B) was operated while supplying urea water having a concentration of 25% by mass at a constant rate of 295 g / Hr. The temperature of the catalyst layer of the NOx removal catalyst (1) was adjusted to a constant 270 ° C. After 2 hours from the start of operation, the temperature of the catalyst layer of the apparatus (B) became constant at 240 ° C. Subsequently, a NOx removal reaction was performed in the same manner.

装置(B)の出口におけるアンモニアガスを10分間採取し、アンモニア濃度を測定し、アンモニアの生成率を求め、結果を表に示す。また、装置(A)の出口におけるNOxガス濃度およびNOx除去率を表に示す。
[実施例8]
NOx除去反応
ディーゼルエンジン(定格出力:1万kw)の排ガスラインの下流に、過給機を有し、該過給機の下流に装置(B)を内包する装置(C)と装置(A)が連結した触媒装置を設けた。
Ammonia gas at the outlet of the apparatus (B) was collected for 10 minutes, the ammonia concentration was measured, the ammonia production rate was determined, and the results are shown in the table. Further, the table shows the NOx gas concentration and the NOx removal rate at the outlet of the apparatus (A).
[Example 8]
A device (C) and a device (A) that have a supercharger downstream of the exhaust gas line of a NOx removal reaction diesel engine (rated output: 10,000 kW) and that contain the device (B) downstream of the supercharger Was connected to the catalyst device.

装置(B)は、尿素加水分解用触媒(4)として、ハニカム型NOx除去触媒(4)(日揮触媒化成(株)製:SNR−5、58cpsi、33mm□、34mmL)37ミリリットルを充填し、排ガスと接触することない、角柱状反応器(180mm□、500mmL)である。その下流に設けられた装置(A)は、排ガスライン中にハニカム型NOx除去触媒(1)(日揮触媒化成(株)製:SNR−5、58cpsi、150mm□、350mmL)を充填し、加熱装置(電気炉)を設けた角柱状反応器(250mm□、500mmL)である。   The apparatus (B) is filled with 37 ml of honeycomb type NOx removal catalyst (4) (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SNR-5, 58 cpsi, 33 mm □, 34 mmL) as the urea hydrolysis catalyst (4), It is a prismatic reactor (180 mm □, 500 mmL) that does not come into contact with exhaust gas. The apparatus (A) provided downstream is filled with a honeycomb type NOx removal catalyst (1) (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SNR-5, 58 cpsi, 150 mm □, 350 mmL) in the exhaust gas line, and a heating device It is a prismatic reactor (250 mm □, 500 mmL) provided with (electric furnace).

ついで、燃料としてA重油(硫黄濃度:0.4質量%、芳香族濃度28質量%、残留炭素濃度0.3質量%)を用い、エンジンを稼働させた。ついで、エンジンの回転数を120rpmで一定させ、排ガスの一部(910NL/min)を下流の装置(A)に供給し、残りの排ガスは系外に排気した。   Subsequently, A heavy oil (sulfur concentration: 0.4 mass%, aromatic concentration 28 mass%, residual carbon concentration 0.3 mass%) was used as the fuel, and the engine was operated. Next, the engine speed was fixed at 120 rpm, a part of the exhaust gas (910 NL / min) was supplied to the downstream device (A), and the remaining exhaust gas was exhausted outside the system.

装置(B)に濃度25質量%の尿素水を295g/Hrの一定速度で供給しながら運転した。NOx除去触媒(1)の触媒層の温度を270℃に一定で調整した。運転開始から2時間経過後、装置(B)の触媒層の温度が240℃で一定となった。ついで、同様にしてNOx除去反応を行った。   The apparatus (B) was operated while supplying urea water having a concentration of 25% by mass at a constant rate of 295 g / Hr. The temperature of the catalyst layer of the NOx removal catalyst (1) was adjusted to a constant 270 ° C. After 2 hours from the start of operation, the temperature of the catalyst layer of the apparatus (B) became constant at 240 ° C. Subsequently, a NOx removal reaction was performed in the same manner.

装置(B)の出口におけるアンモニアガスを10分間採取し、アンモニア濃度を測定し、アンモニアの生成率を求め、結果を表に示す。また、装置(A)の出口におけるNOxガス濃度およびNOx除去率を表に示す。
[実施例9]
尿素加水分解用触媒(5)の調製
実施例1と同様にして固形分濃度30質量%の触媒調製用スラリー(1)を調製した。これを噴霧乾燥機にて、熱風の入口温度300〜320℃、出口温度120〜130℃の条件で噴霧乾燥して粉末化した。得られた粉末の平均粒子径は65μm、水分含有量は24.5質量%であった。
Ammonia gas at the outlet of the apparatus (B) was collected for 10 minutes, the ammonia concentration was measured, the ammonia production rate was determined, and the results are shown in the table. Further, the table shows the NOx gas concentration and the NOx removal rate at the outlet of the apparatus (A).
[Example 9]
Preparation of catalyst for urea hydrolysis (5) A slurry for catalyst preparation (1) having a solid content of 30% by mass was prepared in the same manner as in Example 1. This was spray-dried with a spray dryer under conditions of hot air inlet temperature of 300 to 320 ° C. and outlet temperature of 120 to 130 ° C. to form powder. The average particle diameter of the obtained powder was 65 μm, and the water content was 24.5% by mass.

この粉末1.32Kgを高速攪拌粉体混合機(三井鉱山(株)製:ヘンシェルミキサー、FM−20C/I型)に入れ、予め結晶セルロース30gを溶解した水0.47Kgを入れて充分混合し、水分を44.2質量%に調整した。   1.32 Kg of this powder was put into a high-speed stirring powder mixer (Mitsui Mining Co., Ltd .: Henschel mixer, FM-20C / I type), and 0.47 Kg of water in which 30 g of crystalline cellulose was dissolved in advance was added and mixed well. The water content was adjusted to 44.2% by mass.

水分調整した後、下押しロール型の押出し機(不二パウダル(株)製:デイスクペレッター、F−5(PV−S)/11−175 型)にてペレットに成形した。このとき、先ず、押出し機のノズル径3mmφで1回押し出しを行い、ついでノズル径1.5mmφで1回押し出しを行いペレットに成形した。このときのペレットの長さは比較的均一で、平均長さは1.8mmであった。得られた径1.5mmφのペレットを130℃で24時間乾燥し、ついで530℃で3時間焼成してペレット状の尿素加水分解用触媒(5)を得た。ペレット状の尿素加水分解用触媒(5)の平均径は1.5mmφ、平均長さ1.7mmであった。また、触媒層の組成を分析し、比表面積、細孔容積を測定し、結果を表に示す。
NOx除去反応
ディーゼルエンジン(定格出力:1万kw)の排ガスラインの下流に、装置(B)を内包する装置(C)と装置(A)が連結した触媒装置を設けた。
After adjusting the water content, it was formed into pellets using a downward roll type extruder (Fuji Paudal Co., Ltd .: Disc pelleter, F-5 (PV-S) / 11-175 type). At this time, first, extrusion was performed once with an extruder nozzle diameter of 3 mmφ, and then extrusion was performed once with a nozzle diameter of 1.5 mmφ to form pellets. At this time, the length of the pellet was relatively uniform, and the average length was 1.8 mm. The obtained pellets having a diameter of 1.5 mmφ were dried at 130 ° C. for 24 hours and then calcined at 530 ° C. for 3 hours to obtain a pellet-like catalyst for urea hydrolysis (5). The pellet-shaped urea hydrolysis catalyst (5) had an average diameter of 1.5 mmφ and an average length of 1.7 mm. Further, the composition of the catalyst layer was analyzed, the specific surface area and the pore volume were measured, and the results are shown in the table.
A catalyst device in which the device (C) and the device (A) are connected is provided downstream of the exhaust gas line of the NOx removal reaction diesel engine (rated output: 10,000 kW).

装置(B)は、尿素加水分解用触媒(5)として、ペレット状の尿素加水分解用触媒(5)74gを充填し、排ガスと接触することない、角柱状反応器(180mm□、500mmL)である。その下流に設けられた装置(A)は、排ガスライン中にハニカム型NOx除去触媒(1)(日揮触媒化成(株)製:SNR−5、58cpsi、150mm□、7.78リットル)を充填し、加熱装置(電気炉)を設けた角柱状反応器(250mm□、500mmL)である。   The apparatus (B) is a prismatic reactor (180 mm □, 500 mmL) that is charged with 74 g of pellet-shaped urea hydrolysis catalyst (5) as a urea hydrolysis catalyst (5) and does not come into contact with exhaust gas. is there. The apparatus (A) provided downstream of the exhaust gas line is filled with a honeycomb type NOx removal catalyst (1) (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SNR-5, 58 cpsi, 150 mm □, 7.78 liters). , A prismatic reactor (250 mm □, 500 mmL) provided with a heating device (electric furnace).

ついで、燃料としてA重油(硫黄濃度:0.4質量%、芳香族濃度28質量%、残留炭素濃度0.3質量%)を用い、エンジンを稼働させた。ついで、エンジンの回転数を120rpmで一定させ、排ガスの一部(910NL/min)を下流の装置(A)に供給し、残りの排ガスは系外に排気した。   Subsequently, A heavy oil (sulfur concentration: 0.4 mass%, aromatic concentration 28 mass%, residual carbon concentration 0.3 mass%) was used as the fuel, and the engine was operated. Next, the engine speed was fixed at 120 rpm, a part of the exhaust gas (910 NL / min) was supplied to the downstream device (A), and the remaining exhaust gas was exhausted outside the system.

ついで、装置(B)に濃度25質量%の尿素水を295g/Hrの一定速度で供給しながら運転した。NOx除去触媒(1)の触媒層の温度を270℃に一定で調整した。運転開始から2時間経過後、装置(B)の触媒層の温度が240℃で一定となった。ついで、同様にしてNOx除去反応を行った。   Next, the apparatus (B) was operated while supplying urea water having a concentration of 25% by mass at a constant rate of 295 g / Hr. The temperature of the catalyst layer of the NOx removal catalyst (1) was adjusted to a constant 270 ° C. After 2 hours from the start of operation, the temperature of the catalyst layer of the apparatus (B) became constant at 240 ° C. Subsequently, a NOx removal reaction was performed in the same manner.

装置(B)の出口におけるアンモニアガスを10分間採取し、アンモニア濃度を測定し、アンモニアの生成率を求め、結果を表に示す。また、装置(A)の出口におけるNOxガス濃度およびNOx除去率を表に示す。
[実施例10]
NOx除去反応
ディーゼルエンジン(定格出力:870kw)の排ガスラインの下流に、過給機があり、該過給機の下流に装置(B)を内包する装置(C)と装置(A)が連結した触媒装置を設けた。
Ammonia gas at the outlet of the apparatus (B) was collected for 10 minutes, the ammonia concentration was measured, the ammonia production rate was determined, and the results are shown in the table. Further, the table shows the NOx gas concentration and the NOx removal rate at the outlet of the apparatus (A).
[Example 10]
There is a supercharger downstream of the exhaust gas line of the NOx removal reaction diesel engine (rated output: 870 kW), and the device (C) and device (A) containing the device (B) are connected downstream of the supercharger. A catalytic device was provided.

装置(B)は、実施例1と同じ尿素加水分解用触媒(1)37ミリリットルを充填し、排ガスと接触することなく、角柱状反応器(50mm□、60mmL)である。その下流に設けられた装置(A)は、排ガスライン中にハニカム型NOx除去触媒(1)(日揮触媒化成(株)製:SNR−5、58cpsi、150mm□、7.78リットル)を充填し、加熱装置(電気炉)を設けた角柱状反応器(250mm□、500mmL)である。   The apparatus (B) is a prismatic reactor (50 mm □, 60 mmL) filled with 37 ml of the same urea hydrolysis catalyst (1) as in Example 1 and without contact with the exhaust gas. The apparatus (A) provided downstream of the exhaust gas line is filled with a honeycomb type NOx removal catalyst (1) (manufactured by JGC Catalysts & Chemicals Co., Ltd .: SNR-5, 58 cpsi, 150 mm □, 7.78 liters). , A prismatic reactor (250 mm □, 500 mmL) provided with a heating device (electric furnace).

ついで、燃料としてA重油(硫黄濃度:0.8質量%、芳香族濃度28質量%、残留炭素濃度0.3質量%)を用い、エンジンを稼働させた。ついで、エンジンの回転数を177rpmで一定させ、排ガスの一部(910NL/min)を下流の装置(A)に供給し、残りの排ガスは系外に排気した。   Next, A heavy oil (sulfur concentration: 0.8 mass%, aromatic concentration 28 mass%, residual carbon concentration 0.3 mass%) was used as the fuel, and the engine was operated. Next, the engine speed was fixed at 177 rpm, a part of the exhaust gas (910 NL / min) was supplied to the downstream device (A), and the remaining exhaust gas was exhausted outside the system.

装置(B)に濃度25質量%の尿素水を295g/Hrの一定速度で供給しながら運転した。NOx除去触媒(1)の触媒層の温度を270℃に一定で調整した。運転開始から12時間経過後、装置(B)の触媒層の温度が240℃で一定となった。ついで、装置(B)の出口におけるアンモニアガスを10分間採取し、アンモニア濃度を測定し、アンモニアの生成率を求め、結果を表に示す。
[比較例1]
NOx除去反応
ディーゼルエンジン(排気量:2000cc)の排ガスラインの下流に、過給機があり、該過給機の下流に尿素加水分解用触媒(1)を充填し、排ガスが通気する角柱状反応器(50mm□、60mmL)(装置(B))を設け、その下流の排ガスライン中にNOx除去触媒(1)7.78リットルを充填し、加熱装置(電気炉)を設けた角柱状反応器(250mm□、800mmL)を設けたNOx除去テスト用装置(装置(A))を準備した。
The apparatus (B) was operated while supplying urea water having a concentration of 25% by mass at a constant rate of 295 g / Hr. The temperature of the catalyst layer of the NOx removal catalyst (1) was adjusted to a constant 270 ° C. After 12 hours from the start of operation, the temperature of the catalyst layer of the apparatus (B) became constant at 240 ° C. Next, ammonia gas at the outlet of the apparatus (B) was collected for 10 minutes, the ammonia concentration was measured, the ammonia production rate was determined, and the results are shown in the table.
[Comparative Example 1]
NOx removal reaction Diesel engine (displacement: 2000cc) downstream of the exhaust gas line is a turbocharger, and the urea hydrolysis catalyst (1) is filled downstream of the turbocharger, and the exhaust gas is a prismatic reaction. (50mm □, 60mmL) (Equipment (B)), NOx removal catalyst (1) 7.78 liters filled in the exhaust gas line downstream of it, and prismatic reactor with heating device (electric furnace) A NOx removal test apparatus (apparatus (A)) provided with (250 mm □, 800 mmL) was prepared.

このNOx除去テスト用装置のフローモデルを図3に示す。   A flow model of this NOx removal test apparatus is shown in FIG.

ついで、燃料としてA重油(硫黄濃度:0.4質量%、芳香族濃度28質量%、残留炭素濃度0.3質量%)を用い、エンジンを稼働させた。ついで、エンジンの回転数を120rpmで一定させ、排ガスの一部(910NL/min)を装置(B)から(A)へ供給し、残りの排ガスは系外に排気した。   Subsequently, A heavy oil (sulfur concentration: 0.4 mass%, aromatic concentration 28 mass%, residual carbon concentration 0.3 mass%) was used as the fuel, and the engine was operated. Subsequently, the engine speed was fixed at 120 rpm, a part of the exhaust gas (910 NL / min) was supplied from the device (B) to (A), and the remaining exhaust gas was exhausted outside the system.

一方で、装置(B)に濃度25質量%の尿素水を295g/Hrの一定速度で供給しながら運転した。NOx除去触媒(1)の触媒層の温度を270℃に一定で調整した。運転開始から2時間経過後、隔絶されていない装置(B)の触媒層の温度が240℃で一定となった。ついで、NOx除去反応を行った。   On the other hand, the apparatus (B) was operated while supplying urea water having a concentration of 25 mass% at a constant rate of 295 g / Hr. The temperature of the catalyst layer of the NOx removal catalyst (1) was adjusted to a constant 270 ° C. After 2 hours from the start of operation, the temperature of the catalyst layer of the non-isolated device (B) became constant at 240 ° C. Subsequently, NOx removal reaction was performed.

装置(B)の出口におけるアンモニアガスを10分間採取し、アンモニア濃度を測定し、アンモニアの生成率を求め、結果を表に示す。また、装置(A)の出口におけるNOxガス濃度およびNOx除去率を表に示す。   Ammonia gas at the outlet of the apparatus (B) was collected for 10 minutes, the ammonia concentration was measured, the ammonia production rate was determined, and the results are shown in the table. Further, the table shows the NOx gas concentration and the NOx removal rate at the outlet of the apparatus (A).

また引き続き、300時間運転したのち、同様にアンモニア濃度、アンモニア生成率およびNOxガス濃度、NOx除去率を測定し、結果を表に示す。
[参考例]
NOx除去反応
ディーゼルエンジン(排気量:2000cc)の排ガスラインの下流に過給機を有し、該過給機の下流にNOx除去触媒(1) 7.78リットルを充填した角柱状反応器(150mm□、350mmL)(装置(A))を設け、排ガスラインの外部から尿素を分解して発生するアンモニアガスを装置(A)に導入した。
Further, after 300 hours of operation, ammonia concentration, ammonia generation rate, NOx gas concentration, and NOx removal rate were measured in the same manner, and the results are shown in the table.
[Reference example]
NOx removal reaction Diesel engine (displacement: 2000cc) A prismatic reactor (150 mm) having a supercharger downstream of the exhaust gas line and filled with 7.78 liters of NOx removal catalyst (1) downstream of the supercharger (□, 350 mmL) (apparatus (A)) was provided, and ammonia gas generated by decomposing urea from the outside of the exhaust gas line was introduced into the apparatus (A).

アンモニアガスは、外部に設け、尿素加水分解用触媒(1)を充填し、角柱状反応器(50mm□、60mmL)(装置(B))により生成させた。   Ammonia gas was provided outside, filled with the catalyst for urea hydrolysis (1), and produced by a prismatic reactor (50 mm □, 60 mmL) (apparatus (B)).

このNOx除去テスト用装置のフローモデルを図4に示す。   A flow model of this NOx removal test apparatus is shown in FIG.

ついで、燃料としてA重油(硫黄濃度:0.4質量%、芳香族濃度28質量%、残留炭素濃度0.3質量%)を用い、エンジンを稼働させた。ついで、エンジンの回転数を120rpmで一定させ、排ガスの一部(910NL/min)を下流の装置(A)に供給し、残りの排ガスは系外に排気した。   Subsequently, A heavy oil (sulfur concentration: 0.4 mass%, aromatic concentration 28 mass%, residual carbon concentration 0.3 mass%) was used as the fuel, and the engine was operated. Next, the engine speed was fixed at 120 rpm, a part of the exhaust gas (910 NL / min) was supplied to the downstream device (A), and the remaining exhaust gas was exhausted outside the system.

触媒層の温度を240℃に調整した装置(B)に濃度25質量%の尿素水を295g/Hrの一定速度で供給しながら運転し、生成したアンモニアガスを装置(A)に装入し、NOx除去触媒(1)の触媒層の温度を270℃に一定で調整してNOx除去反応を行った。運転開始から2時間経過後、装置(B)の出口におけるアンモニアガスを10分間採取し、アンモニア濃度を測定し、アンモニアの生成率を求め、結果を表に示す。また、装置(A)の出口におけるNOxガス濃度およびNOx除去率を表に示す。   The apparatus (B) in which the temperature of the catalyst layer was adjusted to 240 ° C. was operated while supplying urea water having a concentration of 25% by mass at a constant rate of 295 g / Hr, and the generated ammonia gas was charged into the apparatus (A). The temperature of the catalyst layer of the NOx removal catalyst (1) was adjusted to 270 ° C. to carry out the NOx removal reaction. After 2 hours from the start of operation, ammonia gas at the outlet of the apparatus (B) was collected for 10 minutes, the ammonia concentration was measured, the ammonia production rate was determined, and the results are shown in the table. Further, the table shows the NOx gas concentration and the NOx removal rate at the outlet of the apparatus (A).

Claims (11)

重油を燃料とする船舶用内燃機関の排ガス系に設けられてなり、排ガス中のNOxを選択還元する装置(A)と、該装置(A)の上流側に、尿素を加水分解してNOx除去用ガスとする尿素加水分解装置(B)を内包した装置(C)とからなり、
装置(B)が、尿素水および空気投入手段と、尿素加水分解触媒とを備え、装置(C)内で排ガスと接触しないよう設けられ、
排ガスは、装置(C)内を通り、装置(A)にて、装置(B)より供給されたNOx除去用ガスと接触するように構成されてなることを特徴とする船舶用排ガス処理装置。
A device (A) for selective reduction of NOx in exhaust gas, which is installed in the exhaust gas system of marine internal combustion engines using heavy oil as fuel, and NOx removal by hydrolysis of urea on the upstream side of the device (A) It consists of a device (C) containing a urea hydrolysis device (B) as a working gas,
The device (B) includes urea water and air input means, and a urea hydrolysis catalyst, and is provided so as not to come into contact with exhaust gas in the device (C).
An exhaust gas treatment apparatus for a ship, characterized in that the exhaust gas passes through the apparatus (C) and is in contact with the NOx removal gas supplied from the apparatus (B) in the apparatus (A).
前記装置(B)を内包する装置(C)の上流に過給機が設けられていることを特徴とする請求項1に記載の船舶用排ガス処理装置。   The exhaust gas treatment apparatus for a ship according to claim 1, wherein a supercharger is provided upstream of the apparatus (C) containing the apparatus (B). 前記内燃機関の定格回転数が50〜250rpmの範囲にあることを特徴とする請求項1または2に記載の船舶用排ガス処理装置。   3. The exhaust gas treatment apparatus for a ship according to claim 1, wherein the rated rotational speed of the internal combustion engine is in a range of 50 to 250 rpm. 前記装置(B)の尿素分解触媒が、酸化チタン系触媒であり、該酸化チタン系触媒が酸化チタン系担体に活性成分としてV、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irからなる群から選ばれる1種以上の金属または金属酸化物が担持されていることを特徴とする請求項1に記載の船舶用排ガス処理装置。   The urea decomposition catalyst of the apparatus (B) is a titanium oxide-based catalyst, and the titanium oxide-based catalyst has V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, 2. The marine exhaust gas treatment apparatus according to claim 1, wherein at least one metal or metal oxide selected from the group consisting of Au, Pd, Y, Ce, Nd, In, and Ir is supported. 前記酸化チタン系担体が、酸化チタン、または酸化チタンとともにSi、W、Mo、Zr、Baから選ばれる元素の少なくとも一種以上の酸化物を含む酸化チタン複合酸化物であることを特徴とする請求項4に記載の船舶用排ガス処理装置。   The titanium oxide-based support is titanium oxide or a titanium oxide composite oxide containing at least one oxide selected from Si, W, Mo, Zr, and Ba together with titanium oxide. 4. A marine exhaust gas treatment apparatus according to 4. 前記酸化チタン系触媒がハニカム状成形体、膜状成形体、コルゲート状成型体または粒状成形体であることを特徴とする請求項4または5に記載の船舶用排ガス処理装置。   The marine exhaust gas treatment apparatus according to claim 4 or 5, wherein the titanium oxide-based catalyst is a honeycomb-shaped molded body, a film-shaped molded body, a corrugated molded body, or a granular molded body. 前記装置(B)の尿素分解触媒がゼオライト系触媒であり、該ゼオライト系触媒がハニカム状成形体、膜状成形体、コルゲート状成型体または粒状成形体であることを特徴とする請求項1または4に記載の船舶用排ガス処理装置。   The urea decomposition catalyst of the apparatus (B) is a zeolitic catalyst, and the zeolitic catalyst is a honeycomb-shaped molded body, a film-shaped molded body, a corrugated molded body, or a granular molded body. 4. A marine exhaust gas treatment apparatus according to 4. 前記装置(B)の尿素分解触媒が、導電性を有するハニカム基材、コルゲート状基材または網状支持体に金属酸化物微粒子が付着した触媒であり、該金属酸化物微粒子がMg、Ca、Ba、La、Ce、Ti、Zr、V、Cr、Mo、W、Mn、Zn、Al、Si、P、Sb 、Cu、Fe、Ru、Co、Reからなる群から選ばれる1種以上の金属酸化物からなることを特徴とする請求項1または4に記載の船舶用排ガス処理装置。   The urea decomposition catalyst of the apparatus (B) is a catalyst in which metal oxide fine particles adhere to a conductive honeycomb substrate, corrugated substrate or network support, and the metal oxide particles are Mg, Ca, Ba One or more metal oxides selected from the group consisting of: La, Ce, Ti, Zr, V, Cr, Mo, W, Mn, Zn, Al, Si, P, Sb, Cu, Fe, Ru, Co, Re The marine exhaust gas treatment device according to claim 1 or 4, wherein the marine exhaust gas treatment device is made of a material. 前記装置(B)の尿素分解触媒の基材がコルゲート状基材であることを特徴とする請求項8に記載の船舶用排ガス処理装置。   The marine exhaust gas treatment apparatus according to claim 8, wherein the base material of the urea decomposition catalyst of the device (B) is a corrugated base material. 前記装置(B)の尿素を分解する際の反応温度が150〜280℃の範囲にあることを特徴とする請求項1または4に記載の船舶用排ガス処理装置。   5. The ship exhaust gas treatment apparatus according to claim 1, wherein a reaction temperature when decomposing urea of the apparatus (B) is in a range of 150 to 280 ° C. 6. 前記装置(A)はNOx除去触媒を備え、該触媒が酸化チタン系触媒であり、該酸化チタン系触媒が酸化チタン系担体に活性金属成分としてV、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irからなる群から選ばれる1種以上の金属が担持されていることを特徴とする請求項1に記載の船舶用排ガス処理装置。   The apparatus (A) includes a NOx removal catalyst, the catalyst is a titanium oxide-based catalyst, and the titanium oxide-based catalyst is added to the titanium oxide-based support as active metal components V, W, Mo, Cr, Mn, Fe, Ni. The exhaust gas treatment apparatus for a marine vessel according to claim 1, wherein one or more metals selected from the group consisting of Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir are supported. .
JP2013548643A 2012-10-02 2013-10-01 Marine exhaust gas treatment equipment Pending JPWO2014054607A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012220139 2012-10-02
JP2012220139 2012-10-02
PCT/JP2013/076638 WO2014054607A1 (en) 2012-10-02 2013-10-01 Shipboard gas treatment apparatus

Publications (1)

Publication Number Publication Date
JPWO2014054607A1 true JPWO2014054607A1 (en) 2016-08-25

Family

ID=50434933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013548643A Pending JPWO2014054607A1 (en) 2012-10-02 2013-10-01 Marine exhaust gas treatment equipment

Country Status (2)

Country Link
JP (1) JPWO2014054607A1 (en)
WO (1) WO2014054607A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993136A (en) * 2018-08-13 2018-12-14 丁文铃 A kind of efficiency of waste gas denitrification apparatus
CN113070054A (en) * 2021-03-02 2021-07-06 中国华电科工集团有限公司 Preparation method of non-supported catalyst, product and application

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016043320A (en) * 2014-08-25 2016-04-04 エヌ・イーケムキャット株式会社 Urea hydrolysis catalyst and selective reduction catalyst using urea hydrolysis material
CN108380220B (en) * 2018-02-07 2021-03-30 福建工程学院 Supported denitration catalyst and preparation method thereof
JP7319653B2 (en) * 2019-03-27 2023-08-02 国立研究開発法人 海上・港湾・航空技術研究所 Exhaust gas treatment method, exhaust gas treatment system and ship equipped with exhaust gas treatment system
CN110433837B (en) * 2019-06-06 2022-04-12 大唐南京环保科技有限责任公司 Denitration and demercuration catalyst for flue gas and preparation method thereof
JP2022015997A (en) * 2020-07-10 2022-01-21 ナブテスコ株式会社 Engine characteristic estimation device, engine characteristic estimation method, engine characteristic estimation program, and engine state estimation device
JP6840283B1 (en) 2020-10-19 2021-03-10 株式会社三井E&Sマシナリー Honeycomb catalyst structure and SCR device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515739A (en) * 1991-03-08 1993-01-26 Sekiyu Sangyo Kasseika Center Supply device and decomposing catalyst for reducing agent for denitration
JP2002068735A (en) * 2000-08-24 2002-03-08 Mitsubishi Heavy Ind Ltd Method for producing ammonia and method for treating exhaust gas
JP2002068736A (en) * 2000-08-24 2002-03-08 Mitsubishi Heavy Ind Ltd Method for generating ammonia and method for treating combustion exhaust gas
JP2006122792A (en) * 2004-10-28 2006-05-18 Hitachi Zosen Corp Urea hydrolysis catalyst, ammonia manufacturing method, and denitration method
JP2009036150A (en) * 2007-08-03 2009-02-19 Toyota Motor Corp Reducer-adding device of internal combustion engine
JP2009197762A (en) * 2008-02-25 2009-09-03 Jgc Catalysts & Chemicals Ltd Exhaust gas treatment device
JP2009214045A (en) * 2008-03-11 2009-09-24 Jgc Catalysts & Chemicals Ltd Exhaust gas treatment device
JP2011032952A (en) * 2009-08-04 2011-02-17 Ne Chemcat Corp Exhaust emission control device for ship and method for exhaust emission control
JP2013124555A (en) * 2011-12-13 2013-06-24 Hitachi Zosen Corp Aqueous urea spraying structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515739A (en) * 1991-03-08 1993-01-26 Sekiyu Sangyo Kasseika Center Supply device and decomposing catalyst for reducing agent for denitration
JP2002068735A (en) * 2000-08-24 2002-03-08 Mitsubishi Heavy Ind Ltd Method for producing ammonia and method for treating exhaust gas
JP2002068736A (en) * 2000-08-24 2002-03-08 Mitsubishi Heavy Ind Ltd Method for generating ammonia and method for treating combustion exhaust gas
JP2006122792A (en) * 2004-10-28 2006-05-18 Hitachi Zosen Corp Urea hydrolysis catalyst, ammonia manufacturing method, and denitration method
JP2009036150A (en) * 2007-08-03 2009-02-19 Toyota Motor Corp Reducer-adding device of internal combustion engine
JP2009197762A (en) * 2008-02-25 2009-09-03 Jgc Catalysts & Chemicals Ltd Exhaust gas treatment device
JP2009214045A (en) * 2008-03-11 2009-09-24 Jgc Catalysts & Chemicals Ltd Exhaust gas treatment device
JP2011032952A (en) * 2009-08-04 2011-02-17 Ne Chemcat Corp Exhaust emission control device for ship and method for exhaust emission control
JP2013124555A (en) * 2011-12-13 2013-06-24 Hitachi Zosen Corp Aqueous urea spraying structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993136A (en) * 2018-08-13 2018-12-14 丁文铃 A kind of efficiency of waste gas denitrification apparatus
CN113070054A (en) * 2021-03-02 2021-07-06 中国华电科工集团有限公司 Preparation method of non-supported catalyst, product and application
CN113070054B (en) * 2021-03-02 2023-07-14 中国华电科工集团有限公司 Preparation method, product and application of non-supported catalyst

Also Published As

Publication number Publication date
WO2014054607A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
WO2014054607A1 (en) Shipboard gas treatment apparatus
JP6480053B2 (en) Chabazite zeolite catalyst with low silica / alumina ratio
US8883100B2 (en) Particle reduction with combined SCR and NH3 slip catalyst
US9597671B2 (en) Catalyst for treating exhaust gas
JP5110954B2 (en) Exhaust gas purification catalyst apparatus using selective reduction catalyst and exhaust gas purification method
JP5769708B2 (en) Exhaust gas purification apparatus and exhaust gas purification method using selective reduction catalyst
JP4617253B2 (en) NOx removal catalyst, honeycomb structure type NOx removal catalyst, and NOx removal method using the same
EP1985353B1 (en) Exhaust gas purification catalyst for automobile, exhaust gas purification catalyst system and purifying process of exhaust gas
JP5769732B2 (en) Selective reduction catalyst, exhaust gas purification apparatus and exhaust gas purification method using the same
WO2016057456A1 (en) Molecular sieve catalyst for treating exhaust gas
KR20030070827A (en) Process for purification of exhaust gases and catalyst used for purification of exhaust gases in this process
JP2016043320A (en) Urea hydrolysis catalyst and selective reduction catalyst using urea hydrolysis material
JP2006289211A (en) Ammonia oxidation catalyst
JP2007330856A (en) Denitration catalyst composition, integral denitration catalyst, and denitration method employing the same
JP5174488B2 (en) Exhaust gas treatment equipment
JP5241277B2 (en) Exhaust gas treatment equipment
JP4644605B2 (en) Denitration catalyst composition, monolithic structure type denitration catalyst, and denitration method using the same
Banús et al. Structured catalysts for soot combustion for diesel engines
WO2024029290A1 (en) Exhaust gas treatment system
JP2014113590A (en) Method for producing aluminum phosphate-modified metal-supported crystalline silica aluminophosphate catalyst

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701