JP2011220280A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2011220280A
JP2011220280A JP2010092203A JP2010092203A JP2011220280A JP 2011220280 A JP2011220280 A JP 2011220280A JP 2010092203 A JP2010092203 A JP 2010092203A JP 2010092203 A JP2010092203 A JP 2010092203A JP 2011220280 A JP2011220280 A JP 2011220280A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
pipe
evaporation pipe
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010092203A
Other languages
Japanese (ja)
Other versions
JP5582854B2 (en
Inventor
Shinji Baba
真二 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2010092203A priority Critical patent/JP5582854B2/en
Publication of JP2011220280A publication Critical patent/JP2011220280A/en
Application granted granted Critical
Publication of JP5582854B2 publication Critical patent/JP5582854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To miniaturize a device, and to prevent the degradation of the performance of the denitration catalyst device caused by the adsorption of an intermediate product such as an acid ammonium sulfate, even if a large amount of sulfur components are included in fuel.SOLUTION: The exhaust emission control device 1 includes: an exhaust manifold 6 which collects exhaust gas discharged form an exhaust connecting duct 3 connected to an exhaust port 2a of an engine 2, and leads the exhaust gas to an exhaust passage 5 on the upstream side of a turbine 4a of a turbocharger 4; and the denitration catalyst device 7 arranged at the exhaust passage 5. An evaporator 8 which is connected to the exhaust passage 5 at its one end 8a, and in which the other opening end 8b is opened in the exhaust manifold 6 is arranged in the exhaust manifold 6. Furthermore, a nozzle 9 which can spray an urea aqueous solution 9a to the exhaust gas passing through the evaporator 8 is arranged in the device. The wall surface of the evaporator 8 arranged in the exhaust manifold 6 is heated by high temperature exhaust gas immediately after being discharged from the exhaust connecting duct 3, thus achieving space saving, and preventing the generation of the intermediate product.

Description

本発明は、内燃機関から排出される排気ガス中の窒素酸化物(以下「NOx 」という。)をSCR(Selective Catalytic Reduction:選択触媒還元)等の脱硝触媒下で還元剤と反応させて還元除去する、排気ガス浄化装置に関するものである。   The present invention reduces and removes nitrogen oxide (hereinafter referred to as “NOx”) in exhaust gas discharged from an internal combustion engine by reacting with a reducing agent under a denitration catalyst such as SCR (Selective Catalytic Reduction). The present invention relates to an exhaust gas purification device.

従来、例えばディーゼルエンジンの排気管の下流にSCR触媒を用いた脱硝反応器を介装すると共に、この脱硝反応器の上流側に高濃度の尿素と低濃度のアンモニアを含む還元剤組成物の水溶液を排気ガス中に噴霧するノズルを設け、脱硝反応器で排気ガス中のNOx を窒素と水に分解して無害化する技術が利用されている(例えば、特許文献1の図1)。   Conventionally, for example, a denitration reactor using an SCR catalyst is installed downstream of an exhaust pipe of a diesel engine, and an aqueous solution of a reducing agent composition containing high-concentration urea and low-concentration ammonia upstream of the denitration reactor. A technique is used in which NOx in the exhaust gas is decomposed into nitrogen and water and rendered harmless by a NOx removal reactor with a nozzle for spraying the gas into the exhaust gas (for example, FIG. 1 of Patent Document 1).

また、従来、例えば図6に示すような4気筒の舶用ディーゼルエンジン101には、排気ポート101a,101b,101c,101dから排出される排気ガスを集合して排気管103に導く排気マニホールド102が取り付けられている。   Conventionally, for example, a four-cylinder marine diesel engine 101 as shown in FIG. 6 is provided with an exhaust manifold 102 that collects exhaust gases discharged from exhaust ports 101a, 101b, 101c, and 101d and guides them to an exhaust pipe 103. It has been.

そして、この排気マニホールド102とターボチャージャー107のタービン107aとの間の排気管103には、排気ガス中にアンモニア等の還元剤の水溶液又は尿素等の還元剤前駆体の水溶液を噴霧して供給するノズル104と、このノズル104から噴霧された還元剤又は還元剤前駆体の水溶液を気化又は加水分解してアンモニアガス等の還元剤を発生させるための蒸発管105と、排気ガス中のNOx を還元剤と選択的に還元反応させて浄化するSCR触媒106が設けられている。   An exhaust pipe 103 between the exhaust manifold 102 and the turbine 107a of the turbocharger 107 is supplied by spraying an aqueous solution of a reducing agent such as ammonia or an aqueous solution of a reducing agent precursor such as urea into the exhaust gas. Nozzle 104, evaporation pipe 105 for generating a reducing agent such as ammonia gas by vaporizing or hydrolyzing an aqueous solution of the reducing agent or reducing agent precursor sprayed from nozzle 104, and reducing NOx in the exhaust gas There is provided an SCR catalyst 106 that purifies by selective reduction reaction with the agent.

このように、SCR触媒106を設ける位置をタービン107aの上流側としている理由は、タービン107aの下流側は排気ガスの温度が下がるため、触媒性能上不利となるからである。   Thus, the reason why the position where the SCR catalyst 106 is provided is on the upstream side of the turbine 107a is that the exhaust gas temperature is lowered on the downstream side of the turbine 107a, which is disadvantageous in terms of catalyst performance.

しかし、ターボチャージャー107のタービン107aの上流側にSCR触媒106を設ける構成の場合、ディーゼルエンジン101の排気系では排気マニホールド102が大きな容積を占めている上、さらに蒸発管105とSCR触媒106を設ける必要がある。よって、これらの装置が機関室においてかなりの容積を占有することになるため、スペース効率が悪いという問題があった。   However, in the case where the SCR catalyst 106 is provided upstream of the turbine 107 a of the turbocharger 107, the exhaust manifold 102 occupies a large volume in the exhaust system of the diesel engine 101, and the evaporation pipe 105 and the SCR catalyst 106 are further provided. There is a need. Therefore, since these devices occupy a considerable volume in the engine room, there is a problem that the space efficiency is poor.

また、燃料中に硫黄分が含まれている場合、排気ガス中にSO2 が発生し、ノズル104からアンモニア、尿素等の水溶液を噴霧すると、蒸発管105の温度が低い場合は、例えば硫酸アンモニウム((NH42 SO4 )や酸性硫安(NH4 HSO4 )などの中間成生物が発生し、この中間生成物がSCR触媒106上に吸着してしまい、触媒性能が低下するという問題点もあった。 Further, when sulfur is contained in the fuel, SO 2 is generated in the exhaust gas, and when an aqueous solution such as ammonia or urea is sprayed from the nozzle 104, when the temperature of the evaporation pipe 105 is low, for example, ammonium sulfate ( An intermediate product such as (NH 4 ) 2 SO 4 ) or acidic ammonium sulfate (NH 4 HSO 4 ) is generated, and this intermediate product is adsorbed on the SCR catalyst 106, resulting in a decrease in catalyst performance. there were.

特に、舶用ディーゼルエンジンでは、ガソリンよりも硫黄分を多く含んだ軽油や重油などの燃料が用いられているため、中間成生物の吸着によるSCR触媒の性能低下の問題が生じやすい。   In particular, since marine diesel engines use fuels such as light oil and heavy oil that contain more sulfur than gasoline, there is a problem that the performance of the SCR catalyst deteriorates due to the adsorption of intermediate products.

特開2003−260331号公報JP 2003-260331 A

本発明が解決しようとする問題点は、従来の排気ガス浄化装置は、排気マニホールドと蒸発管が大きな容積を占めてスペース効率が悪かった点、及び、燃料中に硫黄分が含まれる場合、硫酸アンモニウムや酸性硫安などの中間生成物が発生してSCR触媒に吸着し、触媒性能を低下させていた点である。   The problems to be solved by the present invention are that the conventional exhaust gas purifying apparatus has a large volume due to the exhaust manifold and the evaporation pipe, and the space efficiency is poor, and if the fuel contains sulfur, ammonium sulfate Intermediate products such as ammonium sulfate and ammonium sulfate are generated and adsorbed on the SCR catalyst, which deteriorates the catalyst performance.

本発明の排気ガス浄化装置は、
エンジンの排気ポートに接続された排気連絡管から排出された排気ガスを集合し、ターボチャージャーのタービンの上流側の排気通路に導く排気マニホールドと、前記排気通路に設けられた脱硝触媒装置とを備え、
前記排気マニホールドの内部に一端が前記排気通路と接続され他方の開放端が前記排気マニホールド内に開放された蒸発管を設けると共に、前記蒸発管内を通過する排気ガスに対して還元剤、還元剤前駆体の双方または何れか一方を含む水溶液を噴霧可能なノズルを備えたことを最も主要な特徴点としている。
The exhaust gas purifying apparatus of the present invention is
An exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of the engine and guides the exhaust gas to an exhaust passage upstream of the turbine of the turbocharger, and a denitration catalyst device provided in the exhaust passage ,
An evaporation pipe having one end connected to the exhaust passage and the other open end opened in the exhaust manifold is provided inside the exhaust manifold, and a reducing agent and a reducing agent precursor are provided for the exhaust gas passing through the evaporation pipe. The most important feature is that a nozzle capable of spraying an aqueous solution containing either or both of the body is provided.

本発明の排気ガス浄化装置は、排気マニホールドの内部に蒸発管を設けたので、装置のサイズが小型化できる。加えて、本発明の排気ガス浄化装置では、排気連絡管から排出された直後の高温の排気ガスにより蒸発管の壁面が十分に加熱されるので、燃料中に硫黄分が多く含まれる場合でも、排気ガスが蒸発管の壁面で冷却されてしまうことがなく、硫酸アンモニウムや酸性硫安などの中間生成物の発生を防止できる。よって、本発明によれば、脱硝触媒装置への中間生成物の吸着を防止することができ、触媒性能を良好に維持できる。   Since the exhaust gas purification apparatus of the present invention is provided with the evaporation pipe inside the exhaust manifold, the size of the apparatus can be reduced. In addition, in the exhaust gas purification apparatus of the present invention, the wall surface of the evaporation pipe is sufficiently heated by the high-temperature exhaust gas immediately after being discharged from the exhaust communication pipe, so even if the fuel contains a large amount of sulfur, The exhaust gas is not cooled by the wall surface of the evaporation pipe, and generation of intermediate products such as ammonium sulfate and acidic ammonium sulfate can be prevented. Therefore, according to the present invention, the adsorption of the intermediate product to the denitration catalyst device can be prevented, and the catalyst performance can be maintained well.

本発明の排気ガス浄化装置の全体構成を示した概略図である。It is the schematic which showed the whole structure of the exhaust-gas purification apparatus of this invention. 図1において、蒸発管が組み込まれた排気マニホールドとエンジンのシリンダヘッド付近の縦断面を示した概略図である。In FIG. 1, it is the schematic which showed the longitudinal cross-section of the exhaust manifold in which the evaporation pipe | tube was incorporated, and the cylinder head vicinity of an engine. 排気連絡管を排気ガスの排出方向に延長した範囲内に蒸発管が存在しない向きに排気連絡管を配設した、他の実施例の説明図で、(a),(b)は排気連絡管の排気口を上方に向けて配設する場合の構成を、(c)は排気連絡管の中心の位置よりも蒸発管の中心の位置を下方にずらすと共に、排気連絡管は水平方向に配設する場合の構成を示した図である。FIG. 6 is an explanatory diagram of another embodiment in which the exhaust communication pipe is disposed in a direction in which the evaporation pipe does not exist within the range in which the exhaust communication pipe is extended in the exhaust gas discharge direction, and (a) and (b) are the exhaust communication pipes. (C) is a configuration in which the center of the evaporation pipe is shifted downward from the center position of the exhaust communication pipe, and the exhaust communication pipe is arranged in the horizontal direction. It is the figure which showed the structure in the case of doing. 蒸発管の長手方向と直交する方向よりも開放端側に傾斜させて排気連絡管を配設した、他の実施例の説明図で、(a)は排気連絡管を蒸発管の側方に位置させる場合の構成を、(b)は排気連絡管の排気口を蒸発管の上方に位置させる場合の構成を示した図である。It is explanatory drawing of the other Example which inclined the open end side rather than the direction orthogonal to the longitudinal direction of an evaporation pipe | tube, and has arrange | positioned the exhaust communication pipe | tube, (a) is located in the side of an evaporation pipe | tube. (B) is a diagram showing a configuration when the exhaust port of the exhaust communication pipe is positioned above the evaporation pipe. 脱硝処理が不要なときは脱硝触媒装置に排気を送らずにバイパスするための切換弁を備えた、他の実施例の構成を説明する図である。It is a figure explaining the structure of the other Example provided with the switching valve for bypassing, without sending exhaust_gas | exhaustion to a denitration catalyst apparatus when a denitration process is unnecessary. 従来の舶用ディーゼルエンジンの構成を示す概略図である。It is the schematic which shows the structure of the conventional marine diesel engine.

本発明は、エンジンの排気ガス浄化装置において、省スペース化を図ると共に、燃料中に硫黄分が含まれる場合でも、硫酸アンモニウムや酸性硫安などの中間生成物の吸着による脱硝触媒装置の性能低下を防止するという目的を、
エンジンの排気ポートに接続された排気連絡管から排出された排気ガスを集合し、ターボチャージャーのタービンの上流側の排気通路に導く排気マニホールドと、前記排気通路に設けられた脱硝触媒装置とを備え、
前記排気マニホールドの内部に一端が前記排気通路と接続され他方の開放端が前記排気マニホールド内に開放された蒸発管を設けると共に、前記蒸発管内を通過する排気ガスに対して還元剤、還元剤前駆体の双方または何れか一方を含む水溶液を噴霧可能なノズルを備えた構成とすることによって実現した。
The present invention aims to save space in an exhaust gas purifying apparatus for an engine, and prevents the performance of the denitration catalyst apparatus from being deteriorated due to adsorption of intermediate products such as ammonium sulfate and acidic ammonium sulfate even when the fuel contains sulfur. The purpose of
An exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of the engine and guides the exhaust gas to an exhaust passage upstream of the turbine of the turbocharger, and a denitration catalyst device provided in the exhaust passage ,
An evaporation pipe having one end connected to the exhaust passage and the other open end opened in the exhaust manifold is provided inside the exhaust manifold, and a reducing agent and a reducing agent precursor are provided for the exhaust gas passing through the evaporation pipe. This was achieved by providing a nozzle capable of spraying an aqueous solution containing either or both of the bodies.

前記本発明の排気ガス浄化装置において、
排気ガスの排出方向に延長した範囲内に前記蒸発管が存在しない向きに前記排気連絡管を配設した構成とした場合は、
排気連絡管から排出された高温の排気ガスは、蒸発管に直接当たらず排気マニホールド内を蒸発管の周方向に流れるので、蒸発管を排気連絡管の排気口に面した片側から加熱するのではなく蒸発管の外周全体を効率良く加熱できて、好適である。
In the exhaust gas purification apparatus of the present invention,
When the exhaust communication pipe is arranged in a direction in which the evaporation pipe does not exist within the range extended in the exhaust gas discharge direction,
The high-temperature exhaust gas discharged from the exhaust communication pipe does not directly hit the evaporation pipe, but flows in the exhaust manifold in the circumferential direction of the evaporation pipe, so it is not necessary to heat the evaporation pipe from one side facing the exhaust outlet of the exhaust communication pipe Therefore, the entire outer periphery of the evaporation pipe can be efficiently heated, which is preferable.

また、前記本発明の排気ガス浄化装置において、
前記排気連絡管は、前記蒸発管の長手方向と直交する方向よりも前記開放端側に傾斜させて配設した構成とした場合は、
排気連絡管から排出された高温の排気ガスは、蒸発管の外側を開放端側に向けて流れるので、排気マニホールド内の排気が蒸発管の長手方向全体を加熱しつつ流れることになって、好適である。
In the exhaust gas purifying apparatus of the present invention,
When the exhaust communication pipe is configured to be inclined to the open end side from the direction orthogonal to the longitudinal direction of the evaporation pipe,
The high-temperature exhaust gas discharged from the exhaust communication pipe flows outside the evaporation pipe toward the open end, so that the exhaust in the exhaust manifold flows while heating the entire length of the evaporation pipe. It is.

さらに、前記本発明の排気ガス浄化装置において、
前記排気連絡管は、排気ガスの排出方向に延長した範囲内に前記蒸発管が存在しない向きに配設すると共に、前記蒸発管の長手方向と直交する方向よりも前記開放端側に傾斜させて配設した構成とした場合は、
排気連絡管から排出された高温の排気ガスは、蒸発管の外周を蒸発管の開放端側に向けて螺旋状に流れるので、蒸発管の全周及び長手方向全体を効率良く加熱しつつ排気マニホールド内の排気の流れもさらに良好となって、最も好適である。
Furthermore, in the exhaust gas purification apparatus of the present invention,
The exhaust communication pipe is disposed in a direction in which the evaporation pipe does not exist within a range extending in the exhaust gas discharge direction, and is inclined toward the open end side from a direction orthogonal to the longitudinal direction of the evaporation pipe. If the configuration is arranged,
The high-temperature exhaust gas discharged from the exhaust communication pipe flows spirally toward the open end of the evaporation pipe toward the open end side of the evaporation pipe, so that the exhaust manifold is heated while efficiently heating the entire circumference and the entire length of the evaporation pipe. The flow of the exhaust in the inside is further improved and is most preferable.

以下、本発明を実施するための種々の形態を、図1〜図5を用いて詳細に説明する。図1において、1は、本発明を4気筒の舶用ディーゼルエンジンに適用した排気ガス浄化装置であり、エンジン2の各シリンダヘッドに設けられた排気ポート2aに夫々接続された排気連絡管3から排出された排気ガスを集合し、ターボチャージャー4のタービン4aの上流側の排気通路5に導く排気マニホールド6と、排気通路5に設けられた脱硝触媒装置7とを備えている。なお、5aはタービン4aの下流側の排気通路を、4bは給気通路12aから給気された空気を圧縮するターボチャージャー4のコンプレッサーを、10は給気通路12から送り込まれた圧縮空気を給気連絡管11を介してエンジン2の各シリンダの給気ポート2bに分配する給気マニホールドを示している。   Hereinafter, various modes for carrying out the present invention will be described in detail with reference to FIGS. In FIG. 1, reference numeral 1 denotes an exhaust gas purification device in which the present invention is applied to a four-cylinder marine diesel engine, and exhausts from exhaust communication pipes 3 connected to exhaust ports 2 a provided in each cylinder head of the engine 2. An exhaust manifold 6 that collects the exhaust gas that has been collected and guides the exhaust gas to an exhaust passage 5 upstream of the turbine 4 a of the turbocharger 4, and a denitration catalyst device 7 that is provided in the exhaust passage 5 are provided. Reference numeral 5a denotes an exhaust passage on the downstream side of the turbine 4a, 4b denotes a compressor of the turbocharger 4 that compresses air supplied from the air supply passage 12a, and 10 denotes compressed air supplied from the air supply passage 12. An air supply manifold that distributes to the air supply port 2b of each cylinder of the engine 2 via the air communication pipe 11 is shown.

排気マニホールド6の内部には、一端8aが排気通路5と接続され他方の開放端8bが排気マニホールド6内に開放された蒸発管8を設けると共に、排気連絡管3の排気口から排出され、前記蒸発管8内を通過する排気ガスに対し、開放端8bの近傍で尿素水9aを噴霧可能な位置にノズル9を設けている。   Inside the exhaust manifold 6 is provided an evaporation pipe 8 whose one end 8 a is connected to the exhaust passage 5 and whose other open end 8 b is opened in the exhaust manifold 6, and is discharged from the exhaust port of the exhaust communication pipe 3. A nozzle 9 is provided at a position where urea water 9a can be sprayed in the vicinity of the open end 8b with respect to the exhaust gas passing through the evaporation pipe 8.

脱硝触媒装置7には、エンジン2から排出される排気ガス中に含まれ、酸性雨や光化学スモッグなどの環境汚染の原因となるNOx を選択的に還元除去するSCR触媒が実装されている。SCR触媒は、例えばアルミナ、ジルコニア、バナジア/チタニア等の金属酸化物系触媒やゼオライト系触媒など所望の触媒を使用することができ、これらの触媒を組み合わせても良い。また、SCR触媒は、ハニカム構造を有する触媒担体に担持させても良いし、筒体に装入してケージングさせても良い。   The denitration catalyst device 7 is mounted with an SCR catalyst that selectively reduces and removes NOx contained in the exhaust gas discharged from the engine 2 and causing environmental pollution such as acid rain and photochemical smog. As the SCR catalyst, a desired catalyst such as a metal oxide catalyst such as alumina, zirconia, vanadia / titania or a zeolite catalyst can be used, and these catalysts may be combined. Further, the SCR catalyst may be supported on a catalyst carrier having a honeycomb structure, or may be charged in a cylinder and caged.

SCR触媒を利用して排気ガス中のNOx を窒素と水に分解して無害化する場合、その上流側で排気ガス中にアンモニア等の還元剤を供給する必要があるが、アンモニア水を船内に貯蔵しておくことは危険を伴う。よって、本実施例ではノズル9と接続されたタンク(不図示)に還元剤前駆体として尿素を水溶液の状態で貯蔵しておき、運転時にノズル9から尿素水9aを蒸発管8内に噴射し、蒸発管8の熱を利用して尿素を加水分解してアンモニアを発生させるようにしている。   When NOx in exhaust gas is decomposed into nitrogen and water using an SCR catalyst to make it harmless, it is necessary to supply a reducing agent such as ammonia into the exhaust gas upstream, but ammonia water is put into the ship. Storing is dangerous. Therefore, in this embodiment, urea is stored as a reducing agent precursor in an aqueous solution state in a tank (not shown) connected to the nozzle 9, and urea water 9 a is injected from the nozzle 9 into the evaporation pipe 8 during operation. The urea is hydrolyzed using the heat of the evaporation pipe 8 to generate ammonia.

蒸発管8は、一端8aが排気通路5と接続され他方の開放端8bが排気マニホールド6内に開放された管状の部材である。図1の実施例では、開放端8bの近傍に尿素水9aを噴霧するノズル9を設けると共に、前記ノズル9の下流側に蒸発管8内の排気ガスを整流するための整流器8cを設け、さらに前記整流器8cの下流側にノズル9から噴霧された尿素水9aが加水分解されて生じたアンモニアガスと排気ガスを蒸発管8内で十分に混合するためスタティックミキサー8dを設けている。   The evaporation pipe 8 is a tubular member having one end 8 a connected to the exhaust passage 5 and the other open end 8 b opened in the exhaust manifold 6. In the embodiment of FIG. 1, a nozzle 9 for spraying urea water 9a is provided in the vicinity of the open end 8b, and a rectifier 8c for rectifying the exhaust gas in the evaporation pipe 8 is provided downstream of the nozzle 9, A static mixer 8d is provided on the downstream side of the rectifier 8c in order to sufficiently mix ammonia gas and exhaust gas generated by hydrolysis of the urea water 9a sprayed from the nozzle 9 in the evaporation pipe 8.

よって、図1の実施例では、排気マニホールド6の内部に、整流器8c及びスタティックミキサー8dを備えた蒸発管8の全部が組み込まれているので、タービン4aの上流側の排気通路5に排気マニホールドと蒸発管が併設されていた従来の装置と比較すると省スペース化が図れ、装置のサイズがコンパクトになる。   Therefore, in the embodiment of FIG. 1, since the entire evaporating pipe 8 including the rectifier 8c and the static mixer 8d is incorporated inside the exhaust manifold 6, the exhaust manifold and the exhaust manifold 5 are provided in the exhaust passage 5 upstream of the turbine 4a. Space can be saved and the size of the device can be reduced compared to a conventional device in which an evaporation tube is provided.

なお、一般に、ターボチャージャー4を備えたエンジン2においては、加速途中などの過渡状態ではエンジン2の出力の増大要求に対しターボチャージャー4がむしろ障害となって給気に導入遅れが生じるなど過渡応答での制御遅れが生じる場合があるが、本発明では、タービン4aの上流側の排気通路5に排気マニホールドと蒸発管が併設されていた従来の装置と比較すると、ターボチャージャー4に至る排気の経路を短くすることができるので、排気制御も容易となる。   In general, in an engine 2 equipped with a turbocharger 4, in a transient state such as during acceleration, a transient response such as a delay in introduction of the supply air due to the turbocharger 4 rather being a hindrance to a request for increasing the output of the engine 2 In the present invention, the exhaust path to the turbocharger 4 is compared with the conventional apparatus in which the exhaust manifold and the evaporation pipe are provided in the exhaust passage 5 upstream of the turbine 4a. Therefore, exhaust control is also facilitated.

また、図1の実施例では、エンジン2の各シリンダの排気ポート2aに接続された排気連絡管3の排気口に夫々対向するように、蒸発管8の長手方向が排気連絡管3の排気口の列設方向と平行となるように蒸発管8を排気マニホールド6の内部に配置している。したがって、排気連絡管3から排出された直後の高温の排気ガスにより蒸発管8の壁面が加熱されるので、燃料中に硫黄分が多く含まれる例えば舶用ディーゼルエンジンに適用する場合でも、脱硝触媒装置7の性能低下の原因となる硫酸アンモニウムや酸性硫安などの中間生成物の発生を低減でき、SCR触媒のNOx 浄化性能を良好に維持できる。   In the embodiment of FIG. 1, the longitudinal direction of the evaporation pipe 8 is the exhaust port of the exhaust communication pipe 3 so as to face the exhaust port of the exhaust communication pipe 3 connected to the exhaust port 2 a of each cylinder of the engine 2. The evaporation pipe 8 is arranged inside the exhaust manifold 6 so as to be parallel to the arrangement direction of Accordingly, since the wall surface of the evaporation pipe 8 is heated by the high-temperature exhaust gas immediately after being discharged from the exhaust communication pipe 3, even when applied to, for example, a marine diesel engine in which the fuel contains a large amount of sulfur, the denitration catalyst device 7 can reduce the generation of intermediate products such as ammonium sulfate and acidic ammonium sulfate that cause the performance degradation, and the NOx purification performance of the SCR catalyst can be maintained well.

次に、排気マニホールド6内に開口している排気連絡管3の排気口と蒸発管8の位置関係や排気連絡管3の配設方向について説明する。図2は、図1の実施例において、蒸発管8が組み込まれた排気マニホールド6とエンジン2のシリンダヘッド付近の縦断面を示した説明図である。2dは排気ポート2aと給気ポート2bを備えたシリンダヘッド、2cはシリンダライナを備えたシリンダブロック、2eはクランク2fと連結されたピストンを示している。矢印11bは、燃料噴射ノズル11aから気筒内に直接噴射される燃料の供給方向、矢印11cはターボチャージャー4のコンプレッサー4bにより圧縮された空気の導入方向を示している。   Next, the positional relationship between the exhaust port 8 of the exhaust communication pipe 3 opened in the exhaust manifold 6 and the evaporation pipe 8 and the arrangement direction of the exhaust communication pipe 3 will be described. FIG. 2 is an explanatory view showing a longitudinal section in the vicinity of the cylinder head of the engine 2 and the exhaust manifold 6 in which the evaporation pipe 8 is incorporated in the embodiment of FIG. 2d is a cylinder head having an exhaust port 2a and an air supply port 2b, 2c is a cylinder block having a cylinder liner, and 2e is a piston connected to a crank 2f. An arrow 11b indicates a supply direction of the fuel directly injected into the cylinder from the fuel injection nozzle 11a, and an arrow 11c indicates an introduction direction of the air compressed by the compressor 4b of the turbocharger 4.

図2の例では、排気連絡管3の中心と蒸発管8の中心は同じ高さ位置とされ、排気連絡管3は蒸発管8の中心に向けて配設している。この場合、排気連絡管3を排気ガスの排出方向に延長した範囲内(図中符号Aで示した点線の範囲内)に蒸発管8が存在することになる。   In the example of FIG. 2, the center of the exhaust communication pipe 3 and the center of the evaporation pipe 8 are at the same height, and the exhaust communication pipe 3 is disposed toward the center of the evaporation pipe 8. In this case, the evaporating pipe 8 is present within the range in which the exhaust communication pipe 3 is extended in the exhaust gas discharge direction (within the dotted line indicated by the symbol A in the figure).

よって、図2のように構成する場合は、排気連絡管3の排気口から排出された排気ガスは、矢印Bに示すように蒸発管8に直接当たり、その後上下に分かれて蒸発管8の裏側に進むことになる。   Therefore, in the case of the configuration shown in FIG. 2, the exhaust gas discharged from the exhaust port of the exhaust communication pipe 3 directly hits the evaporation pipe 8 as shown by the arrow B, and then is divided into upper and lower parts and the back side of the evaporation pipe 8 Will proceed to.

これに対し、図3(a),(b)に示す実施例では、排気連絡管3の排気口3aを上方に向けて配設している。この場合、排気連絡管3を排気ガスの排出方向に延長した範囲内(図中符号Aで示した点線の範囲内)に蒸発管8が存在しないことになる。   On the other hand, in the embodiment shown in FIGS. 3A and 3B, the exhaust port 3a of the exhaust communication pipe 3 is disposed upward. In this case, the evaporation pipe 8 does not exist within the range in which the exhaust communication pipe 3 is extended in the exhaust gas discharge direction (within the dotted line indicated by the symbol A in the figure).

また、図3(c)に示す実施例では、排気連絡管3の中心の位置よりも蒸発管8の中心の位置を下方にずらすと共に、排気連絡管3は水平方向に配設している。この場合も、排気連絡管3を排気ガスの排出方向に延長した範囲内(図中符号Aで示した点線の範囲内)に蒸発管8は存在しないことになる。   Further, in the embodiment shown in FIG. 3C, the center position of the evaporation pipe 8 is shifted downward from the center position of the exhaust communication pipe 3, and the exhaust communication pipe 3 is disposed in the horizontal direction. Also in this case, the evaporation pipe 8 does not exist within the range in which the exhaust communication pipe 3 is extended in the exhaust gas discharge direction (within the dotted line indicated by the symbol A in the figure).

よって、図3のように構成する場合は、排気連絡管3の排気口3aから排出された高温の排気ガスは、蒸発管8に直接当たらず、矢印Bに示すように蒸発管8の周方向に流れるので、蒸発管8を排気連絡管3の排気口3aに面した片側の面のみから加熱するのではなく、蒸発管8の外周全体から効率良く加熱できて、好適である。   Therefore, when configured as shown in FIG. 3, the high-temperature exhaust gas discharged from the exhaust port 3 a of the exhaust communication pipe 3 does not directly hit the evaporation pipe 8, but the circumferential direction of the evaporation pipe 8 as shown by the arrow B Therefore, the evaporation pipe 8 is not heated only from one side facing the exhaust port 3a of the exhaust communication pipe 3, but can be efficiently heated from the entire outer periphery of the evaporation pipe 8.

なお、図3(a)の例では、排気口3aの開口端は排気連絡管3の長手方向と直交する向きに形成しているが、(b),(c)の例では、排気マニホールド6内に突出した排気連絡管3の先端部が蒸発管8の周方向に流れる排気ガスの流れを阻害しないように、排気口3aの開口端を排気連絡管3の長手方向に対して斜めに形成すると共に(図3の例では例えば45°にカットしている。)、この斜めにカットされた開口端の先端が排気マニホールド6の内周面側に位置するように、排気連絡管3を配設している。   In the example of FIG. 3A, the opening end of the exhaust port 3a is formed in a direction orthogonal to the longitudinal direction of the exhaust communication pipe 3. However, in the examples of FIGS. The opening end of the exhaust port 3 a is formed obliquely with respect to the longitudinal direction of the exhaust communication pipe 3 so that the tip of the exhaust communication pipe 3 protruding inward does not hinder the flow of exhaust gas flowing in the circumferential direction of the evaporation pipe 8. (In the example of FIG. 3, for example, it is cut at 45 °), and the exhaust communication pipe 3 is arranged so that the tip of the obliquely cut open end is located on the inner peripheral surface side of the exhaust manifold 6. Has been established.

図4は、蒸発管8の長手方向と直交する方向(図中点線Cで示した方向)よりも蒸発管8の開放端8b側に傾斜させて排気連絡管3を夫々配設した、他の実施例の構成を説明する図である。排気マニホールド6のみ上下方向の中央部の位置で水平方向に切断した状態を図示している。   FIG. 4 shows another example in which the exhaust communication pipes 3 are arranged so as to be inclined toward the open end 8b side of the evaporation pipe 8 from the direction orthogonal to the longitudinal direction of the evaporation pipe 8 (the direction indicated by the dotted line C in the figure). It is a figure explaining the structure of an Example. Only the exhaust manifold 6 is shown as being cut in the horizontal direction at the center position in the vertical direction.

図4(a)の例では、排気連絡管3は蒸発管8の側方に位置しており、蒸発管8の長手方向と直交する方向(図中点線Cで示した方向)と排気連絡管3の配設方向のなす角度θは例えば30°としている。   In the example of FIG. 4A, the exhaust communication pipe 3 is located on the side of the evaporation pipe 8, and a direction perpendicular to the longitudinal direction of the evaporation pipe 8 (the direction indicated by the dotted line C in the figure) and the exhaust communication pipe The angle θ formed by the arrangement direction 3 is, for example, 30 °.

よって、図4(a)のように構成する場合は、排気連絡管3から排出された高温の排気ガスは、排気マニホールド6内において蒸発管8の外側を開放端8b側に向けて図中矢印Dに示す方向に流れるので、蒸発管8の長手方向全体を加熱しつつ排気マニホールド6内の排気が流れて、好適である。   Therefore, in the case of the configuration as shown in FIG. 4A, the high-temperature exhaust gas discharged from the exhaust communication pipe 3 has an arrow in the figure with the outside of the evaporation pipe 8 facing the open end 8b in the exhaust manifold 6. Since it flows in the direction shown by D, the exhaust in the exhaust manifold 6 flows while heating the entire longitudinal direction of the evaporation pipe 8, which is preferable.

また、排気連絡管3を蒸発管8の開放端8b側に傾斜させて配設する構成を採用する場合に、さらに排気連絡管3の排気口を蒸発管8の上方に向けて配設した場合や、例えば図4(b)に示すように排気連絡管3を蒸発管8の上方の位置まで延設した場合は、排気連絡管3を排気ガスの排出方向に延長した範囲内に蒸発管8が存在しない向きに配設する構成も兼ね備えることになる。   Further, when adopting a configuration in which the exhaust communication pipe 3 is disposed to be inclined toward the open end 8 b side of the evaporation pipe 8, the exhaust port of the exhaust communication pipe 3 is further disposed upward of the evaporation pipe 8. Alternatively, for example, as shown in FIG. 4B, when the exhaust communication pipe 3 is extended to a position above the evaporation pipe 8, the evaporation pipe 8 is within the range in which the exhaust communication pipe 3 is extended in the exhaust gas discharge direction. It also has a configuration in which it is arranged in a direction in which no exists.

よって、例えば図4(b)のように構成する場合は、エンジン2の各シリンダの排気ポート2aに設けた排気弁が開弁すると、排気連絡管3から排気マニホールド6内に排出された高温の排気ガスは、蒸発管8の外周を螺旋状の軌跡を描きながら開放端8b側に導かれるので、蒸発管8の全周及び長手方向全体を効率良く加熱できると共に排気マニホールド6内の排気の流れも良好となる。   4B, for example, when the exhaust valve provided in the exhaust port 2a of each cylinder of the engine 2 is opened, the high temperature exhausted from the exhaust communication pipe 3 into the exhaust manifold 6 is increased. Since the exhaust gas is guided to the open end 8b side while drawing a spiral trajectory around the outer periphery of the evaporation pipe 8, the entire circumference and the entire longitudinal direction of the evaporation pipe 8 can be efficiently heated, and the flow of exhaust gas in the exhaust manifold 6 Will also be good.

以上説明したように、本発明は、ターボチャージャーのタービンの上流側の排気通路に脱硝触媒装置を備えた排気ガス浄化装置において、排気マニホールドの内部に一端が排気通路と接続され他方の開放端が排気マニホールド内に開放された蒸発管を設けると共に、蒸発管内を通過する排気ガスに対して還元剤前駆体等の水溶液を噴霧可能なノズルを備えた構成としたので、従来の装置よりも省スペース化が図れると共に、蒸発管が低温にならないので、燃料中に硫黄分が多く含まれる場合でも、中間生成物の吸着による脱硝触媒装置の性能低下を防止できる。   As described above, according to the present invention, in the exhaust gas purifying apparatus provided with the NOx removal catalyst device in the exhaust passage upstream of the turbine of the turbocharger, one end is connected to the exhaust passage and the other open end is connected to the exhaust manifold. Equipped with an open evaporation pipe in the exhaust manifold and a nozzle capable of spraying an aqueous solution such as a reducing agent precursor to the exhaust gas passing through the evaporation pipe, saving space compared to conventional devices In addition, since the evaporation pipe does not become low temperature, even when the fuel contains a large amount of sulfur, it is possible to prevent the performance of the denitration catalyst device from being degraded due to the adsorption of the intermediate product.

本発明は、前記の実施例に限るものではなく、各請求項に記載の技術的思想の範囲内において、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that the embodiments may be appropriately changed within the scope of the technical idea described in each claim.

例えば、前記の実施例では、排気連絡管3から排気マニホールド6内に排出された排気ガスを常時脱硝触媒装置7に送って脱硝処理する構成を示したが、例えば図5に示すように、SCR触媒による脱硝処理が不要なときは脱硝触媒装置7を介さずに直接ターボチャージャーのタービン4a側に排気するバイパス経路14と、排気の経路を切り換えるための切換弁13を備えた構成としても良い。   For example, in the above-described embodiment, the exhaust gas discharged from the exhaust communication pipe 3 into the exhaust manifold 6 is always sent to the denitration catalyst device 7 to perform the denitration process. For example, as shown in FIG. When denitration treatment with a catalyst is not required, a configuration may be provided that includes a bypass path 14 for exhausting directly to the turbine 4a side of the turbocharger without the denitration catalyst device 7 and a switching valve 13 for switching the exhaust path.

また、前記の実施例では、蒸発管8内の排気ガスにノズル9から還元剤前駆体として尿素水9aを噴霧する構成を開示したが、還元剤前駆体の成分はこれに限らない。また、高濃度の尿素と低濃度のアンモニアの混合水溶液やアンモニア水を使用しても良い。   Moreover, although the structure which sprays the urea water 9a as a reducing agent precursor from the nozzle 9 to the exhaust gas in the evaporator 8 was disclosed in the said Example, the component of a reducing agent precursor is not restricted to this. Moreover, you may use the mixed aqueous solution and ammonia water of high concentration urea and low concentration ammonia.

本発明では、排気マニホールド6内の蒸発管8は排気連絡管3から排出された直後の高温の排気ガスによって高温に加熱されているので、ノズル9から噴霧した還元剤、還元剤前駆体の双方または何れか一方を含む水溶液は、どのような成分のものを用いた場合でも蒸発管8を通過する間に確実に気化又は加水分解される。また、蒸発管8内で生じたアンモニアガス等の気化された状態の還元剤は、NOx を含む排気ガスと共に高温の状態を保ったまま脱硝触媒装置7に供給できる。   In the present invention, the evaporation pipe 8 in the exhaust manifold 6 is heated to a high temperature by the high-temperature exhaust gas immediately after being discharged from the exhaust communication pipe 3, so that both the reducing agent and the reducing agent precursor sprayed from the nozzle 9 are used. Alternatively, the aqueous solution containing either one is surely vaporized or hydrolyzed while passing through the evaporation tube 8 regardless of the component used. Further, the vaporized reducing agent such as ammonia gas generated in the evaporation pipe 8 can be supplied to the denitration catalyst device 7 while maintaining a high temperature state together with the exhaust gas containing NOx.

また、前記の実施例では、蒸発管8の開放端8bの近傍にノズル9を設ける場合の例を開示したが、ノズル9を設ける位置はこれに限らず、例えば蒸発管8の中央に設けても良い。   Moreover, although the example in the case where the nozzle 9 is provided in the vicinity of the open end 8b of the evaporation pipe 8 has been disclosed in the above-described embodiment, the position where the nozzle 9 is provided is not limited to this. Also good.

もっとも、ノズル9は蒸発管8の開放端8bの近傍に設けた方が、噴霧された尿素水9aが高温の蒸発管8内を通過する時間を長く確保できる点で有利である。また、ノズル9を蒸発管8の開放端8b近傍に設ければ、整流器8cやスタティックミキサー8dを設けるスペースも確保しやすい。   However, it is advantageous to provide the nozzle 9 in the vicinity of the open end 8b of the evaporation pipe 8 because the sprayed urea water 9a can ensure a long time for passing through the high-temperature evaporation pipe 8. If the nozzle 9 is provided in the vicinity of the open end 8b of the evaporation pipe 8, a space for providing the rectifier 8c and the static mixer 8d can be easily secured.

本発明の排気ガス浄化装置は、舶用ディーゼルエンジンだけではなく、自動車用ディーゼルエンジンの排気系にも適用可能である。   The exhaust gas purification apparatus of the present invention is applicable not only to marine diesel engines but also to exhaust systems of automobile diesel engines.

1 排気ガス浄化装置
2 エンジン
2a 排気ポート
3 排気連絡管
4 ターボチャージャー
4a タービン
5 排気通路
6 排気マニホールド
7 脱硝触媒装置
8 蒸発管
8a 一端
8b 開放端
9 ノズル
9a 尿素水
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification apparatus 2 Engine 2a Exhaust port 3 Exhaust communication pipe 4 Turbocharger 4a Turbine 5 Exhaust passage 6 Exhaust manifold 7 Denitration catalyst apparatus 8 Evaporating pipe 8a One end 8b Open end 9 Nozzle 9a Urea water

Claims (3)

エンジンの排気ポートに接続された排気連絡管から排出された排気ガスを集合し、ターボチャージャーのタービンの上流側の排気通路に導く排気マニホールドと、前記排気通路に設けられた脱硝触媒装置とを備え、
前記排気マニホールドの内部に一端が前記排気通路と接続され他方の開放端が前記排気マニホールド内に開放された蒸発管を設けると共に、前記蒸発管内を通過する排気ガスに対して還元剤、還元剤前駆体の双方または何れか一方を含む水溶液を噴霧可能なノズルを備えたことを特徴とする排気ガス浄化装置。
An exhaust manifold that collects exhaust gas discharged from an exhaust communication pipe connected to an exhaust port of the engine and guides the exhaust gas to an exhaust passage upstream of the turbine of the turbocharger, and a denitration catalyst device provided in the exhaust passage ,
An evaporation pipe having one end connected to the exhaust passage and the other open end opened in the exhaust manifold is provided inside the exhaust manifold, and a reducing agent and a reducing agent precursor are provided for the exhaust gas passing through the evaporation pipe. An exhaust gas purification apparatus comprising a nozzle capable of spraying an aqueous solution containing both or one of the bodies.
前記排気連絡管は、前記排気連絡管を排気ガスの排出方向に延長した範囲内に前記蒸発管が存在しない向きに配設したことを特徴とする請求項1に記載の排気ガス浄化装置。   The exhaust gas purification apparatus according to claim 1, wherein the exhaust communication pipe is disposed in a direction in which the evaporation pipe does not exist within a range in which the exhaust communication pipe is extended in the exhaust gas discharge direction. 前記排気連絡管は、前記蒸発管の長手方向と直交する方向よりも前記開放端側に傾斜させて配設したことを特徴とする請求項1又は2に記載の排気ガス浄化装置。   The exhaust gas purification device according to claim 1 or 2, wherein the exhaust communication pipe is disposed to be inclined toward the open end side with respect to a direction orthogonal to a longitudinal direction of the evaporation pipe.
JP2010092203A 2010-04-13 2010-04-13 Exhaust gas purification device Expired - Fee Related JP5582854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010092203A JP5582854B2 (en) 2010-04-13 2010-04-13 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010092203A JP5582854B2 (en) 2010-04-13 2010-04-13 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2011220280A true JP2011220280A (en) 2011-11-04
JP5582854B2 JP5582854B2 (en) 2014-09-03

Family

ID=45037558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010092203A Expired - Fee Related JP5582854B2 (en) 2010-04-13 2010-04-13 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP5582854B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035199A1 (en) * 2011-09-09 2013-03-14 日立造船株式会社 Exhaust gas purifying apparatus
JP2013122243A (en) * 2011-12-08 2013-06-20 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Large turbocharged two-stroke diesel engine with exhaust gas purification function
WO2013088850A1 (en) * 2011-12-13 2013-06-20 日立造船株式会社 Aqueous urea-spraying structure
KR20140047000A (en) * 2012-10-11 2014-04-21 만 디젤 앤 터보 에스이 Internal combustion engine
EP3029289A1 (en) * 2014-12-03 2016-06-08 MAN Truck & Bus AG Exhaust gas aftertreatment system of a vehicle powered by a combustion engine, in particular for a ship

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130522A (en) * 1989-10-12 1991-06-04 Mitsubishi Heavy Ind Ltd Diesel engine exhaust gas processor
JPH06117222A (en) * 1992-10-06 1994-04-26 Mitsubishi Heavy Ind Ltd Denitration device for diesel engine exhaust emission
JP2005083220A (en) * 2003-09-05 2005-03-31 Nissan Diesel Motor Co Ltd Exhaust emission control device
JP2007247451A (en) * 2006-03-14 2007-09-27 Nissan Motor Co Ltd Exhaust manifold structure of v-type multicylinder engine
JP2008509328A (en) * 2004-08-06 2008-03-27 スカニア シーブイ アクチボラグ(パブル) Device for supplying a medium into an exhaust gas conduit of an internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130522A (en) * 1989-10-12 1991-06-04 Mitsubishi Heavy Ind Ltd Diesel engine exhaust gas processor
JPH06117222A (en) * 1992-10-06 1994-04-26 Mitsubishi Heavy Ind Ltd Denitration device for diesel engine exhaust emission
JP2005083220A (en) * 2003-09-05 2005-03-31 Nissan Diesel Motor Co Ltd Exhaust emission control device
JP2008509328A (en) * 2004-08-06 2008-03-27 スカニア シーブイ アクチボラグ(パブル) Device for supplying a medium into an exhaust gas conduit of an internal combustion engine
JP2007247451A (en) * 2006-03-14 2007-09-27 Nissan Motor Co Ltd Exhaust manifold structure of v-type multicylinder engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035199A1 (en) * 2011-09-09 2013-03-14 日立造船株式会社 Exhaust gas purifying apparatus
JP2013122243A (en) * 2011-12-08 2013-06-20 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Large turbocharged two-stroke diesel engine with exhaust gas purification function
WO2013088850A1 (en) * 2011-12-13 2013-06-20 日立造船株式会社 Aqueous urea-spraying structure
CN103890335A (en) * 2011-12-13 2014-06-25 日立造船株式会社 Aqueous urea-spraying structure
KR20140105435A (en) * 2011-12-13 2014-09-01 히다치 조센 가부시키가이샤 Aqueous urea-spraying structure
DK178838B1 (en) * 2011-12-13 2017-03-13 Hitachi Shipbuilding Eng Co Urea solution spraying structure
KR102001477B1 (en) * 2011-12-13 2019-07-18 히다치 조센 가부시키가이샤 Aqueous urea-spraying structure
KR20140047000A (en) * 2012-10-11 2014-04-21 만 디젤 앤 터보 에스이 Internal combustion engine
KR102052755B1 (en) * 2012-10-11 2019-12-05 만 에너지 솔루션즈 에스이 Internal combustion engine
EP3029289A1 (en) * 2014-12-03 2016-06-08 MAN Truck & Bus AG Exhaust gas aftertreatment system of a vehicle powered by a combustion engine, in particular for a ship

Also Published As

Publication number Publication date
JP5582854B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5753485B2 (en) Urea water spray structure
JP5781290B2 (en) Exhaust gas purification device
US20080155973A1 (en) Exhaust emission control device with additive injector
US7200989B2 (en) Apparatus and method for cleaning exhaust gas from an internal combustion engine
KR101787333B1 (en) Exhaust system and method for selective catalytic reduction
KR101619098B1 (en) Exhaust gas purification device
JP5582854B2 (en) Exhaust gas purification device
WO2011074310A1 (en) Exhaust gas purification method and exhaust gas purification system for reciprocating internal combustion engine
WO2013035199A1 (en) Exhaust gas purifying apparatus
US11035276B2 (en) Exhaust additive distribution arrangement and system
CN102505979B (en) Connection device and integrated SCR (selective catalytic reduction) catalytic muffler
CN102656345A (en) Engine exhaust-air purifying apparatus
KR102664555B1 (en) Injection apparatus for reducing agent
JP2009162122A (en) Exhaust gas passage structure
TW202136637A (en) Exhaust gas denitration device capable of reducing an installation space without causing an increase in pressure loss of the entire exhaust gas denitration device
JP2023167157A (en) Exhaust emission control device
JP5020028B2 (en) Exhaust purification device
KR20200124650A (en) Exhaust gas purification device
JP2019173709A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5582854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees