WO2013088000A1 - Materiau a base d'alumine, a structure multiechelle, comprenant un liant phosphate d'aluminium ayant une bonne resistance mecanique et son procede de preparation - Google Patents

Materiau a base d'alumine, a structure multiechelle, comprenant un liant phosphate d'aluminium ayant une bonne resistance mecanique et son procede de preparation Download PDF

Info

Publication number
WO2013088000A1
WO2013088000A1 PCT/FR2012/000491 FR2012000491W WO2013088000A1 WO 2013088000 A1 WO2013088000 A1 WO 2013088000A1 FR 2012000491 W FR2012000491 W FR 2012000491W WO 2013088000 A1 WO2013088000 A1 WO 2013088000A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
alumina
median diameter
small
diameter
Prior art date
Application number
PCT/FR2012/000491
Other languages
English (en)
Inventor
Stéfânia CASSIANO GASPAR
Delphine Bazer-Bachi
Loïc ROULEAU
Eric Lecolier
Jérôme Chevalier
Yves JORAND
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to JP2014546595A priority Critical patent/JP2015500196A/ja
Priority to US14/365,322 priority patent/US9227873B2/en
Priority to EP12813404.6A priority patent/EP2791079A1/fr
Priority to CN201280061707.2A priority patent/CN104136394B/zh
Publication of WO2013088000A1 publication Critical patent/WO2013088000A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • C04B28/342Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders the phosphate binder being present in the starting composition as a mixture of free acid and one or more reactive oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • C04B35/6309Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to the field of alumina-based materials, in the form of a millimetric object, porous and having good mechanical strength. More specifically, it relates to a multiscale structure material resulting from a hierarchical assembly of small and large particles preferentially spherical, micrometric and porous alumina and a binder consisting of aluminum phosphate and its process of preparation.
  • alumina-based materials made up of at most a single class of particles bound together by a binder, in the form of a millimetric and porous object, are widely described in the prior art such as, for example, in patent US6780817.
  • the particles that constitute these materials are particles of alumina or particles originating from solid precursors of alumina (oxides, oxyhydroxides or aluminum hydroxides), and in this case which do not disperse during the process of setting form, and which will therefore be present within the final material.
  • the solvent used is also a solid precursor of alumina but with a better dispersion capacity than that of the particles, during the shaping process.
  • the textural properties (BET surface area, mesoporous and macroporous volume, mesopore diameter) of the material are directly related to the textural properties of the particles and the binder used in the preparation of said materials.
  • the mesoporous and macroporous volumes are influenced by the amount of particles and binder.
  • a large macroporous volume can be obtained if the binder content is low, and in this case the mechanical properties of the material are strongly degraded.
  • An improvement in the mechanical strength can be sought by increasing the eneur binder, which implies a decrease in macroporous volume but also a decrease in the amount of particles within the material.
  • the mesoporosity of the material may be degraded due to a small amount of porous particles, and therefore, the neoporosity provided to the material and from said particles is less important.
  • the characteristics of the mesopores are attributed to the organization of the alumina crystallites which depends on the preparation process and in particular on the synthesis of the alumina precursor or on the elaboration of a millimetric object.
  • the improvement of the textural properties of said particles such as an increase in the specific surface area, the mesoporous volume or the size of the mesopores may be desired and obtained by synthesis or post-synthesis treatment. However, these characteristics e degrade partially during the shaping.
  • the present invention relates to an alumina-based material, in the form of a millimetric object, having a multiscale, porous structure and having a good mechanical strength which results from an assembly. hierarchized small and large micrometric and porous particles based on alumina and a binder consisting of aluminum phosphate ensuring the cohesion of said material and on its preparation process.
  • the interest of the invention relates to the hierarchical organization of small and large micrometric particles porous alumina, which maximizes the content of particles within the material and therefore, to increase the mesoporous volume of said material.
  • the hierarchical organization also minimizes the amount of binder because the space between the large particles is filled by the small particles, and therefore, the binder content necessary to ensure the cohesion of the material is minimized.
  • This binder makes it possible to ensure a minimal macroporous volume but sufficient for accessibility to the porosity of said micrometric particles.
  • the hierarchical organization ensures proper mechanical properties. Moreover, an improvement of these properties can be obtained by the use of a specific binder.
  • an object of the present invention relates to a material, in the form of a millimeter object, consisting of large particles of alumina having a median diameter of between 10 and 200 ⁇ m, said large particles being distant, from an interface to the other, less than 10 ⁇ , small particles of alumina having a median diameter of between 0.5 and 10 ⁇ m, said small particles being distant, from one interface to another, of less than 5 ⁇ m and being located in the space between the large particles, and a binder consisting of aluminum phosphate, said binder being located in the space between said small and large particles, said material having a mesoporous volume, measured by mercury porosimetry, between 0.2 and 2 mL / g, a macroporous volume, measured by mercury porosimetry, of between 0.05 and 0.2 mL / g and a BET specific surface area of between 80 and 350 m 2 / g.
  • Another object of the present invention relates to a process for preparing said material which comprises at least the following steps:
  • step c) drying the raw material obtained at the end of step b) and; d) calcination of the dried material from step c).
  • An advantage of the present invention is to provide a material having a maximized proportion of small and large porous particles due to the hierarchical organization of said particles within the material and thus to provide a material having a very wide range of texture, in particular a mesoporous volume up to the value of 2mlJg much greater than the mesoporous volume values generally observed for alumina-based materials consisting of at most a single class of particles collected by a binder of the prior art.
  • Another advantage of the present invention is to provide a material having enhanced strength properties. This is due to the combined effect of the hierarchical organization of the small and large particles of alumina material according to the invention and the cohesion of said material provided by the presence of a specific binder.
  • the material according to the invention has a maximized lateral crushing strength up to very high values of force, up to 100 N for a material according to the invention of cylindrical shape, with a diameter of 2 mm. and of length equal to 4 mm, which are force values much greater than those observed for alumina materials consisting of a single class of particles collected by a binder of the prior art.
  • Another advantage of the present invention is also to provide a method of preparation for obtaining said material having increased mechanical strength properties by mixing in a step a) micrometric particles of alumina with a solid precursor of alumina and a solution of phosphoric acid in such proportions that the specific P / Al molar ratio leads to the in situ generation of a specific binder consisting of aluminum phosphate at the end of a step d) of calcination of the material dried and shaped.
  • step a) a good flow of the mixture obtained in step a) during step b) which limits the generation of geometric defects and micrometric defects on the surface of the raw material thus improving the appearance and strength of the material as a millimetric object obtained according to the invention; the formation of defects related to the densification of the binder during steps c) and d) is minimized because of its location in the small space between the micrometric particles of alumina which improves the mechanical strength of the material in form millimetric object obtained according to the invention.
  • the present invention relates to a material, in the form of a millimetric object, consisting of large particles of alumina having a median diameter of between 10 and 200 ⁇ m, said large particles being distant, from one interface to another, of less than 10 ⁇ m, small alumina particles having a median diameter of between 0.5 and 10 ⁇ m, said small particles being spaced, from one interface to another, of less than 5 ⁇ m and being located in the space between the large particles and a binder consisting of aluminum phosphate, said binder being located in the space between said small and large particles, said material having a mesoporous volume, measured by mercury porosimetry, of between 0.2 and 2; mL / g, a macroporous volume, measured by mercury porosimetry, of between 0.05 and 0.2 mUg and a BET specific surface area of between 80 and 350 m 2 / g.
  • mesoporous volume is meant the volume of pores whose diameter is between 3.6 and 50 nm.
  • the mesoporous volume is measured by mercury porosimetry, the method of which is described below. More particularly, the term mesoporous volume, a pore volume corresponding to the volume of mercury which is entered into the pores with a diameter of between 3.6 and 50 nm.
  • macroporous volume the volume of pores whose diameter is between 50 and 7000 nm.
  • the macroporous volume is measured by mercury porosimetry, the method of which is described below. More particularly, by macroporous volume, a pore volume corresponding to the volume of mercury which is entered into the pores with a diameter of between 50 and 7000 nm.
  • Mercury porosimetry is performed according to ASTM D4284-83, using a surface tension of 480 dyne / cm and a contact angle of 140 °. The wetting angle was taken as 140 ° following the recommendations of the book "Techniques of the Engineer, analyzed analysis and characterization, P 1050-5, written by Jean Charpin and Bernard Rasneur".
  • BET specific surface area is understood to mean a specific surface area determined by nitrogen adsorption according to ASTM D 3663-78 established from the BET method (Brunauer-Emmett-Teller) described in the periodical. "The Journal of the American Society", 60, 309 (1938).
  • the large particles and the small particles of alumina which constitute the material according to the invention are, by their size, micrometric particles.
  • the material according to the present invention is advantageously constituted by the hierarchical organization of small and large micrometric porous particles of alumina.
  • micrometric particles refers throughout the text to all large and small particles. The total amount of micrometric particles is therefore the sum of large and small particles of alumina.
  • micrometric particles which constitute the material according to the invention are transition aluminas.
  • the micrometric alumina particles are transition aluminas chosen from chi, kappa, rho, eta, theta, gamma and delta alumina, alone or as a mixture, and preferably the transition alumina is alumina. gamma.
  • the small and large particles or micrometric particles that constitute the material according to the present invention are advantageously porous particles.
  • said particles are of rounded shape and even more preferably of spherical shape.
  • Said small and large particles are advantageously agglomerates of nanometric crystallites of alumina.
  • These crystallites are in the form of platelets, fibers or "blocks" whose dimensions are advantageously between 2 and 150 nm, preferably between 4 and 150 nm and preferably between 4 and 100 nm.
  • the crystallites of alumina are the elementary entities which constitute the micrometric particles.
  • the inter-crystallite space is responsible for the presence of the mesoporosity within said particles.
  • the size of the crystallite agglomerates constituting the micrometric particles is analyzed by scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • the average size of the crystallite agglomerates that make up the micrometric particles is determined from scanning electron microscopy (SEM) images of the material according to the invention using SMile View software. SEM images must be made on the material in fracture mode and with a secondary electron detector.
  • the large particles of alumina constituting the material according to the invention have a median diameter of between 10 and 200 ⁇ m, preferably between 10 and 100 ⁇ m, and preferably between 10 and 80 ⁇ m.
  • the term "median diameter” refers to the D50, i.e., the diameter of the equivalent disc such that 50% by number of said coarse particles has a size less than said diameter.
  • the distribution of the particle size of said large particles of alumina within the material according to the invention is represented by the dimension DX, defined as the diameter of the equivalent disc such that X% in number of said large particles has a size less than said diameter. More precisely, the distribution of the particle size of said large particles is advantageously represented by the three dimensions D10, D50 and D90.
  • Said material according to the invention advantageously has a distribution of the particle size of said large particles of alumina within said material such that the diameter D10 is at most 3 times lower than the median diameter D50 and preferably at most 2 times smaller than the median diameter D50 and such that the diameter D90 is at most 3 times greater than the median diameter D50 and preferably at most 2 times greater than the median diameter D50.
  • the diameter of the large particles is determined, in the material according to the invention, from scanning electron microscopy (SEM) images of the material according to the invention, on a polished section, using the SMile View software.
  • the median diameter is calculated from the average of the diameters determined on a number of measurements that the person skilled in the art deems necessary and sufficient and preferably on at least 200 measurements.
  • said large particles are spaced, from one interface to another, less than 10 ⁇ m, preferably less than 8 ⁇ m, and preferably less than 6 ⁇ m.
  • the distance between the interface of a large particle and the interface of the closest large particle is determined from scanning electron microscopy (SEM) images of the material according to the invention, on a polished section, at using the SMile View software.
  • SEM scanning electron microscopy
  • the measurements are made on a number of measurements that the person skilled in the art deems necessary and sufficient and preferably on 50 images in order to determine an average distance from one interface to the other.
  • Said large particles advantageously have a median diameter less than 1/10 times the average diameter of the smallest dimension of the material according to the invention and preferably less than 1/50 times the average diameter of the smallest dimension of said material, in order to ensure complete filling of the space of said material.
  • the large particles constituting the material according to the invention can advantageously be composed of two populations of particles having distinct median diameters.
  • Said large particles may optionally comprise a proportion of particles, called “lower fat” particles, having a median diameter of between 10 and 60 ⁇ m and preferably between 15 and 30 ⁇ m and a proportion of particles called “larger” particles having a median diameter of between 60 and 200 ⁇ m and preferably between 100 and 180 ⁇ m.
  • said material according to the invention advantageously has a distribution of the particle size of said "coarse” particles of alumina within said material such as that the diameter D10 is at most 3 times smaller than the median diameter D50 and preferably at most 2 times less than the median diameter D50 and such that the diameter D90 is at most 3 times greater than the median diameter D50 and preferably at most 2 times greater at the median diameter D50 and a distribution of the particle size of said "larger” particles of alumina in said material such that the diameter D10 is at most 3 times smaller than the median diameter D50 and preferably at most 2 times less than the median diameter D50 and such that the diameter D90 is at most 3 times greater than the median diameter D50 and preferably at most 2 times greater than the median diameter D50.
  • the small particles which constitute the material according to the invention have a median diameter of between 0.5 and 10 ⁇ m, preferably between 0.5 and 6 ⁇ m and, preferably, between 0.5 and 3 ⁇ m. pm.
  • median diameter refers to the D50, i.e., the diameter of the equivalent disc such that 50% by number of said small particles has a size smaller than said diameter.
  • the distribution of the particle size of said small particles of alumina within the material according to the invention is represented by the dimension DX, defined as the diameter of the equivalent disk such that X% by number of said small particles has a size smaller than said diameter. More precisely, the distribution of the particle size of said small particles is advantageously represented by the three dimensions D10, D50 and D90.
  • Said material according to the invention advantageously has a distribution of the particle size of said small particles of alumina within said material such that the diameter D10 is at most 3 times smaller than the median diameter D50 and preferably at most 2 times smaller than the median diameter D50 and such that the diameter D90 is at most 3 times greater than the median diameter D50 and preferably at most 2 times greater than the median diameter D50.
  • the diameter of the small particles is determined, in the material according to the invention, from scanning electron microscopy (SEM) images of the material according to the invention on a polished section, using SMile View software.
  • the median diameter is calculated from the average of the diameters determined on a number of measurements that the person skilled in the art deems necessary and sufficient and preferably on at least 200 measurements.
  • said small particles are distant, from one interface to another, less than 5 ⁇ , preferably less than 3 ⁇ m, and preferably less than 2 ⁇ m.
  • the distance between the interface of a small particle and the interface of the smallest particle closest is determined by scanning electron microscopy (SEM) images of the material according to the invention, on a polished section, using SMile View software.
  • SEM scanning electron microscopy
  • the measurements are made on a number of measurements that the person skilled in the art deems necessary and sufficient and preferably on 50 images in order to determine an average distance from one interface to the other.
  • Said small particles advantageously have a median diameter less than 1/5 times the median diameter of the large particles, and preferably a median diameter less than 1/10 times the median diameter of the large particles. This makes it possible to fill the space between said large particles, said small particles being located in the space between said large particles.
  • the proportion of said small particles is determined so as to fill the space between said large particles.
  • the proportions of the small and large particles of alumina constituting the material according to the invention are expressed as surface percentages with respect to the total surface area of the SEM image of the material according to the invention, so as to indicate the area that the small and large particles occupy within the material, as well as the proportion of coarse fat particles having a median diameter of between 10 and 60 ⁇ m.
  • the surface percentages of the micrometric particles are determined from the SEM image analysis of the material according to the invention, on a polished section.
  • the resolution of the scanning electron microscope (SEM) is advantageously adapted to the median diameter of said micrometric particles so as to have an image representative of all the material according to the invention.
  • the area occupied by the small particles is determined as follows: the diameter of all the small particles is measured using SMile View software, in order to calculate the area occupied by each of said small particles. The sum of each of the areas occupied by each of said small particles corresponds to the total area occupied by all of said small particles in the SEM image.
  • the area occupied by the large particles is determined from the GIMP and Analysis software as follows: the edges of each of the large particles are delimited using the GIMP software. The area occupied by all of said large particles is then expressed as a percentage from the Analysis software.
  • the proportion of small and large particles occupying the surface of the SEM image of the material according to the invention is expressed as a percentage by surface area relative to the total surface area of the SEM image of the material according to the invention. It is calculated according to the formula: (area occupied by small or large particles I total area of the image SEM) x100.
  • the surface percentages are determined on a number of images that those skilled in the art deem necessary and sufficient and preferably on 10 images.
  • the surface percentage of the small particles relative to the total surface of the SEM image of the material according to the invention is advantageously between 5 and 55%, preferably between 10 and 45% and preferably between 10 and 30%.
  • the surface percentage of the large particles is advantageously between 35 and 85%, preferably between 45 and 80% and preferably between 60 and 80% relative to the total surface of the SEM image of the material according to the invention.
  • the complement of the surface fraction that is to say, the sum of the surface percentages dd small and large particles subtracted 100%, corresponds to the surface percentage occupied by the binder consisting of aluminum phosphate, and the residual vacuum .
  • the presence of residual vacuum in the SEM image, that is to say unfilled space is related to the existence of a macroporous volume within the material.
  • said small particles are located in the space between the large particles.
  • This assembly of small and large particles is at the origin of the hierarchical organization of said micrometric particles within the material.
  • Said material according to the invention advantageously has a hierarchical organization.
  • the hierarchical organization of said micrometric particles within said material leads to a very wide range of texture, in particular of mesoporous volume measured by mercury porosimetry on said material of between 0.2 and 2 ml / g.
  • a binder consisting of aluminum phosphate is located in the space between small and large particles.
  • said small particles fill the gap between the coarse particles and said binder fills the residual space between the small and coarse particles and the residual space between the small particles.
  • Said binder fills the space between said micrometric particles so as to ensure the cohesion of the material according to the invention, and consequently, so as to minimize the residual vacuum, that is to say the unfilled space between said particles micrometric.
  • the existence of residual vacuum is responsible for the presence of a macroporous volume within the material.
  • the binder present in the space between the micrometric particles makes it possible to minimize the macroporous volume within the material according to the invention so that said macroporous volume of said material is between 0.05 and 0.2 mL / g, preferably included between 0.07 and 0.17 ml / g, and preferably between 0.1 and 0.15 ml / g.
  • the binder must not interfere with the hierarchical organization of small and large particles, that is to say, that the binder must not move the micrometric particles apart from each other.
  • said binder makes it possible to maintain a distance from one interface to another between the small particles of less than 5 ⁇ m, preferably less than 3 ⁇ m, and preferably less than 2 ⁇ m, and a distance from an interface to the other between the large particles less than 10 ⁇ m, preferably less than 8 ⁇ m and preferably less than 6 ⁇ m.
  • said binder constituted aluminum phosphate.
  • the location of the phosphorus originating from the binder consisting of aluminum phosphate in the material according to the invention is obtained by means of P phosphorus mapping made from scanning electron microscopy (SEM) coupled to the EDS (Energy) microanalysis. Dispersive Spectroscopy) (MEB-EDS). The material is analyzed on a polished section with a backscattered electron detector.
  • Said binder is advantageously present in the material according to the invention in the form of particles having a mean size of less than 1 ⁇ m.
  • the size of the particles constituting the binder can advantageously be measured, in the material according to the invention, by SEM image analysis with the help of SMile View software.
  • the SEM images must be made on the material according to the invention in fracture mode and with a secondary electron detector.
  • said material has a mesoporous volume measured by mercury porosimetry of between 0.2 and 2 ml / g, preferably between 0.2 and 1.5 mIg / g and preferably between 0.2 and 1 ml / ml. /boy Wut.
  • said material has a macroporous volume measured by mercury porosimetry of between 0.05 and 0.2 ml / g, preferably between 0.07 and 0.17 ml / g and preferably between 0.1 and 0.15 mIg.
  • said material has a median mesopore diameter measured by mercury porosimetry between 8 and 25 nm, preferably between 10 and 25 nm and preferably between 10 and 23 nm.
  • said material has a BET specific surface area of between 80 and 350 m 2 / g, preferably between 80 and 250 m 2 / g and preferably between 80 and 200 m 2 / g.
  • said material is in the form of a millimeter object.
  • the mean diameter of the smallest dimension of the material according to the invention is advantageously between 0.5 and 10 mm, preferably between 0.7 and 5 mm, and preferably between 1.0 and 4.0. mm.
  • the dimensions of the millimetric object can be obtained with any measuring tool adapted to the dimensions of said material and in particular with a vernier caliper.
  • Said material is advantageously in the form of a granule or an extrusion and preferably in the form of an extrudate.
  • the material according to the invention thus has maximized proportions of micrometric particles porous because of this hierarchical organization, resulting in a porous material and having good mechanical strength.
  • the material according to the present invention has excellent strength properties. This is due to the combined effect of the hierarchical organization of the small and large particles of alumina material according to the invention and the cohesion of said material provided by the presence of a specific binder.
  • the material according to the invention has a mechanical resistance to lateral crushing determined by the grain-to-grain (EGG) crushing test advantageously between 50 and 100 N, preferably between 60 and 100 N and so preferred between 80 and 100 N, expressed in force in the case of the materials according to the invention in the form of granules; and a mechanical resistance to lateral crushing advantageously between 1 and 2.5 daN / mm, preferably between 1 and 2.3 daN / mm and preferably between 1 and 2 daN / mm, expressed in force by unit of length in the case of the materials according to the invention in the form of extrudates.
  • GSG grain-to-grain
  • the mechanical strength of the material according to the invention determined by the grain-to-grain (GGE) crushing test.
  • GGE grain-to-grain
  • ASTM D4179-01 a standardized test that involves subjecting a material in the form of a millimeter object, such as a granule or extrusion, to a compressive force that causes the rupture. This test is therefore a measure of the tensile strength of the material. The analysis is repeated on a number of solids taken individually and typically on a number of solids between 10 and 200. The average of the lateral forces of rupture measured is the average EGG which is expressed in the case of the granules in unit of force (N), and in the case of extrusions in unit of force per unit length (daN / mm).
  • Another subject of the present invention relates to a process for preparing said material comprising at least the following steps:
  • step b) drying the raw material obtained at the end of step b) and;
  • micrometric particles used in the mixing step a) of the preparation process, are transition aluminas chosen from chi, kappa, rho and eta alumina. theta, gamma and delta, alone or as a mixture, and preferably gamma-alumina, or are advantageously solid precursors of alumina chosen from hydrargillite, gibbsite, nordstrandite, bayerite, boehmite or pseudo-boehmite.
  • the micrometric particles are solid precursors of alumina
  • said precursors must be little dispersible in the acid solution introduced in the mixing step a) of the preparation process, that is to say in such a way that that the median diameter of said micrometric particles is little reduced during step a) and that the hierarchical organization of small and large particles can be observed within the material at the end of step d) of preparation according to the characterization techniques described in detail above.
  • a phase transformation takes place so as to obtain the transition aluminas within said material.
  • the micrometric alumina particles used in the mixing step a) of the preparation process are transition aluminas or solid precursors of alumina which are poorly dispersible in the solution of phosphoric acid used in said step a) of the preparation process, and which will be converted to transition alumina at the end of step d) of calcination.
  • step a) of mixing the preparation process according to the invention small particles of alumina with a median diameter of between 0.5 and 10 ⁇ m are mixed with large particles of alumina with a median diameter of between 10 and 200 pm.
  • said large particles of alumina have a median diameter of between 10 and 100 ⁇ m, and preferably between 10 and 80 ⁇ m.
  • Said large particles mixed in step a) of the preparation process according to the invention may advantageously be composed of two populations of particles having distinct median diameters.
  • Said large particles may optionally comprise a proportion of particles, called “lower fat” particles, having a median diameter of between 10 and 60 ⁇ m and preferably between 15 and 30 ⁇ m and a proportion of particles called “large” particles. higher “having a median diameter of between 60 and 200 ⁇ m and preferably between 100 and 180 ⁇ m.
  • said small alumina particles have a diameter of between 0.5 and 6 ⁇ m and preferably between 0.5 and 3 ⁇ m.
  • Said micrometric alumina particles mixed in step a) of the preparation process are advantageously used in powder form.
  • the size distribution of said micrometric alumina particles in the powders used in said mixing step a) is measured by laser diffraction granulometry, based on the Mie diffraction theory (GBJ de Boer, C. de Weerd, D Thoenes, HWJ Goossens, Charact 4 (1987) 14-19).
  • the distribution of the particle size of the micrometric alumina particles in the powders is represented by the dimension DvX, defined as the diameter of the equivalent sphere such that X% by volume of said particles has a size less than said diameter. More precisely, the distribution of the particle size of said particles is represented by the three dimensions Dv10, Dv50 and Dv90.
  • the term "median diameter” used in the description of the preparation process according to the invention denotes the Dv50, that is to say the diameter of the equivalent sphere such that 50% by volume of said particles has a size less than said diameter.
  • the distribution of the particle size of the small particles is such that the diameter Dv10 is at most 3 times smaller than the median diameter Dv50 and preferably at most 2 times less than the median diameter Dv50 and such that the diameter Dv90 is at most 3 times greater than the diameter.
  • the distribution of the particle size of the larger particles and the particle size distribution of the "coarse" particles is advantageously identical to the particle size distribution of the small particles.
  • the particle size distribution of the small particles is preferably monomodal, and the particle size distribution of the coarse particles may be monomodal or bimodal, in the case where said coarse particles are composed of said larger and lower coarse particles.
  • the textural properties of said micrometric alumina particles are respectively determined by nitrogen adsorption and mercury porosimetry.
  • the BET surface area, the mesoporous volume and the pore size distribution of the micrometric particles constituting the material according to the invention can be very variable depending on the process for preparing the alumina precursor used to prepare the micrometric particles and the operating conditions.
  • Said micrometric particles advantageously have a BET specific surface area of between 100 and 480 m 2 / g, preferably between 120 and 300 m 2 / g, and preferably between 120 and 250 m 2 / g.
  • said micrometric particles have a mesoporous volume of between 0.2 and 2.5 mL / g, preferably between 0.3 and 2.0 mL / g, and preferably between 0.3 and 1.5 mUg.
  • said micrometric particles have a median mesopore diameter of between 7 and 25 nm, preferably between 7 and 24 nm, and preferably between 7.5 and 23 nm.
  • the proportions of small and large particles introduced into the mixture of step a) is an essential criterion of the preparation process according to the present invention because said proportions define the compactness of the mixture of small and large particles. Said proportions lead to the hierarchical organization of small and large particles within the material obtained at the end of said preparation process. More specifically, the proportions of small and large particles are chosen so as to have a mixture of small and large particles which leads to a satisfactory compactness. Said compactness of the mixture of small and large particles is determined by a conventional packed fill density (TDD) measurement.
  • TDD packed fill density
  • step a) of mixing the preparation process according to the invention 10 to 60% and preferably 15 to 35% by weight of small alumina particles with a median diameter of between 0.5 and 10 ⁇ and 40 to 90% and preferably from 65 to 85% by weight of large alumina particles of median diameter between 10 and 200 ⁇ , the percentages being expressed relative to the total amount of micrometric particles.
  • the hierarchical organization of micrometric particles of alumina will not be optimal given the large amount of small particles and the maximization of the proportion of micrometric particles of alumina. can not be reached because of a less compact organization.
  • the proportion of large particles is too high and in particular greater than 90% by weight, the amount of small particles will not be sufficient to fill the voids between the large particles, and the hierarchical organization of micrometric particles of alumina will not be optimal because a less compact organization.
  • Another essential criterion of the preparation process according to the invention is the introduction into step a) of a mixture of a solid precursor of alumina and of an acid in solution allowing the in situ generation of a binder consisting of of aluminum phosphate, after step d) of calcination of the preparation process according to the invention.
  • the solid precursor of alumina and the acid in solution must be introduced in said step a) in the proportions as claimed.
  • the generation of said binder consisting of aluminum phosphate requires a solid precursor of alumina which, in the presence of the acid solution, is more reactive than the micrometric alumina particles also introduced in step a) of mixing the preparation process according to the invention.
  • the solid precursor of alumina must be able to disperse predominantly or dissolve predominantly in the acid solution used and form particles of average size less than 1 ⁇ between the micrometric particles.
  • the micrometric alumina particles must be slightly degraded in the presence of said acid solution, that is to say that the median diameter of said alumina particles must be maintained in the presence of the acid in solution introduced in the presence of during step a) of the preparation process according to the invention.
  • the solid precursor of alumina is advantageously chosen from aluminum oxides, aluminum hydroxides and aluminum oxyhydroxides that are soluble or dispersible in the phosphoric acid solution, preferably from aluminum hydroxides and oxyhydroxides. 'aluminum.
  • said solid alumina precursor is an aluminum oxyhydroxide and more preferably said solid alumina precursor is boehmite or pseudo-boehmite.
  • Said alumina precursor is advantageously in the form of a powder consisting of solid particles having a median diameter, determined by laser diffraction granulometry, of between 9 and 80 ⁇ m, preferably between 10 and 60 ⁇ m, and preferably between 15 and 60 ⁇ m. 45 ⁇ m.
  • the particles of the solid precursor of alumina are advantageously constituted by agglomerates of elementary units, called crystallites, whose dimensions are advantageously between 2 and 150 nm, preferably between 4 and 150 nm and preferably between 4 and 100 nm. determined by transmission electron microscopy (TEM).
  • the morphology of the crystallites, the size and the manner in which the crystallites are organized depend mainly on the synthesis route of the alumina precursor used to prepare said micrometric particles.
  • the proportion of the solid precursor of alumina is between 5 and 50% by weight relative to the total amount of solid particles, preferably between 10 and 30% by weight, and preferably between 15 and 25% by weight.
  • the total amount of solid particles is the sum of the micrometric particles (small and large alumina particles) and particles of the solid alumina precursor.
  • the amount of solid precursor of alumina is less than 5% by weight relative to the total amount of solid particles introduced, the amount of binder consisting of aluminum phosphate which will be formed in situ after step d) calcination , will not be sufficient to ensure the cohesion of the hierarchical organization of small and large micrometric particles of alumina.
  • the quantity of solid precursor of alumina is greater than 50% by weight relative to the total amount of solid particles
  • the quantity of binder consisting of aluminum phosphate which will be formed in situ after step d) The amount of calcination will be greater than the amount necessary to fill the residual voids between the micrometric particles, and therefore the micrometric particles will be dispersed unorganized within said binder and the proportion of micrometric particles present in the resulting material. the preparation process according to the final invention will not be maximum.
  • the phosphoric acid in solution is introduced into the mixture.
  • Phosphoric acid is also called orthophosphoric acid.
  • the role of the phosphoric acid solution is to promote the formation of an amorphous phase of aluminum phosphate from the reaction with the solid precursor of alumina.
  • the particles of the solid precursor of alumina which initially have a median diameter of about ten microns become with the action of the acid and the mechanical energy provided during step a) of the process for preparing the material according to the invention, an amorphous phase of aluminum phosphate whose particles have an average size of less than 1 ⁇
  • the phosphoric acid in solution is introduced in proportions such that the molar ratio P / Al is between 0.2 and 1.2.
  • the phosphoric acid in solution is introduced in proportions such that said ratio P / Al is between 0.4 and 1.0, and preferably between 0.6 and 0.9.
  • P is derived from the introduced phosphoric acid
  • Al is derived from the solid precursor of alumina.
  • the specific P / Al molar ratio as claimed corresponds to a proportion of phosphoric acid such that the ratio of the mass of acid introduced onto the mass of introduced alumina solid precursor is between 30 and 225% by weight, of preferably between 59 and 160% by weight and preferably between 89 and 125% by weight.
  • the use of a molar ratio P / Al of between 0.2 and 1.2 in step a) of the preparation process according to the invention makes it possible to form the amorphous phase of aluminum phosphate at the same time. result of the reaction between phosphoric acid and the solid precursor of alumina, but also to promote the partial and minor dissolution of micrometric particles of alumina without affecting their size.
  • This high acid ratio dissolution favors the local formation of aluminum phosphate, and consequently, after step d) of calcination, it makes it possible to increase the cohesion of the hierarchical organization of small and large particles. micrometric alumina and therefore the material obtained by the preparation process according to the invention.
  • an organic binder may optionally be added in step a) of mixing.
  • the presence of said organic binder facilitates shaping by extrusion.
  • Said organic binder can advantageously be chosen from methylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, carboxymethylcellulose and polyvinyl alcohol.
  • the proportion of said organic binder is advantageously between 0 and 5% by weight, preferably between 0 and 3% by weight and preferably between 0 and 1% by weight, relative to the total amount of solid particles.
  • step d) of calcination of the preparation process according to the invention said organic binder is decomposed, that is to say that at the end of step d) calcination, said Organic binder is no longer present within the material according to the invention.
  • step a) of the preparation process according to the invention is advantageously carried out in a single step or in two steps.
  • step a) differs according to the shaping technique used in step b) of the preparation process according to the invention.
  • the mixing step a) is preferably carried out in a single step.
  • the micrometric alumina particles, the solid precursor of alumina, the acid in solution and optionally an organic binder are mixed all at once using a batch mixer, preferably with a cam or an arm. Z, or using a twin-screw mixer-mixer.
  • the mixing conditions are adjusted in a manner known to those skilled in the art and aim to obtain a homogeneous and extrudable paste.
  • the extrudability of the paste can advantageously be adjusted with the addition of water to the acid in solution, in order to obtain a paste suitable for carrying out the extrusion forming step b).
  • the mixing step a) is preferably carried out in two steps.
  • the small and large micrometric particles of alumina are advantageously dry mixed for a period of between 1 and 5 min and preferably between 2 and 4 min.
  • the mixture is preferably made at using a mixer such as for example, a bezel or a rotating drum.
  • the solid precursor of alumina and the acid in solution are then advantageously introduced into said dry mixture of micrometric alumina particles, in the form of a binder solution formed with the solid precursor of alumina dispersed in said acidic solution.
  • the acid in solution and the solid precursor of alumina dispersed in said acid solution are advantageously introduced in a second step, using a spray nozzle, to ensure the contact between the components of the mixture. and allow the progressive agglomeration of micrometric alumina particles during rotation of the bezel or rotating drum.
  • the addition in a second step of the solid precursor of alumina dispersed in the acid in solution makes it possible to ensure the shaping by wet granular growth during the granulation shaping step b).
  • the shaping conditions are adjusted in a manner known to those skilled in the art and are aimed at obtaining spherical granules of desired size.
  • step a) The mixture resulting from step a) is then shaped according to step b) of the process for preparing the material according to the invention.
  • Step b) shaping makes it possible to obtain a green material.
  • raw material is meant the material shaped and having not undergone any heat treatment steps.
  • Said b) shaping step can advantageously be carried out by wet granulation or by extrusion.
  • said shaping step b) is carried out by extrusion in a manner known to those skilled in the art.
  • the mixture resulting from stage a), that is to say the paste resulting from stage a) advantageously passes through a die, for example using a piston or a continuous twin-screw or single-screw extruder.
  • the diameter of the die is advantageously variable and is between 1 and 5 mm.
  • the shape of the die, and therefore the form of the millimeter solid obtained in extruded form, is advantageously cylindrical, trilobal, quadrilobed or multilobed.
  • the green material from step b) can therefore be in the form of granules or extrudates and preferably in the form of extrudates.
  • step b) of the preparation process according to the invention is then subjected to the heat treatments of steps c) and d).
  • step c) of the preparation process according to the invention the raw material obtained at the end of step b) undergoes a drying step.
  • Said drying step c) is advantageously carried out according to the techniques known to those skilled in the art to evaporate in a controlled manner the solvent from the acid solution present in the material. shaped raw obtained after step b), and give a first solidification said material.
  • the drying step c) may advantageously be carried out under vacuum or under air or in moist air, in one or more substeps of determined conditions of temperature, vacuum or gas.
  • Said c) drying step is advantageously carried out at a temperature between 40 and 200 ° C, preferably between 50 and 150 ° C, and preferably between 70 and 100 ° C.
  • the drying step c) is advantageously carried out for a period of between 12 and 72 hours, and preferably between 12 and 24 hours.
  • Said drying step c) is advantageously carried out under ambient air or in moist air, with a water vapor content of between 20 and 100% by volume.
  • step d) of the preparation process according to the invention the dried material obtained at the end of the drying step c) undergoes a calcination step.
  • Said step d) of calcination is advantageously carried out according to the techniques known to those skilled in the art.
  • Said step d) can be carried out under air or under air with steam, in one or more substeps of determined conditions of temperature or gas.
  • Said d) calcination step is advantageously carried out at a temperature between 400 and 1000 ° C, preferably between 450 and 850 ° C, and preferably between 500 and 700 ° C.
  • the d) calcination step is advantageously carried out for a period of between 1 to 6 hours and preferably between 2 and 3 hours, under ambient air or under air and steam.
  • Said step d) of calcination is advantageously carried out under ambient air.
  • Said step d) of calcination makes it possible to generate the binder constituted by aluminum phosphate and to ensure the cohesion of the hierarchical organization of small and large micrometric particles of alumina and thus of the material obtained by the preparation method according to the invention.
  • the invention in particular by the conversion of the amorphous phase of aluminum phosphate formed after step a) of the preparation process according to the invention, mainly in a cristobalite-tridymite crystalline phase.
  • the phase transformation allowing the formation of the cristobalite-tridymite crystalline phase also makes it possible to improve the adhesion between said micrometric particles of alumina and the binder consisting of aluminum phosphate.
  • the material in the form of millimetric object according to the invention is obtained.
  • material in the form of a millimeter object is meant a material having dimensions of the order of one millimeter.
  • the material in the form of a millimetric object, preferably in extruded form, prepared according to the sequence of steps a), b), c) and d) of the preparation process according to the invention can be characterized according to the following techniques : nitrogen adsorption for the determination of the specific surface according to the BET method; mercury porosimetry for volume measurements mesoporous and macroporous and pore size distribution; scanning electron microscopy (SEM) for the microstructure analysis to observe the hierarchical organization and dimensions of the small and large micrometric alumina particles assembled by the aluminum phosphate binder; scanning electron microscopy (SEM) can also be coupled with EDS microanalysis (MEB-EDS) to visualize the location of phosphorus; a grain-to-grain crushing test for evaluating the mechanical strength of the material.
  • nitrogen adsorption for the determination of the specific surface according to the BET method
  • mercury porosimetry for volume measurements mesoporous and macroporous and pore size distribution
  • SEM scanning
  • the preparation method of the invention ensures the formation of said material but also:
  • step b) a good flow of the mixture obtained in step a) during step b) which limits the generation of geometric defects and micrometric defects on the surface of the raw material thus improving the appearance and strength of the material as a millimetric object obtained according to the invention
  • the formation of the defects related to the densification of the binder during steps c) and d) is minimized because of its location in the small space between the micrometric particles of alumina, which improves the mechanical strength of the material under millimetric object form obtained according to the invention.
  • Example 1 preparation of an alumina-based material, in the form of a millimetric, porous obiet, with a hierarchical organization of two classes of micrometric particles assembled by a binder consisting of aluminum phosphate with a molar ratio P / Al of 0.8
  • the large particle population consists of alumina Puralox Scfa-140 (Sasol). These particles have a BET specific surface area of 144 m 2 / g determined by nitrogen adsorption (ASAP 2420 - Micromeritics), a mesoporous volume of 0.45 mL / g and a median mesopore diameter of 11.5 nm determined by porosimetry. mercury (Autopore 9500 - Micromeritics). The median diameter, i.e., the Dv50 of said large particles is about 19 ⁇ m, the Dv10 is about 7 ⁇ m, and the Dv90 is about 38 ⁇ m, determined by laser diffraction particle size (Mastersizer 2000 - Malvem).
  • the small micrometric alumina particles are obtained by spray drying of a boehmite sol prepared from the Pural powder SB3 (Sasol).
  • the soil is prepared so as to obtain a mass ratio (mass of boehmite / mass of water) ⁇ 100 of 3.4% by weight and an acid level (mass of nitric acid / mass of alumina formed from boehmite after calcination) of 4.6% by weight.
  • the powder Pural SB3 referenced (Sasol) is introduced into the acid solution, and the mixture is subjected to strong stirring for 2 hours. After the mixing time, the soil is centrifuged for 20 min at a speed of 4000 rpm to remove sediment of undispersed boehmite.
  • the boehmite sol is then spray-dried using a laboratory spray dryer (Buchi B-290). Atomization conditions such as feed rate, compressed air flow, inlet and outlet temperatures, and suction flow are optimized to produce small spherical particles in the separation cyclone. the median diameter is about 2 ⁇ .
  • the particles obtained by spray drying are then calcined in a muffle furnace at 600 ° C. for 2 hours in order to ensure the conversion of boehmite to gamma-alumina, and thus to obtain the small micrometric and spherical particles of alumina.
  • Said small particles have, after calcination, a BET specific surface area of 212 m 2 / g determined by nitrogen adsorption (ASAP 2420 - Micromeritics), a mesoporous volume of 0.35 ml / g and a median mesopore diameter of 7, 5 nm, determined by mercury porosimetry (Autopore 9500 - Micromeritics).
  • the median diameter, i.e., the Dv50 of said small particles is about 1.7 ⁇ m
  • the Dv10 is about 0.75 ⁇ m
  • the Dv90 is about 3.4 ⁇ m, determined by laser diffraction granulometry (Mastersizer 2000 - Malvern).
  • the solid precursor of alumina, necessary for the formation of the binder consisting of aluminum phosphate, is the powder referenced Pural SB3 (Sasol), and it is a very reactive boehmite.
  • the large micrometric particles (Puralox Scfa-140 - Sasol), the small micrometric particles obtained by spray drying of a boehmite sol, and the solid alumina precursor referenced Pural SB3 (Sasol), are dry blended in such a way that to obtain, respectively, the proportions of 80% and 20% by weight of large and small particles, and 19% by weight of solid precursor of alumina.
  • the proportions of large and small particles are expressed in relation to the total amount of micrometric particles, and the proportion of solid precursor of alumina is expressed in relation to the total amount of solid.
  • the dry blending is carried out using a cam blender (Brabender 50 EHT) at an arm rotation speed of 10 rpm for 2 minutes.
  • a solution of phosphoric acid is introduced using a syringe pump, so as to obtain an acid ratio (mass of introduced phosphoric acid / mass of introduced alumina solid precursor) ⁇ 100 of 125, 4% by weight, which corresponds to a molar ratio P / Al of 0.8, where P comes from phosphoric acid and Al from the solid precursor of alumina.
  • the water is added with the acid solution so as to obtain a cohesive, homogeneous and extrudable paste.
  • the kneading is continued at a rotation speed of the arms of 16 revolutions / min for 30 minutes, after the end of the addition of the acid solution.
  • the solution of phosphoric acid associated with the mechanical energy provided during the kneading make it possible to disperse the micrometer agglomerates of crystallites of the solid precursor of alumina and forming a binder consisting of an amorphous phase of aluminum phosphate.
  • the high acid ratio employed also promotes the local formation of aluminum phosphate from the partial dissolution of the micrometric alumina particles.
  • the paste obtained is shaped in a step b) using a piston extruder (MTS), equipped with a cylindrical die 3 mm in diameter and 6 mm in length, to form the millimeter object. .
  • MTS piston extruder
  • the extrudates are then dried in a ventilated oven at 80 ° C. for 16 hours under ambient air in a step c), in order to evaporate the solvent from the acidic solution.
  • the dried extrudates are then calcined in a muffle furnace at 600 ° C. for 2 h under ambient air, in a d) calcination stage, in order to ensure the solidification of the material by the transformation of the amorphous phase of aluminum phosphate. binder in crystalline cristobalite-tridymite phases.
  • the extrudates obtained are characterized according to the following techniques: nitrogen adsorption, for the determination of the BET specific surface area; mercury porosimetry for mesoporous and macroporous volume measurements and mesopore diameter distribution; by Scanning Electron Microscopy (SEM) (JEOL JSM 6340F) for the observation of the hierarchical organization of small and large micrometric particles of alumina and in particular the distance from one interface to another between said large particles (D large ) and from one interface to another between said small particles ( small D) and the surface percentage of small ( small S) and large particles ( large S) with respect to the total surface of the SEM image; by MEB coupled to EDS microanalysis (MEB-EDS) to visualize the phosphorus mapping within the material, and the grain-to-grain (GGE) crush test to determine the lateral crushing strength of the material.
  • SEM Scanning Electron Microscopy
  • MEB-EDS EDS microanalysis
  • GGE grain-to-grain
  • the material according to the invention obtained according to Example 1 has good mechanical strength due to the hierarchical organization of small and large particles assembled by a binder consisting of aluminum phosphate.
  • the distances D gr0SS es and D pe tites and the surface percentages Sg rows and S pe tites are essential criteria for obtaining the hierarchical organization of said small and large particles and are consistent with those of the material of the invention.
  • the textural properties of the material obtained are related to the textural properties of the micrometric alumina particles and are consistent with the expected properties of the material according to the invention.
  • the hierarchical organization makes it possible to increase the mesoporous volume of the material, by maximizing the proportion of micron particles with respect to the binder content.
  • the hierarchical organization also makes it possible to have good sliding of the small and large micrometric alumina particles relative to each other, which results in a low mixing torque of the order of 3 Nm.
  • EXAMPLE 2 (according to the invention: preparation of an alumina-based material, in the form of a millimetric, highly porous object, with a hierarchical organization of two classes of micrometric particles assembled by a binder consisting of aluminum phosphate with a molar ratio P / Al of 0.8
  • the large micrometric and porous alumina particles are obtained from calcination in a muffle furnace at 600 ° C. for 2 hours, under ambient air, with the Pural TH100 powder (Sasol), in order to convert the starting boehmite into alumina. gamma.
  • the micrometric particles have, after calcination, a specific surface area of 142 m 2 / g determined by nitrogen adsorption (ASAP 2420 - Micromeritics), a mesoporous volume of 0.87 mlJg and a median diameter of the mesopores of 22.5 nm determined. by mercury porosimetry (Autopore 9500 - Micromeritics).
  • the median diameter, i.e., the Dv50 of said large particles is about 40 ⁇ m, the Dv10 is about 15 ⁇ m, and the Dv90 is about 77 ⁇ m, determined by laser diffraction particle size (Mastersizer 2000 - Malvern).
  • the small micrometric particles are obtained by spray drying of a boehmite sol prepared from the Pural powder 100 (Sasol).
  • Said boehmite sol is prepared according to the same conditions described in Example 1; and the atomization parameters are optimized to produce in the separation cyclone small spherical particles having a median diameter of about 3 ⁇ m.
  • the particles obtained by spray drying are subjected to the same heat treatment as Example 1, in order to ensure the conversion of boehmite to gamma-alumina, and thus to obtain small micrometric and spherical particles of alumina.
  • These particles have, after calcination, a BET specific surface area of 130 m 2 / g determined by nitrogen adsorption (ASAP 2420 - Micromeritics), a mesoporous volume of 0.78 mUg and a median mesopore diameter of 23 nm, determined by mercury porosimetry (Autopore 9500 - Micromeritics).
  • the median diameter, i.e., the Dv50 of said small particles is about 2.7 ⁇ m, the Dv10 is about 1.7 ⁇ m, and the Dv90 is about 8 ⁇ m, determined by particle size distribution.
  • laser diffraction Mastersizer 2000 - Malvern).
  • the solid precursor of alumina, necessary for the formation of the binder consisting of aluminum phosphate, is the powder referenced Pural TH100 (Sasol).
  • the large micrometric particles obtained after calcination of the powder referenced Pural TH100 (Sasol), the small micrometric particles obtained by spray drying of a soil of boehmite, and the solid precursor of alumina referenced Pural ⁇ 100 (Sasol) are mixed dry in a step a) of mixing in the same proportions and under the same conditions described in Example 1.
  • a solution of phosphoric acid is introduced in the same way as that described in Example 1, and in order to obtain an acid ratio (mass of introduced phosphoric acid / solid precursor mass of introduced alumina) ⁇ 100 of 125.4% by weight, which corresponds to a molar ratio P / Al of 0.8, where P comes from phosphoric acid and Al from the solid precursor of alumina.
  • Example 1 The mixing is continued under the same conditions as in Example 1.
  • the water is added with the acid solution so as to obtain a cohesive paste, homogeneous and extrudable.
  • the paste obtained is then shaped according to the same conditions as in Example 1.
  • extrudates are then dried and calcined according to the conditions described in Example 1; and characterized according to the same techniques described in the same example.
  • the material according to the invention obtained according to Example 2 has good mechanical strength due to the hierarchical organization of small and large particles assembled by a binder consisting of aluminum phosphate.
  • the distances D large and small D and the surface percentages S large and S pems are essential criteria for obtaining the hierarchical organization of said small and large particles and are consistent with those of the material of the invention.
  • the textural properties of the material obtained are related to the textural properties of the micrometric alumina particles and are consistent with the expected properties of the material according to the invention.
  • the hierarchical organization makes it possible to increase the mesoporous volume of the material, by maximizing the proportion of micrometric particles with respect to the binder content.
  • the hierarchical organization also allows good sliding of the small and large micrometric alumina particles relative to each other which results in a low mixing torque of the order of 5 Nm.
  • Example 3 preparation of a material based on alumina, in the form of a millimetric, porous object, with a hierarchical organization of three classes of micrometric particles assembled by a binder consisting of aluminum phosphate with a molar ratio P / Al of 0.8
  • the large particles of alumina consist of two populations of particles whose median diameter is distinct, and which are identified as: a population of so-called lower fat particles and referenced Puralox Scfa-140 (Sasol) and a population of so-called larger particles , referenced Puralox SCCa 150/200 (Sasol).
  • the characteristics of the alumina powder referenced Puralox Scfa-140 are described in Example 1.
  • the alumina powder referenced Puralox SCCa 150/200 has a BET specific surface area of 199 m 2 / g determined by nitrogen adsorption ( ASAP 2420 - Micromeritics), a mesoporous volume of 0.43 mIg and a mesopore median diameter of 8.7 nm determined by mercury porosimetry (Autopore 9500 - Micromeritics).
  • the median diameter, i.e., the Dv50 of said larger fat particles is about 160 ⁇ m
  • the Dv10 is about 104 ⁇ m
  • the Dv90 is about 247 ⁇ m, determined by laser diffraction particle size ( Mastersizer 2000 - Malvem).
  • the small particles are obtained in the same manner as described in Example 1 and their characteristics are also described in the same example.
  • the solid precursor of alumina is the boehmite referenced Pural SB3 (Sasol), also used in Example 1.
  • the conditions for mixing the alumina particles with the solid alumina precursor and the acid solution, the mixing conditions, the extrusion shaping and the heat treatments, are identical to those described in Example 1, but with 4 powders instead of 3 powders.
  • the proportions of coarse particles, that is to say of the whole of the coarse lower and upper coarse particles, and small micrometric particles of alumina are respectively 76% and 24% by weight, expressed relative to the total quantity of particles. micrometric, and the proportion of solid precursor of alumina is 13% by weight relative to the total amount of solid.
  • the proportion of so-called smaller particles relative to the totality of large particles is 40% by weight.
  • the ratio of acid (mass of introduced phosphoric acid) / (mass of solid precursor of alumina) ⁇ 100 used is 125.4% by weight, which corresponds to a molar ratio P / Al of 0.8, where P is derived from phosphoric acid and Al from the solid precursor of alumina.
  • the material according to the invention obtained according to Example 3 has good mechanical strength due to the hierarchical organization of small and large particles assembled by a binder consisting of aluminum phosphate.
  • the distances D large and small D and the surface percentages S large and small S are essential criteria for obtaining the hierarchical organization of said small and large particles and are consistent with those of the material of the invention.
  • the textural properties of the obtained material are related to the textural properties of the micrometric alumina particles and are in accordance with the expected properties of the material according to the invention.
  • the hierarchical organization makes it possible to increase the mesoporous volume of the material, by maximizing the proportion of micrometric particles with respect to the binder content.
  • the hierarchical organization also makes it possible to have good sliding of the small and large micrometric particles of alumina with respect to each other, which results in a low mixing torque of the order of 8 Nm.
  • Example 4 preparation of an alumina material, in the form of a millimetric, porous obet, with a single class of micrometric particles assembled by a binder consisting of aluminum phosphate with a molar ratio P / Al 0.8
  • micrometric and porous alumina particles come from the powder Puralox SCfa-140 referenced (Sasol) whose characteristics are described in Example 1.
  • the solid precursor of alumina is the boehmite referenced Pural SB3 (Sasol), also used in Example 1.
  • the conditions for mixing the alumina particles with the solid alumina precursor and the acid solution, the mixing conditions, the extrusion shaping and the heat treatments, are identical to those described in Example 1, but with 2 powders instead of 3 powders.
  • the proportions of micrometric particles of alumina and alumina solid precursor relative to the total amount of solid are respectively 74 and 26% by weight.
  • the ratio of acid (mass of introduced phosphoric acid) / (mass of solid precursor of alumina) ⁇ 100 used is 125.4% by weight, which corresponds to a molar ratio P / Al of 0.8, where P is derived from phosphoric acid and Al from the solid precursor of alumina.
  • a lower mechanical resistance is observed with respect to the materials of Examples 1, 2 and 3 according to the invention because of the presence of a single class of micrometric alumina particles, which also leads to a mesoporous volume and a BET surface. lower compared to the examples according to the invention.
  • a higher macroporous volume is also observed because of the lack of hierarchical organization of small and large particles in this material.
  • Examples 1 to 3 according to the invention having both a hierarchical organization of small and large particles of alumina and comprising a binder consisting of aluminum phosphate with a molar ratio P / Al specific, have increased mechanical properties compared to the material of the prior art (Example 4).
  • the hierarchical organization also makes it possible to increase the mesoporous volume of the material, by maximizing the proportion of micrometric particles with respect to the binder content. Even higher textural properties can be achieved from the use of micrometer particles of high porosity alumina.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Civil Engineering (AREA)

Abstract

On décrit un matériau, sous forme d'objet millimétrique, constitué de grosses particules d'alumine présentant un diamètre médian compris entre 10 et 200 μm, lesdites grosses particules étant distantes, d'une interface à l'autre, de moins de 10 μm, de petites particules d'alumine présentant un diamètre médian compris entre 0,5 et 10 μm, lesdites petites particules étant distantes, d'une interface à l'autre, de moins de 5 μmet étant localisées dans l'espace entre les grosses particules et d'un liant constitué de phosphate d'aluminium, ledit liant étant localisé dans l'espace entre lesdites petites et grosses particules, ledit matériau présentant un volume mésoporeux, mesuré par porosimétrie au mercure, compris entre 0,2 et 2 mL/g, un volume macroporeux, mesuré par porosimétrie au mercure, compris entre 0,05 et 0,2 mL/g et une surface spécifique BET comprise entre 80 et 350 m2/g.

Description

MATERIAU A BASE D'ALUMINE, A STRUCTURE MULTIECHELLE, COMPRENANT UN LIANT PHOSPHATE D'ALUMINIUM AYANT UNE BONNE RESISTANCE MECANIQUE ET SON PROCEDE DE PREPARATION
DOMAINE TECHNIQUE
La présente invention se rapporte au domaine des matériaux à base d'alumine, sous la forme d'objet millimétrique, poreux et ayant une bonne résistance mécanique. Plus précisément, elle se rapporte à un matériau à structure multiéchelle résultant d'un assemblage hiérarchisé de petites et grosses particules préférentiellement sphériques, micrométriques et poreuses à base d'alumine et d'un liant constitué de phosphate d'aluminium ainsi qu'à son procédé de préparation.
ART ANTERIEUR
Les matériaux à base d'alumine constitués au maximum d'une seule classe de particules rassemblées par un liant, sous forme d'objet millimétrique et poreux sont largement décrits dans l'art antérieur tel que par exemple dans le brevet US6780817. Les particules qui constituent ces matériaux sont des particules d'alumine ou des particules provenant des précurseurs solides de l'alumine (oxydes, oxyhydroxydes ou hydroxydes d'aluminium), et dans ce cas qui ne se dispersent pas au cours du procédé de mise en forme, et qui seront donc présentes au sein du matériau final. Le iant utilisé est également un précurseur solide d'alumine mais avec une meilleure capacité de dispersion que celles des particules, au cours du procédé de mise en forme. Les propriétés texturales [surface spécifique BET, volume mésoporeux et macroporeux, diamètre des mésopores) du matériau sont directement liées aux propriétés texturales des particules et du liant employés dans la préparation desdits matériaux. Par ailleurs, les volumes mésoporeux et macroporeux sont influencés jar la quantité de particules et de liant. En fait, un important volume macroporeux peut être obtenu si a teneur en liant est faible, et dans ce cas les propriétés mécaniques du matériau sont fortement iégradées. Une amélioration de la tenue mécanique peut être recherchée par l'augmentation de la eneur en liant, ce qui implique une diminution du volume macroporeux mais également une iiminution de la quantité de particules au sein du matériau. Dans ce cas, la mésoporosité du natériau peut être dégradée du fait d'une faible quantité de particules poreuses, et par conséquent, la nésoporosité apportée au matériau et provenant desdites particules est moins importante. Les caractéristiques des mésopores sont attribuées à l'organisation des cristallites d'alumine qui dépend lu procédé de préparation et notamment de la synthèse du précurseur d'alumine ou de la mise sous orme d'objet millimétrique. L'amélioration des propriétés texturales desdites particules telles que 'augmentation de la surface spécifique, du volume mésoporeux ou de la taille des mésopores peut Hre recherchée et obtenue par synthèse ou traitement post-synthèse. Cependant ces caractéristiques ;e dégradent partiellement au cours de la mise en forme.
3BJET ET INTÉRÊT DE L'INVENTION
.a présente invention porte sur un matériau à base d'alumine, sous forme d'objet millimétrique, à itructure multiéchelle, poreux et ayant une bonne résistance mécanique qui résulte d'un assemblage hiérarchisé de petites et grosses particules micrométriques et poreuses à base d'alumine et d'un liant constitué de phosphate d'aluminium assurant la cohésion dudit matériau et sur son procédé de préparation.
L'intérêt de l'invention porte sur l'organisation hiérarchisée de petites et grosses particules micrométriques poreuses d'alumine, qui permet de maximiser la teneur de particules au sein du matériau et par conséquent, d'augmenter le volume mésoporeux dudit matériau. L'organisation hiérarchisée permet également de minimiser la quantité de liant car l'espace entre les grosses particules est rempli par les petites particules, et par conséquent, la teneur en liant nécessaire pour assurer la cohésion du matériau est minimisée. Ce liant permet d'assurer un volume macroporeux minimal mais suffisant pour l'accessibilité à la porosité desdites particules micrométriques. D'autre part, l'organisation hiérarchisée assure des propriétés mécaniques convenables. Par ailleurs, une amélioration de ces propriétés peut être obtenue par l'emploi d'un liant spécifique.
En particulier, un objet de la présente invention concerne un matériau, sous forme d'objet millimétrique, constitué de grosses particules d'alumine présentant un diamètre médian compris entre 10 et 200 pm, lesdites grosses particules étant distantes, d'une interface à l'autre, de moins de 10 μιη, de petites particules d'alumine présentant un diamètre médian compris entre 0,5 et 10 pm, lesdites petites particules étant distantes, d'une interface à l'autre, de moins de 5 Mm et étant localisées dans l'espace entre les grosses particules, et d'un liant constitué de phosphate d'aluminium, ledit liant étant localisé dans l'espace entre lesdites petites et grosses particules, ledit matériau présentant un volume mésoporeux, mesuré par porosimétrie au mercure, compris entre 0,2 et 2 mL/g, un volume macroporeux, mesuré par porosimétrie au mercure, compris entre 0,05 et 0,2 mL/g et une surface spécifique BET comprise entre 80 et 350 m2/g.
Un autre objet de la présente invention concerne un procédé de préparation dudit matériau qui comprend au moins les étapes suivantes :
a) le mélange de 10 à 60% en poids de petites particules d'alumine de diamètre médian compris entre 0,5 et 10 pm et de 40 à 90% en poids de grosses particules d'alumine de diamètre médian compris entre 10 et 200 pm, de 5 à 50 % en poids d'un précurseur solide d'alumine, les pourcentages de petites et grosses particules d'alumine étant exprimés par rapport à la quantité totale de particules micrométriques, et le pourcentage de précurseur solide d'alumine étant exprimé par rapport à la quantité totale de solide, et de l'acide phosphorique en solution dans des proportions telles que le ratio molaire P/AI est compris entre 0,2 et 1 ,2, lesdites grosses particules et petites particules d'alumine, désignées sous le terme particules micrométriques, présentant un volume mésoporeux compris entre 0,2 et 2,5 mL/g, et un diamètre médian de mésopores compris entre 7 et 25 nm;
b) la mise en forme du mélange issu de l'étape a) ;
c) le séchage du matériau cru obtenu à l'issue de l'étape b) et ; d) la calcination du matériau séché issu de l'étape c).
Un avantage de la présente invention est de fournir un matériau présentant une proportion maximisée de petites et grosses particules poreuses du fait de l'organisation hiérarchisée desdites particules au sein du matériau et donc de fournir un matériau présentant un domaine de texture très étendu, notamment un volume mésoporeux pouvant atteindre la valeur de 2mlJg largement supérieure aux valeurs de volume mésoporeux généralement observées pour des matériaux à base d'alumine constitués au maximum d'une seule classe de particules rassemblées par un liant de l'art antérieur.
Un autre avantage de la présente invention est de fournir un matériau présentant des propriétés de résistance mécanique accrues. Ceci est dû à l'effet combiné de l'organisation hiérarchisée des petites et grosses particules d'alumine du matériau selon l'invention et de la cohésion dudit matériau assurée par la présence d'un liant spécifique. En particulier, le matériau selon l'invention présente une résistance mécanique à l'écrasement latéral maximisée pouvant atteindre des valeurs de force très élevées, jusqu'à 100 N pour un matériau selon l'invention de forme cylindrique, de diamètre égal à 2 mm et de longueur égale à 4 mm, qui sont des valeurs de force largement supérieures à celles observées pour des matériaux à base d'alumine constitués d'une seule classe de particules rassemblées par un liant de l'art antérieur.
Un autre avantage de la présente invention est également de fournir un procédé de préparation permettant l'obtention dudit matériau présentant des propriétés de résistance mécanique accrues grâce au mélange dans une étape a) de particules micrométriques d'alumine avec un précurseur solide d'alumine et d'une solution d'acide phosphorique dans des proportions telles que le ratio molaire P/AI spécifique conduise à la génération in situ d'un liant spécifique constitué de phosphate d'aluminium à l'issue d'une étape d) de calcination du matériau séché et mis en forme.
Un autre avantage de la présente invention est également de fournir un procédé de préparation permettant:
un bon glissement des particules micrométriques d'alumine les unes par rapport aux autres au cours de l'étape a) de mélange ce qui limite d'une part, la dégradation des particules et permet ainsi de maintenir une grande porosité du matériau et ce qui limite d'autre part la génération de défauts micrométriques au sein du mélange et permet ainsi d'améliorer sa résistance mécanique;
un bon écoulement du mélange obtenu à l'étape a) au cours de l'étape b) ce qui limite la génération de défauts de géométrie et de défauts micrométriques à la surface du matériau cru améliorant ainsi l'aspect et la résistance mécanique du matériau sous forme d'objet millimétrique obtenu selon l'invention; la formation des défauts liés à la densification du liant au cours des étapes c) et d) est minimisée du fait de sa localisation dans l'espace de faible dimension entre les particules micrométriques d'alumine ce qui améliore la résistance mécanique du matériau sous forme d'objet millimétrique obtenu selon l'invention.
DESCRIPTION DE L'INVENTION
La présente invention concerne un matériau, sous forme d'objet millimétrique, constitué de grosses particules d'alumine présentant un diamètre médian compris entre 10 et 200 pm, lesdites grosses particules étant distantes, d'une interface à l'autre, de moins de 10 pm, de petites particules d'alumine présentant un diamètre médian compris entre 0,5 et 10 pm, lesdites petites particules étant distantes, d'une interface à l'autre, de moins de 5 pm et étant localisées dans l'espace entre les grosses particules et d'un liant constitué de phosphate d'aluminium, ledit liant étant localisé dans l'espace entre lesdites petites et grosses particules, ledit matériau présentant un volume mésoporeux, mesuré par porosimétrie au mercure, compris entre 0,2 et 2 mL/g, un volume macroporeux, mesuré par porosimétrie au mercure, compris entre 0,05 et 0,2 mUg et une surface spécifique BET comprise entre 80 et 350 m2/g.
Dans toute la suite du texte, on entend par volume mésoporeux, le volume des pores dont le diamètre est compris entre 3,6 et 50 nm. Conformément à l'invention, le volume mésoporeux est mesuré par porosimétrie au mercure dont la méthode est décrite ci-dessous. Plus particulièrement, on entend par volume mésoporeux, un volume poreux correspondant au volume de mercure qui est rentré dans les pores de diamètre compris entre 3,6 et 50 nm.
Dans toute la suite du texte, on entend par volume macroporeux, le volume des pores dont le diamètre est compris entre 50 et 7000 nm. Conformément à l'invention, le volume macroporeux est mesuré par porosimétrie au mercure dont la méthode est décrite ci-dessous. Plus particulièrement, on entend par volume macroporeux, un volume poreux correspondant au volume de mercure qui est rentré dans les pores de diamètre compris entre 50 et 7000 nm.
Dans toute la suite du texte, on entend par volume mesuré par porosimétrie au mercure, le volume mesuré par la technique de pénétration du mercure dans laquelle on applique la loi de Kelvin- ΙΛ/ashburn qui donne la relation entre la pression, le diamètre du plus petit pore dans lequel le mercure pénètre à ladite pression, l'angle de mouillage et la tension superficielle selon la formule : P = (4ycos9)/d, dans laquelle γ est la tension superficielle, Θ est l'angle de mouillage du mercure avec le matériau, d représente le diamètre du pore, et P la pression. La porosimétrie au mercure est réalisée selon la norme ASTM D4284-83, utilisant une tension de surface de 480 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage "Techniques de l'Ingénieur, traité analyse et caractérisation, P 1050-5, écrites par Jean Charpin et Bernard Rasneur".
Dans toute la suite du texte, on entend par surface spécifique BET, une surface spécifique déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BET (Brunauer - Emmett - Teller) décrite dans le périodique "The Journal of the American Society", 60, 309 (1938).
Les grosses particules et les petites particules d'alumine qui constituent le matériau selon l'invention sont, de part leur taille, des particules micrométriques.
Le matériau selon la présente invention est avantageusement constitué de l'organisation hiérarchisée de petites et de grosses particules micrométriques poreuses d'alumine.
Le terme "particules micrométriques" désigne dans toute la suite du texte l'ensemble des grosses et des petites particules. La quantité totale de particules micrométriques est donc la somme des grosses et des petites particules d'alumine.
Lesdites particules micrométriques qui constituent le matériau selon l'invention, sont des alumines de transition. En particulier, les particules micrométriques d'alumine sont des alumines de transition choisies parmi l'alumine chi, kappa, rho, eta, thêta, gamma et delta, seules ou en mélange, et de préférence l'alumine de transition est l'alumine gamma.
Les petites et les grosses particules ou particules micrométriques qui constituent le matériau selon la présente invention sont avantageusement des particules poreuses. De préférence, lesdites particules sont de forme arrondie et de manière encore plus préférée de forme sphérique.
Lesdites petites et les grosses particules sont avantageusement des agglomérats de cristallites nanométriques d'alumine. Ces cristallites se présentent sous forme de plaquettes, de fibres ou de "blocs" dont les dimensions sont avantageusement comprises entre 2 et 150 nm, de préférence entre 4 et 150 nm et de manière préférée entre 4 et 100 nm.
Les cristallites d'alumine sont les entités élémentaires qui constituent les particules micrométriques. L'espace inter-cristallites est responsable de la présence de la mésoporosité au sein même desdites particules.
La taille des agglomérats de cristallites qui constituent les particules micrométriques est analysée par microscopie électronique à balayage (MEB). En particulier, la taille moyenne des agglomérats de cristallites qui constituent les particules micrométriques, est déterminée à partir d'images de microscopie électronique à balayage (MEB) du matériau selon l'invention à l'aide du logiciel SMile View. Les images MEB doivent être réalisées sur le matériau en mode fracture et avec un détecteur d'électrons secondaires. Conformément à l'invention, les grosses particules d'alumine constituant le matériau selon l'invention présentent un diamètre médian compris entre 10 et 200 pm, de préférence entre 10 et 100 pm et de manière préférée entre 10 et 80 pm. Le terme "diamètre médian" désigne le D50, c'est-à-dire le diamètre du disque équivalent tel que 50 % en nombre desdites grosses particules a une taille inférieure audit diamètre.
La distribution de la granulométrie desdites grosses particules d'alumine au sein du matériau selon l'invention est représentée par la dimension DX, définie comme étant le diamètre du disque équivalent tel que X % en nombre desdites grosses particules a une taille inférieure audit diamètre. Plus précisément, la distribution de la granulométrie desdites grosses particules est avantageusement représentée par les trois dimensions D10, D50 et D90.
Ledit matériau selon l'invention présente avantageusement une distribution de la granulométrie desdites grosses particules d'alumine au sein dudit matériau tel que le diamètre D10 est au plus 3 fois inférieur au diamètre médian D50 et de préférence au plus 2 fois inférieur au diamètre médian D50 et tel que le diamètre D90 est au plus 3 fois supérieur au diamètre médian D50 et de préférence au plus 2 fois supérieur au diamètre médian D50.
Le diamètre des grosses particules est déterminé, dans le matériau selon l'invention, à partir d'images de microscopie électronique à balayage (MEB) du matériau selon l'invention, sur section polie, à l'aide du logiciel SMile View. Le diamètre médian est calculé à partir de la moyenne des diamètres déterminés sur un nombre de mesures que l'Homme de l'art juge nécessaire et suffisant et de préférence, sur au moins 200 mesures.
Conformément à l'invention, lesdites grosses particules sont distantes, d'une interface à l'autre, de moins de 10 pm, de préférence de moins de 8 pm, et de manière préférée de moins de 6 pm.
La distance entre l'interface d'une grosse particule et l'interface de la grosse particule la plus proche, est déterminée à partir d'images de microscopie électronique à balayage (MEB) du matériau selon l'invention, sur section polie, à l'aide du logiciel SMile View. Les mesures sont réalisées sur un nombre de mesures que l'Homme de l'art juge nécessaire et suffisant et de préférence, sur 50 images afin de déterminer une distance moyenne d'une interface à l'autre.
Lesdites grosses particules présentent avantageusement un diamètre médian inférieur à 1/10 fois le diamètre moyen de la plus petite dimension du matériau selon l'invention et de préférence inférieur à 1/50 fois le diamètre moyen de la plus petite dimension dudit matériau, afin d'assurer le remplissage complet de l'espace dudit matériau.
Les grosses particules constituant le matériau selon l'invention peuvent avantageusement être composées de deux populations de particules présentant des diamètres médians distincts.
Lesdites grosses particules peuvent éventuellement comprendre une proportion de particules, appelée particules "grosses inférieures", présentant un diamètre médian compris entre 10 et 60 pm et de préférence compris entre 15 et 30 pm et une proportion de particules appelée particules "grosses supérieures" présentant un diamètre médian compris entre 60 et 200 pm et de préférence compris entre 100 et 180 pm.
Dans le cas où lesdites grosses particules sont composées de particules "grosses inférieures" et de particules "grosses supérieures", ledit matériau selon l'invention présente avantageusement une distribution de la granulométrie desdites particules "grosses inférieures" d'alumine au sein dudit matériau tel que le diamètre D10 est au plus 3 fois inférieur au diamètre médian D50 et de préférence au plus 2 fois inférieur au diamètre médian D50 et tel que le diamètre D90 est au plus 3 fois supérieur au diamètre médian D50 et de préférence au plus 2 fois supérieur au diamètre médian D50 et une distribution de la granulométrie desdites particules "grosses supérieures" d'alumine au sein dudit matériau tel que le diamètre D10 est au plus 3 fois inférieur au diamètre médian D50 et de préférence au plus 2 fois inférieur au diamètre médian D50 et tel que le diamètre D90 est au plus 3 fois supérieur au diamètre médian D50 et de préférence au plus 2 fois supérieur au diamètre médian D50.
Conformément à l'invention, les petites particules qui constituent le matériau selon l'invention présentent un diamètre médian compris entre 0,5 et 10 pm, de préférence entre 0,5 et 6 pm et de manière préférée, entre 0,5 et 3 pm. Le terme "diamètre médian" désigne le D50, c'est-à-dire le diamètre du disque équivalent tel que 50 % en nombre desdites petites particules a une taille inférieure audit diamètre.
La distribution de la granulométrie desdites petites particules d'alumine au sein du matériau selon l'invention est représentée par la dimension DX, définie comme étant le diamètre du disque équivalent tel que X % en nombre desdites petites particules a une taille inférieure audit diamètre. Plus précisément, la distribution de la granulométrie desdites petites particules est avantageusement représentée par les trois dimensions D10, D50 et D90.
Ledit matériau selon l'invention présente avantageusement une distribution de la granulométrie desdites petites particules d'alumine au sein dudit matériau tel que le diamètre D10 est au plus 3 fois inférieur au diamètre médian D50 et de préférence au plus 2 fois inférieur au diamètre médian D50 et tel que le diamètre D90 est au plus 3 fois supérieur au diamètre médian D50 et de préférence au plus 2 fois supérieur au diamètre médian D50.
Le diamètre des petites particules est déterminé, dans le matériau selon l'invention, à partir d'images de microscopie électronique à balayage (MEB) du matériau selon l'invention sur section polie, à l'aide du logiciel SMile View. Le diamètre médian est calculé à partir de la moyenne des diamètres déterminés sur un nombre de mesures que l'Homme de l'art juge nécessaire et suffisant et de préférence, sur au moins 200 mesures. Conformément à l'invention, lesdites petites particules sont distantes, d'une interface à l'autre, de moins de 5 μιτι, de préférence de moins de 3 pm, et de manière préférée de moins de 2 pm.
La distance entre l'interface d'une petite particule et l'interface de la petite particule la plus proche, est déterminée par images de microscopie électronique à balayage (MEB) du matériau selon l'invention, sur section polie, à l'aide du logiciel SMile View. Les mesures sont réalisées sur un nombre de mesures que l'Homme de l'art juge nécessaire et suffisant et de préférence, sur 50 images afin de déterminer une distance moyenne d'une interface à l'autre.
Lesdites petites particules présentent avantageusement un diamètre médian inférieur à 1/5 fois le diamètre médian des grosses particules, et de préférence un diamètre médian inférieur à 1/10 fois le diamètre médian des grosses particules. Ceci permet d'assurer le remplissage de l'espace entre lesdites grosses particules, lesdites petites particules étant localisées dans l'espace entre lesdites grosses particules.
De plus, la proportion desdites petites particules est déterminée de manière à remplir l'espace entre lesdites grosses particules.
Les proportions des petites et des grosses particules d'alumine constituant le matériau selon l'invention sont exprimées en pourcentages surfaciques par rapport à la surface totale de l'image MEB du matériau selon l'invention, de manière à indiquer la surface que les petites et les grosses particules occupent au sein du matériau, ainsi que la proportion des particules grosses inférieures présentant un diamètre médian compris entre 10 et 60 pm. Les pourcentages surfaciques des particules micrométriques sont déterminés à partir de l'analyse d'images MEB du matériau selon l'invention, sur section polie. La résolution du microscope électronique à balayage (MEB) est avantageusement adaptée au diamètre médian desdites particules micrométriques de manière à avoir une image représentative de l'ensemble du matériau selon l'invention.
La surface occupée par les petites particules est déterminée de la façon suivante : le diamètre de la totalité des petites particules est mesuré à l'aide du logiciel SMile View, afin de calculer la surface occupée par chacune desdites petites particules. La somme de chacune des surfaces occupées par chacune desdites petites particules correspond à la surface totale occupée par l'ensemble desdites petites particules dans l'image MEB.
La surface occupée par les grosses particules est déterminée à partir des logiciels GIMP et Analysis de la façon suivante : les bords de chacune des grosses particules sont délimités à l'aide du logiciel GIMP. La surface occupée par l'ensemble desdites grosses particules est ensuite exprimée en pourcentage à partir du logiciel Analysis.
La proportion des petites et des grosses particules qui occupent la surface de l'image MEB du matériau selon l'invention est exprimée en pourcentage surfacique par rapport à la surface totale de l'image MEB du matériau selon l'invention. Elle est calculée selon la formule : (surface occupée par les petites ou les grosses particules I surface totale de l'image MEB) x100. Les pourcentages surfaciques sont déterminées sur un nombre d'images que l'Homme de l'art juge nécessaire et suffisant et de préférence, sur 10 images.
Le pourcentage surfacique des petites particules par rapport à la surface totale de l'image MEB du matériau selon l'invention est avantageusement compris entre 5 et 55%, de préférence entre 10 et 45% et de manière préférée entre 10 et 30%. Le pourcentage surfacique des grosses particules est avantageusement compris entre 35 et 85%, de préférence entre 45 et 80% et de manière préférée entre 60 et 80% par rapport à la surface totale de l'image MEB du matériau selon l'invention. Le complément de la fraction surfacique, c'est-à-dire, la somme des pourcentages surfaciques dés petites et des grosses particules soustraite de 100%, correspond au pourcentage surfacique occupé par le liant constitué de phosphate d'aluminium, et le vide résiduel. La présence de vide résiduel dans l'image MEB, c'est-à-dire d'espace non rempli, est liée à l'existence d'un volume macroporeux au sein du matériau.
Conformément à l'invention, lesdites petites particules sont localisées dans l'espace entre les grosses particules. Cet assemblage de petites et de grosses particules est à l'origine de l'organisation hiérarchisée desdites particules micrométriques au sein du matériau. Ledit matériau selon l'invention présente avantageusement une organisation hiérarchisée.
L'organisation hiérarchisée desdites particules micrométriques au sein dudit matériau conduit à un domaine de texture très étendu, notamment de volume mésoporeux mesuré par porosimétrie au mercure sur ledit matériau compris entre 0,2 et 2 mL/g.
Conformément à l'invention, un liant constitué de phosphate d'aluminium est localisé dans l'espace entre les petites et les grosses particules. De préférence, lesdites petites particules remplissent l'espace entre les grosses particules et ledit liant remplit l'espace résiduel entre les petites et les grosses particules et l'espace résiduel entre les petites particules.
Ledit liant remplit l'espace entre lesdites particules micrométriques de manière à assurer la cohésion du matériau selon l'invention, et par conséquent, de manière à minimiser le vide résiduel, c'est-à-dire l'espace non rempli entre lesdites particules micrométriques. L'existence de vide résiduel est responsable de la présence d'un volume macroporeux au sein du matériau.
Le liant présent dans l'espace entre les particules micrométriques permet de minimiser le volume macroporeux au sein du matériau selon l'invention de sorte que ledit volume macroporeux dudit matériau soit compris entre 0,05 et 0,2 mL/g, de préférence compris entre 0,07 et 0,17 mL/g, et de manière préférée compris entre 0,1 et 0,15 mL/g.
Par ailleurs, le liant ne doit pas perturber l'organisation hiérarchisée de petites et grosses particules, c'est-à-dire, que le liant ne doit pas éloigner les particules micrométriques les unes des autres. Ainsi, ledit liant permet de maintenir une distance d'une interface à l'autre entre les petites particules inférieure à 5 pm, de préférence inférieure à 3 pm, et de manière préférée inférieure à 2 pm, et une distance d'une interface à l'autre entre les grosses particules inférieure à 10 pm, de préférence inférieure à 8 pm et de manière préférée inférieure à 6 pm. Ainsi, la cohésion des particules micrométriques est assurée par la présence dudit liant constitué phosphate d'aluminium.
La localisation du phosphore provenant du liant constitué de phosphate d'aluminium dans le matériau selon l'invention, est obtenue grâce à la cartographie du phosphore P réalisée à partir de la microscopie électronique à balayage (MEB) couplée à la microanalyse par EDS (Energy Dispersive Spectroscopy) (MEB-EDS). Le matériau est analysé sur section polie avec un détecteur d'électrons rétrodiffusés.
Ledit liant se présente avantageusement, dans le matériau selon l'invention, sous la forme de particules ayant une taille moyenne inférieure à 1 pm. La taille des particules constituant le liant peut avantageusement être mesurée, dans le matériau selon l'invention, par analyse d'images MEB avec l'aide du logiciel SMile View. Les images MEB doivent être réalisées sur le matériau selon l'invention en mode fracture et avec un détecteur d'électrons secondaires.
Conformément à l'invention, ledit matériau présente un volume mésoporeux mesuré par porosimétrie au mercure compris entre 0,2 et 2 mlJg, de préférence compris entre 0,2 et 1 ,5 mIJg et de manière préférée compris entre 0,2 et 1 ml_/g.
Conformément à l'invention, ledit matériau présente un volume macroporeux mesuré par porosimétrie au mercure compris entre 0,05 et 0,2 mL/g, de préférence compris entre 0,07 et 0,17 mL/g et de manière préférée compris entre 0,1 et 0,15 mIJg.
De préférence, ledit matériau présente un diamètre médian des mésopores mesuré par porosimétrie au mercure compris entre 8 et 25 nm, de préférence compris entre 10 et 25 nm et de manière préférée compris entre 10 et 23 nm.
Conformément à l'invention, ledit matériau présente une surface spécifique BET comprise entre 80 et 350 m2/g, de préférence comprise entre 80 et 250 m2/g et de manière préférée comprise entre 80 et 200 m2/g.
Conformément à l'invention, ledit matériau se présente sous la forme d'un objet millimétrique. De préférence, le diamètre moyen de la plus petite dimension du matériau selon l'invention est avantageusement compris entre 0,5 et 10 mm, de préférence entre 0,7 et 5 mm, et de manière préférée entre 1 ,0 et 4,0 mm. Les dimensions de l'objet millimétrique peuvent être obtenues avec n'importe quel outil de mesure adapté aux dimensions dudit matériau et notamment avec un pied à coulisse. Ledit matériau se présente avantageusement sous forme de granule ou d'extrudé et de préférence sous forme d'extrudé.
Le matériau selon l'invention présente ainsi des proportions maximisées en particules micrométriques poreuses du fait de cette organisation hiérarchisée, résultant en un matériau poreux et ayant une bonne résistance mécanique.
Le matériau selon la présente invention possède d'excellentes propriétés de résistance mécanique. Ceci est dû à l'effet combiné de l'organisation hiérarchisée des petites et grosses particules d'alumine du matériau selon l'invention et de la cohésion dudit matériau assurée par la présence d'un liant spécifique. En particulier, le matériau selon l'invention présente une résistance mécanique à l'écrasement latéral déterminée par le test d'écrasement grain à grain (EGG) avantageusement comprise entre 50 et 100 N, de préférence comprise entre 60 et 100 N et de manière préférée comprise entre 80 et 100 N, exprimée en force dans le cas des matériaux selon l'invention sous forme de granules; et une résistance mécanique à l'écrasement latéral avantageusement comprise entre 1 et 2,5 daN/mm, de préférence comprise entre 1 et 2,3 daN/mm et de manière préférée comprise entre 1 et 2 daN/mm, exprimée en force par unité de longueur dans le cas des matériaux selon l'invention sous forme d'extrudés.
On entend par résistance mécanique à l'écrasement latéral, la résistance mécanique du matériau selon l'invention déterminée par le test d'écrasement grain à grain (EGG). Il s'agit d'un test normalisé (norme ASTM D4179-01) qui consiste à soumettre un matériau sous forme d'objet millimétrique, comme une granule ou un extrudé, à une force de compression générant la rupture. Ce test est donc une mesure de la résistance en traction du matériau. L'analyse est répétée sur un certain nombre de solides pris individuellement et typiquement sur un nombre de solides compris entre 10 et 200. La moyenne des forces latérales de rupture mesurées constitue l'EGG moyen qui est exprimé dans le cas des granules en unité de force (N), et dans le cas des extrudés en unité de force par unité de longueur (daN/mm).
Procédé de préparation
Un autre objet de la présente invention concerne un procédé de préparation dudit matériau comprenant au moins les étapes suivantes :
a) le mélange de 10 à 60% en poids de petites particules d'alumine de diamètre médian compris entre 0,5 et 10 pm et de 40 à 90% en poids de grosses particules d'alumine de diamètre médian compris entre 10 et 200 μιτι, de 5 à 50 % en poids d'un précurseur solide d'alumine, les pourcentages de petites et grosses particules d'alumine étant exprimés par rapport à la quantité totale de particules micrométriques, et le pourcentage de précurseur solide d'alumine étant exprimé par rapport à la quantité totale de solide, et de l'acide phosphorique en solution dans des proportions telles que le ratio molaire P/AI est compris entre 0,2 et 1 ,2, lesdites grosses particules et petites particules d'alumine, désignées sous le terme particules micrométriques, présentant un volume mésoporeux compris entre 0,2 et 2,5 mUg, et un diamètre médian de mésopores compris entre 7 et 25 nm;
b) la mise en forme du mélange issu de l'étape a) ;
c) le séchage du matériau cru obtenu à l'issue de l'étape b) et ;
d) la calcination du matériau séché issu de l'étape c).
Les grosses particules et les petites particules d'alumine, désignées sous le terme "particules micrométriques" utilisées dans l'étape a) de mélange du procédé de préparation sont des alumines de transition choisies parmi l'alumine chi, kappa, rho, eta, thêta, gamma et delta, seules ou en mélange, et de préférence l'alumine gamma, ou sont avantageusement des précurseurs solides d'alumine choisis parmi l'hydrargillite, la gibbsite, la nordstrandite, la bayerite, la boehmite ou pseudo-boehmite. Dans le cas où les particules micrométriques sont des précurseurs solides d'alumine, lesdits précurseurs doivent être peu dispersibles dans la solution acide introduite dans l'étape a) de mélange du procédé de préparation, c'est-à-dire de manière à ce que le diamètre médian desdites particules micrométriques soit peu réduit au cours de l'étape a) et que l'organisation hiérarchisée de petites et grosses particules puisse être observée au sein du matériau à l'issue de l'étape d) de préparation selon les techniques de caractérisation décrites en détail ci-dessus. Dans ce cas, à l'issue de l'étape d) de calcination, une transformation de phase a lieu de manière à obtenir les alumines de transition au sein dudit matériau.
Dans toute la suite de la description du procédé de préparation, les particules micrométriques d'alumine utilisées dans l'étape a) de mélange du procédé de préparation sont des alumines de transition ou des précurseurs solides d'alumine peu dispersibles dans la solution d'acide phosphorique employée dans ladite étape a) du procédé de préparation, et qui seront transformés en alumine de transition à l'issue de l'étape d) de calcination.
Dans l'étape a) de mélange du procédé de préparation selon l'invention, des petites particules d'alumine de diamètre médian compris entre 0,5 et 10 pm sont mélangées à des grosses particules d'alumine de diamètre médian compris entre 10 et 200 pm.
De préférence, lesdites grosses particules d'alumine présentent un diamètre médian compris entre 10 et 100 pm et de manière préférée entre 10 et 80 pm.
Lesdites grosses particules mélangées dans l'étape a) du procédé de préparation selon l'invention peuvent avantageusement être composées de deux populations de particules présentant des diamètres médians distincts.
Lesdites grosses particules peuvent éventuellement comprendre une proportion de particules, appelée particules "grosses inférieures", présentant un diamètre médian compris entre 10 et 60 pm et de préférence compris entre 15 et 30 pm et une proportion de particules appelée particules "grosses supérieures" présentant un diamètre médian compris entre 60 et 200 pm et de préférence compris entre 100 et 180 pm.
De préférence, lesdites petites particules d'alumine présentent un diamètre compris entre 0,5 et 6 pm et de manière préférée, entre 0,5 et 3 pm.
Lesdites particules micrométriques d'alumine mélangées dans l'étape a) du procédé de préparation sont avantageusement utilisées sous forme de poudre.
La distribution de taille desdites particules micrométriques d'alumine au sein des poudres utilisées dans ladite étape a) de mélange est mesurée par granulométrie à diffraction laser, basée sur la théorie de la diffraction de Mie (G. B. J. de Boer, C. de Weerd, D. Thoenes, H. W. J. Goossens, Part. Charact. 4 (1987) 14-19). La distribution de la granulométrie des particules d'alumine micrométriques au sein des poudres est représentée par la dimension DvX, définie comme étant le diamètre de la sphère équivalente tel que X % en volume desdites particules a une taille inférieure audit diamètre. Plus précisément, la distribution de la granulométrie desdites particules est représentée par les trois dimensions Dv10, Dv50 et Dv90. Le terme "diamètre médian" employé dans la description du procédé de préparation selon l'invention désigne le Dv50, c'est-à-dire le diamètre de la sphère équivalente tel que 50 % en volume desdites particules a une taille inférieure audit diamètre.
La distribution de la granulométrie des petites particules est telle que le diamètre Dv10 est au plus 3 fois inférieur au diamètre médian Dv50 et de préférence au plus 2 fois inférieur au diamètre médian Dv50 et telle que le diamètre Dv90 est au plus 3 fois supérieur au diamètre médian Dv50 et de préférence au plus 2 fois supérieur au diamètre médian Dv50.
La distribution de la granulométrie des particules grosses supérieures et la distribution de la granulométrie des particules "grosses inférieures" est avantageusement identique à la distribution de la granulométrie des petites particules.
Ainsi, la distribution de la granulométrie des petites particules est de préférence monomodale, et la distribution de la granulométrie des grosses particules peut être monomodale ou bimodale, dans le cas où lesdites grosses particules sont composées desdites particules grosses inférieures et grosses supérieures.
Les propriétés texturales desdites particules micrométriques d'alumine, telles que la surface spécifique BET, le volume mésoporeux et le diamètre médian des mésopores, sont déterminées respectivement, par adsorption d'azote et porosimétrie au mercure. La surface spécifique BET, le volume mésoporeux et la distribution de taille des pores des particules micrométriques constituant le matériau selon l'invention peuvent être très variables en fonction du procédé de préparation du précurseur d'alumine utilisé pour préparer les particules micrométriques et des conditions opératoires. Lesdites particules micrométriques présentent avantageusement une surface spécifique BET comprise entre 100 et 480 m2/g, de préférence comprise entre 120 et 300 m2/g, et de manière préférée comprise entre 120 et 250 m2/g.
Conformément à l'invention, lesdites particules micrométriques présentent un volume mésoporeux compris entre 0,2 et 2,5 mL/g, de préférence compris entre 0,3 et 2,0 mL/g, et de manière préférée compris entre 0,3 et 1 ,5 mUg.
Conformément à l'invention, lesdites particules micrométriques présentent un diamètre médian de mésopores compris entre 7 et 25 nm, de préférence compris entre 7 et 24 nm, et de manière préférée compris entre 7,5 et 23 nm.
Les proportions en petites et grosses particules introduites dans le mélange de l'étape a) est un critère essentiel du procédé de préparation selon la présente invention car lesdites proportions définissent la compacité du mélange de petites et grosses particules. Lesdites proportions conduisent à l'organisation hiérarchisée des petites et grosses particules au sein du matériau obtenu à l'issue dudit procédé de préparation. Plus précisément, les proportions de petites et grosses particules sont choisies de manière à avoir un mélange entre petites et grosses particules qui conduise à une compacité satisfaisante. Ladite compacité du mélange des petites et grosses particules est déterminée par une mesure classique de densité de remplissage tassée (DRT). A l'issue de cette mesure, il est possible de calculer la compacité (C) du mélange des poudres à partir de la formule : C = DRT / Dg, où DRT est la densité de remplissage tassée du mélange des poudres et Dg est la densité de grain dudit mélange des poudres. A partir de la compacité (C), il est possible de déterminer la porosité (ε) du mélange des poudres où ε = 1 - C. La porosité renseigne sur le volume de vides entre les petites et les grosses particules, et par conséquent, permet de définir la proportion de liant nécessaire au remplissage de l'espace entre lesdites petites et grosses particules. Cela permet également de définir la proportion de précurseur solide d'alumine nécessaire à l'obtention de ladite proportion en liant.
Conformément à l'étape a) de mélange du procédé de préparation selon l'invention, on mélange de 10 à 60% et de préférence de 15 à 35 % en poids de petites particules d'alumine de diamètre médian compris entre 0,5 et 10 μιτι et de 40 à 90% et de préférence de 65 à 85 % en poids de grosses particules d'alumine de diamètre médian compris entre 10 et 200 μπι, les pourcentages étant exprimés par rapport à la quantité totale de particules micrométriques.
Si la proportion de grosses particules est inférieure à 40% en poids, l'organisation hiérarchisée de particules micrométriques d'alumine ne sera pas optimale compte tenu de la grande quantité de petites particules et la maximisation de la proportion de particules micrométriques d'alumine ne pourra pas être atteinte du fait d'une organisation moins compacte. Par ailleurs, si la proportion de grosses particules est trop élevée et en particulier supérieure à 90% en poids, la quantité de petites particules ne sera pas suffisante pour remplir les vides entre les grosses particules, et l'organisation hiérarchisée de particules micrométriques d'alumine ne sera pas optimale du fait d'une organisation moins compacte.
Un autre critère essentiel du procédé de préparation selon l'invention est l'introduction dans l'étape a) de mélange, d'un précurseur solide d'alumine et d'un acide en solution permettant la génération in situ d'un liant constitué de phosphate d'aluminium, après l'étape d) de calcination du procédé de préparation selon l'invention.
Par ailleurs, le précurseur solide d'alumine et l'acide en solution doivent être introduits dans ladite étape a) dans les proportions telles que revendiquées.
La génération dudit liant constitué de phosphate d'aluminium nécessite un précurseur solide d'alumine qui en présence de la solution acide soit plus réactif que les particules micrométriques d'alumine également introduites dans l'étape a) de mélange du procédé de préparation selon l'invention. En effet, le précurseur solide d'alumine doit être capable de se disperser majoritairement ou de se dissoudre majoritairement dans la solution acide employée et former des particules de taille moyenne inférieure à 1 μιτι entre les particules micrométriques. En particulier, les particules micrométriques d'alumine doivent être peu dégradées en présence de ladite solution acide, c'est-à- dire que le diamètre médian desdites particules d'alumine doit être majoritairement maintenu en présence de l'acide en solution introduit au cours de l'étape a) du procédé de préparation selon l'invention.
Le précurseur solide d'alumine est avantageusement choisi parmi les oxydes d'aluminium, les hydroxydes d'aluminium et les oxyhydroxydes d'aluminium solubles ou dispersibles dans la solution d'acide phosphorique, de préférence parmi les hydroxydes d'aluminium et les oxyhydroxydes d'aluminium. De manière très préférée, ledit précurseur solide d'alumine est un oxyhydroxyde d'aluminium et de manière plus préférée ledit précurseur solide d'alumine est la boehmite ou la pseudo-boehmite.
Ledit précurseur d'alumine se présente avantageusement sous forme de poudre constituée de particules solides présentant un diamètre médian, déterminé par granulométrie à diffraction laser, compris entre 9 et 80 pm, de préférence compris entre 10 et 60 μπι et de manière préférée entre 15 et 45 μm . Les particules du précurseur solide d'alumine sont avantageusement constituées d'agglomérats d'unités élémentaires, dites cristallites, dont les dimensions sont avantageusement comprises entre 2 et 150 nm, de préférence entre 4 et 150 nm et de manière préférée entre 4 et 100 nm déterminées par microscopie électronique à transmission (MET). La morphologie des cristallites, la taille et la manière dont les cristallites sont organisées, dépendent principalement de la voie de synthèse du précurseur d'alumine utilisé pour préparer lesdites particules micrométriques. Conformément à l'étape a) du procédé de préparation selon l'invention, la proportion du précurseur solide d'alumine est comprise entre 5 et 50% en poids par rapport à la quantité totale de particules solides, de préférence entre 10 et 30% en poids, et de manière préférée entre 15 et 25% en poids. La quantité totale de particules solides est la somme des particules micrométriques (petites et grosses particules d'alumine) et des particules du précurseur solide d'alumine.
Si la quantité de précurseur solide d'alumine est inférieure à 5% en poids par rapport à la quantité totale de particules solides introduites, la quantité de liant constitué de phosphate d'aluminium qui sera formé in situ après l'étape d) de calcination, ne sera pas suffisante pour assurer la cohésion de l'organisation hiérarchisée des petites et grosses particules micrométriques d'alumine. Par ailleurs, si la quantité de précurseur solide d'alumine est supérieure à 50% en poids par rapport à la quantité totale de particules solides, la quantité de liant constitué de phosphate d'aluminium qui sera formé in situ après l'étape d) de calcination sera supérieure à la quantité nécessaire pour remplir les vides résiduels entre les particules micrométriques, et par conséquent, les particules micrométriques seront dispersées de façon non organisée au sein dudit liant et la proportion de particules micrométriques présentes dans le matériau obtenu à l'issue du procédé de préparation selon l'invention final ne sera pas maximale.
Conformément à l'étape a) du procédé de préparation selon l'invention, l'acide phosphorique en solution est introduit dans le mélange. L'acide phosphorique est aussi appelé acide orthophosphorique.
Le rôle de la solution d'acide phosphorique est de promouvoir la formation d'une phase amorphe de phosphate d'aluminium à partir de la réaction avec le précurseur solide d'alumine. De cette manière, les particules du précurseur solide d'alumine qui ont au départ un diamètre médian de l'ordre de la dizaine du micron deviennent avec l'action de l'acide et de l'énergie mécanique apportée pendant l'étape a) du procédé de préparation du matériau selon l'invention, une phase amorphe de phosphate d'aluminium dont les particules ont une taille moyenne inférieure à 1 μητ
Conformément à l'étape a) du procédé de préparation selon l'invention, l'acide phosphorique en solution est introduit dans des proportions telles que le ratio molaire P/AI est compris entre 0,2 et 1 ,2. De préférence, l'acide phosphorique en solution est introduit dans des proportions telles que ledit ratio P/AI est compris entre 0,4 et 1 ,0 et de manière préférée, entre 0,6 et 0,9. Dans le ratio molaire P/AI, P provient de l'acide phosphorique introduit et Al provient du précurseur solide d'alumine.
Le ratio molaire P/AI spécifique tel que revendiqué correspond à une proportion d'acide phosphorique telle que le rapport de la masse d'acide introduit sur la masse de précurseur solide d'alumine introduit soit compris entre 30 et 225% en poids, de préférence entre 59 et 160% en poids et de manière préférée, entre 89 et 125% en poids. L'emploi d'un ratio molaire P/AI compris entre 0,2 et 1 ,2 dans l'étape a) du procédé de préparation selon l'invention permet à la fois de former la phase amorphe de phosphate d'aluminium à l'issue de la réaction entre l'acide phosphorique et le précurseur solide d'alumine, mais également, de favoriser la dissolution partielle et minoritairement, des particules micrométriques d'alumine sans affecter leur taille. Cette dissolution à rapport d'acide élevé, favorise la formation locale de phosphate d'aluminium, et par conséquent, ceci permet, après l'étape d) de calcination, d'augmenter la cohésion de l'organisation hiérarchisée des petites et grosses particules micrométriques d'alumine et donc du matériau obtenu par le procédé de préparation selon l'invention.
Dans le cas où la mise en forme du mélange issu de l'étape a) est réalisée par extrusion dans l'étape b), un liant organique peut éventuellement être ajouté dans l'étape a) de mélange. La présence dudit liant organique facilite la mise en forme par extrusion. Ledit liant organique peut avantageusement être choisi parmi le méthylcellulose, l'hydroxypropylméthylcellulose, l'hydroxyéthylcellulose, le carboxymethylcellulose et l'alcool polyvinylique. La proportion dudit liant organique est avantageusement comprise entre 0 et 5% en poids, de préférence entre 0 et 3% en poids et de manière préférée entre 0 et 1 % en poids, par rapport à la quantité totale de particules solides.
A l'issue de l'étape d) de calcination du procédé de préparation selon l'invention, ledit liant organique est décomposé, c'est-à-dire qu'à l'issue de l'étape d) de calcination, ledit liant organique n'est plus présent au sein du matériau selon l'invention.
Le mélange de l'étape a) du procédé de préparation selon l'invention est avantageusement réalisé en une seule étape ou en deux étapes.
En effet, la mise en oeuvre de ladite étape a) de mélange diffère selon la technique de mise en forme utilisée dans l'étape b) du procédé de préparation selon l'invention.
Dans le cas où l'étape b) de mise en forme est réalisée par extrusion, l'étape a) de mélange est de préférence réalisée en une seule étape. Les particules micrométriques d'alumine, le précurseur solide d'alumine, l'acide en solution et éventuellement un liant organique sont mélangés en une seule fois à l'aide d'un malaxeur batch, de préférence à bras à cames ou à bras en Z, ou bien à l'aide d'un malaxeur-mélangeur bi-vis. Les conditions de malaxage sont ajustées de manière connue de l'Homme du métier et visent à obtenir une pâte homogène et extrudable. L'extrudabilité de la pâte peut avantageusement être ajustée avec l'ajout de l'eau à l'acide en solution, afin d'obtenir une pâte adaptée à la réalisation de l'étape b) de mise en forme par extrusion.
Dans le cas où l'étape b) de mise en forme est réalisée par granulation humide, l'étape a) de mélange est de préférence réalisée en deux étapes. Dans un premier temps, les petites et grosses particules micrométriques d'alumine sont avantageusement mélangées à sec pendant une durée comprise entre 1 et 5 min et de préférence comprise entre 2 et 4 mn. Le mélange est de préférence réalisé à l'aide d'un mélangeur tel que par exemple, un drageoir ou un tambour tournant. Le précurseur solide d'alumine et l'acide en solution sont ensuite avantageusement introduits audit mélange à sec de particules micrométriques d'alumine, sous forme d'une solution liante formée avec le précurseur solide d'alumine dispersé dans ladite solution acide. L'acide en solution et le précurseur solide d'alumine dispersé dans ladite solution acide, sont avantageusement introduits dans un deuxième temps, à l'aide d'une buse de pulvérisation, afin d'assurer la mise en contact entre les composants du mélange et permettre l'agglomération progressive des particules micrométriques d'alumine au cours de la rotation du drageoir ou du tambour tournant. L'ajout dans une deuxième étape du précurseur solide d'alumine dispersé dans l'acide en solution permet d'assurer la mise en forme par croissance granulaire humide au cours de l'étape b) de mise en forme par granulation. Les conditions de mise en forme sont ajustées de manière connue de l'Homme du métier et visent à l'obtention de granules sphériques de taille souhaitée.
Le mélange issu de l'étape a) est ensuite mis en forme conformément à l'étape b) du procédé de préparation du matériau selon l'invention. L'étape b) de mise en forme permet d'obtenir un matériau cru.
On entend par matériau cru, le matériau mis en forme et n'ayant pas subi d'étapes de traitement thermique.
Ladite étape b) de mise en forme peut avantageusement être réalisée par granulation humide ou par extrusion. De préférence, ladite étape b) de mise en forme est réalisée par extrusion d'une manière connue de l'Homme du métier.
Dans ce cas, le mélange issu de l'étape a) c'est-à-dire la pâte issue de l'étape a) passe avantageusement à travers une filière, à l'aide par exemple, d'un piston ou d'une extrudeuse continue double vis ou monovis. Le diamètre de la filière est avantageusement variable et est compris entre 1 et 5 mm. La forme de la filière, et par conséquent, la forme du solide millimétrique obtenu sous forme d'extrudé, est avantageusement cylindrique, trilobée, quadrilobée ou bien multilobée.
Le matériau cru issu de l'étape b) peut donc être sous forme de granule ou d'extrudé et de préférence sous forme d'extrudé.
Le matériau cru mis en forme selon l'étape b) du procédé de préparation selon l'invention, est ensuite soumis aux traitements thermiques des étapes c) et d).
Conformément à l'étape c) du procédé de préparation selon l'invention, le matériau cru obtenu à l'issue de l'étape b) subit une étape de séchage.
Ladite étape c) de séchage est avantageusement réalisée selon les techniques connues de l'Homme du métier pour évaporer de manière contrôlée le solvant de la solution acide présent dans le matériau cru mis en forme obtenu à l'issue de l'étape b), et conférer une première solidification audit matériau. L'étape c) de séchage peut avantageusement être réalisée sous vide ou sous air ou sous air humide, en une ou plusieurs sous-étapes de conditions déterminées de température, de vide ou de gaz. Ladite étape c) de séchage est avantageusement réalisée à une température comprise entre 40 et 200°C, de préférence comprise entre 50 et 150°C, et de manière préférée comprise entre 70 et 100°C. L'étape c) de séchage est avantageusement réalisée pendant une durée comprise entre 12 et 72h, et de préférence comprise entre 12 et 24h. Ladite étape c) de séchage est avantageusement effectuée sous air ambiant ou sous air humide, avec une teneur en vapeur d'eau comprise entre 20 et 100% volume.
Conformément à l'étape d) du procédé de préparation selon l'invention, le matériau séché obtenu à l'issue de l'étape c) de séchage subit une étape de calcination.
Ladite étape d) de calcination est avantageusement réalisée selon les techniques connues de l'Homme du métier. Ladite étape d) peut être réalisée sous air ou sous air avec de la vapeur d'eau, en une ou plusieurs sous-étapes de conditions déterminées de température ou de gaz. Ladite étape d) de calcination est avantageusement réalisée à une température comprise entre 400 et 1000°C, de préférence comprise entre 450 et 850°C, et de manière préférée comprise entre 500 et 700°C. L'étape d) de calcination est avantageusement réalisée pendant une durée comprise entre 1 à 6 h et de préférence entre 2 et 3h, sous air ambiant ou sous air et vapeur d'eau. Ladite étape d) de calcination est avantageusement effectuée sous air ambiant.
Ladite étape d) de calcination permet de générer le liant constitué de phosphate d'aluminium et d'assurer la cohésion de l'organisation hiérarchisée des petites et grosses particules micrométriques d'alumine et donc du matériau obtenu par le procédé de préparation selon l'invention grâce notamment, à la transformation de la phase amorphe de phosphate d'aluminium formée après l'étape a) du procédé de préparation selon l'invention, majoritairement en une phase cristalline cristobalite- tridymite. Par ailleurs, la transformation de phase permettant la formation de la phase cristalline cristobalite-tridymite permet également d'améliorer l'adhésion entre lesdites particules micrométriques d'alumine et le liant constitué de phosphate d'aluminium.
A l'issue de l'étape d) de calcination du procédé de préparation selon l'invention, le matériau sous forme d'objet millimétrique selon l'invention est obtenu. On entend par matériau sous forme d'objet millimétrique, un matériau présentant des dimensions de l'ordre du millimètre.
Le matériau sous forme d'objet millimétrique, de préférence sous forme d'extrudé, préparé selon l'enchaînement des étapes a), b), c) et d) du procédé de préparation selon l'invention peut être caractérisé selon les techniques suivantes : l'adsorption d'azote pour la détermination de la surface spécifique selon la méthode BET; la porosimétrie au mercure pour les mesures des volumes mésoporeux et macroporeux et de la distribution de taille des pores ; la microscopie électronique à balayage (MEB) pour l'analyse de la microstructure permettant d'observer l'organisation hiérarchisée et les dimensions des petites et grosses particules micrométriques d'alumine assemblées par le liant de phosphate d'aluminium; la microscopie électronique à balayage (MEB) peut également être couplée à la microanalyse par EDS (MEB-EDS) afin de visualiser fa localisation du phosphore; un test d'écrasement grain à grain pour l'évaluation de la tenue mécanique du matériau.
Le procédé de préparation de l'invention assure la formation dudit matériau mais également :
un bon glissement des particules micrométriques d'alumine les unes par rapport aux autres au cours de l'étape a) de mélange ce qui limite d'une part, la dégradation des particules et permet ainsi de maintenir une grande porosité du matériau et ce qui limite d'autre part la génération de défauts micrométriques au sein du mélange et permet ainsi d'améliorer sa résistance mécanique ;
un bon écoulement du mélange obtenu à l'étape a) au cours de l'étape b) ce qui limite la génération de défauts de géométrie et de défauts micrométriques à la surface du matériau cru améliorant ainsi l'aspect et la résistance mécanique du matériau sous forme d'objet millimétrique obtenu selon l'invention ;
- la formation des défauts liés à la densification du liant au cours des étapes c) et d) est minimisée du fait de sa localisation dans l'espace de faible dimension entre les particules micrométriques d'alumine ce qui améliore la résistance mécanique du matériau sous forme d'objet millimétrique obtenu selon l'invention.
Les exemples suivants illustrent l'invention sans toutefois en limiter la portée.
Exemple 1 (selon l'invention) : préparation d'un matériau à base d'alumine, sous forme d'obiet millimétrique, poreux, avec une organisation hiérarchisée de deux classes de particules micrométriques assemblée par un liant constitué de phosphate d'aluminium avec un ratio molaire P/AI de 0.8
La population des grosses particules est constituée d'alumine référencée Puralox Scfa-140 (Sasol). Ces particules présentent une surface spécifique BET de 144 m2/g déterminée par adsorption d'azote (ASAP 2420 - Micromeritics), un volume mésoporeux de 0,45 mL/g et un diamètre médian des mésopores de 11 ,5 nm déterminés par porosimétrie au mercure (Autopore 9500 - Micromeritics). Le diamètre médian, c'est-à-dire le Dv50 desdites grosses particules est d'environ 19 pm, le Dv10 est d'environ 7 pm, et le Dv90 est d'environ 38 pm, déterminés par granulométrie à diffraction laser (Mastersizer 2000 - Malvem).
Les petites particules micrométriques d'alumine sont obtenues par séchage par atomisation d'un sol de boehmite préparé à partir de la poudre référencée Pural SB3 (Sasol). Le sol est préparé de manière à obtenir un rapport massique (masse de boehmite / masse d'eau)x 100 de 3,4% en poids et un taux d'acide (masse d'acide nitrique / masse d'alumine formée à partir de la boehmite après calcination) de 4,6% en poids. La poudre référencée Pural SB3 (Sasol) est introduite dans la solution acide, et le mélange est soumis à forte agitation pendant 2h. Après le temps de mélange, le sol est centrifugé pendant 20 min à une vitesse de 4000 tours/min, afin d'enlever les sédiments de boehmite non dispersée. Le sol de boehmite est ensuite séché par atomisation à l'aide d'un séchoir par atomisation de laboratoire (Bûchi B-290). Les conditions d'atomisation tels que le débit d'alimentation, le débit d'air comprimé, les températures d'entrée et sortie, et le débit d'aspiration sont optimisés afin de produire dans le cyclone de séparation, des petites particules sphériques dont le diamètre médian est d'environ 2 μιτι. Les particules obtenues par séchage par atomisation sont ensuite calcinées en four à moufle à 600°C pendant 2h afin d'assurer la transformation de la boehmite en alumine gamma, et ainsi d'obtenir les petites particules micrométriques et sphériques d'alumine. Lesdites petites particules présentent, après calcination, une surface spécifique BET de 212 m2/g déterminée par adsorption d'azote (ASAP 2420 - Micromeritics), un volume mésoporeux de 0,35 mL/g et un diamètre médian des mésopores de 7,5 nm, déterminés par porosimétrie au mercure (Autopore 9500 - Micromeritics). Le diamètre médian, c'est-à-dire le Dv50 desdites petites particules est d'environ 1 ,7 pm, le Dv10 est d'environ 0,75 pm, et le Dv90 est d'environ 3,4 pm, déterminés par granulométrie à diffraction laser (Mastersizer 2000 - Malvern).
Le précurseur solide d'alumine, nécessaire à la formation du liant constitué de phosphate d'aluminium, est la poudre référencée Pural SB3 (Sasol), et il s'agit d'une boehmite très réactive.
Les grosses particules micrométriques (Puralox Scfa-140 - Sasol), les petites particules micrométriques obtenues par séchage par atomisation d'un sol de boehmite, et le précurseur solide d'alumine référencé Pural SB3 (Sasol), sont mélangés à sec de manière à obtenir respectivement, les proportions de 80% et 20% en poids de grosses et petites particules, et 19% en poids de précurseur solide d'alumine. Les proportions de grosses et petites particules sont exprimées par rapport à la quantité totale de particules micrométriques, et la proportion de précurseur solide d'alumine est exprimée par rapport à la quantité totale de solide. Le mélange à sec est réalisé à l'aide d'un malaxeur bras à cames (Brabender 50 EHT) à une vitesse de rotation des bras de 10 tours/min pendant 2 minutes. Ensuite, une solution d'acide phosphorique est introduite à l'aide d'une pompe seringue, de manière à obtenir un rapport d'acide (masse d'acide phosphorique introduit/ masse de précurseur solide d'alumine introduit)x100 de 125,4% en poids, ce qui correspond à un ratio molaire P/AI de 0,8, où P provient de l'acide phosphorique et Al du précurseur solide d'alumine. L'eau est rajoutée avec la solution acide de manière à obtenir une pâte cohésive, homogène et extrudable. Le malaxage est poursuivi à une vitesse de rotation des bras de 16 tours/min pendant 30 minutes, après la fin de l'ajout de la solution acide.
La solution d'acide phosphorique associée à l'énergie mécanique apportée pendant le malaxage, permettent de disperser les agglomérats micrométriques de cristallites du précurseur solide d'alumine et de former un liant constitué d'une phase amorphe de phosphate d'aluminium. Le rapport élevé d'acide employé favorise aussi la formation locale de phosphate d'aluminium provenant de la dissolution partielle des particules micrométriques d'alumine.
La pâte obtenue est mise en forme dans une étape b) à l'aide d'une extrudeuse piston (MTS), équipée d'une filière cylindrique de 3 mm de diamètre et de 6 mm de longueur, afin de former l'objet millimétrique.
Les extrudés sont ensuite séchés en étuve ventilée à 80°C pendant 16h sous air ambiant dans une étape c), afin d'évaporer le solvant de la solution acide. Les extrudés séchés, sont ensuite calcinés en four à moufle à 600°C pendant 2h sous air ambiant, dans une étape d) de calcination, afin d'assurer la solidification du matériau grâce à la transformation de la phase amorphe de phosphate d'aluminium du liant en phases cristallines cristobalite-tridymite.
Les extrudés obtenus sont caractérisés selon les techniques suivantes : l'adsorption d'azote, pour la détermination de la surface spécifique BET; la porosimétrie au mercure pour les mesures des volumes mésoporeux et macroporeux et de la distribution du diamètre des mésopores; par microscopie électronique à balayage (MEB) (JEOL JSM 6340F) pour l'observation de l'organisation hiérarchisée de petites et grosses particules micrométriques d'alumine et en particulier la distance d'une interface à l'autre entre lesdites grosses particules ( Dgrosses) et d'une interface à l'autre entre lesdites petites particules ( Dpetites) et le pourcentage surfacique des petites (Spetites) et des grosses particules (Sgrosses) par rapport à la surface totale de l'image MEB; par MEB couplée à la microanalyse EDS (MEB-EDS) afin de visualiser la cartographie du phosphore au sein du matériau, et le test d'écrasement grain à grain (EGG) pour déterminer la résistance mécanique à l'écrasement latéral du matériau.
Les caractéristiques du matériau obtenu selon la formulation de l'exemple 1 , sont rassemblées dans le Tableau 1 .
On observe que le matériau selon l'invention obtenu selon l'exemple 1 présente une bonne résistance mécanique du fait de l'organisation hiérarchisée des petites et des grosses particules assemblée par un liant constitué de phosphate d'aluminium. Les distances Dgr0SSes et Dpetites et les pourcentages surfaciques SgrûSSes et Spetites sont des critères indispensables à l'obtention de l'organisation hiérarchisée desdites petites et grosses particules et sont conformes à celles du matériau de l'invention. Les propriétés texturales du matériau obtenu sont liées aux propriétés texturales des particules micrométriques d'alumine et sont conformes aux propriétés attendues du matériau selon l'invention. L'organisation hiérarchisée permet d'augmenter le volume mésoporeux du matériau, grâce à une maximisation de la proportion de particules micrométriques par rapport à la teneur en liant.
L'organisation hiérarchisée permet également d'avoir un bon glissement des petites et grosses particules micrométriques d'alumine les unes par rapport aux autres ce qui se traduit par un faible couple de malaxage de l'ordre de 3 Nm.
Exemple 2 (selon l'invention! : préparation d'un matériau à base d'alumine, sous forme d'objet millimétrique, très poreux, avec une organisation hiérarchisée de deux classes de particules micrométriques assemblée par un liant constitué de phosphate d'aluminium avec un ratio molaire P/AI de 0.8
Les grosses particules micrométriques et poreuses d'alumine sont obtenues à partir de la calcination en four à moufle à 600°C pendant 2h, sous air ambiant, de la poudre référencée Pural TH100 (Sasol), afin de transformer la boehmite de départ en alumine gamma. Les particules micrométriques présentent, après calcination, une surface spécifique de 142 m2/g déterminée par adsorption d'azote (ASAP 2420 - Micromeritics), un volume mésoporeux de 0,87 mlJg et un diamètre médian des mésopores de 22,5 nm déterminés par porosimétrie au mercure (Autopore 9500 - Micromeritics). Le diamètre médian, c'est-à-dire le Dv50 desdites grosses particules est d'environ 40 pm, le Dv10 est d'environ 15 pm, et le Dv90 est d'environ 77 pm, déterminés par granulométrie à diffraction laser (Mastersizer 2000 - Malvern).
Les petites particules micrométriques sont obtenues par séchage par atomisation d'un sol de boehmite préparé à partir de la poudre référencée Pural ΤΉ100 (Sasol). Ledit sol de boehmite est préparé selon les mêmes conditions décrites dans l'exemple 1 ; et les paramètres d'atomisation sont optimisés afin de produire dans le cyclone de séparation, des petites particules sphériques dont le diamètre médian est d'environ 3 pm. Les particules obtenues par séchage par atomisation sont soumises au même traitement thermique que l'exemple 1 , afin d'assurer la transformation de la boehmite en alumine gamma, et ainsi d'obtenir les petites particules micrométriques et sphériques d'alumine. Ces particules présentent, après calcination, une surface spécifique BET de 130 m2/g déterminée par adsorption d'azote (ASAP 2420 - Micromeritics), un volume mésoporeux de 0,78 mUg et un diamètre médian des mésopores de 23 nm, déterminés par porosimétrie au mercure (Autopore 9500 - Micromeritics). Le diamètre médian, c'est-à-dire le Dv50 desdites petites particules est d'environ 2,7 pm, le Dv10 est d'environ 1 ,7 pm, et le Dv90 est d'environ 8 pm, déterminés par granulométrie à diffraction laser (Mastersizer 2000 - Malvern).
Le précurseur solide d'alumine, nécessaire à la formation du liant constitué de phosphate d'aluminium, est la poudre référencée Pural TH100 (Sasol).
Les grosses particules micrométriques obtenues après calcination de la poudre référencée Pural TH100 (Sasol), les petites particules micrométriques obtenues par séchage par atomisation d'un sol de boehmite, et le précurseur solide d'alumine référencé Pural ΤΉ100 (Sasol), sont mélangés à sec dans une étape a) de mélange dans les mêmes proportions et dans les mêmes conditions décrites dans l'exemple 1. Ensuite, une solution d'acide phosphorique est introduite de la même façon que celle décrite dans l'exemple 1 , et afin d'obtenir un rapport d'acide (masse d'acide phosphorique introduit/ masse de précurseur solide d'alumine introduit)x100 de 125,4% en poids, ce qui correspond à un ratio molaire P/AI de 0,8, où P provient de l'acide phosphorique et Al du précurseur solide d'alumine. Le malaxage est poursuivi dans les mêmes conditions que l'exemple 1. L'eau est rajoutée avec la solution acide de manière à obtenir une pâte cohésive, homogène et extrudable. Le rapport d'acide élevé associé à l'énergie mécanique apportée au malaxage, conduisent aux mêmes effets techniques décrits dans l'exemple 1.
La pâte obtenue est ensuite mise en forme selon les mêmes conditions de l'exemple 1.
Les extrudés sont ensuite séchés et calcinés selon les conditions décrites dans l'exemple 1 ; et caractérisés selon les mêmes techniques décrites dans le même exemple.
Les caractéristiques du matériau obtenu selon la formulation de l'exemple 2 sont rassemblées dans le Tableau 1 .
On observe que le matériau selon l'invention obtenu selon l'exemple 2 présente une bonne résistance mécanique du fait de l'organisation hiérarchisée des petites et des grosses particules assemblée par un liant constitué de phosphate d'aluminium. Les distances Dgrosses et Dpetites et les pourcentages surfaciques Sgrosses et Spems sont des critères indispensables à l'obtention de l'organisation hiérarchisée desdites petites et grosses particules et sont conformes à celles du matériau de l'invention. Les propriétés texturales du matériau obtenu sont liées aux propriétés texturales des particules micrométriques d'alumine et sont conformes aux propriétés attendues du matériau selon l'invention. L'organisation hiérarchisée permet d'augmenter le volume mésoporeux du matériau, grâce à une maximisation de la proportion de particules micrométriques par rapport à la teneur en liant.
L'organisation hiérarchisée permet également d'avoir un bon glissement des petites et grosses particules micrométriques d'alumine les unes par rapport aux autres ce qui se traduit par un faible couple de malaxage de l'ordre de 5 Nm.
Exemple 3 (selon l'invention) : préparation d'un matériau à base d'alumine, sous forme d'objet millimétrique, poreux, avec une organisation hiérarchisée de trois classes de particules micrométriques assemblée par un liant constitué de phosphate d'aluminium avec un ratio molaire P/AI de 0.8 Les grosses particules d'alumine sont constituées de deux populations de particules dont le diamètre médian est distinct, et qui sont identifiées comme: une population de particules dites grosses inférieures et référencée Puralox Scfa-140 (Sasol) et une population de particules dites grosses supérieures, référencée Puralox SCCa 150/200 (Sasol). Les caractéristiques de la poudre d'alumine référencée Puralox Scfa-140 sont décrites dans l'exemple 1. La poudre d'alumine référencée Puralox SCCa 150/200 présente une surface spécifique BET de 199 m2/g déterminée par adsorption d'azote (ASAP 2420 - Micromeritics), un volume mésoporeux de 0,43 mIJg et un diamètre médian des mésopores de 8,7 nm déterminés par porosimétrie au mercure (Autopore 9500 - Micromeritics). Le diamètre médian, c'est-à-dire le Dv50 desdites particules grosses supérieures est d'environ 160 pm, le Dv10 est d'environ 104 pm, et le Dv90 est d'environ 247 pm, déterminés par granulométrie à diffraction laser (Mastersizer 2000 - Malvem). Les petites particules sont obtenues de la même manière décrite dans l'exemple 1 et leurs caractéristiques sont également décrites dans le même exemple.
Le précurseur solide d'alumine est la boehmite référencée Pural SB3 (Sasol), également utilisée dans l'exemple 1.
Les conditions de mélange des particules d'alumine avec le précurseur solide d'alumine et la solution acide, les conditions de malaxage, la mise en forme par extrusion et les traitements thermiques, sont identiques à ceux décrits dans l'exemple 1 , mais avec 4 poudres au lieu de 3 poudres. Les proportions de grosses, c'est-à-dire de l'ensemble des particules grosses inférieures et grosses supérieures, et petites particules micrométriques d'alumine sont respectivement de 76% et 24% en poids exprimées par rapport à la quantité totale de particules micrométriques, et la proportion de précurseur solide d'alumine est de 13% en poids par rapport à la quantité totale de solide. La proportion des particules dites grosses inférieures par rapport à la totalité de grosses particules est de 40% en poids. Le rapport d'acide (masse d'acide phosphorique introduit) / (masse de précurseur solide d'alumine)x100 utilisé est de 125,4% en poids, ce qui correspond à un ratio molaire P/AI de 0,8, où P provient de l'acide phosphorique et Al du précurseur solide d'alumine.
Les caractéristiques du matériau obtenu selon la formulation de l'exemple 3, et déterminées selon les techniques décrites dans l'exemple 1 , sont rassemblées dans le Tableau 1.
On observe que le matériau selon l'invention obtenu selon l'exemple 3 présente une bonne résistance mécanique du fait de l'organisation hiérarchisée des petites et des grosses particules assemblée par un liant constitué de phosphate d'aluminium. Les distances Dgrosses et Dpetites et les pourcentages surfaciques Sgrosses et Spetites sont des critères indispensables à l'obtention de l'organisation hiérarchisée desdites petites et grosses particules et sont conformes à celles du matériau de l'invention. Les propriétés texturales du matériau obtenu sont liées aux propriétés texturales des particules micrométriques d'alumine et sont conformes aux propriétés attendues du matériau selon l'invention. L'organisation hiérarchisée permet d'augmenter le volume mésoporeux du matériau, grâce à une maximisation de la proportion de particules micrométriques par rapport à la teneur en liant.
L'organisation hiérarchisée permet également d'avoir un bon glissement des petites et grosses particules micrométriques d'alumine les unes par rapport aux autres ce qui se traduit par un faible couple de malaxage de l'ordre de 8 Nm.
Exemple 4 (comparatif) : préparation d'un matériau à base d'alumine, sous forme d'obiet millimétrique, poreux, avec une seule classe de particules micrométriques assemblée par un liant constitué de phosphate d'aluminium avec un ratio molaire P/AI de 0.8
Les particules micrométriques et poreuses d'alumine proviennent de la poudre référencée Puralox SCfa-140 (Sasol) dont les caractéristiques sont décrites dans l'exemple 1.
Le précurseur solide d'alumine est la boehmite référencée Pural SB3 (Sasol), également utilisée dans l'exemple 1.
Les conditions de mélange des particules d'alumine avec le précurseur solide d'alumine et la solution acide, les conditions de malaxage, la mise en forme par extrusion et les traitements thermiques, sont identiques à ceux décrits dans l'exemple 1 , mais avec 2 poudres au lieu de 3 poudres. Les proportions de particules micrométriques d'alumine et de précurseur solide d'alumine par rapport à la quantité totale de solide sont respectivement, 74 et 26% en poids. Le rapport d'acide (masse d'acide phosphorique introduit) / (masse de précurseur solide d'alumine)x100 utilisé est de 125,4% en poids, ce qui correspond à un ratio molaire P/AI de 0,8, où P provient de l'acide phosphorique et Al du précurseur solide d'alumine.
Les caractéristiques du matériau obtenu selon la formulation de l'exemple 4, et déterminées selon les techniques décrites dans l'exemple 1 , sont rassemblées dans le Tableau 1.
On observe une résistance mécanique plus faible par rapport aux matériaux des exemples 1 , 2 et 3 selon l'invention du fait de la présence d'une seule classe de particules micrométriques d'alumine ce qui conduit également à un volume mésoporeux et une surface BET plus faible par rapport aux exemples selon l'invention. On observe également un volume macroporeux plus élevé du fait de l'absence d'organisation hiérarchisée de petites et grosses particules dans ce matériau.
Le glissement des particules micrométriques d'alumine les unes par rapport aux autres est moins favorisé ce qui se traduit par un couple de malaxage de l'ordre de 14 Nm.
Tableau 1
Figure imgf000028_0001
déterminé
Les exemples démontrent que les matériaux des exemples 1 à 3 selon l'invention présentant, à la fois, une organisation hiérarchisée de petites et de grosses particules d'alumine et comprenant un liant constitué de phosphate d'aluminium avec un ratio molaire P/AI spécifique, présentent des propriétés mécaniques accrues par rapport au matériau de l'art antérieur (exemple 4). L'organisation hiérarchisée permet également d'augmenter le volume mésoporeux du matériau, grâce à une maximisation de la proportion de particules micrométriques par rapport à la teneur en liant. Des propriétés texturales encore plus élevées peuvent être atteintes à partir de l'utilisation des particules micrométriques d'alumine à forte porosité.

Claims

REVENDICATIONS
1. Matériau, sous forme d'objet millimétrique, constitué de grosses particules d'alumine présentant un diamètre médian compris entre 10 et 200 pm, lesdites grosses particules étant distantes, d'une interface à l'autre, de moins de 10 pm, de petites particules d'alumine présentant un diamètre médian compris entre 0,5 et 10 pm, lesdites petites particules étant distantes, d'une interface à l'autre, de moins de 5 pm et étant localisées dans l'espace entre les grosses particules et d'un liant constitué de phosphate d'aluminium, ledit liant étant localisé dans l'espace entre lesdites petites et grosses particules, ledit matériau présentant un volume mésoporeux, mesuré par porosimétrie au mercure, compris entre 0,2 et 2 mUg, un volume macroporeux, mesuré par porosimétrie au mercure, compris entre 0,05 et 0,2 mlJg et une surface spécifique BET comprise entre 80 et 350 m2/g.
2. Matériau selon la revendication 1 dans lequel lesdites grosses particules d'alumine présentent un diamètre médian compris entre 10 et 80 pm.
3. Matériau selon l'une des revendications 1 ou 2 dans lequel ledit matériau présente une distribution de la granulométrie desdites grosses particules d'alumine au sein dudit matériau telle que le diamètre D10 est au plus 3 fois inférieur au diamètre médian D50 et telle que le diamètre D90 est au plus 3 fois supérieur au diamètre médian D50.
4. Matériau selon l'une des revendications 1 à 3 dans lequel lesdites grosses particules présentent un diamètre médian inférieur à 1/10 fois le diamètre moyen de la plus petite dimension du matériau.
5. Matériau selon l'une des revendications 1 à 4 dans lequel lesdites grosses particules sont distantes, d'une interface à l'autre, de moins de 6 pm.
6. Matériau selon l'une des revendications 1 à 5 dans lequel lesdites grosses particules comprennent une proportion de particules, appelée particules grosses inférieures, présentant un diamètre médian compris entre 10 et 60 pm et une proportion de particules, appelées particules grosses supérieures, présentant un diamètre médian compris entre 60 et 200 pm.
7. Matériau selon la revendication 6 dans lequel ledit matériau présente une distribution de la granulométrie desdites particules grosses inférieures au sein dudit matériau tel que le diamètre D10 est au plus 3 fois inférieur au diamètre médian D50 et tel que le diamètre D90 est au plus 3 fois supérieur au diamètre médian D50 et une distribution de la granulométrie desdites particules grosses supérieures au sein dudit matériau tel que le diamètre D10 est au plus 3 fois inférieur au diamètre médian D50 et tel que le diamètre D90 est au plus 3 fois supérieur au diamètre médian D50.
8. Matériau selon l'une des revendications 1 à 7 dans lequel dans lequel lesdites petites particules présentent un diamètre médian compris entre 0,5 et 3 pm.
9. Matériau selon l'une des revendications 1 à 8 dans lequel ledit matériau présente une distribution de la granulométrie desdites petites particules d'alumine au sein dudit matériau telle que le diamètre D10 est au plus 3 fois inférieur au diamètre médian D50 et telle que le diamètre D90 est au plus 3 fois supérieur au diamètre médian D50.
10. Matériau selon l'une des revendications 1 à 9 dans lequel lesdites petites particules présentent un diamètre médian inférieur à 1/5 fois le diamètre médian des grosses particules,
11. Matériau selon l'une des revendications 1 à 10 dans lequel le pourcentage surfacique des petites particules compris entre 5 et 55% par rapport à la surface totale de l'image MEB dudit matériau.
12. Matériau selon l'une des revendications 1 à 11 dans lequel le pourcentage surfacique des grosses particules est compris entre 35 et 85% par rapport à la surface totale de l'image MEB dudit matériau.
13. Procédé de préparation du matériau selon l'une des revendications 1 à 12 comprenant au moins les étapes suivantes:
a) le mélange de 10 à 60% en poids de petites particules d'alumine de diamètre médian compris entre 0,5 et 10 μιη et de 40 à 90% en poids de grosses particules d'alumine de diamètre médian compris entre 10 et 200 pm, de 5 à 50 % en poids d'un précurseur solide d'alumine, les pourcentages de petites et grosses particules d'alumine étant exprimés par rapport à la quantité totale de particules micrométriques, et le pourcentage de précurseur solide d'alumine étant exprimé par rapport à la quantité totale de solide, et de l'acide phosphorique en solution dans des proportions telles que le ratio molaire P/AI est avantageusement compris entre 0,2 et 1 ,2, lesdites grosses particules et petites particules d'alumine, désignées sous le terme particules micrométriques, présentant un volume mésoporeux compris entre 0,2 et 2,5 mIJg, et un diamètre médian de mésopores compris entre 7 et 25 nm;
b) la mise en forme du mélange issu de l'étape a);
c) le séchage du matériau cru obtenu à l'issue de l'étape b) et;
d) la calcination du matériau séché issu de l'étape c).
14. Procédé selon la revendication 13 dans lequel ledit précurseur solide d'alumine est choisi parmi les oxydes d'aluminium, les hydroxydes d'aluminium et les oxyhydroxydes d'aluminium solubles ou dispersibles dans la solution acide phosphorique.
15. Procédé selon l'une des revendications 13 ou 14 dans lequel ledit ratio P/AI est compris entre 0,4 et 1 ,0.
16. Procédé selon l'une des revendications 13 à 15 dans lequel ladite étape b) de mise en forme est réalisée par granulation ou par extrusion.
PCT/FR2012/000491 2011-12-14 2012-11-27 Materiau a base d'alumine, a structure multiechelle, comprenant un liant phosphate d'aluminium ayant une bonne resistance mecanique et son procede de preparation WO2013088000A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014546595A JP2015500196A (ja) 2011-12-14 2012-11-27 マルチスケール構造を有し、かつ、良好な機械強度を有するリン酸アルミニウムバインダを含む、アルミナベースの材料、およびその調製方法
US14/365,322 US9227873B2 (en) 2011-12-14 2012-11-27 Material based on alumina, with a multiscale structure, comprising an aluminium phosphate binder with good mechanical strength, and process for its preparation
EP12813404.6A EP2791079A1 (fr) 2011-12-14 2012-11-27 Materiau a base d'alumine, a structure multiechelle, comprenant un liant phosphate d'aluminium ayant une bonne resistance mecanique et son procede de preparation
CN201280061707.2A CN104136394B (zh) 2011-12-14 2012-11-27 具有优良机械强度的包含磷酸铝粘合剂的具有多尺度结构的氧化铝基材料,及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR11/03.858 2011-12-14
FR1103858A FR2984303B1 (fr) 2011-12-14 2011-12-14 Materiau a base d'alumine, a structure multiechelle, comprenant un liant phosphate d'aluminium ayant une bonne resistance mecanique et son procede de preparation

Publications (1)

Publication Number Publication Date
WO2013088000A1 true WO2013088000A1 (fr) 2013-06-20

Family

ID=47553246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000491 WO2013088000A1 (fr) 2011-12-14 2012-11-27 Materiau a base d'alumine, a structure multiechelle, comprenant un liant phosphate d'aluminium ayant une bonne resistance mecanique et son procede de preparation

Country Status (6)

Country Link
US (1) US9227873B2 (fr)
EP (1) EP2791079A1 (fr)
JP (1) JP2015500196A (fr)
CN (1) CN104136394B (fr)
FR (1) FR2984303B1 (fr)
WO (1) WO2013088000A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109052358A (zh) * 2018-10-09 2018-12-21 湖南雅城新材料有限公司 一种介孔-大孔磷酸铁的制备方法
CN111639431A (zh) * 2020-06-01 2020-09-08 扬州大学 二元颗粒混合物最小孔隙比预测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236647B2 (ja) * 2014-02-26 2017-11-29 国立研究開発法人産業技術総合研究所 アルミナ粒子
SG11201810208RA (en) * 2016-05-16 2018-12-28 Martinswerk Gmbh Products and uses thereof
US11091396B2 (en) 2016-05-23 2021-08-17 Sasol (Usa) Corporation High strength shaped aluminas and a method of producing such high strength shaped aluminas
EP3760602A4 (fr) * 2018-02-28 2021-11-17 Sumitomo Chemical Company Limited Composition de particules

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223537A (en) * 1962-01-15 1965-12-14 Aeronca Mfg Corp Method for preparing foamed insulating material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ224209A (en) * 1987-05-18 1990-10-26 Mobil Oil Corp Amorphous refractory composition as support for catalyst and its use in upgrading feedstock of petroleum residues
FR2734812B1 (fr) * 1995-05-31 1997-07-04 Atochem Elf Sa Procede de preparation de pieces foreuses en ceramique comprenant des plaquettes monocristallines d'alumine alpha
CA2320485C (fr) * 1998-12-08 2005-02-08 Japan Energy Corporation Catalyseur d'hydrodesulfuration et son procede de preparation
FR2809496B1 (fr) * 2000-05-23 2002-07-12 Saint Gobain Vitrage Couche diffusante
FR2933088B1 (fr) * 2008-06-27 2010-08-20 Inst Francais Du Petrole Procede de preparation d'une alumine a mesoporosite controlee

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223537A (en) * 1962-01-15 1965-12-14 Aeronca Mfg Corp Method for preparing foamed insulating material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. E. GROVER ET AL.: "Low-temperature synthesis of berlinite-bonded alumina ceramics", no. ANL/ET/CP-97994, 3 August 1999 (1999-08-03), OSTI, USA, XP002678173, Retrieved from the Internet <URL:http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=11185> [retrieved on 20120620] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109052358A (zh) * 2018-10-09 2018-12-21 湖南雅城新材料有限公司 一种介孔-大孔磷酸铁的制备方法
CN111639431A (zh) * 2020-06-01 2020-09-08 扬州大学 二元颗粒混合物最小孔隙比预测方法
CN111639431B (zh) * 2020-06-01 2024-02-13 扬州大学 二元颗粒混合物最小孔隙比预测方法

Also Published As

Publication number Publication date
US9227873B2 (en) 2016-01-05
JP2015500196A (ja) 2015-01-05
EP2791079A1 (fr) 2014-10-22
FR2984303B1 (fr) 2014-05-09
CN104136394A (zh) 2014-11-05
US20140377561A1 (en) 2014-12-25
FR2984303A1 (fr) 2013-06-21
CN104136394B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
EP2791079A1 (fr) Materiau a base d&#39;alumine, a structure multiechelle, comprenant un liant phosphate d&#39;aluminium ayant une bonne resistance mecanique et son procede de preparation
EP3558514A1 (fr) Oxyde mixte résistant au vieillissement à base de cérium, de zirconium, d&#39;aluminium et de lanthane pour convertisseur catalytique automobile
EP3030520B1 (fr) Matériau zéolithique à base de zéolithe mésoporeuse
FR2940645A1 (fr) Poudre d&#39;alumine alpha
FR2888836A1 (fr) Fines particules d&#39;alpha-alumine, leur procede de production, corps en alpha-alumine et son procede de production, et abrasif comprenant l&#39;alpha-alumine
FR2984180A1 (fr) Procede de fabrication de particules spheroidales d&#39;alumine
US20210265620A1 (en) Compositions and uses thereof
EP3558895A1 (fr) Produits céramiques poreux de sous oxydes de titane
US20190207206A1 (en) Compositions and uses thereof
FR2957340A1 (fr) Alpha-alumine pour la production d&#39;un monocristal de saphir et procede de production de celle-ci
FR3052682A1 (fr) Filtres comprenant des couches separatrices a base de beta-sic
EP3233735B1 (fr) Procede de preparation de billes d&#39;alumine par mise en forme par egouttage d&#39;un gel tres dispersible
WO2013087999A1 (fr) Materiau a base d&#39;alumine a structure multiechelle, comprenant un liant oxyde d&#39;aluminium ayant une bonne resistance mecanique et son procede de preparation
FR3086953A1 (fr) Billes frittees en carbure(s) de tungstene
JP2018069116A (ja) 触媒担体用αアルミナ造粒品及びその製造方法
WO2023089164A1 (fr) Materiau comprenant une silice mise en forme par extrusion avec un liant phosphopotassique ou phosphate de cesium presentant des proprietes mecaniques ameliorees et son procede de preparation
WO2023089174A1 (fr) Procede de preparation d&#39;une silice mise en forme par extrusion avec un liant phosphopotassique ou phosphate de cesium presentant des proprietes mecaniques ameliorees comprenant une etape de pre-melange
WO2007048940A2 (fr) Produit ceramique fritte a matrice azotee aux proprietes de surface ameliorees
KR20170044485A (ko) 탄화규소 슬러리 및 이의 제조방법
Tomita et al. Environmentally benign processing of ceramics by extrusion with various clay minerals as inorganic binders
CA3203555A1 (fr) Article en ceramique et ses procedes de fabrication
WO2022106230A1 (fr) Procede de preparation d&#39;un catalyseur a base de zeolithe de code structural mfi presentant une densite et une tenue mecanique ameliorees
WO2014188118A1 (fr) Procede de preparation d&#39;une alumine mesoporeuse a mesoporosite controlee comprenant au moins une etape de dispersion dans un melange de solvants
Jitianu et al. Controlled Processing of Bulk Assembling of Nanoparticles of Titania

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280061707.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12813404

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012813404

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012813404

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014546595

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14365322

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE