WO2013087965A1 - Compuestos macrocíclicos de tipo escorpiando y su uso como antiparasitarios - Google Patents

Compuestos macrocíclicos de tipo escorpiando y su uso como antiparasitarios Download PDF

Info

Publication number
WO2013087965A1
WO2013087965A1 PCT/ES2012/070866 ES2012070866W WO2013087965A1 WO 2013087965 A1 WO2013087965 A1 WO 2013087965A1 ES 2012070866 W ES2012070866 W ES 2012070866W WO 2013087965 A1 WO2013087965 A1 WO 2013087965A1
Authority
WO
WIPO (PCT)
Prior art keywords
compounds
compound
formula
parasites
cells
Prior art date
Application number
PCT/ES2012/070866
Other languages
English (en)
French (fr)
Inventor
Enrique GARCÍA-ESPAÑA MONSONÍS
María Paz CLARES GARCÍA
Salvador Blasco Llopis
Conxa SORIANO COTO
Jorge GONZÁLEZ GARCÍA
Begoña VERDEJO VIU
Mario INCLÁN NAFRÍA
Manuel SÁNCHEZ MORENO
Clotilde MARÍN SÁNCHEZ
Francisco OLMO ARÉVALO
Original Assignee
Universitat De Valencia
Universidad De Granada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat De Valencia, Universidad De Granada filed Critical Universitat De Valencia
Publication of WO2013087965A1 publication Critical patent/WO2013087965A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/439Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/08Bridged systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention refers to macrocyclic compounds of the scorpion type, which acquire said nomenclature due to their particular chemical structure formed by a macrocyclic body and a hanging arm where different radicals can be substituted.
  • the present invention further comprises the use of said compounds as medicaments, particularly in the treatment of diseases caused by parasites, preferably by Trypanosoma cruzi or Leishmania spp. Parasites, such as Chagas disease or Leishmaniasis.
  • Parasitism is the biological association in which an organism (“the parasite") lives on (ectoparasite) or inside (endoparasite) of the body of another organism ("host” or "host”) from which it obtains its nutrients.
  • the parasite is a process by which a species improves its ability to survive using as a host individuals of other species to cover their basic and vital needs.
  • the result of this association is mainly beneficial for the parasite, which translates into the improvement of its reproductive fitness (in English, reproductive fitness) and, generally, is detrimental to the reproductive fitness of the host.
  • parasites can be classified into different groups based on their location in the host and the influence they exert on it.
  • the parasites that live inside the host are called endoparasites and, those that live outside, are called ectoparasites.
  • parasitoid parasites are characterized by their ability to cause the death of the host organism. It has been shown that the parasite's survival is closely linked to the ability of its enzyme superoxide dismutase (FeSOD) to evade damage caused by toxic host radicals [S. Ghosh S. Goswami, S. Adhya, Biochem. J. 2003, 369, 447].
  • FeSOD superoxide dismutase
  • the FeSOD of the parasite plays a relevant role as part of the antioxidant defense in parasites that develop diseases such as Chagas disease ⁇ Trypanosoma cruzi) or Leishmaniasis ⁇ Leishmania spp.) [N. Le Trang, SR Meshnick, K. Kitchener, JW Eaton, J. Biol. Chem., 1983, 258, 125 Specifically, Leishmaniasis is a disease caused by different protozoan species of the genus Leishmania. The clinical manifestations of the disease range from skin ulcers that heal spontaneously, to fatal forms in which severe inflammation of the liver and spleen occurs. The disease by its zoonotic nature, affects both dogs and humans.
  • wild animals such as opossums, coatis and urumids, among others, are asymptomatic carriers of the parasite, so they are considered as reservoir animals.
  • the cutaneous form of the disease (cutaneous leishmaniasis) in humans is characterized by the appearance of painless skin ulcers in the area of the bite which can heal spontaneously or remain chronically for years. Visceral leishmaniasis is the clinical form that takes more lives worldwide. This presentation can be fatal if it is not treated on time. It is characterized by inflammation of the liver and spleen, accompanied by severe abdominal distension, loss of body condition, malnutrition and anemia.
  • the current treatment of Leishmaniasis is based on the intramuscular application of antimony-based drugs such as meglumine antimoniate (Glucantime®) for a period of 20 to 30 days.
  • antimony-based drugs such as meglumine antimoniate (Glucantime®)
  • Glucantime® meglumine antimoniate
  • these drugs show high toxicity and have not proven effective in the chronic stage of the disease.
  • Leishmania specimens show two morphologies during their life cycle: • Promastigote: elongated shape with anterior scourge. It is present in the intestine and salivary glands of the invertebrate (vector).
  • Amastigote spherical shape and with a very short flagellum, which does not protrude from the flagellar bag, so that it is only noticeable in the electron microscope. It reproduces within macrophages and cells of the vertebrate host reticuloendothelial system. Infections occur in the skin (skin), skin and mucous membranes (mucocutaneous) or in the organs (visceral).
  • Chagas disease is a tropical parasitic disease, usually chronic, caused by Trypanosoma cruzi.
  • the natural reservoir is made up of armadillos, marsupials, rodents, bats and wild primates, as well as certain domestic animals such as dogs, cats, even rats and guinea pigs.
  • It is commonly transmitted to man by hematophagous triatomines, such as the Triatoma infestans, which transmits the parasite when it defecates on the bite that it has made to feed itself. It can also be transmitted by transfusion of contaminated blood, by the intake of food contaminated by the parasite or vertically from the infected mother to the fetus.
  • the insect that transmits this disease can become infected if it bites a person who has the infection, and thus acquire the ability to continue spreading this parasite.
  • BZN Benzinidazole
  • these drugs are not very effective, mainly in the chronic phase (more than 30 days of treatment) of the disease and have a very high toxicity.
  • Trypanosoma cruzi has three different forms:
  • Amastigote spherical or oval, it is the reproductive form inside mammalian cells.
  • Epimastigote elongated and with the cinetoplast located before the nucleus, it is the reproductive form in the digestive tract of invertebrates and in culture media.
  • Tripomastigote also elongated, but with the cinetoplast located subsequently to the nucleus. It is found in the blood of mammals and is the infective form of them. This form is not divided.
  • Leishmaniasis and Chagas disease are diseases caused by parasites that affect millions of people around the world, there are currently very limited therapeutic remedies of doubtful efficacy.
  • those that are used entail serious problems, since their effectiveness is variable, being long and expensive treatments, and, in addition, they are associated with serious toxic effects.
  • antiparasitic compounds capable of treating such diseases effectively at all stages of the process, including the chronic stage, and which, in addition, does not are toxic to patients, or at least have a reduced toxicity with respect to the reference compounds currently used.
  • the present invention solves the technical problem explained above by means of the use of scouring macrocyclic compounds for the treatment of diseases caused by parasites, preferably by parasites Trypanosoma cruzi or Leishmania spp, such as Chagas disease or Leishmaniasis.
  • the compounds used in the present invention as antiparasitic are compounds of formula (I):
  • R may be H or a hydrocarbon chain comprising the substituents Ri and / or R 2 , where Ri is an amino group substituted by R 2 or unsubstituted, R 2 comprises carbocycles and / or heterocycles that may be substituted by R 3 or unsubstituted, and R 3 comprises formula (I) where R is a hydrocarbon chain.
  • the present invention compares the compounds of general formula (I) against Benzinidazol® (BZN) and Glucantime® which are reference drugs used in the treatment of diseases caused by Trypanosoma cruzi and Leishmania spp respectively.
  • BZN Benzinidazol®
  • Glucantime® which are reference drugs used in the treatment of diseases caused by Trypanosoma cruzi and Leishmania spp respectively.
  • the compounds used in this invention are structurally different from said reference drugs, have a toxicity about ten times lower and show antiparasitic activity results in both the acute and chronic phases.
  • the carbocycle is benzene and the heterocycle is pyridine.
  • the compounds used in the present invention as antiparasitic are the following:
  • the present invention compares the compounds of general formula (I) against Benzinidazol® (BZN) and Glucantime® which are reference drugs used in the treatment of diseases caused by Trypanosoma cruzi and Leishmania spp respectively.
  • BZN Benzinidazol®
  • Glucantime® which are reference drugs used in the treatment of diseases caused by Trypanosoma cruzi and Leishmania spp respectively.
  • the compounds used in this invention are structurally different from said reference drugs, have a toxicity about ten times lower and show antiparasitic activity results in both the acute and chronic phases.
  • the particularly preferred compounds of the present invention for use as an antiparasitic are the compounds of formula (II), (IV) and (V) which have an even lower toxicity level than the rest of Scorpio-type macrocyclic compounds studied in the present invention, obtaining for the compound (V) the highest percentage reduction in the number of parasites.
  • the first aspect of the present invention refers to the use of a compound of formula (I), where R can be H or a hydrocarbon chain comprising the substituents Ri and / or R 2 , where Ri is an amino group substituted by R 2 or unsubstituted, R 2 comprises carbocycles and / or heterocycles that may be substituted by R 3 or unsubstituted, and R 3 comprises formula (I) where R is a hydrocarbon chain, preferably using a compound of formula (I), where R is a radical selected from the group consisting of H, - (Cl-C20) - HRi, where the hydrocarbon chain is linear, branched, saturated or unsaturated and - (Cl-C20) -R 2 , where the hydrocarbon chain is linear, branched, saturated or unsaturated; where Ri is a radical selected from the group consisting of -H and - (C1-C20) where the hydrocarbon chain is linear, branched, saturated or unsaturated and where the terminal carbon of
  • this first claimable aspect comprises any of the above compounds for use in the treatment of diseases caused by parasites, that is, as antiparasitic.
  • the compounds of formula (I) described in the present invention can be used as active ingredients in human patients or animals and can also be prepared in pharmaceutical compositions, or formulations, and administered, according to the knowledge in the state of the art of development. galenic, in different ways such as: topically, by intradermal injection or orally by capsules, dragees or tablets. Similarly, solid forms are made in the presence of the necessary excipients selected from the group comprising but not limited to: mannitol, polyvinyl pyrrolidone, microcrystalline cellulose, silica gel, talcum, magnesium stearate, titanium oxide, dyes and antioxidants. Therefore, the present invention also covers the pharmaceutical or veterinary compositions themselves comprising said compounds of formula (I) and, optionally, pharmaceutically acceptable excipients.
  • the compounds studied in the present invention overcome the problems cited in the state of the art by being effective in the chronic phase of the disease (see Example 16) and having a decreased toxicity with respect to the compounds used as reference (see Example 15).
  • the compounds studied in this invention have lower IC 50 values than the reference compounds, which has important implications because the lower said value, the smaller the amount of compound necessary to cause the desired antiparasitic effect. Therefore, the use of a smaller amount of compound to achieve this effect will significantly reduce its side effects, including toxicity.
  • the compounds used in accordance with the first aspect of the invention form a complex with Mn (II).
  • the diseases treated by the compounds of the first aspect of the invention are Chagas disease or Leishmaniasis, which means that the compounds of the invention are effective against the parasites causing said diseases, namely Trypanosoma cruzi or Leishmania spp.
  • Another aspect of the invention refers to a method of treating diseases caused by parasites, such as Chagas disease or Leishmaniasis, which comprises administering to the patient a therapeutically effective amount of at least one of the compounds mentioned in the First aspect of the invention.
  • therapeutically effective amount is understood as that which causes the treated disease to reverse or improve its symptoms.
  • the third aspect of the invention refers to a compound of formula (I), selected from the compounds of formula (X), (XI), (XIV) and (XV) and, in a preferred aspect, the use thereof To prepare a medicine.
  • this preferred aspect also covers said compounds of formula (X), (XI), (XIV) and (XV) for use as a medicament.
  • the last aspect of the invention refers to a pharmaceutical or veterinary composition
  • a pharmaceutical or veterinary composition comprising at least one compound of formula (X), (XI), (XIV) and
  • FIG. 1 shows the percentage reduction in vitro in the number of trypomastigotes (infectious form of the Trypanosoma cruzi parasite) (ordinate axis) according to the different compounds of the invention tested at different concentrations (axis of abscissa). It is observed that for the compound P3py (formula V), at a concentration 50 ⁇ , the highest percentage reduction of the number of trypomastigotes is obtained.
  • FIG. 2 In this figure, parasitemia (number of parasites in blood) in the acute phase of Chagas disease in mice is studied. The presence of trypomastigotes in blood is shown in mice (ordinate axis) as a function of the treatment time with the compounds of the invention in days (abscissa axis). The dose used of the compounds of the invention and the reference drug (BZN) is 5 mg / kg. It is observed that in mice where compound P has been injected (formula II), P2py (formula IV) and P3py (formula V), the presence of parasites is quite minor, particularly with the compound P3py (formula V).
  • this figure shows the results obtained from the parasitemia curve, which shows that the compounds of formula II (P), formula IV (P2py) and formula V (P3py) are the most effective at the beginning of the chronic phase (at 30 days preferably at 60 days post infection) since they significantly reduce the number of parasites in the blood.
  • FIG. 3 This figure shows a study of the activity of compounds P (formula II), P2py (formula IV) and P3py (formula V) in the capacity of infestation and the growth of T. cruzi parasites (axis of ordinates) depending on the treatment time in days (axis of abscissa).
  • Control (- A-), BZN (- ⁇ -), P (- ⁇ -), P2py (- ⁇ -) and P3py (- ⁇ -). Measured at a concentration of IC 25 :
  • FIG. 4 This figure shows a study of inhibition of the different superoxide dismutase enzymes (Cu-ZnSOD, MnSOD and FeSOD) since the survival of the parasite is closely linked to the ability of the enzymes to avoid damage caused by toxic radicals of your host A) In vitro inhibition (%) of the CuZn-SOD enzyme from human erythrocytes (activity 23.36 ⁇ 4.21 U / mg).
  • the compounds of the invention are capable of inhibiting the parasite FeSOD enzyme with an IC 50 value (concentration required to achieve 50% inhibition) lower than in the rest of the enzymes.
  • the compounds of the invention carry out a selective or specific action in the inhibition of the FeSOD enzyme of the parasite.
  • Figure 5 Images of the ultrastructural alterations taken by transmission electron microscope (TEM) in epimastigotes of Trypanosoma cruzi treated with the different compounds.
  • TEM transmission electron microscope
  • Control parasite of T. cruzi shows organelles with their characteristic appearance, such as reservosomes (R), mitochondria (M), glycosomes (G), microtubules (MT) and flagellum (F). (Bar: 0.583 ⁇ ).
  • FIG. 6 Representation of the 1H-MR spectrum in T. cruzi epimastigotes treated with the compounds tested in the invention (IC 25 concentration): (A) Control (without treatment); (B) Compound of formula (II) (P); (C) Compound of formula (IV) (P2py); (D) Compound of formula (V) (P3py). Lac (L-lactate), Ala (L-alanine); Ac (acetate); S (succinate); Eth (ethanol) and Gly (glycerol). A decrease in metabolites excreted by the parasite is observed, as a consequence of an alteration in its metabolism by the action of antiparasitic compounds.
  • FIG. 7 This figure shows the effectiveness of the compounds P (formula II), P2py (formula IV) and P3py (formula V) in chronic phase.
  • Parasitic antibody levels are shown that show the efficacy of the compounds of the invention, in the chronic phase of the disease (in vivo model in chronic phase).
  • the decrease in parasitic antibody levels is indicative of the effectiveness of the compounds used in the present invention.
  • Example 1 Cultivation of parasites.
  • T. cruzi SN3 strain was isolated from IRHOD / CO / 2008 / SN3. This nomenclature refers to the host from which the parasite was isolated: I (insect), RHOD (rhodnius), the country (Colombia) and the year of isolation (2008). Specifically the The parasite was isolated from Rhodnius prolixus from Guajira (Colombia) [Biological characterization of Trypanosoma cruzi stocks from domestic and sylvatic vector s in Sierra Nevada of Santa Marta, Colombia. Jair Téllez-Meneses, Ana Mar ⁇ a Mej ⁇ a-Jaramillo, Ornar Triana-Chávez Acta Trópica 108 (2008) 26-34, 2008)].
  • Epimastigote forms were grown in axenic medium (Grace's Insect Medium Gibco®) supplemented with 10% inactive fetal bovine serum (FBS) at 28 ° C in tissue culture bottles. To obtain the parasite suspension, the epimastigote culture (in exponential growth phase) was concentrated by centrifugation at 400 g for 10 minutes and the number of flagella was counted in a hemocytometer.
  • axenic medium Gibco®
  • FBS inactive fetal bovine serum
  • metacyclic trypomastigote (a form that is found in the vector in the last section of the intestine and which are actually infective forms for the mammalian host) was induced by culturing the parasites at 28 ° C in modified medium (Grace's medium Gibco®) for 12 days [Osuna, A .; Adroher, F. J .; Lupia ⁇ ez, J. A. Cell. Differ Dev. 1990, 30, 89-95]. After 12 days of culture at 28 ° C, the metacyclic forms were counted in a Neubauer hemocytometer. The proportion of metacyclic forms was around 40% at this stage.
  • Vero cells were grown in RPMI medium (Rowell Park Memorial Institute Medium) (Gibco®) supplemented with 10% fetal bovine serum, in 95% humidified air, atmosphere with 5% C0 2 at 37 ° C for two days.
  • RPMI medium Rowell Park Memorial Institute Medium
  • the cells were placed in 25ml bottles (Sterling) and centrifuged at 10g for 5 minutes. The culture medium was removed, adding fresh medium to a final concentration of 10 x 5 cells / ml. This cell suspension was distributed in the culture dish with a ratio of 100 ⁇ / well and incubated for two days at 37 ° C in a humidified atmosphere enriched with 5% C0 2 .
  • Example 4 In vitro activity test: extracellular forms. Test of compounds in epimastigotes
  • Epimastigote forms in exponential growth phase were collected and distributed in culture dishes (with 24 wells) at a final concentration of 5x10 4 parasites / well.
  • Example 15 The compounds of the invention listed in Table 1 of Example 15 and Benzinidazol® were dissolved in MTL liquid medium (Mediun Trypanosome Liquid), and tested at the following concentrations: 100, 50, 25, 10 and 1 ⁇ .
  • MTL liquid medium Mediun Trypanosome Liquid
  • the effects of each compound against epimastigote forms were visualized at 72 hours using a Neubauer hemocytometer.
  • the effect of the compounds on the parasites is expressed in IC 50 values, that is, the concentration required to achieve 50% inhibition calculated by a linear regression analysis from the Kc values of the concentrations used (Kc represents the concentrations tested of the products and used in linear regression to calculate the IC 50 ).
  • Kc represents the concentrations tested of the products and used in linear regression to calculate the IC 50 ).
  • Table 1 of Example 15 The results are shown in Table 1 of Example 15.
  • the compounds used in the invention were evaluated in the trypomastigote form of T. cruzi.
  • BALB / c mice infected with T. cruzi were used after 7 days of infection.
  • Blood was obtained by cardiac puncture using 3.8% sodium citrate as an anticoagulant in a blood / anticoagulant ratio of 7: 3.
  • Parasitemia in infected mice was lxlO 5 parasites / ml.
  • the Test compounds were diluted in PBS medium to give a final concentration of 10, 25 and 50 ⁇ for each product. Aliquots (20 ⁇ .) Of each solution were mixed in the culture dishes (96 wells) with 55 ⁇ . of infected blood containing parasites at a concentration close to 6 x 6 parasites / ml.
  • Infected blood was used as control in PBS medium.
  • the culture dishes were stirred for 10 minutes at room temperature and kept at 4 ° C for 24 h.
  • Each solution was examined with a microscope (OLYMPUS CX41) in order to count the parasites using the Neubauer hemocytometer.
  • the activity (percentage reduction of parasites) was compared with the control [Boiani, M .; Boiani, L; Denicola, A .; Torres de Ortiz, S .; Serna, E .; Vera from Bilbao, K; Sanabria, L .; Yaluff, G; H.
  • Axenic amastigotes are an artificial form achieved by the transformation into a special culture for in vitro study, since the natural intracellular form can only be studied when it is internalized in macrophage cells.
  • IC 50 values that is, the concentration required to achieve 50% inhibition calculated by a linear regression analysis from the Kc values of the concentrations used.
  • Vero cells were grown in RPMI medium in a 95% humidified environment, 5% C0 2 atmosphere and 37 ° C. These cells were cultured for two days at a density of lxl O 4 cells / well in 24-well microplates (Nunc). Subsequently, Vero cells were infected in vitro with the metacyclic forms of T. cruzi, at a ratio of 10: 1 and maintained for 24 hours at 37 ° C in an atmosphere of 5% C0 2 . Extracellular parasites were removed by washing, and infected cultures were incubated with the compounds of the invention at the following concentrations: 1, 10, 25, 50 and 100 ⁇ and subsequently cultured for 72 hours in RPMI medium and 10% of inactivated bovine fetal serum.
  • the activity of the compounds was determined from the reduction of the percentage of amastigotes in the cultures.
  • the values are the average of four individual determinations [González P, Mar ⁇ n C, Rodr ⁇ guez-González I, Hitos AB, Rosales MJ, Reina M, D ⁇ az JG, Gonzalez-Coloma A, Sánchez-Moreno M.
  • the effect is shown, as in the previous cases, expressed as IC 5 or -
  • the results are shown in Table 1 of Example 15.
  • Vero cells were cultured in RPMI medium as described above. Subsequently, the cells were infected in vitro with the metacyclic forms of T. cruzi, with a 10: 1 ratio.
  • the compounds of the invention (IC 25 concentrations) were added immediately after infection and incubated for 12 hours at 37 ° C in an atmosphere with 5% of C0 2 . Extracellular parasites and compounds tested were removed by washing, and infected cultures were grown for 10 days in fresh medium. The fresh medium was added every 48 hours.
  • the activity of each compound of the invention tested was determined from the percentage of infected cells and the number of amastigotes per infected cell in treated and untreated cultures, in samples fixed with methanol and stained with Giemsa.
  • the percentage of infected cells and the average number of amastigotes per infected cell was determined by analyzing more than 100 host cells distributed in randomly chosen microscopic fields. Values are expressed as the average of four individual determinations. The number of trypomastigotes in the medium was determined as described previously [Osuna, A .; Adroher, F. J Lupia ⁇ ez, JA Cell. Differ Dev. 1990, 30, 89-95].
  • Example 7 Test of the compounds in the inhibition of the SOD of the parasite.
  • Cultivated parasites as described above were subjected to centrifugation.
  • the pellet was suspended in 3 ml of STE buffer (0.25 M sucrose, 25 mM Tris-HCl, 1 M EDTA, pH 7.8) and was subjected to 3 sonication cycles, 30 seconds at 60 V.
  • the sonication homogenate was centrifuged at 1500g for 5 minutes at 4 ° C, and the pellet was washed 3 times with ice-cold STE buffer. This fraction was centrifuged (2500 g for 10 minutes at 4 o C) and subsequently collected in supernatant. Protein concentrations were determined by the Bradford method [Bradford MM. A refined and sensitive method for the quantification of microquantities of protein-dye binding. Anal Biochem 1976; 72: 248].
  • FeSOD superoxide dismutase enzyme activity was determined according to the method described in [Beyer WF and Fridovich I. 1987. Assaying for super oxide dismutase activity: some large consequences of minor changes in conditions.
  • Each cuvette, located in the Stock solution 50mM phosphate buffer, pH 7.8, 54 ml, L-Methionine 3 ml, NBT 2 ml, Triton-X-100 1.5 ml
  • the absorbance was determined at 560 nm in a spectrophotometer. After 10 minutes under light and under agitation conditions, the absorbance was determined again.
  • Human CuZn-SOD and Mn-SOD enzymes, coenzymes and substrates used in these assays were obtained from Sigma Chemical Co, Germany. The data obtained were analyzed with the Newman-Keuls test.
  • Epimastigote cultures of T. cruzi received IC 25 concentrations of the compounds except in the case of control cultures. After incubation for 96 hours at 28 ° C, the cells were centrifuged at 400g for 10 minutes. The supernatant was collected to determine the metabolites secreted through 1H-MR, and the results were expressed in parts per million (ppm), using sodium 2,2-dimethyl-2-silapentane-5-sulphonate as a reference signal [Fernández-Becerra C, Sánchez- Moreno M, Osuna A, Opperdoes FR. Comparative aspects of energy metabolism in plant trypanosomatids. J Eukaryotic Microbiol 1997; 44: 523-9]. See Figure 6.
  • the parasites were grown at a density of 5 ⁇ 10 5 cells / ml in the corresponding medium, each containing the compounds of the invention at IC 25 concentration. After 96 hours, the cultures were centrifuged at 400 g for 10 minutes and the pellets produced were washed in PBS medium and mixed with 2% (v / v) of ⁇ -formaldehyde / glutaraldehyde in 0.05M of cacodylate buffer (pH 7.4 ) for 4 hours at 4 ° C.
  • pellets were prepared to be observed by transmission electron microscopy using the technique described in [González P, Mar ⁇ n C, Rodr ⁇ guez-González I, Hitos AB, Rosales MJ, Reina M, D ⁇ az JG, Gonzalez-Coloma A, Sánchez-Moreno M. In vitro activity of C20-diterpenoid alkaloid derivatives in promastigotes and intracellular amastigotes of Leishmania infantum. Int J Antimicrob Agents 2005; 25: 136-41].
  • Example 10 Test of trypanocidal activity in vivo.
  • mice A group of three BALB / c female mice (aged 6 to 8 weeks and 20-25g in weight) maintained under standard conditions, were infected with a concentration lxl 0 5 of metacyclic forms of T. cruzi through the route intraperitoneal The animals were divided into the following groups:
  • Group 2 infected with T. cruzi but not treated.
  • Group 3 not infected but treated with 1 mg / kg weight / day, for five consecutive days (7 to 12 days post-infection) by intraperitoneal route [D ⁇ az, JG; Carmona, AJ; Pérez de Paz, P.; Werner, H. Phytochem. Letters 2008, 1, 125-129].
  • Group 4 infected and treated for five consecutive days (7 to 12 days post-infection) with the compounds of the invention and Benzinidazol®.
  • the treatments began seven days after the infection of the animal.
  • the compounds of the invention were administered in a manner similar to that explained above and at the same concentrations.
  • a blood sample (5 ⁇ ) was taken from the mandibular vein of each treated mouse and diluted in a 1: 15 ratio (50 ⁇ citrate buffer: 0.1 M citric acid, 0.1 M sodium citrate and 20 ⁇ L of lysis buffer at pH 7.2: Tris-Cl 2M, MgCl 2 ).
  • the number of metacyclic forms of T. cruzi in the bloodstream was collected every three days from days 7 to 60 after infection. The number of metacyclic forms was observed at 200 microscopic fields.
  • Circulating anti-T. cruzi antibodies on days 60 and 90 of post-infection, were quantitatively evaluated by immunoassay.
  • the blood diluted in a 1: 50 ratio in PBS, was reacted with an antigen composed of the FeSOD enzyme secreted from the T. cruzi epimastigotes.
  • the results are expressed as the absorbance ratio for each sample at 490 nm versus the reference value.
  • the reference value of each reaction is the average of the values determined in the negative controls plus three times the standard deviation [Longoni SS, Mar ⁇ n C, Sauri-Arceo CH, López-Cespedes A, Rodr ⁇ guez-Vivas RI, Villegas N, Escobedo - Ortegón J Barrera-Pérez MA, Bolio-Gonzalez ME, Sánchez-Moreno M. An Iron- Superoxide Dismutase Antigen-Based Serological Screening of Dogs Indicates Their Potential Role in the Transmission of Cutaneous Leishmaniasis and Trypanosomiasis in Yucatán, Mexico. Vector Borne Zoonotic Dis. 2011 Feb 16].
  • TESTS CARRIED OUT IN LEISHMANIA SPP Example 11. In vitro culture of macrophages.
  • the J774.2 macrophages were recloned from the original J774.2 of a tumor, maintaining the cultures at a concentration between 3-9 x 10 5 cells / ml at 37 ° C and 5% C0 2 .
  • the procedure for working with the cells in culture was trypsinizing the adhered cells by washing with PBS, adding sufficient amount of trypsin / EDTA (200 ml of PBS + 0.1 g of EDTA and 200 ml of PBS + 0.5 g of trypsin ).
  • the two solutions were mixed at pH 7.2-7.4 and filtered.
  • the cells were incubated for 5-10 minutes. Subsequently, said cells were decanted and centrifuged for 5 minutes at 800 rpm. Finally they were resuspended in a new culture medium.
  • MEM + Glutamine supplemented with 20% inactivated fetal bovine serum (SBF-I) was used as culture medium.
  • Example 12 In vitro culture of Leishmania spp.
  • Promastigote forms of the two Leishmania species were obtained from the culture at 28 ° C in 10% MTL medium of SBF-I. Starting the culture with an inoculum of 5 x 10 4 cells / ml in 5 ml of medium in plastic bottles Falcon® 25 was 2 , always working in sterility.
  • Example 13 Biological tests in vitro.
  • Promastigote forms of Leishmania spp grown in the manner described above, were collected in their exponential phase of growth by centrifugation at 1500 rpm for 10 min. The number of parasites was counted in one Neubauer hemocytometric chamber and seeded in a 24-well plate at a concentration of 5 x 10 4 parasites in each well.
  • the compounds to be tested were dissolved in DMSO at a concentration of 0.01% (v / v), a concentration at which this solvent is not toxic or has any effect on the growth of parasites.
  • the compounds were added to the culture medium at a final concentration of: 100, 50, 25, 10 and 1 ⁇ .
  • the effect of each compound on the growth of promastigote forms, at the different concentrations tested, was evaluated at 72 h, using a Neubauer hemocytometric chamber and the leishmanicidal effect was expressed as IC 50 (concentration required to give an inhibition of 50%, calculated by the analysis of the linear regression of the K c at the concentrations tested).
  • the tests on amastigote forms were carried out by carrying out the following methodology. J774.2 macrophages were detached from the culture flask where they were attached by trypsinization and by dry blows. For this, the culture medium was removed, then the cell surface was covered with EDTA-trypsin and incubated for 5 minutes. After that, it was transferred to a 25 ml conical bottom flask (Steriling) to centrifuge them at 800 rpm for 5 minutes, removing the supernatant, and the cells were counted in Neubauer chamber. The cells were cultured in 24-well plates, in which a 12 mm round coverslip glass had previously been introduced into each well at a concentration of 10 ⁇ 4 cells in each well. For adhesion, cells were grown 24-48 h at 37 ° C at 5% C0 2 .
  • the cells were adhered, they were infected in vitro with lxlO 5 cells of amastigote forms in the stationary phase of Leishmania spp. They were incubated for 24 hours at 37 ° C in 5% C0 2 . After that time, the parasites that were free in the culture medium, were removed by several washes with fresh medium. The medium was then changed to cell cultures (MEM + Glut 20% SBF- I) and the test compound was added at a concentration of 1, 10, 25, 50 and 100 ⁇ . It was allowed to incubate for 72 hours at 37 ° C in 5% C0 2 .
  • Macrophages of the J774.2 line were deposited in a tube (steriling) and centrifuged at 800rpm for 5 minutes, the supernatant was discarded and the cells were resuspended in MEM + Glutamine medium with 20% SBF.
  • the percentage of viability was calculated.
  • the number of dead cells was determined by comparison with the control cultures.
  • the IC 50 was calculated using the linear regression analysis of the K c at the concentrations tested.
  • IC 50 ( ⁇ ) concentration required to achieve 50% inhibition.
  • b Toxicity expressed as 50 5 ⁇ ( ⁇ ) in Vero cells after 72 hours of culture.
  • IC selectivity index 50 in Vero / IC 50 cells intracellular and extracellular parasite.
  • the most active compounds against intracellular forms of the parasite are those whose SI value is greater than 50 times with respect to the reference compound.
  • Am. Axén . amastigote form.
  • IC 50 ( ⁇ ) concentration required to achieve 50% inhibition.
  • b Toxicity expressed as 50 5 ⁇ ( ⁇ ) in macrophages 1774.2 after 72 hours of culture.
  • c SI: selectivity index IC 50 in macrophages / intracellular and extracellular IC 50 of the parasite. The most active compounds against intracellular forms of the parasite are those whose SI value is greater than 20 times with respect to the reference compound.
  • IC 50 ( ⁇ ) concentration required to achieve 50% inhibition.
  • b Toxicity expressed as 50 5 ⁇ ( ⁇ ) in J774.2 macrophages after 72 hours of culture.
  • c SI: selectivity index IC 50 in macrophages / intracellular and extracellular IC 50 of the parasite. The most active compounds against intracellular forms of the parasite are those whose SI value is greater than 20 times with respect to the reference compound.
  • Am. Intrac intracellular amastigote form.
  • the compounds of the invention characterized by the formula (I) are effective in the treatment of diseases caused by parasites while maintaining a low level of toxicity, particularly the three less compounds Toxic: Pytren (P) (formula II), Pytren2py (P2py) (formula IV) and Pytren3py (P3py) (formula V).
  • Toxic Pytren (P) (formula II), Pytren2py (P2py) (formula IV) and Pytren3py (P3py) (formula V).
  • Example 16 Effectiveness of the compounds of the invention in chronic phase.
  • mice were taken 140 days post infection with the idea of reproducing the chronic phase of treatment. From the seventh day of post infection they were administered the treatment consisting of 5 doses of 100 ⁇ to finally gather a concentration of 15 mg / kg weight. Subsequently, blood samples were taken to monitor the state of parasitemia in the mouse by fresh counting, as well as to assess the immune status by means of the ELISA test. On day 140 the mice were immunocompromised by two cycles of cyclophosphamide (50 mg / kg day weight, 4 days treatment with 3 rest) and subsequently a final sample was obtained where organs (heart and liver) were included after necropsy to be evaluated by pathological studies.
  • cyclophosphamide 50 mg / kg day weight, 4 days treatment with 3 rest
  • FIG. 7 shows the levels of parasitic antibodies that show the efficacy of the compounds of the invention in the chronic phase of the disease (in vivo model in chronic phase).
  • the compound of formula (II) was reacted with the aldehyde group of a compound of formula R-COH, where R comprises the substituents Ri and / or R 2 , where Ri is an amino group substituted by R 2 or unsubstituted, R 2 comprises carbocycles and / or heterocycles that may be substituted by R 3 or unsubstituted, and R 3 comprises formula (I) where R is a hydrocarbon chain, the two compounds being preferably dissolved in ethanol or another alcohol, and subsequently added preferably sodium borohydride or other reducer for the reduction of the imine formed.
  • the mixture was conveniently treated to extract the reaction product, from which the ammonium salt is prepared by the addition of hydrochloric acid.
  • the salts of the different compounds are solid and purified through successive washes with ethanol.
  • the compounds are perfectly characterized by NMR (Nuclear Magnetic Resonance) spectroscopy, mass spectrometry, crystallographic analysis and through elemental analysis.
  • the compounds used in the present invention can be presented as complexes with Mn (II) for which the ligand and the corresponding metal (in this case Mn (II)) are mixed in an aqueous solution in molar ratio 1: 1 (L: M), the pH of the solution is adjusted to the formation pH of the species and allowed to evaporate slowly.
  • the compound of formula (XI) was obtained by the reaction of this detosylated intermediate, in its free amine form, with anthracene-9-carbaldehyde in dry ethanol, followed by an in situ reduction with sodium borohydride. The product was precipitated as a hydrochloride salt (Scheme 1).
  • the compound of formula (IX) was dissolved in dry ethanol and pyridine-4-carbaldehyde dissolved in dry ethanol was added dropwise. The reaction was stirred for 2 hours. NaBH 4 was added and the resulting solution was stirred for 1 hour at room temperature. Ethanol was removed under reduced pressure. The resulting residue was treated with water and dichloromethane. The organic phase was separated and removed under reduced pressure. The resulting residue was dissolved in ethanol and precipitated as hydrochloride salt (XV).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Compuestos macrocíclicos de tipo escorpiando y su uso como antiparasitarios. La presente invención hace referencia a compuestos macrocíclicos de tipo escorpiando, los cuales adquieren dicha nomenclatura debido a la particular forma de su estructura química formada por un cuerpo macrocíclico y un brazo colgante donde pueden sustituirse diferentes radicales. La presente invención además comprende el uso de dichos compuestos como medicamentos, particularmente en el tratamiento de enfermedades causadas por parásitos, preferentemente por los parásitos Trypanosoma cruzi o Leishmania spp, como por ejemplo la enfermedad de Chagas o la Leishmaniasis.

Description

COMPUESTOS MACROCÍCLICOS DE TIPO ESCORPIANDO Y SU USO
COMO ANTIPARASIT ARIOS
CAMPO DE LA INVENCIÓN
La presente invención hace referencia a compuestos macrocíclicos de tipo escorpiando, los cuales adquieren dicha nomenclatura debido a su particular estructura química formada por un cuerpo macrocíclico y un brazo colgante donde pueden sustituirse diferentes radicales. La presente invención además comprende el uso de dichos compuestos como medicamentos, particularmente en el tratamiento de enfermedades causadas por parásitos, preferentemente por los parásitos Trypanosoma cruzi o Leishmania spp., como son la enfermedad de Chagas o la Leishmaniasis.
ESTADO DE LA TÉCNICA
El parasitismo es la asociación biológica en la que un organismo ("el parásito") vive sobre (ectoparásito) o dentro (endoparásito) del cuerpo de otro organismo ("hospedador" o "huésped") del que obtiene sus nutrientes. Así, el parasitismo es un proceso por el cual una especie mejora su capacidad de supervivencia utilizando como hospedador a individuos de otras especies para que cubran sus necesidades básicas y vitales. El resultado de dicha asociación es principalmente beneficiosa para el parásito lo que se traduce en la mejora de su aptitud reproductiva (en inglés reproductive fitness) y, generalmente, va en detrimento de la aptitud reproductiva del hospedador.
Tal y como se vislumbra más arriba, los parásitos pueden clasificarse en diferentes grupos en función de su localización en el hospedador y de la influencia que ejercen sobre el mismo. Así, los parásitos que viven dentro del hospedador se llaman endoparásitos y, aquéllos que viven fuera, reciben el nombre de ectoparásitos. Por su parte, lo parásitos parasitoides se caracterizan por su capacidad de causar la muerte del organismo hospedador. Se ha demostrado que la supervivencia del parásito está estrechamente vinculada a la capacidad de su enzima superóxido dismutasa (FeSOD) de evadir el daño originado por los radicales tóxicos del hospedador [S. Ghosh. S. Goswami, S. Adhya, Biochem. J. 2003, 369, 447]. Así, la FeSOD del parásito desempeña un papel relevante como parte de la defensa antioxidante en los parásitos que desarrollan enfermedades como por ejemplo la enfermedad de Chagas {Trypanosoma cruzi) o la Leishmaniasis {Leishmania spp.) [N. Le Trang, S. R. Meshnick, K. Kitchener, J. W. Eaton, J. Biol. Chem., 1983, 258, 125 Concretamente, la Leishmaniasis es una enfermedad causada por diferentes especies de protozoos del género Leishmania. Las manifestaciones clínicas de la enfermedad van desde úlceras cutáneas que cicatrizan espontáneamente, hasta formas fatales en las cuales se presenta inflamación severa del hígado y del bazo. La enfermedad por su naturaleza zoonótica, afecta tanto a perros como humanos. Sin embargo, animales silvestres como zarigüeyas, coatíes y j urumíes entre otros, son portadores asintomáticos del parásito, por lo que son considerados como animales reservónos. La forma cutánea de la enfermedad (Leishmaniasis cutánea) en humanos se caracteriza por la aparición de úlceras cutáneas indoloras en la zona de la picadura las cuales se pueden curar espontáneamente o permanecer de manera crónica durante años. La Leishmaniasis visceral es la forma clínica que se cobra más vidas mundialmente. Esta presentación puede ser fatal si no se trata a tiempo. Se caracteriza por la inflamación del hígado y del bazo, acompañada por distensión abdominal severa, pérdida de condición corporal, desnutrición y anemia. El tratamiento actual de la Leishmaniasis se basa en la aplicación intramuscular de fármacos basados en antimonio como el antimoniato de meglumina (Glucantime®) durante un plazo de 20 a 30 días. Sin embargo, tal y como se demuestra en los ejemplos de la presente invención, estos fármacos muestran una toxicidad elevada y no han demostrado ser efectivos en la etapa crónica de la enfermedad.
Los especímenes de Leishmania muestran dos morfologías durante su ciclo vital: • Promastigote: forma alargada con flagelo anterior. Está presente en el intestino y glándulas salivales del invertebrado (vector).
• Amastigote: forma esférica y con un flagelo muy corto, que no sobresale de la bolsa flagelar, de modo que sólo es apreciable en el microscopio electrónico. Se reproduce dentro de macrófagos y células del sistema retículoendotelial del hospedador vertebrado. Las infecciones se producen en la piel (cutáneas), piel y mucosas (mucocutáneas) o en los órganos (viscerales).
Por su parte la enfermedad de Chagas es una enfermedad parasitaria tropical, generalmente crónica, causada por Trypanosoma cruzi. El reservorio natural lo constituyen los armadillos, marsupiales, roedores, murciélagos y primates silvestres, además de ciertos animales domésticos como perros, gatos, incluso ratas y las cobayas. Es transmitida al hombre comúnmente por triatominos hematófagos, como el Triatoma infestans, el cual transmite el parásito cuando defeca sobre la picadura que él mismo ha realizado para alimentarse. También puede transmitirse por transfusión de sangre contaminada, por la ingesta de alimentos contaminados por el parásito o verticalmente de la madre infectada al feto. El insecto que transmite esta enfermedad puede infectarse si pica a una persona que tenga la infección, y así adquirir la capacidad de seguir propagando este parásito.
Se estima que son infectadas por la enfermedad de Chagas entre 15 y 17 millones de personas cada año, de las cuales mueren unas 50.000. La etapa aguda infantil se caracteriza por fiebre, linfadenopatía, aumento del tamaño de hígado y bazo y, en ocasiones, miocarditis o meningoencefalitis con pronóstico grave. En la etapa crónica, a la cual llegan entre el 30% y el 40% de todos los pacientes chagásicos, suele haber cardiomiopatía difusa grave, o dilatación patológica (megasíndromes) del esófago y colon, megaesófago y megacolon, respectivamente.
El medicamento más utilizado actualmente para el tratamiento de la enfermedad de Chagas es el Benzinidazol (BZN) ®. Sin embargo, tal y como ocurre en el caso de los fármacos comerciales para el tratamiento de la Leishmaniasis, y se evidencia en los ejemplos de la presente invención, estos fármacos no son muy efectivos, fundamentalmente en la fase crónica (más de 30 días de tratamiento) de la enfermedad y presentan una toxicidad muy elevada.
Trypanosoma cruzi presenta tres formas distintas:
· Amastigote: esférico u ovalado, es la forma reproductiva en el interior de las células mamíferas.
• Epimastigote: alargado y con el cinetoplasto localizado anteriormente al núcleo, es la forma reproductiva en el tracto digestivo de los invertebrados y en medios de cultivo.
· Tripomastigote: también alargado, pero con el cinetoplasto localizado posteriormente al núcleo. Se encuentra en la sangre de los mamíferos y es la forma infectante de los mismos. Esta forma no se divide.
Así, aunque la Leishmaniasis y la enfermedad de Chagas son enfermedades causadas por parásitos que afectan a millones de personas en todo el mundo, actualmente existen remedios terapéuticos muy limitados y de dudosa eficacia. Además, como se ha explicado, los que se utilizan conllevan serios problemas, ya que su eficacia es variable, al ser tratamientos largos y caros, y, además, están asociados con graves efectos tóxicos.
Por lo tanto, dada la incidencia y relevancia de las enfermedades citadas más arriba, se antoja necesario el uso de compuestos antiparasitarios capaces de tratar dichas enfermedades de forma eficaz en todas las etapas del proceso, incluyendo la etapa crónica, y que, además, no resulten tóxicos para los pacientes, o, al menos, que presenten una toxicidad reducida respecto a los compuestos de referencia utilizados actualmente.
DESCRIPCIÓN DE LA INVENCIÓN La presente invención solventa el problema técnico arriba explicado mediante la utilización de compuestos macrocíclicos de tipo escorpiando para el tratamiento de enfermedades causadas por parásitos, preferentemente por los parásitos Trypanosoma cruzi o Leishmania spp, como son la enfermedad de Chagas o la Leishmaniasis.
Los compuestos utilizados en la presente invención como antiparasitarios son compuestos de fórmula (I):
Figure imgf000006_0001
(I)
donde R puede ser H o una cadena hidrocarbonada que comprende los sustituyentes Ri y/o R2, donde Ri es un grupo amino sustituido por R2 o sin sustituir, R2 comprende carbociclos y/o heterociclos que pueden estar sustituidos por R3 o sin sustituir, y R3 comprende la fórmula (I) donde R es una cadena hidrocarbonada.
Tal y como se muestra en los ejemplos, la presente invención hace una comparativa de los compuestos de fórmula general (I) frente a Benzinidazol® (BZN) y Glucantime® que son fármacos de referencia utilizados en el tratamiento de las enfermedades causadas por Trypanosoma cruzi y Leishmania spp respectivamente. Como se evidencia en los ejemplos, los compuestos que se utilizan en esta invención son estructuralmente diferentes a dichos fármacos de referencia, presentan una toxicidad alrededor de diez veces inferior y muestran resultados de actividad antiparasitaria tanto en la fase aguda como en la crónica. En un aspecto preferido el carbociclo es el benceno y el heterociclo es la piridina.
En un aspecto preferido, los compuestos utilizados en la presente invención como antiparasitarios son compuestos de fórmula (I) , donde R es un radical seleccionado del grupo que consiste en H, -(Ci-C2o)-NHRi; donde la cadena hidrocarbonada es lineal, ramificada, saturada o in saturada y -(Ci-C2o)-R2, donde la cadena hidrocarbonada es lineal, ramificada, saturada o insaturada; donde Ri es un radical seleccionado del grupo que consiste en -H y -(C1-C20) donde la cadena hidrocarbonada es lineal, ramificada, saturada o insaturada y donde el carbono terminal de dicha cadena tiene un sustituyente que comprende 1-7 anillos, siendo los anillos saturados, parcialmente insaturados o aromáticos, aislados o condensados, donde los anillos tienen 3-8 elementos, cada uno de estos elementos independientemente seleccionados del grupo que consiste en C, CH, CH2, N, S, H, H+, C=0, O, C-R3; donde R2 es igual a Ri excepto -H; donde -(Ci-Cio)-R4; y donde R4 es:
Figure imgf000007_0001
En una realización aún más preferida, los compuestos utilizados en la presente invención como antiparasitarios, son los siguientes:
Figure imgf000007_0002
Figure imgf000008_0001
Figure imgf000009_0001
Figure imgf000010_0001
5 (VIII)
5 (X)
Figure imgf000012_0001
Figure imgf000012_0002
ĨXII)
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000014_0001
ĨXVI)
Figure imgf000015_0001
Figure imgf000015_0002
(XVIII) El uso de los compuestos de fórmula (I) como antiparasitarios se lleva a cabo, preferiblemente, frente a la enfermedad de Chagas (causada por Trypanosoma cruzi) o la Leishmaniasis (causada por Leishmania spp). Dado que la supervivencia del parásito está estrechamente vinculada a la capacidad de sus enzimas (FeSOD) de evadir el daño originado por los radicales tóxicos de su hospedador y que, por lo tanto, la FeSOD del parásito desempeña un papel relevante como parte de la defensa antioxidante en los parásitos que desarrollan dichas enfermedades, en la presente invención se han utilizado compuestos de fórmula (I) capaces de inhibir la FeSOD del parásito, limitando su defensa antioxidante frente a los radicales tóxicos del hospedador.
Tal y como se muestra en los ejemplos, la presente invención hace una comparativa de los compuestos de fórmula general (I) frente a Benzinidazol® (BZN) y Glucantime® que son fármacos de referencia utilizados en el tratamiento de las enfermedades causadas por Trypanosoma cruzi y Leishmania spp respectivamente. Como se evidencia en los ejemplos, los compuestos que se utilizan en esta invención son estructuralmente diferentes a dichos fármacos de referencia, presentan una toxicidad alrededor de diez veces inferior y muestran resultados de actividad antiparasitaria tanto en la fase aguda como en la crónica.
Aunque, tal y como se demuestra en el Ejemplo 15, Tablas 1-3, todos los compuestos que comparten la fórmula (I) son eficaces en el tratamiento de enfermedades causadas por parásitos, a la vez que mantienen un nivel de toxicidad bajo (sustancialmente menor que los compuestos de referencia), los compuestos particularmente preferidos de la presente invención para su uso como antiparasitarios son los compuestos de fórmula (II), (IV) y (V) los cuales presentan un nivel de toxicidad incluso menor que el resto de los compuestos macrocíclicos de tipo escorpiando estudiados en la presente invención, obteniéndose para el compuesto (V) el mayor porcentaje de reducción del número de parásitos.
Así, el primer aspecto de la presente invención hace referencia al uso de un compuesto de fórmula (I), donde R puede ser H o una cadena hidrocarbonada que comprende los sustituyentes Ri y/o R2, donde Ri es un grupo amino sustituido por R2 o sin sustituir, R2 comprende carbociclos y/o heterociclos que pueden estar sustituidos por R3 o sin sustituir, y R3 comprende la fórmula (I) donde R es una cadena hidrocarbonada, preferentemente al uso de un compuesto de fórmula (I), donde R es un radical seleccionado del grupo que consiste en H, -(Cl-C20)- HRi, donde la cadena hidrocarbonada es lineal, ramificada, saturada o insaturada y -(Cl-C20)-R2, donde la cadena hidrocarbonada es lineal, ramificada, saturada o insaturada; donde Ri es un radical seleccionado del grupo que consiste en -H y -(C1-C20) donde la cadena hidrocarbonada es lineal, ramificada, saturada o insaturada y donde el carbono terminal de dicha cadena tiene un sustituyente que comprende 1-7 anillos, siendo los anillos saturados, parcialmente insaturados o aromáticos, aislados o condensados, donde los anillos tienen 3-8 elementos, cada uno de estos elementos independientemente seleccionados del grupo que consiste en C, CH, CH2, N, S, H, H+, C=0, O, C-R3; donde R2 es igual a Ri excepto -H; donde R3 es -(Cl-C10)-R4; y donde R4 es:
Figure imgf000017_0001
, y aún más preferentemente al uso de un compuesto seleccionado entre los compuestos de fórmula (II), (III), (IV), (V), (VI), (VII), (VIII), (IX), (X), (XI), (XII), (XIII), (XIV), (XV), (XVI), (XVII) y (XVIII), para la elaboración de una composición farmacéutica o veterinaria destinada al tratamiento de enfermedades causadas por parásitos. Igualmente, este primer aspecto reivindicable comprende a cualquiera de los compuestos anteriores para ser usados en el tratamiento de enfermedades causadas por parásitos, es decir, como antiparasitarios. Los compuestos de fórmula (I) descritos en la presente invención pueden utilizarse como principios activos en pacientes humanos o en animales pudiendo además ser preparados en composiciones farmacéuticas, o formulaciones, y administrados, de acuerdo a los conocimientos existentes en el estado la técnica del desarrollo galénico, de distintas formas tales como: por vía tópica, por inyección intradérmica o por vía oral mediante cápsulas, grageas o tabletas. De igual modo, las formas sólidas se elaboran en presencia de los excipientes necesarios seleccionados del grupo que comprende pero no se limita a: manitol, polivinilpirrolidona, celulosa microcristalina, silicagel, talco, estearato magnésico, óxido de titanio, colorantes y antioxidantes. Por lo tanto, la presente invención también cubre las propias composiciones farmacéuticas o veterinarias que comprendan dichos compuestos de fórmula (I) y, opcionalmente, excipientes farmacéuticamente aceptables.
Los compuestos estudiados en la presente invención superan los problemas citados en el estado de la técnica al ser efectivos en fase crónica de la enfermedad (ver Ejemplo 16) y tener una toxicidad disminuida respecto a los compuestos usados como referencia (ver Ejemplo 15). Así, los compuestos estudiados en esta invención presentan valores de IC50 más bajos que los compuestos de referencia lo que tiene importantes implicaciones debido a que cuanto menor sea dicho valor, menor será la cantidad de compuesto necesaria para causar el efecto antiparasitario deseado. Por lo tanto, el uso de menor cantidad de compuesto para conseguir dicho efecto reducirá considerablemente sus efectos secundarios, entre ellos la toxicidad.
En un aspecto preferido los compuestos utilizados de acuerdo con el primer aspecto de la invención forman un complejo con Mn(II).
En otro aspecto preferido, las enfermedades tratadas por los compuestos del primer aspecto de la invención son la enfermedad de Chagas o la Leishmaniasis, lo que significa que los compuestos de la invención son eficaces contra los parásitos causantes de dichas enfermedades, concretamente Trypanosoma cruzi o Leishmania spp. Otro aspecto de la invención hace referencia a un método de tratamiento de enfermedades causadas por parásitos, como por ejemplo la enfermedad de Chagas o la Leishmaniasis, que comprende la administración al paciente de una cantidad terapéuticamente eficaz de al menos uno de los compuestos citados en el primer aspecto de la invención. En la presente invención se entiende por cantidad terapéuticamente eficaz a aquélla que hace revertir la enfermedad tratada o mejorar sus síntomas.
El tercer aspecto de la invención hace referencia a un compuesto de fórmula (I), seleccionado entre los compuestos de fórmula (X), (XI), (XIV) y (XV) y, en un aspecto preferido, al uso de los mismos para preparar un medicamento.
Alternativamente, este aspecto preferido también cubre a dichos compuestos de fórmula (X), (XI), (XIV) y (XV) para ser usados como medicamento.
El último aspecto de la invención hace referencia a una composición farmacéutica o veterinaria que comprende al menos un compuesto de fórmula (X), (XI), (XIV) y
(XV) y excipientes farmacéuticamente aceptables mencionados anteriormente.
Breve descripción de las figuras Figura 1. Esta figura muestra el porcentaje de reducción in vitro en el número de tripomastigotes (forma infectante del parásito Trypanosoma cruzi) (eje de ordenadas) en función de los diferentes compuestos de la invención ensayados a diferentes concentraciones (eje de abscisas). Se observa que para el compuesto P3py (fórmula V), a una concentración 50μΜ, se obtiene el mayor porcentaje de reducción del número de tripomastigotes.
Figura 2. En esta figura se estudia la parasitemia (cantidad de parásitos en sangre) en la fase aguda de la enfermedad de Chagas en ratones. Se muestra la presencia de tripomastigotes en sangre en ratones (eje de ordenadas) en función del tiempo de tratamiento con los compuestos de la invención en días (eje de abscisas). La dosis utilizada de los compuestos de la invención y del fármaco de referencia (BZN) es de 5 mg/Kg. Se observa que en los ratones donde se ha inyectado el compuesto P (fórmula II), P2py (fórmula IV) y P3py (fórmula V), la presencia de parásitos es bastante menor, particularmente con el compuesto P3py (fórmula V). Control (- A-) y dosis de 5 mg/Kg recibidas de: BZN (-Δ-), P (-□-), P2py (-♦-) y P3py (-·-). Por otro lado en esta figura se reflejan los resultados obtenidos de la curva de parasitemia en la que se aprecia que los compuestos de fórmula II (P), fórmula IV (P2py) y fórmula V (P3py) son los más efectivos al inicio de la fase crónica (a los 30 días preferentemente a los 60 días post infección) puesto que reducen significativamente el número de parásitos en sangre.
Figura 3. En esta figura se muestra un estudio de la actividad de los compuestos P (fórmula II), P2py (fórmula IV) y P3py (fórmula V) en la capacidad de infestación y el crecimiento de los parásitos de T. cruzi (eje de ordenadas) en función del tiempo de tratamiento en días (eje de abscisas). Control (- A-), BZN (-Δ-), P (-□-), P2py (-♦-) y P3py (-·-). Medido a una concentración de IC25:
A) Capacidad de infestación.
B) Número de amastigotes (forma reproductiva del parásito) por célula Vero infectada.
C) Número de tripomastigotes (forma infectante del parásito) en el medio de cultivo.
En estos gráficos puede observarse que los compuestos de la invención P (fórmula II), P2py (fórmula IV) y P3py (fórmula V), muestran un porcentaje de inhibición del crecimiento del parásito mayor al del fármaco de referencia, particularmente en el caso del compuesto P3py (fórmula V), y, además, disminuyen la capacidad de infestación.
Figura 4. Esta figura muestra un estudio de inhibición de las diferentes enzimas superóxido dismutasa (Cu-ZnSOD, MnSOD y FeSOD) ya que la supervivencia del parásito está estrechamente vinculada a la capacidad de los enzimas de evadir el daño originado por los radicales tóxicos de su anfitrión. A) Inhibición in vitro (%) de la enzima CuZn-SOD de eritrocitos humanos (actividad 23.36 ± 4.21 U/mg).
B) Inhibición in vitro (%) de la enzima Mn-SOD de Escherichia coli (actividad 18.12 ± 5.32 U/mg).
C) Inhibición in vitro (%) de la enzima FeSOD de T. cruzi (epimastigotes)
(actividad 20.77 ± 3.18 U/mg).
Puede observarse que los compuestos de la invención son capaces de inhibir la enzima FeSOD de parásito con un valor de IC50 (concentración requerida para conseguir una inhibición del 50%) menor que en el resto de la enzimas. Así, puede decirse que los compuestos de la invención llevan a cabo una acción selectiva o específica en la inhibición de la enzima FeSOD del parásito.
Figura 5. Imágenes de las alteraciones ultraestructurales tomadas por microscopio electrónico de transmisión (TEM) en epimastigotes de Trypanosoma cruzi tratados con los diferentes compuestos.
(1) Parásito control de T. cruzi, muestra orgánulos con su aspecto característico, como reservosomas (R), mitocondria (M), glicosomas (G), microtubulos (MT) y flagelo (F). (Bar: 0.583 μ).
(2) Epimastigotes de T. cruzi tratadas con el compuesto P (fórmula II) que aparecieron rotos (ver flecha) y con citoplasma poco electrodenso de aspecto granuloso (ver flecha). (Bar: 1.00 μ).
(3) Epimastigotes de T. cruzi tratado con P2py (fórmula IV) muestra mitocondrias hinchadas (M) y festoneamiento de la membrana citoplasmática (ver flecha). (Bar: 1.00 μ).
(4) Epimastigotes de T. cruzi tratado con P3py (fórmula V) muestra abundantes acidocalcisomas (A), enormes glicosomas fuertemente electrondesos (G) y grandes vacuolas (V). (Bar: 0.583 μ) Las conclusiones obtenidas del estudio ultraestructural indican daños en la estructura celular del parásito como consecuencia del efecto de los compuestos estudiados en la presente invención. El daño a nivel de los orgánulos es clave en el metabolismo energético del parásito (mitocondria y glicosomas) el cual originará la inviabilidad celular.
Figura 6. Representación del espectro 1H- MR en epimastigotes de T. cruzi tratados con los compuestos ensayados en la invención (concentración IC25): (A) Control (sin tratamiento); (B) Compuesto de fórmula (II) (P); (C) Compuesto de fórmula (IV) (P2py); (D) Compuesto de fórmula (V) (P3py). Lac (L-lactato), Ala (L-alanina); Ac (acetato); S (succinato); Eth (etanol) y Gly (glicerol). Se observa una disminución de los metabolitos excretados por el parásito, como consecuencia de una alteración en su metabolismo por acción de los compuestos antiparasitarios.
Figura 7. Esta figura muestra la efectividad de los compuestos P (fórmula II), P2py (fórmula IV) y P3py (fórmula V) en fase crónica. Se exhiben los niveles de anticuerpos parasitarios que muestran la eficacia de los compuestos de la invención, en la fase crónica de la enfermedad (modelo in vivo en fase crónica). La disminución de los niveles de anticuerpos parásitos es indicativa de la efectividad de los compuestos utilizados en la presente invención.
Descripción detallada de la invención
Los ejemplos que se exponen a continuación tienen el objetivo de ilustrar la invención sin limitar el alcance de la misma.
EJEMPLOS
ENSAYOS LLEVADOS A CABO EN T. CRUZI
Ejemplo 1. Cultivo de los parásitos. Se aisló la cepa SN3 de T. cruzi a partir de IRHOD/CO/2008/SN3. Esta nomenclatura hace referencia al hospedador de donde se aisló el parásito: I (insecto), RHOD (rhodnius), al país (Colombia) y al año de aislamiento (2008). Concretamente el parásito se aislo a partir de Rhodnius prolixus originario de Guajira (Colombia) [Biological characterization of Trypanosoma cruzi stocks from domestic and sylvatic vector s in Sierra Nevada of Santa Marta, Colombia. Jair Téllez-Meneses, Ana María Mejía-Jaramillo, Ornar Triana-Chávez Acta Trópica 108 (2008) 26-34, 2008)].
Las formas epimastigotes se crecieron en medio axénico (Grace's Insect Médium Gibco®) suplementado con 10% de suero bovino fetal inactivo (FBS) a 28°C en frascos para el cultivo de tejidos. Para obtener la suspensión de parásitos, se concentró el cultivo de epimastigotes (en fase de crecimiento exponencial) mediante centrifugación a 400 g durante 10 minutos y se contó el número de flagelos en un hemocitómetro.
Ejemplo 2. Trasformación de epimastigotes a formas metacíclicas.
El paso a tripomastigote metacíclico (forma que se encuentra en el vector en el último tramo del intestino y que son en realidad las formas infectivas para el hospedador mamífero) se indujo mediante el cultivo de los parásitos a 28°C en medio modificado (Grace's médium Gibco®) durante 12 días [Osuna, A.; Adroher, F. J.; Lupiañez, J. A. Cell. Differ. Dev. 1990, 30, 89-95]. Después de 12 días de cultivo a 28°C, se contaron las formas metacíclicas en un hemocitómetro de Neubauer. La proporción de formas metacíclicas fue de alrededor del 40% en esta etapa.
Ejemplo 3. Preparación del cultivo celular donde se ensayan los compuestos.
Se crecieron células Vero en medio RPMI (Rowell Park Memorial Institute Médium) (Gibco®) suplementado con 10% de suero bovino fetal, en aire humidificado al 95%, atmósfera con un 5% de C02 a 37°C durante dos días. Para la evaluación de la citotoxicidad, las células se situaron en botellas de 25ml (Sterling) y se centrifugaron a lOOg durante 5 minutos. Se retiró el medio de cultivo, adicionándose medio fresco a una concentración final de lxlO5 células/ml. Esta suspensión celular se distribuyó en el plato de cultivo con un ratio de 100 μΐ/pocillo y se incubó durante dos días a 37°C en una atmósfera humidificada enriquecida con 5% de C02. El medio fue retirado, y se añadió medio fresco junto con cada compuesto ensayado (a concentraciones de 100, 50, 25, 10 y 1 μΜ). Después de 72h de tratamiento, se determinó la viabilidad celular mediante citometría de flujo [Clotilde Marín, Inmaculada Ramírez-Maclas, Angeles López-Céspedes, Francisco Olmo, Noelia Villegas, Jesús G Díaz, María José Rosales, Ramón Gutiérrez-Sánchez, and Manuel Sánchez-Moreno J. Nat. Prod. 2011, 74, 744-750].
Ejemplo 4. Ensayo de actividad in vitro: formas extracelulares. Ensayo de los compuestos en epimastigotes
Se recogieron las formas epimastigotes en fase de crecimiento exponencial y se distribuyeron en platos de cultivo (con 24 pocilios) a una concentración final de 5x104 parásitos/pocilio.
Los compuestos de la invención listados en la Tabla 1 del Ejemplo 15 y el Benzinidazol® fueron disueltos en medio líquido MTL (Mediun Trypanosome Liquid), y testados a las siguientes concentraciones: 100, 50, 25, 10 y 1 μΜ. Los efectos de cada compuesto frente a las formas epimastigotes se visualizaron a las 72 horas usando un hemocitómetro de Neubauer. El efecto de los compuestos sobre los parásitos se expresa en valores de IC50, es decir, la concentración requerida para conseguir un 50% de inhibición calculada mediante un análisis de regresión linear a partir de los valores Kc de las concentraciones empleadas (Kc representa las concentraciones que se ensayan de los productos y que se utilizan en la regresión lineal para calcular el IC50). Los resultados se muestran en la Tabla 1 del Ejemplo 15.
Ensayo de los compuestos de la invención en tripomastigotes
Los compuestos utilizados en la invención fueron evaluados en la forma tripomastigote de T. cruzi. Se utilizaron ratones BALB/c infectados con T. cruzi después de 7 días de infección. Se obtuvo la sangre mediante punción cardiaca usando 3.8% de citrato de sodio como anticoagulante en un ratio de sangre/anticoagulante de 7:3. La parasitemia en los ratones infectados fue de lxlO5 parásitos/ml. Los compuestos a ensayar se diluyeron en medio PBS para dar una concentración final de 10, 25 y 50 μΜ por cada producto. Se mezclaron alícuotas (20 μΐ.) de cada solución en los platos de cultivo (96 pocilios) con 55 μΐ. de sangre infectada que contiene los parásitos a una concentración cercana a lxlO6 parásitos/ml. Se utilizó como control sangre infectada en medio PBS. Los platos de cultivo se agitaron durante 10 minutos a temperatura ambiente y se mantuvieron a 4°C durante 24 h. Se examinó cada solución con un microscopio (OLYMPUS CX41) con el objetivo de contar los parásitos usando el hemocitómetro de Neubauer. La actividad (porcentaje de reducción de los parásitos) fue comparada con el control [Boiani, M.; Boiani, L; Denicola, A.; Torres de Ortiz, S.; Serna, E.; Vera de Bilbao, K; Sanabria, L.; Yaluff, G; H. Nakayama, H.; Rojas de Arias, A.; Vega, C; Rolan, M.; Gómez-Barrio, A.; Cerecetto, H.; González, M. 2H- Benzimidazole 1,3-dioxide derivatives: a new family of water-soluble anti- trypanosomatidagents. J. Med. Chem. 2006, 49, 3215-3224] [Gerpe, A.; Aguirre, G; Boiani, L; Cerecetto, H.; González, M.; Olea-Azar, C; Rigol, C; Maya, J. D.; Morello, A.; Piro, O. E.; Aran, V. J.; Azqueta, A.; López de Ceráin, A. L.; Monge, A.; Rojas, M. A.; Yaluff, G IndazoleN-oxide derivatives as antiprotozoalagents: synthesis, biologicalevaluation and mechanism of actionstudies. Bioorg. Med. Chem. 2006, 14, 3467- 3480]. Ejemplo 5. Ensayo de actividad in vitro: formas intracelulares.
Cultivo de amastigotes axénicos
Los amastigotes axénicos son una forma artificial conseguida por la transformación en un cultivo especial para el estudio in vitro, ya que la forma intracelular natural sólo se puede estudiar cuando está internalizada en células de macrófago.
Se cultivaron los amastigotes axénicos de T. cruzi siguiendo la metodología descrita en [David Moreno, Daniel Plano, Ylenia Baquedano, Antonio Jiménez-Ruiz, Juan Antonio Palop, Carmen Sanmartín Parasitol Res (2011) 108:233-239]. Por lo tanto, la transformación de los epimastigotes a amastigotes se consiguió después de tres días de cultivo en medio MI 99 (Invitrogen, Leiden, Holanda) suplementado con 10% de FCS (Foetal calf serum) inactivado por calor, 1 g/L β-alanina, 100 mg/L L- asparagina, 200 mg/L sacarosa, 50 mg/L piruvato de sodio, 320 mg/L ácido málico, 40 mg/L ácido fumárico, 70 mg/L ácido succínico, 200 mg/L ácido a-cetoglutarato, 300 mg/L ácido cítrico, 1.1 g/L bicarbonato de sodio, 5 g/L MES (4- morpholineethanesulfonic acid), 0.4 mg/L hemina, 10 mg/L gentamicina pH 5.4 a 37°C. El efecto de cada compuesto frente a los amastigotes axénicos se testó a las 48 horas usando un hemocitómetro de Neubauer. El efecto se expresa en valores IC50, es decir, la concentración requerida para conseguir un 50% de inhibición calculada mediante un análisis de regresión linear a partir de los valores Kc de las concentraciones empleadas.
Los resultados se muestran en la Tabla 1 del Ejemplo 15.
Ensayo de los compuestos en amastigotes intracelulares
Se cultivaron células Vero en medio RPMI en ambiente humidificado al 95%, atmósfera de C02 al 5% y 37°C. Dichas células fueron cultivadas durante dos días a una densidad de lxl O4 células/pocilio en microplatos de 24 pocilios (Nunc). Posteriormente, las células Vero se infectaron in vitro con las formas metacíclicas de T. cruzi, a un ratio de 10: 1 y se mantuvieron durante 24 horas a 37°C en atmósfera de 5% de C02. Los parásitos extracelulares se retiraron mediante lavado, y los cultivos infectados se incubaron con los compuestos de la invención a las siguientes concentraciones: 1, 10, 25, 50 y 100 μΜ y, posteriormente, se cultivaron durante 72 horas en medio RPMI y 10% de suero fetal bovino inactivado. La actividad de los compuestos se determinó a partir de la reducción del porcentaje de amastigotes en los cultivos. Los valores son la media de cuatro determinaciones individuales [González P, Marín C, Rodríguez-González I, Hitos AB, Rosales MJ, Reina M, Díaz JG, Gonzalez-Coloma A, Sánchez-Moreno M. In vitro activity of C20-diterpenoid alkaloid derivatives in promastigotes and intracellular amastigotes of Leishmania infantum. Int J Antimicrob Agents 2005; 25: 136-41]. El efecto se muestra, como en los casos anteriores, expresado como IC5o- Los resultados se muestran en la Tabla 1 del Ejemplo 15. Ejemplo 6. Ensayo de los compuestos en la capacidad de infestación y crecimiento de parásitos.
Las células Vero se cultivaron en medio RPMI tal y como se describe más arriba. Posteriormente, las células se infectaron in vitro con las formas metacíclicas de T. cruzi, con un ratio 10: 1. Los compuestos de la invención (concentraciones IC25) se añadieron inmediatamente después de la infección y se incubaron durante 12 horas a 37°C en atmósfera con 5% de C02. Los parásitos extracelulares y los compuestos ensayados fueron retirados mediante lavado, y los cultivos infectados se crecieron durante 10 días en medio fresco. El medio fresco fue añadido cada 48 horas. La actividad de cada compuesto de la invención ensayado se determinó a partir del porcentaje de células infectadas y el número de amastigotes por célula infectada en cultivos tratados y no tratados, en muestras fijadas con metanol y teñidas con Giemsa. El porcentaje de células infectadas y el número medio de amastigotes por célula infectada se determinó mediante el análisis de más de 100 células hospedadoras distribuidas en campos microscópicos elegidos aleatoriamente. Los valores se expresan como la media de cuatro determinaciones individuales. El número de tripomastigotes en el medio fue determinado tal y como se ha descrito anteriormente [Osuna, A.; Adroher, F. J Lupiañez, J. A. Cell. Differ. Dev. 1990, 30, 89-95].
Los resultados se ilustran en la Figura 3 donde puede observarse que los compuestos de la invención P (fórmula II), P2py (fórmula IV) y P3py (fórmula V), muestran un porcentaje de inhibición del crecimiento del parásito mayor al del fármaco de referencia, particularmente en el caso del compuesto P3py (fórmula V), y, además, disminuyen la capacidad de infestación.
Ejemplo 7. Ensayo de los compuestos en la inhibición de la SOD del parásito.
Los parásitos cultivados tal y como se describe anteriormente fueron sometidos a centrifugación. El pellet se suspendió en 3 mi de tampón STE (0.25 M sucrosa, 25 mM Tris-HCl, 1 M EDTA, pH 7.8) y se sometió a 3 ciclos de sonicación, 30 segundos a 60 V. El homogenado sometido a sonicación se centrifugó a 1500g durante 5 minutos a 4°C, y el pellet se lavó durante 3 veces con tampón STE enfriado con hielo. Esta fracción se centrifugó (2500 g durante 10 minutos a 4o C) y posteriormente se recogió en sobrenadante. Las concentraciones de las proteínas se determinaron mediante el método de Bradford [Bradford MM. A refined and sensitive method for the quantification of microquantities of protein-dye binding. Anal Biochem 1976; 72: 248].
A) La actividad de la enzima superóxido dismutasa FeSOD se determinó según el método descrito en [Beyer WF and Fridovich I. 1987. Assaying for super oxide dismutase activity: some large consequences of minor changes in conditions. Anal Bicohem 161: 559-566] el cual estima la reducción del NTB (nitro blue tetrazolium) por los iones superóxido. Cada cubeta, situada en la solución Stock (tampón fosfato 50mM, pH 7.8, 54 mi, L-Metionina 3 mi, NBT 2 mi, Triton-X-100 1.5 mi), muestra compuestos a diferentes concentraciones (0.1, 0.5, 1, 5, 12.5, 25 μΜ) y riboflavina. La absorbancia se determinó a 560 nm en un espectrofotómetro. Después de 10 minutos bajo luz y en condiciones de agitación, se volvió a determinar la absorbancia. Las enzimas CuZn-SOD y Mn-SOD de humanos, los coenzimas y sustratos usados en estos ensayos se obtuvieron de Sigma Chemical Co, Alemania. Los datos obtenidos se analizaron con el test de Newman-Keuls.
Los resultados se ilustran en la Figura 4 donde puede observarse que los compuestos utilizados en la invención son capaces de inhibir la enzima FeSOD de parásito con un valor de IC50 (concentración requerida para conseguir una inhibición del 50%) menor que en el resto de la enzimas.
Ejemplo 8. Secreción de metabolitos.
Los cultivos de epimastigotes de T. cruzi (concentración inicial de 5χ 105 células/ml) recibieron concentraciones IC25 de los compuestos excepto en el caso de los cultivos control. Después de la incubación durante 96 horas a 28°C, las células se centrifugaron a 400g durante 10 minutos. El sobrenadante se recogió para determinar los metabolitos secretados a través de 1H- MR, y los resultados se expresaron en partes por millón (ppm), usando 2, 2-dimetil-2-silapentano-5-sulfonato de sodio como señal de referencia [Fernández-Becerra C, Sánchez-Moreno M, Osuna A, Opperdoes FR. Comparative aspects of energy metabolism in plant trypanosomatids. J Eukaryotic Microbiol 1997; 44: 523-9]. Ver la Figura 6.
Ejemplo 9. Alteraciones ultraestructurales.
Los parásitos se cultivaron a una densidad de 5χ 105 células/ml en el medio correspondiente, conteniendo cada uno de ellos los compuestos de la invención a concentración IC25. Después de 96 horas, los cultivos se centrifugaron a 400 g durante 10 minutos y los pellets producidos se lavaron en medio PBS y se mezclaron con 2% (v/v) de ^-formaldehído/glutaraldehído en 0.05M de tampón cacodilato (pH 7.4) durante 4 horas a 4°C. Después de esto, los pellets se prepararon para ser observados por microscopía electrónica de transmisión empleando la técnica descrita en [González P, Marín C, Rodríguez-González I, Hitos AB, Rosales MJ, Reina M, Díaz JG, Gonzalez-Coloma A, Sánchez-Moreno M. In vitro activity of C20-diterpenoid alkaloid derivatives in promastigotes and intracellular amastigotes of Leishmania infantum. Int J Antimicrob Agents 2005; 25: 136-41].
Los resultados se muestran en la Figura 5 donde se ilustra el efecto de los compuestos de la invención sobre los parásitos.
Ejemplo 10. Ensayo de la actividad de tripanocida in vivo.
Un grupo de tres ratones hembra BALB/c (con una edad de 6 a 8 semanas y 20-25g de peso) mantenidos bajo condiciones estándar, fueron infectados con una concentración lxl 05 de formas metacíclicas de T. cruzi a través de la ruta intraperitoneal. Los animales se dividieron en los grupos siguientes:
• Grupo 1 : no infectados y no tratados.
• Grupo 2: infectados con T. cruzi pero no tratados. • Grupo 3 : no infectados pero tratados con 1 mg/kg peso/día, durante cinco días consecutivos (7 a 12 días post-infección) mediante ruta intraperitoneal [Díaz, J. G. ; Carmona, A. J. ; Pérez de Paz, P. ; Werner, H. Phytochem. Letters 2008, 1, 125-129].
· Grupo 4: infectados y tratados durante cinco días consecutivos (7 a 12 días post-infección) con los compuestos de la invención y Benzinidazol®.
Los tratamientos se comenzaron siete días después de la infección del animal. Los compuestos de la invención se administraron de forma similar a lo explicado anteriormente y a las mismas concentraciones. Se tomó una muestra de sangre (5 μΐ) de la vena mandibular de cada ratón tratado y se diluyó en proporción 1 : 15 (50 μΐ de tampón citrato: ácido cítrico 0.1 M, citrato sódico 0.1 M y 20 iL de tampón de lisis a pH 7.2: Tris-Cl 2M, MgCl2).
El número de formas metacíclicas de T. cruzi en el torrente sanguíneo fue recogido cada tres días desde los días 7 al 60 después de la infección. El número de formas metacíclicas se observó a 200 campos microscópicos.
Los anticuerpos circulantes anti- T. cruzi, en los días 60 y 90 de post-infección, se evaluaron cuantitativamente mediante inmunoensayo. La sangre, diluida en una proporción 1 :50 en PBS, se hizo reaccionar con un antígeno compuesto de la enzima FeSOD secretada de los epimastigotes de T. cruzi. Los resultados se expresan como el ratio de absorbancia por cada muestra a 490 nm frente al valor de referencia. El valor de referencia de cada reacción es la media de los valores determinados en los controles negativos más tres veces la desviación estándar [Longoni SS, Marín C, Sauri-Arceo CH, López-Cespedes A, Rodríguez-Vivas RI, Villegas N, Escobedo- Ortegón J Barrera-Pérez MA, Bolio-Gonzalez ME, Sánchez-Moreno M. An Iron- Superoxide Dismutase Antigen-Based Serological Screening of Dogs Indicates Their Potential Role in the Transmission of Cutaneous Leishmaniasis and Trypanosomiasis in Yucatán, México. Vector Borne Zoonotic Dis. 2011 Feb 16]. ENSAYOS LLEVADOS A CABO EN LEISHMANIA SPP Ejemplo 11. Cultivo in vitro de macrófagos.
Los macrófagos J774.2 fueron reclonados desde J774.2 originales de un tumor, manteniendo los cultivos a una concentración entre 3-9 x 105 células/ml a 37°C y a 5% de C02. El procedimiento para trabajar con las células en cultivo fue tripsinizar las células adheridas mediante lavado con PBS, añadiendo la cantidad suficiente de tripsina/EDTA (200ml de PBS + 0, 1 g de EDTA y 200 mi de PBS + 0,5 g de tripsina). Se mezclaron las dos soluciones a pH 7,2-7,4 y se filtraron. Las células se incubaron durante 5-10 minutos. Posteriormente dichas células se decantaron y se centrifugaron durante 5 minutos a 800 rpm. Finalmente se resuspendieron en un medio de cultivo nuevo. Como medio de cultivo se utilizó MEM + Glutamina suplementado con un 20 % de suero bovino fetal inactivado (SBF-I).
Ejemplo 12. Cultivo in vitro de Leishmania spp.
Se emplearon formas promastigotes de dos especies del género Leishmania:
- L. Viannia braziliensis (MHOM/BR/75/M2904).
- L Leishmania infantum (MCAN/ES/2001/UCM-10).
Las formas promastigotes de las dos especies de Leishmania se obtuvieron del cultivo a 28°C en medio MTL al 10% de SBF-I. Iniciando el cultivo con un inoculo de 5 x 104 células/ml en 5 mi de medio en frascos de plástico Falcon® de 25 era2, siempre trabajando en esterilidad.
Ejemplo 13. Ensayos biológicos in vitro.
Ensayos sobre formas promastigotes de Leishmania spp.
Las formas promastigotes de Leishmania spp, cultivadas de la forma anteriormente descrita, fueron recolectadas en su fase exponencial de crecimiento mediante centrifugación a 1500 rpm durante 10 min. El número de parásitos fue contado en una cámara hemocitométrica de Neubauer y sembrados en una placa de 24 pocilios a razón de una concentración de 5xl04 parásitos en cada pocilio.
Los compuestos a ensayar se disolvieron en DMSO a una concentración de 0.01% (v/v), concentración a la cual este disolvente no es tóxico ni tiene ningún efecto sobre el crecimiento de los parásitos. Los compuestos fueron añadidos al medio de cultivo a una concentración final de: 100, 50, 25, 10 y 1 μΜ. El efecto de cada compuesto sobre el crecimiento de las formas promastigotes, a las diferentes concentraciones ensayadas, se evaluó a las 72 h, usando una cámara hemocitométrica de Neubauer y el efecto leishmanicida se expresó como la IC50 (concentración requerida para dar una inhibición del 50 %, calculado por el análisis de la regresión lineal de la Kc a las concentraciones ensayadas).
Ensayos sobre formas amastigotes de Leishmania spp.
Los ensayos sobre las formas amastigotes se hicieron llevando a cabo la siguiente metodología. Los macrófagos J774.2 se despegaron del frasco de cultivo donde se encontraban adheridos mediante tripsinización y mediante golpes secos. Para ello se eliminó el medio de cultivo, seguidamente se cubrió la superficie celular con EDTA- tripsina y se incubó durante 5 minutos. Tras ello, se pasó a un frasco de fondo cónico de 25 mi de capacidad (Steriling) para centrifugarlos a 800 rpm durante 5 minutos, retirándose el sobrenadante, y se contaron las células en cámara de Neubauer. Se cultivaron las células en placas de 24 pocilios, en las que previamente se había introducido un cristal cubreobjetos redondo de 12 mm en cada pocilio a una concentración de lxl O4 células en cada pocilio. Para su adherencia, se dejó crecer las células 24-48 h a 37°C en 5% C02.
Una vez adheridas las células, se infectaron in vitro con lxlO5 células de formas amastigotes en fase estacionaria de Leishmania spp. Se incubaron durante 24 horas a 37°C en 5% C02. Transcurrido ese tiempo, los parásitos que se encontraban libres en el medio de cultivo, se retiraron mediante varios lavados con medio fresco. A continuación se cambió el medio a los cultivos de células (MEM + Glut al 20% SBF- I) y se añadió el compuesto a ensayar a una concentración de 1, 10, 25, 50 y 100 μΜ. Se dejó incubar durante 72 horas a 37°C en 5% C02.
Transcurridas las 72 horas, se sacaron los cristales y se colocaron en un portaobjetos. Se fijaron con metanol y se dejaron secar. Una vez fijados y secos, se les añadió DPX (Panreac®), medio de montaje para microscopía. Se tiñeron con Giemsa, para ello, inmediatamente antes de su empleo y en tubo de ensayo, se diluyó 1 mi de Azur- Eosina-Azul de Metileno solución según Giemsa DC (Código 251338) con 10 mi de Solución tampón pH 7,2 DC (Código 252164), se mezcló y se cubrió la preparación dejando colorear durante 20 minutos. Se lavó con solución tampón pH 7,2 DC (Código 252164). Se dejó escurrir y secar en posición vertical. Por último se examinó con el objetivo de inmersión y se contó el número de formas amastigote intracelulares en un total de 200 células de cada cristal. La actividad antiparasitaria de los productos se determinó con el número de amastigote intracelulares presentes a las distintas concentraciones y en el control. Y se expresó como la IC50 (concentración requerida para dar una inhibición del 50%, calculado por el análisis de la regresión lineal de la Kc a las concentraciones ensayadas).
Ejemplo 14. Ensayos de citotoxicidad.
Estos ensayos se realizaron mediante citometría de flujo. Macrófagos de la línea J774.2, se depositaron en un tubo (steriling) y se centrifugaron a 800rpm durante 5 minutos, el sobrenadante se descartó y las células se resuspendieron en medio MEM + Glutamina con un 20% de SBF.
Se depositaron lxlO4 células en cada pocilio de una placa de titulación de 24 pocilios, se incubaron durante 24-48 h a 37°C en atmósfera húmeda enriquecida con 5% C02. Esto se realizó para que se fijasen las células. Transcurrido este tiempo el medio de cultivo se retiró y se adicionó medio fresco con los productos a ensayar, a las concentraciones de 100, 50, 25, 10 y 1 μΜ. A las 72 horas de la incubación, se procedió a la preparación de las muestras para su lectura en el citómetro de flujo.
El método seguido fue el descrito por [Ormerod MG. 1994. Flow Cytometry. A practical Approach. 2o Edition. IRL. Press (Oxford University Press)], partiendo de las células y el medio presente en los pocilios, a las cuales se le adicionó 100 μΐ de solución de ioduro de propidio (PI, 100 μ§/ιη1) (Sigma Chemical Co), incubándose a 28°C en oscuridad unos 10 minutos. Posteriormente, se añadió 100 μΐ de diacetato de fluoresceína (FDA) (Sigma Chemical Co) en solución (100 ng/ml) volviéndose a incubar a 28°C en oscuridad durante unos 10 minutos, y previa centrifugación a 1500 rpm durante 10 minutos, se procedió a lavar el precipitado con PBS. Finalmente, se analizaron los resultados teniendo en cuenta que las células con la membrana plasmática intacta emiten color verde al actuar las esterasas sobre la FDA, mientras que las células que han perdido la integridad de la membrana y no son viables, emiten en el rango de los 580 nm al penetrar el PI por difusión pasiva y unirse específicamente a los ácidos nucleicos de las mismas. El análisis de citometría de flujo se llevo a cabo con un citómetro de flujo FACS Vantage (Becton Dickinson).
Se calculó el porcentaje de viabilidad. El número de células muertas se determinó por comparación con los cultivos controles. La IC50 se calculó usando el análisis de regresión lineal de la Kc a las concentraciones ensayadas.
RESULTADOS Ejemplo 15. Resultados del estudio comparativo de los compuestos de la invención frente a Benzinidazol® y Glucantime®.
Inicialmente se llevó a cabo el estudio de los compuestos de la invención y sus complejos con Mn(II) en comparación con el Benzinidazol (BZN) (fármaco de referencia para el Trypanosoma cruzí) en el que se midió la toxicidad, la actividad in vitro y el índice de selectividad (SI) en las formas epimastigotes y amastigotes de Trypanosoma cruzi (Tabla 1). Tabla 1
Figure imgf000035_0001
a Actividad: expresada como IC50 (μΜ): concentración requerida para conseguir el 50% de inhibición.
b Toxicidad: expresada como Ι05ο (μΜ) en células Vero después de 72 horas de cultivo.
c SI: índice de selectividad = IC50 en células Vero/ IC50 intracelular y extracelular del parásito. Los compuestos más activos frente a las formas intracelulares del parásito son los que su valor SI es mayor de 50 veces con respecto al compuesto de referencia.
( ): número de veces que el valor SI del compuesto de la invención excede el valor SI del compuesto de referencia.
* Compuesto en forma de complejo con Mn(II).
Ep.: forma epimastigote.
Am. Axén.: forma amastigote.
Am. Intrac: forma amastigote intracelular. Posteriormente, se llevó a cabo el estudio de los compuestos de la invención y sus complejos con Mn(II) en comparación con Glucantime® (fármaco de referencia para la Leishmania spp). En Leishmania infantum se midió la toxicidad, la actividad in vitro y el índice de selectividad (SI) de los compuestos en las formas promastigote y amastigote (Tabla 2). Tabla 2
Figure imgf000036_0001
a Actividad: expresada como IC50 (μΜ): concentración requerida para conseguir el 50% de inhibición.
b Toxicidad: expresada como Ι05ο (μΜ) en macrófagos 1774.2 después de 72 horas de cultivo. c SI: índice de selectividad = IC50 en macrófagos / IC50 intracelular y extracelular del parásito. Los compuestos más activos frente a las formas intracelulares del parásito son los que su valor SI es mayor de 20 veces con respecto al compuesto de referencia.
( ): número de veces que el valor SI del compuesto de la invención excede el valor SI del compuesto de referencia.
* Compuesto en forma de complejo con Mn(II).
Pro. Extrae: forma extracelular promastigote.
Am. Axén.: forma amastigote axénico.
Am. Intrac: forma amastigote intracelular. Además, se llevó a cabo el estudio de los compuestos de la invención y sus complejos con Mn(II) en comparación con Glucantime® (fármaco de referencia para la Leishmania spp) en Leishmania braziliensis. Se midió la toxicidad, la actividad in vitro y el índice de selectividad (SI) de los compuestos en las formas amastigote y promastigote (Tabla 3). Tabla 3
Figure imgf000037_0001
a Actividad: expresada como IC50 (μΜ): concentración requerida para conseguir el 50% de inhibición.
b Toxicidad: expresada como Ι05ο (μΜ) en macrófagos J774.2 después de 72 horas de cultivo. c SI: índice de selectividad = IC50 en macrófagos / IC50 intracelular y extracelular del parásito. Los compuestos más activos frente a las formas intracelulares del parásito son los que su valor SI es mayor de 20 veces con respecto al compuesto de referencia.
( ): número de veces que el valor SI del compuesto de la invención excede el valor SI del compuesto de referencia.
* Compuesto en forma de complejo con Mn(II).
Pro. Extrae: forma extracelular promastigote.
Am. Axén.: forma amastigote axénico.
Am. Intrac: forma amastigote intracelular. A la vista de los resultados obtenidos de este ejemplo, queda demostrado que los compuestos de la invención, caracterizados por la fórmula (I), son eficaces en el tratamiento de enfermedades causadas por parásitos manteniendo un nivel bajo de toxicidad, particularmente los tres compuestos menos tóxicos: Pytren (P) (fórmula II), Pytren2py (P2py) (fórmula IV) y Pytren3py (P3py) (fórmula V). Ejemplo 16. Efectividad de los compuestos de la invención en fase crónica.
Un grupo de ratones cepa Balb/c fue llevado a 140 días post infección con la idea de reproducir la fase crónica del tratamiento. A partir del séptimo día de post infección se les administró el tratamiento que consistía en 5 dosis de 100 μΐ para reunir finalmente una concentración de 15 mg/kg peso. Posteriormente se tomaron muestras de sangre para seguir el estado de la parasitemia en el ratón por conteo en fresco, así como para evaluar el estado inmunológico por medio del test de ELISA. En el día 140 los ratones fueron inmunodeprimidos mediante dos ciclos de ciclofosfamida (50 mg/kg peso día, 4 días tratamiento con 3 de descanso) y posteriormente se obtuvo una última muestra donde se incluyeron órganos (corazón e hígado) tras la necropsia para ser evaluados por estudios anatomopatológicos. Tras el examen de la parasitemia en fresco se observó una fuerte disminución del número de parásitos en sangre. Además se observó la ausencia de variaciones significativas entre los animales inmunodeprimidos y no inmunodeprimidos que habían sido tratados con el producto, lo cual es indicativo de un efecto tripanocida por parte del producto en el momento de tratamiento. Es interesante destacar que no existen fármacos útiles para la fase crónica que es la que se produce a partir de los 30 días cuando el parásito se desplaza a órganos como hígado, esófago y corazón. Los productos ensayados constituyen fármacos válidos para el tratamiento de la fase crónica de la parasitemia. La Figura 7 exhibe los niveles de anticuerpos parasitarios que muestran la eficacia de los compuestos de la invención en la fase crónica de la enfermedad (modelo in vivo en fase crónica).
En la Figura 2 se reflejan los resultados obtenidos de la curva de parasitemia en la que se aprecia que los compuestos de fórmula (II) (P), fórmula (IV) (P2py) y fórmula (V) (P3py) son los más efectivos al inicio de la fase crónica (día 60) puesto que reducen significativamente el número de parásitos en sangre. Ejemplo 17. Síntesis de los compuestos utilizados en la presente invención.
El compuesto de fórmula (II) se hizo reaccionar con el grupo aldehido de un compuesto de fórmula R-COH, donde R comprende los sustituyentes Ri y/o R2, donde Ri es un grupo amino sustituido por R2 o sin sustituir, R2 comprende carbociclos y/o heterociclos que pueden estar sustituidos por R3 o sin sustituir, y R3 comprende la fórmula (I) donde R es una cadena hidrocarbonada, estando los dos compuestos disueltos preferentemente en etanol u otro alcohol, y posteriormente se añadió preferentemente borohidruro sódico u otro reductor para la reducción de la imina formada. La mezcla se trató convenientemente para extraer el producto de reacción, del que se prepara la sal amónica mediante adición de ácido clorhídrico. Las sales de los diferentes compuestos son sólidas y se purificaron a través de lavados sucesivos con etanol. Los compuestos son perfectamente caracterizados por espectroscopia de RMN (Resonancia Magnética Nuclear), espectrometría de masas, análisis cristalográfico y a través de análisis elemental.
Además, los compuestos utilizados en la presente invención pueden presentarse en forma de complejos con Mn(II) para lo cual se mezcla, en disolución acuosa, el ligando y el metal correspondiente (en este caso Mn(II)) en relación molar 1 : 1 (L:M), se ajusta el pH de la disolución al pH de formación de la especie y se deja evaporar lentamente.
Síntesis del compuesto de fórmula (XI)
La síntesis de este compuesto se logró siguiendo una modificación del procedimiento Richman-Atkins [B. Verdejo, A. Ferrer, S. Blasco, C. E. Castillo, J. González, J. Latorre, M. A. Mañez, M. G. Basallote, C. Soriano and E. García-España, Inorg. Chem., 2007, 46, 5707] mediante la reacción de la poliamina tren pertosilada con la 2,6-bis(bromometil)piridina en una relación molar 1 : 1, usando preferiblemente K2C03 como base, y a reflujo en CH3CN. La detosilación se llevó a cabo con HBr/HAc para dar el Intermedio 1, tal como se indica en el Esquema 1. El compuesto de fórmula (XI) se obtuvo por la reacción de este producto intermedio detosilado, en su forma de amina libre, con antraceno-9-carbaldehído en etanol seco, seguido de una reducción in situ con borohidruro sódico. El producto se precipitó en forma de sal de clorhidrato (Esquema 1).
Esquema 1 :
Figure imgf000040_0001
Intermedio Ϊ
6-[4-(l-pirenil)-3-azabutil]-3,6,9-triaza-l-(2,6)-piridinaciclodecafano (XI). El compuesto de fórmula (II) se disolvió en un disolvente seco (preferiblemente etanol) y se añadió pireno-l-carbaldehído disuelto en el mismo disolvente, gota a gota. Se agitó la reacción durante 2 horas. Se añadió un reductor (en este caso NaBH4) y l a disolución resultante se agitó durante 1 hora a temperatura ambiente. Se eliminó el disolvente a presión reducida. El residuo resultante se trató con agua y dicloro metano.
La fase orgánica fue separada y eliminada a presión reducida. El residuo resultante se disolvió en etanol y se precipitó como sal clorhidrato (XI).
1H RMN (D20, 300MHz): δΗ 8.10 (d, J = 8Hz, 1H), 8.06 (d, J = 8Hz, 1H), 7.95 (d, J =
4Hz, 1H), 7.92 (t, J = 6Hz, 1H), 7.90 (t, J = 6Hz, 1H), 7.86 (m, 1H), 7.81 (t, J = 6Hz, 2H), 7.79 (d, J = 5Hz, 1H), 7.70 (d, J = 10Hz, 1H), 7.30 (d, J = 8Hz, 2H), 4.62 (s, 2H), 4.46 (s, 4H), 3.22 (m, 2H), 3.05 (m, 4H), 2.89 (t, J = 8Hz, 2H), 2.69 (t, J = 5Hz, 4H).
Síntesis de los compuestos de fórmula (XIV) y (XV)
Haciendo reaccionar la forma pertosilada del producto Intermedio 1 con N-(3- bromopropil)ftalimida en CH3CN seco a reflujo se obtuvo un producto blanco que fue desprotegido con hidrazina y detosilado con HBr/HAc para obtener el Intermedio 2. Como en el caso anterior, haciendo reaccionar este producto intermedio detosilado en forma de amina libre con el correspondiente aldehido en etanol seco, seguido de la reacción in situ con borohidruro sódico y precipitando el producto en forma de clorhidrato se consiguieron sintetizar estos dos compuestos (XIV y XV), tal y como se muestra en el Esquema 2.
Esquema 2
Figure imgf000041_0001
Intermedio 2 6-[8-(2-piridil)-3,7-diazaoctil]-3,6,9-triaza-l-(2,6)-piridinaciclodecafano (XIV). El compuesto de fórmula (IX) se disolvió en etanol seco y se añadió piridina-2- carbaldehído disuelto en etanol seco, gota a gota. Se agitó la reacción durante 2 horas. Se añadió NaBH4 y la disolución resultante se agitó durante 1 hora a temperatura ambiente. Se eliminó el etanol a presión reducida. El residuo resultante se trató con agua y diclorometano. La fase orgánica fue separada y eliminada a presión reducida. El residuo resultante se disolvió en etanol y se precipitó como sal clorhidrato (XIV). 1H RMN (D20, 300MHz): δΗ 8.83 (d, J = 5Hz, 1H), 8.51 (t, J = 6Hz, 1H), 8.05 (m, 3H), 8.00 (m, 3H), 7.96 (m, 3H), 7.48 (d, J = 9Hz, 2H), 4.69 (s, 6H), 3.37 (m, 5H), 3.32 (m, 5H), 3.10 (t, J = 6Hz, 2H), 2.98 (m, 4H), 2.28 (m, 2H). 13C RMN (D20, 75.43MHz): 5C 149.2, 146.4, 145.5, 140.1, 127.5, 122.6, 51.3, 50.8, 49.9, 48.9, 46.3, 45.3, 44.0, 23.1. Anal. Cale. Para C22H35N7-5HC1: C, 42.9; H, 7.2; N, 15.9. Experimental: C, 42.4; H, 7.5; N, 15.4. 6-[8-(4-piridil)-3,7-diazaoctil]-3,6,9-triaza-l-(2,6)-piridinaciclodecafano (XV). El compuesto de fórmula (IX) se disolvió en etanol seco y se añadió piridina-4- carbaldehído disuelto en etanol seco, gota a gota. Se agitó la reacción durante 2 horas. Se añadió NaBH4 y la disolución resultante se agitó durante 1 hora a temperatura ambiente. Se eliminó el etanol a presión reducida. El residuo resultante se trató con agua y diclorometano. La fase orgánica fue separada y eliminada a presión reducida. El residuo resultante se disolvió en etanol y se precipitó como sal clorhidrato (XV). 1H RMN (D20, 300MHz): δΗ 8.92 (d, J = 8Hz, 2H), 8.25 (d, J = 8Hz, 2H), 8.00 (t, J = 8Hz, 1H), 7.51 (d, J = 9Hz, 2H), 4.70 (s, 2H), 4.68 (s, 4H), 3.39 (m, 5H), 3.33 (m, 5H), 3.13 (t, J = 6Hz, 2H), 2.96 (t, J = 6Hz, 4H), 2.30 (m, 2H). 13C RMN (D20, 75.43MHz): 5C 151.7, 149.2, 142.4, 140.1, 127.9, 122.6, 51.3, 50.8, 49.9, 48.8, 46.3, 45.6, 45.3, 44.1, 23.1. Anal. Cale. Para C22H35N7-5HC1-5H20: C, 39.4; H, 7.5; N, 14.6. Experimental: C, 39.6; H, 7.1; N, 14.3.
Síntesis del compuesto de fórmula (X)
Se disolvió el 5-(2-Aminoetil)-2,5,8-triaza[12]-2,6-piridinofano y el 4- carboxaldehido-2,9-fenantrolina en etanol seco y se dejó agitando a temperatura ambiente durante 2 horas. La imina formada se redujo, preferentemente, con NaBH4 y se dejó otras 2 horas agitando a temperatura ambiente. Se eliminó el disolvente en el rotavapor. El sólido obtenido se extrajo con H20 y CH2C12 La fase orgánica fue separada y eliminada a presión reducida. El residuo resultante se disolvió en etanol y se precipitó como sal clorhidrato, tal y como se muestra en el Esquema 3. Rendimiento 60%.
1H NMR (500 MHz, D20): δ (ppm) = 8.69 (d, J = 5 Hz, 1H), 8.67 (d, J = 4 Hz, 1H), 8.12 (d, J = 8 Hz, 1H), 7.86 (t, J = 8 Hz, 1H), 7.67 (d, J = 4 Hz, 1H), 7.58 (dd, Ji = 8 Hz, h = 5 Hz, 1H), 7.52 (d, J = 8 Hz, 1H), 7.35 (d, J = 8 Hz, 2H), 7.33 (d, J = 8 Hz, 1H), 4.62 (s, 2H), 4.55 (s, 4H), 3.44 (t, J = 7 Hz, 2H), 3.26-3.18 (m, 4H), 3.09 (t, J = 7 Hz, 2H), 2.89 (t, J = 5 Hz, 4H).
13C NMR ( 125 MHz, D20): δ (ppm) = 149.35, 148.95, 147.59, 141.41, 140.31, 139.89, 139.65, 128.01, 126.03, 124.28, 122.06, 121.56, 51.01, 50.56, 49.57, 46.82, 45.94, 44.18.
Esquema 3
Figure imgf000043_0001

Claims

REIVINDICACIONES
1. Uso de un compuesto de fórmula (I):
Figure imgf000044_0001
(I) donde R puede ser H o una cadena hidrocarbonada que comprende los sustituyentes Ri y/o R2, donde Ri es un grupo amino sustituido por R2 o sin sustituir, R2 comprende carbociclos y/o heterociclos que pueden estar sustituidos por R3 o sin sustituir, y R3 comprende la fórmula (I) donde R es una cadena hidrocarbonada; para la elaboración de una composición farmacéutica o veterinaria destinada al tratamiento de enfermedades causadas por parásitos.
2. Uso, según la reivindicación 1, donde en el compuesto de fórmula (I) el carbociclo es el benceno y el heterociclo es la piridina.
Uso, según las reivindicaciones 1 ó 2, donde el compuesto se selecciona entre los siguientes:
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
5
Figure imgf000050_0002
(XIII)
Figure imgf000051_0001
Figure imgf000051_0002
5 (XV)
Figure imgf000052_0001
Figure imgf000052_0002
(XVII)
Figure imgf000053_0001
(XVIII)
Uso de un compuesto de fórmula (II), (III), (IV), (V), (VI), (VII), (VIII), (IX), (X), (XI), (XII), (XIII), (XIV), (XV), (XVI), (XVII) o (XVIII), donde el compuesto forma un complejo con Mn(II), para la elaboración de una composición farmacéutica o veterinaria destinada al tratamiento de enfermedades causadas por parásitos.
Uso, según cualquiera de las reivindicaciones 1 a 4, caracterizado porque las enfermedades tratadas son la enfermedad de Chagas causada por Trypanosoma cruzi o la leishmaniasis causada por Leishmania spp.
Uso, según la reivindicación 5, caracterizado porque las enfermedades son tratadas en la fase crónica de las mismas.
Compuesto seleccionado del grupo que comprende:
Figure imgf000054_0001
Figure imgf000054_0002
Figure imgf000055_0001
Figure imgf000055_0002
(XV) Compuesto, según la reivindicación 7, caracterizado por formar complej Mn(II).
Uso de cualquiera de los compuestos de las reivindicaciones 7-8 para preparar un medicamento.
10. Composición farmacéutica o veterinaria que comprende al menos un compuesto de cualquiera de las reivindicaciones 7-8 y excipientes farmacéuticamente aceptables.
PCT/ES2012/070866 2011-12-16 2012-12-13 Compuestos macrocíclicos de tipo escorpiando y su uso como antiparasitarios WO2013087965A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201132035A ES2414291B2 (es) 2011-12-16 2011-12-16 Compuestos macrocíclicos de tipo escorpiando y su uso como antiparasitarios.
ESP201132035 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013087965A1 true WO2013087965A1 (es) 2013-06-20

Family

ID=48611892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070866 WO2013087965A1 (es) 2011-12-16 2012-12-13 Compuestos macrocíclicos de tipo escorpiando y su uso como antiparasitarios

Country Status (2)

Country Link
ES (1) ES2414291B2 (es)
WO (1) WO2013087965A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106132961A (zh) * 2014-02-24 2016-11-16 巴伦西亚大学 是sod模拟物的金属络合物作为食品试剂和作为化妆品的应用
US10137209B2 (en) 2015-06-04 2018-11-27 Bayer Pharma Aktiengesellschaft Gadolinium chelate compounds for use in magnetic resonance imaging
JP2020527536A (ja) * 2017-07-04 2020-09-10 バイオノス バイオテック,エス.エル 疾患の処置におけるマクロアザピリジノファン金属錯体の使用
US11814369B2 (en) 2016-11-28 2023-11-14 Bayer Pharma Aktiengesellschaft High relaxivity gadolinium chelate compounds for use in magnetic resonance imaging
US11944690B2 (en) 2018-11-23 2024-04-02 Bayer Aktiengesellschaft Formulation of contrast media and process of preparation thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2890732B2 (es) * 2020-07-10 2022-11-02 Univ Valencia Uso de poliaminas acíclicas simples para el tratamiento de leishmaniasis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033163A2 (es) * 2009-09-21 2011-03-24 Universitat De Valencia Complejos metálicos miméticos de sod

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033163A2 (es) * 2009-09-21 2011-03-24 Universitat De Valencia Complejos metálicos miméticos de sod

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BLASCO, S. ET AL.: "Hydrogen and Copper ion Induced Molecular Reorganizations in Two New Scorpiand-Like Ligands Appended with Pyridine Rings", INORGANIC CHEMISTRY, vol. 49, no. 15, 2010, pages 7016 - 7027 *
GHOSH, S. ET AL.: "Role of superoxide dismutase in survival of Leishmania within macrophage", BIOCHEMICAL JOURNAL, vol. 369, 2003, pages 447 - 452 *
GONZALEZ, J. ET AL.: "Tritopic phenanthroline and pyridine tail-tied aza-scorpiands", ORGANIC AND BIOMOLECULAR CHEMISTRY, vol. 8, 2010, pages 2367 - 2376 *
INCLAN, M. ET AL.: "Modulation of DNA Binding by Reversible Metal-Controlled Molecular Reorganizations of Scorpiand-like Ligands", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, 2012, pages 9644 - 9656 *
SANCHEZ-MORENO, M. ET AL.: "In vitro leishmanicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against Leishmania infantum and Leishmania braziliensis species", JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, vol. 67, 2012, pages 387 - 397 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106132961A (zh) * 2014-02-24 2016-11-16 巴伦西亚大学 是sod模拟物的金属络合物作为食品试剂和作为化妆品的应用
US10137209B2 (en) 2015-06-04 2018-11-27 Bayer Pharma Aktiengesellschaft Gadolinium chelate compounds for use in magnetic resonance imaging
US10722601B2 (en) 2015-06-04 2020-07-28 Bayer Pharma Aktiengesellschaft Gadolinium chelate compounds for use in magnetic resonance imaging
US11491245B2 (en) 2015-06-04 2022-11-08 Bayer Pharma Aktiengesellschaft Gadolinium chelate compounds for use in magnetic resonance imaging
US11814369B2 (en) 2016-11-28 2023-11-14 Bayer Pharma Aktiengesellschaft High relaxivity gadolinium chelate compounds for use in magnetic resonance imaging
JP2020527536A (ja) * 2017-07-04 2020-09-10 バイオノス バイオテック,エス.エル 疾患の処置におけるマクロアザピリジノファン金属錯体の使用
US11013732B2 (en) * 2017-07-04 2021-05-25 Bionos Biotech, S.L. Use of macroazapyridinophanes metal complexes in the treatment of diseases
JP7068677B2 (ja) 2017-07-04 2022-05-17 バイオノス バイオテック,エス.エル 疾患の処置におけるマクロアザピリジノファン金属錯体の使用
US11944690B2 (en) 2018-11-23 2024-04-02 Bayer Aktiengesellschaft Formulation of contrast media and process of preparation thereof

Also Published As

Publication number Publication date
ES2414291A1 (es) 2013-07-18
ES2414291B2 (es) 2014-02-13

Similar Documents

Publication Publication Date Title
ES2414291B2 (es) Compuestos macrocíclicos de tipo escorpiando y su uso como antiparasitarios.
Mishra et al. Alkaloids: future prospective to combat leishmaniasis
US20020055644A1 (en) Xanthone analogs for treating infectious diseases and complexation of heme and porphyrins
ES2291438T3 (es) Quinoleinas sustituidas para el tratamiento de coinfecciones por protozoos y retrovirus.
JP2021502986A (ja) 新規イミダゾピリミジン化合物およびそれらの使用
Boiani et al. In vitro and in vivo antitrypanosomatid activity of 5-nitroindazoles
RU2339644C2 (ru) Способ получения фрондозида а и способ стимулирования иммунной системы млекопитающих
TWI746454B (zh) 化合物
JPWO2009113569A1 (ja) ベンゾ[a]フェノキサチン化合物を有効成分として含有する原虫疾患予防又は治療用医薬組成物
ES2566228B1 (es) Uso de ésteres derivados de pirazol protón-ionizables y sus correspondientes sales para el tratamiento de la enfermedad de Chagas y la leishmaniasis
ES2890732B2 (es) Uso de poliaminas acíclicas simples para el tratamiento de leishmaniasis
US10323007B1 (en) N2N N4-disubstituted quinazoline-2,4-diamines and uses thereof
ES2525079B1 (es) Actividad antiparasitaria de escuaramidas
JPWO2006087935A1 (ja) フェノキサジニウム化合物を活性成分として含有する医薬組成物
US20090105301A1 (en) 9a-substituted azalides for the treatment of malaria
US11485714B2 (en) Hydroxyethylamine-based piperazine compounds, and methods of producing and using the same for treating disease
Henriquez-Figuereo et al. Next generation of selenocyanate and diselenides with upgraded leishmanicidal activity
JP5610433B2 (ja) 抗トリパノソーマ剤およびトリパノソーマ症治療薬
Petro-Buelvas et al. Synthesis and antileishmanial activity of styrylquinoline-type compounds: in vitro and in vivo studies
WO2015059337A1 (es) Compuestos poliamínicos y complejos metálicos que los comprenden para su uso como agentes antiparasitarios
JP3904364B2 (ja) 抗マラリア活性を有する新規化合物
Chaudhary et al. Pyridine‐2, 6‐Dicarboxamide Proligands and their Cu (II)/Zn (II) Complexes Targeting Staphylococcus Aureus for the Attenuation of In Vivo Dental Biofilm
EP4298089A1 (en) Compositions and methods for the treatment of plasmodium falciparum malaria
WO2023191725A2 (en) Anti-tubercular compositions
Šůs Synthesis of precursors of 4-quinolones against Trypanosoma brucei for 18F-radiolabelling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857753

Country of ref document: EP

Kind code of ref document: A1