WO2013086886A1 - 机动车、机动车的后车部分的控制系统及车速控制方法 - Google Patents

机动车、机动车的后车部分的控制系统及车速控制方法 Download PDF

Info

Publication number
WO2013086886A1
WO2013086886A1 PCT/CN2012/082190 CN2012082190W WO2013086886A1 WO 2013086886 A1 WO2013086886 A1 WO 2013086886A1 CN 2012082190 W CN2012082190 W CN 2012082190W WO 2013086886 A1 WO2013086886 A1 WO 2013086886A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
speed
control
axle
motor
Prior art date
Application number
PCT/CN2012/082190
Other languages
English (en)
French (fr)
Inventor
詹纯新
刘权
张建军
李义
王启涛
Original Assignee
中联重科股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 中联重科股份有限公司
Publication of WO2013086886A1 publication Critical patent/WO2013086886A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/10Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of fluid gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/46Automatic regulation in accordance with output requirements
    • F16H61/47Automatic regulation in accordance with output requirements for achieving a target output speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • B60K2023/0816Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch for varying front-rear torque distribution with a central differential
    • B60K2023/0833Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch for varying front-rear torque distribution with a central differential for adding torque to the rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/09Other types of propulsion units, e.g. fluid motors, or type not specified

Definitions

  • the present invention relates to the field of control technology for motor vehicles, and more particularly to a control system for a vehicle, a rear portion of a motor vehicle, and a vehicle speed control method. Background technique
  • the transportation of large objects is basically done by a special motor vehicle, such as a large container truck.
  • the motor vehicle is mainly composed of a chassis, an axle, a frame, a cab mounted on the front side of the lower portion of the frame, and suspension devices and wheels arranged on both sides of the frame.
  • the chassis is usually only set one, and the chassis and the frame are mostly undetachable.
  • This motor vehicle adjusts the load carrying capacity of the vehicle itself mainly by reserving the axle interface on the chassis to increase the number of axles.
  • the chassis of the vehicle cannot be disassembled, if the vehicle is removed while driving, the load on the other axles will be too large and the turning radius will be too large. This will cause the eccentric load and rollover phenomenon when the vehicle transports heavy objects. Because the turning radius is too large, it is difficult for the vehicle to be restricted by the site when it stops at a fixed position. It often takes several advances and retreats to be in place, and on a narrow road surface, the turning radius is too large, which often makes the vehicle unable to pass. . In addition, the removed axle cannot be self-contained and travels on its own, thus reducing the convenience of the vehicle transition. Furthermore, the vehicle speed of this vehicle is mainly controlled by means of mechanical transmission, and it is impossible to achieve better control of the vehicle speed of the axle at the rear of the vehicle, thereby greatly affecting the driving performance of the vehicle. Summary of the invention
  • the present invention provides a control system for a rear vehicle portion of a motor vehicle, a motor vehicle, and a vehicle speed control method to overcome the deficiencies existing in existing vehicle control technologies.
  • a control system for a rear vehicle portion of a motor vehicle includes a front car portion and a rear car portion, and the control system includes a controller and a power device, and the controller is respectively connected with the front car portion and the rear car portion to obtain a vehicle speed signal of the front car portion, and is generated according to the vehicle speed signal of the front car portion. control signal.
  • the power unit is for driving the rear vehicle portion, and the power unit is connected to the controller to control the vehicle speed of the rear vehicle portion according to the control signal.
  • the power device includes an engine, at least one oil pump, at least one hydraulic system, at least one motor, and at least one rear axle, wherein the power device uses the engine to drive the oil pump according to the control signal, and then uses the hydraulic system And controlling at least one motor to drive at least one rear axle by at least one motor to control the vehicle speed of the rear vehicle portion by controlling the speed of the at least one rear axle.
  • the at least one rear axle is disposed on a separate chassis of the rear vehicle portion.
  • the controller further acquires current state information of the rear vehicle portion as a feedback signal to generate a control signal according to the vehicle speed signal of the preceding vehicle portion and the current state information of the following vehicle portion.
  • the current state information of the rear vehicle portion includes a speed and power signal of the engine in the power unit, and a current state signal at which the oil pump, the hydraulic system, and the at least one motor are located.
  • the controller adjusts The displacement of each oil pump in the rear part of the vehicle controls the speed of each axle in the rear part of the vehicle.
  • the controller when the vehicle speed of the current vehicle portion is greater than the second preset value and the vehicle speed of the front vehicle portion is greater than the minimum value of each axle speed of the rear vehicle portion, the controller is activated by adjusting The speed of the machine increases the speed of each axle in the rear part of the vehicle when the displacement of the oil pump remains unchanged.
  • a vehicle speed control method for a rear vehicle portion of a motor vehicle includes the steps of: acquiring a vehicle speed signal of a front vehicle portion; and generating a control signal according to a vehicle speed signal of the front vehicle portion, and according to the control The signal controls the speed of the rear part of the car.
  • a motor vehicle includes a front vehicle portion and a rear vehicle portion, wherein the motor vehicle further includes a control system of the rear vehicle portion to control the vehicle speed of the rear vehicle portion.
  • the vehicle speed signal of the front vehicle portion and the current state information of the rear vehicle portion are used as inputs of the controller, so that the controller generates a control signal, and the power device controls the vehicle speed of the rear vehicle portion according to the control signal, thereby realizing the vehicle speed.
  • the adaptive control of the associated control and the speed of the rear part of the vehicle improves the system intelligence and the reliability, safety and driving performance of the vehicle operation.
  • control of independent driving of the rear vehicle portion is achieved.
  • FIG. 1 and 2 are schematic views of a motor vehicle according to an embodiment of the present invention.
  • Fig. 3 is a block diagram showing the main structure of a control system for a rear vehicle portion of a motor vehicle according to an embodiment of the present invention.
  • Fig. 4 is a block diagram showing the main structure of the power supply unit of the control system of the rear vehicle portion of the vehicle according to the embodiment of the present invention.
  • FIG. 5 is a flow chart showing the steps of a vehicle speed control method for a rear vehicle portion of a motor vehicle according to an embodiment of the present invention. detailed description
  • FIG. 1 and 2 are schematic views of a motor vehicle according to an embodiment of the present invention.
  • Fig. 3 is a block diagram showing the main structure of a control system for a rear portion of a motor vehicle according to an embodiment of the present invention.
  • Fig. 4 is a block diagram showing the main structure of a power unit of a control system of a rear vehicle portion of a vehicle according to an embodiment of the present invention, which uses a two-axle to drive a rear portion of the vehicle.
  • the motor vehicle of the present embodiment includes a front portion 11 and a rear portion 10. As shown in FIG.
  • the front vehicle portion 11 includes an engine (not shown), a gearbox (not shown), a chassis 110, an axle 111 disposed on the chassis, and a front side of the chassis 110 and connected to the chassis 110.
  • the cab 112 and the wheels 113 connected to the axle 111 and the like.
  • the vehicle speed when the front vehicle portion 11 is traveling is controlled by the engine, the transmission, and the axle 111 by mechanical transmission, and the control manner thereof is the same as that of the conventional vehicle using the mechanical transmission mode, and will not be described in detail herein.
  • the front part 11 can be driven independently. 1 shows that the number of axles 111 of the front portion 11 is only an example. In other embodiments, the number of axles 111 can also be set accordingly according to actual needs.
  • the rear vehicle portion 10 includes a chassis 125, wheels 129 disposed on the chassis, a power unit 12, and the like.
  • the chassis 125 is a separate chassis that is independent of the chassis 110 of the front portion.
  • the rear portion 10 and the front portion 11 are rigidly connectable.
  • the control system of the rear vehicle portion of the motor vehicle includes a controller 13 and a drive rear portion 10 Powerplant 12.
  • the controller 13 is connected to the front vehicle portion 11 and the rear vehicle portion 10, respectively, to obtain a vehicle speed signal of the front vehicle portion 11, and generates a control signal based on the vehicle speed signal of the front vehicle portion 11. Since the front portion 11 is controlled by the mechanical transmission method, the speed of each axle 111 of the front portion 11 is the same.
  • the control signal is a signal that controls the vehicle speed of the rear vehicle section 10.
  • the power unit 12 is connected to the controller 13 to control the vehicle speed of the rear vehicle portion 10 in accordance with the control signal.
  • the power unit 12 includes an engine 120, an oil pump 121, a hydraulic system 122, a motor 123, and an axle 127 and the like disposed on a separate chassis 125 of the rear portion.
  • the oil pump 121 is electrically connected to the engine 120, the hydraulic system 122, and the motor 123, respectively.
  • the motor 123 is electrically connected to the hydraulic system 122 and the axle 127.
  • the vehicle speed control mode when the rear vehicle portion 10 is running is as follows:
  • the power unit 12 drives the oil pump 121 by the engine 120 according to the control signal, for example, drives the oil pump 121 to control the swing angle thereof, and then controls the motor 123 by the hydraulic system 122, for example, controls the motor.
  • the information such as the displacement of 123 is outputted by the motor 123.
  • the motor 123 outputs the rotational speed information to drive the axle 127 to control the vehicle speed of the rear vehicle portion 10 by controlling the speed of the axle 127.
  • the oil pump 121 may be a hydraulic oil pump, for example, a bidirectional variable pump.
  • the motor 123 can be a metering motor, a variable motor, or the like.
  • the rear vehicle section 10 can also travel independently.
  • the controller 13 further acquires the current state information of the rear vehicle portion 10 as a feedback signal to generate a control signal based on the vehicle speed signal of the preceding vehicle portion 11 and the current state information of the rear vehicle portion 10.
  • the current status information of the rear vehicle portion 10 includes the rotational speed and power signals of the engine 120 in the power unit 12, as well as the current status signals at which the oil pump 121, hydraulic system 122, and motor 123 are located.
  • the current state signal at which the oil pump 121 is located may be a signal such as the oil discharge amount, the oil pressure, the swing angle, and the like of the oil pump 121.
  • the current status signal at which the hydraulic system 122 is located may be the flow, pressure, etc. signals of the hydraulic system 122.
  • the current state signal at which the motor 123 is located may be a signal such as the rotational speed, pressure, displacement, etc. of the motor 123.
  • the current status information of the rear vehicle portion 10 may also include a vehicle speed signal of the rear vehicle portion 10.
  • the number of axles 127 of the power unit 12 is two.
  • the controller 13 generates a control signal to cause the power unit 12 to control the axle speeds of the rear vehicle portion 10.
  • FIG. 4 shows the manner in which the power unit 12 uses the two axles to drive the rear vehicle portion 10.
  • the power unit 12 includes an engine 201, a first oil pump 202, a second oil pump 203, a first motor 205, a second motor 208, a first axle 206, a second axle 209, a first hydraulic system 211, and a second hydraulic system. 212 and so on.
  • the engine 201, the first hydraulic system 211, and the second hydraulic system 212 are respectively connected to the first oil pump 202 and the second oil pump 203.
  • the engine 201 may also be combined with the first oil pump 202 and the second oil pump 203.
  • One is connected.
  • the first motor 205 is connected to the first axle 206, the first oil pump 202, and the first hydraulic system 211, respectively.
  • the second motor 208 is coupled to the second axle 209, the second oil pump 203, and the second hydraulic system 212, respectively.
  • the first axle 206 is coupled to the first wheel 207 of the rear portion 10.
  • the second axle 209 is coupled to the second wheel 210 of the rear portion 10.
  • the vehicle speed of the front vehicle portion 11 is V0
  • the vehicle speed of the first axle 206 of the power unit 12 is VI
  • the vehicle speed of the second axle 209 of the power unit 12 is V2
  • the power unit 12 adopts the double vehicle shown in FIG.
  • V (VI , V2) n * Vgp * nx * Vgm * i, where n is the output speed of the engine 201, which is a variable value, ranging from 500 rpm to 2500 rpm; Vgp is the displacement of the oil pump, and the freely selectable value range is 0-+, which is a variable value; ⁇ ⁇ is the hydraulic system efficiency; Vgm is the motor displacement, the freely selectable value range is 0-+, i is the axle speed ratio; here, the first motor 205 and the second motor 208 can be quantifiable motors or variables motor.
  • the first axle 206 can be controlled to set the output of the first oil pump 202 to 0, or the second axle 209 to control the output of the second oil pump 203 to be set to zero.
  • V0, VI, V2, V3 are the vehicle speed of the front vehicle portion 11, the first axle speed of the power unit 12, the second axle speed of the power unit 12, and the third axle of the power unit 12; o
  • FIG. 5 is a flow chart showing the steps of a vehicle speed control method for a rear vehicle portion of a vehicle according to an embodiment of the present invention.
  • the vehicle speed control method is executed by the controller 13 for the rear vehicle portion 10.
  • the vehicle speed control is performed by using the method in which the power unit 12 shown in FIG. 4 uses the double axle to drive the rear vehicle portion.
  • the vehicle speed control method of the rear vehicle portion of the motor vehicle according to the embodiment of the present invention may mainly include the following steps. S201 ⁇ S209.
  • step S200 the controller 13 obtains the vehicle speed signal of the preceding vehicle portion 11 and the current state information of the rear vehicle portion 10.
  • the current status information of the rear vehicle portion 10 includes the rotational speed and power signals of the engine 120 in the power unit 12, as well as the current status signals at which the oil pump 121, hydraulic system 122, and motor 123 are located.
  • Step S201 the controller 13 is based on the vehicle speed signal of the preceding vehicle portion 11 and the rear vehicle portion 10
  • the current state information generates a control signal
  • the control signal is a signal for controlling the vehicle speed of the rear vehicle portion 10.
  • V0 is the vehicle speed of the front part 11
  • VI is the speed of the first axle 206 of the power unit 12
  • V2 is the second of the power unit 12
  • n is the speed of the engine output, which is a variable value, ranging from 500 rpm to 2500 rpm.
  • Vgp is the displacement of the oil pump.
  • the freely selectable value range is 0-+, which is variable. Value; ⁇ ⁇ is the hydraulic system efficiency; Vgm is the motor displacement, freely selectable value range is 0-+, i is the axle speed ratio.
  • step S202 the controller 13 determines whether the inter-axle vehicle speed difference value AV of the power unit 12 is greater than a first preset value. If it is greater than the first preset value, step S203 is performed; if not greater than the first preset The value proceeds to step S205; here, the first predetermined value may be preset according to the road condition and the differential principle.
  • step S205 the controller 13 determines whether the vehicle speed V0 of the preceding vehicle portion 11 is less than or equal to a second predetermined value; if less than or equal to the second predetermined value, proceeds to step S203; if greater than the second predetermined value, proceeds to Step S206.
  • step S206 the controller determines whether the vehicle speed V0 of the front vehicle portion 11 is greater than the vehicle speed minimum value of the axle of the power unit 12, and if it is greater than the vehicle speed minimum value of the axle of the power unit 12, proceeds to step S207, if not greater than the power unit 12 The minimum vehicle speed of the axle is proceeding to step S209.
  • step S207 the controller 13 adjusts the engine speed n to jointly increase the axle speed of the power unit 12 when the oil pump displacement Vgp remains unchanged.
  • step S209 the power unit 12 controls the vehicle speed of the rear vehicle portion 10 based on the control signal, and proceeds to step S200.
  • the power unit 12 drives the first oil pump 202 and the second oil pump 203 by the engine 201 according to the control signal, and then utilizes the first hydraulic system 211 and the second hydraulic system.
  • the system 212 controls the first motor 205 and the second motor 208, respectively, and the first axle 206 and the second axle 209 are driven by the motor 123 to control the speeds of the first axle 206 and the second axle 209 of the axle.
  • the vehicle speed of the rear vehicle portion 10 is controlled.
  • step S200 and S201 when the vehicle speed control system of the rear vehicle portion of the vehicle of the embodiment of the present invention does not use the current state information of the rear vehicle portion 10 as a consideration to control the vehicle speed of the rear vehicle portion 10, correspondingly
  • the current state information included in steps S200 and S201 may be omitted, or the control principle of the oil pump displacement Vgp and the engine output speed n may be disregarded according to actual needs, and steps S202, S203, S205, S206 may be omitted accordingly.
  • step S209 is directly performed.
  • the vehicle speed control system of the rear vehicle portion of the motor vehicle and the motor vehicle of the present invention and the vehicle speed control method thereof introduce the vehicle speed signal of the front vehicle portion 11 and the current state information of the rear vehicle portion 10 as the input of the controller 13,
  • the power unit 12 controls the vehicle speed of the rear vehicle portion 10 according to the control signal, thereby realizing the correlation control of the vehicle speed, the adaptive ability of the vehicle speed of the rear vehicle portion 10, and improving the system intelligence and the vehicle operation. Reliability, safety and drive performance.
  • the vehicle speed control system of the rear vehicle portion of the motor vehicle and the motor vehicle of the present invention and the vehicle speed control method thereof also control the independent traveling of the rear vehicle portion by controlling the vehicle speed of the rear vehicle portion 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Fluid Gearings (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

公开了一种机动车后车部分(10)的控制系统、具有该控制系统的机动车、及用于该控制系统的后车部分(10)车速控制方法。所述机动车包括前车部分(11)和后车部分(10),机动车的后车部分(10)的控制系统包括控制器(13)和动力装置(12),控制器(13)分别与前车部分(11)和后车部分(10)连接以获取前车部分(11)的车速信号,并根据前车部分(11)的车速信号而产生控制信号。动力装置(12)用于驱动后车部分(10),且动力装置(12)连接控制器(13)以根据控制信号而控制后车部分(10)的车速。该控制系统和控制方法利用前车部分(11)的车速信号以及后车部分(10)的当前状态信息控制后车部分(10)的车速,因此提高了整车运行的可靠性、安全性和驱动性能。

Description

机动车、 机动车的后车部分的控制系统及车速控制方法 技术领域
本发明涉及机动车的控制技术领域, 特别涉及机动车、 机动车的后车 部分的控制系统及车速控制方法。 背景技术
目前对于大型物件的运输, 基本采用专用的机动车来完成, 例如大型 货柜车等等。 此机动车主要由底盘、 车桥、 车架、 安装在车架下部前侧的 驾驶室、 以及车架两侧排列的悬挂装置、 车轮等构成。 其底盘通常只设置 一个, 且底盘及车架大都不可拆分。 此机动车主要通过在底盘上预留车桥 接口以增加车桥数目的方法来调整车辆自身的承载能力。
由于车辆的底盘不能拆分, 车辆在行驶时若拆除部分车桥后, 会导致 其余车桥的负载过大、 转弯半径过大, 这样会出现车辆运输重物时的偏载、 侧翻现象。 由于转弯半径过大, 车辆在向某个固定位置停靠时受场地限制 就很困难, 往往需要几次前进、 后退才能到位, 且在较窄路面上因转弯半 径过大而往往会使得车辆不能通行。 另外, 拆除的车桥无法自成一体而自 行行驶, 从而降低了车辆转场时的方便性。 再者, 此车辆的车速主要通过 机械传动的方式进行控制, 无法实现对车尾部分车桥的车速进行较好的控 制, 从而极大地影响了车辆的驱动性能。 发明内容
因此, 本发明提供机动车、 机动车的后车部分的控制系统及车速控制 方法, 以克服现有机动车控制技术中存在的缺陷。
具体地, 本发明实施例提出的一种机动车的后车部分的控制系统, 机 动车包括前车部分和后车部分, 控制系统包括控制器和动力装置, 控制器 分别与前车部分和后车部分连接以获取前车部分的车速信号, 并根据前车 部分的车速信号而产生控制信号。 动力装置用于驱动后车部分, 且动力装 置连接控制器以根据控制信号而控制后车部分的车速。
在本发明实施例中, 上述动力装置包括发动机、 至少一油泵、 至少一 液压系统、 至少一马达和至少一后车桥, 其中, 动力装置根据控制信号, 而利用发动机驱动油泵, 再利用液压系统而分别控制至少一马达, 由至少 一马达而分别驱动至少一后车桥, 以通过控制至少一后车桥的速度来实现 控制后车部分的车速。
在本发明实施例中, 上述至少一后车桥设置在后车部分的独立底盘之 上。
在本发明实施例中, 上述控制器进一步获取后车部分的当前状态信息 从而作为反馈信号, 以根据前车部分的车速信号和后车部分的当前状态信 息而产生控制信号。
在本发明实施例中, 上述后车部分的当前状态信息包括动力装置中的 发动机的转速和功率信号, 以及油泵、 液压系统和至少一马达所处的当前 状态信号。
在本发明实施例中, 上述动力装置包括多个后车桥, 且每个后车桥的 速度满足 V0 Vl V2 ... Vn, 且 Vn _Vn-l=...=V2-Vl=Vl-V0= \V, 其中, V0为前车部分的车速, VI、 V2 Vn-1、 Vn分别为后车桥的 第 1后车桥、 第 2后车桥、 ...、 第 n-1后车桥、 第 n后车桥的速度。
在本发明实施例中, 当后车部分的各车桥的速度之间的差值大于第一 预先设定值或前车部分的车速小于等于第二预先设定值时, 则控制器通过 调节后车部分的各油泵排量控制后车部分各车桥车速。
在本发明实施例中, 当前车部分的车速大于第二预先设定值且前车部 分的车速大于后车部分的各车桥车速的最小值时, 则控制器通过调节发动 机的转速, 在油泵的排量维持不变时提高后车部分的各车桥车速。
此外, 本发明实施例提出的一种机动车的后车部分的车速控制方法, 其包括以下步骤: 获取前车部分的车速信号; 以及根据前车部分的车速信 号而产生控制信号, 并根据控制信号而控制后车部分的车速。
另外, 本发明实施例提出的一种机动车, 其包括前车部分和后车部分, 其特征在于, 机动车进一步包括上述后车部分的控制系统, 以控制后车部 分的车速。
本发明上述实施例前车部分的车速信号及后车部分的当前状态信息作 为控制器的输入, 以使得控制器产生控制信号, 动力装置根据控制信号控 制后车部分的车速, 从而实现了车速的关联控制、 后车部分车速的自适应 能力, 提高了系统智能性以及整车运行的可靠性、 安全性和驱动性能。 另 外, 通过控制后车部分的车速, 从而实现了对后车部分独立行驶的控制。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图, 详细说明如下。 附图说明
图 1与图 2是本发明实施例提出的机动车的示意图。
图 3是本发明实施例提出的机动车的后车部分的控制系统的主要架构 方块图。
图 4是本发明实施例提出的机动车的后车部分的控制系统的动力装置 采用两车桥驱动后车部分的连接方式的主要架构方块图。
图 5是本发明实施例提出的机动车的后车部分的车速控制方法的步骤 流程图。 具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效, 以下结合附图及较佳实施例, 对依据本发明提出的机动车、 机动车的 后车部分的控制系统及车速控制方法其具体实施方式、 结构、 特征及功效, 详细说明如后。
有关本发明的前述及其他技术内容、 特点及功效, 在以下配合参考图 式的较佳实施例详细说明中将可清楚的呈现。 通过具体实施方式的说明, 当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具 体的了解, 然而所附图式仅是提供参考与说明之用, 并非用来对本发明加 以限制。
图 1与图 2是本发明实施例提出的机动车的示意图。 图 3是本发明实 施例提出的机动车的后车部分的控制系统的主要架构方块图。 图 4是本发 明实施例提出的机动车的后车部分的控制系统的动力装置采用两车桥驱动 后车部分的连接方式的主要架构方块图。请共同参考图 1至图 4, 本实施例 的机动车包括前车部分 11、 以及后车部分 10。 如图 1所示, 前车部分 11 包括发动机(图未示)、 变速箱 (图未示)、 底盘 110、 设置于底盘上的车桥 111、 设置于底盘 110前侧且与底盘 110相连的驾驶室 112以及与车桥 111 相连的车轮 113等。 前车部分 11行驶时的车速由发动机、 变速箱以及车桥 111通过机械传动的方式进行控制,且其控制方式同现有采用机械传动方式 的车辆的控制方式相同, 在此处不再详述。 前车部分 11可以独立行驶。 图 1示出前车部分 11的车桥 111的数量为两个仅为举例说明, 在其它实施方 式中, 车桥 111的数量也可以根据实际需要而进行相应设置。
后车部分 10包括底盘 125、设置于底盘上的车轮 129、动力装置 12等。 在此, 底盘 125为独立底盘, 其与前车部分的底盘 110相互独立。 后车部 分 10与前车部分 11可进行刚性连接。
机动车的后车部分的控制系统包括控制器 13和用于驱动后车部分 10 的动力装置 12。
控制器 13分别与前车部分 11和后车部分 10连接以获取前车部分 11 的车速信号, 并根据前车部分 11的车速信号而产生控制信号。 由于前车部 分 11为采用机械传动方式进行车速控制, 所以前车部分 11每一车桥 111 的车速均相同。 控制信号即为控制后车部分 10车速的信号。
动力装置 12连接控制器 13以根据控制信号而控制后车部分 10的车速。 动力装置 12包括发动机 120、 油泵 121、 液压系统 122、 马达 123、 以及设 置于后车部分的独立底盘 125上的车桥 127等。油泵 121分别与发动机 120、 液压系统 122、以及马达 123电性相连。马达 123与液压系统 122、车桥 127 电性相连。 后车部分 10行驶时的车速控制方式如下: 由动力装置 12根据 控制信号, 而利用发动机 120驱动油泵 121, 例如驱动油泵 121以控制其摆 角, 再利用液压系统 122控制马达 123, 例如控制马达 123的排量等信息, 由马达 123输出相应信息, 例如马达 123输出转速信息驱动车桥 127以通 过控制车桥 127的速度来实现控制后车部分 10的车速。 油泵 121可以为液 压油泵, 例如可为双向变量泵。 马达 123可以为定量马达、 变量马达等。 后车部分 10也可以独立行驶。
此外, 控制器 13还进一步获取后车部分 10的当前状态信息从而作为 反馈信号, 以根据前车部分 11 的车速信号和后车部分 10的当前状态信息 而产生控制信号。 后车部分 10的当前状态信息包括动力装置 12中的发动 机 120的转速和功率信号, 以及油泵 121、液压系统 122和马达 123所处的 当前状态信号。 例如油泵 121所处的当前状态信号可为油泵 121的排油量、 油压、 摆角等信号。 液压系统 122所处的当前状态信号可为液压系统 122 的流量、 压力等信号。 马达 123所处的当前状态信号可为马达 123的转速、 压力、 排量等信号。 后车部分 10 的当前状态信息还可以包括后车部分 10 的车速信号。
具体地, 如图 4所示, 以动力装置 12的车桥 127的数量为两个进行举 例说明控制器 13产生控制信号以使得动力装置 12控制后车部分 10各车桥 车速的方式, 图 4示出动力装置 12采用两车桥驱动后车部分 10的连接方 式。 动力装置 12包括发动机 201、 第一油泵 202、 第二油泵 203、 第一马达 205、 第二马达 208、 第一车桥 206、 第二车桥 209、 第一液压系统 211、 以 及第二液压系统 212等。 其中, 发动机 201、 第一液压系统 211、 第二液压 系统 212分别与第一油泵 202、 第二油泵 203相连, 在其它实施方式中, 发 动机 201也可以与第一油泵 202、 第二油泵 203中之一相连。 第一马达 205 分别与第一车桥 206、第一油泵 202、第一液压系统 211相连。第二马达 208 分别与第二车桥 209、第二油泵 203、第二液压系统 212相连。第一车桥 206 与后车部分 10的第一车轮 207相连。 第二车桥 209与后车部分 10的第二 车轮 210相连。
假设前车部分 11的车速为 V0, 动力装置 12的第一车桥 206的车速为 VI, 动力装置 12的第二车桥 209的车速为 V2, 且动力装置 12采用图 4所 示的双车桥驱动后车部分 10时, 此时的第一车桥 206、 第二车桥 209分别 为第 1驱动车桥、 第 2驱动车桥, 则控制器 13的控制方式满足如下公式: V0^V1 ^V2,且 V2-V1=V1-V0= \V。因动力装置 12采用液压系统及马达 驱动后车部分 10的车速, 所以后车部分 10的车速满足现有的液压系统车 辆的车速公式: V (VI , V2) =n*Vgp* n x*Vgm*i, 其中 n为发动机 201输 出的转速, 其为可变值, 范围为 500转 -2500转 /分钟; Vgp为油泵排量, 可 自由选择的数值范围为 0-+ , 其为可变值; η χ为液压系统效率; Vgm为 马达排量, 可自由选择数值范围为 0-+ , i为车桥车速传动比; 在此, 第 一马达 205、 第二马达 208可以为可定量马达或变量马达。
当动力装置 12采用单车桥驱动时, 只需要将图 4中的某一车桥控制其 相应的油泵输出设置为 0即可。 即可以将第一车桥 206控制第一油泵 202 的输出设置为 0、 或将第二车桥 209控制第二油泵 203的输出设置为 0。
当动力装置 12采用多桥驱动时, 即将图 4中变为三桥全驱动时, 只需 按图 4所示方式进行连接第三车桥等装置即可, 其速度可按如下公式表示 的车速关系进行设定: V0 V1 V2 V3, V3-V2=V2-V1=V1-V0= \V。 其 中, V0、 VI、 V2、 V3分别为前车部分 11的车速、 动力装置 12的第一车 桥车速、 动力装置 12的第二车桥车速、 以及动力装置 12的第三车桥的车 3¾ o
另外, 由于油泵排量 Vgp与发动机输出转速 n均为可变值, 对两者的 控制还可以包括如下原则: (1 ) 当动力装置 12的各驱动车桥间车速相差较 大时, 即 大于第一预先设定值, 例如第一预先设定值可根据路况和差 速原理进行预先设定,则控制器 13通过调节动力装置 12的各油泵排量 Vgp 实现如下关系的车速控制: V3-V2=V2-V1=V1-V0= \V; (2) 当 V0 Vx, 其中, Vx (第二预先设定值)为发动机怠速(即发动机启动最低转速) 时, 油泵最大摆角时的车速,则控制器 13通过调节油泵排量 Vgp实现如下关系 的车速控制: V3-V2=V2- V1=V1-V0= \V (此后车部分 10具有三个驱动车 桥); ( 3)当 V0>Vx, V0>V1 (VI为动力装置 12的各车桥车速的最小值) 时, 则控制器 13通过调节发动机的转速 n, 在油泵排量 Vgp均维持不变时 共同提高动力装置 12的各车桥车速。
图 5是本发明实施例提出的机动车的后车部分的车速控制方法的步骤 流程图, 请一并参考图 5及图 4, 所述车速控制方法执行于控制器 13以对 后车部分 10的车速进行控制, 以图 4所示的动力装置 12采用双车桥驱动 后车部分的方式为例进行说明, 本发明实施例提出的机动车的后车部分的 车速控制方法主要可包括以下步骤 S201~S209。
步骤 S200, 控制器 13取得前车部分 11 的车速信号以及后车部分 10 的当前状态信息。 后车部分 10的当前状态信息包括动力装置 12中的发动 机 120的转速和功率信号, 以及油泵 121、液压系统 122和马达 123所处的 当前状态信号。
步骤 S201 , 控制器 13根据前车部分 11 的车速信号以及后车部分 10 的当前状态信息而产生控制信号, 控制信号即为控制后车部分 10车速的信 号,控制器 13按照如下公式进行后车部分 10车速计算: V(V1, V2)=n*Vgp* x*Vgm*i , V0^V1 ^V2, 且 V2-V1=V1-V0= \V, V0为前车部分 11的 车速, VI为动力装置 12第一车桥 206的车速, V2为动力装置 12第二 车桥 209的车速, n为发动机输出的转速,其为可变值,范围为 500转 -2500 转 /分钟; Vgp为油泵排量, 可自由选择的数值范围为 0-+ , 其为可变值; η χ为液压系统效率; Vgm为马达排量, 可自由选择数值范围为 0-+ , i 为车桥车速传动比。
步骤 S202, 控制器 13判断动力装置 12的各车桥间车速相差值 AV是 否大于第一预先设定值, 若大于第一预先设定值, 则进行步骤 S203 ; 若不 大于第一预先设定值, 则进行步骤 S205; 在此, 第一预先设定值可根据路 况和差速原理进行预先设定。
步骤 S203, 控制器 13调节动力装置 12的各油泵排量 Vgp对后车部分 10的车速进行控制, 即通过调节动力装置 12的各油泵排量 Vgp, 使动力装 置 12的各车桥车速满足公式: V0 V1 V2, 且 V2-V1=V1-V0= \V。
步骤 S205, 控制器 13判断前车部分 11的车速 V0是否小于等于第二 预先设定值; 若小于等于第二预先设定值, 则进行步骤 S203; 若大于第二 预先设定值, 则进行步骤 S206。
步骤 S206, 控制器判断前车部分 11 的车速 V0是否大于动力装置 12 的车桥的车速最小值, 若大于动力装置 12的车桥的车速最小值则进行步骤 S207, 若不大于动力装置 12的车桥的车速最小值则进行步骤 S209。
步骤 S207,控制器 13调节发动机的转速 n,在油泵排量 Vgp均维持不 变时共同提高动力装置 12的各车桥车速。
步骤 S209, 动力装置 12根据控制信号控制后车部分 10的车速, 再进 行步骤 S200。具体地, 动力装置 12根据控制信号, 而利用发动机 201驱动 第一油泵 202以及第二油泵 203,再利用第一液压系统 211以及第二液压系 统 212分别控制第一马达 205以及第二马达 208,由马达 123分别驱动第一 车桥 206以及第二车桥 209以通过控制车桥第一车桥 206以及第二车桥 209 的速度来实现控制后车部分 10的车速。
在其它实施方式中, 当本发明实施例的机动车的后车部分的车速控制 系统未将后车部分 10的当前状态信息作为考虑因素而用作控制后车部分 10 的车速的情形下, 相应地可省去步骤 S200、 S201中包含的当前状态信息, 也可以根据实际需要不考虑对油泵排量 Vgp与发动机输出转速 n的控制原 则, 相应地可省去步骤 S202、 S203、 S205、 S206、 S207, 即在执行完步骤 S200、 S201后, 直接进行步骤 S209。
综上所述, 本发明之机动车、 机动车的后车部分的车速控制系统及其 车速控制方法引入前车部分 11 的车速信号及后车部分 10的当前状态信息 作为控制器 13的输入, 以使得控制器 13产生控制信号, 动力装置 12根据 控制信号控制后车部分 10的车速, 从而实现了车速的关联控制、 后车部分 10车速的自适应能力, 提高了系统智能性以及整车运行的可靠性、 安全性 和驱动性能。
本发明之机动车、 机动车的后车部分的车速控制系统及其车速控制方 法还通过控制后车部分 10的车速,从而实现了对后车部分独立行驶的控制。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明, 任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内, 当可 利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例, 但凡是未脱离本发明技术方案内容, 依据本发明的技术实质对以上实施例 所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方案的范围 内。

Claims

权利要求
1. 一种机动车的后车部分的控制系统, 其中该机动车包括前车部分和 后车部分, 其特征在于, 该控制系统包括:
控制器, 分别与该前车部分和该后车部分连接以获取该前车部分的车 速信号, 并根据该前车部分的车速信号而产生控制信号; 和
动力装置, 用于驱动该后车部分, 且该动力装置连接该控制器以根据 该控制信号而控制该后车部分的车速。
2. 根据权利要求 1所述的控制系统, 其特征在于, 该动力装置包括发 动机、 至少一油泵、 至少一液压系统、 至少一马达和至少一后车桥, 其中, 该动力装置根据该控制信号, 而利用该发动机驱动该油泵, 再利用该液压 系统而分别控制该至少一马达, 由该至少一马达而分别驱动该至少一后车 桥, 以通过控制该至少一后车桥的速度来实现控制该后车部分的车速。
3. 根据权利要求 2所述的控制系统, 其特征在于, 该至少一后车桥设 置在该后车部分的独立底盘之上。
4. 根据权利要求 2所述的控制系统, 其特征在于, 该控制器进一步获 取该后车部分的当前状态信息从而作为反馈信号, 以根据该前车部分的车 速信号和该后车部分的当前状态信息而产生该控制信号。
5. 根据权利要求 4所述的控制系统, 其特征在于, 该后车部分的当前 状态信息包括该动力装置中的该发动机的转速和功率信号, 以及该油泵、 该液压系统和该至少一马达所处的当前状态信号。
6. 根据权利要求 2所述的控制系统, 其特征在于, 该动力装置包括多 个后车桥, 且每个后车桥的速度满足 V0 Vl V2 ... Vn, 且 Vn _Vn-l=...=V2-Vl=Vl-V0= \V,其中, V0为该前车部分的车速, VI、 V2、 ...、 Vn-1、 Vn分别为该后车桥的第 1后车桥、第 2后车桥 第 n-1后车桥、 第 n后车桥的速度。
7. 根据权利要求 6所述的控制系统, 其特征在于, 当该后车部分的各 车桥的速度之间的差值大于第一预先设定值或该前车部分的车速小于等于 第二预先设定值时, 则该控制器通过调节该后车部分的各油泵排量控制该 后车部分各车桥的车速。
8. 根据权利要求 6所述的控制系统, 其特征在于, 当该前车部分的车 速大于第二预先设定值且该前车部分的车速大于该后车部分的各车桥车速 的最小值时, 则该控制器通过调节该发动机的转速, 在该油泵的排量维持 不变时提高该后车部分的各车桥车速。
9. 一种机动车的后车部分的车速控制方法, 其适用于如权利要求 1-8 任意一项所述的控制系统, 其特征在于, 该车速控制方法包括:
获取该前车部分的车速信号; 以及
根据该前车部分的车速信号而产生控制信号, 并根据该控制信号而控 制该后车部分的车速。
10. —种机动车, 其包括前车部分和后车部分, 其特征在于, 该机动车 进一步包括如权利要求 1-8任意一项所述的后车部分的控制系统,以控制该 后车部分的车速。
PCT/CN2012/082190 2011-12-15 2012-09-27 机动车、机动车的后车部分的控制系统及车速控制方法 WO2013086886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110423047.5 2011-12-15
CN201110423047.5A CN102555805B (zh) 2011-12-15 2011-12-15 机动车、机动车的后车部分的控制系统及车速控制方法

Publications (1)

Publication Number Publication Date
WO2013086886A1 true WO2013086886A1 (zh) 2013-06-20

Family

ID=46402887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082190 WO2013086886A1 (zh) 2011-12-15 2012-09-27 机动车、机动车的后车部分的控制系统及车速控制方法

Country Status (2)

Country Link
CN (1) CN102555805B (zh)
WO (1) WO2013086886A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102555805B (zh) * 2011-12-15 2015-04-01 中联重科股份有限公司 机动车、机动车的后车部分的控制系统及车速控制方法
CN111810614B (zh) * 2019-04-12 2023-06-16 陕西保利特种车制造有限公司 一种重载车桥的强制冷却系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1027878C (zh) * 1991-10-09 1995-03-15 曼内斯曼股份公司 由电动机驱动的汽车列车
US20050234629A1 (en) * 2004-04-15 2005-10-20 Kabushiki Kaisha Meidensha Vehicle speed control system
CN101287622A (zh) * 2005-10-11 2008-10-15 卡特彼勒公司 用于控制车辆速度的系统和方法
CN201736810U (zh) * 2010-06-23 2011-02-09 北汽福田汽车股份有限公司 车辆底盘以及包括该车辆底盘的工程车辆
CN102248940A (zh) * 2010-05-18 2011-11-23 依维柯公司 用于控制车辆、尤其是消防车辆的双内燃机运转的方法
CN102555805A (zh) * 2011-12-15 2012-07-11 中联重科股份有限公司 机动车、机动车的后车部分的控制系统及车速控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1007632B (zh) * 1985-12-28 1990-04-18 日立建机株式会社 液压建筑机械的控制系统
CN1010794B (zh) * 1986-01-11 1990-12-12 日立建机株式会社 液压泵输入功率控制系统
CN2210117Y (zh) * 1994-12-09 1995-10-18 长沙交通学院 机电液复合驱动汽车列车
CN2505458Y (zh) * 2001-11-15 2002-08-14 中外建发展股份有限公司 装载机静压驱动装置
US7637845B2 (en) * 2005-10-11 2009-12-29 Caterpillar Inc. System and method for controlling vehicle speed
JP4589979B2 (ja) * 2008-05-13 2010-12-01 コベルコクレーン株式会社 油圧式走行車両の制御装置
CN101818508A (zh) * 2010-04-19 2010-09-01 三一重机有限公司 挖掘机功率控制系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1027878C (zh) * 1991-10-09 1995-03-15 曼内斯曼股份公司 由电动机驱动的汽车列车
US20050234629A1 (en) * 2004-04-15 2005-10-20 Kabushiki Kaisha Meidensha Vehicle speed control system
CN101287622A (zh) * 2005-10-11 2008-10-15 卡特彼勒公司 用于控制车辆速度的系统和方法
CN102248940A (zh) * 2010-05-18 2011-11-23 依维柯公司 用于控制车辆、尤其是消防车辆的双内燃机运转的方法
CN201736810U (zh) * 2010-06-23 2011-02-09 北汽福田汽车股份有限公司 车辆底盘以及包括该车辆底盘的工程车辆
CN102555805A (zh) * 2011-12-15 2012-07-11 中联重科股份有限公司 机动车、机动车的后车部分的控制系统及车速控制方法

Also Published As

Publication number Publication date
CN102555805A (zh) 2012-07-11
CN102555805B (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
CN103569098B (zh) 液压辅助驱动和制动系统及其控制方法
JP5313986B2 (ja) ハイブリッド作業車両
CN103407449B (zh) 一种液压辅助驱动与制动系统及其控制方法
KR101907772B1 (ko) 하이브리드 차량을 위한 제어 장치, 하이브리드 차량, 및 하이브리드 차량을 위한 제어 방법
CN1927609B (zh) 具有车速适应能力的电机驱动系统及该系统的控制方法
CN103481766B (zh) 一种电动汽车的驱动系统和方法
CN105408180A (zh) 用于控制具有独立的后部电动机的混合动力车辆的系统和方法
WO2011140857A1 (zh) 一种电动汽车驱动系统
CN107310371A (zh) 一种独立轮边驱动的液驱混合动力系统
CN102173293B (zh) 一种电动汽车驱动力矩的控制方法、装置及系统
CN103738192A (zh) 双电机两档驱动系统及其制动控制方法
CN103434389A (zh) 具有直驶助力机构的履带车辆电传动装置
CN205059312U (zh) 一种电动汽车驱动系统
CN108621861A (zh) 一种双电机组合的智能高效安全的电动汽车全轮控制方法
WO2013078819A1 (zh) 一种工程车及其驱动系统
US20100065356A1 (en) Electric powertrain for off-highway trucks
WO2013086886A1 (zh) 机动车、机动车的后车部分的控制系统及车速控制方法
CN104354584B (zh) 一种调整车辆驱动方式的方法、装置及车辆
JP5848727B2 (ja) ハイブリッドホイールローダ
CN107458269A (zh) 一种纯电动汽车稳定性控制系统和方法
CN209111947U (zh) 一种双电机组合式电动汽车全轮控制结构
JP2011031698A (ja) ハイブリッド四輪駆動車の回生制動力制御装置
CN102826056B (zh) 汽车起重机及其驱动系统
CN105774504A (zh) 一种动力驱动系统及汽车
CN113978334B (zh) 一种轮-轴协同混动式无人驾驶矿用自卸车及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858459

Country of ref document: EP

Kind code of ref document: A1