WO2013084978A1 - チタニア-シリカガラス製euvリソグラフィ用フォトマスク基板 - Google Patents

チタニア-シリカガラス製euvリソグラフィ用フォトマスク基板 Download PDF

Info

Publication number
WO2013084978A1
WO2013084978A1 PCT/JP2012/081611 JP2012081611W WO2013084978A1 WO 2013084978 A1 WO2013084978 A1 WO 2013084978A1 JP 2012081611 W JP2012081611 W JP 2012081611W WO 2013084978 A1 WO2013084978 A1 WO 2013084978A1
Authority
WO
WIPO (PCT)
Prior art keywords
titania
silica glass
euv lithography
photomask substrate
substrate
Prior art date
Application number
PCT/JP2012/081611
Other languages
English (en)
French (fr)
Inventor
江崎 正信
哲司 上田
繁 毎田
久利 大塚
Original Assignee
信越石英株式会社
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越石英株式会社, 信越化学工業株式会社 filed Critical 信越石英株式会社
Publication of WO2013084978A1 publication Critical patent/WO2013084978A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0006Re-forming shaped glass by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03C2201/42Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn containing titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials
    • C03C2203/44Gas-phase processes using silicon halides as starting materials chlorine containing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment

Definitions

  • the present invention relates to a photomask substrate for EUV lithography having high surface accuracy.
  • EUV lithography is expected to use a soft X-ray having a wavelength of 70 nm or less, particularly a wavelength near 13 nm as a light source. Since there is no highly transmissive substance at such a wavelength, a reflective optical system is employed in EUV lithography. At this time, reflection is performed by a reflective multilayer film such as silicon or molybdenum deposited on the substrate, but several tens of percent of the incident EUV light reaches the substrate without being reflected and is converted into heat. In EUV lithography in which the light source wavelength is extremely short as compared with conventional lithography techniques, even a slight thermal expansion due to heat reaching each member used in a lithography optical system such as a substrate adversely affects lithography accuracy. Therefore, the use of a low expansion material is essential for the photomask. As a low expansion material, silica glass doped with titania is known. Silica glass can be reduced in thermal expansion by adding a certain amount of titania.
  • the unevenness of the photomask base material surface affects the reflection characteristics of the silicon and molybdenum multilayer reflective film formed on the substrate.
  • indexes representing the unevenness of a photomask substrate for EUV lithography.
  • High spatial frequency roughness HSFR High-Spatial Frequency Roughness
  • MSFR Medium spatial frequency roughness
  • MSFR High-Spatial Frequency Roughness
  • Flatness HSFR affects the power loss of the EUV light source
  • MSFR affects the scattering of the EUV light source
  • the flatness affects the transfer position accuracy.
  • Patent Document 1 discloses that the striae direction is parallel to the reflecting surface and the surface roughness of each spatial frequency is improved by a method of penetrating from a TiO 2 —SiO 2 glass lump. Has been.
  • Patent Document 2 discloses that the deposition rotation speed of the VAD (Vapor phased Axial Deposition) method is optimized, the refractive index fluctuation width ⁇ n caused by TiO 2 segregation is reduced, and as a result, the MSFR is also improved.
  • VAD Vapor phased Axial Deposition
  • the present invention has been made to solve the above-mentioned problems of the prior art, has high flatness required for a photomask substrate for EUV lithography, and costs required for surface treatment such as plasma etching and ion beam etching. It is an object of the present invention to provide a photomask substrate for EUV lithography made of titania-silica glass that can reduce processing time and the like.
  • the present inventors have obtained a refractive index homogeneity and a refractive index distribution of titania-silica glass in order to obtain high flatness required for a photomask substrate for EUV lithography.
  • the present inventors have found that it is necessary to consider the shape, and have made the present invention.
  • the photomask substrate for EUV lithography made of titania-silica glass of the present invention has a photomask substrate shape of 152.4 ⁇ 152.4 ⁇ 6.35 mm, and has a refractive index within the central portion of 142.4 ⁇ 142.4 mm.
  • the homogeneity ⁇ n [difference between maximum and minimum refractive index ( ⁇ n)] is 3 ⁇ 10 ⁇ 4 or less, and the refractive index is within the range of 20 ⁇ 20 mm in the center of the 152.4 ⁇ 152.4 mm plane.
  • the difference between the highest position and the lowest position (PV flatness within a range of 142.4 ⁇ 142.4 mm in the center in the 152.4 ⁇ 152.4 mm plane). ) Is 50 nm or less.
  • EUV lithography is expected to be applied to 32 nm and 22 nm node semiconductor fine processing techniques. It is very difficult to achieve high-accuracy surface flatness within an exposure range of 132.4 ⁇ 132.4 mm, which is required for a photomask substrate for EUV lithography, only by forming a prism from a conventional titania-silica glass ingot. Met.
  • the titania-silica glass photomask substrate of the present invention for EUV lithography is refracted on a 142.4 ⁇ 142.4 mm surface, which is wider than an exposure range of 132.4 ⁇ 132.4 mm surface that reflects EUV light having a wavelength of 70 nm or less.
  • the rate homogeneity ⁇ n is 3 ⁇ 10 ⁇ 4 or less, and there is only one local maximum or minimum refractive index at 20 ⁇ 20 mm in the central portion of the substrate. Due to the homogeneity of this refractive index, the difference between the highest position and the lowest position in the 142.4 ⁇ 142.4 mm plane after high-precision polishing is 50 nm or less, and for EUV lithography with excellent transfer position accuracy.
  • a photomask substrate can be easily obtained by a conventional polishing method.
  • the reason for this seems to be that in the polishing by the double-side polishing machine, the member to be polished revolves with respect to the rotation center of the double-side polishing machine, and at the same time, the member is polished while rotating with respect to the center of the member.
  • the in-plane refractive index distribution that reflects EUV light with a wavelength of 70 nm or less has central symmetry with respect to the refractive index pole.
  • the central symmetry in the present invention refers to the extreme point of the difference between the refractive index value of the extreme point and the refractive index value most different from the refractive index value of the extreme point in the in-plane refractive index distribution that reflects EUV light with a wavelength of 10 to 70 nm.
  • the ratio of the longest distance to the shortest distance from the pole to the equirefractive index curve is defined as 2 or less with respect to the equirefractive index curve having a refractive index value different from the refractive index value by 1/10. That is, the refractive index value of the equal refractive index curve in the present invention can be obtained as follows.
  • the photomask substrate for EUV lithography made of titania-silica glass preferably has an in-plane refractive index variation that reflects EUV light having a wavelength of 10 to 70 nm of 1 ⁇ 10 ⁇ 4 / mm 2 or less.
  • a photomask substrate for EUV lithography made of titania-silica glass with high surface accuracy can be obtained by considering the in-plane refractive index distribution that reflects EUV light having a wavelength of 10 to 70 nm.
  • the in-plane refractive index variation for reflecting EUV light having a wavelength of 10 to 70 nm is more preferably 5 ⁇ 10 ⁇ 5 / mm 2 or less.
  • the refractive index can be measured by an oil-on-plate method using a Fizeau interferometer (ZYGO MARK IV) using a He—Ne laser having a wavelength of 632.8 nm as a light source.
  • oil having a refractive index equivalent to that of silica glass is filled between two parallel plates made of silica glass having a low refractive index distribution, and the refractive index distribution of the parallel plates is measured in advance.
  • the titania-silica glass EUV lithography photomask substrate polished on both sides is sandwiched between the two parallel flat plates, the oil is filled between the parallel flat plate and the member, and the titania-silica glass photomask substrate is mounted.
  • the refractive index distribution of the titania-doped quartz glass member is measured by removing the refractive index distribution of only the parallel plate from the refractive index distribution including the titania-silica glass photomask substrate.
  • the titania-silica glass photomask substrate for EUV lithography of the present invention has a maximum value and a minimum value of TiO 2 concentration within the range of 142.4 ⁇ 142.4 mm in the central portion of the 152.4 ⁇ 152.4 mm plane.
  • the difference in value is preferably 0.3% or less. By setting it as this range, high PV flatness can be achieved.
  • the TiO 2 concentration in the present invention was measured using an electron probe microanalyzer (JEOL Ltd.).
  • the average linear thermal expansion coefficient at room temperature (10 to 30 ° C.) of the titania-silica glass photomask substrate for EUV lithography of the present invention is preferably in the range of ⁇ 30 to +30 ppb / ° C.
  • the room temperature level is a temperature range that is an operating temperature in EUV lithography. If the average linear thermal expansion coefficient is not within the above range, it may be unsuitable for use as a member for EUV lithography such as a photomask substrate for EUV lithography.
  • the average linear thermal expansion coefficient can be measured with a precision thermal dilatometer manufactured by NETZSCH, and can be measured with a cylindrical sample having a diameter of 3.5 mm ⁇ 25 mm.
  • a photomask substrate for EUV lithography formed from such titania-silica glass has a similar average linear thermal expansion coefficient.
  • the titania-silica glass photomask substrate for EUV lithography has a maximum value at an OH group concentration of 500 to 700 ppm within a range of 142.4 ⁇ 142.4 mm in the center of a 152.4 ⁇ 152.4 mm plane. And the difference between the minimum values is preferably 10 ppm or less. By setting it as this range, high PV flatness can be achieved.
  • the OH group concentration in the present invention was measured using an infrared spectrophotometer (Nicolet). The quantification method is based on the method described in D. M. DODD and D. B. FRASER, Optical determination of OH in fused silica, Journal of Applied Physics, Vol. 37 (1966) p. 3911.
  • a titania-silica glass used in the present invention forms a photomask substrate having a surface roughness (Rms) after polishing of 0.30 nm or less, preferably 0.20 nm or less, more preferably 0.15 nm or less. can do.
  • the surface roughness (Rms) can be measured with an atomic force microscope. For example, when the photomask substrate is a 152.4 mm ⁇ 152.4 mm square substrate, the central portion of the substrate surface is 142.4 mm ⁇ 142.
  • the surface roughness (Rms) in a 4 mm square region is preferably in the above range.
  • the EUV lithography photomask substrate includes, for example, a region of the photomask substrate actually used at the time of exposure of a 152.4 mm ⁇ 152.4 mm square EUV lithography photomask (the central portion of the photomask substrate surface is 142.4 mm).
  • a high accuracy is also required for the flatness of the area of ( ⁇ 142.4 mm square) and the flatness of each 1 mm 2 area within the above 142.4 mm ⁇ 142.4 mm square area.
  • a photomask substrate for EUV lithography that satisfies the required high accuracy can be formed.
  • the titania-silica glass used in the present invention has a difference (PV flatness) of 50 nm or less between the highest position and the lowest position in the region of the central part 142.4 mm ⁇ 142.4 mm square after polishing.
  • a photomask substrate for EUV lithography having a thickness of preferably 40 nm or less, more preferably 30 nm or less can be formed.
  • these PV flatnesses are the highest position in each region of 1 mm 2 in the region of 142.4 mm ⁇ 142.4 mm square or the region of 142.4 mm ⁇ 142.4 mm square.
  • the difference from the lowest position can be evaluated by measuring with a laser interferometer. If the PV flatness is not within the above range, the surface shape required for the photomask substrate for EUV lithography may not be satisfied.
  • the difference (PV flatness) between the highest position and the lowest position in the above-mentioned substrate surface central portion 142.4 mm ⁇ 142.4 mm square region and the substrate surface central portion 142.4 mm ⁇ 142.4 mm square region is strongly correlated with in-plane refractive index fluctuations that reflect EUV light having a wavelength of 70 nm or less. Therefore, it is possible to apply a homogenization treatment to remove striae by applying a zone melting method so that a shear stress acts in a direction perpendicular to the growth axis of the titania-silica glass ingot and the glass body. desirable.
  • the titania-silica glass ingot after the removal treatment is subjected to a zone melting method so that shear stress acts in a direction perpendicular to the growth axis of the glass body to remove striae to remove OH group concentration and titania concentration. It is preferable to perform a homogenization treatment for flattening.
  • the titania-silica glass body is further subjected to a second homogenization treatment by a zone melting method by changing the direction of the homogenization treatment axis.
  • a zone melting method by changing the direction of the homogenization treatment axis.
  • glass support rods having a linear expansion coefficient of 0.0 ⁇ 10 ⁇ 7 / ° C. to 6.0 ⁇ 10 ⁇ 7 / ° C. at 0 to 900 ° C. at both ends of the titania-silica glass body. It is preferable to hold by a pair of rotatable holding means and to perform a homogenization process.
  • both ends of the titania-silica glass body are held by a pair of rotatable holding means, and the pair of rotatable is possible while part of the titania-silica glass body is ignited by a burner.
  • a shear stress is applied in a direction perpendicular to the growth axis of the titania-silica glass body, and the striae is removed to remove the OH group concentration and titania concentration. It is preferable to perform a homogenization process for achieving homogenization.
  • the method of giving a large rotation difference to the pair of rotatable holding means is to reversely rotate the pair of rotatable holding means. It can be obtained by mirror-polishing titania-silica glass with a double-side polisher.
  • the titania-silica glass ingot is an oxyhydrogen formed at the burner tip by supplying a combustible gas containing hydrogen gas and a combustion-supporting gas containing oxygen gas to a burner provided in a silica glass production furnace and burning it.
  • silicon source material gas and titanium source material gas are supplied, and silicon source material gas and titanium source material gas are hydrolyzed to produce silicon oxide, titanium oxide and their composite fine particles.
  • the titania-silica glass photomask substrate for EUV lithography of the present invention is The fluctuations in the supply flow rates of the combustible gas, the combustion-supporting gas, the silicon source material gas, and the titanium source material gas are controlled within ⁇ 1% / hr and introduced as a gas that circulates in the silica glass manufacturing furnace.
  • the temperature of each of the air, the exhaust from the silica glass manufacturing furnace, and the ambient air around the silica glass manufacturing furnace is controlled within ⁇ 2.5 ° C., the target is rotated at a rotation speed of 5 rpm or more, and the fine particles are It can be obtained by depositing on a target.
  • Both a vertical type and a horizontal type can be used as a titania-silica glass ingot production furnace, but the rotational speed of a target such as a seed material is 5 rpm or more, preferably 15 rpm or more, more preferably 30 rpm or more. This occurs in the structurally and compositionally nonuniform regions such as striae and strain in the titania-silica glass, depending largely on the temperature nonuniformity of the portion where the titania-silica glass grows on the rotating target. Because. Therefore, by increasing the number of revolutions of the target and making the temperature of the portion where the titania-silica glass grows uniform, the occurrence of structurally and compositionally nonuniform regions of titania-silica can be suppressed. In addition, although the upper limit of the rotation speed of a target is selected suitably, it is 200 rpm or less normally.
  • the fluctuations in the supply flow rates of the silicon source material gas, the titanium source material gas, the combustible gas, and the combustion supporting gas are within ⁇ 1% / hr, preferably ⁇ 0.5. % / Hr, more preferably within ⁇ 0.25% / hr.
  • a known organosilicon compound can be used as the silicon source gas. Specifically, chlorine-based silane compounds such as silicon tetrachloride, dimethyldichlorosilane, and methyltrichlorosilane, tetramethoxysilane, tetraethoxysilane, and methyltrichlorosilane are used. Alkoxysilanes such as methoxysilane can be used.
  • titanium source material gas a known compound can be used as the titanium source material gas.
  • titanium halides such as titanium tetrachloride and titanium tetrabromide, tetraethoxy titanium, tetraisopropoxy titanium, tetra-n-propoxy Titanium alkoxides such as titanium, tetra-n-butoxy titanium, tetra-sec-butoxy titanium, and tetra-t-butoxy titanium can be used.
  • a gas containing hydrogen is used, and further, a gas using a gas such as carbon monoxide, methane, propane or the like is used as necessary.
  • a gas containing oxygen gas is used as the combustion-supporting gas.
  • the growth axis of the titania-silica glass ingot produced by the direct method shown in Patent Document 4 is used as a homogenization treatment axis.
  • the zone melting method shown in Patent Document 3 so that the shear stress works in the direction perpendicular to the surface, the striae can be completely removed in one direction, and at the same time, the titania concentration and OH group concentration can be homogenized. I can do it.
  • the direction of the homogenization treatment axis is changed with respect to the titania-silica glass subjected to the homogenization treatment with the growth axis of the titania-silica glass ingot produced by the direct method shown in Patent Document 4 as the homogenization treatment axis.
  • glass support rods having a linear thermal expansion coefficient of 0.0 ⁇ 10 ⁇ 7 / ° C. to 6.0 ⁇ 10 ⁇ 7 / ° C. at 0 to 900 ° C. at both ends of the titania-silica glass body. It is preferable to hold it with a pair of rotatable holding means via a gap and perform a homogenization treatment.
  • both ends of the titania-silica glass body are held by a pair of rotatable holding means, and the pair of rotations can be performed while part of the silica / titania glass body is ignited by a burner.
  • a shear stress is applied in a direction perpendicular to the growth axis of the silica-titania glass body, and the striae is removed and the titania concentration is homogenized.
  • the method for giving a large rotation difference to the pair of rotatable holding means is to reversely rotate the pair of rotatable holding means.
  • the OH group concentration tends to increase or decrease by heating. Therefore, if the heating time in the homogenization step is long, the effect of improving the OH group concentration distribution is insufficient, and in some cases, it may be worsened. In view of this, in order to make the OH group concentration more uniform, it is preferable to shorten the heating time for one treatment, and specifically, to increase the moving speed of the burner. Further, by increasing the rotation difference to increase the stirring efficiency, a sufficient homogenizing effect can be achieved even if the processing time is short.
  • the pair of rotatable holding means are preferably left and right chucks provided on a lathe. Moreover, the said homogenization process can also be repeated in multiple times as needed.
  • the titania-silica glass is annealed by being held in the atmosphere at 700 to 1,300 ° C. for 1 to 200 hours and then gradually cooled to 500 ° C. at a rate of 1 to 20 ° C./hr and subjected to homogenization. It is preferable to place the body in a forming crucible rotating in a furnace having a temperature gradient of 1.5 ° C./cm or more at 1,700 ° C., and perform hot prismatic molding.
  • titania-silica has high flatness required for a photomask substrate for EUV lithography and can reduce the cost and processing time required for surface treatment such as plasma etching and ion beam etching. There is a remarkable effect that a glass photomask substrate for EUV lithography can be provided.
  • FIG. 1 shows that homogenization processing for removing striae by applying a zone melting method so that shear stress acts in a direction perpendicular to the growth axis of the glass body is performed on two homogenization processing axes, respectively. It is a flowchart which shows a preferable example in a case.
  • a titania-silica glass body is produced by a direct method (step 100), and a zone melting method is applied so that a shear stress acts in a direction perpendicular to the growth axis of the glass body.
  • a homogenization process is performed (step 102: first homogenization process).
  • the homogenized glass body is formed into a spherical glass body (step 104: first molding process), and the spherical glass body is changed so as to change the axis (step 106: holding process).
  • the glass body is stretched while being heated (step 108: stretching process) and formed into a glass body having a cylindrical shape suitable for homogenization (step 110: second molding process), and then again by the zone melting method.
  • step 112 By performing the homogenization process (step 112: second homogenization process) and by molding the glass body (step 114: third molding process), there is no striae in three directions, A very homogeneous titania-silica glass is obtained.
  • the titania-silica glass body is produced by the direct method in Step 100.
  • the titania-silica glass body can be produced by a known method other than the direct method.
  • FIG. 2 is a schematic explanatory view showing step 106 in principle.
  • the spherical glass body 25 is replaced by separating the molded spherical glass body 25 from the glass support bar 30 and attaching the glass support bar 30 again so that the axis changes.
  • reference numeral 42a is a homogenization process axis in the first homogenization process
  • reference numeral 42b is a homogenization process axis in the second homogenization process.
  • Reference numeral 31a is a growth axis.
  • the holding method is not particularly limited, but as shown in FIG. 2, the spherical glass body 25 separated from the glass support rod 30 is rotated by approximately 90 degrees, and the first homogenization processing shaft 42a and the second homogenization processing are performed.
  • the shaft 42b is preferably installed so as to be substantially orthogonal.
  • FIG. 3 is a schematic explanatory view showing step 108 in principle. As shown in FIG. 3, the glass body 21 is stretched by increasing the distance between the left and right chucks 32 a and 32 b while heating the held spherical glass body 25 with a burner 34.
  • FIG. 4 is a schematic explanatory view showing step 110 in principle. As shown in FIG. 4, by moving the burner 24 while twisting the stretched glass body 21 while giving a difference in the number of rotations of the left and right chucks 32a and 32b, the entire glass body is formed into a columnar shape. The rod-shaped glass body 23 which is molded and has a substantially circular cross section is obtained.
  • a homogeneous titania-silica glass free from striae in three directions from which striae has been mechanically removed is manufactured.
  • a homogeneous titania-silica glass molded into a desired shape such as a cylindrical shape can be obtained.
  • step 114 when the glass body is molded in the molding furnace, it is preferable that the glass body is installed so that gravity is applied in the direction of the second homogenization processing shaft 42b and is heated and deformed by its own weight.
  • the titania-silica glass obtained by the above-mentioned method and subjected to the homogenization treatment with multiple axes is completely free of striae in three directions and has extremely improved homogeneity. Therefore, the reflective optical system for EUV lithography It satisfies the high linear expansion coefficient homogeneity required as a photomask substrate material.
  • the titania-silica glass used in the present invention is hot-molded at 1,500 to 1,800 ° C. for 1 to 10 hours to form a photomask substrate.
  • a furnace having a temperature gradient of 1.5 ° C./cm or more and 10.0 ° C./cm or less is used in the furnace at 1,700 ° C.
  • the temperature gradient of the temperature distribution in the furnace in the present invention is defined as the average temperature gradient obtained from the temperature difference from the highest temperature range when the maximum temperature range in the furnace is 1,700 ° C. to the position 500 mm above the furnace. To do. Further, it is desirable to perform hot forming without load. Furthermore, titania-silica glass is placed at the intersection of the diagonal lines or the center of gravity when the center of the bottom of the crucible or the bottom of the crucible is square.
  • Hot-formed titania-silica glass is annealed and further slowly cooled. These annealing treatment and slow cooling treatment have an effect of reducing strain in the titania-silica glass generated by hot forming.
  • Known annealing conditions can be used, and the temperature may be kept at 700 to 1,300 ° C. in the atmosphere for 1 to 200 hours.
  • known annealing conditions may be used as the slow cooling treatment conditions. For example, cooling from the annealing temperature to a temperature of 500 ° C. may be performed at a rate of 1 to 20 ° C./hr.
  • Titania-silica glass that has been annealed and annealed to the desired size by grinding or slicing as appropriate, and then silicon oxide, aluminum oxide, molybdenum oxide, silicon carbide, diamond, cerium oxide, colloidal silica, etc. It is possible to form a photomask substrate for EUV lithography by polishing with a double-side polishing machine using this polishing agent.
  • FIG. 5 is a cross-sectional view of the burner 11.
  • the burner 11 has an outer shell tube 22 outside the quintuple tube 16 composed of the nozzles 17 to 21.
  • the center nozzle (first nozzle) 17 is supplied with silicon tetrachloride and titanium tetrachloride from the supply pipes 1 and 2 and supplied with oxygen gas from the oxygen supply pipe 10. .
  • an inert gas such as an argon gas can be supplied if necessary.
  • oxygen gas is supplied to the second nozzle 18 and the fourth nozzle 20 from the oxygen gas supply pipes 7 and 8, and hydrogen gas is supplied to the third nozzle 19 and the fifth nozzle 21 from the hydrogen gas supply pipes 4 and 5. Is done.
  • hydrogen gas is supplied from the hydrogen gas supply pipe 6 to the outer shell tube 22, and oxygen gas is supplied from the oxygen gas supply pipe 9 to the nozzle 23.
  • the gas shown in Table 1 is supplied to each nozzle of the main burner, and SiO 2 and TiO 2 produced by the hydrolysis reaction of silicon tetrachloride and titanium tetrachloride in the oxyhydrogen flame are sent to the tip of the quartz glass burner.
  • a titania-silica glass ingot was produced by adhering to a target material that retreated at 10 mm / hr while rotating at 50 rpm.
  • a sub-burner that applied an oxyhydrogen flame to the side of the ingot was used simultaneously with the main burner. At this time, the flow rate variation of various gases was ⁇ 0.2% / hr.
  • the temperature variation of the air supplied to the titania-silica glass production furnace, the exhausted gas, and the outside temperature of the production furnace was ⁇ 1 ° C.
  • a glass support bar was welded, and both ends of the support bar were fixed with a lathe chuck.
  • the left and right chucks of the lathe were rotating synchronously at 50 rpm, the left end of the titania-silica glass body was ignited with an oxyhydrogen burner to form a melting zone. After confirming that the melting zone was formed, the rotation of the chuck on the right lathe was rotated at 150 rpm opposite to the rotation direction of the left chuck, and a strong shear stress was applied to stir the melting zone. At the same time, the melting zone was moved by moving the burner to the right at a speed of 20 mm / min to homogenize the entire titania-silica glass body (homogenization process in the first direction). The homogenization process was again performed in the same direction by the same operation, and the homogenization process was performed twice in total.
  • the rotation directions of both chucks were aligned and rotated synchronously at 50 rpm, and the burner was returned to the left end of the rod-like titania-silica glass body and ignited to melt.
  • the silica lathe titania glass body was crushed by pressing and narrowing the chuck of the right lathe and molded into a spherical shape having a diameter of about 190 mm (first molding step).
  • Both ends of the spherical glass body (diameter: about 190 mm) that had undergone the molding process were cut off from the support rod, placed on a table with one cut surface down, and the support rod was welded again to both sides of the ball. Since the axis connecting both ends of the separated ball is the axis of the first homogenization treatment, the axis connecting the newly welded support rods is orthogonal to the axis of the first homogenization (holding process) ).
  • the whole glass body was strongly heated with a burner flame while rotating the entire ball in synchronism with both support rods at 20 rpm, and the whole glass body was melted. After confirming that the entire glass body was melted, both chucks of the lathe were separated to stretch the glass body (stretching step).
  • the titania-silica glass body was subjected to a homogenization treatment by the same operation as the first homogenization treatment (second homogenization treatment step).
  • the axis in the homogenization process in this case is orthogonal to the axis in the first homogenization process.
  • the titania-silica glass body after the second homogenization treatment was molded into a spherical shape by the same operation as in the first molding step.
  • the obtained titania-silica glass spheres were placed at the intersection of 155 mm ⁇ 155 mm prismatic bottom and diagonal lines in an electric furnace with a temperature gradient at 1,700 ° C. of 2.5 ° C./cm and 6 ° C. at 1,700 ° C.
  • Hot molding was performed by heating for a period of time. Thereafter, it was kept at 1,150 ° C. for 150 hours in the air, annealed, and then gradually cooled to 500 ° C. at a rate of 5 ° C./hr.
  • the annealed molded body is ground to a 152.4 mm ⁇ 152.4 mm prism shape, and the prismatic molded body is sliced to a thickness of 6.7 mm to be ground to a photomask substrate.
  • the refractive index distribution shape was a shape having a minimum point within a central portion of 20 ⁇ 20 mm in a 152.4 mm ⁇ 152.4 mm square surface. There were no other extreme points and no inflection curve was observed.
  • Electron probe microanalyzer is applied from the central part of a titania-silica glass substrate having a flatness of 152.4 mm ⁇ 152.4 mm square and a thickness of 6.7 mm to the central part of the substrate surface of 142.4 mm ⁇ 142.4 mm square part.
  • the TiO 2 concentration (manufactured by JEOL Ltd.) was measured. Table 2 shows the difference between the maximum value and the minimum value of the TiO 2 concentration. The density difference was very low at 0.2%.
  • Infrared spectroscopy was performed by multiplying the center part of the titania-silica glass substrate having a TiO 2 concentration of 152.4 mm ⁇ 152.4 mm square and a thickness of 6.7 mm from the center part of the substrate surface 142.4 mm ⁇ 142.4 mm square part.
  • the OH group concentration was measured with a photometer (Nicolet).
  • Table 2 shows the maximum and minimum values of the OH group concentration and the difference between the maximum and minimum values. The concentration difference was very low at 3 ppm.
  • the obtained photomask substrate for EUV lithography made of titania-silica glass has only one minimum index of refraction at the center of the surface that reflects EUV light with a wavelength of 70 nm or less, and the index distribution is at the minimum. On the other hand, it had central symmetry and the refractive index variation was small and good.
  • the PV flatness in the region of 142.4 mm ⁇ 142.4 mm square at the center of the polished photomask substrate surface was small, and the most suitable photomask substrate for EUV lithography was obtained.
  • Example 2 Using the burner shown in FIG. 5, the gas shown in Table 1 was supplied to each nozzle of the main burner, and SiO 2 produced by the hydrolysis reaction of silicon tetrachloride and titanium tetrachloride in an oxyhydrogen flame and An ingot of titania-doped quartz glass was manufactured by adhering TiO 2 to a target material set at the tip of a quartz glass burner and rotating at 50 rpm and retreating at 10 mm / hr. At this time, the flow rate variation of various gases was ⁇ 0.2% / hr. Moreover, the temperature fluctuation of the air supplied to the titania-doped quartz glass manufacturing furnace, the exhausted gas, and the outside temperature of the manufacturing furnace was ⁇ 1 ° C.
  • the obtained titania-silica glass ingot was homogenized and molded by the same method as described in Example 1, and polished by the same method as described in Example 1, to obtain a 152.4 mm ⁇ 152.4 mm square, A photomask substrate for EUV lithography made of titania-silica glass having a thickness of 6.7 mm was obtained.
  • Table 2 shows the maximum and minimum values obtained as a result of measuring the average linear thermal expansion coefficient at 10 points in the range of 10 to 30 ° C. on the diagonal line in the 152.4 mm ⁇ 152.4 mm square surface of the produced substrate.
  • the difference between the highest position and the lowest position (PV flatness of the exposure utilization area) in the area of the produced substrate surface center part 142.4 mm ⁇ 142.4 mm square was measured by the method described in Example 1.
  • the PV flatness was 45 nm, which was very small.
  • the flatness was measured from the central part of the photomask substrate for titania-silica glass EUV lithography with a thickness of 152.4 mm ⁇ 152.4 mm square and a thickness of 6.7 mm to the central part of the substrate surface of 142.4 mm ⁇ 142.4 mm square part.
  • the measurement was performed by the method described in Example 1.
  • Table 2 shows the difference between the maximum value and the minimum value of the TiO 2 concentration. The difference in density was very low at 0.3%.
  • Infrared spectroscopy was performed by multiplying the center part of the titania-silica glass substrate having a TiO 2 concentration of 152.4 mm ⁇ 152.4 mm square and a thickness of 6.7 mm from the center part of the substrate surface 142.4 mm ⁇ 142.4 mm square part.
  • the OH group concentration was measured with a photometer (Nicolet).
  • Table 2 shows the maximum and minimum values of the OH group concentration and the difference between the maximum and minimum values. The concentration difference was as low as 5 ppm.
  • the substrate obtained in Example 2 was suitable as a photomask substrate for EUV lithography.
  • the obtained titania-silica glass ingot was subjected to a molding process without being homogenized, and polished in the same manner as described in Example 1 to obtain a 152.4 mm ⁇ 152.4 mm square and a thickness of 6.7 mm.
  • a titania-silica glass substrate was obtained.
  • Table 2 shows the maximum and minimum values obtained as a result of measuring the average linear thermal expansion coefficient at 10 points in the range of 10 to 30 ° C. on the diagonal line in the 152.4 mm ⁇ 152.4 mm square surface of the produced substrate.
  • the difference between the highest position and the lowest position (PV flatness of the exposure utilization area) in the area of the produced substrate surface center part 142.4 mm ⁇ 142.4 mm square was measured by the method described in Example 1.
  • the PV flatness was 55 nm, which was slightly large.
  • Example 1 is described by multiplying the central part of the titania-silica glass substrate having a flatness of 152.4 mm ⁇ 152.4 mm square and a thickness of 6.7 mm from the central part of the substrate surface to 142.4 mm ⁇ 142.4 mm square part. It measured by the method of.
  • Table 2 shows the difference between the maximum value and the minimum value of the TiO 2 concentration. The density difference was slightly high at 0.5%.
  • Infrared spectroscopy was performed by multiplying the center part of the titania-silica glass substrate having a TiO 2 concentration of 152.4 mm ⁇ 152.4 mm square and a thickness of 6.7 mm from the center part of the substrate surface 142.4 mm ⁇ 142.4 mm square part.
  • the OH group concentration was measured with a photometer (Nicolet).
  • Table 2 shows the maximum and minimum values of the OH group concentration and the difference between the maximum and minimum values. The concentration difference was high at 15 ppm.
  • the substrate obtained in Comparative Example 1 was not suitable as a photomask substrate for EUV lithography.
  • the obtained titania-silica glass ingot was subjected to a molding process without being homogenized, and polished in the same manner as described in Example 1 to obtain a 152.4 mm ⁇ 152.4 mm square and a thickness of 6.7 mm.
  • the photomask substrate for EUV lithography made of titania-silica glass was obtained.
  • Table 2 shows the maximum and minimum values obtained as a result of measuring the average linear thermal expansion coefficient at 10 points in the range of 10 to 30 ° C. on the diagonal line in the 152.4 mm ⁇ 152.4 mm square surface of the produced substrate.
  • the difference between the highest position and the lowest position (PV flatness of the exposure utilization area) in the area of the produced substrate surface center part 142.4 mm ⁇ 142.4 mm square was measured by the method described in Example 1.
  • the PV flatness was high at 65 nm.
  • Example 1 is described by multiplying the central part of the titania-silica glass substrate having a flatness of 152.4 mm ⁇ 152.4 mm square and a thickness of 6.7 mm from the central part of the substrate surface to 142.4 mm ⁇ 142.4 mm square part. It measured by the method of.
  • Table 2 shows the difference between the maximum value and the minimum value of the TiO 2 concentration. The density difference was high at 0.7%.
  • Infrared spectroscopy was performed by multiplying the center part of the titania-silica glass substrate having a TiO 2 concentration of 152.4 mm ⁇ 152.4 mm square and a thickness of 6.7 mm from the center part of the substrate surface 142.4 mm ⁇ 142.4 mm square part.
  • the OH group concentration was measured with a photometer (Nicolet).
  • Table 2 shows the maximum and minimum values of the OH group concentration and the difference between the maximum and minimum values. The concentration difference was slightly high at 20 ppm.
  • the substrate obtained in Comparative Example 2 was not suitable as a photomask substrate for EUV lithography.
  • the PV flatness can be reduced to 50 nm or less by setting the refractive index distribution to 3 ⁇ 10 ⁇ 4 or less. Moreover, a high PV flatness can be achieved by setting the TiO 2 concentration difference to 0.3% or less and the OH group concentration difference to 10 ppm or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 EUVリソグラフィ用フォトマスク基板に要求される高平坦度を有し、プラズマエッチング、イオンビームエッチング等の表面処理に要するコスト、処理時間等を軽減することができる、チタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板を提供する。 152.4×152.4×6.35mmのフォトマスク基板形状で、該基板の中央部142.4×142.4mm内の屈折率均質性 Δnが、3×10-4以下であり、152.4×152.4mm面内の中心部20×20mm内の範囲に屈折率の極大値もしくは極小値を1点のみ持ち、152.4×152.4mm面内の中央部142.4×142.4mm内の範囲で、最も高い位置と最も低い位置との差が50nm以下であるようにした。

Description

チタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板
本発明は、表面精度の高いEUVリソグラフィ用フォトマスク基板に関する。
周知のように、近年の半導体集積回路の高集積化はめざましい。この傾向に伴い、半導体素子製造時のリソグラフィプロセスでの露光光源の短波長化が進み、現在ではArFエキシマレーザ(193nm)を使用するリソグラフィが主流となっている。今後、更なる高集積化を実現するために液浸化技術、ダブルパターニング等のArFエキシマレーザを使用したリソグラフィの延命が図られた後、極端紫外光(EUV:Extreme Ultraviolet)を使用したリソグラフィへの移行が有望視されている。
EUVリソグラフィは波長70nm以下の軟X線、特に13nm付近の波長を光源に使用すると予想されている。かかる波長においては、高い透過性を有する物質がないため、反射型光学系がEUVリソグラフィにおいては採用されることになる。このとき、反射は基板上に堆積させたシリコン、モリブデン等の反射多層膜によってなされるが、入射したEUV光のうち数十%は反射されずに基板にまで到達して熱へと転化する。これまでのリソグラフィ技術に比べて光源波長が極端に短いEUVリソグラフィにおいては、基板等のリソグラフィ光学系で用いられる各部材に到達した熱による僅かな熱膨張によってもリソグラフィ精度に悪影響を及ぼす。従って、フォトマスクには低膨張材料の使用が必須となる。低膨張材料としては、チタニアをドープしたシリカガラスが公知である。チタニアを一定量添加することでシリカガラスを低熱膨張化することができる。
また、光源波長の短いEUVリソグラフィにおいては、フォトマスク基材表面凹凸によって、基板上に成膜されたたシリコン、モリブデン多層反射膜の反射特性に影響を及ぼす。EUVリソグラフィ用フォトマスク基板の凹凸を表す指標には大きく分けて三種類あり、1μmピッチ以下の高空間周波数粗さHSFR(High-Spatial Frequency Roughness)、1μm~10μmピッチの中空間周波数粗さMSFR(Mid-Spatial Frequency Roughness)、平坦度(Flatness)である。HSFRはEUV光源のパワーロス、MSFRはEUV光源の散乱、平坦度は転写位置精度にそれぞれ影響を及ぼす。
HFSR、MSFRを改善する手法として特許文献1にはTiO-SiOガラス塊から刳り貫く方法によって、脈理方向が反射面に対して平行になり各空間周波数の表面粗さが改善されたと開示されている。
また、特許文献2中にはVAD(Vapor phased Axial Deposition)法の堆積回転速度を最適化し、TiO偏析起因の屈折率変動幅Δnが小さくなり、結果としてMSFRも改善されたと開示されている。
しかし、これら前記の方法はHFSR、MSFRに影響を及ぼす局所的なTiO起因の脈理の改善に限られており、EUVリソグラフィ用フォトマスクの中央部露光範囲132.4×132.4mm内での粗さの分布や平坦度には言及されていない。
特開2008-201665号公報 特開2010-275189号公報 特開2006-240978号公報 特開2010-13335号公報
本発明は、上記従来技術の問題点を解決するためになされたもので、EUVリソグラフィ用フォトマスク基板に要求される高平坦度を有し、プラズマエッチング、イオンビームエッチング等の表面処理に要するコスト、処理時間等を軽減することができる、チタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板を提供することを目的とする。
本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、EUVリソグラフィ用フォトマスク基板に求められる高い平坦度を得るためには、チタニア-シリカガラスの屈折率均質性及び屈折率分布形状を考慮する必要があることを見出し、本発明をなすに至った。
本発明のチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板は、152.4×152.4×6.35mmのフォトマスク基板形状で、該基板の中央部142.4×142.4mm内の屈折率均質性Δn[屈折率の最大値と最小値の差(Δn)]が、3×10-4以下であり、152.4×152.4mm面内の中心部20×20mm内の範囲に屈折率の極大値もしくは極小値を1点のみ持ち、152.4×152.4mm面内の中央部142.4×142.4mm内の範囲で、最も高い位置と最も低い位置との差(PV平坦度)が50nm以下であること特徴とする。
EUVリソグラフィは32nm、22nmノードの半導体微細加工技術への適用が期待されている。従前のチタニア-シリカガラスインゴットから角柱成型のみでは、EUVリソグラフィ用フォトマスク基板に求められている、露光範囲132.4×132.4mm内での高精度表面平坦度を達成することは非常に困難であった。
即ち、本発明のチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板は、波長70nm以下のEUV光を反射させる露光範囲132.4×132.4mm面より広い、142.4×142.4mm面において屈折率均質性Δnが3×10-4以下であることを特徴とし、かつ屈折率の極大値もしくは極小値が基板中心部20×20mmに1箇所のみ存在する。本屈折率均質性の特性により、高精度研磨後の142.4×142.4mm面内での最も高い位置と最も低い位置の差が50nm以下の、転写位置精度が非常に優れたEUVリソグラフィ用フォトマスク基板を従前の研磨方法にて容易に得ることが可能となる。この理由は、両面研磨機による研磨では研磨対象の部材が両面研磨機の回転中心に対して公転すると同時に、部材の中心に対して自転しながら研磨されるためと思われる。
本発明において、チタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板は波長70nm以下のEUV光を反射させる面内の屈折率分布が、屈折率の極点に対して中心対称性を有していることが望ましい。本発明における中心対称性とは、波長10~70nmのEUV光を反射させる面内の屈折率分布において、極点の屈折率値と極点の屈折率値から最も異なる屈折率値との差の極点の屈折率値から1/10異なる屈折率値の等屈折率曲線に対して、極点から等屈折率曲線までの最長距離と最短距離との比が2以下であることと定義する。つまり、本発明における等屈折率曲線の屈折率値は以下のように求めることができる。
 波長10~70nmのEUV光を反射させる面内の屈折率分布の極点が極大点の場合、(極大点における屈折率値)-((極大点における屈折率値)-(同面内の最小屈折率値))/10  … (1)
波長10~70nmのEUV光を反射させる面内の屈折率分布の極点が極小点の場合、
(極小点における屈折率値)+((同面内の最大屈折率値)-(極小点における屈折率値))/10  … (2)
本発明において、チタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板は、波長10~70nmのEUV光を反射させる面内の屈折率変動が1×10-4/mm2以下であることが好ましい。前記のように、波長10~70nmのEUV光を反射させる面内の屈折率分布を考慮することにより表面精度が高いチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板を得られる。しかし、当該の反射面において屈折率が急激に変化している場合には両面研磨方式で高い表面精度を達成することは困難である。急峻な屈折率変動領域は歪み等が蓄積しやすく、その他の領域と研磨速度が異なることが多く、表面精度を低下させる原因となる。そこで本発明において、より好ましくは波長10~70nmのEUV光を反射させる面内の屈折率変動が5×10-5/mm2以下である。
なお、本発明における屈折率測定はすべて波長632.8nmのHe-Neレーザを光源としたフィゾー干渉計(ZYGO MARK IV)を用い、オイルオンプレート法にて測定することができる。具体的には、低屈折率分布を有するシリカガラス製平行平板2枚の間にシリカガラスと同等の屈折率のオイルを充填し、あらかじめ平行平板の屈折率分布を測定する。当該2枚の平行平板の間に両面を研磨したチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板を挟み、平行平板と当該部材の間に上記オイルを充填し、チタニア-シリカガラス製フォトマスク基板を含む屈折率分布を測定する。チタニア-シリカガラス製フォトマスク基板を含む屈折率分布から平行平板のみの屈折率分布を除くことでチタニアドープ石英ガラス部材の屈折率分布を測定する。
また、本発明のチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板は、152.4×152.4mm面内の中央部142.4×142.4mm内の範囲で、TiO濃度の最大値と最小値の差が0.3%以下であるのが好ましい。該範囲とすることにより、高いPV平坦度を達成することができる。
本発明におけるTiO濃度は電子プローブマイクロアナライザ(日本電子株式会社)を用いて測定した。
本発明のチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板の室温レベル(10~30℃)での平均線熱膨張係数は-30~+30ppb/℃の範囲であることが好ましい。この場合、室温レベルとはEUVリソグラフィでの動作温度となる温度域である。平均線熱膨張係数が上記範囲以内にないと、EUVリソグラフィ用フォトマスク基板等のEUVリソグラフィ用部材としての使用に適さないものとなる場合がある。なお、平均線熱膨張係数の測定はNETZSCH社製精密熱膨張計を使用することができ、直径3.5mm×25mmの円柱状サンプルで測定することができる。このようなチタニア-シリカガラスから形成されたEUVリソグラフィ用フォトマスク基板は同様の平均線熱膨張係数を有する。
本発明のチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板は、152.4×152.4mm面内の中央部142.4×142.4mm内の範囲で、OH基濃度が500~700ppm で最大値と最小値の差が10ppm以下であるのが好ましい。該範囲とすることにより、高いPV平坦度を達成することができる。
 本発明におけるOH基濃度は赤外分光光度計(Nicolet社)を用いて測定した。定量方法は、D. M. DODD and D. B. FRASER, Optical determination of OH in fused silica, Journal of Applied Physics, Vol. 37(1966) p.3911記載の方法に基づいている。
特に、本発明に用いられるチタニア-シリカガラスからは、研磨後の表面粗さ(Rms)が0.30nm以下、好ましくは0.20nm以下、更に好ましくは0.15nm以下であるフォトマスク基板を形成することができる。なお、表面粗さ(Rms)は、原子間力顕微鏡で測定することができ、例えば、フォトマスク基板が152.4mm×152.4mm角形基板である場合、基板面中央部142.4mm×142.4mm角の領域内の表面粗さ(Rms)が上記範囲であることが好ましい。
また、EUVリソグラフィ用フォトマスク基板には、例えば、152.4mm×152.4mm角形のEUVリソグラフィ用フォトマスクの露光時に実際に利用されるフォトマスク基板の領域(フォトマスク基板面中央部142.4mm×142.4mm角の領域)の平坦度及び上記142.4mm×142.4mm角の領域内の1mmの領域毎の平坦度にも高い精度が求められる。本発明により、要求される高い精度を満足するEUVリソグラフィ用フォトマスク基板を形成することができる。
本発明に用いられるチタニア-シリカガラスからは、研磨後の基板面中央部142.4mm×142.4mm角の領域内の最も高い位置と最も低い位置との差(PV平坦度)が50nm以下、好ましくは40nm以下、更に好ましくは30nm以下であるEUVリソグラフィ用フォトマスク基板を形成することができる。なお、これらのPV平坦度は、フォトマスク基板中央部142.4mm×142.4mm角の領域内、又は142.4mm×142.4mm角の領域内の1mm2の領域毎に、最も高い位置と最も低い位置との差をレーザ干渉計で測定することにより評価することができる。これらPV平坦度が上記範囲にないと、EUVリソグラフィ用フォトマスク基板に要求される表面形状が満足できない場合がある。
なお、上記の基板面中央部142.4mm×142.4mm角の領域内の最も高い位置と最も低い位置との差(PV平坦度)及び基板面中央部142.4mm×142.4mm角の領域内の1mm2の領域毎の最も高い位置と最も低い位置との差(PV平坦度)は波長70nm以下のEUV光を反射させる面内の屈折率変動に相関が強く見られる。そのため、チタニア-シリカガラスインゴットの外周部、該ガラス体の成長軸に対して垂直な方向にせん断応力が作用するように帯域溶融法を適用して脈理を除去する均質化処理を施すことが望ましい。前記除去処理後のチタニア-シリカガラスインゴットを、該ガラス体の成長軸に対して垂直な方向にせん断応力が作用するように帯域溶融法を適用して脈理を除去しOH基濃度とチタニア濃度を平坦化する均質化処理を施すことが好ましい。
また、前記均質化処理後、更に前記チタニア-シリカガラス体に対し均質化処理軸の方向を変えて帯域溶融法による第2の均質化処理を施すことが好ましい。前記第2の均質化処理後、前記第2の均質化処理軸方向に重力が加わるように加熱変形させ成型することが好適である。
前記均質化処理において、前記チタニア-シリカガラス体の両端部を0~900℃における線膨張係数が0.0×10-7/℃以上6.0×10-7/℃以下のガラス支持棒を介して一対の回転可能な保持手段で保持し、均質化処理を施すことが好ましい。
また、前記均質化処理において、前記チタニア-シリカガラス体の両端部を一対の回転可能な保持手段で保持し、該チタニア-シリカガラス体の一部をバーナーで強熱しつつ、該一対の回転可能な保持手段に大きな回転差を与えながらバーナーを移動させることにより該チタニア-シリカガラス体の成長軸に対して垂直な方向にせん断応力を作用させて、脈理を除去しOH基濃度とチタニア濃度の均質化を図る均質化処理を施すことが好ましい。前記均質化処理工程において、前記一対の回転可能な保持手段に大きな回転差を与える方法は、前記一対の回転可能な保持手段を逆回転することであることが好適である。チタニア-シリカガラスを両面研磨機によって鏡面研磨することによって得ることができる。
チタニア-シリカガラスインゴットは、シリカガラス製造炉内に設けたバーナーに、水素ガスを含む可燃性ガス及び酸素ガスを含む支燃性ガスを供給して燃焼させることによりバーナー先端に形成される酸水素炎中に、ケイ素源原料ガス及びチタン源原料ガスを供給して、ケイ素源原料ガス及びチタン源原料ガスを加水分解することにより生成した酸化ケイ素、酸化チタン及びそれらの複合体微粒子を、バーナー先端前方に配設したターゲット上に付着させて成長させることによりインゴットを作製し、得られたインゴットを熱間成型して所定の形状に成型後、成型後のインゴットをアニール処理し、更に徐冷処理することによって製造することができるが、本発明のチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板は、上記可燃性ガス、支燃性ガス、ケイ素源原料ガス及びチタン源原料ガスの各々の供給流量の変動を±1%/hr以内に制御すると共に、上記シリカガラス製造炉内を流通させるガスとして導入する空気、シリカガラス製造炉からの排気及びシリカガラス製造炉周囲の外気の各々の温度の変動を±2.5℃以内に制御して、上記ターゲットを5rpm以上の回転数で回転させ、上記微粒子をターゲット上に付着させて製造することにより得ることができる。
チタニア-シリカガラスインゴットの製造炉は、竪型及び横型のいずれも使用することができるが、種材等のターゲットの回転数は5rpm以上、好ましくは15rpm以上、更に好ましくは30rpm以上である。これはチタニア-シリカガラス中の脈理、歪み等の構造的、組成的に不均一な領域は回転するターゲットのチタニア-シリカガラスが成長する部分の温度の不均一性に大きく依存して発生するからである。そこで、ターゲットの回転数を上げ、チタニア-シリカガラス成長する部分の温度を均一化することで、チタニア-シリカの構造的、組成的に不均一な領域の発生を抑えることができる。なお、ターゲットの回転数の上限は適宜選定されるが、通常200rpm以下である。
チタニア-シリカガラスの構造的、組成的に不均一な領域の発生は、チタニア-シリカガラスを製造時に使用するケイ素源原料ガス、チタン源原料ガス、可燃性ガス及び支燃性ガスの各々を安定供給することによって抑えることができる。そのために、本発明の製造方法においては、ケイ素源原料ガス、チタン源原料ガス、可燃性ガス及び支燃性ガスの各々の供給流量の変動を±1%/hr以内、好ましくは±0.5%/hr以内、更に好ましくは±0.25%/hr以内に制御する。
ケイ素源原料ガスは公知の有機ケイ素化合物を使用することができ、具体的には、四塩化ケイ素、ジメチルジクロロシラン、メチルトリクロロシラン等の塩素系シラン化合物、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン等のアルコキシシラン等が使用できる。
また、チタン源原料ガスも公知の化合物を使用することができ、具体的には、四塩化チタン、四臭化チタン等のチタンハロゲン化物、テトラエトキシチタン、テトライソプロポキシチタン、テトラ-n-プロポキシチタン、テトラ-n-ブトキシチタン、テトラ-sec-ブトキシチタン、テトラ-t-ブトキシチタン等のチタンアルコキシド等を使用できる。
一方、可燃性ガスとしては水素を含有するものが用いられ、更に必要に応じて一酸化炭素、メタン、プロパン等のガスを併用したものが用いられる。一方、支燃性ガスとしては酸素ガスを含むものが用いられる。
上記本発明のチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板を得るためには、特許文献4に示される直接法にて作製されたチタニア-シリカガラスインゴットの成長軸を均質化処理軸として、これと垂直な方向にせん断応力が働くように特許文献3に示される帯域溶融法を施すことによって、完全に一方向に脈理を除去し、同時にチタニア濃度及びOH基濃度の均質化を図ることが出来る。
また、特許文献4に示される直接法にて作製されたチタニア-シリカガラスインゴットの成長軸を均質化処理軸として均質化処理を施したチタニア-シリカガラスに対し、均質化処理軸の方向を変えて第2の帯域溶融法による均質化処理を施すことによって三方向に脈理を有さず、且つより均質なチタニア濃度分布及びOH基濃度分布を有するチタニア-シリカガラス体が得られる。
前記均質化処理において、前記チタニア-シリカガラス体の両端部を0~900℃における線熱膨張係数が0.0×10-7/℃以上6.0×10-7/℃以下のガラス支持棒を介して一対の回転可能な保持手段で保持し、均質化処理を施すことが好ましい。
また、前記均質化処理において、前記チタニア-シリカガラス体の両端部を一対の回転可能な保持手段で保持し、該シリカ・チタニアガラス体の一部をバーナーで強熱しつつ、該一対の回転可能な保持手段に大きな回転差を与えながらバーナーを移動させることにより該シリカ・チタニアガラス体の成長軸に対して垂直な方向にせん断応力を作用させて、脈理を除去しチタニア濃度の均質化を図る均質化処理を施すことが好ましい。前記均質化処理工程において、前記一対の回転可能な保持手段に大きな回転差を与える方法は、前記一対の回転可能な保持手段を逆回転することであることが好適である。チタニア-シリカガラスは、加熱によってOH基濃度が増減しやすい。そのため、均質化工程における加熱時間が長いとOH基濃度分布の改善効果が不十分で、場合によってはかえって悪化することもある。このことを鑑みて、OH基濃度をより均一にするためには、一回の処理にかける加熱時間を短くすると良く、具体的にはバーナーの移動速度を速くするとよい。また、回転差を大きくして攪拌効率を上げることで、処理時間が短くても十分な均質化効果を達成できる。
前記一対の回転可能な保持手段は旋盤に設けられた左右のチャックであることが好ましい。また、必要に応じて前記均質化処理を複数回繰り返すこともできる。
さらに、700~1,300℃において大気中で1~200時間保持してアニールした後、1~20℃/hrの速度で500℃まで徐冷し、均質化処理を施されたチタニア-シリカガラス体を、1,700℃における炉内の温度分布が1.5℃/cm以上の温度勾配を有する炉内で回転する成型るつぼに設置し、熱間角柱成型することが好適である。
角柱成型されたチタニア-シリカガラス体から更に152.4×152.4mmの角柱体へ外周面加工後、6.7mm厚さにスライス後、酸化セリウムを用いて6時間両面研磨後、研磨剤をコロイダルシリカに変更して更に1時間研磨して、152.4×152.4×6.35mmのフォトマスク基板形状に加工することが好適である。
本発明によれば、EUVリソグラフィ用フォトマスク基板に要求される高平坦度を有し、プラズマエッチング、イオンビームエッチング等の表面処理に要するコスト、処理時間等を軽減することができる、チタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板を提供することができるという著大な効果を奏する。
本発明の均質化処理概要を示すフローである。 本発明方法の均質化処理におけるステップ106を原理的に示す概略説明図である。 本発明方法の均質化処理におけるステップ108を原理的に示す概略説明図である。 本発明方法の均質化処理におけるステップ110を原理的に示す概略説明図である。 実施例及び比較例で用いたバーナーの構成を示すもので、(a)はチタニア-シリカガラスインゴット製造装置を示す概略図、(b)はこれに用いる酸水素火炎バーナーの横断面図である。
 以下に本発明の実施の形態を添付図面に基づいて説明するが、図示例は例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。
次に、本発明のチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板を得るための均質化処理の例について説明する。本発明方法において、厳密な均質性が要求される場合、均質化処理軸を変えて複数回均質化処理を施すことが好ましい。図1は、ガラス体の成長軸に対して垂直な方向にせん断応力が作用するように帯域溶融法を適用して脈理を除去する均質化処理を二つの均質化処理軸に対してそれぞれ行う場合の好ましい一例を示すフローチャートである。
図1に示した如く、直接法によりチタニア-シリカガラス体を作製し(ステップ100)、該ガラス体の成長軸に対して垂直な方向にせん断応力が作用するように帯域溶融法を適用して均質化処理を行う(ステップ102:第1の均質化処理工程)。その後、均質化処理後のガラス体を球状ガラス体に成型し(ステップ104:第1の成型工程)、軸を変えるように該球状ガラス体を持ち替えた後(ステップ106:持ち替え工程)、該球状ガラス体を加熱しながら延伸し(ステップ108:延伸工程)、均質化に適した円柱状等の形状のガラス体に成型した後(ステップ110:第2の成型工程)、再度、帯域溶融法による均質化処理を実施し(ステップ112:第2の均質化処理工程)、ガラス体を成型処理することにより(ステップ114:第3の成型工程)、完全に三方向に脈理が存在せず、極めて均質なチタニア-シリカガラスが得られる。なお、図示例では、ステップ100において、直接法によりチタニア-シリカガラス体を作製した例を示したが、直接法以外の公知の方法でもチタニア-シリカガラス体を作製するようにすることもできる。
図2はステップ106を原理的に示す概略説明図である。図2に示した如く、前記成型された球状ガラス体25を前記ガラス支持棒30から切り離し、軸が変わるように再度ガラス支持棒30を取り付けることにより、該球状ガラス体25が持ち替えられる。図2において、符号42aは第1の均質化処理における均質化処理軸であり、符号42bは第2の均質化処理における均質化処理軸である。また、符号31aは、成長軸である。持ち替え方法は特に限定はないが、図2に示した如く、ガラス支持棒30から切り離した球状ガラス体25を、略90度回転させ、第1の均質化処理軸42aと第2の均質化処理軸42bが略直交するように設置することが好ましい。
図3はステップ108を原理的に示す概略説明図である。図3に示した如く、前記持ち替えた球状ガラス体25をバーナー34で加熱しつつ前記左右のチャック32a,32b間隔を広げることによりガラス体21が延伸される。
図4はステップ110を原理的に示す概略説明図である。図4に示した如く、前記延伸したガラス体21に対して、前記左右のチャック32a,32bの回転数に差分を与え捻りながら、バーナー24を移動することにより、該ガラス体全体が円柱状に成型され、断面が略円形な棒状ガラス体23が得られる。
前記成型された棒状ガラス体23に対し均質化処理を施すことにより機械的に脈理が除去された三方向に脈理のない均質なチタニア-シリカガラスが製造される。前記均質化されたガラス体を成型処理することにより(ステップ114)、円柱状等、所望の形状に成型された均質なチタニア-シリカガラスが得られる。なお、前記ステップ114において、成型炉内で成型する際は、ガラス体を第2の均質化処理軸42b方向に重力が加わるように設置し、自重により加熱変形させることが好ましい。
前記方法により得られる、複数軸による均質化処理を施したチタニア-シリカガラスは三方向に完全に脈理が除去されている上、均質性も極めて向上しているので、EUVリソグラフィ用反射光学系用のフォトマスク基板材料として要求される高い線膨張係数の均質性を満たすものである。
本発明に用いられるチタニア-シリカガラスはフォトマスク基板の形状にすべく、1,500~1,800℃、1~10時間熱間成型を行う。熱間成型に際しては、1,700℃における炉内の温度分布が1.5℃/cm以上、10.0℃/cm以下の温度勾配を有する炉を使用する。本発明における炉内の温度分布の温度勾配とは炉内の最高温度域を1,700℃とした時の最高温度域から炉内上方500mm位置との温度差から求めた平均の温度勾配と定義する。また無荷重での熱間成型を行うことが望ましい。更に、チタニア-シリカガラスを成型るつぼ底面の中心又は成型るつぼの底面が四角形の場合には対角線の交点又は重心位置に設置する。
熱間成型したチタニア-シリカガラスはアニール処理し、更に徐冷処理する。これらアニール処理及び徐冷処理は、熱間成型により生じたチタニア-シリカガラス中の歪みを低下させる効果がある。アニール処理条件は公知の条件を用いることができ、温度700~1,300℃、大気中で1~200時間保持すればよい。また、徐冷処理条件も公知の条件を用いることができ、例えば、上記アニール処理温度から500℃の温度までの冷却を1~20℃/hrの速度で実施すればよい。
アニール処理及び徐冷処理を施したチタニア-シリカガラスを、適宜研削加工やスライス加工により所定のサイズに加工した後、酸化ケイ素、酸化アルミニウム、酸化モリブデン、炭化ケイ素、ダイアモンド、酸化セリウム、コロイダルシリカ等の研磨剤を使用して両面研磨機により研磨することによりEUVリソグラフィ用フォトマスク基板を形成することが可能である。
以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。
[実施例1]
図5に示す特許文献4に記載のバーナーを使用した。ここで、図5において、図5(a)中、1は四塩化珪素供給管、2は四塩化チタン供給管、3は流量計、4,5,6は水素ガス供給管、7,8,9,10は酸素ガス供給管、11は酸水素火炎バーナー、12は酸水素炎、13はチタニアドープシリカ微粒子、14は支持体、15はインゴットを示す。また、図5(b)は、上記バーナー11の横断面図であり、このバーナー11はノズル17~21からなる5重管16の外側に外殻管22を有し、この外殻管22内にノズル23を有する構造とされ、中心ノズル(第1ノズル)17には、供給管1,2から四塩化珪素、四塩化チタンが供給されると共に、酸素供給管10から酸素ガスが供給される。なお、必要によりアルゴンガス等の不活性ガスを供給させることもできる。また、第2ノズル18、第4ノズル20には酸素ガスが酸素ガス供給管7,8から供給され、第3ノズル19、第5ノズル21には水素ガスが水素ガス供給管4,5から供給される。更に、外殻管22には水素ガスが水素ガス供給管6から、ノズル23には酸素ガスが酸素ガス供給管9から供給される。
表1に記載のガスをメインバーナーのそれぞれのノズルに供給して、酸水素炎中で四塩化珪素、四塩化チタンの加水分解反応により生成したSiO2及びTiO2を石英ガラス製バーナーの先方に設置した50rpmで回転しながら10mm/hrで後退するターゲット材に付着させることでチタニア-シリカガラスのインゴットを製造した。また、メインバーナーと同時にインゴット側面に酸水素炎をあてるサブバーナーを使用した。このとき、各種ガスの流量変動は±0.2%/hrであった。また、チタニア-シリカガラス製造炉へ供給される空気、排気されるガス、製造炉の外気温の温度変動は±1℃であった。
得られたチタニア-シリカガラス製インゴットの成長軸方向の両端部にこのチタニア-シリカガラス体の成長軸方向の両端部に0℃~900℃の線膨張係数が5×10-7/℃のシリカガラス支持棒を溶接し、支持棒の両端を旋盤のチャックで固定した。
旋盤の左右のチャックを50rpmで同期回転しつつチタニア-シリカガラス体の左端を酸水素バーナーで強熱して溶融帯域を形成した。溶融帯域が形成されたことを確認した後、右側の旋盤のチャックの回転を左側のチャックの回転方向と逆回転、150rpmで回転させ、強いせん断応力を与えて溶融帯域内を攪拌した。同時にバーナーを右方向に20mm/分の速度で移動させる事により溶融帯域を移動させ、チタニア-シリカガラス体全体の均質化を行った(一方向目の均質化処理工程)。同様の操作で同方向に再度均質化処理を施し、合計2回の均質化処理を行った。
均質化処理後、両チャックの回転方向を揃え、かつ50rpmで同期させて回転させ、バーナーを棒状のチタニア-シリカガラス体の左端に戻し強熱して溶融した。チタニア-シリカガラス体が溶融したことを確認した後、右側の旋盤のチャックを押し狭めてシリカ・チタニアガラス体を押し潰し、直径約190mmの球状に成型した(第1の成型工程)。
前記成型工程を経た球状のガラス体(直径約190mm)の両端を支持棒から切り離し、一方の切断面を下にして台上に置き、ボールの両側面に再度支持棒を溶接した。切り離したボールの両端を結ぶ軸が第1の均質化処理の軸であるから、新たに溶接した両支持棒を繋ぐ軸は第1の均質化の軸と直交していることになる(持ち替え工程)。両支持棒によりボール全体を同期させて20rpmで回転させながらバーナー火炎でガラス体全体を強加熱し、ガラス体全体を溶融した。ガラス体全体が溶融したことを確認した後、旋盤の両チャックを引き離し、ガラス体を延伸した(延伸工程)。
延伸した形の不揃いなチタニア-シリカガラス体に対し、旋盤の右側のチャックの回転数を40rpmに上げ、両チャック間の回転数に差動を与え、該チタニア-シリカガラス体をゆっくりと捻ることにより円柱状に成型しつつ、かつ両チャック間隔を詰めてガラス体の径を太めながら、バーナーを20mm/分の速度で右側に移動させ、ガラス体全体を直径約φ70mmの円柱状に成型した(第2の成型工程)。尚、この場合、両チャックの回転方向は同じである。
このチタニア-シリカガラス体に対し第1の均質化処理と同様の操作で均質化処理を施した(第2の均質化処理工程)。この場合の均質化処理における軸は第1の均質化処理における軸とは直交している。第2の均質化処理を終えたチタニア-シリカガラス体を前記第1の成型工程と同様の操作で球状に成型した。
得られたチタニア-シリカガラス球体を1,700℃における温度勾配が2.5℃/cmの電気炉にて155mm×155mm角柱状の底面、対角線上の交点に設置して1,700℃で6時間加熱することにより熱間成型した。その後、大気中で1,150℃、150時間保持してアニール後、500℃まで5℃/hrの速度で徐冷した。アニール後の成型体を152.4mm×152.4mm角柱状に研削し、当該角柱状成型体をフォトマスク用基板に研削するため、厚さ6.7mmにスライスした後、152.4mm×152.4mm角面内の屈折率分布を測定した結果、142.4mm×142.4mm範囲内の屈折率最大値と最小値の差は2.0×10-4であった。また屈折率分布形状は152.4mm×152.4mm角面内の20×20mm中央部以内に極小点を有する形状であった。また、それ以外に極点は存在せず、変曲線も見られなかった。
屈折率を測定した厚さ6.7mmのチタニア-シリカガラス製EUVリソグラフィ用基板をスェードタイプの研磨布、酸化セリウム研磨材を使用し、12B型両面研磨機(不二越機械工業(株)製)により6時間研磨した後、研磨材をコロイダルシリカに変更して0.5時間研磨した。
作製した基板面中央部142.4mm×142.4mm角の領域内での最も高い位置と最も低い位置との差(露光利用領域のPV平坦度)を、レーザ干渉計を用いて測定した。その結果を表2に示す。PV平坦度は25nmで、非常に小さかった。
 作製した基板の152.4mm×152.4mm角面内の対角線上に平均線熱膨張係数を10~30℃の範囲で10点測定した結果の最大値と最小値を表2に示す。
平坦度を測定した152.4mm×152.4mm角、厚さ6.7mmのチタニア-シリカガラス製基板中央部から基板面中央部142.4mm×142.4mm角部に掛けて、電子プローブマイクロアナライザ(日本電子(株)製)TiO濃度を測定した。TiO濃度の最大値と最小値の差を表2に示す。濃度差は0.2%で非常に低かった。
TiO濃度を測定した152.4mm×152.4mm角、厚さ6.7mmのチタニア-シリカガラス製基板中央部から基板面中央部142.4mm×142.4mm角部に掛けて、赤外分光光度計(Nicolet社製)でOH基濃度を測定した。OH基濃度の最大値と最小値及び最大値と最小値の差を表2に示す。濃度差は3ppmで非常に低かった。
得られたチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板は、波長70nm以下のEUV光を反射させる面内の中央部に屈折率の極小点を1点のみ有し、屈折率分布は極小点に対して中心対称性を有し、かつ屈折率変動は小さく良好であった。研磨後のフォトマスク基板面中央部142.4mm×142.4mm角の領域内でのPV平坦度も小さく、EUVリソグラフィ用フォトマスク基板として最も好適なものが得られた。
[実施例2]
図5に記載のバーナーを使用し、表1に記載のガスをメインバーナーのそれぞれのノズルに供給して、酸水素炎中で四塩化珪素、四塩化チタンの加水分解反応により生成したSiO2及びTiO2を石英ガラス製バーナーの先方に設置した50rpmで回転しながら10mm/hrで後退するターゲット材に付着させることでチタニアドープ石英ガラスのインゴットを製造した。このとき、各種ガスの流量変動は±0.2%/hrであった。また、チタニアドープ石英ガラス製造炉へ供給される空気、排気されるガス、製造炉の外気温の温度変動は±1℃であった。
得られたチタニア-シリカガラス製インゴットを実施例1記載と同様の方法で均質化処理、成型処理を行い、実施例1記載と同様の方法で研磨を行い、152.4mm×152.4mm角、厚さ6.7mmのチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板を得た。
作製した基板の152.4mm×152.4mm角面内の対角線上に平均線熱膨張係数を10~30℃の範囲で10点測定した結果の最大値と最小値を表2に示す。
作製した基板面中央部142.4mm×142.4mm角の領域内での最も高い位置と最も低い位置との差(露光利用領域のPV平坦度)を実施例1記載の方法で測定した。PV平坦度は45nmで、非常に小さかった。
平坦度を測定した152.4mm×152.4mm角、厚さ6.7mmのチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板中央部から基板面中央部142.4mm×142.4mm角部に掛けて、実施例1記載の方法で測定した。TiO濃度の最大値と最小値の差を表2に示す。濃度差は0.3%で非常に低かった。
TiO濃度を測定した152.4mm×152.4mm角、厚さ6.7mmのチタニア-シリカガラス製基板中央部から基板面中央部142.4mm×142.4mm角部に掛けて、赤外分光光度計(Nicolet社製)でOH基濃度を測定した。OH基濃度の最大値と最小値及び最大値と最小値の差を表2に示す。濃度差は5ppmで低かった。
実施例2にて得られた基板は、EUVリソグラフィ用フォトマスク基板として好適なものが得られた。
[比較例1]
実施例1記載と同様の方法でチタニア-シリカガラス製インゴットを得た。
得られたチタニア-シリカガラス製インゴットを、均質化処理を施さず、成型処理を行い、実施例1記載と同様の方法で研磨を行い、152.4mm×152.4mm角、厚さ6.7mmのチタニア-シリカガラス製基板を得た。
作製した基板の152.4mm×152.4mm角面内の対角線上に平均線熱膨張係数を10~30℃の範囲で10点測定した結果の最大値と最小値を表2に示す。
作製した基板面中央部142.4mm×142.4mm角の領域内での最も高い位置と最も低い位置との差(露光利用領域のPV平坦度)を実施例1記載の方法で測定した。PV平坦度は55nmで、やや大きかった。
平坦度を測定した152.4mm×152.4mm角、厚さ6.7mmのチタニア-シリカガラス製基板中央部から基板面中央部142.4mm×142.4mm角部に掛けて、実施例1記載の方法で測定した。TiO濃度の最大値と最小値の差を表2に示す。濃度差は0.5%でやや高かった。
TiO濃度を測定した152.4mm×152.4mm角、厚さ6.7mmのチタニア-シリカガラス製基板中央部から基板面中央部142.4mm×142.4mm角部に掛けて、赤外分光光度計(Nicolet社製)でOH基濃度を測定した。OH基濃度の最大値と最小値及び最大値と最小値の差を表2に示す。濃度差は15ppmで高かった。
比較例1にて得られた基板は、EUVリソグラフィ用フォトマスク基板として好適ではなかった。
[比較例2]
実施例2記載と同様の方法でチタニア-シリカガラス製インゴットを得た。 
得られたチタニア-シリカガラス製インゴットを、均質化処理を施さず、成型処理を行い、実施例1記載と同様の方法で研磨を行い、152.4mm×152.4mm角、厚さ6.7mmのチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板を得た。
作製した基板の152.4mm×152.4mm角面内の対角線上に平均線熱膨張係数を10~30℃の範囲で10点測定した結果の最大値と最小値を表2に示す。
作製した基板面中央部142.4mm×142.4mm角の領域内での最も高い位置と最も低い位置との差(露光利用領域のPV平坦度)を実施例1記載の方法で測定した。PV平坦度は65nmで、大きかった。
平坦度を測定した152.4mm×152.4mm角、厚さ6.7mmのチタニア-シリカガラス製基板中央部から基板面中央部142.4mm×142.4mm角部に掛けて、実施例1記載の方法で測定した。TiO濃度の最大値と最小値の差を表2に示す。濃度差は0.7%で高かった。
TiO濃度を測定した152.4mm×152.4mm角、厚さ6.7mmのチタニア-シリカガラス製基板中央部から基板面中央部142.4mm×142.4mm角部に掛けて、赤外分光光度計(Nicolet社製)でOH基濃度を測定した。OH基濃度の最大値と最小値及び最大値と最小値の差を表2に示す。濃度差は20ppmでやや高かった。
比較例2にて得られた基板は、EUVリソグラフィ用フォトマスク基板として好適ではなかった。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 表2に示した如く、屈折率分布を3×10-4以下とすることによりPV平坦度を50nm以下とすることができる。また、TiO濃度差を0.3%以下とし、OH基濃度差を10ppm以下とすることにより高いPV平坦度を達成することができる。
 1:四塩化珪素供給管、2:四塩化チタン供給管、3:流量計、4,5,6:水素ガス供給管、7,8,9,10:酸素ガス供給管、11:酸水素火炎バーナー、12:酸水素炎、13:チタニアドープシリカ微粒子、14:支持体、15:インゴット、16:5重管、17,18,19,20,21:ノズル、22:外殻管、23:ノズル、25:球状ガラス体、21:延伸されたガラス体、23:成型された棒状ガラス体、30:ガラス支持棒、31a:成長軸、32a,32b:チャック、34:バーナー、42a:第1の均質化処理軸、42b:第2の均質化処理軸。
 

Claims (4)

  1.  152.4×152.4×6.35mmのフォトマスク基板形状で、該基板の中央部142.4×142.4mm内の屈折率均質性Δnが、3×10-4以下であり、
     152.4×152.4mm面内の中心部20×20mm内の範囲に屈折率の極大値もしくは極小値を1点のみ持ち、
     152.4×152.4mm面内の中央部142.4×142.4mm内の範囲で、最も高い位置と最も低い位置との差が50nm以下であること特徴とするチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板。
  2.  152.4×152.4mm面内の中央部142.4×142.4mm内の範囲で、TiO濃度の最大値と最小値の差が0.3%以下であることを特徴とする、請求項1記載のチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板。
  3.  平均線熱膨張係数が、10~30℃の範囲において-30~+30ppb/℃であることを特徴とする、請求項1又は2記載のチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板。
  4.  152.4×152.4mm面内の中央部142.4×142.4mm内の範囲で、OH基濃度が500~700ppmであり、OH基濃度の最大値と最小値の差が10ppm以下であることを特徴とする、請求項1~3のいずれか1項記載のチタニア-シリカガラス製EUVリソグラフィ用フォトマスク基板。
PCT/JP2012/081611 2011-12-09 2012-12-06 チタニア-シリカガラス製euvリソグラフィ用フォトマスク基板 WO2013084978A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011270203 2011-12-09
JP2011-270203 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013084978A1 true WO2013084978A1 (ja) 2013-06-13

Family

ID=48574336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081611 WO2013084978A1 (ja) 2011-12-09 2012-12-06 チタニア-シリカガラス製euvリソグラフィ用フォトマスク基板

Country Status (3)

Country Link
JP (1) JPWO2013084978A1 (ja)
TW (1) TW201337447A (ja)
WO (1) WO2013084978A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030159A1 (ja) * 2013-08-30 2015-03-05 Hoya株式会社 反射型マスクブランク、反射型マスクブランクの製造方法、反射型マスク及び半導体装置の製造方法
WO2015046303A1 (ja) * 2013-09-27 2015-04-02 Hoya株式会社 多層反射膜付き基板、マスクブランク、転写用マスク及び半導体装置の製造方法
JP2018124345A (ja) * 2017-01-30 2018-08-09 旭硝子株式会社 マスクブランク用のガラス基板、マスクブランクおよびフォトマスク
EP4328200A1 (en) * 2022-08-26 2024-02-28 Corning Incorporated Homogenous silica-titania glass
NL2033233B1 (en) * 2022-08-26 2024-03-04 Corning Inc Homogenous silica-titania glass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315351A (ja) * 2003-04-03 2004-11-11 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
JP2005022954A (ja) * 2003-04-03 2005-01-27 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびその製造法
JP2010013335A (ja) * 2008-07-07 2010-01-21 Shin-Etsu Chemical Co Ltd チタニアドープ石英ガラス部材及びその製造方法
JP2010163346A (ja) * 2008-02-29 2010-07-29 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびそれを用いたリソグラフィ用光学部材
JP2010163345A (ja) * 2008-02-26 2010-07-29 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
WO2011115131A1 (ja) * 2010-03-16 2011-09-22 旭硝子株式会社 Euvリソグラフィ光学部材用基材およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275189A (ja) * 2003-04-03 2010-12-09 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
JP2011168485A (ja) * 2003-04-03 2011-09-01 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびその製造法
JP5428323B2 (ja) * 2007-12-27 2014-02-26 旭硝子株式会社 TiO2を含有するシリカガラス
JPWO2010134449A1 (ja) * 2009-05-18 2012-11-12 旭硝子株式会社 TiO2−SiO2ガラス体の製造方法及び熱処理方法、TiO2−SiO2ガラス体、EUVL用光学基材
EP2518030A4 (en) * 2009-12-01 2013-09-11 Asahi Glass Co Ltd TIO2-CONTAINING QUARTZ GLASS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315351A (ja) * 2003-04-03 2004-11-11 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
JP2005022954A (ja) * 2003-04-03 2005-01-27 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびその製造法
JP2010163345A (ja) * 2008-02-26 2010-07-29 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
JP2010163346A (ja) * 2008-02-29 2010-07-29 Asahi Glass Co Ltd TiO2を含有するシリカガラスおよびそれを用いたリソグラフィ用光学部材
JP2010013335A (ja) * 2008-07-07 2010-01-21 Shin-Etsu Chemical Co Ltd チタニアドープ石英ガラス部材及びその製造方法
WO2011115131A1 (ja) * 2010-03-16 2011-09-22 旭硝子株式会社 Euvリソグラフィ光学部材用基材およびその製造方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170121315A (ko) * 2013-08-30 2017-11-01 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크 블랭크의 제조방법, 반사형 마스크 및 반도체 장치의 제조방법
WO2015030159A1 (ja) * 2013-08-30 2015-03-05 Hoya株式会社 反射型マスクブランク、反射型マスクブランクの製造方法、反射型マスク及び半導体装置の製造方法
JP5716145B1 (ja) * 2013-08-30 2015-05-13 Hoya株式会社 反射型マスクブランク、反射型マスクブランクの製造方法、反射型マスク及び半導体装置の製造方法
JP2015133514A (ja) * 2013-08-30 2015-07-23 Hoya株式会社 反射型マスクブランク、反射型マスクブランクの製造方法、反射型マスク及び半導体装置の製造方法
KR102012783B1 (ko) 2013-08-30 2019-08-21 호야 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크 블랭크의 제조방법, 반사형 마스크 및 반도체 장치의 제조방법
US10191365B2 (en) 2013-08-30 2019-01-29 Hoya Corporation Reflective mask blank, method of manufacturing reflective mask blank, reflective mask and method of manufacturing semiconductor device
US9720315B2 (en) 2013-08-30 2017-08-01 Hoya Corporation Reflective mask blank, method of manufacturing reflective mask blank, reflective mask and method of manufacturing semiconductor device
TWI616718B (zh) * 2013-08-30 2018-03-01 Hoya Corp 反射型光罩基底、反射型光罩基底之製造方法、反射型光罩及半導體裝置之製造方法
KR102253519B1 (ko) 2013-09-27 2021-05-18 호야 가부시키가이샤 다층 반사막 부착 기판, 마스크 블랭크, 전사용 마스크 및 반도체 장치의 제조방법
US9798050B2 (en) 2013-09-27 2017-10-24 Hoya Corporation Substrate with multilayer reflective film, mask blank, transfer mask and method of manufacturing semiconductor device
JP2018169617A (ja) * 2013-09-27 2018-11-01 Hoya株式会社 マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法
US10175394B2 (en) 2013-09-27 2019-01-08 Hoya Corporation Substrate with multilayer reflective film, mask blank, transfer mask and method of manufacturing semiconductor device
JPWO2015046303A1 (ja) * 2013-09-27 2017-03-09 Hoya株式会社 多層反射膜付き基板、マスクブランク、転写用マスク及び半導体装置の製造方法
KR20160061917A (ko) * 2013-09-27 2016-06-01 호야 가부시키가이샤 다층 반사막 부착 기판, 마스크 블랭크, 전사용 마스크 및 반도체 장치의 제조방법
WO2015046303A1 (ja) * 2013-09-27 2015-04-02 Hoya株式会社 多層反射膜付き基板、マスクブランク、転写用マスク及び半導体装置の製造方法
KR20210059007A (ko) * 2013-09-27 2021-05-24 호야 가부시키가이샤 마스크 블랭크용 기판, 다층 반사막 부착 기판, 반사형 마스크 블랭크, 반사형 마스크 및 반도체 장치의 제조방법
KR102294187B1 (ko) 2013-09-27 2021-08-26 호야 가부시키가이샤 마스크 블랭크용 기판, 다층 반사막 부착 기판, 반사형 마스크 블랭크, 반사형 마스크 및 반도체 장치의 제조방법
JP2018124345A (ja) * 2017-01-30 2018-08-09 旭硝子株式会社 マスクブランク用のガラス基板、マスクブランクおよびフォトマスク
EP4328200A1 (en) * 2022-08-26 2024-02-28 Corning Incorporated Homogenous silica-titania glass
NL2033233B1 (en) * 2022-08-26 2024-03-04 Corning Inc Homogenous silica-titania glass

Also Published As

Publication number Publication date
TW201337447A (zh) 2013-09-16
JPWO2013084978A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5202141B2 (ja) チタニアドープ石英ガラス部材及びその製造方法
JP5035516B2 (ja) フォトマスク用チタニアドープ石英ガラスの製造方法
JP5676718B2 (ja) Euvマスクブランクス用基板
TWI572569B (zh) 摻雜氧化鈦之石英玻璃及其製造方法
JP6241276B2 (ja) Euvリソグラフィ用部材の製造方法
WO2010131662A1 (ja) TiO2-SiO2ガラス体の製造方法及び熱処理方法、TiO2-SiO2ガラス体、EUVL用光学基材
WO2013084978A1 (ja) チタニア-シリカガラス製euvリソグラフィ用フォトマスク基板
JP5549525B2 (ja) 硫黄を共添加したチタニアドープ石英ガラス部材の製造方法
WO2010134449A1 (ja) TiO2-SiO2ガラス体の製造方法及び熱処理方法、TiO2-SiO2ガラス体、EUVL用光学基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856404

Country of ref document: EP

Kind code of ref document: A1