WO2013084885A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2013084885A1
WO2013084885A1 PCT/JP2012/081382 JP2012081382W WO2013084885A1 WO 2013084885 A1 WO2013084885 A1 WO 2013084885A1 JP 2012081382 W JP2012081382 W JP 2012081382W WO 2013084885 A1 WO2013084885 A1 WO 2013084885A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
unsubstituted
ring
Prior art date
Application number
PCT/JP2012/081382
Other languages
English (en)
French (fr)
Inventor
由美子 水木
光則 伊藤
井上 哲也
茎子 日比野
西村 和樹
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to PCT/JP2013/053767 priority Critical patent/WO2013145923A1/ja
Publication of WO2013084885A1 publication Critical patent/WO2013084885A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic electroluminescence element.
  • an organic electroluminescence element (hereinafter also referred to as an organic EL element)
  • holes from the anode and electrons from the cathode are injected into the light emitting layer.
  • the injected holes and electrons are recombined to form excitons.
  • singlet excitons and triplet excitons are generated at a ratio of 25%: 75% according to the statistical rule of electron spin.
  • the fluorescence type uses light emitted from singlet excitons, and therefore the internal quantum efficiency of the organic EL element is said to be limited to 25%.
  • the phosphorescent type since light emission by triplet excitons is used, it is known that the internal quantum efficiency can be increased to 100% when intersystem crossing is efficiently performed from singlet excitons.
  • an optimal element design has been made according to a light emission mechanism of a fluorescent type and a phosphorescent type.
  • phosphorescent organic EL elements cannot obtain high-performance elements by simple diversion of fluorescent element technology because of their light emission characteristics.
  • the reason is generally considered as follows.
  • phosphorescence emission is emission using triplet excitons
  • the energy gap of the compound used for the light emitting layer must be large. This is because the value of the singlet energy of a compound (the energy difference between the lowest excited singlet state and the ground state) is usually the triplet energy of the compound (the energy between the lowest excited triplet state and the ground state). This is because it is larger than the value of the difference.
  • a host material having a triplet energy larger than the triplet energy of the phosphorescent dopant material must be used for the light emitting layer. I must.
  • a compound having a triplet energy larger than that of the phosphorescent dopant material must be used for the electron transport layer and the hole transport layer.
  • hydrocarbon compounds having high oxidation resistance and reduction resistance useful for fluorescent elements have a large energy gap due to the large spread of ⁇ electron clouds. Therefore, in the phosphorescent organic EL element, such a hydrocarbon compound is difficult to select, and an organic compound containing a hetero atom such as oxygen or nitrogen is selected. As a result, the phosphorescent organic EL element is There is a problem that the lifetime is shorter than that of a fluorescent organic EL element.
  • the exciton relaxation rate of the triplet exciton of the phosphorescent dopant material is much longer than that of the singlet exciton also greatly affects the device performance. That is, since light emitted from singlet excitons has a high relaxation rate that leads to light emission, the diffusion of excitons to the peripheral layers of the light-emitting layer (for example, a hole transport layer or an electron transport layer) hardly occurs and is efficient. Light emission is expected. On the other hand, light emission from triplet excitons is spin-forbidden and has a slow relaxation rate, so that excitons are likely to diffuse to the peripheral layer, and thermal energy deactivation occurs from other than specific phosphorescent compounds. End up.
  • control of the recombination region of electrons and holes is more important than the fluorescent organic EL element.
  • material selection and element design different from those of fluorescent organic EL elements are required.
  • Patent Documents 1 and 2 describe that a compound in which a nitrogen-containing heterocyclic group is introduced into a biscarbazole skeleton in which two carbazoles are linked is used as a host material in a light emitting layer of a phosphorescent organic EL element. .
  • the compounds described in Patent Documents 1 and 2 have a molecular design that balances charge transport by introducing an electron-deficient nitrogen-containing heterocyclic group into a hole-transporting carbazole skeleton.
  • Patent Document 3 discloses that a longer lifetime can be obtained by mixing a plurality of host materials in the light emitting layer. Examination of combinations of various host materials to be mixed Has been made. However, the organic EL element is desired to have a longer lifetime.
  • An object of the present invention is to provide a long-life organic electroluminescence element.
  • An organic electroluminescence device comprising at least a light emitting layer between an anode and a cathode, wherein the light emitting layer is represented by a first host material represented by the following general formula (A) and the following general formula (1):
  • An organic electroluminescence device comprising: a second host material; and a light emitting material.
  • a 1 and A 2 each independently represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • a 3 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms.
  • m represents an integer of 0 to 3.
  • X 1 to X 8 and Y 1 to Y 8 each independently represent N or CR a .
  • R a is independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, substituted or unsubstituted It represents a substituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted silyl group, a halogen atom or a cyano group. When a plurality of R a are present, the plurality of R a may be the same or different. One of X 5 to X 8 and one of Y 1 to Y 4 are bonded via A 3 .
  • At least one of A 1 and A 2 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a hetero ring having 5 to 30 ring atoms substituted with a cyano group. It is a cyclic group.
  • At least one of X 1 to X 4 and Y 5 to Y 8 is CR a , and at least one of R a in X 1 to X 4 and Y 5 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
  • m is an integer of 1 to 3, and at least one of A 3 is substituted with a divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a cyano group And a divalent heterocyclic group having 5 to 30 ring atoms.
  • At least one of X 5 to X 8 and Y 1 to Y 4 is CR a , and at least one of R a in X 5 to X 8 and Y 1 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
  • At least one of X 1 to X 8 and Y 1 to Y 8 is C—CN.
  • Z 1 represents a ring structure represented by the following general formula (1-1) or (1-2) condensed in a.
  • Z 2 represents a ring structure represented by the following general formula (1-1) or (1-2) condensed at b. However, at least one of Z 1 and Z 2 is represented by the following general formula (1-1).
  • M 1 is a substituted or unsubstituted nitrogen-containing heteroaromatic ring having 5 to 30 ring atoms
  • L 1 represents a single bond, a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms, a ring It represents a cycloalkylene group having 5 to 30 carbon atoms formed or a group in which these are linked.
  • k represents 1 or 2.
  • c represents condensation in a or b in the general formula (1).
  • any one of d, e and f represents condensation in a or b in the general formula (1).
  • X 11 represents a sulfur atom, an oxygen atom, N—R 19 , or C (R 20 ) (R 21 ).
  • R 11 to R 21 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted ring formation.
  • Adjacent R 11 to R 21 may be bonded to each other to form a ring.
  • a 3 represents a substituted or unsubstituted divalent monocyclic hydrocarbon group having 6 or less ring carbon atoms, or a substituted or unsubstituted divalent monocyclic hydrocarbon group having 6 or less ring atoms.
  • Z 1 represents a ring structure represented by the general formula (1-1) or (1-2) condensed in a.
  • Z 2 represents a ring structure represented by the general formula (1-1) or (1-2) condensed at b.
  • at least one of Z 1 and Z 2 is represented by the general formula (1-1).
  • L 1 has the same meaning as L 1 in Formula (1).
  • X 12 to X 14 are each independently a nitrogen atom, CH, or a carbon atom bonded to R 31 or L 1, and at least one of X 12 to X 14 is a nitrogen atom.
  • Y 11 to Y 13 each independently represent CH or a carbon atom bonded to R 31 or L 1 .
  • R 31 each independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted carbon number 3 30 to 30 alkylsilyl groups, substituted or unsubstituted arylsilyl groups having 6 to 30 ring carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms, substituted or unsubstituted ring carbon atoms having 6 to 30 carbon atoms Or a substituted or unsubstituted
  • R 31 there are a plurality a plurality of R 31 may be the same or different from each other and, R 31 may be bonded to each other to form a ring adjacent.
  • k represents 1 or 2
  • n represents an integer of 0 to 4.
  • C in the general formula (1-1) is condensed in a or b in the general formula (2); Any one of d, e and f in the general formula (1-2) is condensed in a or b in the general formula (2).
  • [Formula (3) Medium L 1 has the same meaning as L 1 in Formula (1).
  • X 12 to X 14 are each independently a nitrogen atom, CH, or a carbon atom bonded to R 31 or L 1, and at least one of X 12 to X 14 is a nitrogen atom.
  • Y 11 to Y 13 each independently represent CH or a carbon atom bonded to R 31 or L 1 .
  • R 31 each independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted carbon number 3 30 to 30 alkylsilyl groups, substituted or unsubstituted arylsilyl groups having 6 to 30 ring carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms, substituted or unsubstituted ring carbon atoms having 6 to 30 carbon atoms Or a substituted or unsubstituted
  • R 31 there are a plurality a plurality of R 31 may be the same or different from each other and, R 31 may be bonded to each other to form a ring adjacent.
  • n represents an integer of 0 to 4.
  • R 41 to R 48 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring formation.
  • Adjacent R 41 to R 48 may be bonded to each other to form a ring. ] 6). 6. The organic electroluminescence device according to any one of 1 to 5, wherein the first host material satisfies only the item (i). 7). 7. The organic electroluminescence device according to any one of 1 to 6, wherein the second host material is represented by the following general formula (4).
  • L 1 has the same meaning as L 1 in Formula (1).
  • X 12 to X 14 are each independently a nitrogen atom, CH, or a carbon atom bonded to R 31 or L 1, and at least one of X 12 to X 14 is a nitrogen atom.
  • Y 11 to Y 13 each independently represent CH or a carbon atom bonded to R 31 or L 1 .
  • R 31 each independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted carbon number 3 30 to 30 alkylsilyl groups, substituted or unsubstituted arylsilyl groups having 6 to 30 ring carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms, substituted or unsubstituted ring carbon atoms having 6 to 30 carbon atoms Or a substituted or unsubstituted
  • R 31 there are a plurality a plurality of R 31 may be the same or different from each other and, R 31 may be bonded to each other to form a ring adjacent.
  • n represents an integer of 0 to 4.
  • L 2 and L 3 each independently represent a single bond, a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted 2 to 5 ring atom having 2 to 30 ring atoms.
  • a valent heterocyclic group, a cycloalkylene group having 5 to 30 ring carbon atoms, or a group in which these are connected is represented.
  • R 51 to R 54 each independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • R 51 there are a plurality a plurality of R 51 may be the same or different, and, R 51 may be bonded to each other to form a ring adjacent.
  • R 52 there are a plurality a plurality of R 52 may be the same or different, and, R 52 may be bonded to each other to form a ring adjacent.
  • R 53 there are a plurality a plurality of R 53 may be the same or different, and, R 53 may be bonded to each other to form a ring adjacent.
  • R 54 there are a plurality the plurality of R 54 may be the same or different from each other and, R 54 may be bonded to each other to form a ring adjacent.
  • M 2 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • p and s each independently represent an integer of 0 to 4, and q and r each independently represents an integer of 0 to 3. ] 8).
  • at least one of A 1 and A 2 is substituted with a phenyl group substituted with a cyano group, a naphthyl group substituted with a cyano group, a phenanthryl group substituted with a cyano group, or a cyano group.
  • the organic electroluminescence device according to any one of 1 to 7 above. 9. 9.
  • the organic electro luminescence according to any one of 1 to 8 above, wherein the luminescent material contains a phosphorescent luminescent material which is an orthometalated complex of a metal atom selected from iridium (Ir), osmium (Os) and platinum (Pt). Luminescence element. 10. 10. The organic electroluminescence device as described in 9 above, wherein the phosphorescent material has an emission peak wavelength of 490 nm to 700 nm.
  • a long-life organic electroluminescence device can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of the organic EL element of the present invention.
  • organic electroluminescence device of the present invention includes at least a light emitting layer between an anode and a cathode, and the light emitting layer is represented by the following general formula (A). It contains a first host material represented, a second host material represented by the following general formula (1), and a light emitting material.
  • a 1 and A 2 each independently represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • a 3 represents a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms.
  • m represents an integer of 0 to 3.
  • X 1 to X 8 and Y 1 to Y 8 each independently represent N or CR a .
  • R a is independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, substituted or unsubstituted It represents a substituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted silyl group, a halogen atom or a cyano group. When a plurality of R a are present, the plurality of R a may be the same or different. One of X 5 to X 8 and one of Y 1 to Y 4 are bonded via A 3 .
  • At least one of A 1 and A 2 is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a hetero ring having 5 to 30 ring atoms substituted with a cyano group. It is a cyclic group.
  • At least one of X 1 to X 4 and Y 5 to Y 8 is CR a , and at least one of R a in X 1 to X 4 and Y 5 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
  • m is an integer of 1 to 3, and at least one of A 3 is substituted with a divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a cyano group And a divalent heterocyclic group having 5 to 30 ring atoms.
  • At least one of X 5 to X 8 and Y 1 to Y 4 is CR a , and at least one of R a in X 5 to X 8 and Y 1 to Y 8 is substituted with a cyano group It is an aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group.
  • At least one of X 1 to X 8 and Y 1 to Y 8 is C—CN.
  • an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with a cyano group, or a heterocyclic group having 5 to 30 ring atoms substituted with a cyano group is further represented by cyano You may have substituents other than group.
  • the m is preferably 0 to 2, more preferably 0 or 1. When m is 0, one of X 5 to X 8 and one of Y 1 to Y 4 are bonded through a single bond.
  • Examples of the aromatic hydrocarbon group having 6 to 30 ring carbon atoms represented by A 1 , A 2 and R a include a non-condensed aromatic hydrocarbon group and a condensed aromatic hydrocarbon group, and more specifically, , Phenyl group, naphthyl group, phenanthryl group, biphenyl group, terphenyl group, quarterphenyl group, fluoranthenyl group, triphenylenyl group, phenanthrenyl group, fluorenyl group, spirofluorenyl group, 9,9-diphenylfluorenyl group 9,9′-spirobi [9H-fluoren] -2-yl group, 9,9-dimethylfluorenyl group, benzo [c] phenanthrenyl group, benzo [a] triphenylenyl group, naphtho [1,2-c] Phenanthrenyl group, naphtho [1,2-a] triphenylenyl group, dibenzo [
  • Examples of the heterocyclic group having 5 to 30 ring atoms represented by A 1 , A 2 and R a include a non-condensed heterocyclic group and a condensed heterocyclic group, and more specifically, a pyrrole ring, an isoindole Ring, benzofuran ring, isobenzofuran ring, dibenzothiophene ring, isoquinoline ring, quinoxaline ring, phenanthridine ring, phenanthroline ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, indole ring, quinoline ring, acridine ring , Pyrrolidine ring, dioxane ring, piperidine ring, morpholine ring, piperazine ring, carbazole ring, furan ring, thiophene ring, oxazole ring, ox
  • Examples of the divalent heterocyclic group having 5 to 30 ring atoms represented by A 3 include a divalent group described above for the heterocyclic group having 5 to 30 ring atoms.
  • Examples of the alkyl group having 1 to 30 carbon atoms represented by Ra include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, cyclopropyl group, cyclobuty
  • Examples of the substituted or unsubstituted silyl group represented by Ra include trimethylsilyl group, triethylsilyl group, tributylsilyl group, dimethylethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, Dimethylisopropylsilyl group, dimethylpropylsilyl group, dimethylbutylsilyl group, dimethyltertiarybutylsilyl group, diethylisopropylsilyl group, phenyldimethylsilyl group, diphenylmethylsilyl group, diphenyltertiarybutylsilyl group, triphenylsilyl group, etc.
  • a trimethylsilyl group a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, and a propyldimethylsilyl group are preferable.
  • halogen atom represented by Ra examples include fluorine, chlorine, bromine, iodine and the like, and fluorine is preferred.
  • R a is preferably a hydrogen atom or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms.
  • a halogen atom fluorine, chlorine, bromine, iodine
  • a cyano group a carbon number of 1
  • An alkyl group having 20 to 20 preferably 1 to 6
  • a cycloalkyl group having 3 to 20 carbon atoms preferably 5 to 12
  • an alkoxy group having 1 to 20 carbon atoms preferably 1 to 5
  • 1 to 20 preferably 1 to 5)
  • haloalkyl group 1 to 20 carbon atom (preferably 1 to 5) haloalkoxy group, 1 to 10 carbon atom (preferably 1 to 5) alkylsilyl group, ring-forming carbon number
  • Aromatic hydrocarbon group having 6 to 30 preferably 6 to 18
  • aryloxy group having 6 to 30 ring carbon atoms preferably 6 to 18
  • aryl having 6 to 30 carbon atoms preferably 6 to 18 carbon atoms
  • alkyl group having 1 to 20 carbon atoms used as the optional substituent include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t -Butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n -Tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group and the like.
  • cycloalkyl group having 3 to 20 carbon atoms used as the optional substituent include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, adamantyl group and the like.
  • alkoxy group having 1 to 20 carbon atoms used as the optional substituent include groups in which the alkyl moiety is the alkyl group.
  • haloalkyl group having 1 to 20 carbon atoms used as the optional substituent include groups in which part or all of the hydrogen atoms of the alkyl group are substituted with halogen atoms.
  • haloalkoxy group having 1 to 20 carbon atoms used as the optional substituent include groups in which part or all of the above-described alkoxy groups are substituted with halogen atoms.
  • alkylsilyl group having 1 to 10 carbon atoms used as the optional substituent include trimethylsilyl group, triethylsilyl group, tributylsilyl group, dimethylethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group.
  • Propyldimethylsilyl group dimethylisopropylsilyl group, dimethylpropylsilyl group, dimethylbutylsilyl group, dimethyltertiarybutylsilyl group, diethylisopropylsilyl group and the like.
  • aromatic hydrocarbon group having ring carbon atoms of 6 to 30 for use as the optional substituents may be the same as those aromatic hydrocarbon group indicated by the A 1, A 2 and R a.
  • aryloxy group having 6 to 30 ring carbon atoms used as the optional substituent include groups in which the aryl moiety is the aromatic hydrocarbon group.
  • arylsilyl group having 6 to 30 carbon atoms used as the optional substituent include a phenyldimethylsilyl group, a diphenylmethylsilyl group, a diphenyl tertiary butylsilyl group, and a triphenylsilyl group.
  • aralkyl group having 7 to 30 carbon atoms used as the optional substituent include benzyl group, 2-phenylpropan-2-yl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenyl.
  • the optional substituent is preferably a fluorine atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a heteroaryl group having 5 to 30 ring atoms.
  • the above arbitrary substituents may further have a substituent, and specific examples thereof are the same as the above arbitrary substituents.
  • carbon number ab in the expression “substituted or unsubstituted X group having carbon number ab” represents the number of carbons when X group is unsubstituted. The carbon number of the substituent when the X group is substituted is not included.
  • the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (triuterium), and tritium.
  • the groups represented by the above formulas (a) and (b) are X 6- (A 3 ) m -Y 3 , X 6- (A 3 ).
  • m -Y 2, X 7 - ( a 3) is preferably attached at either the binding position of m -Y 3. That is, a compound represented by any one of the following formulas (II), (III), and (IV) is more preferable.
  • X 1 to X 8 , Y 1 to Y 8 , A 1 to A 3 and m are X 1 to X 8 and Y 1 to Y in the formula (A), respectively. 8 , the same as A 1 to A 3 and m.
  • the formulas (II), (III), and (IV) are the same as the conditions (i) to (v) in the formula (A). Meet)
  • the first host material represented by the above formula (A) satisfies at least one of the above (i) to (v). That is, a cyano group is introduced into a biscarbazole derivative to which groups represented by the above formulas (a) and (b) are linked.
  • the first host material has improved hole resistance by introducing an electron injection / transport cyano group. Therefore, the organic EL device of the present invention containing the first host material having a cyano group has an effect of extending the life as compared with the conventional organic EL device using a host material having no cyano group.
  • a 3 in the general formula (A) is a single bond, a substituted or unsubstituted divalent monocyclic hydrocarbon group having 6 or less ring carbon atoms, or a substituted or unsubstituted divalent hydrocarbon group having 6 or less ring atoms. It is preferable to represent the monocyclic heterocyclic group. Examples of the monocyclic hydrocarbon group having 6 or less ring carbon atoms represented by A 3 include a phenylene group, a cyclopentenylene group, a cyclopentadienylene group, a cyclohexylene group, a cyclopentylene group, and the like. A phenylene group is preferred.
  • Examples of the monocyclic heterocyclic group having 6 or less ring atoms represented by A 3 include a pyrrolylene group, a pyrazinylene group, a pyridinylene group, a furylene group, and a thiophenylene group.
  • a 3 is preferably a substituted or unsubstituted monocyclic hydrocarbon group having 6 or less ring-forming carbon atoms, or a substituted or unsubstituted monocyclic heterocyclic group having 6 or less ring-forming atoms.
  • HOMO the highest occupied molecular orbital
  • m is 0 and one of X 5 to X 8 and one of Y 1 to Y 4 are bonded via a single bond, or A 3 is a substituted or unsubstituted phenylene group. Is preferred.
  • the first host material preferably satisfies at least one of the following (i) and the following (ii).
  • the first host material preferably corresponds to one of the following (1) to (3). (1) The above (i) is satisfied, and the above (ii) to (v) are not satisfied. (2) The above (ii) is satisfied, and the above (i) and (iii) to (v) are not satisfied. (3) Both the above (i) and (ii) are satisfied, and the above (iii) to (v) are not satisfied.
  • the first host material satisfying the above (i) and / or (ii) has a cyano group on the terminal side of the central skeleton with respect to the central skeleton having the group represented by the above formulas (a) and (b). It is a structure in which a heterocyclic group having an aromatic hydrocarbon group or a cyano group is introduced.
  • the central skeleton having a group represented by the above formulas (a) and (b) functions as a hole injection / transport unit, and an aromatic hydrocarbon group having a cyano group or a heterocyclic group having a cyano group is Functions as an electron injection / transport unit.
  • a group having a cyano group functioning as an electron injecting / transporting unit is introduced outside the central skeleton. While maintaining the spread of the electron cloud of the occupied molecular orbital) and maintaining good hole injection / transport properties, it also has the function of electron injection / transport properties by the group having a cyano group.
  • fills said (i) or (ii) becomes favorable in the carrier balance in a molecule
  • the organic EL device of the present invention including a light emitting layer containing a first host material satisfying at least one of the above (i) and (ii) and a second host material represented by the formula (1).
  • the luminous efficiency of the organic EL element is improved.
  • At least one of A 1 and A 2 is substituted with a phenyl group substituted with a cyano group, a naphthyl group substituted with a cyano group, or a cyano group
  • a phenanthryl group dibenzofuranyl group substituted with cyano group, dibenzothiophenyl group substituted with cyano group, biphenyl group substituted with cyano group, terphenyl group substituted with cyano group, substituted with cyano group 9,9-diphenylfluorenyl group, 9,9′-spirobi [9H-fluoren] -2-yl group substituted with a cyano group, 9,9′-dimethylfluorenyl substituted with a cyano group Or a triphenylenyl group substituted with a cyano group, preferably a 3′-cyanobiphenyl-2-yl group, a
  • a -2-yl group and a 7-cyanotriphenylene-2-yl group are more preferable.
  • a 1 is preferably substituted with a cyano group
  • a 2 is preferably
  • the first host material if the condition is satisfied in the (ii), at least one of X 1 ⁇ X 4 and Y 5 ⁇ Y 8 is CR a, X 1 ⁇ X 4 and Y 5 ⁇ Y 8 At least one of R a is a phenyl group substituted with a cyano group, a naphthyl group substituted with a cyano group, a phenanthryl group substituted with a cyano group, a dibenzofuranyl group substituted with a cyano group, or a cyano group Substituted dibenzothiophenyl group, biphenyl group substituted with cyano group, terphenyl group substituted with cyano group, 9,9-diphenylfluorenyl group substituted with cyano group, 9 substituted with cyano group , 9′-spirobi [9H-fluoren] -2-yl group, 9,9′-dimethylfluorenyl group
  • the A 1 and the A 2 are preferably different from each other. Among them, it is more preferable that the group A 1 is substituted with a cyano group and the group A 2 is not substituted with a cyano group. That is, the first host material preferably has an asymmetric structure, and the first host material has good crystallinity and non-crystallinity due to such a structure. Therefore, since the organic EL element using the first host material has excellent film quality, for example, high performance can be achieved in organic EL characteristics such as current efficiency.
  • the method for producing the first host material is not particularly limited and may be produced by a known method. For example, it is described in Tetrahedron 40 (1984) 1435-1456 for carbazole derivatives and aromatic halogenated compounds. It can be produced by a coupling reaction using a copper catalyst or a palladium catalyst described in Journal of American Chemical Society 123 (2001) 7727-7729.
  • the second host material contained in the light emitting layer of the organic EL device of the present embodiment is a compound represented by the following general formula (1).
  • Z 1 represents a ring structure represented by the following general formula (1-1) or (1-2) condensed in a.
  • Z 2 represents a ring structure represented by the following general formula (1-1) or (1-2) condensed at b.
  • at least one of Z 1 and Z 2 is represented by the following general formula (1-1).
  • M 1 is a substituted or unsubstituted nitrogen-containing heteroaromatic ring having 5 to 30 ring atoms
  • L 1 represents a single bond, a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted divalent heterocyclic group having 5 to 30 ring atoms, a ring It represents a cycloalkylene group having 5 to 30 carbon atoms formed or a group in which these are linked.
  • k represents 1 or 2.
  • c represents condensation in a or b in the general formula (1).
  • Any one of d, e and f represents condensation in a or b in the general formula (1).
  • X 11 represents a sulfur atom, an oxygen atom, N—R 19 , or C (R 20 ) (R 21 ).
  • R 11 to R 21 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted ring formation.
  • Adjacent R 11 to R 21 may be bonded to each other to form a ring.
  • the “nitrogen-containing heteroaromatic ring” represented by M 1 in the general formula (1) includes an azine ring.
  • Examples of the nitrogen-containing heteroaromatic ring represented by M 1 in the general formula (1) include pyridine, pyrimidine, pyrazine, triazine, aziridine, azaindolizine, indolizine, imidazole, indole, isoindole, indazole, purine, Examples include pteridine, ⁇ -carboline, naphthyridine, quinoxaline, terpyridine, bipyridine, acridine, phenanthroline, phenazine, and imidazopyridine.
  • pyridine, pyrimidine, and triazine are preferable, and represented by the following general formula (2) Those are also preferred.
  • Z 1 represents a ring structure represented by the general formula (1-1) or (1-2) condensed in a.
  • Z 2 represents a ring structure represented by the general formula (1-1) or (1-2) condensed at b.
  • at least one of Z 1 and Z 2 is represented by the general formula (1-1).
  • L 1 has the same meaning as L 1 in Formula (1).
  • X 12 to X 14 are each independently a nitrogen atom, CH, or a carbon atom bonded to R 31 or L 1, and at least one of X 12 to X 14 is a nitrogen atom.
  • Y 11 to Y 13 each independently represent CH or a carbon atom bonded to R 31 or L 1 .
  • R 31 each independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted carbon number 3 30 to 30 alkylsilyl groups, substituted or unsubstituted arylsilyl groups having 6 to 30 ring carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms, substituted or unsubstituted ring carbon atoms having 6 to 30 carbon atoms Or a substituted or unsubstituted
  • R 31 there are a plurality a plurality of R 31 may be the same or different from each other and, R 31 may be bonded to each other to form a ring adjacent.
  • k represents 1 or 2
  • n represents an integer of 0 to 4.
  • C in the general formula (1-1) is condensed in a or b in the general formula (2); Any one of d, e and f in the general formula (1-2) is condensed in a or b in the general formula (2).
  • examples of the compound in which the general formulas (1-1) and (2-2) are condensed in a and b in the general formula (2) include those represented by the following general formula.
  • the compound represented by the general formulas (1) and (2) is more preferably represented by the following general formula (3), and particularly preferably represented by the following general formula (4).
  • L 1 has the same meaning as L 1 in Formula (1).
  • X 12 to X 14 are each independently a nitrogen atom, CH, or a carbon atom bonded to R 31 or L 1, and at least one of X 12 to X 14 is a nitrogen atom.
  • Y 11 to Y 13 each independently represent CH or a carbon atom bonded to R 31 or L 1 .
  • R 31 each independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted carbon number 3 30 to 30 alkylsilyl groups, substituted or unsubstituted arylsilyl groups having 6 to 30 ring carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms, substituted or unsubstituted ring carbon atoms having 6 to 30 carbon atoms Or a substituted or unsubstituted
  • R 31 there are a plurality a plurality of R 31 may be the same or different from each other and, R 31 may be bonded to each other to form a ring adjacent.
  • n represents an integer of 0 to 4.
  • R 41 to R 48 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted ring formation.
  • Adjacent R 41 to R 48 may be bonded to each other to form a ring.
  • L 1 has the same meaning as L 1 in Formula (1).
  • X 12 to X 14 are each independently a nitrogen atom, CH, or a carbon atom bonded to R 31 or L 1, and at least one of X 12 to X 14 is a nitrogen atom.
  • Y 11 to Y 13 each independently represent CH or a carbon atom bonded to R 31 or L 1 .
  • R 31 each independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, A substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a substituted or unsubstituted carbon number 3 30 to 30 alkylsilyl groups, substituted or unsubstituted arylsilyl groups having 6 to 30 ring carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms, substituted or unsubstituted ring carbon atoms having 6 to 30 carbon atoms Or a substituted or unsubstituted
  • R 31 may be bonded to each other to form a ring.
  • n represents an integer of 0 to 4.
  • L 2 and L 3 each independently represent a single bond, a substituted or unsubstituted divalent aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted 2 to 5 ring atom having 2 to 30 ring atoms.
  • a valent heterocyclic group, a cycloalkylene group having 5 to 30 ring carbon atoms, or a group in which these are connected is represented.
  • R 51 to R 54 each independently represents a halogen atom, a cyano group, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • R 51 there are a plurality a plurality of R 51 may be the same or different, and, R 51 may be bonded to each other to form a ring adjacent.
  • R 52 there are a plurality a plurality of R 52 may be the same or different, and, R 52 may be bonded to each other to form a ring adjacent.
  • R 53 there are a plurality a plurality of R 53 may be the same or different, and, R 53 may be bonded to each other to form a ring adjacent.
  • R 54 there are a plurality the plurality of R 54 may be the same or different from each other and, R 54 may be bonded to each other to form a ring adjacent.
  • M 2 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms.
  • p and s each independently represent an integer of 0 to 4
  • q and r each independently represents an integer of 0 to 3.
  • each group represented by R 11 to R 21 , R 31 , R 41 to R 48 and R 51 to R 54 Is a group described in the compound represented by the general formula (A).
  • Examples of the group include a group corresponding to the divalent group described for the compound represented by the general formula (A).
  • Examples of the compound represented by any one of the above general formulas (1) to (4) include the following.
  • a bond having no chemical formula (CN, benzene ring, or the like) at its end represents a methyl group.
  • the organic EL device of the present invention may have a hole transport layer, a light emitting layer, a space layer, a barrier layer, and the like, and these include the same compounds as the first host material and the second host material described above. You may go out.
  • Examples of the light emitting material contained in the light emitting layer include a fluorescent light emitting material and a phosphorescent light emitting material, and a phosphorescent light emitting material is preferable.
  • the organic EL element of the present invention may be a fluorescent or phosphorescent monochromatic light emitting element, a fluorescent / phosphorescent hybrid white light emitting element, or a simple type having a single light emitting unit.
  • a tandem type having a plurality of light emitting units may be used, and among them, a phosphorescent type is preferable.
  • the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons.
  • typical element configurations of simple organic EL elements include the following element configurations.
  • Anode / light emitting unit / cathode The above light emitting unit may be a laminated type having a plurality of phosphorescent light emitting layers and fluorescent light emitting layers. In that case, the light emitting unit is generated by a phosphorescent light emitting layer between the light emitting layers. In order to prevent the excitons from diffusing into the fluorescent light emitting layer, a space layer may be provided. A typical layer structure of the light emitting unit is shown below.
  • A Hole transport layer / light emitting layer (/ electron transport layer)
  • B Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer (/ electron transport layer)
  • C Hole transport layer / phosphorescent layer / space layer / fluorescent layer (/ electron transport layer)
  • D Hole transport layer / first phosphorescent light emitting layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • E Hole transport layer / first phosphorescent light emitting layer / space layer / second phosphorescent light emitting layer / space layer / fluorescent light emitting layer (/ electron transport layer)
  • F Hole transport layer / phosphorescent layer / space layer / first fluorescent layer / second fluorescent layer (/ electron transport layer)
  • G Hole transport layer / electron barrier layer / light emitting layer (/ electron transport layer)
  • H Hole transport layer / light emitting layer / hole barrier layer (
  • Each phosphorescent or fluorescent light-emitting layer may have a different emission color.
  • hole transport layer / first phosphorescent light emitting layer (red light emitting) / second phosphorescent light emitting layer (green light emitting) / space layer / fluorescent light emitting layer (blue light emitting) / Examples include a layer configuration such as an electron transport layer.
  • An electron barrier layer may be appropriately provided between each light emitting layer and the hole transport layer or space layer.
  • a hole blocking layer may be appropriately provided between each light emitting layer and the electron transport layer.
  • the following element structure can be mentioned as a typical element structure of a tandem type organic EL element.
  • the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and has electrons in the first light emitting unit and holes in the second light emitting unit.
  • a known material structure to be supplied can be used.
  • FIG. 1 shows a schematic configuration of an example of the organic EL element of the present invention.
  • the organic EL element 1 includes a substrate 2, an anode 3, a cathode 4, and a light emitting unit 10 disposed between the anode 3 and the cathode 4.
  • the light emitting unit 10 includes a light emitting layer 5 including at least one layer including the first host material, the second host material, and the light emitting material.
  • a hole injection / transport layer 6 or the like may be formed between the light emitting layer 5 and the anode 3, and an electron injection / transport layer 7 or the like may be formed between the light emitting layer 5 and the cathode 4.
  • an electron barrier layer may be provided on the anode 3 side of the light emitting layer 5, and a hole barrier layer may be provided on the cathode 4 side of the light emitting layer 5.
  • a host combined with a fluorescent dopant is referred to as a fluorescent host
  • a host combined with a phosphorescent dopant is referred to as a phosphorescent host.
  • the fluorescent host and the phosphorescent host are not distinguished only by the molecular structure. That is, the phosphorescent host means a material constituting a phosphorescent light emitting layer containing a phosphorescent dopant, and does not mean that it cannot be used as a material constituting a fluorescent light emitting layer. The same applies to the fluorescent host.
  • the organic EL element of the present invention is produced on a translucent substrate.
  • the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
  • the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
  • the anode of the organic EL element plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to use a material having a work function of 4.5 eV or more.
  • Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emitted from the light emitting layer is extracted from the anode, it is preferable that the transmittance of light in the visible region of the anode is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the cathode plays a role of injecting electrons into the electron injection layer, the electron transport layer or the light emitting layer, and is preferably formed of a material having a small work function.
  • the cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
  • the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering. Moreover, you may take out light emission from the cathode side as needed.
  • the light emitting layer is an organic layer having a light emitting function and is formed of one layer or a plurality of layers, and one of them contains the first host material, the second host material, and the light emitting material as described above.
  • the light emitting layer other than the above includes a host material and a dopant material when a doping system is employed.
  • the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • the above light emitting layer may adopt a double dopant in which each dopant emits light by adding two or more kinds of dopant materials having a high quantum yield. Specifically, a mode in which yellow light emission is realized by co-evaporating a host, a red dopant, and a green dopant to make the light emitting layer common.
  • the above light-emitting layer is a laminate in which a plurality of light-emitting layers are stacked, so that electrons and holes are accumulated at the light-emitting layer interface, and the recombination region is concentrated at the light-emitting layer interface to improve quantum efficiency. Can do.
  • the ease of injecting holes into the light emitting layer may be different from the ease of injecting electrons, and the hole transport ability and electron transport ability expressed by the mobility of holes and electrons in the light emitting layer may be different. May be different.
  • a light emitting layer can be formed by well-known methods, such as a vapor deposition method, a spin coat method, LB method, for example.
  • the light emitting layer can also be formed by thinning a solution obtained by dissolving a binder such as a resin and a material compound in a solvent by a spin coating method or the like.
  • the light emitting layer is preferably a molecular deposited film.
  • the molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state.
  • the thin film (molecular accumulation film) formed by the LB method can be classified by the difference in the aggregation structure and the higher-order structure, and the functional difference resulting therefrom.
  • the content ratio of the first host material and the second host material in the light emitting layer is not particularly limited and can be adjusted as appropriate.
  • the mass ratio of the first host material: second host material 1: 99 to 99: 1 Within the range, more preferably within the range of 10:90 to 90:10.
  • the phosphorescent dopant (phosphorescent material) that forms the light emitting layer is a compound that can emit light from the triplet excited state, and is not particularly limited as long as it emits light from the triplet excited state, but Ir, Pt, Os, Au, Cu, An organometallic complex containing at least one metal selected from Re and Ru and a ligand is preferable.
  • the ligand preferably has an ortho metal bond.
  • a metal complex containing a metal atom selected from Ir, Os and Pt is preferred in that the phosphorescent quantum yield is high and the external quantum efficiency of the light emitting device can be further improved.
  • iridium complexes and platinum complexes are more preferable, and orthometalated iridium complexes are particularly preferable.
  • the content of the phosphorescent dopant in the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.1 to 70% by mass, more preferably 1 to 30% by mass. If the phosphorescent dopant content is 0.1% by mass or more, sufficient light emission can be obtained, and if it is 70% by mass or less, concentration quenching can be avoided.
  • a phosphorescent dopant material may be used independently and may use 2 or more types together.
  • the emission wavelength of the phosphorescent dopant material contained in the light emitting layer is not particularly limited, but at least one of the phosphorescent dopant materials contained in the light emitting layer preferably has a peak emission wavelength of 490 nm to 700 nm. More preferably, it is 650 nm or less.
  • the phosphorescent host is a compound having a function of efficiently emitting the phosphorescent dopant by efficiently confining the triplet energy of the phosphorescent dopant in the light emitting layer.
  • compounds other than the first host material and the second host material can be appropriately selected as a phosphorescent host according to the purpose.
  • the first host material and the second host material and other compounds may be used in combination as a phosphorescent host material in the same light emitting layer.
  • the first host material and the second host material may be used as the phosphorescent host material, and a compound other than the first host material or the second host material may be used as the phosphorescent host material of another light emitting layer.
  • the first host material and the second host material can also be used for organic layers other than the light emitting layer.
  • compounds other than the first host material and the second host material and suitable as a phosphorescent host include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline.
  • pyrazolone derivatives phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds , Porphyrin compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluoresceins Represented by metal complexes of redenemethane derivatives, distyrylpyrazine derivatives, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, phthalocyanine derivatives, 8-quinolinol derivatives, metal phthalocyanines, metal complexes with benzo
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and still more preferably 10 to 50 nm.
  • the thickness is 5 nm or more, it is easy to form a light emitting layer, and when the thickness is 50 nm or less, an increase in driving voltage can be avoided.
  • the organic EL device of the present invention preferably has an electron donating dopant in the interface region between the cathode and the light emitting unit. According to such a configuration, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • the electron donating dopant means a material containing a metal having a work function of 3.8 eV or less, and specific examples thereof include alkali metals, alkali metal complexes, alkali metal compounds, alkaline earth metals, alkaline earths. Examples thereof include at least one selected from metal complexes, alkaline earth metal compounds, rare earth metals, rare earth metal complexes, rare earth metal compounds, and the like.
  • alkali metal examples include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), Cs (work function: 1.95 eV), and the like.
  • a function of 2.9 eV or less is particularly preferable. Of these, K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
  • alkaline earth metals include Ca (work function: 2.9 eV), Sr (work function: 2.0 eV to 2.5 eV), Ba (work function: 2.52 eV), and the like. The thing below 9 eV is especially preferable.
  • rare earth metals examples include Sc, Y, Ce, Tb, Yb, and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • alkali metal compound examples include alkali oxides such as Li 2 O, Cs 2 O, and K 2 O, and alkali halides such as LiF, NaF, CsF, and KF, and LiF, Li 2 O, and NaF are preferable.
  • alkaline earth metal compound examples include BaO, SrO, CaO, and Ba x Sr 1-x O (0 ⁇ x ⁇ 1), Ba x Ca 1-x O (0 ⁇ x ⁇ 1) mixed with these. BaO, SrO, and CaO are preferable.
  • the rare earth metal compound, YbF 3, ScF 3, ScO 3, Y 2 O 3, Ce 2 O 3, GdF 3, TbF 3 and the like, YbF 3, ScF 3, TbF 3 are preferable.
  • the alkali metal complex, alkaline earth metal complex, and rare earth metal complex are not particularly limited as long as each metal ion contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion.
  • the ligand includes quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl oxadiazole, hydroxydiaryl thiadiazole, hydroxyphenyl pyridine, hydroxyphenyl benzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof are preferred, but not limited thereto.
  • the electron donating dopant it is preferable to form a layered or island shape in the interface region.
  • a forming method while depositing an electron donating dopant by resistance heating vapor deposition, an organic compound (light emitting material or electron injecting material) that forms an interface region is simultaneously deposited, and the electron donating dopant is dispersed in the organic compound.
  • the electron donating dopant is formed in a layered form
  • the reducing dopant is vapor-deposited by a resistance heating vapor deposition method. .1 nm to 15 nm.
  • the electron donating dopant is formed in an island shape
  • the electron donating dopant is deposited by resistance heating vapor deposition alone, preferably The island is formed with a thickness of 0.05 nm to 1 nm.
  • the electron transport layer is an organic layer formed between the light emitting layer and the cathode, and has a function of transporting electrons from the cathode to the light emitting layer.
  • an organic layer close to the cathode may be defined as an electron injection layer.
  • the electron injection layer has a function of efficiently injecting electrons from the cathode into the organic layer unit.
  • an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
  • a nitrogen-containing ring metal chelate complex represented by the following formula (AA) is preferable.
  • R 2 to R 7 in formula (AA) are each independently a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, an amino group, a hydrocarbon group having 1 to 40 carbon atoms, or an alkoxy group having 1 to 40 carbon atoms.
  • Examples of the halogen atom include fluorine, chlorine, bromine, iodine and the like.
  • the amino group which may be substituted include an alkylamino group, an arylamino group and an aralkylamino group.
  • the alkylamino group and the aralkylamino group are represented as —NQ 1 Q 2 .
  • Q 1 and Q 2 each independently represents an alkyl group having 1 to 20 carbon atoms or an aralkyl group having 1 to 20 carbon atoms.
  • One of Q 1 and Q 2 may be a hydrogen atom or a deuterium atom.
  • the arylamino group is represented as —NAr 1 Ar 2, and Ar 1 and Ar 2 each independently represents a non-condensed aromatic hydrocarbon group or a condensed aromatic hydrocarbon group having 6 to 50 carbon atoms.
  • Ar 1 and Ar 2 may be a hydrogen atom or a deuterium atom.
  • the hydrocarbon group having 1 to 40 carbon atoms includes an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • the alkoxycarbonyl group is represented as —COOY ′, and Y ′ represents an alkyl group having 1 to 20 carbon atoms.
  • M in the formula (AA) is aluminum (Al), gallium (Ga), or indium (In), and is preferably In.
  • L in the formula (AA) is a group represented by the following formula (A ′) or (A ′′).
  • R 8 to R 12 are each independently a hydrogen atom, a deuterium atom, or a substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms, and groups adjacent to each other are cyclic structures May be formed.
  • R 13 to R 27 are each independently a hydrogen atom, a deuterium atom or a substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms, and groups adjacent to each other are An annular structure may be formed.
  • the hydrocarbon group having 1 to 40 carbon atoms represented by R 8 to R 12 and R 13 to R 27 in the formula (A ′) and the formula (A ′′) is represented by R 2 to R 7 in the formula (A).
  • the divalent group in the case where the adjacent groups of R 8 to R 12 and R 13 to R 27 form a cyclic structure includes a tetramethylene group, a pentamethylene group, a hexamethylene group, and the like. Examples include a methylene group, diphenylmethane-2,2′-diyl group, diphenylethane-3,3′-diyl group, and diphenylpropane-4,4′-diyl group.
  • 8-hydroxyquinoline or a metal complex of its derivative, an oxadiazole derivative, or a nitrogen-containing heterocyclic derivative is preferable.
  • a metal chelate oxinoid compound containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline) such as tris (8-quinolinol) aluminum is used.
  • 8-quinolinol or 8-hydroxyquinoline such as tris (8-quinolinol
  • oxadiazole derivative the following can be mentioned.
  • Ar 17 , Ar 18 , Ar 19 , Ar 21 , Ar 22 and Ar 25 each represent a substituted or unsubstituted aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 50 carbon atoms
  • Ar 17 and Ar 18 , Ar 19 and Ar 21 , Ar 22 and Ar 25 may be the same or different.
  • the aromatic hydrocarbon group or the condensed aromatic hydrocarbon group include a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • substituents include alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, and cyano groups.
  • Ar 20 , Ar 23, and Ar 24 each represent a substituted or unsubstituted divalent aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 50 carbon atoms, and Ar 23 and Ar 24 are identical to each other. But it can be different.
  • the divalent aromatic hydrocarbon group or condensed aromatic hydrocarbon group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • substituents include alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, and cyano groups.
  • electron transfer compounds those having good thin film forming properties are preferably used.
  • Specific examples of these electron transfer compounds include the following.
  • the nitrogen-containing heterocyclic derivative as the electron transfer compound is a nitrogen-containing heterocyclic derivative composed of an organic compound having the following formula, and includes a nitrogen-containing compound that is not a metal complex. Examples thereof include a 5-membered ring or 6-membered ring containing a skeleton represented by the following formula (B) and a structure represented by the following formula (C).
  • X represents a carbon atom or a nitrogen atom.
  • Z 1 and Z 2 each independently represents an atomic group capable of forming a nitrogen-containing heterocycle.
  • the nitrogen-containing heterocyclic derivative is more preferably an organic compound having a nitrogen-containing aromatic polycyclic group consisting of a 5-membered ring or a 6-membered ring. Further, in the case of such a nitrogen-containing aromatic polycyclic group having a plurality of nitrogen atoms, the nitrogen-containing compound having a skeleton in which the above formulas (B) and (C) or the above formula (B) and the following formula (D) are combined. Aromatic polycyclic organic compounds are preferred.
  • the nitrogen-containing group of the nitrogen-containing aromatic polycyclic organic compound is selected from, for example, nitrogen-containing heterocyclic groups represented by the following formulae.
  • R is an aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 40 carbon atoms, an aromatic heterocyclic group or condensed aromatic heterocyclic group having 3 to 40 carbon atoms, 1 to 20 is an alkyl group or an alkoxy group having 1 to 20 carbon atoms, n is an integer of 0 to 5, and when n is an integer of 2 or more, a plurality of R may be the same or different from each other.
  • preferred specific compounds include nitrogen-containing heterocyclic derivatives represented by the following formula (D1). HAr-L 1 -Ar 1 -Ar 2 (D1)
  • HAr is a substituted or unsubstituted nitrogen-containing heterocyclic group having 3 to 40 carbon atoms
  • L 1 is a single bond, substituted or unsubstituted aromatic hydrocarbon having 6 to 40 carbon atoms.
  • Ar 1 is a substituted or unsubstituted 2 to 6 carbon atom having 2 to 6 carbon atoms.
  • Ar 2 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 carbon atoms, a condensed aromatic hydrocarbon group, or a substituted or unsubstituted aromatic group having 3 to 40 carbon atoms. It is a heterocyclic group or a condensed aromatic heterocyclic group.
  • HAr in the formula (D1) is selected from the following group, for example.
  • L 1 in the formula (D1) is selected from the following group, for example.
  • Ar 1 in the formula (D1) is selected from, for example, arylanthranyl groups of the following formulas (D2) and (D3).
  • R 1 to R 14 each independently represents a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkoxy having 1 to 20 carbon atoms.
  • R 1 to R 8 may be nitrogen-containing heterocyclic derivatives each of which is a hydrogen atom or a deuterium atom.
  • Ar 2 in the formula (D1) is selected from the following group, for example.
  • the following compounds are also preferably used as the nitrogen-containing aromatic polycyclic organic compound as the electron transporting compound.
  • R 1 to R 4 each independently represent a hydrogen atom, a deuterium atom, a substituted or unsubstituted aliphatic group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number of 3 to 20
  • X 1 and X 2 are each independently Represents an oxygen atom, a sulfur atom, or a dicyanomethylene group.
  • the following compounds are also preferably used as the electron transfer compound.
  • R 1 , R 2 , R 3 and R 4 are the same or different groups, and are an aromatic hydrocarbon group or a condensed aromatic hydrocarbon group represented by the following formula (D6) It is.
  • R 5 , R 6 , R 7 , R 8 and R 9 are the same or different from each other, and are a hydrogen atom, a deuterium atom, a saturated or unsaturated alkoxy group having 1 to 20 carbon atoms.
  • At least one of R 5 , R 6 , R 7 , R 8 and R 9 is a group other than a hydrogen atom or a deuterium atom.
  • the electron transfer compound may be a polymer compound containing the nitrogen-containing heterocyclic group or the nitrogen-containing heterocyclic derivative.
  • the electron transport layer of the organic EL device of the present invention particularly preferably contains at least one nitrogen-containing heterocyclic derivative represented by the following formulas (E) to (G).
  • Z 1 , Z 2, and Z 3 are each independently a nitrogen atom or a carbon atom.
  • R 1 and R 2 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, substituted or unsubstituted carbon An alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • n is an integer of 0 to 5, and when n is an integer of 2 or more, the plurality of R 1 may be the same or different from each other. Further, two adjacent R 1 's may be bonded to each other to form a substituted or unsubstituted hydrocarbon ring.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • Ar 2 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted Alternatively, it is an unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • Ar 1 or Ar 2 is a substituted or unsubstituted condensed aromatic hydrocarbon ring group having 10 to 50 ring carbon atoms or a substituted or unsubstituted condensed aromatic group having 9 to 50 ring atoms. It is a heterocyclic group.
  • Ar 3 is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms.
  • L 1 , L 2 and L 3 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, or a divalent or substituted or unsubstituted divalent atom having 9 to 50 ring atoms.
  • aryl group having 6 to 50 ring carbon atoms examples include phenyl group, naphthyl group, anthryl group, phenanthryl group, naphthacenyl group, chrysenyl group, pyrenyl group, biphenyl group, terphenyl group, tolyl group, fluoranthenyl group, fluorenyl Groups and the like.
  • heteroaryl groups having 5 to 50 ring atoms include pyrrolyl, furyl, thienyl, silolyl, pyridyl, quinolyl, isoquinolyl, benzofuryl, imidazolyl, pyrimidyl, carbazolyl, selenophenyl Group, oxadiazolyl group, triazolyl group, pyrazinyl group, pyridazinyl group, triazinyl group, quinoxalinyl group, acridinyl group, imidazo [1,2-a] pyridinyl group, imidazo [1,2-a] pyrimidinyl group and the like.
  • Examples of the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • Examples of the haloalkyl group having 1 to 20 carbon atoms include groups obtained by substituting one or more hydrogen atoms of the alkyl group with at least one halogen atom selected from fluorine, chlorine, iodine and bromine.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include groups having the above alkyl group as an alkyl moiety.
  • Examples of the arylene group having 6 to 50 ring carbon atoms include groups obtained by removing one hydrogen atom from the aryl group.
  • Examples of the divalent condensed aromatic heterocyclic group having 9 to 50 ring atoms include groups obtained by removing one hydrogen atom from the condensed aromatic heterocyclic group described as the heteroaryl group.
  • the thickness of the electron transport layer is not particularly limited, but is preferably 1 nm to 100 nm. Moreover, it is preferable to use an insulator or a semiconductor as an inorganic compound in addition to the nitrogen-containing ring derivative as a component of the electron injection layer that can be provided adjacent to the electron transport layer. If the electron injection layer is made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS and CaSe.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides.
  • the preferred thickness of the layer is about 0.1 nm to 15 nm.
  • the electron injection layer in the present invention is preferable even if it contains the above-mentioned electron donating dopant.
  • an organic layer close to the anode may be defined as a hole injection layer.
  • the hole injection layer has a function of efficiently injecting holes from the anode into the organic layer unit.
  • an aromatic amine compound for example, an aromatic amine derivative represented by the following formula (H) is preferably used.
  • Ar 1 to Ar 4 represent a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 ring carbon atoms or a condensed aromatic hydrocarbon group, a substituted or unsubstituted ring forming atom number of 5 to 50 aromatic heterocyclic groups or condensed aromatic heterocyclic groups, or a group in which these aromatic hydrocarbon groups or condensed aromatic hydrocarbon groups and aromatic heterocyclic groups or condensed aromatic heterocyclic groups are bonded.
  • L represents a substituted or unsubstituted aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring forming atom number of 5 to 50. Represents an aromatic heterocyclic group or a condensed aromatic heterocyclic group.
  • An aromatic amine represented by the following formula (J) is also preferably used for forming the hole transport layer.
  • the hole transport layer of the organic EL device of the present invention may have a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (cathode side).
  • the thickness of the hole transport layer is not particularly limited, but is preferably 10 to 200 nm.
  • a layer containing an acceptor material may be bonded to the anode side of the hole transport layer or the first hole transport layer. This is expected to reduce drive voltage and manufacturing costs.
  • the acceptor material a compound represented by the following formula (K) is preferable.
  • R 21 to R 26 may be the same as or different from each other, and are each independently a cyano group, —CONH 2 , carboxyl group, or —COOR 27 (R 27 is a group having 1 to 20 carbon atoms) Represents an alkyl group or a cycloalkyl group having 3 to 20 carbon atoms, provided that one or more pairs of R 21 and R 22 , R 23 and R 24 , and R 25 and R 26 are combined together.
  • a group represented by —CO—O—CO— may be formed.
  • R 27 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • the thickness of the layer containing the acceptor material is not particularly limited, but is preferably 5 to 20 nm.
  • n doping is a method of doping a metal such as Li or Cs into an electron transport material
  • p doping is F 4 TCNQ (2, 3, 5, 6) as a hole transport material.
  • the space layer is a fluorescent layer for the purpose of adjusting the carrier balance so that excitons generated in the phosphorescent layer are not diffused into the fluorescent layer. It is a layer provided between the layer and the phosphorescent light emitting layer.
  • the space layer can be provided between the plurality of phosphorescent light emitting layers. Since the space layer is provided between the light emitting layers, a material having both electron transport properties and hole transport properties is preferable. In order to prevent diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more. Examples of the material used for the space layer include the same materials as those used for the above-described hole transport layer.
  • the organic EL device of the present invention preferably has a barrier layer such as an electron barrier layer, a hole barrier layer, or a triplet barrier layer in a portion adjacent to the light emitting layer.
  • the electron barrier layer is a layer that prevents electrons from leaking from the light emitting layer to the hole transport layer
  • the hole barrier layer is a layer that prevents holes from leaking from the light emitting layer to the electron transport layer. is there.
  • the triplet barrier layer prevents the triplet excitons generated in the light emitting layer from diffusing into the surrounding layers, and confins the triplet excitons in the light emitting layer, thereby transporting electrons other than the light emitting dopant of the triplet excitons.
  • the energy difference ⁇ E T is preferably as large as possible relative to the thermal energy at room temperature, more preferably 0.1 eV or more, and particularly preferably 0.2 eV or more.
  • the electron mobility of the material constituting the triplet barrier layer is preferably 10 ⁇ 6 cm 2 / Vs or more in the range of the electric field strength of 0.04 to 0.5 MV / cm.
  • the electron mobility is determined by impedance spectroscopy.
  • the electron injection layer is desirably 10 ⁇ 6 cm 2 / Vs or more in the range of electric field strength of 0.04 to 0.5 MV / cm. This facilitates the injection of electrons from the cathode into the electron transport layer, and also promotes the injection of electrons into the adjacent barrier layer and the light emitting layer, thereby enabling driving at a lower voltage.
  • intermediate 1 (6.6 g, 23.7 mmol), triphenylphosphine (15.6 g, 59.3 mmol), and o-dichlorobenzene (24 mL) were sequentially added and heated at 180 ° C. for 8 hours.
  • the reaction solution was cooled to room temperature and then purified by silica gel column chromatography to obtain Intermediate 2 (4 g, yield 68%).
  • the intermediate body 2 was identified by analysis of FD-MS (field desorption mass spectrum).
  • Intermediate 1 In the synthesis of Intermediate 1, intermediate 2 was used instead of 2-nitro-1,4-dibromobenzene, and 9-phenylcarbazol-3-ylboronic acid was used instead of phenylboronic acid. .
  • the powder was identified as Intermediate 3 by FD-MS (field desorption mass spectrum) analysis.
  • intermediate 3 (1.6 g, 3.9 mmol), 4-bromobenzonitrile (0.71 g, 3.9 mmol), tris (dibenzylideneacetone) dipalladium (0.071 g, 0.078 mmol), Tri-t-butylphosphonium tetrafluoroborate (0.091 g, 0.31 mmol), t-butoxy sodium (0.53 g, 5.5 mmol), and anhydrous toluene (20 mL) were sequentially added, and the mixture was heated to reflux for 8 hours. After cooling the reaction solution to room temperature, the organic layer was separated, and the organic solvent was distilled off under reduced pressure.
  • the compound H1 was synthesized in the same manner using 4′-bromobiphenyl-3-carbonitrile instead of 4-bromobenzonitrile.
  • FD-MS field desorption mass spectrum
  • UV ultraviolet absorption maximum wavelength
  • FL fluorescence emission maximum wavelength
  • the compound H1 was synthesized in the same manner using 4′-bromobiphenyl-4-carbonitrile instead of 4-bromobenzonitrile.
  • FD-MS field desorption mass spectrum
  • UV (PhMe) ultraviolet absorption maximum wavelength
  • ⁇ max ultraviolet absorption maximum wavelength
  • UV (PhMe) fluorescence emission maximum wavelength
  • ⁇ max UV absorption maximum wavelength
  • the compound H1 was synthesized in the same manner using 3′-bromobiphenyl-4-carbonitrile instead of 4-bromobenzonitrile.
  • FD-MS field desorption mass spectrum
  • UV ultraviolet absorption maximum wavelength
  • FL fluorescence emission maximum wavelength
  • Synthesis Example 15 Synthesis of Compound H15
  • the compound H1 was synthesized in the same manner using 2-bromo-8-cyanodibenzofuran instead of 4-bromobenzonitrile.
  • FD-MS field desorption mass spectrum of the obtained compound is shown below.
  • Example 1 Manufacture of organic EL elements
  • a glass substrate with an ITO transparent electrode of 25 mm ⁇ 75 mm ⁇ thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode line after washing is mounted on the substrate holder of the vacuum deposition apparatus, and the following electron-accepting (acceptor) compound is first formed so as to cover the transparent electrode on the surface on which the transparent electrode line is formed.
  • C-1 was vapor-deposited to form a compound C-1 film having a thickness of 5 nm.
  • the following aromatic amine derivative (Compound X1) was deposited as a first hole transport material to form a first hole transport layer having a thickness of 65 nm.
  • the following aromatic amine derivative (Compound X2) was deposited as a second hole transport material to form a second hole transport layer having a thickness of 10 nm.
  • the host material 1 and the host material 2 described in Table 1 below as the host material and the following compound Ir (bzq) 3 as the phosphorescent material are co-evaporated, and the film thickness is 25 nm.
  • a phosphorescent light emitting layer was formed.
  • the concentration of the compound Ir (bzq) 3 in the light emitting layer was 10.0% by mass, the concentration of the host material 1 was 45.0% by mass, and the concentration of the host material 2 was 45.0% by mass.
  • This co-deposited film functions as a light emitting layer.
  • the following compound ET was formed to a thickness of 35 nm.
  • This compound ET film functions as an electron transport layer.
  • LiF was used as an electron injecting electrode (cathode), and the film thickness was set to 1 nm at a film forming rate of 0.1 angstrom / min.
  • Metal Al was vapor-deposited on this LiF film, and a metal cathode was formed with a film thickness of 80 nm to produce an organic EL device.
  • the compounds used in Examples and Comparative Examples are shown below.
  • Luminous efficiency of the obtained organic EL device was measured at room temperature and DC constant current drive (current density 1 mA / cm 2 ). Further, an 80% lifetime (time until the luminance is reduced to 80% of the initial luminance by constant current driving) at an initial luminance of 10,000 cd / m 2 was obtained. The results are shown in Table 1.
  • Examples 2 to 5 and Comparative Example 1 An organic EL element was produced in the same manner as in Example 1 except that the light emitting layer was formed using the host material 1 and the host material 2 shown in Table 2 as the host material of the light emitting layer. Table 1 shows the results of luminous efficiency and 80% lifetime of the obtained organic EL device.
  • the light emitting layer is obtained by combining the compounds H1 and H3 to H5 which are the first host materials represented by the formula (A) and the compound F2 or F3 which is the second host material represented by the formula (1).
  • the organic EL elements of Examples 1 to 5 used as the host material (cohost) of Example 1 had good luminous efficiency. Furthermore, the organic EL devices of Examples 1 to 5 have a longer lifetime than the organic EL devices of Comparative Example 1 using the same central skeleton but the compound F1 and the compound F3, which are not substituted with cyano groups at the ends, as cohosts. It was converted.
  • Example 6 Manufacture of organic EL elements
  • a glass substrate manufactured by Geomatic Co., Ltd.
  • a transparent electrode anode, 70 nm
  • the cleaned glass substrate with a transparent electrode line is mounted on a substrate holder of a vacuum deposition apparatus, and the compound electrode C is formed by resistance heating vapor deposition so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. -1 was laminated.
  • a hole injection layer adjacent to the anode having a thickness of 10 nm was formed.
  • compound X4 was laminated by resistance heating vapor deposition. This formed the 65-nm-thick 1st positive hole transport layer.
  • the compound X3 was laminated
  • a second hole transport layer having a thickness of 10 nm was formed.
  • compound H5 as the first host material, compound F2 as the second host material, and Ir (bzq) 3 as the phosphorescent dopant were co-evaporated by resistance heating. This formed the 25-nm-thick light emitting layer which shows yellow light emission.
  • concentration of the 1st host material in the light emitting layer, the 2nd host material, and the luminescent dopant was 45 mass%, 45 mass%, and 10 mass%, respectively.
  • the compound ET was laminated
  • Examples 7 to 17 and Comparative Examples 3 and 6 to 7 An organic EL device was produced in the same manner as in Example 6 except that the light emitting layer was formed using the host material 1 and the host material 2 shown in Table 2 as the host material of the light emitting layer. Table 2 shows the results of the voltage, luminous efficiency, and 90% lifetime of the obtained organic EL device.
  • Comparative Examples 2, 4 and 5 An organic EL device was produced in the same manner as in Example 6 except that the light emitting layer was formed using the host material 2 (90% by mass) shown in Table 2 as the host material of the light emitting layer. Table 2 shows the results of the voltage, luminous efficiency, and 90% lifetime of the obtained organic EL device.
  • Example 18 Manufacture of organic EL elements
  • a glass substrate manufactured by Geomatic Co., Ltd.
  • a transparent ITO electrode anode, 130 nm
  • UV ozone cleaning for 30 minutes. It was.
  • the cleaned glass substrate with a transparent electrode line is mounted on a substrate holder of a vacuum deposition apparatus, and the compound electrode C is formed by resistance heating vapor deposition so as to cover the transparent electrode on the surface on which the transparent electrode line is formed.
  • -1 was laminated. This formed a hole injection layer adjacent to the 5 nm thick anode.
  • compound X1 was laminated by resistance heating vapor deposition.
  • a first hole transport layer having a thickness of 160 nm was formed.
  • the compound X3 was laminated
  • a second hole transport layer having a thickness of 10 nm was formed.
  • compound H5 as the first host material, compound F2 as the second host material, and Ir (ppy) 3 as the phosphorescent dopant were co-deposited by resistance heating.
  • a light emitting layer having a thickness of 25 nm and emitting green light was formed.
  • the concentrations of the first host material, the second host material, and the luminescent dopant in the light emitting layer were 45% by mass, 45% by mass, and 10% by mass, respectively.
  • the compound ET was laminated
  • Examples 19 to 20 and Comparative Example 8 An organic EL device was produced in the same manner as in Example 18 except that the light emitting layer was formed using the host material 1 and the host material 2 shown in Table 3 as the host material of the light emitting layer. Table 3 shows the results of the voltage, external quantum efficiency, and 95% lifetime of the obtained organic EL device.
  • the organic EL elements of Examples 18 to 20 using the compound represented by the formula (A) as the first host material and the compound represented by the formula (1) as the second host material are the organic EL elements of Comparative Example 8.
  • the lifetime is longer than that of the EL element.
  • Examples 21 to 28 and Comparative Examples 9 to 11 An organic EL device was produced in the same manner as in Example 1 except that the light emitting layer was formed using the host material 1 and the host material 2 shown in Table 4 as the host material of the light emitting layer. Table 4 shows the results of the luminous efficiency and 90% lifetime of the obtained organic EL device.
  • Examples 29 to 35 and Comparative Examples 12 to 14 An organic EL device was produced in the same manner as in Example 18 except that the light emitting layer was formed using the host material 1 and the host material 2 shown in Table 5 as the host material of the light emitting layer. Table 5 shows the results of the voltage, external quantum efficiency, and 95% lifetime of the obtained organic EL device.
  • the organic EL device of the present invention has a good long-life performance.

Abstract

第一ホストとしてシアノ基を有する特定構造のビスカルバゾール誘導体を用い、第二ホストとしてカルバゾール誘導体構造及び窒素含有へテロ芳香族環の両方を有する化合物を用いたことを特徴とする有機エレクトロルミネッセンス素子により、長寿命な有機エレクトロルミネッセンス素子を提供する。

Description

有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子(以下、有機EL素子ということもある。)に電圧を印加すると、陽極から正孔が、また陰極から電子が、それぞれ発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子及び三重項励起子が25%:75%の割合で生成する。発光原理に従って分類した場合、蛍光型では、一重項励起子による発光を用いるため、有機EL素子の内部量子効率は25%が限界といわれている。一方、燐光型では、三重項励起子による発光を用いるため、一重項励起子から項間交差が効率的に行われた場合には内部量子効率が100%まで高められることが知られている。
 従来、有機EL素子においては、蛍光型、及び燐光型の発光メカニズムに応じ、最適な素子設計がなされてきた。特に燐光型の有機EL素子については、その発光特性から、蛍光素子技術の単純な転用では高性能な素子が得られないことが知られている。その理由は、一般的に以下のように考えられている。
 まず、燐光発光は、三重項励起子を利用した発光であるため、発光層に用いる化合物のエネルギーギャップが大きくなくてはならない。何故なら、ある化合物の一重項エネルギー(最低励起一重項状態と基底状態とのエネルギー差をいう。)の値は、通常、その化合物の三重項エネルギー(最低励起三重項状態と基底状態とのエネルギー差をいう。)の値よりも大きいからである。
 従って、燐光発光性ドーパント材料の三重項エネルギーを効率的に素子内に閉じ込めるためには、まず、燐光発光性ドーパント材料の三重項エネルギーよりも大きな三重項エネルギーを有するホスト材料を発光層に用いなければならない。さらに、発光層に隣接する電子輸送層及び正孔輸送層を設ける際に、電子輸送層及び正孔輸送層にも燐光発光性ドーパント材料よりも大きな三重項エネルギーを有する化合物を用いなければならない。このように、従来の有機EL素子の素子設計思想に基づく場合、蛍光型の有機EL素子に用いる化合物と比べて、より大きなエネルギーギャップを有する化合物を燐光型の有機EL素子に用いることにつながり、有機EL素子全体の駆動電圧が上昇する。
 また、蛍光素子で有用であった酸化耐性や還元耐性の高い炭化水素系の化合物はπ電子雲の広がりが大きいため、エネルギーギャップが小さい。そのため、燐光型の有機EL素子では、このような炭化水素系の化合物が選択され難く、酸素や窒素などのヘテロ原子を含んだ有機化合物が選択され、その結果、燐光型の有機EL素子は、蛍光型の有機EL素子と比較して寿命が短いという問題を有する。
 さらに、燐光発光性ドーパント材料の三重項励起子の励起子緩和速度が一重項励起子と比較して非常に長いことも素子性能に大きな影響を与える。即ち、一重項励起子からの発光は、発光に繋がる緩和速度が速いため、発光層の周辺層(例えば、正孔輸送層や電子輸送層)への励起子の拡散が起きにくく、効率的な発光が期待される。一方、三重項励起子からの発光は、スピン禁制であり緩和速度が遅いため、周辺層への励起子の拡散が起きやすく、特定の燐光発光性化合物以外からは熱的なエネルギー失活が起きてしまう。つまり、蛍光型の有機EL素子と比較して、電子及び正孔の再結合領域のコントロールがより重要となる。
 以上のような理由より、燐光型の有機EL素子の高性能化においては、蛍光型の有機EL素子と異なる材料選択及び素子設計が必要となる。
 このような燐光型の有機EL素子用材料として、従来から、高い三重項エネルギーを示し、且つ正孔輸送性材料として知られているカルバゾール誘導体が、有用な燐光ホスト材料として用いられていた。
 特許文献1及び2には、二つのカルバゾールが連結したビスカルバゾール骨格に、含窒素複素環基を導入した化合物を、燐光型の有機EL素子の発光層におけるホスト材料として用いることが記載されている。特許文献1及び2に記載の化合物は、正孔輸送性のカルバゾール骨格に対して電子欠乏性の含窒素複素環基を導入することにより、電荷輸送のバランスをとった分子設計となっている。しかし、特許文献1及び2に記載の化合物を用いた有機EL素子においては、長寿命化が技術的課題となっている。
 有機EL素子を長寿命化する取り組みとしては、発光層に複数のホスト材料を混合することで長寿命化が得られることが特許文献3に開示されており、混合する種々のホスト材料の組合せ検討がなされている。
 しかしながら、有機EL素子については更なる長寿命化が望まれている。
WO2011/132683号公報 WO2011/132684号公報 WO2011/155507号公報
 本発明は、長寿命な有機エレクトロルミネッセンス素子を提供することを目的とする。
 本発明者らが前記目的を達成するために鋭意研究を重ねた結果、発光層の第一ホストとしてシアノ基を有する特定構造のビスカルバゾール誘導体を用い、該発光層の第二ホストとしてカルバゾール誘導体構造及び窒素含有へテロ芳香族環の両方を有する化合物を用いることにより、有機EL素子の長寿命化を実現可能であることを見出し、本発明に至った。
 すなわち、本発明は、以下の発明を提供するものである。
1.陽極と陰極との間に少なくとも発光層を備える有機エレクトロルミネッセンス素子であって、該発光層が、下記一般式(A)で表される第一ホスト材料と、下記一般式(1)で表される第二ホスト材料と、発光材料とを含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000007
[式(A)中、
 A1及びA2は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の複素環基を表す。
 A3は、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基を表す。
 mは、0~3の整数を表す。
 X1~X8およびY1~Y8は、それぞれ独立に、N又はCRaを表す。
 Raは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換のシリル基、ハロゲン原子又はシアノ基を表す。Raが複数存在する場合、複数のRaはそれぞれ同一でも異なっていてもよい。
 X5~X8の1つと、Y1~Y4の1つは、A3を介して結合している。
 さらに、式(A)は、下記(i)~(v)の少なくともいずれかを満たす。
(i)A1およびA2の少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(ii)X1~X4およびY5~Y8の少なくとも1つはCRaであり、X1~X4およびY5~Y8におけるRaの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(iii)mは1~3の整数であり、A3の少なくとも1つは、シアノ基で置換された環形成炭素数6~30の2価の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の2価の複素環基である。
(iv)X5~X8およびY1~Y4の少なくとも1つはCRaであり、X5~X8およびY1~Y8におけるRaの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(v)X1~X8およびY1~Y8の少なくとも1つはC-CNである。]
Figure JPOXMLDOC01-appb-C000008
[一般式(1)中、
 Z1は、aにおいて縮合している下記一般式(1-1)又は(1-2)で表される環構造を表す。Z2は、bにおいて縮合している下記一般式(1-1)又は(1-2)で表される環構造を表す。ただし、Z1又はZ2の少なくともいずれか1つは下記一般式(1-1)で表される。
 M1は、置換もしくは無置換の環形成原子数5~30の窒素含有ヘテロ芳香族環であり、
 L1は、単結合、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、環形成炭素数5~30のシクロアルキレン基、又は、これらが連結した基を表す。
 kは、1又は2を表す。]
Figure JPOXMLDOC01-appb-C000009
[上記一般式(1-1)において、
 cは、前記一般式(1)のa又はbにおいて縮合していることを表す。
 上記(1-2)において、d,e及びfのいずれか1つは、前記一般式(1)のa又はbにおいて縮合していることを表す。
 上記一般式(1-1)および(1-2)において、
 X11は、硫黄原子、酸素原子、N-R19、又はC(R20)(R21)を表す。
 R11~R21は、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 また、隣り合うR11~R21は互いに結合して環を形成していてもよい。]
2.前記第一ホスト材料が、前記(i)及び(ii)の少なくとも一方を満たす上記1に記載の有機エレクトロルミネッセンス素子。
3.前記一般式(A)における前記A3は、置換もしくは無置換の環形成炭素数6以下の2価の単環炭化水素基、又は置換もしくは無置換の環形成原子数6以下の2価の単環複素環基を表す上記1又は2に記載の有機エレクトロルミネッセンス素子。
4.前記第二ホスト材料が、下記一般式(2)で表される上記1~3のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000010
[一般式(2)中、
 Z1は、aにおいて縮合している前記一般式(1-1)又は(1-2)で表される環構造を表す。Z2は、bにおいて縮合している前記一般式(1-1)又は(1-2)で表される環構造を表す。但し、Z1又はZ2の少なくともいずれか1つは前記一般式(1-1)で表される。
 L1は、前記一般式(1)におけるL1と同義である。
 X12~X14は、それぞれ独立に、窒素原子、CH、又は、R31もしくはL1と結合する炭素原子であり、X12~X14のうち少なくとも1つは窒素原子である。
 Y11~Y13は、それぞれ独立に、CH、又は、R31もしくはL1と結合する炭素原子を表す。
 R31は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 R31が複数存在する場合、複数のR31は互いに同一でも異なっていてもよく、また、隣り合うR31は互いに結合して環を形成していてもよい。
 kは1又は2を表し、nは0~4の整数を表す。
 前記一般式(1-1)におけるcは、前記一般式(2)のa又はbにおいて縮合し、
 前記一般式(1-2)におけるd,e及びfのいずれか1つは、前記一般式(2)のa又はbにおいて縮合する。]
5.前記第二ホスト材料が、下記一般式(3)で表される上記1~4のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000011
[一般式(3)中
 L1は、前記一般式(1)におけるL1と同義である。
 X12~X14は、それぞれ独立に、窒素原子、CH、又は、R31もしくはL1と結合する炭素原子であり、X12~X14のうち少なくとも1つは窒素原子である。
 Y11~Y13は、それぞれ独立に、CH、又は、R31もしくはL1と結合する炭素原子を表す。
 R31は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 R31が複数存在する場合、複数のR31は互いに同一でも異なっていてもよく、また、隣り合うR31は互いに結合して環を形成していてもよい。
 nは、0~4の整数を表す。
 R41~R48は、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 また、隣り合うR41~R48は互いに結合して環を形成していてもよい。]
6.前記第一ホスト材料が、前記(i)のみを満たす上記1~5のいずれかに記載の有機エレクトロルミネッセンス素子。
7.前記第二ホスト材料が、下記一般式(4)で表される上記1~6のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000012
[一般式(4)において、
 L1は、前記一般式(1)におけるL1と同義である。
 X12~X14は、それぞれ独立に、窒素原子、CH、又は、R31もしくはL1と結合する炭素原子であり、X12~X14のうち少なくとも1つは窒素原子である。
 Y11~Y13は、それぞれ独立に、CH、又は、R31もしくはL1と結合する炭素原子を表す。
 R31は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 R31が複数存在する場合、複数のR31は互いに同一でも異なっていてもよく、また、隣り合うR31は互いに結合して環を形成していてもよい。
 nは、0~4の整数を表す。
 L2およびL3は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、環形成炭素数5~30のシクロアルキレン基、又は、これらが連結した基を表す。
 R51~R54は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 R51が複数存在する場合、複数のR51は互いに同一でも異なっていてもよく、また、隣り合うR51は互いに結合して環を形成していてもよい。
 R52が複数存在する場合、複数のR52は互いに同一でも異なっていてもよく、また、隣り合うR52は互いに結合して環を形成していてもよい。
 R53が複数存在する場合、複数のR53は互いに同一でも異なっていてもよく、また、隣り合うR53は互いに結合して環を形成していてもよい。
 R54が複数存在する場合、複数のR54は互いに同一でも異なっていてもよく、また、隣り合うR54は互いに結合して環を形成していてもよい。
 M2は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の複素環基を表す。
 p及びsは、それぞれ独立に、0~4の整数を表し、q及びrは、それぞれ独立に、0~3の整数を表す。]
8.前記式(A)における前記A1および前記A2の少なくとも1つが、シアノ基で置換されたフェニル基、シアノ基で置換されたナフチル基、シアノ基で置換されたフェナントリル基、シアノ基で置換されたジベンゾフラニル基、シアノ基で置換されたジベンゾチオフェニル基、シアノ基で置換されたビフェニリル基、シアノ基で置換されたターフェニリル基、シアノ基で置換された9,9-ジフェニルフルオレニル基、シアノ基で置換された9,9’-スピロビ[9H-フルオレン]-2-イル基、シアノ基で置換された9,9-ジメチルフルオレニル基、又はシアノ基で置換されたトリフェニレニル基である上記1~7のいずれかに記載の有機エレクトロルミネッセンス素子。
9.前記発光材料が、イリジウム(Ir)、オスミウム(Os)及び白金(Pt)から選択される金属原子のオルトメタル化錯体である燐光発光材料を含有する上記1~8のいずれかに記載の有機エレクトロルミネッセンス素子。
10.前記燐光発光材料の発光ピーク波長が490nm以上700nm以下である上記9に記載の有機エレクトロルミネッセンス素子。
 本発明によれば、長寿命な有機エレクトロルミネッセンス素子を提供することができる。
図1は本発明の有機EL素子の一例を示す概略断面図である。
 本発明の有機エレクトロルミネッセンス素子(以下、「有機EL素子」と略称することがある。)は、陽極と陰極との間に少なくとも発光層を備え、該発光層が、下記一般式(A)で表される第一ホスト材料と、下記一般式(1)で表される第二ホスト材料と、発光材料とを含有することを特徴とする。
(第一ホスト材料)
Figure JPOXMLDOC01-appb-C000013
[式(A)中、
 A1及びA2は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の複素環基を表す。
 A3は、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基を表す。
 mは、0~3の整数を表す。
 X1~X8およびY1~Y8は、それぞれ独立に、N又はCRaを表す。
 Raは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換のシリル基、ハロゲン原子又はシアノ基を表す。Raが複数存在する場合、複数のRaはそれぞれ同一でも異なっていてもよい。
 X5~X8の1つと、Y1~Y4の1つは、A3を介して結合している。
 さらに、式(A)は、下記(i)~(v)の少なくともいずれかを満たす。
(i)A1およびA2の少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(ii)X1~X4およびY5~Y8の少なくとも1つはCRaであり、X1~X4およびY5~Y8におけるRaの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(iii)mは1~3の整数であり、A3の少なくとも1つは、シアノ基で置換された環形成炭素数6~30の2価の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の2価の複素環基である。
(iv)X5~X8およびY1~Y4の少なくとも1つはCRaであり、X5~X8およびY1~Y8におけるRaの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(v)X1~X8およびY1~Y8の少なくとも1つはC-CNである。]
 なお、式(A)中、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、シアノ基で置換された環形成原子数5~30の複素環基は、さらに、シアノ基以外の置換基を有していてもよい。
 また、前記mは好ましくは0~2であり、より好ましくは0又は1である。mが0である場合、X5~X8の1つと、Y1~Y4の1つは、単結合を介して結合する。
 前記A1、A2およびRaの示す環形成炭素数6~30の芳香族炭化水素基としては、非縮合芳香族炭化水素基及び縮合芳香族炭化水素基が挙げられ、より具体的には、フェニル基、ナフチル基、フェナントリル基、ビフェニル基、ターフェニル基、クォーターフェニル基、フルオランテニル基、トリフェニレニル基、フェナントレニル基、フルオレニル基、スピロフルオレニル基、9,9-ジフェニルフルオレニル基、9,9’-スピロビ[9H-フルオレン]-2-イル基、9,9-ジメチルフルオレニル基、ベンゾ[c]フェナントレニル基、ベンゾ[a]トリフェニレニル基、ナフト[1,2-c]フェナントレニル基、ナフト[1,2-a]トリフェニレニル基、ジベンゾ[a,c]トリフェニレニル基、ベンゾ[b]フルオランテニル基等が挙げられ、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、トリフェニレニル基、フルオレニル基、スピロビフルオレニル基、フルオランテニル基が好ましく、フェニル基、1-ナフチル基、2-ナフチル基、ビフェニル-2-イル基、ビフェニル-3-イル基、ビフェニル-4-イル基、フェナントレン-9-イル基、フェナントレン-3-イル基、フェナントレン-2-イル基、トリフェニレン-2-イル基、9,9-ジメチルフルオレン-2-イル基、フルオランテン-3-イル基がさらに好ましい。
 前記A3の示す環形成炭素数6~30の2価の芳香族炭化水素基としては、上記環形成炭素数6~30の芳香族炭化水素基で挙げた基を2価にした基が挙げられる。
 前記A1、A2およびRaの示す環形成原子数5~30の複素環基としては、非縮合複素環基及び縮合複素環基が挙げられ、より具体的には、ピロール環、イソインドール環、ベンゾフラン環、イソベンゾフラン環、ジベンゾチオフェン環、イソキノリン環、キノキサリン環、フェナントリジン環、フェナントロリン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、インドール環、キノリン環、アクリジン環、ピロリジン環、ジオキサン環、ピペリジン環、モルフォリン環、ピペラジン環、カルバゾール環、フラン環、チオフェン環、オキサゾール環、オキサジアゾール環、ベンゾオキサゾール環、チアゾール環、チアジアゾール環、ベンゾチアゾール環、トリアゾール環、イミダゾール環、ベンゾイミダゾール環、ピラン環、ジベンゾフラン環、ベンゾ[c]ジベンゾフラン環及びこれらの誘導体から形成される基等が挙げられ、ジベンゾフラン環、カルバゾール環、ジベンゾチオフェン環及びこれらの誘導体から形成される基が好ましく、ジベンゾフラン-2-イル基、ジベンゾフラン-4-イル基、9-フェニルカルバゾール-3-イル基、9-フェニルカルバゾール-2-イル基、ジベンゾチオフェン-2-イル基、ジベンゾチオフェン-4-イル基がさらに好ましい。
 前記A3の示す環形成原子数5~30の2価の複素環基としては、上記環形成原子数5~30の複素環基で挙げた基を2価にした基が挙げられる。
 前記Raの示す炭素数1~30のアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、アダマンチル基等が挙げられ、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基が好ましい。
 前記Raの示す置換もしくは無置換のシリル基の例としては、トリメチルシリル基、トリエチルシリル基、トリブチルシリル基、ジメチルエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、ジメチルイソプロピルシリル基、ジメチルプロピルシリル基、ジメチルブチルシリル基、ジメチルターシャリーブチルシリル基、ジエチルイソプロピルシリル基、フェニルジメチルシリル基、ジフェニルメチルシリル基、ジフェニルターシャリーブチルシリル基、トリフェニルシリル基等が挙げられ、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基が好ましい。
 前記Raの示すハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられ、フッ素が好ましい。
 前記Raとしては、水素原子、または置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基が好ましい。
 上記及び後述する「置換もしくは無置換」及び「置換基を有していてもよい」という場合の任意の置換基としては、ハロゲン原子(フッ素、塩素、臭素、ヨウ素)、シアノ基、炭素数1~20(好ましくは1~6)のアルキル基、炭素数3~20(好ましくは5~12)のシクロアルキル基、炭素数1~20(好ましくは1~5)のアルコキシ基、炭素数1~20(好ましくは1~5)のハロアルキル基、炭素数1~20(好ましくは1~5)のハロアルコキシ基、炭素数1~10(好ましくは1~5)のアルキルシリル基、環形成炭素数6~30(好ましくは6~18)の芳香族炭化水素基、環形成炭素数6~30(好ましくは6~18)のアリールオキシ基、炭素数6~30(好ましくは6~18)のアリールシリル基、炭素数7~30(好ましくは7~20)のアラルキル基、及び環形成原子数5~30の(好ましくは5~18)ヘテロアリール基が挙げられる。
 上記任意の置換基として用いられる炭素数1~20のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基等が挙げられる。
 上記任意の置換基として用いられる炭素数3~20のシクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、アダマンチル基等が挙げられる。
 上記任意の置換基として用いられる炭素数1~20のアルコキシ基の具体例としては、アルキル部位が前記アルキル基である基が挙げられる。
 上記任意の置換基として用いられる炭素数1~20のハロアルキル基の具体例としては、前記したアルキル基の一部または全部の水素原子が、ハロゲン原子で置換された基が挙げられる。
 上記任意の置換基として用いられる炭素数1~20のハロアルコキシ基の具体例としては、前記したアルコキシ基の一部または全部の水素原子が、ハロゲン原子で置換された基が挙げられる。
 上記任意の置換基として用いられる炭素数1~10のアルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリブチルシリル基、ジメチルエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、ジメチルイソプロピルシリル基、ジメチルプロピルシリル基、ジメチルブチルシリル基、ジメチルターシャリーブチルシリル基、ジエチルイソプロピルシリル基等が挙げられる。
 上記任意の置換基として用いられる環形成炭素数6~30の芳香族炭化水素基の具体例としては、前記A1、A2及びRaの示す芳香族炭化水素基と同じものが挙げられる。
 上記任意の置換基として用いられる環形成炭素数6~30のアリールオキシ基の具体例としては、アリール部位が前記芳香族炭化水素基である基が挙げられる。
 上記任意の置換基として用いられる炭素数6~30のアリールシリル基の具体例としては、フェニルジメチルシリル基、ジフェニルメチルシリル基、ジフェニルターシャリーブチルシリル基、トリフェニルシリル基等が挙げられる。
 上記任意の置換基として用いられる炭素数7~30のアラルキル基の具体例としては、ベンジル基、2-フェニルプロパン-2-イル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、2-β-ナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピロリル)エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチルベンジル基、p-クロロベンジル基、m-クロロベンジル基、o-クロロベンジル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒドロキシベンジル基、m-ヒドロキシベンジル基、o-ヒドロキシベンジル基、p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニトロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベンジル基、m-シアノベンジル基、o-シアノベンジル基、1-ヒドロキシ-2-フェニルイソプロピル基、1-クロロ-2-フェニルイソプロピル基等が挙げられる。
 上記任意の置換基として用いられる環形成原子数5~30のヘテロアリール基の具体例としては、前記A1、A2及びRaの示す複素環基と同じものが挙げられる。
 上記任意の置換基としては、フッ素原子、シアノ基、炭素数1~20のアルキル基、環形成炭素数6~30の芳香族炭化水素基、環形成原子数5~30のヘテロアリール基が好ましく、フッ素原子、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、トリフェニレニル基、フルオレニル基、スピロビフルオレニル基、フルオランテニル基、ジベンゾフラン環、カルバゾール環、ジベンゾチオフェン環及びこれらの誘導体から形成される基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基がより好ましい。
 上記任意の置換基は、さらに置換基を有していてもよく、その具体例は上記任意の置換基と同様である。
 なお、本明細書において、「置換もしくは無置換の炭素数a~bのX基」という表現における「炭素数a~b」は、X基が無置換である場合の炭素数を表すものであり、X基が置換されている場合の置換基の炭素数は含めない。
 本発明において、水素原子とは、中性子数が異なる同位体、すなわち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)、を包含する。
 上記式(A)で表される第一ホスト材料は、下記式(a)、(b)で表される基が-(A3m-を介して連結されており、その結合位置は前記X5~X8のいずれか1つと前記Y1~Y4のいずれか1つである。具体的には、X6-(A3m-Y3、X6-(A3m-Y2、X6-(A3m-Y4、X6-(A3m-Y1、X7-(A3m-Y3、X5-(A3m-Y3、X8-(A3m-Y3、X7-(A3m-Y2、X7-(A3m-Y4、X7-(A3m-Y1、X5-(A3m-Y2、X8-(A3m-Y2、X8-(A3m-Y4、X8-(A3m-Y1、X5-(A3m-Y1、X5-(A3m-Y4が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 上記式(A)で表される第一ホスト材料は、上記式(a)、(b)で表される基が、X6-(A3m-Y3、X6-(A3m-Y2、X7-(A3m-Y3のいずれかの結合位置で結合していることが好ましい。すなわち、下記式(II)、(III)、(IV)のいずれかで表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000015
(式(II)~(IV)中、X1~X8、Y1~Y8、A1~A3およびmは、それぞれ、前記式(A)におけるX1~X8、Y1~Y8、A1~A3及びmと同じである。さらに、式(II)、(III)、(IV)は、前記式(A)における前記(i)~(v)の少なくともいずれかの条件を満たす。)
 上記式(A)で表される第一ホスト材料は、上記(i)~(v)の少なくともいずれかを満たす。すなわち、上記式(a)、(b)で表される基が連結されたビスカルバゾール誘導体に対して、シアノ基が導入されている。
 第一ホスト材料は、電子注入・輸送性のシアノ基が導入されることにより、正孔耐性が向上している。そのため、シアノ基を有する第一ホスト材料を含有する本発明の有機EL素子は、シアノ基を有さないホスト材料を使用する従来有機EL素子と比較して長寿命化する効果を奏する。
 前記一般式(A)におけるA3は、単結合、置換もしくは無置換の環形成炭素数6以下の2価の単環炭化水素基、又は置換もしくは無置換の環形成原子数6以下の2価の単環複素環基を表すことが好ましい。
 前記A3の示す環形成炭素数6以下の単環炭化水素基の例としては、フェニレン基、シクロペンテニレン基、シクロペンタジエニレン基、シクロヘキシレン基、シクロペンチレン基等が挙げられ、フェニレン基が好ましい。
 前記A3の示す環形成原子数6以下の単環複素環基の例としては、ピロリレン基、ピラジニレン基、ピリジニレン基、フリレン基、チオフェニレン基等が挙げられる。
 前記一般式(A)、(II)、(III)及び(IV)においては、mが0であってX5~X8の1つと、Y1~Y4の1つが単結合を介して結合しているか、A3が、置換もしくは無置換の環形成炭素数6以下の単環炭化水素基、または置換もしくは無置換の環形成原子数6以下の単環複素環基であることが好ましい。この場合、上記式(a)、(b)で表される環(例えばカルバゾール環)のねじれが小さくなり、π電子の共役が保持されやすいため、HOMO(最高被占有分子軌道)がカルバゾール骨格全体にわたって拡がり、カルバゾール骨格の正孔注入・輸送性が保持される。中でも、mが0であってX5~X8の1つと、Y1~Y4の1つが単結合を介して結合しているか、前記A3が、置換もしくは無置換のフェニレン基であることが好ましい。
 第一ホスト材料は、下記(i)および下記(ii)の少なくともいずれかを満たすことが好ましい。
(i)前記A1、前記A2の少なくとも1つがシアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
(ii)X1~X4およびY5~Y8の少なくとも1つはCRaであり、X1~X4およびY5~Y8におけるRaの少なくとも1つはシアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、またはシアノ基で置換された環形成原子数5~30の複素環基である。
 すなわち、第一ホスト材料は下記(1)~(3)のいずれかに該当することが好ましい。
(1)上記(i)を満たし、上記(ii)~(v)を満たさない。
(2)上記(ii)を満たし、上記(i)、(iii)~(v)を満たさない。
(3)上記(i)および上記(ii)の両方を満たし、上記(iii)~(v)を満たさない。
 上記(i)及び/又は(ii)を満たす第一ホスト材料は、上記式(a)、(b)で表される基を有する中心骨格に対して、この中心骨格の末端側にシアノ基を有する芳香族炭化水素基またはシアノ基を有する複素環基を導入した構造である。
 上記式(a)、(b)で表される基を有する中心骨格は、正孔注入・輸送性ユニットとして機能し、シアノ基を有する芳香族炭化水素基またはシアノ基を有する複素環基は、電子注入・輸送性ユニットとして機能する。上記(i)又は(ii)を満たす第一ホスト材料は、中心骨格の外側に電子注入・輸送性ユニットとして機能するシアノ基を有する基が導入されていることにより、前記中心骨格のHOMO(最高被占有分子軌道)の電子雲の拡がりを保持して良好な正孔注入・輸送性を保持しつつ、シアノ基を有する基による電子注入・輸送性の機能も有する。これにより、上記(i)又は(ii)を満たす第一ホスト材料は、分子内のキャリアバランスが良好となるので、有機EL素子に用いた場合に、優れた発光効率を実現できる。
そのため、上記(i)、(ii)の少なくともいずれかを満たす第一ホスト材料と、式(1)で表される第二ホスト材料とを含有する発光層を備えた本発明の有機EL素子の寿命が長くなる効果に加えて、当該有機EL素子の発光効率が良好になる。
 第一ホスト材料が、前記(i)の条件を満たす場合、前記A1および前記A2の少なくとも1つが、シアノ基で置換されたフェニル基、シアノ基で置換されたナフチル基、シアノ基で置換されたフェナントリル基、シアノ基で置換されたジベンゾフラニル基、シアノ基で置換されたジベンゾチオフェニル基、シアノ基で置換されたビフェニル基、シアノ基で置換されたターフェニル基、シアノ基で置換された9,9-ジフェニルフルオレニル基、シアノ基で置換された9,9’-スピロビ[9H-フルオレン]-2-イル基、シアノ基で置換された9,9’-ジメチルフルオレニル基、またはシアノ基で置換されたトリフェニレニル基であることが好ましく、3’-シアノビフェニル-2-イル基、3’-シアノビフェニル-3-イル基、3’-シアノビフェニル-4-イル基、4’-シアノビフェニル-3-イル基、4’-シアノビフェニル-4-イル基、4’-シアノビフェニル-2-イル基、6-シアノナフタレン-2-イル基、4-シアノナフタレン-1-イル基、7-シアノナフタレン-2-イル基、8-シアノジベンゾフラン-2-イル基、6-シアノジベンゾフラン-4-イル基、8-シアノジベンゾチオフェン-2-イル基、6-シアノジベンゾチオフェン-4-イル基、7-シアノ-9-フェニルカルバゾール-2-イル基、6-シアノ-9-フェニルカルバゾール-3-イル基、7-シアノ-9,9-ジメチルフルオレン-2-イル基、7-シアノトリフェニレン-2-イル基がさらに好ましい。
 また、第一ホスト材料は、A1がシアノ基で置換されており、A2がシアノ基で置換されていないことが好ましい。さらにこの場合、第一ホスト材料が前記(ii)の条件を満たさないことがより好ましい。
 また、第一ホスト材料が、前記(ii)の条件を満たす場合、X1~X4およびY5~Y8の少なくとも1つはCRaであり、X1~X4およびY5~Y8におけるRaの少なくとも1つは、シアノ基で置換されたフェニル基、シアノ基で置換されたナフチル基、シアノ基で置換されたフェナントリル基、シアノ基で置換されたジベンゾフラニル基、シアノ基で置換されたジベンゾチオフェニル基、シアノ基で置換されたビフェニル基、シアノ基で置換されたターフェニル基、シアノ基で置換された9,9-ジフェニルフルオレニル基、シアノ基で置換された9,9’-スピロビ[9H-フルオレン]-2-イル基、シアノ基で置換された9,9’-ジメチルフルオレニル基、またはシアノ基で置換されたトリフェニレニル基であることが好ましく、3’-シアノビフェニル-2-イル基、3’-シアノビフェニル-3-イル基、3’-シアノビフェニル-4-イル基、4’-シアノビフェニル-3-イル基、4’-シアノビフェニル-4-イル基、4’-シアノビフェニル-2-イル基、6-シアノナフタレン-2-イル基、4-シアノナフタレン-1-イル基、7-シアノナフタレン-2-イル基、8-シアノジベンゾフラン-2-イル基、6-シアノジベンゾフラン-4-イル基、8-シアノジベンゾチオフェン-2-イル基、6-シアノジベンゾチオフェン-4-イル基、7-シアノ-9-フェニルカルバゾール-2-イル基、6-シアノ-9-フェニルカルバゾール-3-イル基、7-シアノ-9,9-ジメチルフルオレン-2-イル基、7-シアノトリフェニレン-2-イル基がさらに好ましい。
 さらに、第一ホスト材料が前記(ii)の条件を満たす場合、前記(i)の条件を満たさないことがより好ましい。
 前記式(A)及び(II)~(IV)において、前記A1と前記A2は、互いに異なっていることが好ましい。中でも、前記A1である基がシアノ基で置換されており、且つ前記A2である基がシアノ基で置換されていなことがさらに好ましい。すなわち、第一ホスト材料は非対称な構造であることが好ましく、このような構造であることにより、第一ホスト材料は良好な結晶性、非結晶性を有する。そのため、第一ホスト材料を用いた有機EL素子は、優れた膜質となるので、例えば、電流効率などの有機EL特性において、高性能を達成できる。
 第一ホスト材料の製造方法は、特に限定されず、公知の方法で製造すればよく、例えば、カルバゾール誘導体と芳香族ハロゲン化化合物に対し、テトラへドロン 40(1984)1435~1456に記載される銅触媒、又はジャーナル オブ アメリカン ケミカル ソサイアティ 123(2001)7727~7729に記載されるパラジウム触媒を用いたカップリング反応で製造することができる。
 以下に、第一ホスト材料の具体例を記載するが、本発明の化合物は下記化合物に限定されない。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
(第二ホスト材料)
 本実施形態の有機EL素子の発光層に含有される第二ホスト材料は、下記一般式(1)で表される化合物である。前記一般式(A)で表される第一ホスト材料と、下記一般式(1)で表される第二ホスト材料とを組み合わせて発光層に用いることにより、有機EL素子の長寿命化を図ることができる。
Figure JPOXMLDOC01-appb-C000034
[一般式(1)中、
 Z1は、aにおいて縮合している下記一般式(1-1)又は(1-2)で表される環構造を表す。Z2は、bにおいて縮合している下記一般式(1-1)又は(1-2)で表される環構造を表す。ただし、Z1又はZ2の少なくともいずれか1つは下記一般式(1-1)で表される。
 M1は、置換もしくは無置換の環形成原子数5~30の窒素含有ヘテロ芳香族環であり、
 L1は、単結合、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、環形成炭素数5~30のシクロアルキレン基、又は、これらが連結した基を表す。
 kは、1又は2を表す。]
Figure JPOXMLDOC01-appb-C000035
[上記一般式(1-1)において、
 cは、前記一般式(1)のa又はbにおいて縮合していることを表す。
 上記一般式(1-2)において、
 d,e及びfのいずれか1つは、前記一般式(1)のa又はbにおいて縮合していることを表す。
 上記一般式(1-1)および(1-2)において、
 X11は、硫黄原子、酸素原子、N-R19、又はC(R20)(R21)を表す。
 R11~R21は、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 また、隣り合うR11~R21は互いに結合して環を形成していてもよい。]
 上記一般式(1)においてM1で表される「窒素含有ヘテロ芳香族環」には、アジン環が含まれる。
 上記一般式(1)においてM1で表される窒素含有ヘテロ芳香族環としては、ピリジン、ピリミジン、ピラジン、トリアジン、アジリジン、アザインドリジン、インドリジン、イミダゾール、インドール、イソインドール、インダゾール、プリン、プテリジン、β-カルボリン、ナフチリジン、キノキサリン、ターピリジン、ビピリジン、アクリジン、フェナントロリン、フェナジン、イミダゾピリジン等が挙げられ、特に、ピリジン、ピリミジン、トリアジンが好ましく、また、下記一般式(2)で表されることものも好ましい。
Figure JPOXMLDOC01-appb-C000036
[一般式(2)中、
 Z1は、aにおいて縮合している前記一般式(1-1)又は(1-2)で表される環構造を表す。Z2は、bにおいて縮合している前記一般式(1-1)又は(1-2)で表される環構造を表す。但し、Z1又はZ2の少なくともいずれか1つは前記一般式(1-1)で表される。
 L1は、前記一般式(1)におけるL1と同義である。
 X12~X14は、それぞれ独立に、窒素原子、CH、又は、R31もしくはL1と結合する炭素原子であり、X12~X14のうち少なくとも1つは窒素原子である。
 Y11~Y13は、それぞれ独立に、CH、又は、R31もしくはL1と結合する炭素原子を表す。
 R31は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 R31が複数存在する場合、複数のR31は互いに同一でも異なっていてもよく、また、隣り合うR31は互いに結合して環を形成していてもよい。
 kは1又は2を表し、nは0~4の整数を表す。
 前記一般式(1-1)におけるcは、前記一般式(2)のa又はbにおいて縮合し、
 前記一般式(1-2)におけるd,e及びfのいずれか1つは、前記一般式(2)のa又はbにおいて縮合する。]
 ここで、上記一般式(2)におけるa,bにおいて、上記一般式(1-1)および(2-2)が縮合している化合物としては、下記一般式で表されるものが挙げられる。
 上記一般式(1)、(2)で表される化合物は、さらに下記一般式(3)で表されることがより好ましく、下記一般式(4)で表されることが特に好ましい。
Figure JPOXMLDOC01-appb-C000038
[一般式(3)中
 L1は、前記一般式(1)におけるL1と同義である。
 X12~X14は、それぞれ独立に、窒素原子、CH、又は、R31もしくはL1と結合する炭素原子であり、X12~X14のうち少なくとも1つは窒素原子である。
 Y11~Y13は、それぞれ独立に、CH、又は、R31もしくはL1と結合する炭素原子を表す。
 R31は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 R31が複数存在する場合、複数のR31は互いに同一でも異なっていてもよく、また、隣り合うR31は互いに結合して環を形成していてもよい。
 nは、0~4の整数を表す。
 R41~R48は、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 また、隣り合うR41~R48は互いに結合して環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000039
[一般式(4)において、
 L1は、前記一般式(1)におけるL1と同義である。
 X12~X14は、それぞれ独立に、窒素原子、CH、又は、R31もしくはL1と結合する炭素原子であり、X12~X14のうち少なくとも1つは窒素原子である。
 Y11~Y13は、それぞれ独立に、CH、又は、R31もしくはL1と結合する炭素原子を表す。
 R31は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 また、隣り合うR31は互いに結合して環を形成していてもよい。
 nは、0~4の整数を表す。
 L2およびL3は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、環形成炭素数5~30のシクロアルキレン基、又は、これらが連結した基を表す。
 R51~R54は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
 R51が複数存在する場合、複数のR51は互いに同一でも異なっていてもよく、また、隣り合うR51は互いに結合して環を形成していてもよい。
 R52が複数存在する場合、複数のR52は互いに同一でも異なっていてもよく、また、隣り合うR52は互いに結合して環を形成していてもよい。
 R53が複数存在する場合、複数のR53は互いに同一でも異なっていてもよく、また、隣り合うR53は互いに結合して環を形成していてもよい。
 R54が複数存在する場合、複数のR54は互いに同一でも異なっていてもよく、また、隣り合うR54は互いに結合して環を形成していてもよい。
 M2は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の複素環基を表す。
 p及びsは、それぞれ独立に、0~4の整数を表し、q及びrは、それぞれ独立に、0~3の整数を表す。]
 前記一般式(1)~(4)、(1-1)および(1-2)において、R11~R21、R31、R41~R48及びR51~R54で表される各基は、前記一般式(A)で表される化合物で説明した基である。
 前記一般式(1)~(4)におけるL1~L3で表される環形成炭素数6~30の2価の芳香族炭化水素基、環形成原子数5~30の2価の複素環基としては、前記一般式(A)で表される化合物で説明した基の2価に相当する基が挙げられる。
 上記一般式(1)~(4)のうちいずれかで表される化合物の例としては、以下が挙げられる。なお、以下の構造式中、その端に化学式(CN、ベンゼン環等)が記載されていない結合は、メチル基を表すものである。
(有機EL素子)
 本発明の有機EL素子は、正孔輸送層、発光層、スペース層、及び障壁層等を有していてもよく、これらが上述の第一ホスト材料や第二ホスト材料と同様の化合物を含んでいてもよい。
 また、発光層が含有する発光材料としては、蛍光発光材料及び燐光発光材料が挙げられ、燐光発光材料が好ましい。
 本発明の有機EL素子は、蛍光又は燐光発光型の単色発光素子であっても、蛍光/燐光ハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であっても、複数の発光ユニットを有するタンデム型であってもよく、中でも、燐光発光型であることが好ましい。ここで、「発光ユニット」とは、一層以上の有機層を含み、そのうちの一層が発光層であり、注入された正孔と電子が再結合することにより発光することができる最小単位をいう。
 従って、シンプル型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(1)陽極/発光ユニット/陰極
 また、上記発光ユニットは、燐光発光層や蛍光発光層を複数有する積層型であってもよく、その場合、各発光層の間に、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐ目的で、スペース層を有していてもよい。発光ユニットの代表的な層構成を以下に示す。
(a)正孔輸送層/発光層(/電子輸送層)
(b)正孔輸送層/第一燐光発光層/第二燐光発光層(/電子輸送層)
(c)正孔輸送層/燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(d)正孔輸送層/第一燐光発光層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(e)正孔輸送層/第一燐光発光層/スペース層/第二燐光発光層/スペース層/蛍光発光層(/電子輸送層)
(f)正孔輸送層/燐光発光層/スペース層/第一蛍光発光層/第二蛍光発光層(/電子輸送層)
(g)正孔輸送層/電子障壁層/発光層(/電子輸送層)
(h)正孔輸送層/発光層/正孔障壁層(/電子輸送層)
(i)正孔輸送層/蛍光発光層/トリプレット障壁層(/電子輸送層)
 上記各燐光又は蛍光発光層は、それぞれ互いに異なる発光色を示すものとすることができる。具体的には、上記積層発光層(d)において、正孔輸送層/第一燐光発光層(赤色発光)/第二燐光発光層(緑色発光)/スペース層/蛍光発光層(青色発光)/電子輸送層といった層構成等が挙げられる。
 なお、各発光層と正孔輸送層あるいはスペース層との間には、適宜、電子障壁層を設けてもよい。また、各発光層と電子輸送層との間には、適宜、正孔障壁層を設けてもよい。電子障壁層や正孔障壁層を設けることで、電子又は正孔を発光層内に閉じ込めて、発光層における電荷の再結合確率を高め、発光効率を向上させることができる。
 タンデム型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(2)陽極/第一発光ユニット/中間層/第二発光ユニット/陰極
 ここで、上記第一発光ユニット及び第二発光ユニットとしては、例えば、それぞれ独立に上述の発光ユニットと同様のものを選択することができる。
 上記中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、第一発光ユニットに電子を、第二発光ユニットに正孔を供給する、公知の材料構成を用いることができる。
 図1に、本発明の有機EL素子の一例の概略構成を示す。有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット10とを有する。発光ユニット10は、上記第一ホスト材料と、第二ホスト材料と、発光材料とを含む少なくとも1つの層を含む発光層5を有する。発光層5と陽極3との間に正孔注入・輸送層6等、発光層5と陰極4との間に電子注入・輸送層7等を形成してもよい。また、発光層5の陽極3側に電子障壁層を、発光層5の陰極4側に正孔障壁層を、それぞれ設けてもよい。これにより、電子や正孔を発光層5に閉じ込めて、発光層5における励起子の生成確率を高めることができる。
 なお、本明細書において、蛍光ドーパントと組み合わされたホストを蛍光ホストと称し、燐光ドーパントと組み合わされたホストを燐光ホストと称する。蛍光ホストと燐光ホストは分子構造のみにより区分されるものではない。すなわち、燐光ホストとは、燐光ドーパントを含有する燐光発光層を構成する材料を意味し、蛍光発光層を構成する材料として利用できないことを意味しているわけではない。蛍光ホストについても同様である。
(基板)
 本発明の有機EL素子は、透光性基板上に作製する。透光性基板は有機EL素子を支持する基板であり、400nm~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を原料として用いてなるものを挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を原料として用いてなるものを挙げることができる。
(陽極)
 有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担うものであり、4.5eV以上の仕事関数を有するものを用いることが効果的である。陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅等が挙げられる。陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。発光層からの発光を陽極から取り出す場合、陽極の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選択される。
(陰極)
 陰極は電子注入層、電子輸送層又は発光層に電子を注入する役割を担うものであり、仕事関数の小さい材料により形成するのが好ましい。陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金等が使用できる。陰極も、陽極と同様に、蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。また、必要に応じて、陰極側から発光を取り出してもよい。
(発光層)
 発光層は、発光機能を有する有機層であって、1層又は複数層から形成され、このうち1層は上述のように第一ホスト材料、第二ホスト材料及び発光材料を含有する。
 発光層が複数層からなる場合、上記以外の発光層については、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。
 燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
 上記発光層は、量子収率の高いドーパント材料を二種類以上入れることによって、それぞれのドーパントが発光するダブルドーパントを採用してもよい。具体的には、ホスト、赤色ドーパント及び緑色ドーパントを共蒸着することによって、発光層を共通化して黄色発光を実現する態様が挙げられる。
 上記発光層は、複数の発光層を積層した積層体とすることで、発光層界面に電子と正孔を蓄積させて、再結合領域を発光層界面に集中させて、量子効率を向上させることができる。
 発光層への正孔の注入し易さと電子の注入し易さは異なっていてもよく、また、発光層中での正孔と電子の移動度で表される正孔輸送能と電子輸送能が異なっていてもよい。
 発光層は、例えば蒸着法、スピンコート法、LB法等の公知の方法により形成することができる。また、樹脂等の結着剤と材料化合物とを溶剤に溶かした溶液をスピンコート法等により薄膜化することによっても、発光層を形成することができる。
 発光層は、分子堆積膜であることが好ましい。分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
 発光層における第一ホスト材料と第二ホスト材料の含有割合は特に限定されず、適宜調整可能であり、好ましくは質量比で第一ホスト材料:第二ホスト材料=1:99~99:1の範囲内であり、より好ましくは10:90~90:10の範囲内である。
 発光層を形成する燐光ドーパント(燐光発光材料)は三重項励起状態から発光することのできる化合物であり、三重項励起状態から発光する限り特に限定されないが、Ir,Pt,Os,Au,Cu,Re及びRuから選択される少なくとも一つの金属と配位子とを含む有機金属錯体であることが好ましい。前記配位子は、オルトメタル結合を有することが好ましい。燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、Ir,Os及びPtから選ばれる金属原子を含有する金属錯体が好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体、特にオルトメタル化錯体がより好ましく、イリジウム錯体及び白金錯体がさらに好ましく、オルトメタル化イリジウム錯体が特に好ましい。
 燐光ドーパントの発光層における含有量は特に制限はなく目的に応じて適宜選択することができるが、例えば、0.1~70質量%が好ましく、1~30質量%がより好ましい。燐光ドーパントの含有量が0.1質量%以上であると十分な発光が得られ、70質量%以下であると濃度消光を避けることができる。
 燐光ドーパントとして好ましい有機金属錯体の具体例を、以下に示す。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 燐光ドーパント材料は、単独で使用しても良いし、2種以上を併用しても良い。
 発光層に含まれる燐光ドーパント材料の発光波長は特に限定されないが、発光層に含まれる前記燐光ドーパント材料のうち少なくとも1種は、発光波長のピークが490nm以上700nm以下であることが好ましく、490nm以上650nm以下であることがより好ましい。
 燐光ホストは、燐光ドーパントの三重項エネルギーを効率的に発光層内に閉じ込めることにより、燐光ドーパントを効率的に発光させる機能を有する化合物である。本発明の有機EL素子は、上記第一ホスト材料及び第二ホスト材料以外の化合物も、燐光ホストとして、上記目的に応じて適宜選択することができる。
 上記第一ホスト材料及び第二ホスト材料とそれ以外の化合物を同一の発光層内の燐光ホスト材料として併用してもよいし、複数の発光層がある場合には、そのうちの一つの発光層の燐光ホスト材料として上記第一ホスト材料及び第二ホスト材料を用い、別の一つの発光層の燐光ホスト材料として上記第一ホスト材料又は第二ホスト材料以外の化合物を用いてもよい。また、上記第一ホスト材料及び第二ホスト材料は発光層以外の有機層にも使用しうるものである。
 上記第一ホスト材料及び第二ホスト材料以外の化合物で、燐光ホストとして好適な化合物の具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。上記第一ホスト材料及び第二ホスト材料以外の燐光ホストは単独で使用しても良いし、2種以上を併用しても良い。具体例としては、以下のような化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000044
 発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、さらに好ましくは10~50nmである。5nm以上であると発光層の形成が容易であり、50nm以下であると駆動電圧の上昇が避けられる。
(電子供与性ドーパント)
 本発明の有機EL素子は、陰極と発光ユニットとの界面領域に電子供与性ドーパントを有することも好ましい。このような構成によれば、有機EL素子における発光輝度の向上や長寿命化が図られる。ここで、電子供与性ドーパントとは、仕事関数3.8eV以下の金属を含有するものをいい、その具体例としては、アルカリ金属、アルカリ金属錯体、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属錯体、アルカリ土類金属化合物、希土類金属、希土類金属錯体、及び希土類金属化合物等から選ばれた少なくとも一種類が挙げられる。
 アルカリ金属としては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)、Cs(仕事関数:1.95eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。アルカリ土類金属としては、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0eV~2.5eV)、Ba(仕事関数:2.52eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。希土類金属としては、Sc、Y、Ce、Tb、Yb等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 アルカリ金属化合物としては、Li2O、Cs2O、K2O等のアルカリ酸化物、LiF、NaF、CsF、KF等のアルカリハロゲン化物等が挙げられ、LiF、Li2O、NaFが好ましい。アルカリ土類金属化合物としては、BaO、SrO、CaO及びこれらを混合したBaxSr1-xO(0<x<1)、BaxCa1-xO(0<x<1)等が挙げられ、BaO、SrO、CaOが好ましい。希土類金属化合物としては、YbF3、ScF3、ScO3、Y23、Ce23、GdF3、TbF3等が挙げられ、YbF3、ScF3、TbF3が好ましい。
 アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、β-ジケトン類、アゾメチン類、及びそれらの誘導体などが好ましいが、これらに限定されるものではない。
 電子供与性ドーパントの添加形態としては、界面領域に層状又は島状に形成すると好ましい。形成方法としては、抵抗加熱蒸着法により電子供与性ドーパントを蒸着しながら、界面領域を形成する有機化合物(発光材料や電子注入材料)を同時に蒸着させ、有機化合物に電子供与性ドーパントを分散する方法が好ましい。分散濃度はモル比で有機化合物:電子供与性ドーパント=100:1~1:100、好ましくは5:1~1:5である。
 電子供与性ドーパントを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm~15nmで形成する。電子供与性ドーパントを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、電子供与性ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05nm~1nmで形成する。
 本発明の有機EL素子における、主成分と電子供与性ドーパントの割合は、モル比で主成分:電子供与性ドーパント=5:1~1:5であると好ましく、2:1~1:2であるとさらに好ましい。
(電子輸送層)
 電子輸送層は、発光層と陰極との間に形成される有機層であって、電子を陰極から発光層へ輸送する機能を有する。電子輸送層が複数層で構成される場合、陰極に近い有機層を電子注入層と定義することがある。電子注入層は、陰極から電子を効率的に有機層ユニットに注入する機能を有する。
 電子輸送層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。
 この含窒素環誘導体としては、例えば、下記式(AA)で表される含窒素環金属キレート錯体が好ましい。
Figure JPOXMLDOC01-appb-C000045
 式(AA)におけるR2~R7は、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、炭素数1~40の炭化水素基、炭素数1~40のアルコキシ基、炭素数6~50のアリールオキシ基、アルコキシカルボニル基、または、環形成炭素数5~50の芳香族複素環基であり、これらは置換されていてもよい。
 ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられる。
 置換されていてもよいアミノ基の例としては、アルキルアミノ基、アリールアミノ基、アラルキルアミノ基が挙げられる。
 アルキルアミノ基及びアラルキルアミノ基は-NQ12と表される。Q1及びQ2は、それぞれ独立に、炭素数1~20のアルキル基又は炭素数1~20のアラルキル基を表す。Q1及びQ2の一方は水素原子又は重水素原子であってもよい。
 アリールアミノ基は-NAr1Ar2と表され、Ar1及びAr2は、それぞれ独立に、炭素数6~50の非縮合芳香族炭化水素基または縮合芳香族炭化水素基を表す。Ar1及びAr2の一方は水素原子又は重水素原子であってもよい。
 炭素数1~40の炭化水素基はアルキル基、アルケニル基、シクロアルキル基、アリール基、及びアラルキル基を含む。
 アルコキシカルボニル基は-COOY’と表され、Y’は炭素数1~20のアルキル基を表す。
 式(AA)におけるMは、アルミニウム(Al)、ガリウム(Ga)又はインジウム(In)であり、Inであると好ましい。
 式(AA)におけるLは、下記式(A’)又は(A”)で表される基である。
Figure JPOXMLDOC01-appb-C000046
 式(A’)中、R8~R12は、それぞれ独立に、水素原子、重水素原子、または置換もしくは無置換の炭素数1~40の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。また、前記式(A”)中、R13~R27は、それぞれ独立に、水素原子、重水素原子又は置換もしくは無置換の炭素数1~40の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。
 式(A’)及び式(A”)のR8~R12及びR13~R27が示す炭素数1~40の炭化水素基は、前記式(A)中のR2~R7が示す炭化水素基と同様である。また、R8~R12及びR13~R27の互いに隣接する基が環状構造を形成した場合の2価の基としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ジフェニルメタン-2,2’-ジイル基、ジフェニルエタン-3,3’-ジイル基、ジフェニルプロパン-4,4’-ジイル基等が挙げられる。
 電子輸送層に用いられる電子伝達性化合物としては、8-ヒドロキシキノリン又はその誘導体の金属錯体、オキサジアゾール誘導体、含窒素複素環誘導体が好適である。上記8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノール)アルミニウムを用いることができる。そして、オキサジアゾール誘導体としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000047
 前記式中、Ar17、Ar18、Ar19、Ar21、Ar22及びAr25は、それぞれ置換もしくは無置換の炭素数6~50の芳香族炭化水素基又は縮合芳香族炭化水素基を示し、Ar17とAr18、Ar19とAr21、Ar22とAr25は、たがいに同一でも異なっていてもよい。芳香族炭化水素基又は縮合芳香族炭化水素基としては、フェニル基、ナフチル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基などが挙げられる。これらの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。
 Ar20、Ar23及びAr24は、それぞれ置換もしくは無置換の炭素数6~50の2価の芳香族炭化水素基又は縮合芳香族炭化水素基を示し、Ar23とAr24は、たがいに同一でも異なっていてもよい。2価の芳香族炭化水素基又は縮合芳香族炭化水素基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。これらの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。
 これらの電子伝達性化合物は、薄膜形成性の良好なものが好ましく用いられる。そして、これら電子伝達性化合物の具体例としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000048
 電子伝達性化合物としての含窒素複素環誘導体は、以下の式を有する有機化合物からなる含窒素複素環誘導体であって、金属錯体でない含窒素化合物が挙げられる。例えば、下記式(B)に示す骨格を含有する5員環もしくは6員環や、下記式(C)に示す構造のものが挙げられる。
Figure JPOXMLDOC01-appb-C000049
 前記式(C)中、Xは炭素原子もしくは窒素原子を表す。Z1ならびにZ2は、それぞれ独立に含窒素ヘテロ環を形成可能な原子群を表す。
 含窒素複素環誘導体は、さらに好ましくは、5員環もしくは6員環からなる含窒素芳香多環族を有する有機化合物である。さらには、このような複数窒素原子を有する含窒素芳香多環族の場合は、上記式(B)と(C)もしくは上記式(B)と下記式(D)を組み合わせた骨格を有する含窒素芳香多環有機化合物が好ましい。
Figure JPOXMLDOC01-appb-C000050
 前記の含窒素芳香多環有機化合物の含窒素基は、例えば、以下の式で表される含窒素複素環基から選択される。
Figure JPOXMLDOC01-appb-C000051
 前記各式中、Rは、炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基、炭素数3~40の芳香族複素環基又は縮合芳香族複素環基、炭素数1~20のアルキル基、または炭素数1~20のアルコキシ基であり、nは0~5の整数であり、nが2以上の整数であるとき、複数のRは互いに同一又は異なっていてもよい。
 さらに、好ましい具体的な化合物として、下記式(D1)で表される含窒素複素環誘導体が挙げられる。
         HAr-L1-Ar1-Ar2  (D1)
 前記式(D1)中、HArは、置換もしくは無置換の炭素数3~40の含窒素複素環基であり、L1は単結合、置換もしくは無置換の炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基又は置換もしくは無置換の炭素数3~40の芳香族複素環基又は縮合芳香族複素環基であり、Ar1は置換もしくは無置換の炭素数6~40の2価の芳香族炭化水素基であり、Ar2は置換もしくは無置換の炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基又は置換もしくは無置換の炭素数3~40の芳香族複素環基又は縮合芳香族複素環基である。
 前記式(D1)におけるHArは、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000052
 前記式(D1)におけるL1は、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000053
 前記式(D1)におけるAr1は、例えば、下記式(D2)、式(D3)のアリールアントラニル基から選択される。
Figure JPOXMLDOC01-appb-C000054
 前記式(D2)、式(D3)中、R1~R14は、それぞれ独立して、水素原子、重水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40のアリールオキシ基、置換もしくは無置換の炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基、または置換もしくは無置換の炭素数3~40の芳香族複素環基又は縮合芳香族複素環基であり、Ar3は、置換もしくは無置換の炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基または置換もしくは無置換の炭素数3~40の芳香族複素環基又は縮合芳香族複素環基である。また、R1~R8は、いずれも水素原子又は重水素原子である含窒素複素環誘導体であってもよい。
 前記式(D1)におけるAr2は、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000055
 電子伝達性化合物としての含窒素芳香多環有機化合物には、この他、下記の化合物も好適に用いられる。
Figure JPOXMLDOC01-appb-C000056
 前記式(D4)中、R1~R4は、それぞれ独立に、水素原子、重水素原子、置換もしくは無置換の炭素数1~20の脂肪族基、置換もしくは無置換の炭素数3~20の脂肪族式環基、置換もしくは無置換の炭素数6~50の芳香族環基、置換もしくは無置換の炭素数3~50の複素環基を表し、X1、X2は、それぞれ独立に、酸素原子、硫黄原子、またはジシアノメチレン基を表す。
 また、電子伝達性化合物として、下記の化合物も好適に用いられる。
Figure JPOXMLDOC01-appb-C000057
 前記式(D5)中、R1、R2、R3及びR4は互いに同一のまたは異なる基であって、下記式(D6)で表される芳香族炭化水素基又は縮合芳香族炭化水素基である。
Figure JPOXMLDOC01-appb-C000058
 前記式(D6)中、R5、R6、R7、R8及びR9は互いに同一または異なる基であって、水素原子、重水素原子、飽和もしくは不飽和の炭素数1~20のアルコキシル基、飽和もしくは不飽和の炭素数1~20のアルキル基、アミノ基、または炭素数1~20のアルキルアミノ基である。R5、R6、R7、R8及びR9の少なくとも1つは水素原子、重水素原子以外の基である。
 さらに、電子伝達性化合物は、該含窒素複素環基または含窒素複素環誘導体を含む高分子化合物であってもよい。
 本発明の有機EL素子の電子輸送層は、下記式(E)~(G)で表される含窒素複素環誘導体を少なくとも1種含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000059
(式(E)~式(G)中、Z1、Z2及びZ3は、それぞれ独立に、窒素原子又は炭素原子である。
 R1及びR2は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基又は置換もしくは無置換の炭素数1~20のアルコキシ基である。
 nは、0~5の整数であり、nが2以上の整数であるとき、複数のR1は互いに同一でも異なっていてもよい。また、隣接する2つのR1同士が互いに結合して、置換もしくは無置換の炭化水素環を形成していてもよい。
 Ar1は、置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 Ar2は、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 但し、Ar1、Ar2のいずれか一方は、置換もしくは無置換の環形成炭素数10~50の縮合芳香族炭化水素環基又は置換もしくは無置換の環形成原子数9~50の縮合芳香族複素環基である。
 Ar3は、置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。
 L1、L2及びL3は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は置換もしくは無置換の環形成原子数9~50の2価の縮合芳香族複素環基である。)
 環形成炭素数6~50のアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ナフタセニル基、クリセニル基、ピレニル基、ビフェニル基、ターフェニル基、トリル基、フルオランテニル基、フルオレニル基などが挙げられる。
 環形成原子数5~50のヘテロアリール基としては、ピローリル基、フリル基、チエニル基、シローリル基、ピリジル基、キノリル基、イソキノリル基、べンゾフリル基、イミダゾリル基、ピリミジル基、カルバゾリル基、セレノフェニル基、オキサジアゾリル基、トリアゾーリル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノキサリニル基、アクリジニル基、イミダゾ[1,2-a]ピリジニル基、イミダゾ[1,2-a]ピリミジニル基などが挙げられる。
 炭素数1~20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基などが挙げられる。
 炭素数1~20のハロアルキル基としては、前記アルキル基の1又は2以上の水素原子をフッ素、塩素、ヨウ素および臭素から選ばれる少なくとも1のハロゲン原子で置換して得られる基が挙げられる。
 炭素数1~20のアルコキシ基としては、前記アルキル基をアルキル部位としては有する基が挙げられる。
 環形成炭素数6~50のアリーレン基としては、前記アリール基から水素原子1個を除去して得られる基が挙げられる。
 環形成原子数9~50の2価の縮合芳香族複素環基としては、前記ヘテロアリール基として記載した縮合芳香族複素環基から水素原子1個を除去して得られる基が挙げられる。
 電子輸送層の膜厚は、特に限定されないが、好ましくは1nm~100nmである。
 また、電子輸送層に隣接して設けることができる電子注入層の構成成分として、含窒素環誘導体の他に無機化合物として、絶縁体又は半導体を使用することが好ましい。電子注入層が絶縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。
 このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、Li2O、K2O、Na2S、Na2Se及びNa2Oが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2及びBeF2等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
 また、半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。
 このような絶縁体又は半導体を使用する場合、その層の好ましい厚みは、0.1nm~15nm程度である。また、本発明における電子注入層は、前述の電子供与性ドーパントを含有していても好ましい。
(正孔輸送層)
 発光層と陽極との間に形成される有機層であって、正孔を陽極から発光層へ輸送する機能を有する。正孔輸送層が複数層で構成される場合、陽極に近い有機層を正孔注入層と定義することがある。正孔注入層は、陽極から正孔を効率的に有機層ユニットに注入する機能を有する。
 正孔輸送層を形成する他の材料としては、芳香族アミン化合物、例えば、下記式(H)で表される芳香族アミン誘導体が好適に用いられる。
Figure JPOXMLDOC01-appb-C000060
 前記式(H)において、Ar1~Ar4は置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素基又は縮合芳香族炭化水素基、置換もしくは無置換の環形成原子数5~50の芳香族複素環基又は縮合芳香族複素環基、または、それら芳香族炭化水素基又は縮合芳香族炭化水素基と芳香族複素環基又は縮合芳香族複素環基が結合した基を表す。
 また、前記式(H)において、Lは置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素基又は縮合芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~50の芳香族複素環基又は縮合芳香族複素環基を表す。
 式(H)の化合物の具体例を以下に記す。
Figure JPOXMLDOC01-appb-C000061
また、下記式(J)の芳香族アミンも正孔輸送層の形成に好適に用いられる。
Figure JPOXMLDOC01-appb-C000062
 前記式(J)において、Ar1~Ar3の定義は前記式(H)のAr1~Ar4の定義と同様である。以下に式(J)の化合物の具体例を記すがこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000063
 本発明の有機EL素子の正孔輸送層は第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)の2層構造にしてもよい。
 正孔輸送層の膜厚は特に限定されないが、10~200nmであるのが好ましい。
 本発明の有機EL素子では、正孔輸送層または第1正孔輸送層の陽極側にアクセプター材料を含有する層を接合してもよい。これにより駆動電圧の低下及び製造コストの低減が期待される。
 前記アクセプター材料としては下記式(K)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000064
(上記式(K)中、R21~R26は互いに同一でも異なっていてもよく、それぞれ独立にシアノ基、-CONH2、カルボキシル基、又は-COOR27(R27は炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表す)を表す。ただし、R21及びR22、R23及びR24、並びにR25及びR26の1又は2以上の対が一緒になって-CO-O-CO-で示される基を形成してもよい。)
 R27としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 アクセプター材料を含有する層の膜厚は特に限定されないが、5~20nmであるのが好ましい。
(n/pドーピング)
 上述の正孔輸送層や電子輸送層においては、特許第3695714号明細書に記載されているように、ドナー性材料のドーピング(n)やアクセプター性材料のドーピング(p)により、キャリア注入能を調整することができる。
 nドーピングの代表例としては、電子輸送材料にLiやCs等の金属をドーピングする方法が挙げられ、pドーピングの代表例としては、正孔輸送材料にF4TCNQ(2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane)等のアクセプター材料をドーピングする方法が挙げられる。
(スペース層)
 上記スペース層とは、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子を蛍光発光層に拡散させない、あるいは、キャリアバランスを調整する目的で、蛍光発光層と燐光発光層との間に設けられる層である。また、スペース層は、複数の燐光発光層の間に設けることもできる。
 スペース層は発光層間に設けられるため、電子輸送性と正孔輸送性を兼ね備える材料であることが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防ぐため、三重項エネルギーが2.6eV以上であることが好ましい。スペース層に用いられる材料としては、上述の正孔輸送層に用いられるものと同様のものが挙げられる。
(障壁層)
 本発明の有機EL素子は、発光層に隣接する部分に、電子障壁層、正孔障壁層、トリプレット障壁層といった障壁層を有することが好ましい。ここで、電子障壁層とは、発光層から正孔輸送層へ電子が漏れることを防ぐ層であり、正孔障壁層とは、発光層から電子輸送層へ正孔が漏れることを防ぐ層である。
 トリプレット障壁層は、発光層で生成する三重項励起子が、周辺の層へ拡散することを防止し、三重項励起子を発光層内に閉じ込めることによって三重項励起子の発光ドーパント以外の電子輸送層の分子上でのエネルギー失活を抑制する機能を有する。
 トリプレット障壁層を設ける場合、燐光素子においては、発光層中の燐光発光性ドーパントの三重項エネルギーをET d、トリプレット障壁層として用いる化合物の三重項エネルギーをET TBとすると、ET d<ET TBのエネルギー大小関係であれば、エネルギー関係上、燐光発光性ドーパントの三重項励起子が閉じ込められ(他分子へ移動できなくなり)、該ドーパント上で発光する以外のエネルギー失活経路が断たれ、高効率に発光することができると推測される。ただし、ET d<ET TBの関係が成り立つ場合であってもこのエネルギー差ΔET=ET TB-ET dが小さい場合には、実際の素子駆動環境である室温程度の環境下では、周辺の熱エネルギーにより吸熱的にこのエネルギー差ΔETを乗り越えて三重項励起子が他分子へ移動することが可能であると考えられる。特に燐光発光の場合は蛍光発光に比べて励起子寿命が長いため、相対的に吸熱的励起子移動過程の影響が現れやすくなる。室温の熱エネルギーに対してこのエネルギー差ΔETは大きい程好ましく、0.1eV以上であるとさらに好ましく、0.2eV以上であると特に好ましい。
 また、トリプレット障壁層を構成する材料の電子移動度は、電界強度0.04~0.5MV/cmの範囲において、10-6cm2/Vs以上であることが望ましい。有機材料の電子移動度の測定方法としては、Time of Flight法等幾つかの方法が知られているが、ここではインピーダンス分光法で決定される電子移動度をいう。
 電子注入層は、電界強度0.04~0.5MV/cmの範囲において、10-6cm2/Vs以上であることが望ましい。これにより陰極からの電子輸送層への電子注入が促進され、ひいては隣接する障壁層、発光層への電子注入も促進し、より低電圧での駆動を可能にするためである。
 次に、実施例を用いて本発明をさらに詳細に説明するが、本発明は下記実施例に限定されるものではない。
[有機EL素子用材料の合成]
合成例1(化合物H1の合成)
合成例(1-1):中間体1の合成
Figure JPOXMLDOC01-appb-C000065
 アルゴン気流下、2-ニトロ-1,4-ジブロモベンゼン(11.2g、40mmol)、フェニルボロン酸(4.9g、40mmol)、テトラキス(トリフェニルホスフィン)パラジウム(1.39g、1.2mmol)、トルエン(120mL)、2M炭酸ナトリウム水溶液(60mL)を順次加えて8時間加熱還流した。
 室温まで反応液を冷却した後、有機層を分離し、有機溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、中間体1(6.6g、収率59%)を得た。FD-MS(フィールドディソープションマススペクトル)の分析により、中間体1と同定した。
合成例(1-2):中間体2の合成
Figure JPOXMLDOC01-appb-C000066
 アルゴン気流下、中間体1(6.6g、23.7mmol)、トリフェニルホスフィン(15.6g、59.3mmol)、o-ジクロロベンゼン(24mL)を順次加えて8時間180℃で加熱した。
 室温まで反応液を冷却した後、シリカゲルカラムクロマトグラフィーにて精製し、中間体2(4g、収率68%)を得た。FD-MS(フィールドディソープションマススペクトル)の分析により、中間体2と同定した。
合成例(1-3):中間体3の合成
Figure JPOXMLDOC01-appb-C000067
 中間体1の合成において、2-ニトロ-1,4-ジブロモベンゼンの代わりに中間体2を用い、フェニルボロン酸の代わりに9-フェニルカルバゾール-3-イルボロン酸を用いて同様の方法で合成した。FD-MS(フィールドディソープションマススペクトル)の分析により、中間体3と同定した。
合成例(1-4):化合物H1の合成
Figure JPOXMLDOC01-appb-C000068
 アルゴン気流下、中間体3(1.6g、3.9mmol)、4-ブロモベンゾニトリル(0.71g、3.9mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0.071g、0.078mmol)、トリ-t-ブチルホスホニウムテトラフルオロほう酸塩(0.091g、0.31mmol)、t-ブトキシナトリウム(0.53g、5.5mmol)、無水トルエン(20mL)を順次加えて8時間加熱還流した。
 室温まで反応液を冷却した後、有機層を分離し、有機溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、0.79gの白色固体(H1)を得た。
 得られた化合物について、FD-MS(フィールドディソープションマススペクトル)、トルエン溶液中の紫外線吸収極大波長UV(PhMe);λmax、及び蛍光発光極大波長FL(PhMe, λex=300nm);λmaxを以下に示す。
FDMS, calcd for C37H23N3=509, found m/z=509 (M+)
UV(PhMe);λmax, 324nm、FL(PhMe, λex=300nm);λmax, 376nm
合成例2(化合物H2の合成)
Figure JPOXMLDOC01-appb-C000069
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに4’-ブロモビフェニル-3-カルボニトリルを用いて同様の方法で合成した。
 得られた化合物について、FD-MS(フィールドディソープションマススペクトル)、トルエン溶液中の紫外線吸収極大波長UV(PhMe);λmax、及び蛍光発光極大波長FL(PhMe, λex=300nm);λmaxを以下に示す。
FDMS, calcd for C43H27N3=585, found m/z=585 (M+)
UV(PhMe);λmax, 322nm、FL(PhMe, λex=300nm);λmax, 375nm
合成例3(化合物H3の合成)
Figure JPOXMLDOC01-appb-C000070
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに4’-ブロモビフェニル-4-カルボニトリルを用いて同様の方法で合成した。
 得られた化合物について、FD-MS(フィールドディソープションマススペクトル)、トルエン溶液中の紫外線吸収極大波長UV(PhMe);λmax、及び蛍光発光極大波長UV(PhMe);λmaxを以下に示す。
FDMS, calcd for C43H27N3=585, found m/z=585 (M+)
UV(PhMe);λmax, 324nm、FL(PhMe, λex=300nm);λmax, 393nm
合成例4(化合物H4の合成)
Figure JPOXMLDOC01-appb-C000071
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに3’-ブロモビフェニル-4-カルボニトリルを用いて同様の方法で合成した。
 得られた化合物について、FD-MS(フィールドディソープションマススペクトル)、トルエン溶液中の紫外線吸収極大波長UV(PhMe);λmax、及び蛍光発光極大波長FL(PhMe, λex=300nm);λmaxを以下に示す。
FDMS, calcd for C43H27N3=585, found m/z=585 (M+)
UV(PhMe);λmax, 322nm、FL(PhMe, λex=300nm);λmax, 376nm
合成例5(化合物H5の合成)
合成例(5-1):中間体4の合成
Figure JPOXMLDOC01-appb-C000072
 中間体1の合成において、2-ニトロ-1,4-ジブロモベンゼンの代わりに3-ブロモカルバゾールを用い、フェニルボロン酸の代わりに9-フェニルカルバゾール-3-イルボロン酸を用いて同様の方法で合成した。FD-MS(フィールドディソープションマススペクトル)の分析により、中間体4と同定した。
合成例(5-2):化合物H5の合成
Figure JPOXMLDOC01-appb-C000073
 化合物H1の合成において、中間体3の代わりに中間体4を用いて同様の方法で合成した。
得られた化合物について、FD-MS(フィールドディソープションマススペクトル)、トルエン溶液中の紫外線吸収極大波長UV(PhMe);λmax、及び蛍光発光極大波長FL(PhMe, λex=300nm);λmaxを以下に示す。
FDMS, calcd for C37H23N3=509, found m/z=509 (M+)
UV(PhMe);λmax, 339nm、FL(PhMe, λex=300nm);λmax, 404nm
合成例6(化合物H6の合成)
Figure JPOXMLDOC01-appb-C000074
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに4’-ブロモビフェニル-3-カルボニトリルを用い、中間体3の代わりに中間体4を用いて同様の方法で合成した。
得られた化合物について、FD-MS(フィールドディソープションマススペクトル)を以下に示す。
FDMS, calcd for C43H27N3=585, found m/z=585 (M+)
合成例7(化合物H7の合成)
Figure JPOXMLDOC01-appb-C000075
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに4’-ブロモビフェニル-4-カルボニトリルを用い、中間体3の代わりに中間体4を用いて同様の方法で合成した。
 得られた化合物について、FD-MS(フィールドディソープションマススペクトル)を以下に示す。
FDMS, calcd for C43H27N3=585, found m/z=585 (M+)
合成例8(化合物H8の合成)
Figure JPOXMLDOC01-appb-C000076
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに3’-ブロモビフェニル-4-カルボニトリルを用い、中間体3の代わりに中間体4を用いて同様の方法で合成した。
 得られた化合物について、FD-MS(フィールドディソープションマススペクトル)を以下に示す。
FDMS, calcd for C43H27N3=585, found m/z=585 (M+)
合成例9(化合物H9の合成)
Figure JPOXMLDOC01-appb-C000077
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに3’-ブロモビフェニル-3-カルボニトリルを用い、中間体3の代わりに中間体4を用いて同様の方法で合成した。
 得られた化合物について、FD-MS(フィールドディソープションマススペクトル)を以下に示す。
FDMS, calcd for C43H27N3=585, found m/z=585 (M+)
合成例10(化合物H10の合成)
合成例(10-1):中間体5の合成
Figure JPOXMLDOC01-appb-C000078
 中間体1の合成において、2-ニトロ-1,4-ジブロモベンゼンの代わりに1-ブロモ-4-ヨードベンゼンを用い、フェニルボロン酸の代わりに9-フェニルカルバゾール-3-イルボロン酸を用いて同様の方法で合成した。FD-MS(フィールドディソープションマススペクトル)の分析により、中間体5と同定した。
合成例(10-2):中間体6の合成
Figure JPOXMLDOC01-appb-C000079
 アルゴン気流下、中間体5(10g、25mmol)、ビス(ピナコラト)ジボロン(8.3g、33mmol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.62g、0.75mmol)、酢酸カリウム(7.4g、75mmol)、N,N-ジメチルホルムアミド(170mL)を順次加えて8時間加熱還流した。
 室温まで反応液を冷却した後、有機層を分離し、有機溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、中間体6(10g、収率91%)を得た。FD-MS(フィールドディソープションマススペクトル)の分析により、中間体6と同定した。
合成例(10-3):中間体7の合成
Figure JPOXMLDOC01-appb-C000080
 中間体1の合成において、2-ニトロ-1,4-ジブロモベンゼンの代わりに3-ブロモカルバゾールを用い、フェニルボロン酸の代わりに中間体6を用いて同様の方法で合成した。FD-MS(フィールドディソープションマススペクトル)の分析により、中間体7と同定した。
合成例(10-4):H10の合成
Figure JPOXMLDOC01-appb-C000081
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに4’-ブロモビフェニル-4-カルボニトリルを用い、中間体3の代わりに中間体7を用いて同様の方法で合成した。
 得られた化合物について、FD-MS(フィールドディソープションマススペクトル)を以下に示す。
FDMS, calcd for C49H31N3=661, found m/z=661 (M+)
合成例11(化合物H11の合成)
Figure JPOXMLDOC01-appb-C000082
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに3’-ブロモビフェニル-4-カルボニトリルを用い、中間体3の代わりに中間体7を用いて同様の方法で合成した。
 得られた化合物について、FD-MS(フィールドディソープションマススペクトル)を以下に示す。
FDMS, calcd for C49H31N3=661, found m/z=661 (M+)
合成例12(化合物H12の合成)
Figure JPOXMLDOC01-appb-C000083
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに2-ブロモ-8-シアノジベンゾフランを用い、中間体3の代わりに中間体4を用いて同様の方法で合成した。
 得られた化合物について、FD-MS(フィールドディソープションマススペクトル)を以下に示す。
FDMS, calcd for C43H25N3O=599, found m/z=599 (M+)
合成例13(化合物H13の合成)
合成例(13-1):中間体8の合成
Figure JPOXMLDOC01-appb-C000084
 中間体1の合成において、2-ニトロ-1,4-ジブロモベンゼンの代わりに4-ブロモベンゾニトリルを用い、フェニルボロン酸の代わりに9-フェニルカルバゾール-3-イルボロン酸を用いて同様の方法で合成した。FD-MS(フィールドディソープションマススペクトル)の分析により、中間体8と同定した。
合成例(13-2):中間体9の合成
Figure JPOXMLDOC01-appb-C000085
 アルゴン気流下、N,N-ジメチルホルムアミド(80mL)、中間体8(5.6g、16.3mmol)、N-ブロモスクシンイミド(3.5g、19.5mmol)を順次加えて、0℃にて8時間撹拌した。
 反応液を室温に戻し、上水を加えろ過をして、得られた固体をシリカゲルカラムクロマトグラフィーにて精製し、中間体8(6.2g、収率90%)を得た。FD-MS(フィールドディソープションマススペクトル)の分析により、中間体9と同定した。
合成例(13-3):化合物H13の合成
Figure JPOXMLDOC01-appb-C000086
 中間体1の合成において、2-ニトロ-1,4-ジブロモベンゼンの代わりに中間体9を用い、フェニルボロン酸の代わりに9-フェニルカルバゾール-3-イルボロン酸を用いて同様の方法で合成した。
 得られた化合物について、FD-MS(フィールドディソープションマススペクトル)を以下に示す。
FDMS, calcd for C43H27N3=585, found m/z=585 (M+)
合成例14(化合物H14の合成)
Figure JPOXMLDOC01-appb-C000087
 中間体1の合成において、2-ニトロ-1,4-ジブロモベンゼンの代わりに3,5-ジブロモベンゾニトリル(1当量)を用い、フェニルボロン酸の代わりに9-フェニルカルバゾール-3-イルボロン酸(2当量)を用いて同様の方法で合成した。
 得られた化合物について、FD-MS(フィールドディソープションマススペクトル)を以下に示す。
FDMS, calcd for C43H27N3=585, found m/z=585 (M+)
合成例15:化合物H15の合成
Figure JPOXMLDOC01-appb-C000088
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに2-ブロモ-8-シアノジベンゾフランを用いて同様の方法で合成した。得られた化合物について、FD-MS(フィールドディソープションマススペクトル)を以下に示す。
FDMS, calcd for C43H25N3O=599, found m/z=599 (M+)
合成例16:化合物H16の合成
Figure JPOXMLDOC01-appb-C000089
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに2-ブロモ-8-シアノジベンゾチオフェンを用いて同様の方法で合成した。得られた化合物について、FD-MS(フィールドディソープションマススペクトル)を以下に示す。
FDMS, calcd for C43H25N3S=615, found m/z=615 (M+)
合成例17:化合物H17の合成
Figure JPOXMLDOC01-appb-C000090
 化合物H1の合成において、4-ブロモベンゾニトリルの代わりに2-ブロモ-8-シアノジベンゾチオフェンを用い、中間体3の代わりに中間体4を用いて同様の方法で合成した。得られた化合物について、FD-MS(フィールドディソープションマススペクトル)を以下に示す。
FDMS, calcd for C43H25N3S=615, found m/z=615 (M+)
[有機EL素子の作製及び発光性能評価]
実施例1
(有機EL素子の製造)
 25mm×75mm×厚さ1.1mmのITO透明電極付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行った。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして下記電子受容性(アクセプター)化合物C-1を蒸着し、膜厚5nmの化合物C-1膜を成膜した。この化合物C-1膜上に、第1正孔輸送材料として下記芳香族アミン誘導体(化合物X1)を蒸着し、膜厚65nmの第1正孔輸送層を成膜した。第1正孔輸送層の成膜に続けて、第2正孔輸送材料として下記芳香族アミン誘導体(化合物X2)を蒸着し、膜厚10nmの第2正孔輸送層を成膜した。
 さらに、この第2正孔輸送層上に、ホスト材料として下記表1に記載のホスト材料1及びホスト材料2と、燐光発光材料として下記化合物Ir(bzq)3とを共蒸着し、膜厚25nmの燐光発光層を成膜した。発光層内における化合物Ir(bzq)3の濃度は10.0質量%、ホスト材料1の濃度は45.0質量%、ホスト材料2の濃度45.0質量%であった。この共蒸着膜は発光層として機能する。
 そして、この発光層成膜に続けて下記化合物ETを膜厚35nmで成膜した。この化合物ET膜は電子輸送層として機能する。
 次に、LiFを電子注入性電極(陰極)として成膜速度0.1オングストローム/minで膜厚を1nmとした。このLiF膜上に金属Alを蒸着させ、金属陰極を膜厚80nmで形成し有機EL素子を作製した。
 以下に、実施例および比較例で使用した化合物を示す。
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
(有機EL素子の発光特性評価)
 得られた有機EL素子の室温及びDC定電流駆動(電流密度1mA/cm2)での発光効率を測定した。さらに、初期輝度10,000cd/m2における80%寿命(定電流駆動で、輝度が初期輝度の80%まで低下するまでの時間)を求めた。結果を表1に示す。
実施例2~5及び比較例1
 発光層のホスト材料として、表2に記載のホスト材料1とホスト材料2を用いて発光層を形成した以外は、実施例1と同様にして有機EL素子を作製した。
 得られた有機EL素子の発光効率及び80%寿命の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000094
 表1より、式(A)で表される第一ホスト材料である化合物H1およびH3~H5と、式(1)で表される第二ホスト材料である化合物F2またはF3とを組み合わせて発光層のホスト材料(コホスト)として用いた実施例1~5の有機EL素子は、発光効率が良好であった。さらに実施例1~5の有機EL素子は、同様の中心骨格であるが末端がシアノ基置換されていない化合物F1と化合物F3をコホストとして用いた比較例1の有機EL素子に対して、長寿命化していた。
実施例6
(有機EL素子の製造)
 25mm×75mm×1.1mm厚のITO透明電極(陽極、70nm)付きガラス基板(ジオマテック(株)社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 まず、洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして、抵抗加熱蒸着により化合物C-1を積層した。これにより、厚さ10nmの陽極に隣接する正孔注入層を形成した。
 この正孔注入層上に、抵抗加熱蒸着により化合物X4を積層した。これにより、厚さ65nmの第一正孔輸送層を形成した。
 この第一正孔輸送層上に、抵抗加熱蒸着により化合物X3を積層した。これにより、厚さ10nmの第二正孔輸送層を形成した。
 この第二正孔輸送層上に、第一ホスト材料としての化合物H5と、第二ホスト材料としての化合物F2と、燐光発光性ドーパントとしてIr(bzq)3とを抵抗加熱で共蒸着した。これにより、黄色発光を示す厚さ25nmの発光層を形成した。尚、発光層中の第一ホスト材料、第二ホスト材料、発光性ドーパントの濃度は、それぞれ、45質量%、45質量%、10質量%とした。
 この発光層上に、抵抗加熱蒸着により化合物ETを積層した。これにより、厚さ35nmの電子輸送層を形成した。
 さらに、電子輸送層上に、LiFを蒸着し、厚さ1nmの電子注入層を形成した。さらに、電子注入性層上に、金属Alを蒸着し、厚さ80nmの陰極を形成した。
(有機EL素子の発光特性評価)
 得られた有機EL素子の室温及びDC定電流駆動(電流密度10mA/cm2)での電圧及び外部量子効率を測定した。さらに、50mA/cm2における90%寿命(定電流駆動で、輝度が初期輝度の90%まで低下するまでの時間)を求めた。結果を表2に示す。
実施例7~17及び比較例3、6~7
 発光層のホスト材料として、表2に記載のホスト材料1とホスト材料2を用いて発光層を形成した以外は、実施例6と同様にして有機EL素子を作製した。
 得られた有機EL素子の電圧、発光効率及び90%寿命の結果を表2に示す。
比較例2、4及び5
 発光層のホスト材料として、表2に記載のホスト材料2(90質量%)を用いて発光層を形成した以外は、実施例6と同様にして有機EL素子を作製した。
 得られた有機EL素子の電圧、発光効率及び90%寿命の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000095
 表2より、第一ホスト材料として式(A)で表される化合物を用い、第二ホスト材料として式(1)で表される化合物を用いた実施例6~15の有機EL素子は、比較例2、3の有機EL素子と比較して長寿命化していた。
 また、第一ホスト材料として式(A)で表される化合物を用い、第二ホスト材料として式(1)で表される分子内に1つのカルバゾール環とアジン環とを有する化合物を用いた実施例16及び17の有機EL素子は、比較例4~7の有機EL素子と比較して長寿命化していた。
実施例18
(有機EL素子の製造)
 25mm×75mm×1.1mm厚のITO透明電極(陽極、130nm)付きガラス基板(ジオマテック(株)社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 まず、洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして、抵抗加熱蒸着により化合物C-1を積層した。これにより、厚さ5nmの陽極に隣接する正孔注入層を形成した。
 この正孔注入層上に、抵抗加熱蒸着により化合物X1を積層した。これにより、厚さ160nmの第一正孔輸送層を形成した。
 この第一正孔輸送層上に、抵抗加熱蒸着により化合物X3を積層した。これにより、厚さ10nmの第二正孔輸送層を形成した。
 この第二正孔輸送層上に、第一ホスト材料としての化合物H5と、第二ホスト材料としての化合物F2と、燐光発光性ドーパントとしてIr(ppy)3とを抵抗加熱で共蒸着した。これにより、緑色発光を示す厚さ25nmの発光層を形成した。尚、発光層中の第一ホスト材料、第二ホスト材料、発光性ドーパントの濃度は、それぞれ、45質量%、45質量%、10質量%とした。
 この発光層上に、抵抗加熱蒸着により化合物ETを積層した。これにより、厚さ35nmの電子輸送層を形成した。
 さらに、電子輸送層上に、LiFを蒸着し、厚さ1nmの電子注入層を形成した。さらに、電子注入性層上に、金属Alを蒸着し、厚さ80nmの陰極を形成した。
(有機EL素子の発光特性評価)
 得られた有機EL素子の室温及びDC定電流駆動(電流密度10mA/cm2)での電圧及び外部量子効率を測定した。さらに、初期輝度4,000cd/m2における95%寿命(定電流駆動で、輝度が初期輝度の95%まで低下するまでの時間)を求めた。結果を表3に示す。
実施例19~20及び比較例8
 発光層のホスト材料として、表3に記載のホスト材料1とホスト材料2を用いて発光層を形成した以外は、実施例18と同様にして有機EL素子を作製した。
 得られた有機EL素子の電圧、外部量子効率及び95%寿命の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000096
 第一ホスト材料として式(A)で表される化合物を用い、第二ホスト材料として式(1)で表される化合物を用いた実施例18~20の有機EL素子は、比較例8の有機EL素子と比較して長寿命化していた。
実施例21~28及び比較例9~11
 発光層のホスト材料として、表4に記載のホスト材料1とホスト材料2を用いて発光層を形成した以外は、実施例1と同様にして有機EL素子を作製した。
 得られた有機EL素子の発光効率及び90%寿命の結果を表4に示す。
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-T000098
実施例29~35及び比較例12~14
 発光層のホスト材料として、表5に記載のホスト材料1とホスト材料2を用いて発光層を形成した以外は、実施例18と同様にして有機EL素子を作製した。
 得られた有機EL素子の電圧、外部量子効率及び95%寿命の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000099
 以上詳細に説明したように、本発明の有機EL素子は、良好な長寿命性能を有する。
  1 有機エレクトロルミネッセンス素子
  2 基板
  3 陽極
  4 陰極
  5 燐光発光層
  6 正孔注入・輸送層
  7 電子注入・輸送層
 10 有機薄膜層

Claims (10)

  1.  陽極と陰極との間に少なくとも発光層を備える有機エレクトロルミネッセンス素子であって、該発光層が、下記一般式(A)で表される第一ホスト材料と、下記一般式(1)で表される第二ホスト材料と、発光材料とを含有することを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    [式(A)中、
     A1及びA2は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の複素環基を表す。
     A3は、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の2価の複素環基を表す。
     mは、0~3の整数を表す。
     X1~X8およびY1~Y8は、それぞれ独立に、N又はCRaを表す。
     Raは、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換のシリル基、ハロゲン原子又はシアノ基を表す。Raが複数存在する場合、複数のRaはそれぞれ同一でも異なっていてもよい。
     X5~X8の1つと、Y1~Y4の1つは、A3を介して結合している。
     さらに、式(A)は、下記(i)~(v)の少なくともいずれかを満たす。
    (i)A1およびA2の少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
    (ii)X1~X4およびY5~Y8の少なくとも1つはCRaであり、X1~X4およびY5~Y8におけるRaの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
    (iii)mは1~3の整数であり、A3の少なくとも1つは、シアノ基で置換された環形成炭素数6~30の2価の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の2価の複素環基である。
    (iv)X5~X8およびY1~Y4の少なくとも1つはCRaであり、X5~X8およびY1~Y8におけるRaの少なくとも1つは、シアノ基で置換された環形成炭素数6~30の芳香族炭化水素基、又はシアノ基で置換された環形成原子数5~30の複素環基である。
    (v)X1~X8およびY1~Y8の少なくとも1つはC-CNである。]
    Figure JPOXMLDOC01-appb-C000002
    [一般式(1)中、
     Z1は、aにおいて縮合している下記一般式(1-1)又は(1-2)で表される環構造を表す。Z2は、bにおいて縮合している下記一般式(1-1)又は(1-2)で表される環構造を表す。ただし、Z1又はZ2の少なくともいずれか1つは下記一般式(1-1)で表される。
     M1は、置換もしくは無置換の環形成原子数5~30の窒素含有ヘテロ芳香族環であり、
     L1は、単結合、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、環形成炭素数5~30のシクロアルキレン基、又は、これらが連結した基を表す。
     kは、1又は2を表す。]
    Figure JPOXMLDOC01-appb-C000003
    [上記一般式(1-1)において、
     cは、前記一般式(1)のa又はbにおいて縮合していることを表す。
     上記(1-2)において、d,e及びfのいずれか1つは、前記一般式(1)のa又はbにおいて縮合していることを表す。
     上記一般式(1-1)および(1-2)において、
     X11は、硫黄原子、酸素原子、N-R19、又はC(R20)(R21)を表す。
     R11~R21は、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
     また、隣り合うR11~R21は互いに結合して環を形成していてもよい。]
  2.  前記第一ホスト材料が、前記(i)及び(ii)の少なくとも一方を満たす請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記一般式(A)における前記A3は、置換もしくは無置換の環形成炭素数6以下の2価の単環炭化水素基、又は置換もしくは無置換の環形成原子数6以下の2価の単環複素環基を表す請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4.  前記第二ホスト材料が、下記一般式(2)で表される請求項1~3のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
    [一般式(2)中、
     Z1は、aにおいて縮合している前記一般式(1-1)又は(1-2)で表される環構造を表す。Z2は、bにおいて縮合している前記一般式(1-1)又は(1-2)で表される環構造を表す。但し、Z1又はZ2の少なくともいずれか1つは前記一般式(1-1)で表される。
     L1は、前記一般式(1)におけるL1と同義である。
     X12~X14は、それぞれ独立に、窒素原子、CH、又は、R31もしくはL1と結合する炭素原子であり、X12~X14のうち少なくとも1つは窒素原子である。
     Y11~Y13は、それぞれ独立に、CH、又は、R31もしくはL1と結合する炭素原子を表す。
     R31は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
     R31が複数存在する場合、複数のR31は互いに同一でも異なっていてもよく、また、隣り合うR31は互いに結合して環を形成していてもよい。
     kは1又は2を表し、nは0~4の整数を表す。
     前記一般式(1-1)におけるcは、前記一般式(2)のa又はbにおいて縮合し、
     前記一般式(1-2)におけるd,e及びfのいずれか1つは、前記一般式(2)のa又はbにおいて縮合する。]
  5.  前記第二ホスト材料が、下記一般式(3)で表される請求項1~4のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
    [一般式(3)中
     L1は、前記一般式(1)におけるL1と同義である。
     X12~X14は、それぞれ独立に、窒素原子、CH、又は、R31もしくはL1と結合する炭素原子であり、X12~X14のうち少なくとも1つは窒素原子である。
     Y11~Y13は、それぞれ独立に、CH、又は、R31もしくはL1と結合する炭素原子を表す。
     R31は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
     R31が複数存在する場合、複数のR31は互いに同一でも異なっていてもよく、また、隣り合うR31は互いに結合して環を形成していてもよい。
     nは、0~4の整数を表す。
     R41~R48は、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
     また、隣り合うR41~R48は互いに結合して環を形成していてもよい。]
  6.  前記第一ホスト材料が、前記(i)のみを満たす請求項1~5のいずれかに記載の有機エレクトロルミネッセンス素子。
  7.  前記第二ホスト材料が、下記一般式(4)で表される請求項1~6のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006
    [一般式(4)において、
     L1は、前記一般式(1)におけるL1と同義である。
     X12~X14は、それぞれ独立に、窒素原子、CH、又は、R31もしくはL1と結合する炭素原子であり、X12~X14のうち少なくとも1つは窒素原子である。
     Y11~Y13は、それぞれ独立に、CH、又は、R31もしくはL1と結合する炭素原子を表す。
     R31は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
     R31が複数存在する場合、複数のR31は互いに同一でも異なっていてもよく、また、隣り合うR31は互いに結合して環を形成していてもよい。
     nは、0~4の整数を表す。
     L2およびL3は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30の2価の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の2価の複素環基、環形成炭素数5~30のシクロアルキレン基、又は、これらが連結した基を表す。
     R51~R54は、それぞれ独立に、ハロゲン原子、シアノ基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアラルキル基、又は置換もしくは無置換の環形成炭素数6~30のアリールオキシ基を表す。
     R51が複数存在する場合、複数のR51は互いに同一でも異なっていてもよく、また、隣り合うR51は互いに結合して環を形成していてもよい。
     R52が複数存在する場合、複数のR52は互いに同一でも異なっていてもよく、また、隣り合うR52は互いに結合して環を形成していてもよい。
     R53が複数存在する場合、複数のR53は互いに同一でも異なっていてもよく、また、隣り合うR53は互いに結合して環を形成していてもよい。
     R54が複数存在する場合、複数のR51は互いに同一でも異なっていてもよく、また、隣り合うR54は互いに結合して環を形成していてもよい。
     M2は、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の複素環基を表す。
     p及びsは、それぞれ独立に、0~4の整数を表し、q及びrは、それぞれ独立に、0~3の整数を表す。]
  8.  前記式(A)における前記A1および前記A2の少なくとも1つが、シアノ基で置換されたフェニル基、シアノ基で置換されたナフチル基、シアノ基で置換されたフェナントリル基、シアノ基で置換されたジベンゾフラニル基、シアノ基で置換されたジベンゾチオフェニル基、シアノ基で置換されたビフェニリル基、シアノ基で置換されたターフェニリル基、シアノ基で置換された9,9-ジフェニルフルオレニル基、シアノ基で置換された9,9’-スピロビ[9H-フルオレン]-2-イル基、シアノ基で置換された9,9-ジメチルフルオレニル基、又はシアノ基で置換されたトリフェニレニル基である請求項1~7のいずれかに記載の有機エレクトロルミネッセンス素子。
  9.  前記発光材料が、イリジウム(Ir)、オスミウム(Os)及び白金(Pt)から選択される金属原子のオルトメタル化錯体である燐光発光材料を含有する請求項1~8のいずれかに記載の有機エレクトロルミネッセンス素子。
  10.  前記燐光発光材料の発光ピーク波長が490nm以上700nm以下である請求項9に記載の有機エレクトロルミネッセンス素子。
PCT/JP2012/081382 2011-12-05 2012-12-04 有機エレクトロルミネッセンス素子 WO2013084885A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053767 WO2013145923A1 (ja) 2012-03-30 2013-02-15 有機エレクトロルミネッセンス素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-266238 2011-12-05
JP2011266238 2011-12-05
JP2012-083145 2012-03-30
JP2012083145 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013084885A1 true WO2013084885A1 (ja) 2013-06-13

Family

ID=48574245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081382 WO2013084885A1 (ja) 2011-12-05 2012-12-04 有機エレクトロルミネッセンス素子

Country Status (3)

Country Link
US (1) US20140151647A1 (ja)
TW (1) TW201326121A (ja)
WO (1) WO2013084885A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097813A1 (ja) * 2012-12-17 2014-06-26 新日鉄住金化学株式会社 有機電界発光素子
WO2015000548A1 (de) * 2013-07-02 2015-01-08 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2015008580A1 (ja) * 2013-07-16 2015-01-22 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2015160224A1 (en) 2014-04-18 2015-10-22 Rohm And Haas Electronic Materials Korea Ltd. Multi-component host material and an organic electroluminescence device comprising the same
US9172046B1 (en) 2014-06-09 2015-10-27 Samsung Display Co., Ltd. Organic light-emitting device
US9203036B2 (en) 2012-02-03 2015-12-01 Idemitsu Kosan Co., Ltd. Carbazole compound, material for organic electroluminescence device and organic electroluminescence device
KR20160011522A (ko) * 2014-07-22 2016-02-01 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
WO2016127461A1 (zh) * 2015-02-11 2016-08-18 深圳市前海安测信息技术有限公司 有机电致发光材料及其制备方法
JP2017513220A (ja) * 2014-04-08 2017-05-25 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 多成分ホスト材料及びそれを含む有機電界発光デバイス
JP2017092277A (ja) * 2015-11-11 2017-05-25 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
US20170207396A1 (en) * 2014-07-22 2017-07-20 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
WO2018123923A1 (ja) * 2016-12-26 2018-07-05 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
US10243149B2 (en) 2016-01-05 2019-03-26 Samsung Electronics Co., Ltd. Composition, thin film including the composition, and organic light-emitting device including the composition or the thin film
US10305041B2 (en) 2014-11-10 2019-05-28 Samsung Display Co., Ltd. Organic light-emitting device
US10862049B2 (en) 2017-03-24 2020-12-08 Idemitsu Kosan Co., Ltd. Composition, organic-electroluminescence-device material, composition film, organic electroluminescence device, and electronic device
US10978643B2 (en) 2014-12-19 2021-04-13 Samsung Display Co., Ltd. Organic light-emitting device
US11038113B2 (en) 2014-11-19 2021-06-15 Samsung Display Co., Ltd. Organic light-emitting device
US11631817B2 (en) 2017-08-21 2023-04-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence element, electronic device, composition, material for organic electroluminescence element, and composition film
US11800797B2 (en) 2019-02-26 2023-10-24 Samsung Electronics Co., Ltd. Heterocyclic compound and organic light-emitting device including the same

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108389A1 (ja) 2011-02-07 2012-08-16 出光興産株式会社 ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2012133188A1 (ja) 2011-03-25 2012-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2013172835A1 (en) * 2012-05-17 2013-11-21 Universal Display Corporation Biscarbazole derivative host materials for oled emissive region
KR20150030660A (ko) * 2012-06-14 2015-03-20 유니버셜 디스플레이 코포레이션 Oled 발광 영역을 위한 비스카바졸 유도체 호스트 물질 및 적색 에미터
JP6100368B2 (ja) * 2012-06-14 2017-03-22 ユニバーサル ディスプレイ コーポレイション Oled発光領域のためのビスカルバゾール誘導体ホスト物質及び緑色発光体
EP2821459B1 (en) * 2013-07-01 2017-10-04 Cheil Industries Inc. Composition and organic optoelectric device and display device
KR101812581B1 (ko) * 2013-10-11 2017-12-27 제일모직 주식회사 유기광전자소자용 유기합화물, 유기 광전자 소자 및 표시 장치
KR101802861B1 (ko) 2014-02-14 2017-11-30 삼성디스플레이 주식회사 유기 발광 소자
KR102308903B1 (ko) * 2014-06-17 2021-10-06 삼성디스플레이 주식회사 유기 발광 소자
KR102241847B1 (ko) * 2014-07-29 2021-04-20 삼성디스플레이 주식회사 유기 발광 소자
WO2016028110A1 (en) 2014-08-20 2016-02-25 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and an organic electroluminescence device comprising the same
KR102445503B1 (ko) * 2014-08-20 2022-09-22 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR102490882B1 (ko) 2014-12-31 2023-01-25 삼성디스플레이 주식회사 유기 발광 소자
KR102424977B1 (ko) 2015-04-14 2022-07-26 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102630644B1 (ko) 2015-12-17 2024-01-30 삼성디스플레이 주식회사 유기 발광 소자
KR20170074811A (ko) * 2015-12-22 2017-06-30 삼성전자주식회사 축합환 화합물, 이를 포함한 조성물 및 유기 발광 소자 및 상기 유기 발광 소자의 제조 방법
KR20170097820A (ko) 2016-02-18 2017-08-29 삼성디스플레이 주식회사 유기 발광 소자
KR20180007617A (ko) * 2016-07-13 2018-01-23 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR20180010533A (ko) * 2016-07-21 2018-01-31 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
US11374178B2 (en) 2017-03-23 2022-06-28 Nippon Steel Chemical & Material Co., Ltd. Organic electroluminescent element
EP3512307B1 (en) * 2018-01-10 2021-04-21 Samsung Electronics Co., Ltd. Polymer material, material for electroluminescence device, composition, thin film, and electroluminescence device comprising the same
KR20200111577A (ko) * 2019-03-19 2020-09-29 삼성전자주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
JP2020200397A (ja) 2019-06-10 2020-12-17 三星電子株式会社Samsung Electronics Co.,Ltd. 高分子材料、エレクトロルミネッセンス素子用材料、液状組成物、薄膜及びエレクトロルミネッセンス素子
CN110627821A (zh) * 2019-09-29 2019-12-31 上海天马有机发光显示技术有限公司 一种化合物、有机电致发光器件、显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195708A (ja) * 2009-02-25 2010-09-09 Toyo Ink Mfg Co Ltd カルバゾリル基を有する化合物およびその用途
WO2011019156A1 (en) * 2009-08-10 2011-02-17 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR101072817B1 (ko) * 2011-02-21 2011-10-14 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2011132684A1 (ja) * 2010-04-20 2011-10-27 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2012161382A1 (en) * 2011-05-26 2012-11-29 Cheil Industries Inc. Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
WO2012165256A1 (ja) * 2011-05-27 2012-12-06 出光興産株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055818B2 (ja) * 2006-04-19 2012-10-24 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009057307A (ja) * 2007-08-31 2009-03-19 Toyo Ink Mfg Co Ltd カルバゾリル基を有する化合物およびその用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195708A (ja) * 2009-02-25 2010-09-09 Toyo Ink Mfg Co Ltd カルバゾリル基を有する化合物およびその用途
WO2011019156A1 (en) * 2009-08-10 2011-02-17 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011132684A1 (ja) * 2010-04-20 2011-10-27 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
KR101072817B1 (ko) * 2011-02-21 2011-10-14 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
WO2012161382A1 (en) * 2011-05-26 2012-11-29 Cheil Industries Inc. Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
WO2012165256A1 (ja) * 2011-05-27 2012-12-06 出光興産株式会社 有機エレクトロルミネッセンス素子

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203036B2 (en) 2012-02-03 2015-12-01 Idemitsu Kosan Co., Ltd. Carbazole compound, material for organic electroluminescence device and organic electroluminescence device
WO2014097813A1 (ja) * 2012-12-17 2014-06-26 新日鉄住金化学株式会社 有機電界発光素子
JPWO2014097813A1 (ja) * 2012-12-17 2017-01-12 新日鉄住金化学株式会社 有機電界発光素子
CN105359290A (zh) * 2013-07-02 2016-02-24 默克专利有限公司 有机电致发光器件
WO2015000548A1 (de) * 2013-07-02 2015-01-08 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
KR102167199B1 (ko) * 2013-07-02 2020-10-19 메르크 파텐트 게엠베하 유기 전계발광 소자
KR20160027121A (ko) * 2013-07-02 2016-03-09 메르크 파텐트 게엠베하 유기 전계발광 소자
JPWO2015008580A1 (ja) * 2013-07-16 2017-03-02 国立大学法人九州大学 化合物、発光材料および有機発光素子
CN105531261A (zh) * 2013-07-16 2016-04-27 国立大学法人九州大学 化合物、发光材料及有机发光元件
WO2015008580A1 (ja) * 2013-07-16 2015-01-22 国立大学法人九州大学 化合物、発光材料および有機発光素子
EP3023414A4 (en) * 2013-07-16 2017-03-15 Kyushu University, National University Corporation Compound, light-emitting material, and organic light-emitting element
US10461261B2 (en) 2013-07-16 2019-10-29 Kyushu University, National University Corporation Compound, light emitting material, and organic light emitting device
JP2017513220A (ja) * 2014-04-08 2017-05-25 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 多成分ホスト材料及びそれを含む有機電界発光デバイス
EP3131879B1 (en) * 2014-04-18 2023-09-13 Rohm And Haas Electronic Materials Korea Ltd. Multi-component host material and an organic electroluminescence device comprising the same
WO2015160224A1 (en) 2014-04-18 2015-10-22 Rohm And Haas Electronic Materials Korea Ltd. Multi-component host material and an organic electroluminescence device comprising the same
US9172046B1 (en) 2014-06-09 2015-10-27 Samsung Display Co., Ltd. Organic light-emitting device
US20170207396A1 (en) * 2014-07-22 2017-07-20 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
JP2017529685A (ja) * 2014-07-22 2017-10-05 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機エレクトロルミネセントデバイス
KR20160011522A (ko) * 2014-07-22 2016-02-01 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR102357467B1 (ko) * 2014-07-22 2022-02-04 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
US20170213968A1 (en) * 2014-07-22 2017-07-27 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
JP2020181986A (ja) * 2014-07-22 2020-11-05 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機エレクトロルミネセントデバイス
US10305041B2 (en) 2014-11-10 2019-05-28 Samsung Display Co., Ltd. Organic light-emitting device
US11038113B2 (en) 2014-11-19 2021-06-15 Samsung Display Co., Ltd. Organic light-emitting device
US10978643B2 (en) 2014-12-19 2021-04-13 Samsung Display Co., Ltd. Organic light-emitting device
WO2016127461A1 (zh) * 2015-02-11 2016-08-18 深圳市前海安测信息技术有限公司 有机电致发光材料及其制备方法
JP2017092277A (ja) * 2015-11-11 2017-05-25 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
US10243149B2 (en) 2016-01-05 2019-03-26 Samsung Electronics Co., Ltd. Composition, thin film including the composition, and organic light-emitting device including the composition or the thin film
WO2018123923A1 (ja) * 2016-12-26 2018-07-05 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
US10862049B2 (en) 2017-03-24 2020-12-08 Idemitsu Kosan Co., Ltd. Composition, organic-electroluminescence-device material, composition film, organic electroluminescence device, and electronic device
US11631817B2 (en) 2017-08-21 2023-04-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence element, electronic device, composition, material for organic electroluminescence element, and composition film
US11800797B2 (en) 2019-02-26 2023-10-24 Samsung Electronics Co., Ltd. Heterocyclic compound and organic light-emitting device including the same

Also Published As

Publication number Publication date
TW201326121A (zh) 2013-07-01
US20140151647A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5898683B2 (ja) 有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
WO2013084885A1 (ja) 有機エレクトロルミネッセンス素子
WO2013145923A1 (ja) 有機エレクトロルミネッセンス素子
JP6195828B2 (ja) 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
US9530969B2 (en) Material for organic electroluminescence device and organic electroluminescence device
JP5993934B2 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP5870045B2 (ja) ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR101441177B1 (ko) 비스카르바졸 유도체를 사용한 유기 일렉트로루미네선스 소자
WO2013180097A1 (ja) 有機エレクトロルミネッセンス素子
WO2014027676A1 (ja) 有機エレクトロルミネッセンス素子
US20190006601A1 (en) Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
WO2012165256A1 (ja) 有機エレクトロルミネッセンス素子
KR20140121461A (ko) 카르바졸 화합물, 유기 일렉트로루미네선스 소자용 재료 및 유기 일렉트로루미네선스 소자
WO2014051004A1 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
WO2014021280A1 (ja) 有機エレクトロルミネッセンス素子
US20180319813A1 (en) Benzimidazole fused heteroaryls
WO2014054263A1 (ja) 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2014122937A1 (ja) 有機エレクトロルミネッセンス素子
WO2014050093A1 (ja) 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JP2014196251A (ja) ヘテロアレーン誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子
JP2014196252A (ja) ヘテロアレーン誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP