WO2013084455A1 - 熱交換器及びそれを備える空気調和機 - Google Patents

熱交換器及びそれを備える空気調和機 Download PDF

Info

Publication number
WO2013084455A1
WO2013084455A1 PCT/JP2012/007703 JP2012007703W WO2013084455A1 WO 2013084455 A1 WO2013084455 A1 WO 2013084455A1 JP 2012007703 W JP2012007703 W JP 2012007703W WO 2013084455 A1 WO2013084455 A1 WO 2013084455A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
heat transfer
air conditioner
inner diameter
Prior art date
Application number
PCT/JP2012/007703
Other languages
English (en)
French (fr)
Inventor
一彦 丸本
藤高 章
横山 昭一
川邉 義和
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to KR1020147005483A priority Critical patent/KR20140103249A/ko
Priority to CN201280042751.9A priority patent/CN103765131A/zh
Publication of WO2013084455A1 publication Critical patent/WO2013084455A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Definitions

  • the present invention relates to a heat exchanger using a combustible refrigerant and an air conditioner including the heat exchanger.
  • HFC hydrofluorocarbon
  • HCFC hydrochlorofluorocarbon
  • R32, R290, R1234yf etc. are mentioned as a refrigerant
  • these refrigerants are flammable or weakly flammable, and there is a risk of ignition or explosion when leaked.
  • Patent Document 1 Japanese Patent No. 4209860
  • Patent Document 1 Japanese Patent No. 4209860
  • Patent Document 1 Japanese Patent No. 4209860
  • the capacity of the heat exchanger is impaired by gradually reducing the pipe inner diameter of the heat transfer tube on the liquid side of the heat exchanger used as a condenser so as to change the temperature along the saturated liquid line.
  • Patent Document 1 Japanese Patent No. 4209860
  • the capacity of the heat exchanger is impaired by gradually reducing the pipe inner diameter of the heat transfer tube on the liquid side of the heat exchanger used as a condenser so as to change the temperature along the saturated liquid line.
  • the prior art is a narrowing technique suitable when the heat exchanger functions as a condenser.
  • the heat exchanger functions as an evaporator, the inner diameter of the pipe of the heat transfer tube is set to a saturated liquid line.
  • the pressure loss increases by gradually reducing the temperature so as to change the temperature along the line, and the performance of the heat exchanger decreases.
  • An object of the present invention is to provide a heat exchanger capable of suppressing a decrease in performance of a heat exchanger even when the heat exchanger functions as an evaporator, and an air conditioner including the heat exchanger.
  • the present invention is a fin-and-tube heat exchanger using a flammable refrigerant and having a multi-row multi-stage tube arrangement of two or more rows, In the same row, heat transfer tubes having the same pipe inner diameter are arranged, and when the heat exchanger functions as an evaporator, the amount of change in saturation temperature is substantially the same as when R410A is used as the flammable refrigerant,
  • the pipe inner diameter of the heat transfer tube through which the combustible refrigerant having a low dryness flows is configured to be smaller than the pipe inner diameter of the heat transfer tube through which the combustible refrigerant having a high dryness flows.
  • the heat exchanger according to the present invention can reduce the amount of refrigerant used in the heat exchanger without degrading the performance of the heat exchanger.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of a fin-and-tube heat exchanger provided in the air conditioner of FIG.
  • FIG. 3 is a diagram showing the temperature change characteristics of the refrigerant in the outdoor heat exchanger when R410A is used as the refrigerant.
  • FIG. 4 is a graph showing the relationship among the pipe inner diameter, dryness, and standard boiling point of each refrigerant shown in Table 2.
  • the heat exchanger according to the present invention is a fin-and-tube heat exchanger using a flammable refrigerant and having a multi-row multi-stage tube arrangement of two or more rows, In the same row, heat transfer tubes having the same pipe inner diameter are arranged, and when the heat exchanger functions as an evaporator, the amount of change in saturation temperature is substantially the same as when R410A is used as the flammable refrigerant,
  • the pipe inner diameter of the heat transfer tube through which the combustible refrigerant having a low dryness flows is configured to be smaller than the pipe inner diameter of the heat transfer tube through which the combustible refrigerant having a high dryness flows.
  • the heat transfer tube through which the flammable refrigerant having a low dryness flows is arranged on the inlet side of the combustible refrigerant, and the heat transfer tube through which the flammable refrigerant having a high dryness flows is arranged on the outlet side of the combustible refrigerant.
  • it is.
  • the heat exchanger is configured such that when the heat exchanger functions as an evaporator, the flow of the combustible refrigerant flowing through the heat exchanger and the air flow are opposed to each other. Thereby, the amount of refrigerant to be used can be further reduced without degrading the performance of the heat exchanger.
  • the flammable refrigerant it is preferable to use a single refrigerant or a mixture of two components or a mixture of three components so that the global warming potential is 3 or more and 750 or less. Thereby, it can contribute to prevention of global warming.
  • an air conditioner includes a compressor that compresses the combustible refrigerant, and as refrigerating machine oil used in the compressor, polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycol or the like Synthetic oils mainly composed of copolymers of monoethers and polyvinyl ethers, polyol esters, and polycarbonates, synthetic oils mainly composed of alkylbenzenes or ⁇ -olefins, or mineral oils Is preferably used. Thereby, while contributing to prevention of global warming, it can contribute to the improvement of the reliability of an air conditioner.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
  • the air conditioner of the present embodiment is an air conditioner that uses a combustible refrigerant as a refrigerant.
  • a combustible refrigerant for example, in addition to a natural refrigerant such as R290, a weakly flammable or slightly flammable refrigerant such as HFO1234yf, HFO-1234ze, HFO-1243zf, R32, or a mixed refrigerant thereof is used. Can be used.
  • the air conditioner of the present embodiment includes an indoor unit 21 installed indoors and an outdoor unit 22 installed outdoors.
  • the indoor unit 21 and the outdoor unit 22 are connected by a liquid side connection pipe 23 and a gas side connection pipe 24.
  • the outdoor unit 22 includes a compressor 1 that compresses refrigerant, a four-way valve 2 that switches a refrigerant circuit (refrigerant path) during cooling and heating operation, an outdoor heat exchanger 3 that exchanges heat between the refrigerant and outside air, A throttling device 4 for reducing the pressure of the refrigerant that has passed through the heat exchanger 3 is provided.
  • the outdoor heat exchanger 3 is a fin-and-tube heat exchanger.
  • the indoor unit 21 is provided with an indoor heat exchanger 5 that exchanges heat between the refrigerant and room air.
  • the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion device 4, and the indoor heat exchanger 5 are connected in an annular shape.
  • the indoor unit 21 is provided with an indoor fan 7 that promotes heat exchange between the refrigerant flowing in the indoor heat exchanger 5 and the indoor air.
  • the outdoor unit 22 is provided with an outdoor fan 8 that promotes heat exchange between the refrigerant flowing in the outdoor heat exchanger 3 and the outside air.
  • the compressor 1 compresses the refrigerant to generate a high-temperature and high-pressure refrigerant.
  • the high-temperature and high-pressure refrigerant is sent to the outdoor heat exchanger 3 through the four-way valve 2 and dissipates heat by promoting heat exchange with the outside air by the outdoor fan 8 to become a high-pressure liquid refrigerant.
  • the liquid refrigerant is sent to the expansion device 4 and depressurized to become a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant is sent into the indoor heat exchanger 5 through the liquid connection pipe 23.
  • the two-phase refrigerant sent into the indoor heat exchanger 5 is heat-exchanged with the indoor air sucked into the indoor heat exchanger 5 by the indoor fan 7, and is evaporated and evaporated by absorbing the heat of the indoor air. It becomes a low-temperature gas refrigerant.
  • the gas refrigerant returns to the compressor 1 through the gas side connection pipe 24 and the four-way valve 2.
  • the room air whose temperature has been lowered by absorbing heat by the two-phase refrigerant is blown into the room by the indoor fan 7 to cool the room.
  • the compressor 1 compresses the refrigerant to generate a high-temperature and high-pressure refrigerant.
  • the high-temperature and high-pressure refrigerant is sent to the indoor heat exchanger 5 through the four-way valve 2 and the gas connection pipe 24, and is heat-dissipated and condensed by exchanging heat with the indoor air sucked by the indoor fan 7. Becomes a refrigerant.
  • the liquid refrigerant is sent to the expansion device 4 through the liquid connection pipe 23.
  • the indoor air whose temperature has increased by absorbing the heat of the high-temperature and high-pressure refrigerant is blown into the room by the indoor fan 7 to heat the room.
  • the liquid refrigerant sent to the expansion device 4 is decompressed by the expansion device 4 and becomes a low-temperature low-pressure two-phase refrigerant.
  • the two-phase refrigerant is sent to the outdoor heat exchanger 3, evaporates by promoting heat exchange with the outside air by the outdoor fan 8, and returns to the compressor 1 through the four-way valve 2.
  • FIG. 3 is a graph showing temperature characteristics when R410A is used as a refrigerant.
  • the refrigerant temperature decreases toward the downstream side in the refrigerant flow direction.
  • the refrigerant evaporates in the outdoor heat exchanger 3, and the dryness increases.
  • the inside of the outdoor heat exchanger 3 is saturated except for the vicinity of the outlet. That is, the refrigerant temperature decreasing as it goes downstream in the refrigerant flow direction indicates that the pressure in the outdoor heat exchanger 3 is decreasing due to pressure loss.
  • FIG. 3 shows an example in which R410A is used as the refrigerant, but the pressure loss changes depending on the physical properties of the refrigerant.
  • the relationship between the saturation temperature and the saturation pressure varies depending on the type of refrigerant. That is, even if the pressure loss is the same, the change in saturation temperature varies depending on the physical properties and type of the refrigerant. For this reason, the structure of a suitable heat exchanger changes with refrigerants to be used.
  • the difference between the air temperature and the refrigerant temperature is one of the factors that determine the performance of the heat exchanger.
  • the refrigerant temperature distribution when a refrigerant other than R410A is used uses R410A. It is considered that the distribution should be approximately the same as the refrigerant temperature distribution. In other words, even when a refrigerant other than R410A is used, by configuring the heat exchanger so that the saturation temperature distribution is equivalent to that when R410A is used, the same performance as when R410A is used can be obtained. It is thought that it is obtained.
  • the pressure loss in the heat exchanger is estimated.
  • the pressure loss of each refrigerant can be expressed by a Fanning equation.
  • the Blasius equation expressed by Equation 2 was used.
  • Equation 3 the pipe flow velocity V can be expressed by Equation 3.
  • the refrigerant density ⁇ and the kinematic viscosity ⁇ in the two-phase state can be expressed by equations 4 and 5.
  • X represents the degree of dryness.
  • the pressure loss varies depending on the physical properties of the refrigerant, and the relationship between the saturation temperature and the saturation pressure varies depending on the type of the refrigerant. For this reason, in order to make the distribution of the saturation temperature of each refrigerant the same as the distribution of the saturation temperature of R410A, it is necessary to know the change of the saturation temperature per pressure change of each refrigerant.
  • Table 1 shows the saturation temperature change ( ⁇ TREF) per pressure change of each refrigerant.
  • Table 1 shows the saturation temperature change ( ⁇ TREF) per pressure change near the evaporation temperature.
  • the evaporation temperature is 1.5 ° C.
  • Equation 6 the amount of change ( ⁇ Tsat) in the saturation temperature of each refrigerant when the pressure change (pressure loss) is ⁇ P can be expressed by Equation 6.
  • Equation 7 the amount of change in saturation temperature ( ⁇ TR410A) in the heat exchanger can be expressed as a function of dryness as shown in Equation 7.
  • ⁇ TR410A indicates the amount of change in the saturation temperature in the heat exchanger when R410A is used as the refrigerant.
  • X indicates the dryness.
  • ⁇ Tsat of each refrigerant is set to be approximately the amount of change in saturation temperature ( ⁇ TR410A) shown in Equation 7. What is necessary is just to comprise.
  • FIG. 2 is a diagram showing a schematic configuration of a fin-and-tube heat exchanger 30 provided in the air conditioner according to the embodiment of the present invention.
  • the heat exchanger 30 may be used as the outdoor heat exchanger 3 or the indoor heat exchanger 5.
  • the heat exchanger 30 includes a large number of fins 28.
  • a large number of fins 28 are arranged substantially in parallel at regular intervals, and are provided so that air flows between them.
  • a large number of heat transfer tubes (also referred to as pipes) 29 are inserted into the large number of fins 28.
  • the large number of heat transfer tubes 29 are arranged in three rows. That is, the heat exchanger 30 has a multi-row multi-stage tube arrangement of two or more rows.
  • the heat transfer tubes 29 arranged in the same row have the same pipe inner diameter.
  • the heat exchanger 30 is configured such that when the heat exchanger 30 functions as an evaporator, the refrigerant flow and the air flow are opposed to each other, that is, the counterflow.
  • the pipe inner diameter d1 of the first heat transfer tube having a low dryness located on the refrigerant inlet side has two rows whose dryness is larger than that of the first heat transfer tube. It is configured to be smaller than the pipe inner diameter d2 of the heat transfer tube of the eye. Further, the pipe inner diameter d2 of the second row heat transfer tube is configured to have a dryness smaller than the pipe inner diameter d3 of the third row heat transfer tube larger than the second row heat transfer tube.
  • the pipe inner diameters d1, d2, and d3 are calculated for each refrigerant so that the performance of the heat exchanger equivalent to that when the R410A is used is obtained. And the result of having verified the relationship between the magnitude
  • each of the pipe inner diameters d1, d2, and d3 per pass is 3.5 m
  • the capacity of the fin-and-tube heat exchanger 30 is 4000 W.
  • Table 2 shows the calculation results of the pipe inner diameters d1, d2, and d3 for each refrigerant under these calculation conditions.
  • the pipe inner diameter increases as the dryness increases in any refrigerant. That is, it is understood that the relationship between the pipe inner diameters of the respective refrigerants is preferably d1 ⁇ d2 ⁇ d3.
  • the dryness of the refrigerant inlet is about 0.1, and the dryness of the refrigerant outlet is 1.0. Therefore, here, when the pipe inner diameters of the heat transfer tubes of the heat exchanger are configured to be the same, the saturation temperature at a dryness of 0.55, which is the average of the dryness of the refrigerant outlet and the dryness of the refrigerant inlet
  • a heat transfer tube having a pipe inner diameter equivalent to the amount of change ( ⁇ TR410A) is used.
  • R32 is used as the refrigerant
  • heat transfer with a pipe inner diameter of 4.9 mm corresponding to a dryness of 0.55 in Table 2 is used.
  • the dryness of the heat transfer tubes in the first row is about 0.1 to 0.3.
  • the dryness of the heat transfer tubes is assumed to be about 0.3 to 0.7, and the dryness of the heat transfer tubes in the third row is assumed to be about 0.7 to 1.0.
  • the pipe inner diameter of the heat transfer tube of the heat exchanger is made smaller as the dryness becomes smaller, the pipe inner diameter equal to the amount of change in saturation temperature ( ⁇ TR410A) at the average dryness of each row.
  • the heat transfer tubes in the first row have a pipe inner diameter of 4.1 mm to 4.4 mm when the dryness is 0.1 to 0.3.
  • An average heat transfer tube with a pipe inner diameter of 4.25 mm is used.
  • the pipe inner diameter corresponding to the heat transfer tubes in the second row is 4.4 mm to 5.4 mm when the dryness is 0.3 to 0.7, the average pipe inner diameter is 4.9 mm.
  • the heat transfer tubes in the third row have a pipe inner diameter of 5.4 mm to 9.4 mm corresponding to a dryness of 0.7 to 1.0. Is used.
  • the pipe inner diameter of the heat transfer pipe is set for each refrigerant to be used, and the pipe inner diameter of the heat transfer pipe is reduced as the dryness decreases as the refrigerant amount and the pipe inner diameter of all the heat transfer pipes are configured to be the same.
  • Table 3 shows the result of comparison with the amount of refrigerant when configured.
  • FIG. 4 is a graph showing the relationship among the pipe inner diameter, dryness, and standard boiling point of each refrigerant shown in Table 2. From FIG. 4, it can be seen that a heat transfer tube having a smaller pipe inner diameter is appropriate as the standard boiling point becomes lower.
  • the smaller the dryness the smaller the pipe inner diameter of the heat transfer tube of the heat exchanger, so that even when the heat exchanger functions as an evaporator, The amount of refrigerant used in the heat exchanger can be reduced without reducing the performance.
  • the heat exchanger 30 is comprised so that the flow of a refrigerant
  • the amount of refrigerant to be used can be further reduced without degrading the performance of the heat exchanger.
  • the refrigerating machine oil used in the compressor 1 is any of polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycol or copolymers of its monoether and polyvinyl ether, polyol esters, and polycarbonates.
  • a synthetic oil mainly composed of such an oxygen-containing compound can be used.
  • a synthetic oil mainly composed of alkylbenzenes or ⁇ -olefins may be used as the refrigerating machine oil used in the compressor 1. Thereby, it can contribute to the improvement of the reliability of an air conditioner.
  • a combustible refrigerant for example, a natural refrigerant such as R290, or a weakly flammable or slightly flammable refrigerant such as R1234yf or R32
  • a heat exchanger that can use a safe and low GWP refrigerant can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 可燃性冷媒を使用し、2列以上の多列多段の管配列を有するフィンアンドチューブ型の熱交換器において、熱交換器が蒸発器として機能する場合においても、熱交換器の性能の低下を抑えるため、同列には同じ配管内径を有する伝熱管を配置し、前記熱交換器が蒸発器として機能するとき、飽和温度の変化量が可燃性冷媒としてR410Aを使用した場合と略同等になるように、乾き度の小さな冷媒が流れる伝熱管の配管内径を、乾き度の大きな可燃性冷媒が流れる伝熱管の配管内径よりも小さく構成する。

Description

熱交換器及びそれを備える空気調和機
 本発明は、可燃性冷媒を用いる熱交換器及びそれを備える空気調和機に関する。
 近年、HCFC(ハイドロクロロフルオロカーボン)系冷媒の代替冷媒としてHFC(ハイドロフルオロカーボン)系冷媒が熱交換器に使用されている。しかしながら、このHFC系冷媒は、温暖化現象を促進する性質を有している。このため、最近では、オゾン層の破壊や温暖化現象に大きな影響を与えない低GWPの冷媒を使用することが検討されはじめている。
 GWP(地球温暖化係数)の小さな冷媒としては、R32、R290、R1234yfなどが挙げられる。しかしながら、これらの冷媒は、可燃性又は弱燃性であり、漏洩時には発火や爆発の危険性がある。
 安全性の向上やGWPをさらに小さくするためには、熱交換器に使用する冷媒量を低減することが有効であると考えられる。しかしながら、熱交換器への冷媒量を低減すると、通常、熱交換器の性能が低下する。
 熱交換器への冷媒量の低減を図る従来技術としては、例えば、特許文献1(特許第4209860号)に開示された技術が知られている。特許文献1には、凝縮器として用いられる熱交換器の液側の伝熱管の配管内径を、飽和液線に沿った温度変化になるように徐々に絞ることにより、熱交換器の能力を損なうことなく少冷媒化を図るようにした技術が開示されている。
特許第4209860号公報
 しかしながら、前記従来技術は、熱交換器が凝縮器として機能する場合に適した細管化の技術であるが、熱交換器が蒸発器として機能する場合には、伝熱管の配管内径を飽和液線に沿った温度変化になるように徐々に絞ることによって圧力損失が大きくなり、熱交換器の性能が低下するという課題がある。
 本発明の目的は、熱交換器が蒸発器として機能する場合においても、熱交換器の性能の低下を抑えることができる熱交換器、及びそれを備える空気調和機を提供することにある。
 前記課題を解決するために本発明は、可燃性冷媒を使用し、2列以上の多列多段の管配列を有するフィンアンドチューブ型の熱交換器であって、
 同列には同じ配管内径を有する伝熱管を配置し、前記熱交換器が蒸発器として機能するとき、飽和温度の変化量が前記可燃性冷媒としてR410Aを使用した場合と略同等になるように、乾き度の小さな可燃性冷媒が流れる伝熱管の配管内径を、乾き度の大きな可燃性冷媒が流れる伝熱管の配管内径よりも小さく構成されている。
 本発明にかかる熱交換器によれば、熱交換器の性能を低下させることなく、熱交換器に使用する冷媒量を低減することができる。
 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施の形態に関連した次の記述から明らかになる。この図面においては、
図1は、本発明の実施形態にかかる空気調和機の概略構成図であり、 図2は、図1の空気調和機が備えるフィンアンドチューブ型の熱交換器の概略構成を示す図であり、 図3は、冷媒としてR410Aを使用したときの室外熱交換器内の冷媒の温度変化の特性を示す図であり、 図4は、表2に示す各冷媒の配管内径と乾き度と標準沸点との関係を示すグラフである。
 本発明にかかる熱交換器は、可燃性冷媒を使用し、2列以上の多列多段の管配列を有するフィンアンドチューブ型の熱交換器であって、
 同列には同じ配管内径を有する伝熱管を配置し、前記熱交換器が蒸発器として機能するとき、飽和温度の変化量が前記可燃性冷媒としてR410Aを使用した場合と略同等になるように、乾き度の小さな可燃性冷媒が流れる伝熱管の配管内径を、乾き度の大きな可燃性冷媒が流れる伝熱管の配管内径よりも小さくなるように構成されている。これにより、熱交換器が蒸発器として機能する場合にも、熱交換器の性能を低下させることなく、熱交換器に使用する冷媒量を低減することができる。
 なお、乾き度の小さな可燃性冷媒が流れる伝熱管は、当該可燃性冷媒の入口側に配置され、乾き度の大きな可燃性冷媒が流れる伝熱管は、当該可燃性冷媒の出口側に配置されていることが好ましい。
 また、前記熱交換器は、当該熱交換器が蒸発器として機能するとき、当該熱交換器を流れる可燃性冷媒の流れと空気の流れが対向するよう構成されることが好ましい。これにより、熱交換器の性能を低下させることなく、使用する冷媒量をより一層低減することができる。
 また、前記可燃性冷媒として、地球温暖化係数が3以上750以下となるように、単一冷媒又は2成分を混合もしくは3成分を混合した冷媒を用いることが好ましい。これにより、地球温暖化の防止に貢献することができる。
 また、本発明にかかる空気調和機は、前記可燃性冷媒を圧縮する圧縮機を備え、前記圧縮機に用いる冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールもしくはそのモノエーテルとポリビニルエーテルとの共重合体、ポリオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油、アルキルベンゼン類もしくはαオレフィン類を主成分とする合成油、又は、鉱油を用いることが好ましい。これにより、温暖化防止に貢献するとともに、空気調和機の信頼性の向上に貢献することができる。
 以下、本発明の実施形態ついて、図面を参照しながら説明する。なお、この実施形態によって本発明が限定されるものではない。
 (実施形態)
 先ず、本発明の空気調和機の一例について、図1を用いて説明する。図1は、本発明の実施形態にかかる空気調和機の概略構成図である。
 本実施形態の空気調和機は、冷媒として可燃性冷媒を用いる空気調和機である。本実施形態において、可燃性冷媒としては、例えば、R290などの自然冷媒の他、HFO1234yf、HFO-1234ze、HFO-1243zf、R32、又はそれらの混合冷媒などの弱燃性、微燃性の冷媒を用いることができる。
 本実施形態の空気調和機は、屋内に設置される室内機21と、屋外に設置される室外機22とを備えている。室内機21と室外機22とは、液側接続管23とガス側接続管24とにより接続されている。
 室外機22には、冷媒を圧縮する圧縮機1と、冷房暖房運転時の冷媒回路(冷媒の経路)を切り替える四方弁2と、冷媒と外気の熱を交換する室外熱交換器3と、室外熱交換器3を通過した冷媒を減圧する絞り装置4とが設けられている。本実施形態において、室外熱交換器3は、フィンアンドチューブ型の熱交換器である。
 室内機21には、冷媒と室内空気の熱を交換する室内熱交換器5が設けられている。圧縮機1、四方弁2、室外熱交換器3、絞り装置4、室内熱交換器5は、環状に接続されている。
 また、室内機21には、室内熱交換器5内を流れる冷媒と室内空気との熱交換を促進する室内ファン7が設けられている。室外機22には、室外熱交換器3内を流れる冷媒と外気との熱交換を促進する室外ファン8が設けられている。
 次に、本実施形態の空気調和機の冷房運転時の動作について説明する。
 先ず、圧縮機1が、冷媒を圧縮して高温高圧の冷媒を生成する。当該高温高圧の冷媒は、四方弁2を通じて室外熱交換器3に送られ、室外ファン8によって外気との熱交換が促進されることにより放熱し、高圧の液冷媒となる。当該液冷媒は、絞り装置4に送られて減圧され、低温低圧の二相冷媒となる。当該二相冷媒は、液接続管23を通じて室内熱交換器5内に送られる。
 室内熱交換器5内に送られた二相冷媒は、室内ファン7によって室内熱交換器5内に吸い込まれた室内空気と熱交換され、室内空気の熱を吸熱することにより、蒸発気化して低温のガス冷媒となる。当該ガス冷媒は、ガス側接続管24、四方弁2を通じて圧縮機1に戻る。一方、二相冷媒によって吸熱されることにより温度が低下した室内空気は、室内ファン7によって室内に吹き出され、室内を冷房する。
 次に、本実施形態の空気調和機の暖房運転時の動作について説明する。
 先ず、圧縮機1が、冷媒を圧縮して高温高圧の冷媒を生成する。当該高温高圧の冷媒は、四方弁2、ガス接続管24を通じて室内熱交換器5に送られ、室内ファン7によって吸い込まれた室内空気と熱交換されることにより放熱して凝縮し、高圧の液冷媒となる。当該液冷媒は、液接続管23を通って絞り装置4に送られる。一方、前記高温高圧の冷媒の熱を吸熱し温度が上昇した室内空気は、室内ファン7によって室内に吹き出され、室内を暖房する。
 絞り装置4に送られた液冷媒は、絞り装置4により減圧されて低温低圧の二相冷媒となる。当該二相冷媒は、室外熱交換器3に送られ、室外ファン8によって外気との熱交換が促進されることにより蒸発気化し、四方弁2を通じて圧縮機1に戻る。
 次に、図3を用いて、室外熱交換器3が蒸発器として機能する暖房運転時の冷媒の温度分布について説明する。図3は、冷媒としてR410Aを使用した場合の温度特性を示すグラフである。
 図3に示すように、暖房運転時において、冷媒温度は、冷媒の流れ方向の下流側に向うに従い低下する。このとき、冷媒が室外熱交換器3内で蒸発し、乾き度は大きくなる。なお、このとき、室外熱交換器3内は、出口近傍を除いて飽和状態となっている。すなわち、冷媒の流れ方向の下流側に向うに従い冷媒温度が低下することは、圧力損失により室外熱交換器3内の圧力が低下していることを示している。
 図3では、冷媒としてR410Aを用いた例を示したが、圧力損失は冷媒の物性により変化するものである。また、冷媒の種類によって、飽和温度と飽和圧力との関係は異なる。すなわち、圧力損失が同じでも、冷媒の物性や種類によって飽和温度の変化は異なる。このため、使用する冷媒によって適切な熱交換器の構成は異なる。
 また、空気温度と冷媒温度との差は、熱交換器の性能を決める要因の1つである。R410A以外の冷媒を使用した場合であっても、R410Aを使用した場合と同等の熱交換器の性能を得るためには、R410A以外の冷媒を用いた場合の冷媒温度の分布が、R410Aを用いた場合の冷媒温度の分布と同程度になるようにすればよいと考えられる。言い換えれば、R410A以外の冷媒を使用した場合であっても、飽和温度の分布がR410Aを用いた場合と同等となるよう熱交換器を構成することで、R410Aを用いた場合と同等の性能が得られると考えられる。
 次に、使用する冷媒に適した熱交換器の構成を検討するため、先ず、熱交換器内での圧力損失を推算する。
 各冷媒の圧力損失は、ファニング(Fanning)の式で表すことができる。また摩擦係数λの算出には数2で表されるブラジウス(Blasius)の式を使用した。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 また、管内流速Vは、数3で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 さらに、二相状態での管内冷媒密度ρ、動粘度νは、数4、数5で表すことができる。なお、Xは乾き度を示している。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 また、前述したように、圧力損失は冷媒の物性によって変化し、冷媒の種類によって飽和温度と飽和圧力との関係は異なる。このため、各冷媒の飽和温度の分布とR410Aの飽和温度の分布とを同程度にするためには、各冷媒の圧力変化当たりの飽和温度の変化を知る必要がある。
 各冷媒の圧力変化当たりの飽和温度変化(ΔTREF)を表1に示す。表1は、蒸発温度近傍での圧力変化当たりの飽和温度変化(ΔTREF)を示している。本実施形態において、蒸発温度は1.5℃としている。
Figure JPOXMLDOC01-appb-T000001
 また、圧力変化(圧力損失)をΔPとしたときの各冷媒の飽和温度の変化量(ΔTsat)は、数6で表すことができる。
Figure JPOXMLDOC01-appb-M000006
 また、冷媒としてR410Aを使用した場合の実験結果より、熱交換器内での飽和温度の変化量(ΔTR410A)は、数7のように、乾き度の関数として表すことができる。
Figure JPOXMLDOC01-appb-M000007
 ここで、ΔTR410Aは、冷媒としてR410Aを使用した場合の熱交換器内での飽和温度の変化量を示している。Xは、乾き度を示している。
 各冷媒の飽和温度の分布とR410Aの飽和温度の分布とを同程度にするためには、各冷媒のΔTsatが、数7で示した飽和温度の変化量(ΔTR410A)と同程度となるように構成すればよい。
 図2は、本発明の実施形態にかかる空気調和機が備えるフィンアンドチューブ型の熱交換器30の概略構成を示す図である。熱交換器30は、室外熱交換器3として使用しても、室内熱交換器5として使用してもよい。
 熱交換器30は、多数のフィン28を備えている。多数のフィン28は、一定間隔で略平行に並べられ、それらの間を空気が流動するように設けられている。多数のフィン28には、多数の伝熱管(配管ともいう)29が挿入されている。本実施形態において、多数の伝熱管29は、3列に並べられている。すなわち、熱交換器30は、2列以上の多列多段の管配列を有している。
 同列に配置された伝熱管29は、同じ配管内径を有している。また、熱交換器30は、熱交換器30が蒸発器として機能するとき、冷媒の流れと空気の流れとが対向するように、すなわち、対向流となるよう構成されている。
 また、熱交換器30が蒸発器として機能するときに冷媒の入口側に位置する乾き度の小さな1列目の伝熱管の配管内径d1は、乾き度が1列目の伝熱管より大きい2列目の伝熱管の配管内径d2よりも小さく構成されている。また、2列目の伝熱管の配管内径d2は、乾き度が2列目の伝熱管より大きい3列目の伝熱管の配管内径d3よりも小さく構成されている。
 次に、以上のように構成されたフィンアンドチューブ型の熱交換器30において、冷媒毎に、R410Aを使用した場合と同等の熱交換器の性能が得られる配管内径d1、d2、d3を算出し、配管内径d1、d2、d3の大きさと乾き度との関係を検証した結果について説明する。
 ここでは、1パス当たりの配管内径d1、d2、d3の各長さを3.5mとし、フィンアンドチューブ型の熱交換器30の能力を4000Wとする。これらの計算条件における冷媒毎の配管内径d1、d2、d3の計算結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、どの冷媒においても、乾き度が大きくなるほど、配管内径は大きくなる。すなわち、各冷媒での配管内径の大きさの関係はd1≦d2≦d3となることが好ましいことが分かる。
 次に、フィンアンドチューブ型の熱交換器において、乾き度が小さくなるほど伝熱管の配管内径を小さく構成(細管化)した場合の冷媒量と、全ての伝熱管の配管内径を同一に構成した場合の冷媒量とを比較した結果について説明する。
 通常、蒸発器として機能するフィンアンドチューブ型の熱交換器において、冷媒の入口の乾き度は約0.1であり、冷媒の出口の乾き度は1.0である。このため、ここでは、熱交換器の伝熱管の配管内径を同一に構成する場合、冷媒の出口の乾き度と冷媒の入口の乾き度との平均である乾き度0.55のときの飽和温度の変化量(ΔTR410A)と同等となる配管内径の伝熱管を使用する。例えば、冷媒としてR32を使用する場合には、表2において乾き度0.55のときに対応する4.9mmの配管内径の伝熱を使用する。
 一方、図2に示すように伝熱管が3列に設けられたフィンアンドチューブ型の熱交換器において、1列目の伝熱管の乾き度は0.1~0.3程度、2列目の伝熱管の乾き度は0.3~0.7程度、3列目の伝熱管の乾き度は0.7~1.0程度と想定される。このため、ここでは、乾き度が小さくなるほど熱交換器の伝熱管の配管内径を小さく構成する場合、各列の平均乾き度のときの飽和温度の変化量(ΔTR410A)と同等となる配管内径の配管を使用する。例えば、冷媒としてR32を使用する場合には、1列目の伝熱管は、乾き度が0.1~0.3のときに対応する配管内径が4.1mm~4.4mmであるので、その平均である4.25mmの配管内径の伝熱管を使用する。また、2列目の伝熱管は、乾き度が0.3~0.7のときに対応する配管内径が4.4mm~5.4mmであるので、その平均である4.9mmの配管内径の伝熱管を使用する。3列目の伝熱管は、乾き度が0.7~1.0のときに対応する配管内径が5.4mm~9.4mmであるので、その平均である7.4mmの配管内径の伝熱管を使用する。
 以上のようにして、使用する冷媒毎に伝熱管の配管内径を設定し、全ての伝熱管の配管内径を同一に構成した場合の冷媒量と、乾き度が小さくなるほど伝熱管の配管内径を小さく構成した場合の冷媒量とを比較した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3においては、全ての伝熱管の配管内径を同一に構成した場合の冷媒量に対する、乾き度が小さくなるほど伝熱管の配管内径を小さく構成(細管化)した場合の冷媒量の割合を、冷媒量比として示している。また、表3においては、配管内径を「配管径」と略して記載している。
 表3より、乾き度が小さくなるほど伝熱管の配管内径を小さく構成した場合の方が、全ての伝熱管の配管内径を同一に構成した場合に比べて、全ての冷媒において冷媒量を低減できることが分かる。
 図4は、表2に示す各冷媒の配管内径と乾き度と標準沸点との関係を示すグラフである。図4より、標準沸点が低くなるに従って、より配管内径が小さい伝熱管が適切であることが分かる。
 本実施形態にかかる空気調和機によれば、乾き度が小さくなるほど熱交換器の伝熱管の配管内径を小さく構成することで、熱交換器が蒸発器として機能する場合にも、熱交換器の性能を低下させることなく、熱交換器に使用する冷媒量を低減することができる。また、より安全で且つ低GWPの可燃性冷媒を使用可能な熱交換器を提供することができる。
 また、本実施形態にかかる空気調和機によれば、熱交換器30は、熱交換器30が蒸発器として機能するとき、冷媒の流れと空気の流れとが対向するように構成されているので、熱交換器の性能を低下させることなく、使用する冷媒量をより一層低減することができる。また、より安全で且つ低GWPの可燃性冷媒を使用可能な熱交換器を提供することができる。
 なお、低GWPの可燃性冷媒を使用する場合、GWPが、3以上で750以下となるように、前述した可燃性冷媒の成分のうち2成分を混合もしくは3成分を混合して可燃性冷媒を作成するのが好ましい。これにより、万一回収されない冷媒が大気に放出されても、地球温暖化への影響を極めて小さくすることができる。
 また、圧縮機1に用いる冷凍機油としては、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールもしくはそのモノエーテルとポリビニルエーテルとの共重合体、ポリオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油を用いることができる。また、圧縮機1に用いる冷凍機油として、アルキルベンゼン類もしくはαオレフィン類を主成分とする合成油を用いてもよい。また、圧縮機1に用いる冷凍機油として、鉱油を用いてもよい。これにより、空気調和機の信頼性の向上に貢献することができる。
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術に熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 2011年12月8日に出願された日本国特許出願No.2011-268848号の明細書、図面、及び特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。
 本発明によれば、熱交換器に使用する可燃性冷媒(例えば、R290などの自然冷媒や、R1234yf、R32などの弱燃性、微燃性の冷媒)の量を低減することができ、より安全で且つ低GWPの冷媒を使用可能な熱交換器を提供することができる。
 30 フィンアンドチューブ型の熱交換器
 31 空気
 32 可燃性冷媒
 d1 1列目の伝熱管の配管内径
 d2 2列目の伝熱管の配管内径
 d3 3列目の伝熱管の配管内径

Claims (5)

  1.  可燃性冷媒を使用し、2列以上の多列多段の管配列を有するフィンアンドチューブ型の熱交換器であって、
     同列には同じ配管内径を有する伝熱管を配置し、前記熱交換器が蒸発器として機能するとき、飽和温度の変化量が前記可燃性冷媒としてR410Aを使用した場合と略同等になるように、乾き度の小さな可燃性冷媒が流れる伝熱管の配管内径を、乾き度の大きな可燃性冷媒が流れる伝熱管の配管内径よりも小さく構成した、熱交換器。
  2.  乾き度の小さな可燃性冷媒が流れる伝熱管は、当該可燃性冷媒の入口側に配置され、乾き度の大きな可燃性冷媒が流れる伝熱管は、当該可燃性冷媒の出口側に配置されている、請求項1に記載の熱交換器。
  3.  請求項1又は2に記載の熱交換器を備える空気調和機であって、
     前記熱交換器は、当該熱交換器が蒸発器として機能するとき、当該熱交換器を流れる可燃性冷媒の流れと空気の流れが対向するよう構成されている、空気調和機。
  4.  前記可燃性冷媒として、地球温暖化係数が3以上750以下となるように、単一冷媒又は2成分を混合もしくは3成分を混合した冷媒を用いる、請求項3に記載の空気調和機。
  5.  前記空気調和機は、前記可燃性冷媒を圧縮する圧縮機を備え、前記圧縮機に用いる冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールもしくはそのモノエーテルとポリビニルエーテルとの共重合体、ポリオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油、アルキルベンゼン類もしくはαオレフィン類を主成分とする合成油、又は、鉱油を用いる、請求項3又は4に記載の空気調和機。
PCT/JP2012/007703 2011-12-08 2012-11-30 熱交換器及びそれを備える空気調和機 WO2013084455A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147005483A KR20140103249A (ko) 2011-12-08 2012-11-30 열교환기 및 그것을 구비하는 공기 조화기
CN201280042751.9A CN103765131A (zh) 2011-12-08 2012-11-30 热交换器和具备该热交换器的空气调节机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011268848 2011-12-08
JP2011-268848 2011-12-08

Publications (1)

Publication Number Publication Date
WO2013084455A1 true WO2013084455A1 (ja) 2013-06-13

Family

ID=48573846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007703 WO2013084455A1 (ja) 2011-12-08 2012-11-30 熱交換器及びそれを備える空気調和機

Country Status (4)

Country Link
JP (1) JPWO2013084455A1 (ja)
KR (1) KR20140103249A (ja)
CN (1) CN103765131A (ja)
WO (1) WO2013084455A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021683A (ja) * 2013-07-22 2015-02-02 パナソニック株式会社 冷凍装置
CN104359251A (zh) * 2014-10-16 2015-02-18 珠海格力电器股份有限公司 蒸发器及冷风机
WO2023188387A1 (ja) * 2022-03-31 2023-10-05 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230168821A (ko) 2022-06-08 2023-12-15 임종봉 R410a가스 절연변압기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190517A (ja) * 1993-12-27 1995-07-28 Toshiba Corp 冷凍サイクル
JPH09145076A (ja) * 1995-11-28 1997-06-06 Matsushita Electric Ind Co Ltd 熱交換器
JP2009257742A (ja) * 2008-03-25 2009-11-05 Daikin Ind Ltd 冷凍装置および冷凍装置の製造方法
WO2010047116A1 (ja) * 2008-10-22 2010-04-29 パナソニック株式会社 冷却サイクル装置
WO2011135817A1 (ja) * 2010-04-28 2011-11-03 パナソニック株式会社 回転式圧縮機
WO2011148567A1 (ja) * 2010-05-27 2011-12-01 パナソニック株式会社 冷凍装置および冷暖房装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190517A (ja) * 1993-12-27 1995-07-28 Toshiba Corp 冷凍サイクル
JPH09145076A (ja) * 1995-11-28 1997-06-06 Matsushita Electric Ind Co Ltd 熱交換器
JP2009257742A (ja) * 2008-03-25 2009-11-05 Daikin Ind Ltd 冷凍装置および冷凍装置の製造方法
WO2010047116A1 (ja) * 2008-10-22 2010-04-29 パナソニック株式会社 冷却サイクル装置
WO2011135817A1 (ja) * 2010-04-28 2011-11-03 パナソニック株式会社 回転式圧縮機
WO2011148567A1 (ja) * 2010-05-27 2011-12-01 パナソニック株式会社 冷凍装置および冷暖房装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021683A (ja) * 2013-07-22 2015-02-02 パナソニック株式会社 冷凍装置
CN104359251A (zh) * 2014-10-16 2015-02-18 珠海格力电器股份有限公司 蒸发器及冷风机
WO2023188387A1 (ja) * 2022-03-31 2023-10-05 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
CN103765131A (zh) 2014-04-30
JPWO2013084455A1 (ja) 2015-04-27
KR20140103249A (ko) 2014-08-26

Similar Documents

Publication Publication Date Title
JP6065429B2 (ja) 空気調和機
US20200326109A1 (en) Refrigeration apparatus
EP3730865A1 (en) Refrigeration device
CN109477669B (zh) 热交换器以及具备该热交换器的制冷循环装置
JP2017145975A (ja) 冷凍サイクル装置、冷凍サイクル装置の製造方法、冷凍サイクル装置のドロップイン方法、及び、冷凍サイクル装置のリプレース方法
JP6369572B2 (ja) 熱サイクル用作動媒体
US10126026B2 (en) Refrigeration cycle apparatus
CN107076467B (zh) 空气调节装置
EP3343129A1 (en) Refrigeration cycle apparatus
WO2013084455A1 (ja) 熱交換器及びそれを備える空気調和機
JP2011002217A (ja) 冷凍装置および冷暖房装置
JP2011112327A (ja) 冷暖房装置および冷凍装置
EP2578966A1 (en) Refrigeration device and cooling and heating device
JP6293557B2 (ja) 冷凍サイクル装置
JPWO2020144764A1 (ja) 冷凍サイクル装置
JP7118247B2 (ja) 空気調和機
JP5646257B2 (ja) 冷凍サイクル装置
WO2023047440A1 (ja) 空気調和装置
WO2020188756A1 (ja) 空気調和機
WO2019198175A1 (ja) 冷凍サイクル装置
WO2013084431A1 (ja) 空気調和機
JP2008215773A (ja) 空気調和装置
CN114556031B (zh) 冷冻循环装置
JP2014031916A (ja) 冷凍装置
WO2017145243A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548081

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147005483

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855304

Country of ref document: EP

Kind code of ref document: A1