WO2013083086A1 - 胎体组件装置及其方法 - Google Patents

胎体组件装置及其方法 Download PDF

Info

Publication number
WO2013083086A1
WO2013083086A1 PCT/CN2012/086199 CN2012086199W WO2013083086A1 WO 2013083086 A1 WO2013083086 A1 WO 2013083086A1 CN 2012086199 W CN2012086199 W CN 2012086199W WO 2013083086 A1 WO2013083086 A1 WO 2013083086A1
Authority
WO
WIPO (PCT)
Prior art keywords
carcass
ring
driving
ring body
bead
Prior art date
Application number
PCT/CN2012/086199
Other languages
English (en)
French (fr)
Inventor
袁仲雪
程继国
王延书
马义浩
黄伟
贾海玲
Original Assignee
Yuan Zhongxue
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuan Zhongxue filed Critical Yuan Zhongxue
Publication of WO2013083086A1 publication Critical patent/WO2013083086A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/20Building tyres by the flat-tyre method, i.e. building on cylindrical drums
    • B29D30/24Drums
    • B29D30/26Accessories or details, e.g. membranes, transfer rings
    • B29D30/2607Devices for transferring annular tyre components during the building-up stage, e.g. from the first stage to the second stage building drum

Definitions

  • the present invention relates to a carcass assembly apparatus and a method thereof for tire manufacture, and in particular to a radial multi-angle, synchronous removal of a carcass assembly constituting a green tire, which belongs to the field of rubber machinery manufacturing.
  • the uniformity of the composite layer structure is one of the most direct and most critical factors affecting the safe use performance of the tire.
  • the existing two-drum or three-drum tire building machine usually completes the preparation of the carcass assembly on the carcass drum, and then transfers it to the forming drum for pressing, reverse wrapping and the like to form a green tire.
  • the magnetic chuck is coupled to the transfer device;
  • the transfer device includes a slide rail on the drive ring on the same side of the magnetic chuck, and a long slot disposed on the circumference of the drive ring;
  • the slide guide passes the bolt Fixed on the drive ring, a slider is simultaneously nested in the slide rail and the long slot through the shaft and the sliding sleeve; the magnetic chuck is connected to the slider by bolts.
  • the driving cylinder drives the driving ring to rotate axially, and relies on the thrust of the sliding rail on the driving ring, and simultaneously pushes or pulls back the magnetic chuck through the slider to complete the magnetic attraction of the carcass member. Clamping and conveying.
  • the friction between the several sliding guides distributed along the circumference of the drive ring and the corresponding slider will change correspondingly due to the change of assembly precision and use time, thus causing the advancement of several sliders under the same guiding thrust.
  • the distances are different from each other, which causes the magnetic chucks to move in the radial direction to cause mutual misalignment, which is not conducive to improving the stability of the adsorbed carcass, and even deforms the carcass to affect the quality of the green tire.
  • the moving joint is easily caused to wear, which causes the moving parts to produce a vibrating and serpentine trajectory, such as the above-mentioned prior application.
  • the sliding guide rail and the slider in the patent significantly affect the precision of the clamping and transmission of the bead and the carcass piece. In turn, it adversely affects the dynamic balance and uniformity of the green tire molding.
  • the carcass assembly transmission device and the transmission method thereof solve the defects and deficiencies of the prior art described above, and employ a slewing bearing between the driving device and the removal actuator to transmit the driving force of the driving device. And it is transformed into the thrust pushing the actuator in the radial direction, thereby improving the consistency and operation precision of several execution terminals, which is beneficial to improve the clamping force control for the carcass part and the bead, and avoid the clamping Problems such as slippage or deformation of the carcass component caused by improper force.
  • Another object of the invention is to effectively reduce the wear between the motion guide and the clamping actuator under conditions of long-term high-frequency rotational oscillation and linear motion, and to improve the smoothness of the driving force transmission.
  • the carcass assembly transfer device mainly comprises:
  • a carcass center ring for reciprocating sliding through the bottom or top sliding track, a left bead transfer ring and a right bead transfer ring for transmitting left and right beads, and for performing sidewall expansion Side wall expansion ring.
  • the carcass center ring has a ring body, and the ring body is provided with a first driving device and an array carcass removing device, and the carcass removing claws are installed at the ends of each group of carcass removing devices.
  • a plurality of carcass removal claws are fixed and removed from the same cylindrical surface of the carcass member, and the central axis of the formed cylinder coincides or is parallel with the central axis of the ring body;
  • a slewing bearing is disposed between the first driving device and the array carcass removal device, and the slewing bearing is used for transmitting and converting the driving force of the first driving device into a plurality of carcass removal claws synchronously, along the radial direction of the ring body Reciprocating.
  • the difference from the prior art is that a slewing bearing is used between the first driving device and the carcass removal device, the first driving device drives the slewing bearing to rotate, and the slewing bearing converts the rotational driving force into a radial pushing tire.
  • the body moves the thrust of the linear reciprocating movement of the claws to form an accurate control of the synchronous positioning of the array carcass removal claws, picking up and removing the carcass parts.
  • a driving mechanism for driving the slewing bearing for axial rotation can be realized, Therefore, it is a rotary cylinder, a reduction motor or a hydraulic cylinder;
  • the slewing bearing forms a thrust transmitting mechanism for linear reciprocating movement of the carcass removal claw during the rotation process, and may be a screw-nut, a ball screw-silver, a timing belt-synchronous pulley or a gear-rack;
  • a more preferred embodiment here is that in the inner ring of the slewing bearing, circumferentially distributed drive teeth are provided.
  • the first driving device includes a driving gear that is axially disposed on the ring body, and a rotating cylinder or a geared motor that drives the driving gear to rotate in the axial direction.
  • the drive gear mesh is coupled to the drive teeth.
  • the rotary cylinder or the reduction motor drives the driving gear to perform axial rotation
  • the engagement between the driving gear and the driving teeth drives the slewing bearing to rotate axially in the inner diameter of the ring body, thereby realizing the first driving device to the slewing bearing.
  • Driving force transmission Moreover, under the driving of the rotary cylinder or the reduction motor, the angular speed of the driving gear and the slewing bearing are axially rotated, and the angle of the axial rotation of the slewing bearing can be controlled by the driving gear.
  • a circumferentially distributed driving tooth is disposed on the inner ring of the slewing bearing;
  • the first driving device includes a driving gear that is disposed on the ring body and drives the driving gear axial direction Rotating drive cylinder;
  • the drive gear is fixed to the slewing bearing through the ring body.
  • the driving cylinder drives the driving gear to rotate axially, and the driving gear drives the slewing bearing on the other side of the ring to perform axial rotation, thereby realizing the driving force transmission of the first driving device to the slewing bearing. Since the driving gear drives the slewing bearing to rotate axially on both sides of the ring body, the angular velocity of the axial rotation of the driving gear and the slewing bearing is also the same.
  • a driving gear is coupled to the driving gear at a driving end of the driving cylinder;
  • the driving cylinder includes an axle
  • the first drive cylinder and the second drive cylinder are connected in series. The strokes of the first drive cylinder and the second drive cylinder are superimposed on each other to control the plurality of drive strokes.
  • the structural improvement scheme for the carcass removal device is:
  • Each set of carcass removal device includes a carriage coupled to the ring body and a set of driven gears, and a carcass removal claw is mounted at the end of the carriage; a radial rack is disposed on the carriage, The moving gears respectively engage circumferentially distributed drive teeth that are coupled to the radial rack and the inner race of the slewing bearing.
  • the slewing bearing When the slewing bearing is axially rotated, its driving teeth can drive the driven gear to rotate at the same angular velocity, and the driven gear can push and pull the radial rack along the radial direction of the ring body, so the tire at the end of the carriage Body removal
  • the jaws are reciprocally movable radially along the ring to achieve positioning, clamping and removal for the carcass member.
  • the driven gears of the array carcass removal device transmit the radial push-pull force through the same slewing bearing, the plurality of carcass removal claws can be reciprocally extended or retracted radially along the ring body, It is better to improve the control of the clamping force of the carcass parts, and avoid many disadvantages caused by improper clamping force.
  • At least one slide rail distributed along the radial direction of the ring body is installed on the ring body.
  • a slider that is coupled to the slide rail is mounted on the carriage in a radial direction along the ring body.
  • the carriage Under the action of the guiding mechanism between the slide rail and the slider, the carriage can meet the requirements of long-term and high-frequency linear motion, and the radial rack and the driven gear are not easily worn between the slide rail and the slider.
  • the carcass removal claw is also less prone to radial movement, thereby further improving the clamping force and transmission accuracy for the carcass piece.
  • a limiting block is mounted on the ring body, and a guiding rod of the limiting block is connected to the sliding frame, and a limiting nut is sleeved at the end of the guiding rod.
  • the position of the limit nut relative to the end of the guide can be adjusted.
  • the limit nut abuts against the limit block to prevent the guide rod from continuing to move.
  • the carriage is stationary by the external force, and the carcass removal claw stroke at the end of the carriage is limited to a controllable range. .
  • a plurality of magnetic blocks for magnetically adsorbing the carcass member are disposed, and the magnetic clamping can effectively balance the clamping force on the surface of the carcass member, and the surface of the carcass member is not easily deformed.
  • the entire carcass part is also not easy to slip or deflect.
  • the carcass center ring, the left bead transfer ring and the right bead transfer ring synchronously transfer the carcass assembly between the carcass drum and the forming drum through the bottom or top sliding track to participate in the preparation of the embryo;
  • the side port of the sidewall is expanded into a trumpet shape by the sidewall expansion ring.
  • the driving force of the first driving device is transmitted and converted into a plurality of carcass removal claws in a radial direction on the center ring of the carcass, and reciprocally moved along the radial direction of the ring body to form Fixing and removing the same cylindrical surface of the carcass piece;
  • the central axis of the cylinder formed by the plurality of carcass removal claws coincides or is parallel with the central axis of the ring body.
  • a more refined and preferred transmission method is improved in that the first driving device drives the slewing bearing to rotate axially, and the circumferentially distributed driving teeth of the slewing bearing inner ring engage and drive the driven gear of the carcass removal device to The same angular velocity is rotated, and the radial rack is sequentially driven, and the carcass removal claw at the end of the carriage projects or retracts radially along the ring body.
  • the carcass assembly transmission device and the transmission method thereof have the advantages and beneficial effects: 1.
  • the slewing bearing is converted into the radial reciprocating movement of the carcass removal claw by the axial rotation, which can ensure and increase the number.
  • the sliding and linear moving parts adopted adopt the sliding guiding structure, which can effectively reduce the wear between the movement, the guiding and the clamping actuator, and improve the smoothness and accuracy of the driving force transmission.
  • the magnetic adsorption type clamping mechanism can position, adsorb, pick up and transfer the carcass assembly according to the process requirements, which is beneficial to improve the overall preparation quality of the fetal embryo.
  • Figure 1 is a schematic structural view of the carcass assembly transfer device
  • FIG. 2 is a schematic structural view of the center ring of the carcass
  • Figure 3 is a schematic structural view of a carcass center ring of the other embodiment
  • Figure 4 is a schematic structural view of a right bead transfer ring
  • Figure 5 is a schematic structural view of a sidewall expansion ring
  • Figure 6 is a schematic view of the rear structure of Figure 5;
  • Ring body 10 drive gear 101, rotary cylinder 102, rack 104, first drive cylinder 105, second drive cylinder 106, carcass removal claw 11, magnetic block 111, slewing bearing 12, drive tooth 121, carriage 13 , guide rod 131, driven gear 14, radial rack 15, slide rail 16, slider 17, limit block 18, limit nut 19; bead ring body 30, bead drive gear 301, bead rotary cylinder 302, bead gripper 31, bead turret bearing 32, bead drive tooth 321, bead carriage 33, bead guide 331, bead driven gear 34, bead radial rack 35, bead Slide rail 36, bead slider 37, bead limit block 38, bead limit nut 39;
  • Sidewall ring 40 Sidewall drive gear 401, sidewall rack 404, sidewall first drive cylinder 405, sidewall second drive cylinder 406, sidewall extension pawl 41, sidewall slewing bearing 42, sidewall drive tooth 421, sidewall carriage 43 , sidewall guide 431 , sidewall driven gear 44 , sidewall radial rack 45 , sidewall rail 46 , sidewall slider 47 , sidewall spacer 48 , sidewall Limit nut 49.
  • the carcass assembly transmission device includes:
  • a carcass center ring 1 for reciprocating sliding through a bottom or top sliding track, a left bead transfer ring 2 and a right bead transfer ring 3 for transmitting left and right beads, and for implementation The side wall expansion of the side wall expansion ring 4. among them,
  • the carcass center ring 1 has a ring body 10, and a first driving device and a plurality of carcass pipetting devices disposed on the ring body 10.
  • a slewing bearing 12 is disposed between the first driving device and the array carcass removal device, and circumferentially distributed driving teeth 121 are disposed on the inner ring of the slewing bearing 12.
  • the first driving device includes a driving gear 101 having a shaft disposed on the ring body 10, and a rotary cylinder 102 for driving the driving gear 101 to rotate axially.
  • the driving gear 101 is meshingly coupled to the driving teeth 121.
  • the carcass removal device includes a carriage 13 coupled to the ring body 10 and a set of driven gears 14, in the carriage
  • a carcass removal claw 11 is attached to the end of the 13; a radial rack 15 is provided on the carriage 13, and the driven gear 14 is meshingly coupled to the drive tooth 121 and the radial rack 15, respectively.
  • the slewing bearing 12 is configured to transmit and convert the driving force of the first driving device into a plurality of reciprocating movements of the carcass removing claws 11 in the radial direction of the ring body 10 to form an array of carcass removing claws 11 for simultaneous positioning and picking up. And shift Accurate control of the carcass parts.
  • a plurality of carcass removal claws 11 are fixed and removed from the same cylindrical surface of the carcass member, and the central axis of the cylindrical body is coincident or parallel with the central axis of the ring body 10.
  • the rotary cylinder 102 drives the driving gear 101 to perform axial rotation, and the rotation of the driving gear 101 and the driving teeth 121 drives the slewing bearing 12 to rotate axially in the inner diameter of the ring body 10, thereby realizing the first driving device to the slewing bearing 12.
  • Driving force transmission Further, under the driving of the rotary cylinder 102, the angular velocity of the driving gear 101 and the rotary bearing 12 in the axial direction are the same, and the angle of the axial rotation of the slewing bearing 12 can be controlled by the driving gear 101.
  • the body removal jaws 11 are capable of reciprocating radially along the ring body 10 to achieve positioning, clamping and removal for the carcass members.
  • the driven gear 14 of the array carcass removal device transmits the radial push-pull force through the same slewing bearing 12, the plurality of carcass removal claws 11 can be reciprocally extended synchronously along the ring body 10 or Retraction is therefore beneficial to improve the control of the clamping force of the carcass part, and avoids many disadvantages caused by improper clamping force.
  • At least one slide rail 16 radially distributed along the ring body 10 is mounted on the ring body 10; on the carriage 13, a radial connection is mounted along the ring body 10 to engage the slide rails. Slider 17 of 16.
  • the carriage 13 Under the mutual guiding between the slide rail 16 and the slider 17, the carriage 13 can meet the requirements of long-term, high-frequency linear motion, and the radial rack 15 and the driven gear 14 are less likely to cause wear, and the carcass removes the claw. 11 It is also not easy to appear sway or deflect during radial motion.
  • a limiting block 18 is mounted on the ring body 10.
  • a guiding rod 131 of the limiting block 18 is connected to the sliding frame 13, and a limiting nut 19 is sleeved at the end of the guiding rod 131.
  • the maximum travel of the radial movement of the carcass removal claws 11 can be accurately adjusted by the above structure. That is, by adjusting the position of the limit nut 19 relative to the end of the guide rod 131, when the carriage 13 moves, the limit nut 19 abuts against the limit block 18 to prevent the guide rod 131 from continuing to move, and the carriage 13 is relied on an external force. While stationary, the radial travel of the carcass removal pawl 11 is controllably defined.
  • a plurality of magnetic blocks 111 for magnetically adsorbing the carcass members are provided on the inner end surface of the carcass removal claw 11.
  • the magnetic adsorption can effectively balance the clamping force on the surface of the carcass member, the surface of the carcass member is not easily deformed, and the entire carcass member is not easily slipped or deflected.
  • the present embodiment adopts the same slewing bearing for the left bead transfer ring 2, the right bead transfer ring 3 and the sidewall expansion ring 4.
  • the structure is configured to transfer and translate the driving force into a thrust that pushes the actuator radially. specifically,
  • the right bead transfer ring 3 has a bead ring body 30, and a driving device and an array bead removal device disposed on the bead ring body 30, and is disposed between the driving device and the array bead removal device.
  • a bead slewing bearing 32 is provided with circumferentially distributed bead driving teeth 321 on the inner ring of the bead slewing bearing 32.
  • the driving device includes a bead driving gear 301 whose shaft is disposed on the bead ring body 30, and a bead rotating cylinder 302 that drives the bead driving gear 301 to rotate axially.
  • the bead driving gear 301 is meshed and coupled to the bead driving tooth. 321.
  • the bead removal device includes a bead carriage 33 connected to the bead ring body 30 and a set of bead driven gears 34, and a bead removal claw 31 is attached to the end of the bead carriage 33;
  • the bead carriage 33 is provided with a bead radial rack 35, and the bead driven gears 34 are meshingly coupled to the bead driving teeth 321 and the bead radial racks 35, respectively.
  • the bead slewing bearing 32 is used for transmitting and converting the driving force of the driving device into a plurality of bead retracting claws 31 synchronously reciprocatingly moving along the bead ring body 30 to synchronously position, pick up and remove the right bead , can improve the precise control of the right bead clamping force, avoiding many disadvantages caused by improper clamping force.
  • At least one bead slide 36 radially distributed along the bead ring body 30 is mounted on the bead ring body 30; on the bead block 33, along the bead ring body 30 is mounted radially with a bead slider 37 that is coupled to the bead rail 36.
  • a bead ring block 38 is mounted on the bead ring body 30, and a bead guide bar 331 for inserting the bead ring stop block 38 is attached to the bead block 33, and a bead end of the bead guide rod 331 is sleeved.
  • Bead limit nut 39 is provided.
  • the structure of the left bead transfer ring 2 is symmetric with the right bead transfer ring 3 along the center ring 1 of the carcass to perform the same simultaneous positioning, picking and removal operations for the left bead.
  • the sidewall expansion ring 4 has a sidewall ring 40, and a driving device and an array sidewall expansion device disposed on the sidewall ring 40, and a sidewall is disposed between the driving device and the array sidewall expansion device.
  • the slewing bearing 42 is provided with circumferentially distributed sidewall drive teeth 421 on the inner circumference of the side slewing bearing 42.
  • the driving device includes a sidewall driving gear 401 whose shaft is disposed on the sidewall ring body 40, and a sidewall driving cylinder that drives the sidewall driving gear 401 to rotate axially.
  • the sidewall driving gear 401 penetrates through the sidewall ring body 40 and is fixed. Connected to the side slewing bearing 42.
  • the driving end of the sidewall driving cylinder is mounted with a sidewall 404 that is coupled to the sidewall driving gear 401, and drives
  • the moving cylinder includes a sidewall first drive cylinder 405 and a sidewall second drive cylinder 406 that are axially connected in series.
  • the sidewall removing device includes a sidewall slider 43 coupled to the sidewall ring body 40 and a set of the tire side driven gears 44, and a sidewall removing claw 41 is attached to the end of the sidewall slider 43;
  • the sidewall slider 43 is provided with a sidewall radial rack 45, and the sidewall driven gears 44 are meshingly coupled to the sidewall driving teeth 421 and the sidewall radial racks 45, respectively.
  • the side slewing bearing 42 is for transmitting and converting the driving force of the driving device into a plurality of reciprocating movements of the side wall expansion claws 41 in the radial direction of the side wall ring body 40 to be synchronously positioned on the side portions of the carcass member.
  • At least one sidewall rail 46 radially distributed along the sidewall ring 40 is mounted on the sidewall ring 40; on the sidewall carriage 43 along the sidewall ring 40 A sidewall slider 47 that is coupled to the sidewall rail 46 is radially mounted.
  • a sidewall limiting block 48 is mounted on the sidewall ring body 40, and a sidewall guiding rod 431 for inserting the sleeve sidewall limiting block 48 is attached to the sidewall bracket 43 and a sleeve is disposed at the end of the sidewall guiding rod 431.
  • the sidewall limiting nut 49 is mounted on the sidewall ring body 40, and a sidewall guiding rod 431 for inserting the sleeve sidewall limiting block 48 is attached to the sidewall bracket 43 and a sleeve is disposed at the end of the sidewall guiding rod 431.
  • the consistency and the operation precision of the operation of the plurality of executing terminals are improved, which is advantageous for improving the aiming tire.
  • the clamping force of the body part and the left and right bead is precisely controlled, and the expansion operation precision for the side parts of the carcass part is avoided, and problems such as slippage or deformation of the carcass component due to improper clamping force are avoided.
  • the present embodiment also implements the following carcass assembly transfer method:
  • the carcass center ring 1, the left bead transfer ring 2 and the right bead transfer ring 3 synchronously transfer the carcass assembly to participate in the preparation process of the green embryo through the bottom or top sliding track between the carcass drum and the forming drum;
  • the side port of the sidewall is expanded to a trumpet shape through the sidewall expansion ring 4;
  • the driving force of the first driving device is transmitted and converted into a plurality of carcass removing claws 11 on the center ring 1 of the carcass through the slewing bearing 12, and reciprocally along the radial direction of the ring body 10 Moving to form a same cylindrical surface that fixes and removes the carcass member; the central axis of the cylinder formed by the plurality of carcass removal claws 11 coincides or is parallel with the central axis of the ring body 10;
  • the first driving device drives the slewing bearing 12 to rotate axially, and the driving teeth 121 circumferentially distributed in the inner circumference of the slewing bearing 12 mesh with the driven gear 14 of the carcass removal device to rotate at the same angular velocity and drive the radial direction.
  • the rack 15 and the carcass removal claw 11 at the end of the carriage 13 project or retract radially along the ring body 10.
  • the driving force of the driving device is transmitted and converted into a plurality of bead transfer claws 31 through the bead slewing bearing 32 on the right bead center ring 3, synchronously, along the bead ring body 30 Radial reciprocating movement to form the same cylindrical surface that fixes and removes the right bead; the central axis of the cylinder formed by the plurality of bead retaining claws 31 coincides or is parallel with the central axis of the bead ring body 30;
  • the driving device drives the bead slewing bearing 32 to rotate axially, and the bead driving teeth 321 circumferentially distributed in the inner ring of the bead slewing bearing 32 mesh with the bead driven gear 34 of the bead removing device at the same angular velocity.
  • the bead retaining claw 31 that rotates and drives the bead radial rack 35 and the end of the bead carriage 33 radially projects or retracts along the bead ring body 30.
  • Embodiment 2 is mainly different from Embodiment 1 in that the carcass center ring 1 adopts different first driving means, specifically:
  • the first driving device includes a driving gear 101 having a shaft disposed on the ring body 10, and a driving cylinder for driving the driving gear 101 to rotate axially.
  • the driving gear 101 is fixed to the slewing bearing 12 through the ring body 10.
  • a rack 104 meshingly coupled to the driving gear 101 is mounted at a driving end of the driving cylinder, and the driving cylinder includes a first driving cylinder 105 and a second driving cylinder 106 axially connected in series.
  • the driving gear 101 drives the slewing bearing 12 on the other side of the ring body 10 to perform axial rotation, thereby realizing the driving force transmission of the first driving device to the slewing bearing 12.
  • the strokes of the first drive cylinder 105 and the second drive cylinder 106 are superimposed on each other to control the plurality of drive strokes.
  • the other partial structure of the carcass center ring 1, the left bead transfer ring 2, the right bead transfer ring 3 and the side reinforcing ring 4 have the same structure, and the transfer method of the carcass assembly is also employed in the same manner as in the first embodiment. same way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tyre Moulding (AREA)

Abstract

一种胎体组件装置及根据其实现的胎体组件传递方法,在驱动装置与胎体移取装置之间设置一转盘轴承(12),以将驱动力传递并转化为沿径向推动胎体移取装置的推力。该胎体组件装置包括有通过底部或顶部的滑行轨道往复滑动的胎体中心环(1)、左胎圈传递环(2)、右胎圈传递环(3)和胎侧扩充环(4)。胎体中心环(1)具有一环体(10),在环体(10)上设置有驱动装置和数组胎体移取装置,每组胎体移取装置的末端安装有胎体移取爪(11)。数个胎体移取爪(11)处于固定并移取胎体件的同一个圆柱面上,并且所构成圆柱的中心轴线与环体(10)的中心轴线重合或平行。该胎体组件装置及根据其实现的胎体组件传递方法能够提高数个胎体移取爪(11)动作上的一致性与操作精度,以利于提高针对胎体件与胎圈的夹持力控制精度。

Description

胎体组件装置及其方法
技术领域
本发明涉及一种应用于轮胎制造的胎体组件装置及其方法, 具体地针对构成胎 胚的胎体组件实现径向上多角度、 同步移取, 属于橡胶机械制造领域。
背景技术
在橡胶轮胎的制造过程中, 复合层结构的均匀性是影响轮胎安全使用性能的最 直接与最关键的因素之一。 现有采用的二鼓或三鼓轮胎成型机, 通常是在胎体鼓上 完成胎体组件的制备, 然后再传递至成型鼓上以进行压合、 反包等工艺制成胎胚。
如公开下述方案内容的在先申请, 申请号 200720019550, 名称为胎体夹持环, 其采用沿圆周等距均布的磁性吸合装置以磁性吸合胎体件。 即在底板上通过螺栓固 定有一胎体环和一驱动气缸, 胎体环内部嵌套一驱动环, 驱动气缸的活塞杆连接在 驱动环上, 在驱动环的一侧设置有若干个沿圆周均匀分布的磁性吸盘, 所述的磁性 吸盘连接在传递装置上; 传递装置包括与所述磁性吸盘同侧的驱动环上的滑动导轨, 以及在驱动环的圆周上设置的长槽; 滑动导轨通过螺栓固定在驱动环上, 一滑块通 过轴和滑动套同时嵌套在滑动导轨和长槽中; 磁性吸盘通过螺栓连接到滑块上。
上述方案中, 驱动气缸驱动所述的驱动环轴向转动, 依靠驱动环上滑动导轨的 推力、 通过滑块实现沿径向同时推出或拖回磁性吸盘, 以完成胎体件的磁性吸合、 夹持与输送。 沿驱动环周向分布的数条滑动导轨与对应滑块之间的摩擦力, 会因装 配精度、 使用时间的变化而相应地改变, 因此会造成数个滑块在相同导向推力作用 下的推进距离相互产生差异, 导致数个磁性吸盘沿径向移动产生相互错位, 不利于 提高吸附胎体件的稳定性, 甚至会形成胎体件变形而影响到胎胚制造质量。
现有技术的胎体组件传递设备, 通常还存在以下主要缺陷:
1、 如采取气动式夹持执行机构, 对于夹持力的精确控制难度很大, 夹持力太小容易 造成胎体滑移, 夹持力太大又容易造成胎体变形, 都直接影响到胎胚复合层结构的 均匀性。
2、 如采用机械式夹持执行机构, 在长期高频率地摆转运动与直线运动条件下, 运动 结合部位极易造成磨损, 从而引起运动部件产生蹩劲与蛇形轨迹, 如上述在先申请 专利中滑动导轨与滑块, 因此较为显著地影响到胎圈与胎体件的夹持与传递的精度, 进而对胎胚成型的动平衡与均匀性产生不利影响。
3、 如采用真空吸盘式夹持执行机构, 对于气源稳定性的要求较高, 且真空吸盘较易 破损而造成检修成本的提高。
发明内容
本发明所述的胎体组件传递装置及其传递方法, 在于解决上述现有技术存在的 缺陷与不足而在驱动装置与移取执行机构之间采用一转盘轴承, 以将驱动装置的驱 动力传递并转化为沿径向推动移取执行机构的推力, 从而提高数个执行终端动作上 的一致性与操作精度, 有利于提高针对胎体件与胎圈的夹持力控制精确, 避免因夹 持力失当而造成的胎体组件滑移或变形等问题。
另一发明目的是, 在长期高频率旋转摆动与直线运动条件下, 有效地减小运动 导向与夹持执行机构之间的磨损, 且提高驱动力传递的顺滑性能。
发明目的还在于, 提高针对夹持执行机构伸縮精度的控制, 以适用于各种型号 与规格尺寸胎体组件的准确传递。
为实现上述发明目的, 所述的胎体组件传递装置主要包括有:
通过底部或顶部的滑行轨道往复滑动的用于传递胎体件的胎体中心环、 用于传 递左、 右胎圈的左胎圈传递环和右胎圈传递环, 以及用于实施胎侧扩充的胎侧扩充 环。 与现有技术的区别之处在于,
所述的胎体中心环具有一环体, 在环体上设置有第一驱动装置和数组胎体移取 装置, 每组胎体移取装置的末端安装有胎体移取爪。
数个胎体移取爪处于固定并移取胎体件的同一个圆柱面上, 并且所构成圆柱的 中心轴线与环体的中心轴线重合或平行;
在第一驱动装置与数组胎体移取装置之间设置一转盘轴承, 转盘轴承用于将第 一驱动装置的驱动力传递并转化为数个胎体移取爪同步地、 沿环体径向的往复移动。
如上述基本方案, 区别与现有技术, 在第一驱动装置与胎体移取装置之间采用 转盘轴承, 第一驱动装置驱动转盘轴承旋转, 由转盘轴承将旋转驱动力转化为径向 推动胎体移取爪直线往复移动的推力, 以形成数组胎体移取爪同步定位、 拾取与移 走胎体件的准确控制。
基于本发明的设计构思, 能够实现驱动转盘轴承进行轴向旋转的驱动机构, 可 以是旋转气缸、 减速电机或液压缸等;
转盘轴承在旋转过程中形成针对胎体移取爪进行直线往复移动的推力传递机 构, 可以是螺杆-螺母、 滚珠丝杠-丝母、 同步带-同步带轮或齿轮-齿条等;
在此较为优选的实施方案是, 在转盘轴承的内圈, 设置有周向分布的驱动齿。 所述的第一驱动装置包括有, 轴设于环体上的主动齿轮、 以及驱动主动齿轮轴 向旋转的旋转气缸或减速电机。 主动齿轮啮合连接于驱动齿。
按此方案, 旋转气缸或减速电机驱动主动齿轮进行轴向旋转, 通过主动齿轮与 驱动齿之间的啮合以带动转盘轴承在环体内径进行轴向旋转, 从而实现第一驱动装 置向转盘轴承的驱动力传递。 并且, 在旋转气缸或减速电机的驱动下, 主动齿轮与 转盘轴承轴向旋转的角速度相同, 并且能够通过主动齿轮控制转盘轴承轴向旋转的 角度。
另一优选的实施方案是, 在转盘轴承的内圈, 设置有周向分布的驱动齿; 所述的第一驱动装置包括有, 轴设于环体上的主动齿轮、 以及驱动主动齿轮轴 向旋转的驱动气缸; 主动齿轮贯穿环体而固连于转盘轴承。
如该方案, 所述的驱动气缸在驱动主动齿轮轴向旋转的同时, 主动齿轮带动环 体另一侧的转盘轴承进行轴向旋转, 从而实现第一驱动装置向转盘轴承的驱动力传 递。 由于在环体两侧, 主动齿轮带动转盘轴承同时进行轴向旋转, 因此, 主动齿轮 与转盘轴承轴向旋转的角速度也是相同的。
为进一步地控制转盘轴承在进行轴向旋转的角度是可变的, 可采取的改进方案 是, 在所述驱动气缸的驱动端, 安装一啮合连接于主动齿轮的齿条; 驱动气缸包括 有轴向串联的第一驱动气缸和第二驱动气缸。 第一驱动气缸与第二驱动气缸的行程 相互叠加, 可实现多个驱动行程的控制。
采取上述 2 种各自独立、 具有单一性的第一驱动装置的基础上, 针对胎体移取 装置的结构改进方案是:
每组胎体移取装置, 包括有连接于环体上的滑架和一组从动齿轮, 在滑架的末 端安装有胎体移取爪; 在滑架上设置有径向齿条, 从动齿轮分别啮合连接于径向齿 条和转盘轴承内圈的周向分布的驱动齿。
在转盘轴承进行轴向旋转时, 其驱动齿可带动从动齿轮以相同的角速度旋转, 同时从动齿轮又能够沿环体的径向推拉所述的径向齿条, 因此滑架末端的胎体移取 爪能够沿环体径向往复移动以实现针对胎体件的定位、 夹持与移取。
由于数组胎体移取装置的从动齿轮, 均通过同一转盘轴承传递径向推拉作用力, 所以数个胎体移取爪能够实现同步地、 沿环体径向往复伸出或縮回, 有利于提高针 对胎体件夹持力的控制较为精确, 避免因夹持力失当而造成诸多缺点。
为提高胎体移取爪径向往复移动的顺滑性能、 降低机械运动的阻力, 可对应于 每组胎体移取装置, 在环体上至少安装有一个沿环体径向分布的滑轨;
在滑架上、 沿环体径向安装有啮合连接于滑轨的滑块。
在上述滑轨与滑块之间的导向机构作用下, 滑架能够满足长期、 高频率地直线 运动要求, 径向齿条与从动齿轮之间、 滑轨与滑块之间均不易造成磨损, 胎体移取 爪也不易产生径向运动的蹩劲, 从而进一步地提高针对胎体件的夹持作用力与传递 的精度。
为适应不同型号胎胚的半径尺寸, 胎体移取爪径向移动的最大行程需要进行调 整, 为此可按下述优化方案实施:
在环体上安装一限位块, 在滑架上连接一穿套限位块的导杆, 在导杆末端套设 一限位螺母。
当需要调整胎体移取爪径向移动的最大行程时, 可调节限位螺母相对于导杆末 端的位置。 当滑架移动时, 限位螺母抵靠于限位块而阻止导杆继续移动, 此时滑架 被依靠外力而静止, 滑架末端的胎体移取爪行程被限定在可控的范围内。
为优化针对胎体件表面的夹持作用力更为适当、 避免因夹持过大而损伤胎体件 或因夹持过小而发生胎体件滑移、 变形等现象, 在此可采了磁性吸附结构。
即在胎体移取爪的内端面上, 设置有数个用于磁性吸附胎体件的磁块, 通过磁 性吸附能够有效性均衡胎体件表面的夹持作用力, 胎体件表面不易变形、 胎体件整 体也不易滑移或偏转。
基于本发明所述胎体组件传递装置的结构改进, 同时还实现了下述胎体组件传 递方法:
在胎体鼓与成型鼓之间通过底部或顶部的滑行轨道, 胎体中心环、 左胎圈传递 环和右胎圈传递环同步地传递胎体组件以参与胎胚的制备过程;
在胎体鼓上完成胎体组件的贴合加工后, 通过胎侧扩充环将胎侧的侧部端口扩 充为喇叭状。 与现有技术的不同之处在于, 在胎体件的传递过程中, 在胎体中心环上通过转盘轴承将第一驱动装置的驱动 力传递并转化为数个胎体移取爪同步地、 沿环体径向的往复移动, 以形成固定并移 取胎体件的同一个圆柱面;
数个胎体移取爪所构成的圆柱中心轴线与环体的中心轴线重合或平行。
较为细化与优选的传递方法改进方式是, 第一驱动装置驱动所述的转盘轴承轴 向旋转, 在转盘轴承内圈周向分布的驱动齿啮合并带动胎体移取装置的从动齿轮以 相同的角速度进行旋转, 并依次驱动径向齿条、 滑架末端的胎体移取爪沿环体径向 伸出或縮回。
综上内容, 本发明胎体组件传递装置及其传递方法具有的优点与有益效果是: 1、 采用转盘轴承以轴向旋转转化为胎体移取爪的径向往复移动, 能够保证并提高数 个胎体移取爪在夹持与移取动作上的一致性与操作精度。
2、 实现了包括胎体件在内的胎体组件的精确移取, 胎体传递组件之间执行机构的同 心定位性能较高,使得所制备的胎体组件复合结构紧密,有利于保证胎胚均匀性。
3、 能够提高包括胎体件在内的胎体组件的夹持力控制精度, 避免因夹持力失当而造 成的胎体组件滑移或变形等问题。
4、 所采用的摆转与直线运动部件采取滑动导向结构, 能够有效地减小运动、 导向与 夹持执行机构之间的磨损, 提高驱动力传递的顺滑性和准确性。
5、 实现包括胎体移取爪在内的胎体组件夹持执行机构径向移动行程的控制, 能够适 用于各种型号胎胚的半径尺寸、 提高针地胎体组件表面夹持作用力的调整。 6、 采用磁性吸附式的夹持机构, 能够将胎体组件按工艺要求进行定位、 吸附拾取与 传递, 有利于提高胎胚整体制备质量。
附图说明
现结合附图对本发明做进一步的说明。
图 1是所述胎体组件传递装置的结构示意图;
图 2是所述胎体中心环的结构示意图;
图 3是所述另一实施例的胎体中心环的结构示意图;
图 4是右胎圈传递环的结构示意图;
图 5是胎侧扩充环的结构示意图; 图 6是图 5的后部结构示意图;
如图 1至图 6所示, 胎体中心环 1, 左胎圈传递环 2, 右胎圈传递环 3, 胎侧扩 充环 4;
环体 10, 主动齿轮 101, 旋转气缸 102, 齿条 104, 第一驱动气缸 105, 第二驱 动气缸 106, 胎体移取爪 11, 磁块 111, 转盘轴承 12, 驱动齿 121, 滑架 13, 导杆 131, 从动齿轮 14, 径向齿条 15, 滑轨 16, 滑块 17, 限位块 18, 限位螺母 19 ; 胎圈环体 30, 胎圈主动齿轮 301, 胎圈旋转气缸 302, 胎圈夹持爪 31, 胎圈转 盘轴承 32, 胎圈驱动齿 321, 胎圈滑架 33, 胎圈导杆 331, 胎圈从动齿轮 34, 胎圈 径向齿条 35, 胎圈滑轨 36, 胎圈滑块 37, 胎圈限位块 38, 胎圈限位螺母 39;
胎侧环体 40, 胎侧主动齿轮 401, 胎侧齿条 404, 胎侧第一驱动气缸 405, 胎侧 第二驱动气缸 406, 胎侧扩充爪 41, 胎侧转盘轴承 42, 胎侧驱动齿 421, 胎侧滑架 43 , 胎侧导杆 431,胎侧从动齿轮 44, 胎侧径向齿条 45, 胎侧滑轨 46, 胎侧滑块 47, 胎侧限位块 48, 胎侧限位螺母 49。
具体实施方式
实施例 1, 如图 1和图 2所示, 所述的胎体组件传递装置包括有:
通过底部或顶部的滑行轨道往复滑动的用于传递胎体件的胎体中心环 1、用于传 递左、右胎圈的左胎圈传递环 2和右胎圈传递环 3, 以及用于实施胎侧扩充的胎侧扩 充环 4。 其中,
所述的胎体中心环 1具有一环体 10,以及设置在环体 10上的第一驱动装置和数 组胎体移取装置。
在第一驱动装置与数组胎体移取装置之间设置一转盘轴承 12,在转盘轴承 12的 内圈设置有周向分布的驱动齿 121。
第一驱动装置包括有,轴设于环体 10上的主动齿轮 101、以及驱动主动齿轮 101 轴向旋转的旋转气缸 102, 主动齿轮 101啮合连接于驱动齿 121。
胎体移取装置包括有, 连接于环体 10上的滑架 13和一组从动齿轮 14, 在滑架
13的末端安装有胎体移取爪 11 ; 在滑架 13上设置有径向齿条 15, 从动齿轮 14分别 啮合连接于驱动齿 121和径向齿条 15。
转盘轴承 12用于将第一驱动装置的驱动力传递并转化为数个胎体移取爪 11 同 步地、 沿环体 10径向的往复移动, 以形成数组胎体移取爪 11 同步定位、 拾取与移 走胎体件的准确控制。
数个胎体移取爪 11处于固定并移取胎体件的同一个圆柱面上, 并且所构成圆柱 的中心轴线与环体 10的中心轴线重合或平行。
旋转气缸 102驱动主动齿轮 101进行轴向旋转,通过主动齿轮 101与驱动齿 121 之间的啮合以带动转盘轴承 12在环体 10内径进行轴向旋转, 从而实现第一驱动装 置向转盘轴承 12的驱动力传递。 并且在旋转气缸 102驱动下, 主动齿轮 101与转盘 轴承 12轴向旋转的角速度相同, 即可通过主动齿轮 101控制转盘轴承 12轴向旋转 的角度。
在转盘轴承 12进行轴向旋转时, 其驱动齿 121带动从动齿轮 14以相同的角速 度旋转, 从动齿轮 14能够沿环体 10的径向推拉径向齿条 15,滑架 13末端的胎体移 取爪 11能够沿环体 10径向往复移动以实现针对胎体件的定位、 夹持与移取。
由于数组胎体移取装置的从动齿轮 14,均通过同一转盘轴承 12传递径向推拉作 用力, 所以数个胎体移取爪 11能够实现同步地、 沿环体 10径向往复伸出或縮回, 因此有利于提高针对胎体件夹持力的控制较为精确, 避免因夹持力失当而造成诸多 缺点。
对应于每组胎体移取装置, 在环体 10上至少安装有一个沿环体 10径向分布的 滑轨 16; 在滑架 13上、 沿环体 10径向安装有啮合连接于滑轨 16的滑块 17。
在滑轨 16与滑块 17之间相互导向作用下, 滑架 13能够满足长期、 高频率地直 线运动要求, 径向齿条 15与从动齿轮 14之间不易造成磨损, 胎体移取爪 11也不易 在径向运动过程中出现蹩劲或偏转。
在环体 10上安装一限位块 18, 在滑架 13上连接一穿套限位块 18的导杆 131, 在导杆 131末端套设一限位螺母 19。
针对不同型号胎胚的半径尺寸, 可通过上述结构准确地调整胎体移取爪 11径向 移动的最大行程。 即通过调节限位螺母 19相对于导杆 131末端的位置, 在滑架 13 移动时, 限位螺母 19抵靠于限位块 18而阻止导杆 131继续移动, 此时滑架 13被依 靠外力而静止, 胎体移取爪 11的径向行程被可控地进行限定。
在胎体移取爪 11的内端面上, 设置有数个用于磁性吸附胎体件的磁块 111。 采用磁性吸附能够有效性均衡胎体件表面的夹持作用力, 胎体件表面不易变形、 胎体件整体也不易滑移或偏转。 如图 4至图 6所示, 基于上述胎体中心环 1结构的改进与应用, 本实施例针对 左胎圈传递环 2、右胎圈传递环 3和胎侧扩充环 4采取相同的转盘轴承结构, 以将驱 动力传递并转化为沿径向推动移取执行机构的推力。 具体地,
所述的右胎圈传递环 3具有一胎圈环体 30,以及设置在胎圈环体 30上的驱动装 置和数组胎圈移取装置, 在驱动装置与数组胎圈移取装置之间设置一胎圈转盘轴承 32, 在胎圈转盘轴承 32的内圈设置有周向分布的胎圈驱动齿 321。
驱动装置包括有, 轴设于胎圈环体 30上的胎圈主动齿轮 301、 以及驱动胎圈主 动齿轮 301轴向旋转的胎圈旋转气缸 302,胎圈主动齿轮 301啮合连接于胎圈驱动齿 321。
胎圈移取装置包括有, 连接于胎圈环体 30上的胎圈滑架 33和一组胎圈从动齿 轮 34, 在胎圈滑架 33的末端安装有胎圈移取爪 31 ; 在胎圈滑架 33上设置有胎圈径 向齿条 35, 胎圈从动齿轮 34分别啮合连接于胎圈驱动齿 321和胎圈径向齿条 35。
胎圈转盘轴承 32用于将驱动装置的驱动力传递并转化为数个胎圈移取爪 31 同 步地、 沿胎圈环体 30径向的往复移动, 以同步定位、 拾取与移走右胎圈, 能够提高 提高针对右胎圈夹持力的精确控制, 避免因夹持力失当而造成诸多缺点。
对应于每组胎体移取装置, 在胎圈环体 30上至少安装有一个沿胎圈环体 30径 向分布的胎圈滑轨 36 ; 在胎圈滑架 33上、 沿胎圈环体 30径向安装有啮合连接于胎 圈滑轨 36的胎圈滑块 37。
在胎圈环体 30上安装一胎圈限位块 38, 在胎圈滑架 33上连接一穿套胎圈限位 块 38的胎圈导杆 331, 在胎圈导杆 331末端套设一胎圈限位螺母 39。
左胎圈传递环 2的结构与右胎圈传递环 3沿胎体中心环 1左右对称, 以便针对 左胎圈实施相同的同步定位、 拾取与移走操作。
所述的胎侧扩充环 4具有一胎侧环体 40,以及设置在胎侧环体 40上的驱动装置 和数组胎侧扩充装置,在驱动装置与数组胎侧扩充装置之间设置一胎侧转盘轴承 42, 在胎侧转盘轴承 42的内圈设置有周向分布的胎侧驱动齿 421。
驱动装置包括有, 轴设于胎侧环体 40上的胎侧主动齿轮 401、 以及驱动胎侧主 动齿轮 401轴向旋转的胎侧驱动气缸, 胎侧主动齿轮 401贯穿胎侧环体 40而固连于 胎侧转盘轴承 42。
胎侧驱动气缸的驱动端安装一啮合连接于胎侧主动齿轮 401的胎侧齿条 404,驱 动气缸包括有轴向串联的胎侧第一驱动气缸 405和胎侧第二驱动气缸 406。
胎侧移取装置包括有, 连接于胎侧环体 40上的胎侧滑架 43和一组胎侧从动齿 轮 44, 在胎侧滑架 43的末端安装有胎侧移取爪 41 ; 在胎侧滑架 43上设置有胎侧径 向齿条 45, 胎侧从动齿轮 44分别啮合连接于胎侧驱动齿 421和胎侧径向齿条 45。
胎侧转盘轴承 42用于将驱动装置的驱动力传递并转化为数个胎侧扩充爪 41 同 步地、 沿胎侧环体 40径向的往复移动, 以同步地定位于胎体件侧部。
对应于每组胎侧扩充装置, 在胎侧环体 40上至少安装有一个沿胎侧环体 40径 向分布的胎侧滑轨 46; 在胎侧滑架 43上、 沿胎侧环体 40径向安装有啮合连接于胎 侧滑轨 46的胎侧滑块 47。
在胎侧环体 40上安装一胎侧限位块 48, 在胎侧滑架 43上连接一穿套胎侧限位 块 48的胎侧导杆 431, 在胎侧导杆 431末端套设一胎侧限位螺母 49。
如上述胎体组件传递装置, 由于在各个环体的驱动装置与移取、 执行机构之间 采用一转盘轴承, 从而提高了数个执行终端动作上的一致性与操作精度, 有利于提 高针对胎体件与左、 右胎圈的夹持力精确控制, 以及针对胎体件侧部的扩充操作精 度, 避免因夹持力失当而造成的胎体组件滑移或变形等问题。
基于上述胎体组件传递装置结构的应用, 本实施例还实现了如下胎体组件传递 方法:
在胎体鼓与成型鼓之间通过底部或顶部的滑行轨道, 胎体中心环 1、左胎圈传递 环 2和右胎圈传递环 3同步地传递胎体组件以参与胎胚的制备过程;
在胎体鼓上完成胎体组件的贴合加工后, 通过胎侧扩充环 4将胎侧的侧部端口 扩充为喇叭状;
在胎体件的传递过程中, 在胎体中心环 1上通过转盘轴承 12将第一驱动装置的 驱动力传递并转化为数个胎体移取爪 11 同步地、 沿环体 10径向的往复移动, 以形 成固定并移取胎体件的同一个圆柱面; 数个胎体移取爪 11所构成的圆柱中心轴线与 环体 10的中心轴线重合或平行;
第一驱动装置驱动所述的转盘轴承 12轴向旋转, 在转盘轴承 12内圈周向分布 的驱动齿 121啮合带动胎体移取装置的从动齿轮 14以相同的角速度旋转、 并驱动径 向齿条 15、 滑架 13末端的胎体移取爪 11沿环体 10径向伸出或縮回。 以右胎圈的传递过程为例, 在右胎圈中心环 3上通过胎圈转盘轴承 32将驱动装 置的驱动力传递并转化为数个胎圈移取爪 31 同步地、 沿胎圈环体 30径向的往复移 动, 以形成固定并移取右胎圈的同一个圆柱面; 数个胎圈移取爪 31所构成的圆柱中 心轴线与胎圈环体 30的中心轴线重合或平行;
驱动装置驱动所述的胎圈转盘轴承 32轴向旋转, 在胎圈转盘轴承 32内圈周向 分布的胎圈驱动齿 321啮合带动胎圈移取装置的胎圈从动齿轮 34以相同的角速度旋 转、并驱动胎圈径向齿条 35、胎圈滑架 33末端的胎圈移取爪 31沿胎圈环体 30径向 伸出或縮回。
左胎圈的传递与右胎圈的传递过程相同, 在此不再重复描述。
待胎侧扩充完毕后, 胎体中心环 1、左胎圈传递环 2与右胎圈传递环 3沿滑轨将 胎体鼓 (图中未示出) 上完成贴合操作的胎体筒吸附并整体地移动至成型鼓 (图中 未示出) , 胎体组件传递装置整体复位至初始状态。 实施例 2, 如图 3所示, 与实施例 1的主要不同之处在于, 胎体中心环 1采取不 同的第一驱动装置, 具体地:
第一驱动装置包括有,轴设于环体 10上的主动齿轮 101、以及驱动主动齿轮 101 轴向旋转的驱动气缸; 主动齿轮 101贯穿环体 10而固连于转盘轴承 12。
在驱动气缸的驱动端安装一啮合连接于主动齿轮 101的齿条 104,驱动气缸包括 有轴向串联的第一驱动气缸 105和第二驱动气缸 106。
驱动气缸在驱动主动齿轮 101轴向旋转的同时, 主动齿轮 101带动环体 10另一 侧的转盘轴承 12进行轴向旋转, 从而实现第一驱动装置向转盘轴承 12的驱动力传 递。
第一驱动气缸 105与第二驱动气缸 106的行程相互叠加, 可实现多个驱动行程 的控制。
在实施例 2中胎体中心环 1的其他部分结构、 左胎圈传递环 2、 右胎圈传递环 3 和胎侧扩充环 4的结构相同, 胎体组件的传递方法也采用与实施例 1相同的方式。

Claims

1、 一种胎体组件装置, 包括有通过底部或顶部的滑行轨道往复滑动的用于传递 胎体件的胎体中心环 (1) 、 用于传递左、 右胎圈的左胎圈传递环 (2) 和右胎圈传 递环 (3) , 以及用于实施胎侧扩充的胎侧扩充环 (4), 其特征在于:
所述的胎体中心环 (1) 具有一环体(10), 在环体 (10) 上设置有第一驱动装置 和数组胎体移取装置, 每组胎体移取装置的末端安装有胎体移取爪 (11) ;
数个胎体移取爪 (11) 处于固定并移取胎体件的同一个圆柱面上, 并且所构成 圆柱的中心轴线与环体(10)的中心轴线重合或平行;
在第一驱动装置与数组胎体移取装置之间设置一转盘轴承(12),转盘轴承(12) 用于将第一驱动装置的驱动力传递并转化为数个胎体移取爪 (11) 同步地、 沿环体 (10)径向的往复移动。
2、 根据权利要求 1所述的胎体组件装置, 其特征在于: 在所述转盘轴承 (12) 的内圈, 设置有周向分布的驱动齿 (121) ;
所述的第一驱动装置包括有, 轴设于环体 (10) 上的主动齿轮 (101) 、 以及驱 动主动齿轮 (101) 轴向旋转的旋转气缸 (102) 或减速电机;
主动齿轮 (101) 啮合连接于驱动齿 (121) 。
3、 根据权利要求 1所述的胎体组件装置, 其特征在于: 在所述转盘轴承 (12) 的内圈, 设置有周向分布的驱动齿 (121) ;
所述的第一驱动装置包括有, 轴设于环体 (10) 上的主动齿轮 (101) 、 以及驱 动主动齿轮 (101) 轴向旋转的驱动气缸;
主动齿轮 (101) 贯穿环体 (10) 而固连于转盘轴承 (12) 。
4、根据权利要求 3所述的胎体组件装置,其特征在于:所述驱动气缸的驱动端, 安装一啮合连接于主动齿轮 (101) 的齿条 (104) ;
驱动气缸包括有轴向串联的第一驱动气缸 (105) 和第二驱动气缸 (106) 。
5、 根据权利要求 2或 4所述的胎体组件装置, 其特征在于: 所述的胎体移取装 置, 包括有连接于环体 (10) 上的滑架 (13) 和一组从动齿轮 (14) , 在滑架 (13) 的末端安装有胎体移取爪 (11) ;
在滑架 (13) 上设置有径向齿条 (15) , 从动齿轮 (14) 分别啮合连接于驱动 齿 (121) 和径向齿条 (15) 。
6、 根据权利要求 5所述的胎体组件装置, 其特征在于: 对应于每组胎体移取装 置, 在环体 (10) 上至少安装有一个沿环体 (10) 径向分布的滑轨 (16) ;
在滑架(13)上、 沿环体(10)径向安装有啮合连接于滑轨(16)的滑块(17) 。
7、 根据权利要求 6所述的胎体组件装置, 其特征在于: 在环体 (10) 上安装一 限位块(18),在滑架(13)上连接一穿套限位块(18)的导杆(131), 在导杆(131) 末端套设一限位螺母 (19) 。
8、 根据权利要求 7所述的胎体组件装置, 其特征在于: 在胎体移取爪 (11) 的 内端面上, 设置有数个用于磁性吸附胎体件的磁块 (111) 。
9、 根据权利要求 1至 8所述胎体组件传递装置实现的胎体组件传递方法, 在胎 体鼓与成型鼓之间通过底部或顶部的滑行轨道,胎体中心环(1)、左胎圈传递环(2) 和右胎圈传递环 (3) 同步地传递胎体组件以参与胎胚的制备过程;
在胎体鼓上完成胎体组件的贴合加工后, 通过胎侧扩充环 (4)将胎侧的侧部端口 扩充为喇叭状, 其特征在于:
在胎体件的传递过程中, 在胎体中心环 (1) 上通过转盘轴承 (12) 将第一驱动 装置的驱动力传递并转化为数个胎体移取爪 (11) 同步地、 沿环体(10)径向的往复 移动, 以形成固定并移取胎体件的同一个圆柱面;
数个胎体移取爪 (11) 所构成的圆柱中心轴线与环体(10)的中心轴线重合或平 行。
10、 根据权利要求 9所述的胎体组件传递方法, 其特征在于: 第一驱动装置驱 动所述的转盘轴承(12)轴向旋转, 在转盘轴承(12) 内圈周向分布的驱动齿(121) 啮合带动胎体移取装置的从动齿轮(14)以相同的角速度旋转、并驱动径向齿条(15)、 滑架 (13) 末端的胎体移取爪 (11) 沿环体(10)径向伸出或縮回。
PCT/CN2012/086199 2011-12-07 2012-12-07 胎体组件装置及其方法 WO2013083086A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110403609.X 2011-12-07
CN201110403609XA CN103144331A (zh) 2011-12-07 2011-12-07 胎体组件装置及其方法

Publications (1)

Publication Number Publication Date
WO2013083086A1 true WO2013083086A1 (zh) 2013-06-13

Family

ID=48542786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086199 WO2013083086A1 (zh) 2011-12-07 2012-12-07 胎体组件装置及其方法

Country Status (2)

Country Link
CN (1) CN103144331A (zh)
WO (1) WO2013083086A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102386A1 (en) * 2017-11-27 2019-05-31 Pirelli Tyre S.P.A. Method for building tyres and transfer device of an apparatus for building tyres for vehicle wheels
JP2019206121A (ja) * 2018-05-29 2019-12-05 住友ゴム工業株式会社 トレッドトランスファー

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103434163A (zh) * 2013-08-17 2013-12-11 软控股份有限公司 一种胎体组件传递装置
CN104943211B (zh) * 2014-03-25 2018-04-13 青岛软控机电工程有限公司 带束层传递环
CN109263100A (zh) * 2018-09-30 2019-01-25 北京北人增材制造技术有限公司 全钢子午线轮胎胎面胎体传递系统
MX2023006642A (es) * 2020-12-17 2023-06-19 Pirelli Metodo y aparato de agarre para componentes anulares de neumaticos para ruedas de vehiculos.
CN114474800A (zh) * 2021-04-20 2022-05-13 曹浩 一种立式机械式硫化机活络模的同步驱动装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145641A (ja) * 2001-11-14 2003-05-20 Yokohama Rubber Co Ltd:The タイヤ成形装置におけるトランスファー装置
CN201012538Y (zh) * 2007-03-19 2008-01-30 青岛高校软控股份有限公司 胎体夹持环
EP2036705A1 (de) * 2007-09-15 2009-03-18 Continental Aktiengesellschaft Vorrichtung zum Positionieren eines Reifenkernes auf einer Reifenkarkasse für die Herstellung von Fahrzeugreifen
CN202045890U (zh) * 2010-12-17 2011-11-23 软控股份有限公司 胎圈传递环
CN202344864U (zh) * 2011-12-07 2012-07-25 软控股份有限公司 胎体组件传递装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03203632A (ja) * 1989-12-29 1991-09-05 Bridgestone Corp タイヤ成形ドラム
JP2866027B2 (ja) * 1995-06-06 1999-03-08 三菱重工業株式会社 タイヤ加硫機用中心機構
DE19942220A1 (de) * 1999-09-03 2001-03-08 Thyssenkrupp Ind Ag Reifenaufbautrommel mit Andrückeinheiten
CN201012539Y (zh) * 2007-03-19 2008-01-30 青岛高校软控股份有限公司 胎侧扩充环
CN202412723U (zh) * 2011-12-07 2012-09-05 软控股份有限公司 胎体组件装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145641A (ja) * 2001-11-14 2003-05-20 Yokohama Rubber Co Ltd:The タイヤ成形装置におけるトランスファー装置
CN201012538Y (zh) * 2007-03-19 2008-01-30 青岛高校软控股份有限公司 胎体夹持环
EP2036705A1 (de) * 2007-09-15 2009-03-18 Continental Aktiengesellschaft Vorrichtung zum Positionieren eines Reifenkernes auf einer Reifenkarkasse für die Herstellung von Fahrzeugreifen
CN202045890U (zh) * 2010-12-17 2011-11-23 软控股份有限公司 胎圈传递环
CN202344864U (zh) * 2011-12-07 2012-07-25 软控股份有限公司 胎体组件传递装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102386A1 (en) * 2017-11-27 2019-05-31 Pirelli Tyre S.P.A. Method for building tyres and transfer device of an apparatus for building tyres for vehicle wheels
CN111417508A (zh) * 2017-11-27 2020-07-14 倍耐力轮胎股份公司 用于构建轮胎的方法和用于构建车辆车轮用轮胎的设备的转移装置
CN111417508B (zh) * 2017-11-27 2022-07-05 倍耐力轮胎股份公司 用于构建轮胎的方法和用于构建车辆车轮用轮胎的设备的转移装置
US11584099B2 (en) 2017-11-27 2023-02-21 Pirelli Tyre S.P.A. Method for building tyres and transfer device of an apparatus for building tyres for vehicle wheels
US11872782B2 (en) 2017-11-27 2024-01-16 Pirelli Tyre S.P.A. Method for building tyres and transfer device of an apparatus for building tyres for vehicle wheels
JP2019206121A (ja) * 2018-05-29 2019-12-05 住友ゴム工業株式会社 トレッドトランスファー
JP7091843B2 (ja) 2018-05-29 2022-06-28 住友ゴム工業株式会社 生タイヤの製造ライン

Also Published As

Publication number Publication date
CN103144331A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2013083086A1 (zh) 胎体组件装置及其方法
WO2013083089A1 (zh) 胎体组件传递装置及其传递方法
CN106240256B (zh) 直线型轮胎装配线
WO2015024272A1 (zh) 一种胎体组件传递装置
CN106671319B (zh) 连杆式机械手
CN109483599B (zh) 电动式机器人末端快换装置
CN104526691A (zh) 一种自动包装生产线用的取料放料机械手
CN205631158U (zh) 高精度多工位硫化机的机械手装置
CN109263100A (zh) 全钢子午线轮胎胎面胎体传递系统
CN112644048B (zh) 轮胎成型机用传递环
CN202045890U (zh) 胎圈传递环
CN202344864U (zh) 胎体组件传递装置
WO2016074617A1 (zh) 高效率集成滚压站
CN110802626B (zh) 一种机械手爪中工件的吸附机构
CN105711122A (zh) 一种传递轮胎胎圈的预置装置
JP2539657B2 (ja) 円筒状部材の搬送装置
CN110641057A (zh) 一种轮胎硫化机伺服电动抓胎器
CN213946469U (zh) 一种机械手用旋转装置
CN203460449U (zh) 一种胎体组件传递装置
CN115816505A (zh) 一种柔性机械手及其自适应抓取方法
CN105058410A (zh) 一种精密外撑式智慧型工业机器人执行器
CN103434164A (zh) 一种胎圈夹持装置及夹持方法
CN212170132U (zh) 一种用于汽车零件空心管夹持机构
CN203919048U (zh) 精密仪器搬运机械手
JP5589986B2 (ja) 回動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855012

Country of ref document: EP

Kind code of ref document: A1