WO2013083049A1 - 显示装置和系统及其显示方法 - Google Patents

显示装置和系统及其显示方法 Download PDF

Info

Publication number
WO2013083049A1
WO2013083049A1 PCT/CN2012/085987 CN2012085987W WO2013083049A1 WO 2013083049 A1 WO2013083049 A1 WO 2013083049A1 CN 2012085987 W CN2012085987 W CN 2012085987W WO 2013083049 A1 WO2013083049 A1 WO 2013083049A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
curved
prism
light
waveguide
Prior art date
Application number
PCT/CN2012/085987
Other languages
English (en)
French (fr)
Inventor
程德文
王涌天
刘越
Original Assignee
Cheng Dewen
Wang Yongtian
Liu Yue
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheng Dewen, Wang Yongtian, Liu Yue filed Critical Cheng Dewen
Publication of WO2013083049A1 publication Critical patent/WO2013083049A1/zh
Priority to US14/294,394 priority Critical patent/US9052505B2/en
Priority to US14/729,899 priority patent/US9366870B2/en
Priority to US15/170,581 priority patent/US9869862B2/en
Priority to US15/860,787 priority patent/US10330937B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/144Processing image signals for flicker reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0114Head-up displays characterised by optical features comprising device for genereting colour display comprising dichroic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • the present invention relates to a display device, system, and method, and in particular to a near-eye display device.
  • the display device is an important part of the human-computer interaction interface.
  • a near-eye display device such as a head-mounted display is a popular product in the field of display in recent years.
  • the helmet image display device for virtual reality and enhanced display has made great progress.
  • the helmet display can be made up of three parts: a display image source, an optical system and a support structure. Since the head-mounted display may be worn on the user's head for a long time, weight and compactness are important factors influencing comfort.
  • the invention provides a display device comprising: a waveguide optical element; a projection optical system including an optical freeform surface; and a micro display device; wherein the projection optical system has an oblique optical path and the waveguide optical The component is optically coupled.
  • the planar waveguide optical element coupling end includes at least two parallel transversals Mirror.
  • the planar waveguide optical element coupling end includes a mirror or a triangular prism.
  • the projection optical system includes an illumination light engine system and a freeform prism imaging system.
  • the projection optical system includes a prism having at least one optical freeform surface.
  • the freeform prism includes at least three free curved surfaces, characterized in that the two perpendicular directions of the exit pupils may not coincide; and the thickness is less than 5 mm and the width is less than 10 mm.
  • the short exit pupil of the projection system substantially coincides with the waveguide coupling end, and the elongated pupil substantially coincides with the exit pupil of the waveguide optical component.
  • the illumination light engine system includes a PBS beam splitter, a 1/4 wave plate, a mirror, and an LED light source.
  • the coupling end of the planar waveguide element when it is substantially coupled with the exit pupil of the free-form prism as described, the following conditions are met to eliminate stray light:
  • D exd 2d x - y - e x 1 + tan ⁇ tan ⁇ ⁇
  • The maximum field of view for the expansion direction of the diaphragm. For the pupil to expand the direction of the maximum field of view light incident on the waveguide after the angle of refraction.
  • the present invention provides a near-eye display system including the display device, wherein the micro display device comprises: a first micro display and a second micro display for respectively displaying a distance from a human eye And a distant observation image, or respectively for displaying an observation image that is farther and closer to the human eye, wherein the two display images are different from the human eye, but the field of view they cover is substantially the same, first The image is focused on rendering a near-depth object in a three-dimensional scene, and the second image is focused on rendering an object of a deeper depth in the three-dimensional scene; wherein the projection optical system comprises: a first optical curved prism for using the first micro Display The image displayed on the display is enlarged and imaged to a distance closer to the human eye; the second optical curved prism is used to magnify and image the image displayed on the second microdisplay to a distance farther from the human eye; The curved prism and the second optical curved prism have a pair of curved surfaces having the same value but opposite signs, that is, the second
  • the first optical curved prism comprises three optical free-form surfaces, characterized in that: the light reflects at least once on the optical curved surface, and the second optical curved surface is a concave reflective surface surrounded by three optical surfaces.
  • the space is filled with a glass or resin optical material having a refractive index greater than 1.4; the optical surface may be a spherical surface, an aspheric surface, a free curved surface, or a complex curvature XY polynomial curved surface; the light emitted by the first microdisplay enters the first through the third optical curved surface
  • the optical curved prism is reflected by the first optical surface to the second optical surface, reflected by the second optical surface, and then transmitted through the first optical surface into the human eye.
  • the second optical curved prism comprises three optically free-form surfaces, wherein: the light is reflected at least once on the optical surface, and the space surrounded by the three optical surfaces is made of glass having a refractive index greater than 1.4. Or a resin optical material filled; the optical surface may be a spherical surface, an aspherical surface, a free curved surface, or a complex curvature XY polynomial curved surface; the light emitted by the second microdisplay enters the second optical curved prism via the third optical curved surface, and is reflected by the second optical surface To the first optical surface, the second and first optical curved surfaces of the first optical prism are sequentially transmitted to reach the exit pupil of the system.
  • the first optically curved prism comprises a plurality of optically free-formed surfaces, wherein: the light is incident on the optical surface at least once, and the space surrounded by the three optical surfaces is a glass having a refractive index greater than 1.4.
  • the resin optical material is filled; the optical surface may be a spherical surface, an aspherical surface, a free curved surface, or a complex curvature XY polynomial curved surface; the light emitted by the first microdisplay enters the first optical curved prism via the third optical curved surface, and is reflected by the first optical surface To the second optical surface, after being reflected by the second optical surface, it is again transmitted through the first optical surface into the human eye.
  • the second optical curved prism comprises three optically free-form surfaces, wherein: the light is reflected at least once on the optical surface, and the space surrounded by the three optical surfaces is made of glass having a refractive index greater than 1.4. Or a resin optical material filled; the optical surface may be a spherical surface, an aspheric surface, a free curved surface, or a complex curvature XY polynomial curved surface; the light emitted by the second micro display enters the second optical piece via the third optical curved surface The prism is reflected by the first optical surface to the second optical surface, and is again reflected to reach the first optical surface for transmission, and finally transmitted through the second and first optical curved surfaces of the first optical prism to reach the exit pupil of the system.
  • the first optically curved prism comprises a plurality of optically free-formed surfaces, wherein: the light is incident on the optical surface at least once, and the space surrounded by the three optical surfaces is a glass having a refractive index greater than 1.4.
  • the resin optical material is filled; the optical curved surface may be a spherical surface, an aspherical surface or a free curved surface; the light emitted by the first microdisplay is transmitted through the third optical curved surface into the first optical curved prism, and is reflected by the second optical surface to the first optical surface Passing through the first optical surface into the system.
  • the second optical curved prism comprises three optically free-form surfaces, wherein: the light is reflected at least once on the optical surface, and the space surrounded by the three optical surfaces is made of glass having a refractive index greater than 1.4.
  • the resin optical material is filled; the optical surface may be a spherical surface, an aspherical surface or a free curved surface; the light emitted by the second microdisplay enters the second optical curved prism via the third optical curved surface, and is reflected by the first optical surface to the second optical surface. And reflecting again to reach the first optical surface transmission, and finally passing through the second and first optical curved surfaces of the first optical prism to reach the exit pupil of the system.
  • the first optically curved prism comprises a plurality of optically free-formed surfaces, wherein: the light is incident on the optical surface at least once, and the space surrounded by the three optical surfaces is a glass having a refractive index greater than 1.4.
  • the resin optical material is filled; the optical curved surface may be a spherical surface, an aspherical surface or a free curved surface; the light emitted by the first microdisplay is transmitted through the third optical curved surface into the first optical curved prism, and is reflected by the second optical surface to the first optical surface Passing through the first optical surface into the system.
  • the second optical curved prism comprises three optically free-form surfaces, wherein: the light is reflected at least once on the optical surface, and the space surrounded by the three optical surfaces is made of glass having a refractive index greater than 1.4. Or a resin optical material filling; the optical curved surface may be a spherical surface, an aspherical surface or a free curved surface; the light emitted by the second microdisplay enters the second optical curved prism via the third optical curved surface, and is reflected by the second optical surface to the first optical surface, The second and first optical curved surfaces of the first optical curved prism are sequentially transmitted to reach the exit pupil of the system.
  • the oblique optical path is a non-right angle optical path.
  • the present invention provides a near-eye display method comprising optically coupling a projection optical system including an optical freeform surface to a waveguide optical element by a tilting optical path, a waveguide optical element.
  • a projection optical system including an optical freeform surface to a waveguide optical element by a tilting optical path, a waveguide optical element.
  • the use of the free-form surface in two directions does not coincide with the position of the exit, making the display device smaller in size.
  • waveguide optics The components make the optics in front of the eyes very thin.
  • FIG. 1 is a schematic structural view of a conventional planar waveguide display system
  • FIG. 2 is a schematic diagram of an internal optical path of a waveguide of a conventional planar waveguide display system
  • Figure 3 is a structural view of a free-form surface projection optical system
  • FIG. 4 is a schematic diagram of an embodiment of a planar waveguide display system
  • Figure 5 is a schematic diagram showing the relative relationship between the exit and exit of the projection system
  • FIG. 6 is a schematic diagram of an internal optical path of a waveguide in one embodiment
  • Figure 7 is a plan view of light propagation inside the waveguide
  • FIG. 8 is a schematic view showing the optical path structure of a free-form curved waveguide helmet according to an embodiment
  • Figure 9 depicts the relationship between the light extraction efficiency of each half mirror and its reflectance
  • Figure 10 is a prior art optical system focal plane mode
  • FIG. 11 is a composite view of an optical system according to Embodiment 1 of the present invention.
  • FIG. 13 is a composite view of an optical system according to Embodiment 3 of the present invention.
  • Figure 14 is a composite view of an optical system according to a fourth embodiment of the present invention.
  • the traditional spherical optical technology is difficult to realize the optical perspective function. Even if the perspective function is realized, the system has a large and bulky system, a small field of view, and a low resolution.
  • the field of view is limited by the thickness of the lens. Generally, the larger the field of view, the greater the thickness of the optical system.
  • One of the embodiments of the present invention adopts a free-form surface optical technology to realize a design of a catadioptric and off-axis structure.
  • An optical see-through helmet display system with a large field of view and a lightweight structure.
  • the thickness of the portion at the front of the eye may still be limited by the structure, generally above 1 cm.
  • Another embodiment employs a waveguide technique that reduces the thickness of the optical element located in the front portion of the eye to a few millimeters, realizing an optical see-through function.
  • the waveguide element does not produce a power, and the utilization of the virtual imaging portion is low, and the projection optical system needs to generate projection amplification, and a reasonable coupling between the two needs to be achieved.
  • Conventional waveguide components may also require an illumination light engine to produce a high-brightness display image when used in a helmet display system.
  • the volumetric weight of the projection system and the light engine is large, and the overall size and weight of the helmet display system are also affected.
  • conventional waveguide components may have problems such as small field of view and stray light interference when used in a helmet display system.
  • the coupling end of a conventional waveguide optical element employs a tilting mirror, which tends to cause large stray light where the mirror meets the front and rear surfaces of the waveguide.
  • the conventional waveguide optical element has high requirements for the adjustment accuracy of the system and the exit pupil diameter of the projection optical system.
  • the traditional coupling method also limits the overall size of the display system. This is because the projection system is located directly in front of or behind the waveguide and needs to be folded by means of a mirror.
  • Figure 1 is a schematic view showing the structure of a conventional planar waveguide display system.
  • the waveguide element is composed of a plane mirror coupling end and a plane mirror coupling end.
  • the light emitted by the micro display 4 is collimated by the projection optical system 6 and then transmitted through the front surface of the waveguide plate, and then passed through the mirror of the coupling end. 8 propagates within the waveguide and is incident directly onto the coupling end 12, and the light is reflected off the waveguide through the front end surface and propagates to the human eye 14 via the coupling end.
  • This is the prototype of the waveguide helmet display system, but since there is only one mirror at the coupling end, the light is reflected directly from the coupling end to the coupling end.
  • the field of view and thickness of the waveguide optical element are greatly limited, and the viewing angle is increased, and the thickness T of the waveguide element is greatly increased.
  • the maximum field of view allowed in the slab waveguide is:
  • T is the thickness of the slab waveguide
  • w is the exit pupil diameter of the waveguide optical system
  • / is the two reflective surfaces the distance between.
  • V is the refractive index of the flat glass, usually between 1.5 and 1.6. Since the diameter of the pupil of the human eye is 2-6 mm, and in order to adjust the movement of the eye, the minimum acceptable diameter of the exit pupil diameter of the planar waveguide system is about 8 mm. For most people's heads, / between 40-60mm. Therefore, even if the angle of view is only 8°, the thickness of the flat glass required by the system is as high as 12 mm.
  • FIG. 2 is a schematic diagram of an internal optical path of a waveguide of a conventional planar waveguide display system.
  • the geometric waveguide form of the multi-reflection surface coupled output shown in Fig. 2 is used.
  • the output coupling portion uses a series of half-reverse half lens combinations to solve the limitation of the field of view along the direction of light propagation.
  • the reflective surface of the coupled input is illuminated by the light source from the collimated image source, which couples the incident light into the waveguide to ensure that the light is confined within the waveguide and totally reflected inside the flat glass. After several reflections, the light reaches the transflective surface of the coupled output. On the semi-trans-transverse surface, a portion of the light is reflected off the waveguide into the human eye, and a portion of the light transmission continues to propagate to the next semi-reverse half lens.
  • the maximum field angle that this structure can tolerate is:
  • the coupling plane inclination angle is 30°, and the field of view angles are 15° and 30°, respectively, the required flat glass thickness is only 5.3 mm and 8.2 mm, respectively, compared to the structure of the initial single reflection coupling output.
  • the thickness of the flat plate has been greatly improved.
  • v is the waveguide refractive index, usually 1.5-1.6, / is the distance between the coupled input center axis and the coupled output center axis, which is approximately 40 - 60mm, 1) is the range of the input beam in the vertical direction of the waveguide.
  • S z 6.8 mm, which requires an incident beam length to width ratio of 6. This requires that the numerical aperture of the collimating optical system is very large and cannot be made into a compact portable system.
  • Figure 3 is a structural view of a free-form surface projection optical system; a transmissive imaging optical system that can be used for augmented reality.
  • the light emitted by the microdisplay 5 in Fig. 3 is transmitted through the optical surface 4 of the free-form prism, and is totally reflected on the optical surface 2 onto the concave reflecting surface 3, reflected by the reflecting surface 3 and transmitted through the optical surface 2 into the observer's eye.
  • the internal channel optical path structure does not change, and the optical surface 3 adopts a transflective structure.
  • the optical surface 3 adopts a transflective structure.
  • FIG. 4 is a schematic diagram of an embodiment of a planar waveguide display system; including a waveguide optical component and a projection optical system.
  • the projection optical system further includes an illumination light engine system, and the conventional projection system uses a spherical lens or a common aspheric lens.
  • the huge projection system makes the waveguide helmet system structure difficult to reduce in size and weight.
  • FIG. 5 is a schematic diagram of the relative relationship between the exit pupil and the entrance pupil of the projection system; if the exit pupils of the projection system are the same in both directions and are located at the coupling end of the waveguide optical component, the exit position of the system, and the exit pupil direction The light in each field of view in the vertical direction will be separated, causing the human eye to not see the complete image at the same time. If the exit pupil perpendicular to the exit pupil direction is at the entrance position of the waveguide optics, the exit position of the system will form a coincident and extended exit pupil.
  • the exit pupil of the projection optics needs to be properly matched to the input of the waveguide optics, thus effectively eliminating some unnecessary stray light. For this reason, in order to eliminate stray light generated at the coupling end of the waveguide optical element, it is necessary to properly match the exit pupil of the projection optical system and the entrance and exit of the waveguide optical element.
  • FIG. 6 is a schematic diagram of an internal optical path of a waveguide in one embodiment; the entrance pupil of the waveguide optical element may be composed of a triangular prism, wherein an optical surface coincides with a plane of the waveguide optical element, and the light is directly transmitted and coupled into the waveguide optical element through a slope of the prism. Without reflection, the stray light that may be generated by the conventional waveguide optics at the coupling end is reduced.
  • the projection system will be implemented by a free-form optical system.
  • Figure 7 is a view of the light propagation inside the projection optical system; including a three-dimensional view, a top view (XZ) and a side view (YZ). It can be seen from the figure that the exit pupil position of the free-form surface projection system in two directions does not coincide, and the exit pupil distance in the XZ plane is larger than the projection distance in the YZ plane.
  • Fig. 8 is a schematic view showing the structure of the free-form waveguide helmet optical path of one embodiment; using the waveguide optical element shown in Fig. 6 and the free-form surface projection optical system shown in Fig. 7. Due to the use of free-form surfaces, the projection system is simplified to the utmost, and the large projection system is compact and lightweight, and the entire system is compact and lightweight.
  • Figure 9 depicts the relationship between the light extraction efficiency of each half mirror and its reflectance.
  • the surface of each spectroscope may be plated with the same film system.
  • Each curve in the figure shows a ray plot of the coupling out efficiency and transmittance of the mirror coupled at different locations. Therefore, the reflectivity of each of the spectroscopic film layers cannot be too high, otherwise the coupling light energy of the spectroscope located at the coupling end of the principle waveguide is too low, resulting in a large difference in brightness of the overall image, affecting the overall sense and viewing effect of the image.
  • the formula for the coupling of light energy is:
  • T is the transmittance of the beam splitter and i is the i-th beam splitter.
  • the transmittance of each beam splitter is preferably between 0.65 and 0.85.
  • One of the embodiments of the present invention provides a free-form prismatic head-mounted display that can achieve a large field of view with or without stray light and a relatively high utilization of light energy.
  • Another embodiment of the present invention uses a new coupling method to further fold the system for a more compact display system. With a slanted light path, the thickness of the system is greatly reduced.
  • the coupling member can also be used for a grating or the like.
  • one of the embodiments of the present invention adopts the free-form surface technology and the waveguide technology to fully promote and exert their respective advantages, and reduce the volume and weight of the helmet display system. .
  • the waveguide near-eye display system provided by one of the embodiments of the present invention is particularly suitable for outdoor and mobile augmented reality display systems.
  • the development of the helmet display optical system has evolved from a coaxial rotationally symmetric transmissive structure to a catadioptric structure.
  • the helmet display technology uses off-axis refractive structure, free-form surface, holographic / diffraction and waveguide technology.
  • the helmet display has a small field of view and volume. And the disadvantage of heavy weight.
  • the combination of the free-form surface optical technology and the waveguide optical technology described in the following embodiments overcomes the deficiencies of the conventional helmet display, reduces the volume and weight of the near-eye helmet display device, increases the field of view, and reduces stray light.
  • the coordinate system can be defined as a right-handed coordinate system, for example: horizontally to the right is the Z-axis direction, vertical Z-axis is the Y-axis direction, and vertical Y0Z plane paper is facing the X-axis direction. From the light source, the light passes through the illumination light engine, the free-form surface projection system, and the planar waveguide to reach the human eye.
  • optical path can include internal channels and external channels for observing the outside world.
  • the freeform projection optical system includes a freeform prism and an illumination light.
  • the light engine consists of a light source, a polarizing beam splitter (PBS), a mirror, and a 1/4 slide for high light energy utilization and uniform illumination on the image source.
  • the free-form surface prism includes at least one free-form surface, such as a plurality of free-form surfaces or aspheric surfaces, and the optical path mode of the deflected reflection miniaturizes the projection system.
  • the planar waveguide optical element includes a series of transflective prisms including a coupling portion and a coupling portion.
  • the coupling portion may include a right-angle prism and a flat plate, and the coupling-out portion may include a plurality of half-reflex lens arrays bonded together.
  • Projection optics include free-form prisms, illumination lights, and microdisplays.
  • the illumination engine can evenly illuminate the source onto the image source.
  • the illuminated image can be further collimated by a free-form prism optic, and a pupil is formed in two perpendicular directions at the exit end of the free-form prism.
  • the near exit pupil and the coupling end of the planar waveguide optical component substantially coincide, and the far exit pupil substantially coincides with the exit pupil of the planar waveguide optical component.
  • the parallel beams collimated by the projection optics can be incident on the input prism in a particular manner and coupled into the waveguide.
  • the incident angle of the beam on the front and rear surfaces of the slab waveguide is greater than the corresponding critical angle, and the total reflection between the front and back surfaces is propagated for a distance in the waveguide, and then outputted from the coupling end of the planar waveguide, for example, coupled to the air, and finally Spread to the human eye.
  • the mutual promotion of the waveguide and the free-form surface can reduce the exit pupil diameter of the free-form surface, for example, from 6-8 mm to 3-4 mm; the free-form sagittal direction can be expanded; Reduce the exit distance of the freeform prism.
  • the promotion of the freeform surface to the overall system may include: It is more compact and has a smaller weight; and the stray light is small, for example, the coupling end does not generate or substantially does not generate stray light.
  • the light from the LED light source is reflected by the PBS beam splitter. After passing through the 1/4 slide, its polarization state is rotated by 45 degrees. After reflection by the mirror, it passes through the 1/4 slide again, and the polarization state is rotated again by 45 degrees. From the previous P light to the s light, it is incident on the PBS beam splitter. It passes through the PBS beam splitter to the LC0S display chip. After illuminating the LC0S, the light is reflected to the PBS beam splitter. The LC0S changes the polarization of the light by 90 degrees. At this point the light is reflected on the PBS and enters the free-form prism projection system. The free-form prism projection system magnifies its collimation and couples it into the waveguide optics through the exit pupil. The light propagates further through the waveguide and eventually passes through the coupling part to the human eye.
  • Table A lists 10 sets of preferred waveguide structure parameters, Theta is the angle between the half-reverse half-lens and the waveguide plane, d is the thickness of the waveguide optical element, HI is the distance of the coupling end from the coupling end, and index is the waveguide optics.
  • the refractive index of the material of the component PV lists the PV value of the ratio of stray light to useful light, AVE is the average value, RMS is the root mean square value, EPDY is the exit pupil diameter in the Y direction of the system, and the above is the parameter for the exit pupil distance of 20 mm. Table A: Examples, preferred waveguide structure parameters
  • One embodiment of the present invention provides a true stereoscopic monocular bifocal helmet display device including a first optical curved prism and a second optical curved prism.
  • the optical surface may be in the form of a spherical surface, an aspheric surface or a free curved surface.
  • Each prism includes a first optical surface, a second optical surface, and a third optical surface, and the first optical curved surface
  • the mirror and the second optical curved prism have a pair of identical curved surfaces, wherein the curved surface of the first optical curved surface is coated with a semi-transparent semi-permeable membrane, and then the first optical curved prism and the second optical curved prism glue are integrated;
  • the display unit includes a first micro display and a second micro display.
  • the first optical curved prism and the first microdisplay constitute a first display focal plane
  • the second optical curved prism and the second microdisplay constitute a second display focal plane.
  • the first and second display focal planes each produce an observation screen that is closer and farther from the human eye, or respectively produce an observation screen that is farther and closer to the human eye, respectively, depending on the depth of the object in the scene when rendering the image
  • a depth filter is applied to the image on the two microdisplays to produce an observation image with a true stereoscopic effect.
  • the monocular double focal plane helmet display device is compact in structure and light in weight.
  • a stereoscopic helmet display conforming to the natural vision of the human eye which solves or improves the problem of inconsistency of focusing and convergence in the conventional stereoscopic helmet display, improves comfort, and effectively alleviates visual fatigue.
  • Embodiments of the present invention provide an optical system for a free-form prism type head-mounted display, particularly an optical system for a compact bifocal head-mounted display having a real stereoscopic display effect.
  • Factors that produce three-dimensional vision of the human eye include: the size of the object, the clarity of the object, and the parallax of the object to both eyes.
  • the convergence and convergence of the human eye are related to each other to give people a sense of depth.
  • the focus and convergence information provided by conventional binocular head-mounted displays is inconsistent. Because the light is emitted from a single focal plane, the human eye needs to focus on a fixed focal plane in order to see the object.
  • the stereoscopic image has a certain depth, that is, before and after the focal plane. The stronger the stereoscopic effect, the greater the difference between focus and convergence. This causes the convergence of the human eye to be inconsistent with the convergence, which is likely to cause eye fatigue in the user.
  • some solutions include a helmet display with a zoom surface and a helmet display with a multi-focal surface.
  • the main solutions for the zoom face helmet display can be divided into two categories: changing the image plane position or changing the optical system position.
  • Multi-focal face helmet display solutions can be divided into time-division multiplexed and spatially multiplexed helmet display solutions.
  • the spatial multiplexing method is to place a stacked microdisplay in front of the visual optical component to generate depth information by displaying images of different depths on different microdisplays.
  • the rear image needs to pass through several microdisplays, the brightness of the image cannot be guaranteed.
  • the spectroscope is used to realize the integration of multiple optical paths, so that the system includes multiple focal planes, and the depth information generated by each focal plane is different.
  • a system is bulky and cumbersome, which is disadvantageous for achieving small size and light weight, and is disadvantageous for wearing on the head, as shown in FIG.
  • the time-division multiplexed multi-focus face helmet display uses a liquid lens, a deformable mirror or a birefringent lens to adjust the power of the system, thereby changing the viewing distance of the system under different time conditions.
  • Such systems for microdisplays and these key optical elements The refresh rate of the parts has higher requirements. If more focal planes need to be built, there is a higher requirement for the lowest refresh rate in the optical system.
  • One of the embodiments of the present invention utilizes a spatial multiplexing multi-focal plane technique and a free-form surface optical technique to realize a compact and lightweight double focal plane helmet display technology.
  • the user can observe the stereoscopic image only through the monocular visual optical system, and conforms to the natural vision of the human eye.
  • the compact and lightweight free-form bifocal monocular helmet display optical system is also suitable for wearing on the user's head, and the stereoscopic display effect conforms to the natural visual characteristics of the human eye, which is beneficial to alleviating the visual fatigue caused by the traditional stereo helmet display. .
  • the optical system of one of the embodiments employs a reverse optical path design, i.e., the light travels from the eye to the microdisplay.
  • the ray tracing direction passes from the exit position through the optical system to the microdisplay.
  • a spherical surface and an aspheric surface are used to describe the surface shape of the surface, which can be described by a toric XY polynomial surface (AXYP).
  • AXYP toric XY polynomial surface
  • sph represents the surface as a spherical surface
  • asp represents the surface as an aspheric surface. The default is the AXYP surface.
  • the aspheric equation can be expressed as:
  • c is the vertex radius of curvature of the curved surface
  • k is the coefficient of quadratic surface
  • A, B, C, D are aspheric 4 th, 6 th, 8 th , 10 th aspheric coefficient.
  • a AS Anamorphic Aspherical Surface
  • a deformed aspheric surface can also be called a toric surface, which has a radius of curvature in two directions and can be different.
  • the surface is a plane-symmetric surface with two symmetry planes that are symmetric about the yoz and xoz planes. The advantage is that it is easy to control during optimization, and the optimization convergence speed is fast.
  • the deformed aspheric surface can be described by the equation as:
  • c x is the radius of curvature in the X direction of the surface xz plane, (the radius of curvature of the surface in the Y direction in the YZ plane, ⁇ ⁇ is the quadratic curve of the surface X direction, and K y is the quadratic curve of the surface ⁇ direction
  • the coefficient, 1 is the aspherical coefficient of 4, 6, 8, 10, -2n, about the Z-axis rotational symmetry
  • Pi is 4, 6, 8, 10, a 2n-order non-rotational symmetry coefficient.
  • c is the radius of curvature of the vertex of the surface in the meridional direction and the sagittal direction
  • k x , ⁇ are the quadric coefficients of the meridional and sagittal directions, respectively
  • ( ) is the coefficient of the polynomial ⁇ "
  • 7 is the highest of the polynomial
  • the structure of the bifocal monocular stereoscopic helmet display device is as shown in Fig. 11, comprising two optical curved prisms and two microdisplays, respectively forming two observation planes having different depths.
  • Appropriate light intensity filters are applied when rendering the image of the microdisplay, so that the user perceives that the image being viewed is located between screens 109 and 110, i.e., produces a stereoscopic display with a certain depth.
  • the optical path formation method of the optical system including the first focal plane may be:
  • the optical path of the first focal plane may include optical curved surfaces 101, 102, and 103, and the cavity formed therein may be filled with glass or other material.
  • light rays are incident on the optical curved surface from the front surface of the optical curved surface 101 from the human eye located at the exit pupil and transmitted to the optical curved surface 102. Due to The optical curved surface 102 is plated with a semi-transparent film, and the light is split into two beams here. After a beam is reflected and incident on the surface from the rear of the optical surface 101 again, the light is totally reflected and then incident on the optical curved surface 103 and finally transmitted away from the wedge prism to reach the microdisplay 106.
  • Table 1 lists the eccentricity and tilt data for each optical surface of the focal plane generating optical path.
  • Table 3 lists the parameter data for all surfaces in one embodiment.
  • Table 1 The eccentric tilt angle of each optical surface of the first focal plane optical path in the first embodiment
  • the optical path formation method of the optical system including the second focal plane may be:
  • the optical path of the second viewing screen may include optical curved surfaces 101, 102, 104, and 105.
  • the light is transmitted from the human eye, transmitted through the optical curved surface 101, and transmitted to the optical curved surface 102 to be transmitted again. After being incident on the optical curved surface 104, reflection occurs, and after reflection, The light is transmitted through the optical curved surface 105 and reaches the second image surface 107.
  • the observation screen corresponding to the image plane 107 is located at 109.
  • Table 2 lists the eccentricity and inclination data for each optical surface of the focal plane-generated optical path. Table 2 Example 1 eccentric tilt angle of each optical surface of the second focal plane optical path
  • the structure of the bifocal monocular stereoscopic helmet display device is as shown in Fig. 12, comprising two optical curved prisms and two microdisplays, respectively forming two observation planes having different depths.
  • the optical path formation method of the optical system including the first focal plane may be:
  • the optical path of the first focal plane may include optical curved surfaces 201, 202, and 203, and the cavity formed therein may be filled with glass or other material.
  • the light is incident from the human eye located at the exit pupil onto the optical curved surface from the front surface of the optical curved surface 201 and transmitted to the optical curved surface 202. Since the 202 is plated with a semi-transparent film, the light is split into two beams here. After a beam is reflected and incident on the surface from the rear of the optical surface 201 again, the light is totally reflected and then incident on the optical curved surface 203 and finally transmitted away from the wedge prism to the microdisplay 206.
  • the viewing screen corresponding to the microdisplay 207 is located at 210.
  • Table 4 lists the eccentricity and tilt data for each optical surface of the focal plane generation path.
  • Table 6 lists the parameter data of all the surfaces in the second embodiment.
  • the optical path formation method of the optical system including the second focal plane may be:
  • the optical path of the second viewing screen may include optical curved surfaces 201, 202, 204, and 205.
  • the light rays are transmitted from the human eye, transmitted through the optical curved surface 201, and transmitted to the optical curved surface 202 to be transmitted again, and incident on the optical curved surface 204 to be reflected.
  • the reflected light is again reflected by the optical curved surface 202 and reaches the optical curved surface 205 for transmission, and finally reaches the microdisplay 207, and the viewing screen corresponding to the microdisplay 207 is located at 209.
  • Table 5 lists the eccentricity and tilt data for each optical surface of the focal plane generation path.
  • Table 4 Example 2 Eccentric tilt angle of each optical surface of the first focal plane optical path Surface number Y direction eccentricity Z direction eccentricity X-axis tilt
  • the structure of the bifocal monocular stereoscopic helmet display device is as shown in Fig. 13, comprising two optical curved prisms and two microdisplays, respectively forming two observation planes having different depths.
  • the optical path formation method of the optical system including the first focal plane may be:
  • the optical path of the first focal plane may include optical curved surfaces 301, 302, and 303, and the cavities formed therein may be filled with glass or other materials.
  • the light is emitted from the exit pupil, is incident on the optical curved surface from the front surface of the optical curved surface 301, and transmits to the optical curved surface 302. Since 302 is plated with a transflective film, the light is split into two beams here, and a beam is reflected and incident on the optical curved surface 303 and finally transmitted away from the wedge prism to reach the microdisplay 306.
  • An observation screen corresponding to the microdisplay 306 is located at 308.
  • Table 7 lists the eccentricity and tilt data for each optical surface of the focal plane generating optical path.
  • Table 9 and Table 10 list the parameter data of all the surfaces in the third embodiment.
  • the optical path formation method of the optical system including the second focal plane may be:
  • the optical path of the second viewing screen may include optical curved surfaces 301, 302, 304, and 305.
  • the light is emitted from the human eye, transmitted through the optical curved surface 301, and transmitted to the optical curved surface 302 to be transmitted again, and incident on the optical curved surface 304 to be reflected.
  • the reflected light is again reflected by the optical curved surface 302 and transmitted to the optical curved surface 305 for transmission to the microdisplay 307, and the viewing screen corresponding to the microdisplay 307 is located at 309.
  • Table 8 lists the eccentricity and tilt data for each optical surface of the focal plane generation path.
  • Table 7 Example 3 The eccentric tilt angle of each optical surface of the first focal plane optical path
  • the structure of the bifocal monocular stereo helmet display device is as shown in FIG. 14, comprising two optical curved prisms and two microdisplays, respectively forming two Observation planes with different depths.
  • the optical path formation method of the optical system including the first focal plane may be:
  • the optical path of the first focal plane may include optical curved surfaces 401, 402, and 403, and the cavity formed therein may be Filled with glass or other materials.
  • the light rays are located at the exit pupil, are incident on the optical curved surface from the front surface of the optical curved surface 401, and transmit to the optical curved surface 402. Since 402 is plated with a transflective film, the light is split into two beams here, and a beam is reflected and incident on the optical curved surface 403 and finally transmitted away from the wedge prism to reach the microdisplay 406.
  • An observation screen corresponding to the microdisplay 406 is located at 408.
  • Table 11 lists the eccentricity and tilt data for each optical surface of the focal plane generating optical path.
  • Table 13 and Table 14 list the parameter data of the surface in the fourth embodiment.
  • the optical path formation method of the optical system including the second focal plane may be:
  • the optical path of the second viewing screen may include optical curved surfaces 401, 402, 404, and 405.
  • the light is emitted from the human eye, transmitted through the optical curved surface 401, and incident on the optical curved surface 402 to be transmitted again, and is incident on the optical curved surface 404 and reflected.
  • the reflected light is transmitted through the optical curved surface 405 and reaches the second image plane 407.
  • the observation screen corresponding to the image plane 407 is located at 409. Table 12 lists the eccentricity and tilt data for each optical surface of the focal plane-generated optical path.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)

Abstract

一种显示装置,包括平面波导光学元件、投影光学系统和微型显示器件(5)。通过在显示装置中使用自由曲面光学器件和波导器件,降低了头盔显示系统的体积,优化了光学系统的像质、结构和技术参数。可以应用于增强现实和虚拟现实技术领域。

Description

显示装置和系统及其显示方法
本申请部分要求于 2011 年 12 月 6 日提交中国专利局、 申请号为 201110404197. 发明名称为 "自由曲面双焦面单目立体头盔显示器装置" 的中国 专利申请的优先权。
技术领域
本发明涉及一种显示装置, 系统, 及方法, 并且具体地涉及一种近眼显示装置。
背景技术
显示装置是人机交互界面的重要部分。 近眼显示装置例如头盔式显示器是近年 来显示领域的热门产品。 用于虚拟现实和增强显示的头盔图像显示装置取得了长足 的发展。 头盔显示器可以由三个部分构成: 显示像源、 光学系统和支撑结构。 由于 头盔显示器可能长时间佩戴在用户头部, 因此重量和紧凑性是影响舒适性的重要因 素。
发明内容
在一方面, 本发明提供一种显示装置, 包括: 一个波导光学元件; 一个包含有 光学自由曲面的投影光学系统; 以及一个微型显示器件; 其中所述投影光学系统以 倾斜光路与所述波导光学元件光耦合。
在一些实施例中, 所述的波导光学元件为平面波导光学元件, 包括: 一个直角 棱镜耦入端; 半反半透镜阵列耦出端; 波导参数包括: 平板厚度 d; 半反半透镜与平面 的夹角 耦入端与耦出端距离 hi ; 半反半透镜间距离 h2; 玻璃介质折射率 n; 波导特征包括: 半反半透镜阵列相互平行; 夹角^应该满足条件20°≤6>≤40°; 半反 半透镜间距 h2满足条件 h2 = d/tan(^); 折射率 n满足条件 1.4≤ «≤ 1.8; 厚度 d满足 条件 1.4≤i ≤ 3.6mm。
在一些实施例中, 所述平面波导光学元件耦出端至少包含 2 个平行半反半透 镜。
在一些实施例中, 所述平面波导光学元件耦入端包括一个反射镜或者一个三角 棱镜。
在一些实施例中, 所述的投影光学系统包括一个照明光擎系统和一个自由曲面 棱镜成像系统。
在一些实施例中, 所述的投影光学系统包括至少含有一个光学自由曲面的棱 镜。
在一些实施例中, 所述自由曲面棱镜包括至少 3个自由曲面, 其特征在于两个 垂直方向的出瞳位置可以不重合; 并且厚度小于 5mm, 宽度小于 10mm。
在一些实施例中, 所述投影系统短出瞳与所述的波导耦入端基本重合, 长出瞳 与波导光学元件的出瞳基本重合。
在一些实施例中, 所述所述照明光擎系统包括一个 PBS 分光镜, 一个 1/4波 片, 一个反射镜和一个 LED光源。
在一些实施例中, 所述所述平面波导元件耦入端由反射镜构成时, 其与如所述 的自由曲面棱镜的出瞳基本耦合时满足如下条件以消除杂光:
0≤ ^优选值等于
Figure imgf000003_0001
tan Θ. + tan Θ. tan ω ' tan θ
Dexd = 2d x—— y- ex 1 + tan Θ tan θ{ 其中, 为光线在波导前后表面上的入射角。 ^为光瞳拓展方向最大视场 角。 为光瞳拓展方向最大视场光线入射到波导后的折射角。
在另一方面, 本发明提供一种近眼显示系统, 包括所述的显示装置, 其中所述 微型显示器件包括: 第一微型显示器和第二微型显示器, 分别用于显示一幅距离人 眼较近和较远的观察图像, 或分别用于显示一幅距离人眼较远和较近的观察图像, 其中两幅显示图像与人眼的距离不同, 但是它们覆盖的视场区域基本相同, 第一幅 图像侧重于渲染三维场景中深度较近的物体, 第二幅图像侧重于渲染三维场景中深 度较远的物体; 其中所述投影光学系统包括: 第一光学曲面棱镜, 用于将第一微显 示器上显示的图像放大和成像到距离人眼较近的距离; 第二光学曲面棱镜, 用于将 第二微显示器上显示的图像放大和成像到距离人眼较远的距离; 第一光学曲面棱镜 和第二光学曲面棱镜中有一对面形参数数值相同但是符号相反的曲面, 即第一光学 曲面棱镜的第二光学表面和第二光学曲面棱镜的第一光学表面, 通过这两个曲面的 胶合实现两个棱镜的无缝连接, 该表面镀有半反半透膜, 以实现两个焦面图像的融 合。
在一些实施例中, 所述第一光学曲面棱镜包含三个光学自由曲面, 其特征在 于: 光线至少在光学曲面上发生一次反射, 第二光学曲面为凹形反射面, 三个光学 表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充; 光学曲面可以是球 面、 非球面、 自由曲面, 或复曲率 XY多项式曲面; 第一微型显示器发出的光线经由 第三光学曲面进入第一光学曲面棱镜, 经过第一光学表面反射到第二光学表面, 经 过第二光学表面反射后再次经过第一光学表面透射进入人眼。
在一些实施例中, 所述第二光学曲面棱镜包含三个光学自由曲面, 其特征在 于: 光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充; 光学曲面可以是球面、 非球面、 自由曲面, 或复 曲率 XY多项式曲面; 第二微型显示器发出的光线经由第三光学曲面进入第二光学曲 面棱镜, 经过第二光学表面反射到第一光学表面, 依次通过第一光学棱镜的第二和 第一光学曲面透射后到达系统的出瞳。
在一些实施例中, 所述第一光学曲面棱镜包含三个光学自由曲面, 其特征在 于: 光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充; 光学曲面可以是球面、 非球面、 自由曲面, 或复 曲率 XY多项式曲面; 第一微型显示器发出的光线经由第三光学曲面进入第一光学曲 面棱镜, 经过第一光学表面反射到第二光学表面, 经过第二光学表面反射后再次经 过第一光学表面透射进入人眼。
在一些实施例中, 所述第二光学曲面棱镜包含三个光学自由曲面, 其特征在 于: 光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充; 光学曲面可以是球面、 非球面、 自由曲面, 或复 曲率 XY多项式曲面; 第二微型显示器发出的光线经由第三光学曲面进入第二光学曲 面棱镜, 经过第一光学表面反射到第二光学表面, 并再次反射到达第一光学表面透 射, 最后依次通过第一光学棱镜的第二和第一光学曲面透射后到达系统的出瞳。
在一些实施例中, 所述第一光学曲面棱镜包含三个光学自由曲面, 其特征在 于: 光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充; 光学曲面可以是球面、 非球面或是自由曲面; 第 一微型显示器发出的光线经由第三光学曲面透射进入第一光学曲面棱镜, 经过第二 光学表面反射到第一光学表面, 经过第一光学表面透射进入系统出瞳。
在一些实施例中, 所述第二光学曲面棱镜包含三个光学自由曲面, 其特征在 于: 光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充; 光学曲面可以是球面、 非球面或是自由曲面; 第 二微型显示器发出的光线经由第三光学曲面进入第二光学曲面棱镜, 经过第一光学 表面反射到第二光学表面, 并再次反射到达第一光学表面透射, 最后依次通过第一 光学棱镜的第二和第一光学曲面透射后到达系统的出瞳。
在一些实施例中, 所述第一光学曲面棱镜包含三个光学自由曲面, 其特征在 于: 光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充; 光学曲面可以是球面、 非球面或是自由曲面; 第 一微型显示器发出的光线经由第三光学曲面透射进入第一光学曲面棱镜, 经过第二 光学表面反射到第一光学表面, 经过第一光学表面透射进入系统出瞳。
在一些实施例中, 所述第二光学曲面棱镜包含三个光学自由曲面, 其特征在 于: 光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充; 光学曲面可以是球面、 非球面或是自由曲面; 第 二微型显示器发出的光线经由第三光学曲面进入第二光学曲面棱镜, 经过第二光学 表面反射到第一光学表面, 依次通过第一光学曲面棱镜的第二和第一光学曲面透射 后到达系统的出瞳。
在一些实施例中, 所述的倾斜光路为非直角光路。
在另一方面, 本发明提供一种近眼显示方法, 包括以倾斜光路将一个包含有 光学自由曲面的投影光学系统与波导光学元件光耦合一个波导光学元件。 利用自由 曲面的两个方向出瞳位置不重合的特点, 使得显示装置尺寸更小。 同时, 波导光学 元件将位于眼前的光学元件做到很薄。
本发明的各种特征在以下对本发明不同示范性实施例的详细说明中予以介绍或者 据此而变得显而易见。
说明书附图
图 1是一种传统平面波导显示系统结构示意图;
图 2是传统平面波导显示系统波导内部光路示意图;
图 3是一种自由曲面投影光学系统结构图;
图 4是一种平面波导显示系统实施例示意图;
图 5是投影系统出瞳与入瞳之间的相对关系示意图;
图 6是实施例之一中波导内部光路示意图;
图 7是波导内部光线传播俯视图;
图 8是实施例之一的自由曲面波导头盔光路结构示意图;
图 9描述每个半反镜的出光效率和其反射率之间的关系;
图 10为现有技术的光学系统分焦面方式;
图 11为本发明实施例一的光学系统合成图;
图 12为本发明实施例二的光学系统合成图;
图 13为本发明实施例三的光学系统合成图;
图 14为本发明实施例四的光学系统合成图。
具体实施方式
以下的说明内容结合附图介绍了显示装置, 系统, 和方法的一些实施例。 在 可行时, 类似的附图标记被用于表示类似的部件。
传统的球面光学技术难以实现光学透视功能, 即使实现了透视功能, 也存在 系统体积庞大笨重、 视场小和分辨率低等不足。 视场受透镜厚度限制。 通常视场 越大, 光学系统厚度越大。
本发明的实施例之一采用自由曲面光学技术, 实现折反射和离轴结构设计, 能 够实现视场角大, 结构轻巧的光学透视头盔显示系统。 其位于眼前部分的厚度仍 有可能受到结构的限制, 一般在 lcm以上。 另一实施例采用了波导技术, 使位于眼 前部分的光学元件厚度降为几毫米, 实现了光学透视功能。 波导元件不产生光焦 度, 而且虚拟成像部分光能利用率较低, 需要由投影光学系统产生投影放大的作 用, 两者之间需要实现合理耦合。 传统的波导元件用于头盔显示系统时可能还需要 照明光擎产生高亮度的显示图像, 投影系统和光引擎的体积重量较大, 也影响头盔 显示系统整体的小型轻量化。 此外, 传统的波导元件用于头盔显示系统时还可能存 在视场小, 产生杂光干扰等问题。
例如, 传统波导光学元件的耦入端采用一个倾斜反射镜, 在反射镜与波导前后 表面交界的地方容易引起很大的杂散光。 为了消除这一部分杂散光, 需要准确地将 投影光学系统的出瞳与其入瞳进行匹配, 而且不能充分利用耦入端反射镜。 因此, 传统波导光学元件对系统的装调精度和投影光学系统的出瞳直径都有较高的要求。 此外, 传统的耦入方式也限制了显示系统整体体积小型化。 这是因为投影系统位于 波导的正前方或者正后方, 需要借助反射镜将其进行折叠。
图 1 是一种传统平面波导显示系统结构示意图。 其中波导元件由一个平面反射 镜耦入端和一个平面反射镜耦出端组成, 由微型显示器 4发出的光线经过投影光学系 统 6准直后透过波导平板前表面, 然后通过耦入端的反射镜 8在波导内传播, 直接入 射到耦出端 12上, 光线经由耦出端反射通过前表面离开波导并传播到人眼 14。 这是波 导头盔显示系统的雏形, 但是由于耦出端仅有一片反射镜, 且光线直接从耦入端反射 至耦出端。 使该波导光学元件的视场和厚度受到了很大的限制, 视场角增大, 波导元 件的厚度 T就会大幅增加。
尽管这种形式结构简单, 但是它有较多缺点, 其中最主要的一个缺点就是最大 视场受到了平板玻璃厚度的严重限制。
从图 , 平板波导中允许的最大视场角为:
Figure imgf000007_0001
其中, T是平板波导厚度, w是波导光学系统的出瞳直径, /是两个反射面 之间的距离。 当角度大于《max时, 光线在到达第二个反射面前会在平板波导的前后 表面上发生反射, 光线经过多余反射后产生杂光并产生鬼像。
因此, 这种结构型式能获得的最大视场角为:
丽 2mmax
其中, V为平板玻璃的的折射率, 通常在 1.5-1.6之间。 因为人眼瞳孔直径范 围是 2-6mm, 并且为了对眼部移动进行调节, 平面波导系统的出瞳直径的最小可 接受值大约为 8mm。 对于大多数人的头部, /介于 40-60mm之间。 因此, 即使视 场角仅为 8°, 系统所需要的平板玻璃的厚度高达 12mm。
图 2是传统平面波导显示系统波导内部光路示意图。 为了克服几何平面波导系 统中单反射面耦合输出对视场的限制, 采用了图 2所示的多反射面耦合输出的几何 波导形式。 在此结构中, 输出耦合部分使用一列半反半透镜组合, 从而解决了沿着 光传播方向对视场的限制。
耦合输入的反射面被准直后的像源发出的光波照明, 反射面将入射光耦合到波 导中, 保证光线被限制在波导内, 在平板玻璃内部发生全反射。 经过几次反射后, 光线到达耦合输出作用的半反半透面。 在半反半透面上, 一部分光反射离开波导进 入人眼, 一部分光线透射继续传播到达下一个半反半透镜。 此结构能允许的最大视 场角为:
T, NT tan a —d
FOV ¾ ― 从视场角公式知, 一列半反半透镜组成的耦合输出组件彻底克服了波导允许最 大视场较小的限制, 只要半反半透镜的数量足够大原则上可以无限扩大视场角, 但 是考虑到半反半透镜数量增加, 光多次透过半反半透镜后, 携带能量迅速降低, 一 般取 4-6片为宜。 当取 N=4, 耦合面倾角为 30°, 视场角分别为 15°和 30°时, 所需 要的平板玻璃厚度仅分别为 5.3mm和 8.2mm, 相比于最初单反射耦合输出的结 构, 平板厚度己经有很大改善。 考虑如波导的 X方向的视场。 X方向上的最大视场与半反半透镜的大小和数 量没有关系, 而是取决于光束在波导垂直方向的范围。 最大视场为
Figure imgf000009_0001
其中 v是波导折射率, 通常在 1.5-1.6, /是耦合输入中轴和耦合输出中轴之间的距 离, 大概是 40 - 60mm, 1)是输入光束在波导的垂直方向的范围。
如果在 X方向需要的视场是 30°, 用上面给出的参数, 光束在 X方向的宽度应 为 42mm, 水平方向的宽度由公式 Sz = rtan ( ;)给出, 因此, 光束在水平方向的 宽度为 Sz = 6.8mm, 这样要求入射光束长宽比为 6。 这样就要求准直光学系统的数 值孔径非常大, 而且不能做成结构紧凑的便携式系统。
图 3是一种自由曲面投影光学系统结构图; 可用于增强现实的透射式成像光学 系统。 图 3中微型显示器 5发出的光线经过自由曲面棱镜的光学表面 4透射, 在 光学表面 2上全反射到凹反射面 3上, 经反射面 3反射后透过光学表面 2进入观 察者眼球。 在增强现实透射式头盔中, 其内部通道光路结构没有发生变化, 光学 表面 3采用半反半透式结构, 外部光线入射到光学表面 3时光能量会损失 1/2, 部 分经过光学表面 3透射和光学表面 2透射进入观察者的瞳孔。
图 4是一种平面波导显示系统实施例示意图; 包括波导光学元件和投影光学系 统。 其中投影光学系统还包括照明光擎系统, 传统的投影系统为采用球面透镜或 者普通非球面透镜。 庞大的投影系统导致波导头盔系统结构难以小型轻量化。
图 5是投影系统出瞳与入瞳之间的相对关系示意图; 如果投影系统两个方向的出 瞳相同且位于波导光学元件的耦入端, 则在系统的出瞳位置, 与出瞳扩展方向垂直的 方向各视场的光线将会分离, 导致人眼无法同时看到完整的图像。 如果与出瞳扩展方 向垂直方向的出瞳在波导光学元件的入瞳位置, 则系统的出瞳位置将形成一个重合且 扩展的出瞳。
投影光学系统的出瞳需要与波导光学元件的入瞳合理匹配, 如此能够有效消除一 些不必要的杂光。 为此, 为了消除波导光学元件耦入端产生的杂光, 需要将投影光学 系统的出瞳以及波导光学元件的入瞳合理匹配。
图 6是实施例之一中波导内部光路示意图; 波导光学元件的入瞳可以由一个三角 棱镜构成, 其中一个光学表面与波导光学元件的平面重合, 光线经过棱镜的斜面直接 透射耦合进入波导光学元件, 而没有反射, 降低了传统波导光学元件可能在耦入端产 生的杂光。 同时投影系统将由自由曲面光学系统实现。 图 7是投影光学系统内部光线传播视图; 包括三维视图, 俯视图 (XZ ) 和侧 视图 (YZ ) 。 从图中可以看出该自由曲面投影系统在两个方向的出瞳位置不重 合, XZ面内的出瞳距离大于 YZ面内的投影距离。
图 8是实施例之一的自由曲面波导头盔光路结构示意图; 采用图 6所示波导光 学元件和图 7所示自由曲面投影光学系统。 由于自由曲面的使用, 将投影系统最 大限度简化, 使庞大的投影系统小型轻量化, 将整个系统小型轻量化。
图 9描述每个半反镜的出光效率和其反射率之间的关系。 为了保证真实光线透 过波导系统透过率的一致性, 以及为了简化各分光镜的镀膜和加工, 各分光镜表面 可能镀制相同的膜系。 图中每条曲线画出了不同位置耦出反射镜的耦出效率与透过 率的光线曲线图。 也因此各分光镜膜层反射率不能过高, 否则位于原理波导耦入端 的分光镜的耦出光能效率太低, 导致整体图像的亮度差异很大, 影响图像的整体感 和观看效果。 光能耦出效率公式为:
Er. = T'-1 x (l - Tr),
其中 T为分光镜的透过率, i代表第 i个分光镜。
如图 9所示, 在每一分光镜反射率相同的情况下, 各反射镜的光能耦出效率与 其透射率的变化曲线图。 当透过率为 1时, 光能耦出效率为 0, 从图中可以看出, 各分光镜的透过率控制在 0.65 0.85之间为宜。
本发明的实施例之一提供一种自由曲面棱镜头盔显示器, 能够实现大视场, 且 削减或没有杂光, 光能利用率也相对较高。
本发明的另一实施例采用新型耦入方式, 将系统进一步折叠, 可实现更为紧凑 的显示系统。 采用倾斜光路, 系统的厚度大大缩减。 耦入部件除了使用上述棱镜 外, 还可以试用光栅等。
为了解决传统头盔显示技术、 现有波导和自由曲面技术存在的不足, 本发明的 实施例之一采用自由曲面技术和波导技术, 充分促进和发挥它们各自的优势, 将头 盔显示系统的体积重量降低。
本发明实施例之一提供的波导近眼显示系统特别适合于户外和移动增强现实显 示系统。 头盔显示器光学系统的发展由同轴旋转对称透射式结构逐渐演变为折反射 式结构。 为了实现透视和轻量化, 达到眼镜式显示效果, 头盔显示技术采用离轴折 反射结构、 自由曲面、 全息 /衍射和波导技术。 目前头盔显示器存在视场小、 体积 和重量大的缺点。 如下实施例描述的采用自由曲面光学技术和波导光学技术相结合 的方式, 克服传统头盔显示器的不足, 降低近眼头盔显示装置的体积和重量, 增大 视场, 减少杂光。
下面一些实施例中坐标系可以规定为一个右手坐标系, 例如: 水平向右为 Z轴 方向, 垂直 Z轴向上为 Y轴方向, 垂直 Y0Z平面纸面向里为 X轴方向。 光线从光源 出发, 依次通过照明光擎、 自由曲面投影系统和平面波导并到达人眼。
下面结合附图对实施例之一所给出的自由曲面棱镜头盔显示光学系统, 对微型 显示器 5成像的光路和光学系统成像质量详细说明。 其光路可以包括内部通道, 及 观察外部世界的外部通道。
如图 8所示, 自由曲面投影光学系统包括自由曲面棱镜和照明光擎。 照明光擎 系统 (light engine)包括光源、 偏振分光片(PBS)、 反射镜, 和 1/4玻片, 可以实 现高的光能利用率和图像源上的均匀照明。 自由曲面棱镜包括至少一个自由曲面, 例如若干自由曲面或非球面, 采用折反射的光路模式使投影系统小型化。
如图 8所示, 平面波导光学元件包括一系列半反半透棱镜, 包含耦入部分和耦 出部分。 耦入部分可以包括一个直角棱镜和平板, 耦出部分可以包括几个粘合在一 起的半反半透镜阵列。
投影光学系统包括自由曲面棱镜, 照明光擎, 和微型显示器。 照明光擎可以将 光源均匀准直照射到图像源上。 被照亮的图像可以进一步由自由曲面棱镜光学元件 进行准直放大, 在自由曲面棱镜的出射端两个垂直方向上形成出瞳。 其中较近的出 瞳与平面波导光学元件的耦入端基本重合, 较远的出瞳与平面波导光学元件的出瞳 基本重合。 经投影光学系统准直后的平行光束可以一种特定方式入射到输入棱镜, 耦合至波导内。 光束在平板波导前后表面入射角大于相应的临界角, 在前后表面之 间多次全反射的方式在波导内传播一段路程后, 再由平面波导的耦出端输出, 例如 耦合至空气, 并最终传播到人眼。
根据本发明的实施例之一, 波导与自由曲面的相互促进可将自由曲面的出瞳直 径减小, 例如由 6-8mm降到 3-4mm; 可以将自由曲面弧矢方向进行扩展; 还可以降 低自由曲面棱镜的出瞳距离。 特别地, 自由曲面对整体系统的促进可以包括: 体积 更紧凑、 重量更小; 而且杂光小, 例如耦入端不产生或基本不产生杂光。
参考图 8: LED光源发出的光线经由 PBS分光片反射后, 通过 1/4玻片, 其偏振 态旋转 45度, 经过反射镜反射后再次通过 1/4玻片, 偏振态再次旋转 45度, 由之 前的 P光变成 s光, 入射到 PBS分光镜上。 其透过 PBS分光镜到达 LC0S显示芯片 上, 照亮 LC0S后光线反射到 PBS分光片, 由于 LC0S将光线的偏振态改变 90度。 此时光线在 PBS上反射并进入自由曲面棱镜投影系统。 自由曲面棱镜投影系统将其 准直放大, 将其通过出瞳耦入到波导光学元件中, 光线在波导中进一步传播, 并最 终通过耦出部分到人眼。
表 A中列出了 10组优选的波导结构参数, Theta为半反半透镜与波导平面 的夹角, d为波导光学元件的厚度, HI为耦入端距离耦出端的距离, index为波导 光学元件的材料折射率。 PV列出了杂光与有用光线比值的 PV值, AVE为平均 值, RMS为均方根值, EPDY为系统 Y方向的出瞳直径, 以上为出瞳距离 20mm 情况下的参数。 表 A: 实施例, 优选的波导结构参数
No Theta d HI Index PV AVE RMS EPDY
1 29. 6 3. 2 17 1. 78 0. 04655 0. 02613 0. 02962 13. 34
2 29. 6 3. 0 16 1. 78 0. 04750 0. 02622 0. 02974 1 1. 96
3 29. 6 2. 8 15 1. 78 0. 04836 0. 02631 0. 02988 10. 67
4 29. 6 2. 6 14 1. 74 0. 04852 0. 02682 0. 03045 9. 24
5 29. 6 2. 6 14 1. 78 0. 04900 0. 02639 0. 03030 9. 29
6 29. 6 2. 8 15 1. 74 0. 04952 0. 02675 0. 03034 10. 56
7 29. 6 2. 4 13 1. 78 0. 04995 0. 02646 0. 03010 7. 98
8 29. 6 2. 4 13 1. 74 0. 05017 0. 02694 0. 03063 7. 88
9 29. 6 2. 4 13 1. 70 0. 05108 0. 02741 0. 031 13 7. 85
10 29. 6 3. 0 16 1. 74 0. 05130 0. 02674 0. 03033 1 1. 93 下面的一些实施例不包括波导部分, 而集中说明自由曲面所带来的优势。
本发明的实施例之一提供一种真实立体感单目双焦面头盔显示装置, 其包括第 一光学曲面棱镜和第二光学曲面棱镜, 光学表面的形式可以是球面、 非球面或自由 曲面形式, 每个棱镜包含第一光学面、 第二光学面和第三光学面, 第一光学曲面棱 镜和第二光学曲面棱镜中有一对面形相同的曲面, 其中位于第一光学曲面的曲面上 镀有半反半透膜, 然后将第一光学曲面棱镜和第二光学曲面棱镜胶合成一体; 和显 示部件, 包括第一微型显示器和第二微型显示器。 第一光学曲面棱镜和第一微型显 示器构成第一显示焦面, 第二光学曲面棱镜和第二微型显示器构成第二显示焦面。 第一和第二显示焦面各自产生一个距离人眼较近和较远的观察屏幕, 或者分别产生 距离人眼较远和较近的观察屏幕, 在渲染图像时根据场景中物体的深度分别在两个 微型显示器上对图像采用深度滤波器, 产生具有真实立体感的观察图像。 根据本实 施例的单目双焦面头盔显示装置结构紧凑、 重量轻。 尤其对于立体头盔显示装置, 提供了符合人眼自然视觉的立体头盔显示器, 解决或改进了传统立体头盔显示器中 聚焦和辐辏不一致的问题, 提高舒适度, 并有效缓解视觉疲劳。
本发明的实施例提供一种自由曲面棱镜式头盔显示器用光学系统, 尤其是单目 就能够产生具有真实立体显示效果的紧凑型双焦面头盔显示器用光学系统。
产生人眼三维视觉的因素包括: 物体的大小、 物体的清晰程度和物体对于双眼 的视差。 通常人眼的汇聚和辐辏相互关联给人产生深度感信息。 然而, 传统的双目 头盔显示器提供的聚焦和辐辏信息是不一致的。 因为光线从单个焦面上发出, 人眼 为了看清物体, 需要聚焦在固定的焦面上。 而通常立体图像具有一定的深度, 即位 于聚焦面的前后。 立体感越强, 聚焦和辐辏两者之间的差异就越大。 这样导致人眼 的汇聚与辐辏不一致, 容易造成使用者眼部疲劳。
为了消除人眼的汇聚和辐辏不一致的矛盾, 一些解决方案包括变焦面的头盔显 示器和多焦面的头盔显示器。 变焦面头盔显示器的主要解决方法可分为两类: 改变 像面位置或改变光学系统位置。 多焦面头盔显示解决方案可分为时分复用和空间复 用的头盔显示方案。 空间复用方法是在目视光学元件前放置层叠式的微显示器, 通 过在不同的微显示器上显示不同深度的图像产生深度信息。 但是由于后方的图像需 要通过若干个微显示器, 图像的亮度得不到保证等不足。 采用分光镜实现多光路的 集成, 使系统包含多个焦面, 各焦面产生的深度信息各有差异。 但是此类系统体积 庞大笨重, 不利于实现小型轻量化, 不利佩戴在头部, 如附图 10所示。 时分复用多 焦面头盔显示器采用液体透镜、 变形镜或者双折射率透镜等调节系统的光焦度, 进 而改变不同时间状态下系统的观察距离。 此类系统对微显示器以及这些关键光学元 件的刷新频率有较高的要求。 如果需要构建较多的焦面, 对光学系统中最低的刷新 频率有更高的要求。
本发明的实施例之一利用空间复用多焦面技术和自由曲面光学技术, 实现紧凑 轻便型的双焦面头盔显示技术。 使用户仅通过单目目视光学系统就能够观察到立体 图像, 且符合人眼的自然视觉。 紧凑轻便型的自由曲面双焦面单目头盔显示器光学 系统也适合于佩戴在用户的头部, 产生的立体显示效果符合人眼的自然视觉特性, 有利于缓解传统立体头盔显示器带来的视疲劳。
实施例之一的光学系统采用了反向光路设计, 即光线从眼睛出发最终达到微型 显示器上。 为方便描述, 光线追迹方向从出瞳位置出发经过光学系统最终到达微型 显示器上。
实施例中采取了球面、 非球面来描述曲面的面形,其可以通过复曲面 XY 多项 式曲面 (AXYP ) 进行描述。 下面表格中表面类型栏中, sph 代表该面为球面, asp 代表该面为非球面, 默认情况为 AXYP曲面。
在一些实施例中, 非球面方程可以表述为:
\ + [\ - (\ + k)c2x2
其中, c是曲面的顶点曲率半径, k是二次曲面系数, A, B, C, D 分别是非 球面的 4th, 6th, 8th, 10th非球面系数。 一些实施例采用了变形非球面 (Anamorphic Aspherical Surface , 简称 AAS )。 变形非球面也可称为复曲面, 它有两个方向的曲率半径, 而且可以不相 同。 该曲面为平面对称曲面, 它有两个对称面, 分别关于 yoz、 xoz 平面对称。 优 点是优化时容易控制, 优化收敛速度快。 变形非球面可以用方程描述为:
Figure imgf000014_0001
其中, cx是曲面 x-z平面内 X方向的曲率半径, ( 是曲面在 Y-Z平面内 Y方向 的曲率半径, κχ是曲面 X方向的二次曲线系数, Ky是曲面 Υ方向的二次曲线系数, 1是 4, 6, 8, 10, -2n 阶非球面系数, 关于 Z 轴旋转对称, Pi是 4, 6, 8, 10, 一2n阶非旋转对称系数。 一些实施例采用了 ΧΥ多项式曲面(XY Polynomial , 简称为 XYP)。 XY多项式 曲面可以用方程描述为:
+ c4y
+ + csy2x + cgyx2 + c10x3
+ cny4 + c12j3x + cny2x2 + c14jx3 + clsx4 ( 4 )
+ c16y5 + c17y x + c18j3x2 + cl9y2x3 + c20yx4 + c21x5
+ c22y6 + c23y5x + c24y4x2 + c2Sy3x3 + c26y2x4 + c21yx5 + c2Sx6
+ c2gy7 + c30y6x + c31y5x2 + c32y4x3 + c33y3x4 + c34y2x5 + c3Syx6 + c36x7
+ 通过合理选择 XY 多项式的幂次, 可以使其为关于 平面对称的曲面, 也可 以使其为关于 平面对称的曲面。 该面形可以提供更多的自由度, 但是光线追迹 和优化速度较慢。 实施例之一中将这个面型控制为只有一个对称面的曲面。 一些实施例采用了 AXYP曲面方程: z l < m + n < p
Figure imgf000015_0001
其中, c 分别是曲面在子午方向和弧矢方向的顶点曲率半径, kx, ^分别 是子午和弧矢方向的二次曲面系数, ( )是多项式 χ" "的系数, 7为多项式的最高
根据本发明的一种实施方式, 双焦面单目立体头盔显示装置的结构如附图 11所 示, 包括两个光学曲面棱镜和两个微型显示器, 分别形成两个深度不同的观察平 面。 在渲染微显示器的图像时应用适当的光强度滤波器, 使用户感觉到所观察的图 像位于屏幕 109和 110之间, 即产生具有一定深度的立体显示效果。
包含第一个焦面的光学系统的光路形成方式可以是:
第一个焦面的光路可以包括光学曲面 101、 102和 103, 它们内部形成的腔体可 由玻璃或其它材料填充。 按反向光线追迹描述, 光线从位于出瞳处的人眼出发, 从 光学曲面 101的前表面入射到该光学曲面上并发生透射, 到达光学曲面 102上。 由于 光学曲面 102镀有半反半透膜, 光线在此分成两束。 一束发生反射后并再次从光学 表面 101的后方入射到该表面上, 光线发生全反射后入射到光学曲面 103上并最终透 射离开楔形棱镜, 达到微型显示器 106上。 与像面 107对应的观察屏幕位于 110处。 表 1列出了该焦面生成光路各光学曲面的偏心和倾斜数据, 表 3列出了一实施例中所 有表面的参数数据。 表 1 实施例一中第一焦面光路各光学表面偏心倾斜角度
Figure imgf000016_0001
包含第二个焦面的光学系统的光路形成方式可以是:
第二观察屏幕的光路可以包括光学曲面 101、 102、 104和 105组成, 光线从人眼 出发, 经过光学曲面 101透射, 入射到光学曲面 102再次透射, 入射到光学曲面 104 后发生反射, 反射后的光线经由光学曲面 105透射并到达第二个像面 107上。 与像面 107对应的观察屏幕位于 109处。 表 2列出了该焦面生成光路各光学曲面的偏心和倾 斜数据。 表 2 实施例一第二焦面光路各光学表面偏心倾斜角度
Figure imgf000016_0002
表 3 实施例一各光学表面的各项系数 0 0 Οΐ-389 ' - 9Ϊ-360 ' - 人 9χ
0 0 0 0 0 U
80-39S ·8- 60-300 'τ 90-380 ·ΐ- 60-388 '9 9^
0 0 0 0 0 g x
Z0-3S8 ·ΐ \\- z ·ΐ- Z0-3S8 Ί- 80-36 ·ΐ- 80-320 ·Ζ
0 0 0 0 0 S χ
ΖΟ-388 ·ΐ- \-Ά\Ι 'τ 90-329 ·ΐ 60-a τ 6 'τ- 80-39τ ·Ζ
0 0 0 0 0 gx
80-38Ϊ τ Ζΐ-326 ·ΐ- Ζ0-38Ϊ ·6- 60-328 ' 60-3 9 Ί 9χ
0 0 S0-360 ·ΐ- o-a s ·ΐ- π-azo ·ΐ-
0 0 0 0 0 Ax
0 0 90-3S2 ·6 60-300 ·9- 2ΐ-398 ·ΐ S x
0 0 0 0 0
0 0 90-39Ϊ Ί- ΖΟ-388 ·ΐ 8Ϊ-382 ·Ζ- χ
0 0 0 0 0
S0-38Z ·9 ΖΟ-320 Ί- S0-3Z0 '9 90-3S8 ·Ζ 90-32 ΐ Έ-
0 0 0 0 0
S0-3T9 90-38S ·ΐ- o-asi ·ΐ Z0-3S8 '8 90-389 ·6- S x
0 0 0 0 0 x so-azT ·ΐ ΖΟ-368 ·8- S0-3S8 '9 90-368 'τ- 90-3 "Ζ-
0 0 O-388 "8 so-aoT ·9
0 0 0 0 0 T
0 0 O-3T6 ·ΐ- 90-3Ζ8 "8- Οΐ-396 ·ΐ x
0 0 0 0 0
0 0 80-a T "8 o-ass τ 60-38S ·ΐ-
0 0 0 0 0 Ax
0 0 w-mL ·8- 0-369 ·9- 2X
0 0 ζι- z ·8- 60-38 ΐ Ί 80-3S6 Ί
0 0 0 0 0 X
(xno) auejd το+asz ·ζ- ΐ 0+368 ' - 20+392 ·9- Ϊ0+36Ζ 20+329 Έ- 2 UT snipey
( ¾ A UT
0 0 0 0 0
OTUOQ
0 0 0 0 0
OTUOQ
( no) auejd ΐ 0+389 ·ΐ- ΐ 0+388 ·9- 20+3S8 ·8- ΐ 0+308 ·9- 20+39 ΐ Έ- Z入 snipey
SOT εοτ ζοι 而
91
S80/ZT0ZN3/X3d 6170C80/C10Z OAV i3/: O /-86s8il£ 68oiAV
Figure imgf000018_0001
根据本发明的一种实施方式, 双焦面单目立体头盔显示装置的结构如附图 12所 示, 包括两个光学曲面棱镜和两个微型显示器, 分别形成两个深度不同的观察平 面。
包含第一个焦面的光学系统的光路形成方式可以是:
第一个焦面的光路可以包括光学曲面 201、 202和 203, 它们内部形成的腔体可 以由玻璃或其它材料填充。 按反向光线追迹描述, 光线从位于出瞳处的人眼出发, 从光学曲面 201的前表面入射到该光学曲面上并发生透射, 到达光学曲面 202上。 由 于 202镀有半反半透膜, 光线在此分成两束。 一束发生反射后并再次从光学表面 201 的后方入射到该表面上, 光线发生全反射后入射到光学曲面 203上并最终透射离开 楔形棱镜, 达到微型显示器 206上。 与微型显示器 207对应的观察屏幕位于 210处。 表 4列出了该焦面生成光路各光学曲面的偏心和倾斜数据。 表 6列出了第二实施例中 所有表面的参数数据。
包含第二个焦面的光学系统的光路形成方式可以是:
第二观察屏幕的光路可以包括光学曲面 201、 202、 204和 205组成, 光线从人眼 出发, 经过光学曲面 201透射, 入射到光学曲面 202再次透射, 入射到光学曲面 204 上发生反射。 反射后的光线经由光学曲面 202上再次反射并到达光学曲面 205上透 射, 最终到达微显示器 207上, 与微显示器 207对应的观察屏幕位于 209处。 表 5列出 了该焦面生成光路各光学曲面的偏心和倾斜数据。 表 4 实施例二第一焦面光路各光学表面偏心倾斜角度 表面序号 Y方向偏心 Z方向偏心 绕 X轴的倾斜
201 4. 610 27. 313 1 1. 900
202 -3. 810 35. 625 -20. 874
203 18. 300 28. 482 87. 285
206 22. 185 34. 983 61. 351 表 5 实施例二第一焦面光路各光学表面偏心倾斜角度 表面序号 Y方向偏心 Z方向偏心 绕 X轴的倾斜
201 4. 610 27. 313 1 1. 900
202 -3. 810 35. 625 -20. 874
Figure imgf000020_0002
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000021_0002
系数项 201 202 203 204 205
13
x3y6 0 0 0 0 0 x2y7 4. 26E-19 5. 65E-12 2. 57E-09 6. 36E-13 -2. 00E-19 xy8 0 0 0 0 0 y9 -4. 08E-19 2. 11E-12 2. 60E-09 3. 07E-14 -3. 97E-19 xlO -7. 39E-19 -1. 02E-20 -1. 54E-18 1. 13E-13 -1. 93E-18 x9y 0 0 0 0 0 x8y2 -5. 90E-20 7. 04E-20 -7. 96E-19 4. 71E-14 -3. 02E-19 x7y3 0 0 0 0 0
-1. 22E- x6y4 7. 75E-19 -9. 30E-20 -1. 08E-18 2. 98E-17
13
x5y4 0 0 0 0 0
-1. 25E- x4y6 3. 23E-20 1. 49E-20 -8. 84E-19 2. 91E-16
14
x3y7 0 0 0 0 0
-4. 88E- x2y8 -1. 16E-19 3. 81E-20 1. 77E-18 1. 02E-15
14
xy9 0 0 0 0 0
-3. 77E- ylO -5. 26E-19 4. 05E-19 -1. 63E-18 2. 98E-17
15
根据本发明的一种实施方式, 双焦面单目立体头盔显示装置的结构如附图 13所 示, 包括两个光学曲面棱镜和两个微型显示器, 分别形成两个深度不同的观察平 面。
包含第一个焦面的光学系统的光路形成方式可以是:
第一个焦面的光路可以包括光学曲面 301、 302和 303, 它们内部形成的腔体可 以由玻璃或其它材料填充。 按反向光线追迹描述, 光线从位于出瞳处出发, 从光学 曲面 301的前表面入射到该光学曲面上并发生透射, 到达光学曲面 302上。 由于 302 镀有半反半透膜, 光线在此分成两束, 一束发生反射后入射到光学曲面 303上并最 终透射离开楔形棱镜, 达到微型显示器 306上。 与微型显示器 306对应的观察屏幕位 于 308处。 表 7列出了该焦面生成光路各光学曲面的偏心和倾斜数据。 表 9和表 10列 出了第三实施例中所有表面的参数数据。 包含第二个焦面的光学系统的光路形成方式可以是:
第二观察屏幕的光路可以包括光学曲面 301、 302、 304和 305。 光线从人眼出 发, 经过光学曲面 301透射, 入射到光学曲面 302再次透射, 入射到光学曲面 304上 发生反射。 反射后的光线经由光学曲面 302上再次反射并到达光学曲面 305上透射, 最终到达微显示器 307上, 与微显示器 307对应的观察屏幕位于 309处。 表 8列出了该 焦面生成光路各光学曲面的偏心和倾斜数据。 表 7 实施例三第一焦面光路各光学表面偏心倾斜角度
Figure imgf000023_0001
表 8 实施例三第二焦面光路各光学表面偏心倾斜角度
Figure imgf000023_0002
表 9 实施例三各光学表面的各项系数
Figure imgf000023_0003
表 10 实施例三中光学表面各项系数的数值
系数项 303 系数项 303
Radius in YZ plane (cuy) 1. 95E+01
Conic constant in X (Kx) 0
Conic constant in Y (Ky) 0
Radius in XZ plane (cux) 1. 03E+01
X 0 y 0 x2 0 xy 0 y2 0 x3 0 x2y 0 xy2 0 y3 0 x4 -2. 58E-04 x3y 0 x2y2 -4. 37E-04 xy3 0 y4 -1. 85E-04 x5 0 x4y 0 x3y2 0 x2y3 0 xy4 0 y5 0 x6 -1. 70E-06 x5y 0 x4y2 -8. 64E-07 x3y3 0 x2y4 -1. 7E-07 xy5 0 y6 -8. 30E-09 x7 0 x6y 0 x5y2 0 x4y3 0 x3y4 0 x2y5 0 xy6 0 y7 0 系数项 303
x8 2. 64E-08
x7y 0
x6y2 6. 12E-08
x5y3 0
x4y4 5. 32E-08
x3y5 0
x2y6 2. 06E-08
xy7 0
y8 2. 99E-09
x9 0
x8y 0
x7y2 0
x6y3 0
x5y4 0
x4y5 0
x3y6 0
x2y7 0
xy8 0
y9 0
xlO -2. 55E-10
x9y 0
x8y2 -6. 35E-10
x7y3 0
x6y4 -6. 32E-10
x5y4 0
x4y6 -3. 14E-10
x3y7 0
x2y8 -7. 82E-11
xy9 0
ylO -7. 78E-12 根据本发明的一种实施方式, 双焦面单目立体头盔显示装置的结构如附图 14所 示, 包括两个光学曲面棱镜和两个微型显示器, 分别形成两个深度不同的观察平 面。
包含第一个焦面的光学系统的光路形成方式可以是:
第一个焦面的光路可以包括光学曲面 401、 402和 403, 它们内部形成的腔体可 以由玻璃或其它材料填充。 按反向光线追迹描述, 光线从位于出瞳处出发, 从光学 曲面 401的前表面入射到该光学曲面上并发生透射, 到达光学曲面 402上。 由于 402 镀有半反半透膜, 光线在此分成两束, 一束发生反射后入射到光学曲面 403上并最 终透射离开楔形棱镜, 达到微型显示器 406上。 与微型显示器 406对应的观察屏幕位 于 408处。 表 11列出了该焦面生成光路各光学曲面的偏心和倾斜数据。 表 13和表 14 列出了第四实施例中表面的参数数据。
包含第二个焦面的光学系统的光路形成方式可以是:
第二观察屏幕的光路可以包括光学曲面 401、 402、 404和 405。 光线从人眼出 发, 经过光学曲面 401透射, 入射到光学曲面 402再次透射, 入射到光学曲面 404后 发生反射。 反射后的光线经由光学曲面 405透射并到达第二个像面 407上。 与像面 407对应的观察屏幕位于 409处。 表 12列出了该焦面生成光路各光学曲面的偏心和倾 斜数据。
表 1 1 实施例四第一焦面光路各光学表面偏心倾斜角度
Figure imgf000026_0001
表 12 实施例四第二焦面光路各光学表面偏心倾斜角度
Figure imgf000026_0002
表 13 实施例四各光学表面的各项系数 表面序号 401 402 405
表面类型 sph sph asp
曲率半径 40
84. 1856 18. 53256112
K 0
A4 -6. 7 IE- 05
A6 -6. 19E-08
A8 -2. 30E-09
A10 -1. 90E-11
表 14实施例四中各光学表面的各项系数 系数项 403 404
Radius in YZ plane
19. 6217052 -50. 37825638 (cuy)
Conic constant in X
0 0
(Kx)
Conic constant in Y
0 0 (Ky)
Radius in XZ plane
24. 16525332 -45. 84629567 (cux)
X 0 0 y -6. 23E-11 -0. 169265848 x2 1. 37E-12 -0. 000189081 xy 0 0 y2 -5. 67E-12 0. 001687998 x3 0 0 x2y -2. 17E-13 3. 85E-06 xy2 0 0 y3 3. 29E-12 9. 66E-06 x4 -0. 00025809 6. 83E-06 x3y 0 0 x2y2 -0. 00043699 -8. 09E-06 xy3 0 0 y4 -0. 000184974 7. 19E-06 x5 0 0 x4y 3. 19E-14 5. 32E-07 x3y2 0 0 x2y3 -4. 12E-14 4. 59E-07 i3/: O /-86s8il£ 68oiAV
Figure imgf000028_0001
系数项 403 404 x7y3 0 0
x6y4 -6. 32E-10 4. 63E-12
x5y4 0 0
x4y6 -3. 14E-10 -2. 06E-12
x3y7 0 0
x2y8 -7. 82E-11 3. 2E-12
xy9 0 0
ylO -7. 78E-12 6. 00E-13 上面巳经详细图示和介绍了本发明的示范性实施例, 在此基础上的各种变形和改 进对于本领域技术人员来说就将是显而易见的。 应当理解的是, 上述具体实施方案为 本发明的优选实施例, 本发明的范围不限于该实施例, 凡依本发明所做的任何变 更, 皆属本发明的保护范围之内。

Claims

权利要求
1、 一种显示装置, 包括:
一个波导光学元件;
一个包含有光学自由曲面的投影光学系统; 以及
一个微型显示器件;
其中所述投影光学系统以倾斜光路与所述波导光学元件光耦合。
2、 根据权利要求 1所述的显示装置, 其中所述的波导光学元件为平面波导光 学元件, 包括:
一个直角棱镜耦入端;
半反半透镜阵列耦出端;
波导参数包括:
平板厚度 d;
半反半透镜与平面的夹角
耦入端与耦出端距离 hl;
半反半透镜间距离 h2;
玻璃介质折射率 n;
波导特征包括:
半反半透镜阵列相互平行;
夹角 应该满足条件 20°≤θ≤ 40°;
半反半透镜间距 h2满足条件 h2 = d/tm(0);
折射率 n满足条件 1.4≤«≤1.8 ;
厚度 d满足条件 \ A≤d≤ 3.6mm。
3、 根据权利要求 2所述的显示装置, 其中所述平面波导光学元件耦出端至少 包含 2个平行半反半透镜。
4、 根据权利要求 2所述的显示装置, 其中所述平面波导光学元件耦入端包括 一个反射镜或者一个三角棱镜。
5、 根据权利要求 1所述的显示装置, 其中所述的投影光学系统包括一个照明 光擎系统和一个自由曲面棱镜成像系统。
6、 根据权利要求 5所述的显示装置, 其中所述的投影光学系统包括至少含有 一个光学自由曲面的棱镜。
7、 根据权利要求 6所述的显示装置, 其中所述自由曲面棱镜包括至少 3个自 由曲面, 其特征在于两个垂直方向的出瞳位置可以不重合; 并且厚度小于 5mm, 宽度小于 10mm。
8、 根据权利要求 2所述的显示装置, 其中投影系统短出瞳与所述的波导耦入 端基本重合, 长出瞳与波导光学元件的出瞳基本重合。
9、 根据权利要求 5所述的显示装置, 其中所述照明光擎系统包括一个 PBS分 光镜, 一个 1/4波片, 一个反射镜和一个 LED光源。
10、 根据权利要 7 所述的显示装置, 其中所述平面波导元件耦入端由反射镜 构成时, 其与如所述的自由曲面棱镜的出瞳基本耦合时满足如下条件以消除杂光:
0≤ ≤i ,优选值等于
Figure imgf000031_0001
tan Θ. + tan θ· tan ω ' tan θ
Dexd = 2d x y- ex 1 + tan Θ tan 6{ 其中, 为光线在波导前后表面上的入射角。 ^为光瞳拓展方向最大视场 角。 为光瞳拓展方向最大视场光线入射到波导后的折射角。
11、 一种近眼显示系统, 包括如权利要 1所述的显示装置,
其中所述微型显示器件包括:
第一微型显示器和第二微型显示器, 分别用于显示一幅距离人眼较近 和较远的观察图像, 或分别用于显示一幅距离人眼较远和较近的观察图像, 其中两 幅显示图像与人眼的距离不同, 但是它们覆盖的视场区域基本相同, 第一幅图像侧 重于渲染三维场景中深度较近的物体, 第二幅图像侧重于渲染三维场景中深度较远 的物体;
其中所述投影光学系统包括:
第一光学曲面棱镜, 用于将第一微显示器上显示的图像放大和成像到 距离人眼较近的距离;
第二光学曲面棱镜, 用于将第二微显示器上显示的图像放大和成像到 距离人眼较远的距离;
第一光学曲面棱镜和第二光学曲面棱镜中有一对面形参数数值相同但 是符号相反的曲面, 即第一光学曲面棱镜的第二光学表面和第二光学曲面棱镜的第 一光学表面, 通过这两个曲面的胶合实现两个棱镜的无缝连接, 该表面镀有半反半 透膜, 以实现两个焦面图像的融合。
12、 根据权利要求 11所述的近眼显示系统, 其中第一光学曲面棱镜包含三个光 学自由曲面, 其特征在于:
光线至少在光学曲面上发生一次反射, 第二光学曲面为凹形反射面, 三个光学 表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充。 光学曲面可以是球 面、 非球面或是自由曲面, 例如复曲率 XY多项式曲面。
第一微型显示器发出的光线经由第三光学曲面进入第一光学曲面棱镜, 经过第 一光学表面反射到第二光学表面, 经过第二光学表面反射后再次经过第一光学表面 透射进入人眼。
13、 根据权利要求 11所述的近眼显示系统, 其中第二光学曲面棱镜包含三个光 学自由曲面, 其特征在于:
光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充; 光学曲面是球面、 非球面、 自由曲面, 或复曲率 XY多项式曲面;
第二微型显示器发出的光线经由第三光学曲面进入第二光学曲面棱镜, 经过第 二光学表面反射到第一光学表面, 依次通过第一光学棱镜的第二和第一光学曲面透 射后到达系统的出瞳。
14、 根据权利要求 11所述的近眼显示系统, 其中第一光学曲面棱镜包含三个光 学自由曲面, 其特征在于:
光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充。 光学曲面可以是球面、 非球面、 自由曲面, 或复 曲率 XY多项式曲面; 第一微型显示器发出的光线经由第三光学曲面进入第一光学曲面棱镜, 经过第 一光学表面反射到第二光学表面, 经过第二光学表面反射后再次经过第一光学表面 透射进入人眼。
15、 根据权利要求 11所述的近眼显示系统, 其中第二光学曲面棱镜包含三个光 学自由曲面, 其特征在于:
光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充; 光学曲面可以是球面、 非球面、 自由曲面, 或复 曲率 XY多项式曲面。
第二微型显示器发出的光线经由第三光学曲面进入第二光学曲面棱镜, 经过第 一光学表面反射到第二光学表面, 并再次反射到达第一光学表面透射, 最后依次通 过第一光学棱镜的第二和第一光学曲面透射后到达系统的出瞳。
16、 根据权利要求 11所述的近眼显示系统, 其中第一光学曲面棱镜包含三个光 学自由曲面, 其特征在于:
光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充。 光学曲面可以是球面、 非球面或是自由曲面。
第一微型显示器发出的光线经由第三光学曲面透射进入第一光学曲面棱镜, 经 过第二光学表面反射到第一光学表面, 经过第一光学表面透射进入系统出瞳。
17、 根据权利要求 1所述的近眼显示系统, 其中第二光学曲面棱镜包含三个光 学自由曲面, 其特征在于:
光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充; 光学曲面是球面、 非球面或是自由曲面;
第二微型显示器发出的光线经由第三光学曲面进入第二光学曲面棱镜, 经过第 一光学表面反射到第二光学表面, 并再次反射到达第一光学表面透射, 最后依次通 过第一光学棱镜的第二和第一光学曲面透射后到达系统的出瞳。
18、 根据权利要求 1所述的近眼显示系统, 其中第一光学曲面棱镜包含三个光 学自由曲面, 其特征在于:
光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充。 光学曲面是球面、 非球面或是自由曲面; 第一微型显示器发出的光线经由第三光学曲面透射进入第一光学曲面棱镜, 经 过第二光学表面反射到第一光学表面, 经过第一光学表面透射进入系统出瞳。
19、 根据权利要求 11所述的近眼显示系统, 其中第二光学曲面棱镜包含三个光 学自由曲面, 其特征在于:
光线至少在光学曲面上发生一次反射, 三个光学表面包围的空间由折射率大于 1. 4的玻璃或树脂光学材料填充; 光学曲面是球面、 非球面或是自由曲面;
第二微型显示器发出的光线经由第三光学曲面进入第二光学曲面棱镜, 经过第 二光学表面反射到第一光学表面, 依次通过第一光学曲面棱镜的第二和第一光学曲 面透射后到达系统的出瞳。
20、 根据权利要求 1所述的显示装置, 其中所述的倾斜光路为非直角光路。
PCT/CN2012/085987 2011-12-06 2012-12-06 显示装置和系统及其显示方法 WO2013083049A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/294,394 US9052505B2 (en) 2011-12-06 2014-06-03 Display apparatus and system and display method thereof
US14/729,899 US9366870B2 (en) 2011-12-06 2015-06-03 Wearable display apparatus
US15/170,581 US9869862B2 (en) 2011-12-06 2016-06-01 Wearable virtual reality and augmented reality display apparatus
US15/860,787 US10330937B2 (en) 2011-12-06 2018-01-03 Near-eye display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110404197.1A CN102402005B (zh) 2011-12-06 2011-12-06 自由曲面双焦面单目立体头盔显示器装置
CN201110404197.1 2011-12-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/294,394 Continuation US9052505B2 (en) 2011-12-06 2014-06-03 Display apparatus and system and display method thereof

Publications (1)

Publication Number Publication Date
WO2013083049A1 true WO2013083049A1 (zh) 2013-06-13

Family

ID=45884378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085987 WO2013083049A1 (zh) 2011-12-06 2012-12-06 显示装置和系统及其显示方法

Country Status (3)

Country Link
US (4) US9052505B2 (zh)
CN (1) CN102402005B (zh)
WO (1) WO2013083049A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107251098A (zh) * 2015-03-23 2017-10-13 英特尔公司 使用动态三维形状促进真实对象的真三维虚拟表示
US10120194B2 (en) 2016-01-22 2018-11-06 Corning Incorporated Wide field personal display
CN110622110A (zh) * 2017-03-23 2019-12-27 交互数字Ce专利控股公司 提供沉浸式现实内容的方法和装置
CN111308710A (zh) * 2020-02-28 2020-06-19 京东方科技集团股份有限公司 光学显示装置及头戴式成像装置
US10976551B2 (en) 2017-08-30 2021-04-13 Corning Incorporated Wide field personal display device
CN113646687A (zh) * 2019-03-19 2021-11-12 威福光学有限公司 用于增强现实或虚拟现实的改进的角度均匀性波导
CN115335732A (zh) * 2020-03-24 2022-11-11 斯纳普公司 光学系统

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
KR101997852B1 (ko) * 2010-12-24 2019-10-01 매직 립, 인코포레이티드 인체공학적 머리 장착식 디스플레이 장치 및 광학 시스템
CN108508523B (zh) * 2017-02-24 2020-09-01 北京耐德佳显示技术有限公司 一种波导型光学元件及其使用其的近眼显示装置
CN102402005B (zh) * 2011-12-06 2015-11-25 北京理工大学 自由曲面双焦面单目立体头盔显示器装置
CN115494654A (zh) * 2012-06-11 2022-12-20 奇跃公司 使用波导反射器阵列投射器的多深度平面三维显示器
US9581550B2 (en) * 2013-05-31 2017-02-28 Pacific Biosciences Of California Analytical devices having compact lens train arrays
US10262462B2 (en) 2014-04-18 2019-04-16 Magic Leap, Inc. Systems and methods for augmented and virtual reality
US9958681B2 (en) * 2013-10-28 2018-05-01 Lg Electronics Inc. Electronic device and control method thereof
KR20150094891A (ko) * 2014-02-11 2015-08-20 (주)그린광학 헤드 마운트 디스플레이용 광학계
CN103885184B (zh) * 2014-04-10 2016-04-27 北京理工大学 一种投影式平面波导头盔显示器
IL232197B (en) * 2014-04-23 2018-04-30 Lumus Ltd Compact head-up display system
CN104007552B (zh) * 2014-05-30 2016-03-09 北京理工大学 一种真实立体感的光场头盔显示系统
US9529196B1 (en) * 2014-06-05 2016-12-27 Iphysicist Ltd. Image guide optics for near eye displays
CN104714305A (zh) * 2014-12-02 2015-06-17 上海理鑫光学科技有限公司 一种将二维图像进行三维成像的光学显示装置
DE102014119550B4 (de) 2014-12-23 2022-05-12 tooz technologies GmbH Abbildungsoptik zum Erzeugen eines virtuellen Bildes und Datenbrille
JP5866644B1 (ja) * 2014-12-26 2016-02-17 パナソニックIpマネジメント株式会社 ヘッドアップディスプレイ及びヘッドアップディスプレイを備えた移動体
JP6994940B2 (ja) * 2015-01-06 2022-01-14 ビュージックス コーポレーション 光結合を用いたヘッドマウント型画像装置
WO2016118643A1 (en) * 2015-01-21 2016-07-28 Tesseland Llc Display device with total internal reflection
WO2016154026A2 (en) * 2015-03-20 2016-09-29 Castar, Inc. Retroreflective light field display
TWI587004B (zh) * 2015-06-18 2017-06-11 中強光電股份有限公司 顯示裝置
JP6534302B2 (ja) * 2015-06-19 2019-06-26 株式会社Nttドコモ 映像表示装置
US9910276B2 (en) 2015-06-30 2018-03-06 Microsoft Technology Licensing, Llc Diffractive optical elements with graded edges
US10670862B2 (en) 2015-07-02 2020-06-02 Microsoft Technology Licensing, Llc Diffractive optical elements with asymmetric profiles
JP2017032673A (ja) * 2015-07-30 2017-02-09 日本電気硝子株式会社 導光板及びこれを用いた積層導光板
US9864208B2 (en) 2015-07-30 2018-01-09 Microsoft Technology Licensing, Llc Diffractive optical elements with varying direction for depth modulation
US10038840B2 (en) 2015-07-30 2018-07-31 Microsoft Technology Licensing, Llc Diffractive optical element using crossed grating for pupil expansion
JP6552338B2 (ja) * 2015-08-26 2019-07-31 株式会社東芝 表示装置
US10073278B2 (en) * 2015-08-27 2018-09-11 Microsoft Technology Licensing, Llc Diffractive optical element using polarization rotation grating for in-coupling
US10429645B2 (en) 2015-10-07 2019-10-01 Microsoft Technology Licensing, Llc Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling
US10241332B2 (en) 2015-10-08 2019-03-26 Microsoft Technology Licensing, Llc Reducing stray light transmission in near eye display using resonant grating filter
US9946072B2 (en) 2015-10-29 2018-04-17 Microsoft Technology Licensing, Llc Diffractive optical element with uncoupled grating structures
US10234686B2 (en) 2015-11-16 2019-03-19 Microsoft Technology Licensing, Llc Rainbow removal in near-eye display using polarization-sensitive grating
US11054648B2 (en) 2016-02-04 2021-07-06 Google Llc Compact near-eye display optics for higher optical performance
US10133074B2 (en) 2016-02-04 2018-11-20 Google Llc Compact near-eye display optics for higher optical performance
US10095036B2 (en) 2016-02-04 2018-10-09 Google Llc Compact near-eye display optics
IL244181B (en) * 2016-02-18 2020-06-30 Amitai Yaakov Compact head-up display system
CN105816143A (zh) * 2016-03-02 2016-08-03 上海理鑫光学科技有限公司 一种用于胶囊内窥镜的导光器件
CN107229118A (zh) * 2016-03-23 2017-10-03 北京亮亮视野科技有限公司 头戴式可视设备hmd波导光学系统
US10317679B2 (en) 2016-04-04 2019-06-11 Akonia Holographics, Llc Light homogenization
US20170315347A1 (en) * 2016-04-29 2017-11-02 Mikko Antton Juhola Exit Pupil Expander for Laser-Scanner and Waveguide Based Augmented-Reality Displays
TWI652530B (zh) * 2016-05-04 2019-03-01 中強光電股份有限公司 稜鏡模組以及顯示裝置
US10353202B2 (en) 2016-06-09 2019-07-16 Microsoft Technology Licensing, Llc Wrapped waveguide with large field of view
US10732414B2 (en) 2016-08-17 2020-08-04 Microsoft Technology Licensing, Llc Scanning in optical systems
US10553139B2 (en) 2016-11-10 2020-02-04 Microsoft Technology Licensing, Llc Enhanced imaging system for linear micro-displays
US20190129182A1 (en) * 2016-12-08 2019-05-02 Snail Innovation Institute Integrated lenses in wearable display devices
US10108014B2 (en) * 2017-01-10 2018-10-23 Microsoft Technology Licensing, Llc Waveguide display with multiple focal depths
US10409066B2 (en) 2017-01-19 2019-09-10 Coretronic Corporation Head-mounted display device with waveguide elements
CN108345106B (zh) * 2017-01-24 2020-04-28 清华大学 混合表面光学系统的设计方法
US10545347B2 (en) 2017-02-23 2020-01-28 Google Llc Compact eye tracking using folded display optics
WO2018161040A1 (en) * 2017-03-02 2018-09-07 Intevac, Inc. See through axial high order prism
US20180255285A1 (en) 2017-03-06 2018-09-06 Universal City Studios Llc Systems and methods for layered virtual features in an amusement park environment
CN110537136B (zh) * 2017-04-28 2022-09-20 索尼公司 光学装置、图像显示装置及显示装置
US10412378B2 (en) 2017-05-08 2019-09-10 Microsoft Technology Licensing, Llc Resonating optical waveguide using multiple diffractive optical elements
CN108873326A (zh) 2017-05-16 2018-11-23 中强光电股份有限公司 头戴式显示装置
US10560688B2 (en) 2017-05-22 2020-02-11 Microsoft Technology Licensing, Llc Display device system with non-telecentric imaging to prevent ghost images
US10222615B2 (en) 2017-05-26 2019-03-05 Microsoft Technology Licensing, Llc Optical waveguide with coherent light source
CN108931850A (zh) * 2017-05-26 2018-12-04 上海真曦通信技术有限公司 一种可穿戴式光学系统、装置及方法
KR102044628B1 (ko) * 2017-05-27 2019-11-13 이문기 거울을 이용한 투명한 안경형 디스플레이
EP3602172A1 (en) 2017-06-06 2020-02-05 Apple Inc. Optical systems for electronic devices with displays
CN107272204B (zh) * 2017-06-27 2019-10-25 浙江唯见科技有限公司 自动对焦、多焦面vr显示系统
US11243434B2 (en) * 2017-07-19 2022-02-08 Lumus Ltd. LCOS illumination via LOE
CN107422484B (zh) * 2017-09-19 2023-07-28 歌尔光学科技有限公司 棱镜式ar显示装置
CN107870438B (zh) 2017-12-04 2019-11-22 华为技术有限公司 增强现实的装置、光引擎部件和方法
US11256093B2 (en) * 2017-12-11 2022-02-22 Magic Leap, Inc. Waveguide illuminator
CN109946907A (zh) 2017-12-20 2019-06-28 中强光电股份有限公司 投影装置
US10989921B2 (en) * 2017-12-29 2021-04-27 Letinar Co., Ltd. Augmented reality optics system with pinpoint mirror
US10989922B2 (en) * 2017-12-29 2021-04-27 Letinar Co., Ltd. Augmented reality optics system with pin mirror
US11137602B2 (en) * 2017-12-29 2021-10-05 Microsoft Technology Licensing, Llc Pupil-expanding display device
JP7422660B2 (ja) * 2018-01-19 2024-01-26 レイセオン カナダ リミテッド コンパクトな反射型照準器のための軸外れ非球面鏡を内蔵した平坦光学コンバイナ
US10634913B2 (en) * 2018-01-22 2020-04-28 Symbol Technologies, Llc Systems and methods for task-based adjustable focal distance for heads-up displays
JP2019144515A (ja) * 2018-02-23 2019-08-29 セイコーエプソン株式会社 虚像表示装置
US11971549B2 (en) 2018-03-12 2024-04-30 Magic Leap, Inc. Very high index eyepiece substrate-based viewing optics assembly architectures
FI129306B (en) * 2018-04-19 2021-11-30 Dispelix Oy Diffractive outlet pupil dilator for display applications
CN112119346B (zh) * 2018-05-14 2022-08-19 鲁姆斯有限公司 用于近眼显示器的具有细分光学孔径的投影仪配置和相应的光学系统
US11243397B2 (en) * 2018-05-18 2022-02-08 Facebook Technologies, Llc Optical assembly with polarization volume holographic element
IL259518B2 (en) 2018-05-22 2023-04-01 Lumus Ltd Optical system and method for improving light field uniformity
CN110579928A (zh) * 2018-06-08 2019-12-17 中强光电股份有限公司 投影装置及头戴式显示装置
JP6877643B2 (ja) * 2018-06-22 2021-05-26 三菱電機株式会社 映像表示装置
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system
US20200018962A1 (en) * 2018-07-11 2020-01-16 Facebook Technologies, Llc Adaptive lenses for near-eye displays
CN108732767A (zh) * 2018-08-29 2018-11-02 深圳珑璟光电技术有限公司 一种紧凑型自由曲面波导近眼显示光学装置
US11803056B2 (en) 2018-09-14 2023-10-31 Apple Inc. Waveguided display systems
CN110618529A (zh) * 2018-09-17 2019-12-27 武汉美讯半导体有限公司 用于增强现实的光场显示系统和增强现实装置
CN109493321B (zh) * 2018-10-16 2021-11-12 中国航空工业集团公司洛阳电光设备研究所 一种车载hud目视光学系统视差计算方法
KR102099785B1 (ko) * 2018-11-06 2020-04-10 주식회사 레티널 증강 현실용 광학 장치
US11200656B2 (en) 2019-01-11 2021-12-14 Universal City Studios Llc Drop detection systems and methods
JP7489115B2 (ja) 2019-01-15 2024-05-23 ルムス エルティーディー. 対称導光光学素子を製造する方法
CN109581669B (zh) * 2019-01-23 2021-07-13 歌尔股份有限公司 投影光路及头戴显示设备
CN109725430B (zh) * 2019-03-06 2023-04-07 成都工业学院 一种虚聚混合成像的立体显示装置
EP3939246A4 (en) 2019-03-12 2022-10-26 Lumus Ltd. IMAGE PROJECTOR
CN110060291B (zh) * 2019-04-04 2023-01-31 长春理工大学 一种考虑人因的立体视在距离解算方法
EP3726272A1 (en) * 2019-04-18 2020-10-21 BAE SYSTEMS plc Optical arrangement for a display
CA3136786A1 (en) * 2019-04-18 2020-10-22 Bae Systems Plc Optical arrangement for a display
EP3726261A1 (en) * 2019-04-18 2020-10-21 BAE SYSTEMS plc Optical arrangement for a display
WO2020212682A1 (en) * 2019-04-18 2020-10-22 Bae Systems Plc Optical arrangement for a display
TW202115445A (zh) 2019-09-15 2021-04-16 以色列商魯姆斯有限公司 橫向光導管
IT202000001246A1 (it) * 2020-01-22 2021-07-22 Univ Pisa Sistema perfezionato per la fruizione di realtà aumentata
US11709363B1 (en) 2020-02-10 2023-07-25 Avegant Corp. Waveguide illumination of a spatial light modulator
CN114326105A (zh) * 2020-09-28 2022-04-12 宏碁股份有限公司 扩增实境眼镜
EP4222551A1 (en) 2020-09-29 2023-08-09 Avegant Corp. An architecture to illuminate a display panel
CN112284984B (zh) * 2020-10-19 2024-03-08 陕西科技大学 一种基于光反射的固体表面能测定装置及方法
CN115053165B (zh) * 2020-12-25 2023-11-10 京东方科技集团股份有限公司 光学系统及显示装置
GB2609919A (en) * 2021-08-16 2023-02-22 Bae Systems Plc Waveguide
EP4137862A1 (en) * 2021-08-16 2023-02-22 BAE SYSTEMS plc Collimating device
WO2023021273A1 (en) * 2021-08-16 2023-02-23 Bae Systems Plc Prismatic collimating device
WO2023021272A1 (en) * 2021-08-16 2023-02-23 Bae Systems Plc Waveguide
CN113985519B (zh) * 2021-12-24 2022-04-08 深圳铅笔视界科技有限公司 一种光波导器件、显示装置和显示设备
JP2023140643A (ja) * 2022-03-23 2023-10-05 ソニーグループ株式会社 導光板積層体、表示装置、及び表示装置用モジュール
CN115762350B (zh) * 2023-01-09 2023-04-14 南京达斯琪数字科技有限公司 一种旋转显示屏的显示画面定位调整方法及系统
CN116320756B (zh) * 2023-05-22 2023-07-21 中国人民解放军国防科技大学 基于液态光学调控的单双目组合式深度感知系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020060851A1 (en) * 2000-09-27 2002-05-23 Shoichi Yamazaki Image display apparatus and head mounted display using it
CN1867855A (zh) * 2003-09-10 2006-11-22 鲁姆斯有限公司 基片导波的光学装置
JP2007140173A (ja) * 2005-11-18 2007-06-07 Konica Minolta Photo Imaging Inc 映像表示装置
CN101900872A (zh) * 2010-07-27 2010-12-01 中国航空工业集团公司洛阳电光设备研究所 双片式自由曲面头戴显示器光学系统
CN102402005A (zh) * 2011-12-06 2012-04-04 北京理工大学 自由曲面双焦面单目立体头盔显示器装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1869526B1 (en) * 2005-03-30 2019-11-06 Necsel Intellectual Property, Inc. Manufacturable vertical extended cavity surface emitting laser arrays
JP2007219106A (ja) * 2006-02-16 2007-08-30 Konica Minolta Holdings Inc 光束径拡大光学素子、映像表示装置およびヘッドマウントディスプレイ
US7600893B2 (en) * 2007-05-01 2009-10-13 Exalos Ag Display apparatus, method and light source
US20090153752A1 (en) * 2007-12-14 2009-06-18 Silverstein Barry D Projector using independent multiple wavelength light sources
CN101359089B (zh) * 2008-10-08 2010-08-11 北京理工大学 轻小型大视场自由曲面棱镜头盔显示器光学系统
US9091851B2 (en) * 2010-02-28 2015-07-28 Microsoft Technology Licensing, Llc Light control in head mounted displays
CN102053293A (zh) * 2010-08-27 2011-05-11 中国科学院长春光学精密机械与物理研究所 光学棱镜以及使用该棱镜的光学成像系统
US9411220B2 (en) * 2011-12-12 2016-08-09 Mitsubishi Electric Corporation Laser light source apparatus and image display apparatus therewith
US9213403B1 (en) * 2013-03-27 2015-12-15 Google Inc. Methods to pan, zoom, crop, and proportionally move on a head mountable display
AU2015266586B2 (en) * 2014-05-30 2020-07-23 Magic Leap, Inc. Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
JP6582481B2 (ja) * 2015-03-25 2019-10-02 セイコーエプソン株式会社 虚像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020060851A1 (en) * 2000-09-27 2002-05-23 Shoichi Yamazaki Image display apparatus and head mounted display using it
CN1867855A (zh) * 2003-09-10 2006-11-22 鲁姆斯有限公司 基片导波的光学装置
JP2007140173A (ja) * 2005-11-18 2007-06-07 Konica Minolta Photo Imaging Inc 映像表示装置
CN101900872A (zh) * 2010-07-27 2010-12-01 中国航空工业集团公司洛阳电光设备研究所 双片式自由曲面头戴显示器光学系统
CN102402005A (zh) * 2011-12-06 2012-04-04 北京理工大学 自由曲面双焦面单目立体头盔显示器装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107251098A (zh) * 2015-03-23 2017-10-13 英特尔公司 使用动态三维形状促进真实对象的真三维虚拟表示
US10120194B2 (en) 2016-01-22 2018-11-06 Corning Incorporated Wide field personal display
US10649210B2 (en) 2016-01-22 2020-05-12 Corning Incorporated Wide field personal display
CN110622110A (zh) * 2017-03-23 2019-12-27 交互数字Ce专利控股公司 提供沉浸式现实内容的方法和装置
CN110622110B (zh) * 2017-03-23 2024-02-23 交互数字Ce专利控股公司 提供沉浸式现实内容的方法和装置
US10976551B2 (en) 2017-08-30 2021-04-13 Corning Incorporated Wide field personal display device
CN113646687A (zh) * 2019-03-19 2021-11-12 威福光学有限公司 用于增强现实或虚拟现实的改进的角度均匀性波导
CN113646687B (zh) * 2019-03-19 2023-04-14 威福光学有限公司 用于增强现实或虚拟现实的改进的角度均匀性波导
CN111308710A (zh) * 2020-02-28 2020-06-19 京东方科技集团股份有限公司 光学显示装置及头戴式成像装置
CN111308710B (zh) * 2020-02-28 2022-07-05 京东方科技集团股份有限公司 光学显示装置及头戴式成像装置
CN115335732A (zh) * 2020-03-24 2022-11-11 斯纳普公司 光学系统

Also Published As

Publication number Publication date
US20150268474A1 (en) 2015-09-24
CN102402005A (zh) 2012-04-04
US20140293434A1 (en) 2014-10-02
US20160274363A1 (en) 2016-09-22
US9052505B2 (en) 2015-06-09
US10330937B2 (en) 2019-06-25
US20180143440A1 (en) 2018-05-24
CN102402005B (zh) 2015-11-25
US9869862B2 (en) 2018-01-16
US9366870B2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
US10330937B2 (en) Near-eye display apparatus
US7542209B2 (en) Compact head mounted display devices with tilted/decentered lens element
US20070177275A1 (en) Personal Display Using an Off-Axis Illuminator
US20210294118A1 (en) Display system providing concentric light field and monocular-to-binocular hybridization
EP2138886A2 (en) Compact virtual display
CN104503087A (zh) 偏振导光的平面波导光学显示器件
CN104656258A (zh) 屈光度可调的曲面波导近眼光学显示器件
WO2021042891A1 (zh) 近眼显示光学系统和近眼显示设备
EP2142953A2 (en) A collimating optical device and system
HU227185B1 (en) Substrage-guided optical beam expander
KR20190123511A (ko) 투시형 디스플레이 장치
US11592684B2 (en) System and method for generating compact light-field displays through varying optical depths
WO2006025317A1 (ja) 光束径拡大光学系及び画像表示装置
KR102129669B1 (ko) 전반사 구조를 갖는 투과형 hmd 광학시스템
WO2020248539A1 (zh) 纳米波导镜片和三维显示装置及眼镜
EP3887888B1 (en) Exit pupil expansion via curved waveguide
CN112415753A (zh) 一种近眼显示装置及制备方法
CN214795415U (zh) 一种近眼显示装置
AU2007203023A1 (en) A Light Guide Optical Device
CN114326123A (zh) 一种近眼显示装置
CN113126299A (zh) 一种投影光机和头戴式智能设备
Hillenbrand et al. See-through near to eye displays: challenges and solution paths
CN117092825B (zh) 解决ar辐辏调节冲突的多焦面显示装置和ar近眼显示设备
CN214151259U (zh) 光学成像系统及头戴式显示设备
CN107561633A (zh) 一种高耦合效率的齿形平面波导光学器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856165

Country of ref document: EP

Kind code of ref document: A1