WO2021042891A1 - 近眼显示光学系统和近眼显示设备 - Google Patents

近眼显示光学系统和近眼显示设备 Download PDF

Info

Publication number
WO2021042891A1
WO2021042891A1 PCT/CN2020/103287 CN2020103287W WO2021042891A1 WO 2021042891 A1 WO2021042891 A1 WO 2021042891A1 CN 2020103287 W CN2020103287 W CN 2020103287W WO 2021042891 A1 WO2021042891 A1 WO 2021042891A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
image
eye display
optical system
semi
Prior art date
Application number
PCT/CN2020/103287
Other languages
English (en)
French (fr)
Inventor
郝希应
陈杭
王雁茹
胡增新
Original Assignee
舜宇光学(浙江)研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舜宇光学(浙江)研究院有限公司 filed Critical 舜宇光学(浙江)研究院有限公司
Publication of WO2021042891A1 publication Critical patent/WO2021042891A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present invention relates to the field of micro-projection technology, and more specifically to a near-eye display optical system and near-eye display equipment.
  • an existing near-eye display optical system such as a display optical machine 10P, usually includes a display unit 11P, a half mirror 12P, and a curved mirror 13P.
  • the image light emitted by the display unit 11P passes through the half
  • the reverse half lens 12P and the curved mirror 13P reflect to the human eye.
  • the curved mirror 13P is a partial reflection mirror, that is, it reflects and transmits light in a certain proportion (for example, reflects 50% of the light and transmits 50% of the light), so that the curved mirror 13P can not only reflect part of the image light back
  • the curved mirror 13P can not only reflect part of the image light back
  • people can see the corresponding virtual image (ie virtual image), and allow the light of the real environment to pass through the curved mirror 13P to be injected into the eyes of the person to make people see the real environment (ie, the real world), thereby passing through the virtual
  • the image and the real world are superimposed to achieve the purpose of enhanced interaction.
  • the existing optical display machine 10P has attracted more and more attention due to its relatively small size and easy to wear, due to the structural limitation of the existing optical display machine 10P, the field of view of the existing optical display machine 10P is Important parameters such as angle, eye point distance, exit pupil, etc. will restrict each other. For example, in order to achieve a larger field of view, the eye point distance and exit pupil must be reduced accordingly, thereby reducing the comfort of wearing Sense and experience, do not meet the current market demand for the development of display light machines. In particular, if a larger field of view angle is to be achieved, the existing display optical machine 10P needs a larger display unit 11P (such as a display screen), but this kind of suitable size screen does not necessarily exist in the market, or it is costly. expensive.
  • a larger display unit 11P such as a display screen
  • An object of the present invention is to provide a near-eye display optical system and a near-eye display device, which can face the market and improve the comfort and experience of the wearer.
  • Another object of the present invention is to provide a near-eye display optical system and a near-eye display device, wherein, in an embodiment of the present invention, the near-eye display optical system can achieve a large field of view, a large eye point distance and/or a large The exit pupil helps to improve the user's experience and comfort, especially for myopia users to add an adaptor when using it, so as to achieve a better experience and visual enjoyment.
  • Another object of the present invention is to provide a near-eye display optical system and a near-eye display device, wherein, in an embodiment of the present invention, the near-eye display optical system can achieve a large field of view, a large eye point distance, and a large exit pupil , Small size, light weight and high image quality, etc., it is convenient to adapt to different groups of people and enhance the comfort of user experience.
  • Another object of the present invention is to provide a near-eye display optical system and a near-eye display device, wherein, in an embodiment of the present invention, the near-eye display optical system can further reduce the volume, while meeting the needs of wearing, rational use of the head Space to improve the comfort of the wearer.
  • Another object of the present invention is to provide a near-eye display optical system and a near-eye display device, wherein, in an embodiment of the present invention, the near-eye display optical system can reduce the vertical size, which is helpful for rational use of head space .
  • Another object of the present invention is to provide a near-eye display optical system and a near-eye display device, wherein, in an embodiment of the present invention, the near-eye display optical system can solve the assembly problem caused by the spatial angle and help make the whole The structure of the system is more compact.
  • Another object of the present invention is to provide a near-eye display optical system and a near-eye display device, wherein, in an embodiment of the present invention, the near-eye display optical system can further reduce the volume of the system through a prism, facilitating the scale-up of the product produce.
  • Another object of the present invention is to provide a near-eye display optical system and a near-eye display device, wherein, in an embodiment of the present invention, the near-eye display optical system can reduce assembly errors through precision machining of a prism, which helps Improve the imaging quality of the system.
  • Another object of the present invention is to provide a near-eye display optical system and a near-eye display device, wherein in order to achieve the above-mentioned object, there is no need to use expensive materials or complicated structures in the present invention. Therefore, the present invention successfully and effectively provides a solution that not only provides a near-eye display optical system and near-eye display device, but also increases the practicability and reliability of the near-eye display optical system and near-eye display device.
  • the present invention provides a near-eye display optical system, including:
  • An image source unit wherein the image source unit has an emission path for emitting image light along the emission path;
  • a visual image magnification system wherein the visual image magnification system has an optical viewing axis;
  • An intermediate image forming unit wherein the intermediate image forming unit is disposed in the optical path between the image source unit and the visual image magnification system, and the intermediate image forming unit is used for receiving The image light emitted by the unit to form an intermediate image between the intermediate image forming unit and the visual image magnifying system, wherein the visual image magnifying system is used to form the intermediate image along the image light
  • the optical viewing axis is guided into the human eye for imaging.
  • the intermediate image forming unit includes a lens group, wherein the lens group is composed of at least one lens.
  • the surface type of the lens of the lens group is selected from one of the group consisting of standard spherical surface type, aspheric surface type, free-form surface type and diffractive surface type, or Many kinds.
  • the near-eye display optical system further includes an optical path folding unit, wherein the optical path folding unit is disposed in the emission path of the image source unit, and the intermediate The image forming unit is located between the image source unit and the light path turning unit, wherein the light path turning unit is used to turn the image light propagating along the emission path so as to deviate from the emission path, and then propagate To the visual image magnification system.
  • the optical path folding unit includes at least one reflecting mirror.
  • the optical path turning unit is a prism.
  • the optical path folding unit includes a reflecting mirror and a wedge mirror, wherein the reflecting mirror and the wedge mirror are disposed on the intermediate image forming unit and the visual image In the optical path between the magnifying systems, it is used to change the propagation direction of the image light through the reflection of the reflecting mirror and the refraction of the wedge mirror, so that the image light propagates to the visual image magnification system.
  • the included angle between the reflecting mirror of the optical path turning unit and the emission path of the image source unit is 45°.
  • the visual image magnification system includes a transflective and transflective unit and a see-through reflecting unit, wherein there is a predetermined angle between the transflective and transflective unit and the optical viewing axis, And the see-through reflection unit is located on the reflection side of the semi-reflective and semi-transparent unit, wherein the semi-reflective and semi-transparent unit is used to partially reflect the image light forming the intermediate image to the see-through reflection unit, wherein The see-through reflection unit is used to partially reflect the image light reflected by the semi-reflective and semi-transparent unit back to the semi-reflective and semi-transparent unit, so as to partially pass through the semi-reflective and semi-transparent unit and be incident into human eyes.
  • the predetermined included angle between the semi-reflective and semi-transparent unit and the optical viewing axis is between 50° and 70°.
  • the semi-reflective semi-transparent unit is a semi-reflective semi-lens, wherein the surface type of the semi-reflective semi-lens is selected from a flat surface type, a spherical surface type, an aspheric surface type and a free-form surface type. One or more of the group consisting of type.
  • the see-through reflection unit is a partial reflection mirror, wherein the surface type of the partial reflection mirror is selected from one of the group consisting of a standard spherical surface type, an aspheric surface type, and a free-form surface type. Kind or more.
  • the visual image magnification system includes a polarization splitting unit, a see-through reflection unit, and a polarization conversion unit, wherein the see-through reflection unit is disposed on the reflection side of the polarization splitting unit, And the polarization conversion unit is arranged between the polarization splitting unit and the see-through reflection unit, wherein the polarization splitting unit is used to reflect the first polarization of the image light propagated to the visual image magnification system Image light, and transmits the second polarized image light of the image light transmitted to the visual image magnifying system; wherein the see-through reflection unit is used to reflect the first polarized image light reflected by the polarization splitting unit Return to the polarization splitting unit, so that the reflected first polarization image light passes through the polarization conversion unit a second time; wherein the polarization conversion unit is used to convert the first polarization image light that passes through the second time into The second polarized image light causes the converted second polarized image light to pass through the polar
  • the polarization splitting unit is a lens coated with a polarization splitting film, and the polarization conversion unit is a quarter wave plate.
  • the image source unit is selected from one of MicroLED, LCD, OLED, DMD, and LCOS type micro display elements.
  • the present invention further provides a near-eye display device, including:
  • At least one near-eye display optical system wherein the near-eye display optical system is disposed on the device main body to be assembled into a near-eye display device with a large field of view;
  • the near-eye display optical system includes:
  • An image source unit wherein the image source unit has an emission path for emitting image light along the emission path;
  • a visual image magnification system wherein the visual image magnification system has an optical viewing axis;
  • An intermediate image forming unit wherein the intermediate image forming unit is disposed in the optical path between the image source unit and the visual image magnification system, and the intermediate image forming unit is used for receiving The image light emitted by the unit to form an intermediate image between the intermediate image forming unit and the visual image magnifying system, wherein the visual image magnifying system is used to form the intermediate image along the image light
  • the optical viewing axis is guided into the human eye for imaging.
  • Fig. 1 shows a schematic diagram of the structure of an existing display light machine.
  • FIG. 2 is a schematic structural diagram of a near-eye display optical system according to a first embodiment of the present invention.
  • FIG. 3 shows a schematic diagram of the optical path of the near-eye display optical system according to the above-mentioned first embodiment of the present invention.
  • FIG. 4 shows a modified implementation of the near-eye display optical system according to the above-mentioned first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the optical path of a near-eye display optical system according to a second embodiment of the present invention.
  • FIG. 6A shows a first modified embodiment of the near-eye display optical system according to the above-mentioned second embodiment of the present invention.
  • FIG. 6B shows a second modified embodiment of the near-eye display optical system according to the above-mentioned second embodiment of the present invention.
  • FIG. 6C shows a third modified embodiment of the near-eye display optical system according to the above-mentioned second embodiment of the present invention.
  • FIG. 6D shows a fourth modified embodiment of the near-eye display optical system according to the above-mentioned second embodiment of the present invention.
  • Fig. 7 shows an example of a near-eye display device according to an embodiment of the present invention.
  • Fig. 8 is a schematic flowchart of a manufacturing method of a near-eye display optical system according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a display method of a near-eye display optical system according to an embodiment of the present invention.
  • the term "a” in the claims and specification should be understood as “one or more”, that is, in one embodiment, the number of an element may be one, and in another embodiment, the number of the element It can be more than one. Unless it is clearly stated in the disclosure of the present invention that the number of the element is only one, the term “one” cannot be understood as unique or singular, and the term “one” cannot be understood as a limitation on the number.
  • near-eye display devices capable of realizing augmented reality have become more and more popular and used by people.
  • the existing near-eye display optical system based on the structure shown in FIG. 1 has attracted more and more attention due to its relatively small size and convenient wearing.
  • important parameters such as the field of view, eye point distance, and exit pupil of the existing display optical system will restrict each other.
  • a large field of view will inevitably reduce the eye point distance and exit pupil accordingly, thereby reducing the comfort and experience of wearing, which does not meet the current market demand for the development of display optics.
  • the existing display optical system needs a larger display screen, but this kind of suitable size screen does not necessarily exist in the market, or the cost is expensive, and cannot meet the market demand. .
  • the first embodiment of the present invention provides a new near-eye display optical system, which can achieve a large field of view, a large eye point distance and/or The large exit pupil helps to enhance the user experience.
  • the near-eye display optical system 10 includes an image source unit 11, a visual image magnification system 12, and an intermediate image forming unit 13, wherein the intermediate image forming unit 13 is arranged at all. In the optical path between the image source unit 11 and the visual image magnifying system 12.
  • the image source unit 11 is used to emit image light 1100 along the emission path 110, and the intermediate image forming unit 13 is used to receive the image light 1100 emitted through the image source unit 11 to An intermediate image 130 is formed between the intermediate image forming unit 13 and the visual image magnifying system 12; wherein the visual image magnifying system 12 is used to guide the image light 1100 that forms the intermediate image 130 into the human eye Take imaging.
  • the visual image magnification system 12 is also used to guide the ambient light into the human eye for imaging to be viewed, so that the user can use the near-eye display optical system 10 Simultaneously see the virtual image corresponding to the image light 1100 and the real image corresponding to the ambient light, thereby obtaining an augmented reality experience. It is understandable that in other examples of the present invention, the visual image magnification system 12 cannot guide the ambient light into the human eye to form a corresponding real image to be viewed, so that the user can only use the near-eye display optical system 10 The virtual image corresponding to the image light 1100 can be seen to obtain the experience of virtual reality.
  • the intermediate image 130 formed by the intermediate image forming unit 13 is used as a virtual image, the intermediate image 130 can be used as a virtual screen. Therefore, the intermediate image 130 can be used as required. Freely adjusting the size and position without being restricted by the screen market helps increase the angle of view of the near-eye display optical system 10. It is understandable that the existence of the intermediate image 130 can well balance the relationship between the angle of view, the eye point distance, and the exit pupil of the near-eye display optical system 10, which helps to make the near-eye display optical system 10 can achieve the effects of large field of view, large eye point distance and large exit pupil at the same time.
  • the intermediate image forming unit 13 may, but is not limited to, be provided on the emission path 110 of the image source unit 11, and the intermediate image forming unit 13 is located between the image source unit 11 and the visual image. Between the magnifying systems 12, so that the image light 1100 from the image source unit 11 is converged between the intermediate image forming unit 13 and the visual image magnifying system 12 through the intermediate image forming unit 13 The intermediate image 130 is formed.
  • the viewing angle (not shown in the figure) of the near-eye display optical system 10 can be implemented but not limited to 50° to 70°, so that the user can obtain a comfortable experience with a large viewing angle.
  • the eye point distance (not shown in the figure) of the near-eye display optical system 10 can be implemented but not limited to 18 mm to 25 mm, which is convenient for myopic users to add adapters and improve wearing comfort.
  • the lateral exit pupil (not shown in the figure) of the near-eye display optical system 10 can be, but is not limited to, implemented to be 8 mm to 14 mm, which helps to improve the user experience and is suitable for people with different interpupillary distances.
  • the image source unit 11 of the near-eye display optical system 10 can be, but is not limited to, implemented as, for example, a MicroLED type micro display element, an LCD type micro display element, Image source such as OLED type micro display element, DMD type micro display element or LCOS type micro display element, etc.
  • the visual image magnification system 12 of the near-eye display optical system 10 has an optical viewing axis 120, so that the user can simultaneously see along the optical viewing axis 120 The virtual image corresponding to the image light 1100 and the real image corresponding to the ambient light, thereby obtaining an augmented reality experience.
  • the visual image magnification system 12 includes a transflective and transflective unit 121 and a see-through reflecting unit 122, wherein there is a predetermined included angle ⁇ between the transflective and transflective unit 121 and the optical viewing axis 120.
  • the see-through reflection unit 122 is located on the reflection side of the semi-reflective and semi-transparent unit 121, wherein the semi-reflective and semi-transparent unit 121 is used to partially reflect the image light 1100 forming the intermediate image 130 to the The see-through reflection unit 122, wherein the see-through reflection unit 122 is used to partially reflect the image light 1100 reflected by the semi-reflective and semi-transmissive unit 121 back to the semi-reflective and semi-transparent unit 121 so as to pass through the semi-transparent unit 121 After the transflective unit 121, it enters the human eye along the optical viewing axis 120 to form an enlarged virtual image.
  • ambient light from the real world can partially pass through the see-through reflecting unit 122 and the semi-reflective and semi-transparent unit 121 in sequence to be incident into the human eye along the optical viewing axis 120 to form a real image, so that The user can simultaneously see the virtual image corresponding to the image light 1100 and the real image corresponding to the ambient light along the optical viewing axis 120, thereby obtaining an augmented reality experience.
  • the optical viewing axis 120 of the visual image magnification system 12 may be the main viewing axis defined by the semi-reflective and semi-transparent unit 121 and the see-through reflection unit 122, so that the user can move along the The optical viewing axis 120 can not only see the image light emitted by the image source unit 11, but also the external ambient light, so as to obtain an augmented reality experience combining virtual and real.
  • the semi-reflective and semi-transparent unit 121 is disposed on the emission path 110 of the image source unit 11, so that the image light emitted through the image source unit 11 1100 passes through the intermediate image forming unit 13 and the transflective and transflective unit 121 of the visual image magnifying system 12 in sequence along the emission path 110.
  • the optical path between the image source unit 11 and the visual image magnification system 12 is basically the same as the emission path 110 of the image source unit 11.
  • the transflective and transflective unit 121 of the visual image magnification system 12 is positioned on the emission path 110 of the image source unit 11.
  • the predetermined included angle ⁇ between the semi-reflective and semi-transparent unit 121 and the optical viewing axis 120 is between 50° and 70°, which helps to reduce the thickness of the near-eye display optical system 10 , It is convenient for users to wear and improve comfort.
  • the eye-relief that is, the near-eye display optical system 10.
  • the eye-point distance such as the distance from the lens to the forehead, is increased, so that the near-sighted or long-sighted user can increase the adapter to improve the user's wearing experience and comfort.
  • this configuration also helps to make the near-eye display optical system 10 more compact than the existing optical machine through the design adjustment of the entire system, and is suitable for meeting the current development trend of miniaturization and thinning.
  • the semi-reflective semi-transparent unit 121 can be, but is not limited to, implemented as a semi-reflective semi-lens having a flat surface, a spherical surface, an aspheric surface, or/and a free-form surface.
  • the surface type of the semi-reflective and semi-transparent unit 121 may be, but is not limited to, implemented as one or more selected from the group consisting of a flat surface type, a spherical surface type, an aspheric surface type, and a free-form surface type.
  • the transflective and transflective unit 121 can be, but not limited to, be implemented as an optical lens coated with a transflective and transflective film, and the transflective and transflective film faces the
  • the intermediate image forming unit 13 and the see-through reflecting unit 122 are configured to reflect half of the image light 1100 from the intermediate image forming unit 13 to the see-through reflecting unit 122 through the semi-reflective film.
  • the see-through reflection unit 122 may, but is not limited to, be implemented as a partial reflection mirror having a surface type such as a standard spherical surface, an aspheric surface, or/and a free-form surface.
  • the surface type of the see-through reflection unit 122 can be, but is not limited to, implemented as one or more selected from a standard spherical surface type, an aspheric surface type, and a free-form surface type.
  • the see-through reflection unit 122 can be, but is not limited to, implemented as an optical lens coated with a partially reflective film, and the partially reflective film faces the semi-reflective and semi-transparent unit 121 so as to pass through the partially reflective film. A part of the image light 1100 from the transflective and transflective unit 121 is reflected back to the transflective and transflective unit 121.
  • the see-through reflection unit 122 is used to reflect and transmit light according to a certain ratio.
  • the see-through reflection unit 122 can reflect half of the light and allow the other half of the light to pass through.
  • the see-through reflection unit 122 can reflect 60% of the light and allow 40% of the light to pass through, so as to change the contrast of the near-eye display optical system 10.
  • the intermediate image forming unit 13 of the near-eye display optical system 10 may, but is not limited to, include a lens group 131, wherein the lens group 131 is composed of at least one lens for alignment
  • the image light 1100 from the image source unit 11 is shaped so that the image light 1100 is converged to form the intermediate image 130.
  • the lens group 131 may be composed of multiple lenses to modulate the image light by a combination of different lenses to form the intermediate image 130.
  • the surface type of the lens in the lens group 131 of the present invention may be, but not limited to, one or more selected from the group consisting of standard spherical surface type, aspheric surface type, free-form surface type and diffractive surface type.
  • the lens group 131 of the present invention may be composed of a lens having a surface type such as a free standard spherical surface, an aspheric surface, a free curved surface, or a diffractive surface.
  • Fig. 4 shows a modified implementation of the near-eye display optical system 10 according to the above-mentioned first embodiment of the present invention.
  • the difference of the near-eye display optical system 10' according to the modified embodiment of the present invention is that the visual image of the near-eye display optical system 10' is enlarged
  • the system 12' includes a polarization splitting unit 121', a see-through reflection unit 122', and a polarization conversion unit 123'.
  • the polarization splitting unit 121' is arranged on the emission path 110 of the image source unit 11, and the intermediate image forming unit 13 is located between the image source unit 11 and the polarization splitting unit 121', wherein The polarization splitting unit 121 ′ is used to reflect the first polarized image light 1101 of the image light 1100 forming the intermediate image 130 and transmit the second polarized image light 1102 of the image light 1100 forming the intermediate image 130.
  • the see-through reflection unit 122' is arranged on the reflection side of the polarization splitting unit 121', and the polarization conversion unit 123' is arranged between the polarization splitting unit 121' and the see-through reflection unit 122',
  • the see-through reflection unit 122' is used to reflect part or all of the first polarized image light 1101 reflected by the polarization splitting unit 121' back to the polarization splitting unit 121', so that all the reflected light
  • the first polarized image light 1101 passes through the polarization conversion unit 123' twice; wherein the polarization conversion unit 123' is used to transfer the first polarized image light 1101 that has passed through the polarization conversion unit 123' twice Converted into the second polarized image light 1102, so that the converted second polarized image light 1102 can pass through the polarization splitting unit 121' to be along the optical viewing axis of the visual image magnifying system 12' 120' is incident into the human eye to form an enlarged virtual image.
  • ambient light can also sequentially pass through the see-through reflection unit 122', the polarization conversion unit 123', and the polarization splitting unit 121' to be incident into the human eye to form a real image, thereby realizing an augmented reality experience.
  • the first polarized image light 1101 can be implemented as polarized light having a first polarization state
  • the second polarized image light 1102 can be implemented as having The polarization direction of the second polarization state, wherein the polarization direction of the first polarization image light 1101 is preferably perpendicular to the polarization direction of the second polarization image light 1102.
  • the first polarized image light 1101 may but is not limited to be implemented as S-polarized light or P-polarized light
  • the second polarized image light 1102 may be, but not limited to, be implemented as P-polarized light or S-polarized light.
  • the optical viewing axis 120' of the visual image magnifying system 12' may be the main viewing axis defined by the polarization splitting unit 121' and the see-through reflection unit 122', so that the user can move along the optical
  • the viewing axis 120' can not only see the image light emitted by the image source unit 11, but also the external ambient light, so as to obtain an augmented reality experience integrating virtual and real.
  • the second deflected image light 1102 converted by the polarization conversion unit 123' can completely pass through the polarization splitting unit 121', it will not be affected by the polarization splitting unit 121'.
  • the loss occurs due to reflection, which helps to improve the light energy utilization rate of the image light of the near-eye display optical system 10'.
  • the see-through reflection unit 122' of the near-eye display optical system 10' is a partial reflector (for example, it reflects 50% of light and transmits 50% of light), the image light only reaches all the lights for the first time.
  • the polarization splitting unit 121' and the see-through reflection unit 122' respectively lose half of the loss, that is, the near-eye display optical system 10' has a light energy utilization rate of 25% for image light, which is higher than that of the existing display light.
  • the machine 10P has doubled the light energy utilization rate of the image light.
  • the polarization conversion unit 123' can be, but is not limited to, implemented as a quarter-wave plate for passing through the quarter-wave plate twice.
  • the first or second polarized image light 1101, 1102 is converted into the second or first polarized image light 1102, 1101.
  • the polarization splitting unit 12 may be, but not limited to, be implemented as an optical lens coated with a polarization splitting film for reflecting the first polarized image light 1101 in the image light 1100 and transmitting the image light 1100 The second polarized image light in 1102.
  • the half of the visual image magnifying system 12 (12') is in the emission path 110 of the image source unit 11.
  • the near-eye display optical system 10 (10') is placed so that the optical viewing axis 120 (120') of the visual image magnifying system 12 (12') is in a horizontal state (as shown in FIG.
  • the image source unit 11 and the intermediate image forming unit 13 are correspondingly located above the visual image magnification system 12 (12') to pass the visual image magnification system 12 (12')
  • the thickness of the near-eye display optical system 10 (10') and pass through the half mirror of the image source unit 11, the intermediate image forming unit 13, and the visual image magnifying system 12 (12')
  • the semi-transmissive unit 121 or the polarization splitting unit 121' together define the height of the near-eye display optical system 10 (10').
  • the near-eye display optical system 10 (10') in the above-mentioned first embodiment of the present invention and its modified embodiments can provide a larger field of view because of the ability to form the intermediate image 130, it is
  • the intermediate image forming unit 13 of the near-eye display optical system 10 (10') includes a lens group composed of a plurality of lenses, that is, the intermediate image forming unit 13 is in a direction along the emission path 110 Therefore, the height of the near-eye display optical system 10 (10') is relatively large, and the head space of the user cannot be fully utilized, which is not conducive to wearing, and the wearing comfort of the user is reduced.
  • the second embodiment of the present invention further provides a near-eye display optical system, which can reduce the overall height of the near-eye display optical system, thereby reducing the overall volume of the system.
  • the near-eye display optical system 10 according to the second embodiment of the present invention is different in that: the near-eye display
  • the optical system 10 further includes a light path folding unit 14, wherein the light path folding unit 14 is disposed on the emission path 110 of the image source unit 11, and the intermediate image forming unit 13 is located on the image source unit.
  • the light path turning unit 14 is used for turning the image light 1100 passing through the intermediate image forming unit 13 to propagate to the visual image magnifying system 12, Then, the redirected image light 1100 is guided into the human eye through the visual image magnification system 12 to form an enlarged virtual image.
  • the light path turning unit 14 can bend the propagation path of the image light (that is, the light path turning unit 14 can bend the image source unit 11 and the target).
  • the optical path between the visual image magnifying systems 12 so that the image light propagates to the visual image magnifying system 12 after being turned, so the visual image magnifying system 12 of the near-eye display optical system 10 may not be set
  • the emission path 110 of the image source unit 11 can deviate from the height direction of the near-eye display optical system 10 (the vertical direction in FIG. 5) , which helps to reduce the system height of the near-eye display optical system 10, rationally utilize the head space, and improve the wearing comfort.
  • the emission path 110 of the image source unit 11 is perpendicular to the height direction of the near-eye display optical system 10, that is, the emission path 110 of the image source unit 11 is preferably in a horizontal plane, So that the intermediate image forming unit 13 (lateral size) of the near-eye display optical system 10 and the transflective and transflective unit 121 of the visual image magnification system 12 define the height of the near-eye display optical system 10, In order to minimize the height of the near-eye display optical system 10.
  • the light path turning unit 14 is used to turn the image light 1100 from the image source unit 11 by 90°, so that the image source unit 11 and the intermediate image forming unit 13 can be arranged lying flat on
  • the upper part of the visual image magnifying system 12 helps to minimize the overall height of the near-eye display optical system 10.
  • the emission path 110 of the image source unit 11 is further perpendicular to the optical viewing axis 120 of the visual image magnification system 12 of the near-eye display optical system 10, that is, the image
  • the source unit 11 and the intermediate image forming unit 13 are arranged lying flat above the visual image magnifying system 12 along the length direction of the visual image magnifying system 12 (the left-right direction as shown in FIG. 5) , It is helpful to reduce the thickness of the near-eye display optical system 10 (in the front-rear direction as shown in FIG. 5), thereby reducing the overall size of the near-eye display optical system 10.
  • the optical path folding unit 14 of the near-eye display optical system 10 may include at least one reflector, wherein the reflector is configured to reflect the image propagating along the emission path 110
  • the light 1100 is used to make the image light 1100 propagate to the visual image magnification system 12 in a reversing manner.
  • each of the reflecting mirrors can fold back the optical path between the image source unit 11 and the visual image magnifying system 12 through reflection.
  • the optical path folding unit 14 of the near-eye display optical system 10 includes one of the reflecting mirrors, wherein the reflecting environment can be but not limited to be implemented as A spatial mirror 141, wherein the spatial mirror 141 is disposed between the intermediate image forming unit 13 and the visual image magnifying system 12, and the spatial mirror 141 corresponds to the image source unit 11
  • the emission path 110 of the emission path 110 wherein the space mirror 141 is inclined to a horizontal plane and a vertical plane parallel to the emission path 110 at the same time, so that the image light 1100 along the emission path 110 passes through the space mirror After one reflection of 141, it propagates to the semi-reflective and semi-transparent unit 121 of the visual image magnifying system 12.
  • the spatial mirror 141 is arranged according to a predetermined spatial angle, so that the propagation path of the image light 1100 after being reflected once by the spatial mirror 141 is inclined to the horizontal plane and the vertical plane to ensure the The image light 1100 along the emission path 110 is reflected by the spatial mirror 141 and then travels to the semi-reflective and semi-transparent unit 121 of the visual image magnification system 12.
  • the horizontal tilt angle and the vertical tilt angle are both acute angles to ensure that the space mirror 141 is tilted to a horizontal plane parallel to the emission path 110 at the same time. And vertical planes.
  • the spatial mirror 141 may be implemented as a flat mirror coated with a reflective film. More preferably, the spatial mirror 141 is implemented as a plane mirror coated with a total reflection film. It can be understood that the plane mirror has the spatial angle due to being inclined to the horizontal plane and the vertical plane at the same time, so that the plane mirror is implemented as the spatial mirror 141 in this embodiment of the present invention.
  • the spatial mirror 141 can also be implemented as a curved mirror coated with a reflective film, so that while reflecting the image light, it can also modulate the image light. Or plastic surgery.
  • FIG. 6A shows a first modified embodiment of the near-eye display optical system 10 according to the above-mentioned second embodiment of the present invention. Specifically, as shown in FIG.
  • the difference between the near-eye display optical system 10A according to the first modified embodiment of the present invention is: the near-eye display optical
  • the reflecting mirror of the optical path turning unit 14A of the system 10A includes a first reflecting mirror 141A and a second reflecting mirror 142A, wherein the first reflecting mirror 141A corresponds to the emission of the image source unit 11 Path 110, and the first reflection mirror 141A is inclined to a vertical plane parallel to the emission path 110, wherein the second reflection mirror 142A is disposed on the reflection side of the first reflection mirror 141A, and the The second mirror 142A is inclined to a horizontal plane parallel to the emission path 120, so that the image light 1100 propagating along the emission path 110 first passes through the reflection of the first mirror 141A to be parallel to the emission path 110.
  • the propagation direction of the image light 1100 is changed for the first time in the horizontal plane of, and then the propagation direction of the image light 1100 is changed for the second time by the reflection of the second mirror 142A, so as to propagate to the magnification of the visual image
  • the first mirror 141A and the vertical plane parallel to the emission path 110 there is a vertical inclination angle (that is, a plane angle) between the first mirror 141A and the vertical plane parallel to the emission path 110, and the first mirror 141A is perpendicular to the emission path 110.
  • the path 110 that is, the first mirror 141A and the second mirror 142A are arranged at a predetermined plane angle, so that the propagation path of the image light 1100 reflected by the first mirror 141A is parallel to all
  • the horizontal plane, and the propagation path of the image light 1100 after being reflected by the second mirror 142A is parallel to the plane perpendicular to the emission path 110 to ensure that the image light 1100 along the emission path 110 is in sequence After being reflected by the first
  • both the first mirror 141A and the second mirror 142A can be implemented as a flat mirror coated with a reflective film. More preferably, both the first mirror 141A and the second mirror 142A are implemented as flat mirrors coated with a total reflection film. It can be understood that the first reflector 141A and the second reflector 142A have the plane angle because they are inclined to the vertical plane and the horizontal plane, so that the spatial plane mirror is in this embodiment of the present invention. , Respectively, are implemented as the first mirror 141A and the second mirror 142A.
  • the first mirror 141A and the second mirror 142A can also be implemented as curved mirrors coated with a reflective film, so as to reflect the image light at the same time,
  • the image light can also be modulated or shaped.
  • the image light 1100 along the emission path 110 is The reflection by the first mirror 141A travels in a direction perpendicular to the emission path 110. It can be understood that the image light 1100 reflected by the first mirror 141A travels in a direction perpendicular to the emission path 110, and the second mirror 142A is parallel to the emission path 110. Therefore, the image light 1100 propagating along the emission path 110 propagates in a plane perpendicular to the emission path 110 during the reflection process of the first mirror 141A and the second mirror 142A in turn. , And then spread to the transflective and transflective unit 121 of the visual image magnification system 12.
  • the optical path folding unit 14A of the near-eye display optical system 10A is configured by the first mirror 141A and the second mirror 142A.
  • the spatial mirror 141 is replaced to achieve the same turning effect.
  • the optical path folding unit 14A of the near-eye display optical system 10A decomposes the spatial angle of the spatial mirror 141 into the plane angle of the first mirror 141A and the second mirror 142A, which helps In order to reduce the difficulty of assembling the optical path turning unit 14A, and reduce the errors introduced in the actual assembly process.
  • the optical path of the near-eye display optical system 10A of the present invention is sequentially reflected by the first reflector 141A and the second reflector 142A, so that the optical path of the near-eye display optical system 10A is deflected on the optical path.
  • the increase of the optical path at the unit 14A helps to make the structure of the entire system more compact and reduce the volume of the near-eye display optical system 10A.
  • FIG. 6B shows a second modified implementation of the near-eye display optical system 10 according to the above-mentioned second embodiment of the present invention.
  • the near-eye display optical system 10B according to the second modified embodiment of the present invention is different in that: the near-eye display optical
  • the optical path turning unit 14B of the system 10B is implemented as a prism 141B, wherein the prism 141B is used to refract the image light 1100 propagating along the emission path 110, so that the image light 1100 is turned to propagate to the The visual image magnification system 12 is described.
  • the prism 141B can be, but not limited to, implemented as a special-shaped polygonal prism.
  • the prism 141B has a first working surface S1, a second working surface S2, a third working surface S3, and a fourth working surface S4 arranged correspondingly, wherein the prism 141B has a first working surface S1, a second working surface S2, a third working surface S3, and a fourth working surface S4.
  • the first working surface S1 corresponds to the emission path 110 of the image source unit 11, and the fourth working surface S4 of the prism 141B corresponds to the transflective image of the visual image magnifying system 12
  • the unit 121 makes the image light 1100 emitted by the image source unit 11 enter the prism 141B through the first working surface S1 of the prism 141B after passing through the intermediate image forming unit 13 to propagate To the second working surface S2 of the prism 141B, and then reflected by the second working surface S2 of the prism 141B to propagate to the third working surface S3 of the prism 141B, and then pass through the The third working surface S3 of the prism 141B is reflected to propagate to the fourth working surface S4 of the prism 141B, and finally the prism 141B is emitted through the fourth working surface S4 of the prism 141B to propagate To the transflective and transflective unit 121 of the visual image magnification system 12.
  • the prism 141B can be, but not limited to, implemented as a special-shaped polygonal prism formed by splicing two right-angle prisms.
  • the prism 141B can also be made integrally.
  • the second working surface S2 and the third working surface S3 of the prism 141B are implemented as two reflecting surfaces to pass through the second working surface S2 and the third working surface S2 of the prism 141B.
  • the third working surface S3 replaces the first reflecting mirror 141A and the second reflecting mirror 142A, respectively.
  • the assembly of the prism 141B is better than that of the first
  • the assembly of the first reflector 141A and the second reflector 142A is much easier, which is closer to the mass production of products, which helps to further reduce the errors that may be introduced during assembly of the near-eye display optical system 10B.
  • the optical path of the near-eye display optical system 10B is in the prism 141B (that is, the optical path The optical path at the folding unit 14B) is larger, which is beneficial for the near-eye display optical system 10B to be further reduced in size under the same optical path.
  • the second working surface S2 and the third working surface S3 of the prism 141B are both implemented as total internal reflection surfaces, so that the image incident through the first working surface S1 of the prism 141B The light 1100 is totally internally reflected at the second working surface S2 of the prism 141B, and the image light 1100 reflected by the second working surface S2 of the prism 141B is reflected at the third working surface S2 of the prism 141B. Total internal reflection occurs at the working face S3.
  • the second working surface S2 and the third working surface S3 of the prism 141B can also be implemented as prism surfaces coated with a reflective film, which can also achieve the effect of reflection. This is not repeated in the present invention.
  • the first working surface S1 of the prism 141B is perpendicular to the emission path 110 of the image source unit 11, so that the image light 110 propagating along the emission path 110 is on the prism 141B.
  • the first working surface S1 does not undergo refraction, so as to keep the image light 110 continuing to propagate along the emission path 110 to the second working surface S2 of the prism 141B.
  • the surface shapes of the first working surface S1, the second working surface S2, the third working surface S3, and the fourth working surface S4 of the prism 141B can be selected, but not limited to.
  • the imaging quality of the optical system 10B is displayed, and the volume of the system is reduced, which will not be repeated in the present invention.
  • FIG. 6C shows a third modified embodiment of the near-eye display optical system 10 according to the above-mentioned second embodiment of the present invention.
  • the difference of the near-eye display optical system 10C according to the third modified embodiment of the present invention is: the optical path of the near-eye display optical system 10C
  • the folding unit 14C includes a reflecting mirror 141C and a wedge mirror 142C, wherein the reflecting mirror 141C and the wedge mirror 142C are respectively arranged in the optical path between the intermediate image forming unit 13 and the visual image magnifying system 12 , Used to change the propagation direction of the image light emitted by the image source unit 11 through the reflection of the reflecting mirror 141C and the refraction of the wedge mirror 142C, so that the image light is bent and propagated to The visual image magnification system 12.
  • the reflecting mirror 141C is correspondingly arranged on the emission path 110 of the image source unit 11, and the wedge mirror 142C is arranged on the reflecting mirror 141C and the visual image magnifying system 12
  • the wedge mirror 142C has an incident surface 1421C facing the reflecting mirror 141C and an exit surface 1422C facing the half mirror 121, so that the image source unit 11 After the emitted image light 1100 passes through the intermediate image forming unit 13, it is first reflected by the reflecting mirror 141C to propagate to the incident surface 1421C of the wedge mirror 142C, and then passes through the wedge mirror 142C.
  • the incident surface 1421C enters the wedge mirror 142C to propagate to the exit surface 1422C of the wedge mirror 142C, and finally exits the wedge mirror 142C through the exit surface 1422C of the wedge mirror 142C to propagate to all the wedge mirrors 142C.
  • the transflective and transflective unit 121 of the visual image magnification system 12 is described.
  • the incident surface 1421C of the wedge mirror 142C is not parallel to the exit surface 1422C of the wedge mirror 142C, so that the image light 1100 is passing through The propagation direction after the wedge mirror 142C is changed, so the wedge mirror 142C can replace the second mirror 142A in the second modified embodiment of the present invention to achieve an inclination angle in another direction, which helps The assembly error of the near-eye display optical system 10C is reduced.
  • the wedge mirror 142C may also be arranged between the image source unit 11 and the reflecting mirror 142C, so that the wedge mirror 142C can replace the second embodiment of the present invention.
  • the first reflector 141A in the modified embodiment can achieve an inclination angle in a desired direction, which will not be repeated in the present invention.
  • the reflection mirror 141C and the emission path 110 of the image source unit 11 form an angle of 45°, so that the image light 1100 propagating along the emission path 110 is reflected by the reflection mirror 141C along the Propagating in a direction perpendicular to the reflection path 110 helps to reduce the overall assembly difficulty of the near-eye display optical system 10C while ensuring the high assembly accuracy of the reflecting mirror 141C.
  • FIG. 6D shows a fourth modified embodiment of the near-eye display optical system 10 according to the above-mentioned second embodiment of the present invention.
  • the difference of the near-eye display optical system 10D according to the fourth modified embodiment of the present invention is: the optical path of the near-eye display optical system 10D
  • the turning unit 14D is implemented as a prism 141D, wherein the prism 141D has a first working surface S1', a second working surface S2', and a third working surface S3 arranged correspondingly, wherein the prism 141D
  • the first working surface S1' corresponds to the emission path 110 of the image source unit 11
  • the third working surface S3' of the prism 141D corresponds to all of the visual image magnifying system 12
  • the semi-reflective and semi-transparent unit 121 enables the image light 1100 emitted by the image source unit 11 to pass through the intermediate image forming unit 13, and then enter the first working surface S1' of
  • the prism 141D is propagated to the second working surface S2' of the prism 141D, and then reflected by the second working surface S2' of the prism 141D to propagate to the third working surface S2' of the prism 141D.
  • the working surface S3 ′ finally emits the prism 141D through the third working surface S3 ′ of the prism 141D to propagate to the transflective and transflective unit 121 of the visual image magnifying system 12.
  • the prism 141D can be, but is not limited to, implemented as a right-angle prism. It is worth noting that the second working surface S2' of the prism 141D is implemented as a reflective surface, and the space mirror 141 is replaced by the second working surface S2' of the prism 141D. Since the prism 141D is as a whole, and the second working surface S2' of the prism 141D can be made by precision machining, the assembly of the prism 141D is easier than the assembly of the spatial mirror 141 More, closer to the large-scale production of products, which helps to further reduce the errors that may be introduced during assembly of the near-eye display optical system 10D.
  • the second working surface S2' of the prism 141D is implemented as a total internal reflection surface, so that the image light 1100 incident on the first working surface S1' of the prism 141D is on the prism Total internal reflection occurs at the second working surface S2' of 141D.
  • the second working surface S2' of the prism 141D can also be implemented as a prism surface coated with a reflective film, which can also achieve the effect of reflection, which will not be repeated in the present invention. .
  • the first working surface S1' of the prism 141D is perpendicular to the emission path 110 of the image source unit 11, so that the image light 110 propagating along the emission path 110 is on the prism 141D. No refraction occurs at the first working surface S1' to keep the image light 110 from continuing to propagate along the emission path 110 to the second working surface S2' of the prism 141D, which helps simplify the system Difficulty in optical path design.
  • the near-eye display optical system in addition to the above-mentioned structure, other structures of the near-eye display optical system are the same as those of the near-eye display according to the first embodiment of the present invention.
  • the structure of the optical system is the same, and the near-eye display optical system also has modified implementations similar to or the same as the various modified implementations of the near-eye display optical system of the first embodiment, which will not be repeated here.
  • the near-eye display optical system may further include an anti-interference unit (not shown in the figure) for preventing interference from ambient light from below, so that the near-eye display optical system has a relatively high Good anti-artifact effect; or, the near-eye display optical system may further have a privacy protection function to reduce the overflow of image light, thereby preventing the leakage of the image displayed by the near-eye display optical system.
  • an anti-interference unit not shown in the figure
  • the near-eye display optical system may further have a privacy protection function to reduce the overflow of image light, thereby preventing the leakage of the image displayed by the near-eye display optical system.
  • the present invention further provides a near-eye display device equipped with a near-eye display optical system, so that the near-eye display device has a larger field of view, a large eye point distance, and/or Or a large exit pupil helps to improve the user experience.
  • the near-eye display device 1 may include at least one near-eye display optical system 10 and a device main body 20, wherein the near-eye display optical system 10 is disposed on the device main body 20 to The near-eye display device 1 is provided with a larger angle of view.
  • the near-eye display device 1 when a user wears the near-eye display device 1 for an augmented reality experience, the user can see a larger virtual image through the near-eye display device 1, so that the user can watch a larger-scale virtual and real fusion screen. Improve the user's perception experience.
  • the near-eye display device 1 due to the small size and light weight of the near-eye display optical system 10, the near-eye display device 1 can improve the wearing comfort of the user.
  • the device main body 20 can be, but is not limited to, implemented as a glasses main body, so that the near-eye display device 1 is implemented as AR glasses with a large field of view, which helps to improve the user experience. It is understandable that in other examples of the present invention, the near-eye display device 1 may also be implemented as other types of AR/VR devices such as AR/VR helmets.
  • an embodiment of the present invention further provides a manufacturing method of the near-eye display optical system.
  • the manufacturing method of the near-eye display optical system 10 includes the steps:
  • S310 Arrange an intermediate image forming unit 13 in the optical path between an image source unit 11 and a visual image magnifying system 12, and the intermediate image forming unit 13 is used to receive the image emitted via the image source unit 11
  • Light 1100 to form an intermediate image 130 between the intermediate image forming unit 13 and the visual image magnifying system 12, wherein the visual image magnifying system 12 is used to form the intermediate image 130
  • the light 1100 is introduced into the human eye to form an image.
  • the manufacturing method of the near-eye display optical system 10 further includes the following steps:
  • S320 Arrange a light path turning unit 14 on the emission path 110 of the image source unit 11, and the intermediate image forming unit 13 is located between the light path turning unit 14 and the image source unit 11, wherein The light path turning unit 14 is used for turning the image light 1100 passing through the intermediate image forming unit 13 to propagate to the visual image magnifying system 12.
  • an embodiment of the present invention further provides a display method of the near-eye display optical system.
  • the display method of the near-eye display optical system 10 includes the steps:
  • S410 Use an image source unit 11 to emit an image light 1100 along the emission path 110 of the image source unit 11;
  • S420 Receive the image light 1100 by an intermediate image forming unit 13 to form an intermediate image 130 between the intermediate image forming unit 13 and a visual image magnifying system 12;
  • the display method of the near-eye display optical system 10 between the step S420 and the step S440, further includes the steps:
  • S430 Using a light path turning unit 14 to turn the image light 1100 forming the intermediate image 130 so that the image light 1100 propagates to the visual image magnification system 12.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一近眼显示光学系统(10)和近眼显示设备(1)。该近眼显示光学系统(10)包括图像源单元(11)、目视图像放大系统(12)以及中间像形成单元(13)。该图像源单元(11)用于沿着发射路径发射图像光线(1100)。该目视图像放大系统(12)具有一光学观看轴。该中间像形成单元(13)被设置于该图像源单元(11)和该目视图像放大系统(12)之间的光路中,其中该中间像形成单元(13)用于接收经由该图像源单元(11)发射的该图像光线(1100),以在该中间像形成单元(13)和该目视图像放大系统(12)之间形成一中间像(130),其中该目视图像放大系统(12)用于将形成该中间像(130)的该图像光线(1100)沿着该光学观看轴导入人眼以成像。

Description

近眼显示光学系统和近眼显示设备 技术领域
本发明涉及微投影技术领域,更具体地涉及一近眼显示光学系统和近眼显示设备。
背景技术
近年来,随着微型显示芯片技术的出现,小型化和高分辨率的投影显示成为可能。而随着投影显示技术的不断发展和市场需求,可穿戴的微投影系统越来越受到重视,尤其是在现如今发展火热的增强现实(Augmented reality,AR)或/和近眼显示(Near-eye display,NED)等领域。但目前能够面向消费者的近眼显示设备仍然存在很多不足,比如视场角小、尺寸大、成本高、设备笨重等等。
如图1所示,现有的近眼显示光学系统,如显示光机10P,通常包括显示单元11P、半反半透镜12P以及曲面反射镜13P,通过该显示单元11P发射的图像光线,经由该半反半透镜12P和该曲面反射镜13P反射至人眼中。通常该曲面反射镜13P为部分反射镜,即按照一定比例反射和透射光线(比如反射50%的光线,并透射50%的光线),这样该曲面反射镜13P不仅能够将图像光线的一部分反射回人眼中而使人看到相应的虚像(即虚拟图像),而且允许真实环境的光线透过该曲面反射镜13P以射入人眼中而使人看到真实环境(即真实世界),从而通过虚拟图像和真实世界的叠加来实现增强交互的目的。
虽然现有的显示光机10P因体积相对较小、佩戴方便而越来越受到关注,但由于该现有的显示光机10P的自身结构限制,使得该现有的显示光机10P的视场角、眼点距以及出瞳等等之类的重要参数会相互制约,例如,为了实现较大的视场角,必定会使得眼点距和出瞳相应地减小,从而降低了佩戴的舒适感和体验感,不符合目前市场对显示光机的发展需求。特别地,如果要实现更大的视场角,现有的显示光机10P就需要更大的显示单元11P(如显示屏幕),但这种合适尺寸的屏幕在市场上不一定存在,或者成本昂贵。
发明内容
本发明的一目的在于提供一近眼显示光学系统和近眼显示设备,其能够面向 市场,提升佩戴者的舒适度和体验感。
本发明的另一目的在于提供一近眼显示光学系统和近眼显示设备,其中,在本发明的一实施例中,所述近眼显示光学系统能够实现大视场角、大眼点距和/或大出瞳,有助于提升用户的体验感和舒适度,特别是方便近视用户在使用时增添适配片,实现更好的体验和视觉享受。
本发明的另一目的在于提供一近眼显示光学系统和近眼显示设备,其中,在本发明的一实施例中,所述近眼显示光学系统能够实现大视场角、大眼点距、大出瞳、小体积、轻重量以及高成像质量等效果,方便适应不同的人群,提升用户体验的舒适度。
本发明的另一目的在于提供一近眼显示光学系统和近眼显示设备,其中,在本发明的一实施例中,所述近眼显示光学系统能够进一步减少体积,在满足佩戴需要的同时,合理利用头部空间,提高佩戴者的舒适度。
本发明的另一目的在于提供一近眼显示光学系统和近眼显示设备,其中,在本发明的一实施例中,所述近眼显示光学系统能够减少竖直方向尺寸,有助于合理利用头部空间。
本发明的另一目的在于提供一近眼显示光学系统和近眼显示设备,其中,在本发明的一实施例中,所述近眼显示光学系统能够解决空间角度带来的装配问题,有助于使得整个系统的结构更加紧凑。
本发明的另一目的在于提供一近眼显示光学系统和近眼显示设备,其中,在本发明的一实施例中,所述近眼显示光学系统能够通过棱镜来进一步减小系统体积,便于产品的规模化生产。
本发明的另一目的在于提供一近眼显示光学系统和近眼显示设备,其中,在本发明的一实施例中,所述近眼显示光学系统能够通过棱镜的精密加工来减小装配误差,有助于提高系统的成像质量。
本发明的另一目的在于提供一种近眼显示光学系统和近眼显示设备,其中为了达到上述目的,在本发明中不需要采用昂贵的材料或复杂的结构。因此,本发明成功和有效地提供一解决方案,不只提供一种近眼显示光学系统和近眼显示设备,同时还增加了所述近眼显示光学系统和近眼显示设备的实用性和可靠性。
为了实现上述至少一发明目的或其他目的和优点,本发明提供了一近眼显示光学系统,包括:
一图像源单元,其中所述图像源单元具有一发射路径,用于沿着所述发射路径发射图像光线;
一目视图像放大系统,其中所述目视图像放大系统具有一光学观看轴;以及
一中间像形成单元,其中所述中间像形成单元被设置于所述图像源单元和所述目视图像放大系统之间的光路中,其中所述中间像形成单元用于接收经由所述图像源单元发射的该图像光线,以在所述中间像形成单元和所述目视图像放大系统之间形成一中间像,其中所述目视图像放大系统用于将形成该中间像的该图像光线沿着所述光学观看轴导入人眼以成像。
在本发明的一实施例中,所述中间像形成单元包括一透镜组,其中所述透镜组由至少一透镜组成。
在本发明的一实施例中,所述透镜组的所述透镜的面型选自由标准球面面型、非球面面型、自由曲面面型以及衍射面面型所组成的组中的一种或多种。
在本发明的一实施例中,所述的近眼显示光学系统,进一步包括一光路折转单元,其中所述光路折转单元被设置于所述图像源单元的所述发射路径,并且所述中间像形成单元位于所述图像源单元和所述光路折转单元之间,其中所述光路折转单元用于将沿着所述发射路径传播的该图像光线转向以偏离所述发射路径,进而传播至所述目视图像放大系统。
在本发明的一实施例中,所述光路折转单元包括至少一反射镜。
在本发明的一实施例中,所述光路折转单元为一棱镜。
在本发明的一实施例中,所述光路折转单元包括一反射镜和一楔形镜,,其中所述反射镜和所述楔形镜被设置于所述中间像形成单元和所述目视图像放大系统之间光路中,用于通过所述反射镜的反射和通过所述楔形镜的折射来改变该图像光线的传播方向,以使该图像光线传播至所述目视图像放大系统。
在本发明的一实施例中,所述光路折转单元的所述反射镜与所述图像源单元的所述发射路径之间的夹角为45°。
在本发明的一实施例中,所述目视图像放大系统包括一半反半透单元和一透视反射单元,其中所述半反半透单元和所述光学观看轴之间具有一预定夹角,并且所述透视反射单元位于所述半反半透单元的反射侧,其中所述半反半透单元用于将形成该中间像的该图像光线部分地反射至所述透视反射单元,其中所述透视反射单元用于将经由所述半反半透单元反射的该图像光线部分地反射回所述半 反半透单元,以部分地透过所述半反半透单元而入射至人眼中。
在本发明的一实施例中,所述半反半透单元与所述光学观看轴之间的所述预定夹角在50°至70°之间。
在本发明的一实施例中,所述半反半透单元为半反半透镜,其中所述半反半透镜的面型选自由平面面型、球面面型、非球面面型以及自由曲面面型组成的组中的一种或多种。
在本发明的一实施例中,所述透视反射单元为部分反射镜,其中所述部分反射镜的面型选自由标准球面面型、非球面面型以及自由曲面面型组成的组中的一种或多种。
在本发明的一实施例中,所述目视图像放大系统包括一偏振分光单元、一透视反射单元以及一偏振转换单元,其中所述透视反射单元被设置于所述偏振分光单元的反射侧,并且所述偏振转换单元被设置于所述偏振分光单元和所述透视反射单元之间,其中所述偏振分光单元用于反射传播至所述目视图像放大系统的该图像光线中的第一偏振图像光线,并且透射传播至所述目视图像放大系统的该图像光线中的第二偏振图像光线;其中所述透视反射单元用于将经由所述偏振分光单元反射的该第一偏振图像光线反射回所述偏振分光单元,以使被反射的该第一偏振图像光线二次穿过所述偏振转换单元;其中所述偏振转换单元用于将二次穿过的该第一偏振图像光线转换成该第二偏振图像光线,使得被转换成的该第二偏振图像光线透过所述偏振分光单元以入射至人眼中。
在本发明的一实施例中,所述偏振分光单元为一镀有偏振分光膜的透镜,所述偏振转换单元为一1/4波片。
在本发明的一实施例中,所述图像源单元选自MicroLED、LCD、OLED、DMD以及LCOS型微型显示元件中的一种。
根据本发明的另一方面,本发明进一步提供了一近眼显示设备,包括:
一设备主体;和
至少一近眼显示光学系统,其中所述近眼显示光学系统被设置于所述设备主体,以组装成视场角大的近眼显示设备;
其中所述近眼显示光学系统包括:
一图像源单元,其中所述图像源单元具有一发射路径,用于沿着所述发射路径发射图像光线;
一目视图像放大系统,其中所述目视图像放大系统具有一光学观看轴;以及
一中间像形成单元,其中所述中间像形成单元被设置于所述图像源单元和所述目视图像放大系统之间的光路中,其中所述中间像形成单元用于接收经由所述图像源单元发射的该图像光线,以在所述中间像形成单元和所述目视图像放大系统之间形成一中间像,其中所述目视图像放大系统用于将形成该中间像的该图像光线沿着所述光学观看轴导入人眼以成像。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
本发明的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
图1示出了现有的显示光机的结构示意图。
图2是根据本发明的一第一实施例的一近眼显示光学系统的结构示意图。
图3示出了根据本发明的上述第一实施例的所述近眼显示光学系统的光路示意图。
图4示出了根据本发明的上述第一实施例的所述近眼显示光学系统的变形实施方式。
图5是根据本发明的一第二实施例的一近眼显示光学系统的光路示意图。
图6A示出了根据本发明的上述第二实施例的所述近眼显示光学系统的第一变形实施方式。
图6B示出了根据本发明的上述第二实施例的所述近眼显示光学系统的第二变形实施方式。
图6C示出了根据本发明的上述第二实施例的所述近眼显示光学系统的第三变形实施方式。
图6D示出了根据本发明的上述第二实施例的所述近眼显示光学系统的第四变形实施方式。
图7示出了根据本发明的一实施例的一近眼显示设备的一个示例。
图8是根据本发明的一实施例的一近眼显示光学系统的制造方法的流程示 意图。
图9是根据本发明的一实施例的一近眼显示光学系统的显示方法的流程示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
在本发明中,权利要求和说明书中术语“一”应理解为“一个或多个”,即在一个实施例,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个。除非在本发明的揭露中明确示意该元件的数量只有一个,否则术语“一”并不能理解为唯一或单一,术语“一”不能理解为对数量的限制。
在本发明的描述中,需要理解的是,属于“第一”、“第二”等仅用于描述目的,而不能理解为指示或者暗示相对重要性。本发明的描述中,需要说明的是,除非另有明确的规定和限定,属于“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接或者一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以是通过媒介间接连结。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中 描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
近年来,随着增强现实技术的飞速发展,能够实现增强现实的近眼显示设备越来越受到人们的欢迎和使用。例如,基于图1所示结构的现有近眼显示光学系统,由于体积相对较小、佩戴方便,越来越受到广泛关注。但由于该现有的近眼显示光学系统的自身结构的限制,该现有的显示光学系统的视场角、眼点距以及出瞳等等之类的重要参数会相互制约,例如,为了实现较大的视场角,必定会使得眼点距和出瞳相应地减小,从而降低了佩戴的舒适感和体验感,不符合目前市场对显示光机的发展需求。特别地,如果要实现更大的视场角,现有的显示光学系统就需要更大的显示屏幕,但这种合适尺寸的屏幕在市场上不一定存在,或者成本昂贵,无法满足市场化需求。
为了解决上述至少一个问题,参考附图2和图3所示,本发明的第一实施例提供了一种新的近眼显示光学系统,其能够实现大视场角、大眼点距和/或大出瞳,有助于提升用户体验。具体的,如图2所示,所述近眼显示光学系统10包括一图像源单元11、一目视图像放大系统12以及一中间像形成单元13,其中所述中间像形成单元13被设置于所述图像源单元11和所述目视图像放大系统12之间的光路中。
更具体地,所述图像源单元11用于沿着所述发射路径110发射图像光线1100,所述中间像形成单元13用于接收经由所述图像源单元11发射的该图像光线1100,以在所述中间像形成单元13和所述目视图像放大系统12之间形成一中间像130;其中所述目视图像放大系统12用于将形成所述中间像130的该图像光线1100导入人眼以成像。
值得一提的是,在本发明的这个实施例中,所述目视图像放大系统12还用于将环境光线导入人眼以成像而被观看到,使得用户能够借助所述近眼显示光学系统10同时看到与所述图像光线1100对应的虚像和与所述环境光线对应的实像,进而获得增强现实的体验。可以理解的是,在本发明的其他示例中,所述目视图像放大系统12不能将环境光线导入人眼以形成相应的实像而被观看到,使得用户能够借助所述近眼显示光学系统10仅能够看到与所述图像光线1100对应的虚像,以获得虚拟现实的体验。
值得注意的是,由于通过所述中间像形成单元13形成的所述中间像130作为一个虚拟的像,使得所述中间像130可以被作为虚拟的屏幕,因此所述中间像 130可以根据需求来自由地调整大小和位置,而不必受到屏幕市场的限制,有助于增大所述近眼显示光学系统10的视场角。可以理解的是,所述中间像130的存在能够很好地平衡所述近眼显示光学系统10的视场角、眼点距以及出瞳之间的关系,有助于使得所述近眼显示光学系统10能够同时实现大视场角、大眼点距以及大出瞳的效果。
示例性地,所述中间像形成单元13可以但不限于被设置于所述图像源单元11的发射路径110,并且所述中间像形成单元13位于所述图像源单元11和所述目视图像放大系统12之间,以通过所述中间像形成单元13使来自所述图像源单元11的所述图像光线1100在所述中间像形成单元13和所述目视图像放大系统12之间会聚以形成所述中间像130。
优选地,所述近眼显示光学系统10的所述视场角(图中未示出)可以但不限于被实施为50°至70°,使得用户获得大视场角的舒适体验。
更优选地,所述近眼显示光学系统10的所述眼点距(图中未示出)可以但不限于被实施为18mm至25mm,方便近视用户增添适配片,提升佩戴舒适度。
最优选地,所述近眼显示光学系统10的横向出瞳(图中未示出)可以但不限于被实施为8mm至14mm,有助于提升用户的体验感,适用于不同瞳距的人群。
值得一提的是,根据本发明的上述第一实施例,所述近眼显示光学系统10的所述图像源单元11可以但不限于被实施为诸如MicroLED型微型显示元件、LCD型微型显示元件、OLED型微型显示元件、DMD型微型显示元件或LCOS型微型显示元件等等之类的图像源。
此外,在本发明的上述第一实施例中,所述近眼显示光学系统10的所述目视图像放大系统12具有一光学观看轴120,使得用户能够沿着所述光学观看轴120同时看到与所述图像光线1100对应的虚像和与所述环境光线对应的实像,进而获得增强现实的体验。
示例性地,所述目视图像放大系统12包括一半反半透单元121和一透视反射单元122,其中所述半反半透单元121和所述光学观看轴120之间具有一预定夹角θ,并且所述透视反射单元122位于所述半反半透单元121的反射侧,其中所述半反半透单元121用于将形成所述中间像130的该图像光线1100部分地反射至所述透视反射单元122,其中所述透视反射单元122用于将经由所述半反半 透单元121反射的该图像光线1100部分地反射回所述半反半透单元121,以在透过所述半反半透单元121之后,沿着所述光学观看轴120入射至人眼中以形成放大的虚像。与此同时,来自真实世界的环境光线能够依次部分地透过所述透视反射单元122和所述半反半透单元121,以沿着所述光学观看轴120入射至人眼中以形成实像,使得用户能够沿着所述光学观看轴120同时看到与所述图像光线1100对应的虚像和与所述环境光线对应的实像,进而获得增强现实的体验。
可以理解的是,所述目视图像放大系统12的所述光学观看轴120可以由所述半反半透单元121和所述透视反射单元122共同定义的主观看轴,使得用户沿着所述光学观看轴120既能够看到所述图像源单元11发射的图像光线,又能够看到外部的环境光线,以获得虚实融合的增强现实体验。
值得注意的是,如图2和图3所示,所述半反半透单元121被设置于所述图像源单元11的所述发射路径110,使得经由所述图像源单元11发射的图像光线1100沿着所述发射路径110依次通过所述中间像形成单元13和所述目视图像放大系统12的所述半反半透单元121。可以理解的是,在本发明的这个实施例中,所述图像源单元11和所述目视图像放大系统12之间的光路与所述图像源单元11的所述发射路径110基本保持一致,使得所述目视图像放大系统12的所述半反半透单元121位于所述图像源单元11的所述发射路径110上。
优选地,所述半反半透单元121与所述光学观看轴120之间的所述预定夹角θ在50°至70°之间,有助于减小所述近眼显示光学系统10的厚度,便于用户佩戴,提升舒适度。可以理解的是,由于所述半反半透单元121与所述光学观看轴120之间的夹角θ在50°至70°之间,使得所述近眼显示光学系统10的eye-relief(即眼点距,如镜片到额头的距离)增大,以便近视或远视用户增加适配器,提高用户佩戴的体验感和舒适度。此外,这种配置也有助于通过整个系统的设计调整,使得所述近眼显示光学系统10比现有光机的尺寸更加紧凑,适于满足当下小型化、轻薄化的发展趋势。
进一步地,本发明的上述第一实施例中,所述半反半透单元121可以但不限于被实施为具有诸如平面、球面、非球面或/和自由曲面等面型的半反半透镜。换言之,所述半反半透单元121的面型可以但不限于被实施为选自平面面型、球面面型、非球面面型以及自由曲面面型中的一种或多种。可以理解的是,在本发明的一示例中,所述半反半透单元121可以但不限于被实施为镀有半反半透膜的 光学镜片,并且所述半反半透膜面向所述中间像形成单元13和所述透视反射单元122,以便通过所述半反半透膜将来自所述中间像形成单元13的图像光线1100中的一半反射至所述透视反射单元122。
此外,所述透视反射单元122可以但不限于被实施为具有诸如标准球面、非球面或/和自由曲面等面型的部分反射镜。换言之,所述透视反射单元122的面型可以但不限于被实施为选自标准球面面型、非球面面型以及自由曲面面型中的一种或多种。可以理解的是,所述透视反射单元122可以但不限于被实施为镀有部分反射膜的光学镜片,并且所述部分反射膜面向所述半反半透单元121,以便通过所述部分反射膜将来自所述半反半透单元121的图像光线1100中的一部分反射回所述半反半透单元121。
值得注意的是,所述透视反射单元122用于按照一定比例来反射和透射光线。例如,在本发明的一示例中,所述透视反射单元122可以反射一半的光线,并允许另一半的光线透过。当然,在本发明的其他示例中,所述透视反射单元122可以反射60%的光线,并允许40%的光线透过,以便改变所述近眼显示光学系统10的对比度。
根据本发明的上述第一实施例,所述近眼显示光学系统10的所述中间像形成单元13可以但不限于包括一透镜组131,其中所述透镜组131由至少一透镜组成,用于对来自所述图像源单元11的图像光线1100进行整形,使得所述图像光线1100被会聚以形成所述中间像130。优选地,所述透镜组131可以由多片透镜组成,以通过不同透镜的组合来调制图像光线以形成所述中间像130。
进一步地,本发明的所述透镜组131中的透镜的面型可以但不限于选自标准球面面型、非球面面型、自由曲面面型以及衍射面面型中的一种或多种。换言之,本发明的所述透镜组131可以由具有诸如自由标准球面、非球面、自由曲面或衍射面等面型的透镜组成。
附图4示出了根据本发明的上述第一实施例的所述近眼显示光学系统10的一个变形实施方式。相比于根据本发明的上述第一实施例,根据本发明的所述变形实施方式的所述近眼显示光学系统10'的不同之处在于:所述近眼显示光学系统10'的目视图像放大系统12'包括一偏振分光单元121'、一透视反射单元122'以及一偏振转换单元123'。
所述偏振分光单元121'被设置于所述图像源单元11的所述发射路径110, 并且所述中间像形成单元13位于所述图像源单元11和所述偏振分光单元121'之间,其中所述偏振分光单元121'用于反射形成所述中间像130的图像光线1100中的第一偏振图像光线1101,并且透射形成所述中间像130的图像光线1100中的第二偏振图像光线1102。
所述透视反射单元122'被设置于所述偏振分光单元121'的反射侧,并且所述偏振转换单元123'被设置于所述偏振分光单元121'和所述透视反射单元122'之间,其中所述透视反射单元122'用于将经由所述偏振分光单元121'反射的所述第一偏振图像光线1101中的一部分或全部反射回所述偏振分光单元121',以使被反射的所述第一偏振图像光线1101两次穿过所述偏振转换单元123';其中所述偏振转换单元123'用于将两次穿过所述偏振转换单元123’的所述第一偏振图像光线1101转换成所述第二偏振图像光线1102,使得被转换成的所述第二偏振图像光线1102能够透过所述偏振分光单元121'以沿着所述目视图像放大系统12'的光学观看轴120'入射至人眼中而形成放大的虚像。与此同时,环境光线也能够依次透过所述透视反射单元122'、所述偏振转换单元123'以及所述偏振分光单元121'以入射至人眼中而形成实像,进而实现增强现实的体验。
可以理解的是,在本发明的这个变形实施方式中,所述第一偏振图像光线1101可以被实施为具有第一偏振态的偏振光,而所述第二偏振图像光线1102可以被实施为具有第二偏振态的偏振光,其中所述第一偏振图像光线1101的偏振方向优选地垂直于所述第二偏振图像光线1102的偏振方向。例如,所述第一偏振图像光线1101可以但不限于被实施为S偏振光或P偏振光,相应地所述第二偏振图像光线1102可以但不限于被实施为P偏振光或S偏振光。此外,所述目视图像放大系统12'的所述光学观看轴120'可以由所述偏振分光单元121'和所述透视反射单元122'共同定义的主观看轴,使得用户沿着所述光学观看轴120'既能够看到所述图像源单元11发射的图像光线,又能够看到外部的环境光线,以获得虚实融合的增强现实体验。
值得注意的是,正是由于经由所述偏振转换单元123'转换成的所述第二偏转图像光线1102能够完全透过所述偏振分光单元121',不会因所述偏振分光单元121'的反射而发生损耗,因此有助于提高所述近眼显示光学系统10'对图像光线的光能利用率。举例地,当所述近眼显示光学系统10'的所述透视反射单元122'为部分反射镜(如反射50%的光线,并透射50%的光线)时,图像光线仅在第一 次到达所述偏振分光单元121'和经由所述透视反射单元122'时分别损耗一半,即所述近眼显示光学系统10'对图像光线的光能利用率达到25%,这比所述现有的显示光机10P对图像光线的光能利用率提高了一倍。
进一步地,在本发明的这个变形实施方式中,所述偏振转换单元123'可以但不限于被实施为一1/4波片,用于将两次穿过所述1/4波片的所述第一或第二偏振图像光线1101、1102转换成所述第二或第一偏振图像光线1102、1101。此外,所述偏振分光单元12可以但不限于被实施为镀有偏振分光膜的光学镜片,用于反射所述图像光线1100中的所述第一偏振图像光线1101,并透射所述图像光线1100中的所述第二偏振图像光线1102。
值得注意的是,在本发明的上述第一实施例及其变形实施方式中的所述近眼显示光学系统10(10')中,所述目视图像放大系统12(12')的所述半反半透单元121或所述偏振分光单元121'处于所述图像源单元11的所述发射路径110。这样当所述近眼显示光学系统10(10')被放置以使所述目视图像放大系统12(12')的所述光学观看轴120(120')处于水平状态时(如图2或4所示),所述图像源单元11和所述中间像形成单元13对应地位于所述目视图像放大系统12(12')的上方,以通过所述目视图像放大系统12(12')来定义所述近眼显示光学系统10(10')的厚度,并通过所述图像源单元11、所述中间像形成单元13以及所述目视图像放大系统12(12')的所述半反半透单元121或所述偏振分光单元121'来共同定义所述近眼显示光学系统10(10')的高度。
然而,虽然本发明的上述第一实施例及其变形实施方式中的所述近眼显示光学系统10(10')因能够形成所述中间像130而能够提供较大的视场角,但由于所述近眼显示光学系统10(10')的所述中间像形成单元13包括由多片透镜组成的透镜组,也就是说,所述中间像形成单元13在沿着所述发射路径110的方向上的尺寸较大,因此所述近眼显示光学系统10(10')的高度较大,无法充分利用用户的头部空间,不利于佩戴,导致用户的佩戴舒适度降低。
为了解决上述问题,本发明的第二实施例进一步提供了一近眼显示光学系统,其能够降低所述近眼显示光学系统的整体高度,进而减少系统的整体体积。具体地,如图5所示,相比于根据本发明的上述第一实施例,根据本发明的所述第二实施例的所述近眼显示光学系统10的不同之处在于:所述近眼显示光学系统10进一步包括一光路折转单元14,其中所述光路折转单元14被设置于所述 图像源单元11的所述发射路径110,并且所述中间像形成单元13位于所述图像源单元11和所述光路折转单元14之间,其中所述光路折转单元14用于将通过所述中间像形成单元13的所述图像光线1100转向以传播至所述目视图像放大系统12,再通过所述目视图像放大系统12将被转向的所述图像光线1100导入人眼以形成放大的虚像。
换言之,在本发明的上述第二实施例中,由于所述光路折转单元14能够转折图像光线的传播路径(即所述光路折转单元14能够折转所述图像源单元11和所述目视图像放大系统12之间的光路),以使图像光线在转向后传播至所述目视图像放大系统12,因此所述近眼显示光学系统10的所述目视图像放大系统12可以不被设置于所述图像源单元11的所述发射路径110上,使得所述图像源单元11的所述发射路径110能够偏离所述近眼显示光学系统10的高度方向(如图5中的竖直方向),有助于降低所述近眼显示光学系统10的系统高度,合理利用头部空间,提高佩戴的舒适度。
优选地,所述图像源单元11的所述发射路径110垂直于所述近眼显示光学系统10的高度方向,也就是说,所述图像源单元11的所述发射路径110优选地处于水平面内,使得所述近眼显示光学系统10的所述中间像形成单元13(横向尺寸)和所述目视图像放大系统12的所述半反半透单元121来定义所述近眼显示光学系统10的高度,以最大限度地降低所述近眼显示光学系统10的高度。换言之,所述光路折转单元14用于将来自所述图像源单元11的图像光线1100进行90°转向,使得所述图像源单元11和所述中间像形成单元13能够被平躺地设置于所述目视图像放大系统12的上方,有助于最大限度地减小所述近眼显示光学系统10的整体高度。
更优选地,所述图像源单元11的所述发射路径110进一步垂直于所述近眼显示光学系统10的所述目视图像放大系统12的所述光学观看轴120,也就是说,所述图像源单元11和所述中间像形成单元13沿着所述目视图像放大系统12的长度方向(如图5所示的左右方向)被平躺地设置于所述目视图像放大系统12的上方,有助于减小所述近眼显示光学系统10的厚度(如图5所述的前后方向),进而减小所述近眼显示光学系统10的整体尺寸。
值得一提的是,所述近眼显示光学系统10的所述光路折转单元14可以包括至少一反射镜,其中所述反射镜被设置用于反射沿着所述发射路径110传播的所 述图像光线1100,以使所述图像光线1100转向地传播至所述目视图像放大系统12。换言之,每所述反射镜能够通过反射的方式来折返所述图像源单元11和所述目视图像放大系统12之间的光路。
示例性地,在本发明的所述第二实施例中,所述近眼显示光学系统10的所述光路折转单元14包括一个所述反射镜,其中所述反射境可以但不限于被实施为一空间反射镜141,其中所述空间反射镜141被设置于所述中间像形成单元13和所述目视图像放大系统12之间,并且所述空间反射镜141对应于所述图像源单元11的所述发射路径110,其中所述空间反射镜141同时倾斜于与所述发射路径110平行的水平面和竖直面,使得沿着所述发射路径110的图像光线1100在通过所述空间反射镜141的一次反射后,传播至所述目视图像放大系统12的所述半反半透单元121。
换言之,所述空间反射镜141与平行于所述发射路径110的水平面之间存在水平倾斜角度,同时所述空间反射镜141与平行于所述发射路径110的竖直面存在竖直倾斜角度,即所述空间反射镜141按照预定的空间角度进行布置,使得经由所述空间反射镜141一次反射后的所述图像光线1100的传播路径倾斜于所述水平面和所述竖直面,以保证沿着所述发射路径110的图像光线1100在通过所述空间反射镜141的一次反射后,传播至所述目视图像放大系统12的所述半反半透单元121。可以理解的是,在本发明的这个实施例中,所述水平倾斜角度和所述竖直倾斜角度均为锐角,以保证所述空间反射镜141同时倾斜于与所述发射路径110平行的水平面和竖直面。
优选地,所述空间反射镜141可以被实施为镀有反射膜的平面镜。更优选地,所述空间反射镜141被实施为镀有全反射膜的平面镜。可以理解的是,所述平面镜因同时倾斜于所述水平面和所述竖直面而具有所述空间角度,使得所述平面镜在本发明的这个实施例中被实施为所述空间反射镜141。当然,在本发明的其他示例中,所述空间反射镜141也可以被实施为镀有反射膜的曲面镜,以便在对所述图像光线进行反射的同时,还能够对所述图像光线进行调制或整形。
值得注意的是,在本发明的上述第二实施例中,所述近眼显示光学系统10的所述空间反射镜141具有空间角度,而所述空间角度的存在无疑会给所述近眼显示光学系统10的装配带来困难,并且所述空间角度的存在在实际装配中也容易引入误差,从而影响所述近眼显示光学系统10的成像效果,这对所述近眼显 示光学系统10的规模化生产来说是一种挑战。因此,为了解决空间角度所带来的装配问题,附图6A示出了根据本发明的上述第二实施例的所述近眼显示光学系统10的第一变形实施方式。具体地,如图6A所示,相比于根据本发明的上述第二实施例,根据本发明的所述第一变形实施方式的所述近眼显示光学系统10A的区别在于:所述近眼显示光学系统10A的所述光路折转单元14A的所述反射镜包括一第一反射镜141A和一第二反射镜142A,其中所述第一反射镜141A对应于所述图像源单元11的所述发射路径110,并且所述第一反射镜141A倾斜于与所述发射路径110平行的竖直面,其中所述第二反射镜142A被设置于所述第一反射镜141A的反射侧,并且所述第二反射镜142A倾斜于与所述发射路径120平行的水平面,使得沿着所述发射路径110传播的图像光线1100先通过所述第一反射镜141A的反射以在平行于所述发射路径110的水平面内第一次改变所述图像光线1100的传播方向,再通过所述第二反射镜142A的反射以第二次改变所述图像光线1100的传播方向,从而传播至所述目视图像放大系统12的所述半反半透单元121。
换言之,所述第一反射镜141A与平行于所述发射路径110的所述竖直面之间存在竖直倾斜角度(即平面角度),并且所述第一反射镜141A垂直于与所述发射路径110平行的水平面;与此同时,所述第二反射镜142A与平行于所述发射路径110的水平面存在水平倾斜角度(即平面角度),并且所述第二反射镜142A平行于所述发射路径110,即所述第一反射镜141A和所述第二反射镜142A按照预定的平面角度进行布置,使得经由所述第一反射镜141A反射后的所述图像光线1100的传播路径平行于所述水平面,并且经由所述第二反射镜142A反射后的所述图像光线1100的传播路径平行于与所述发射路径110垂直的平面,以保证沿着所述发射路径110的图像光线1100在依次通过所述第一反射镜141A和所述第二反射镜142A的反射后,传播至所述目视图像放大系统12的所述半反半透单元121。可以理解的是,在本发明的这个实施例中,所述水平倾斜角度和所述竖直倾斜角度均为锐角,以保证所述第一反射镜141A和所述第二反射镜142A分别倾斜于与所述发射路径110平行的竖直面和水平面。
优选地,所述第一反射镜141A和所述第二反射镜142A均可以被实施为镀有反射膜的平面镜。更优选地,所述第一反射镜141A和所述第二反射镜142A均被实施为镀有全反射膜的平面镜。可以理解的是,所述第一反射镜141A和所 述第二反射镜142A因分别倾斜于所述竖直面和所述水平面而具有所述平面角度,使得空间平面镜在本发明的这个实施例中分别被实施为所述第一反射镜141A和所述第二反射镜142A。当然,在本发明的其他示例中,所述第一反射镜141A和所述第二反射镜142A也可以被实施为镀有反射膜的曲面镜,以便在对所述图像光线进行反射的同时,还能够对所述图像光线进行调制或整形。
进一步地,所述第一反射镜142A与平行于所述发射路径110的所述竖直面之间存在所述竖直倾斜角度为45°,使得沿着所述发射路径110的图像光线1100在通过所述第一反射镜141A的反射以沿着垂直于所述发射路径110的方向传播。可以理解的是,由于经由所述第一反射镜141A反射的所述图像光线1100沿着垂直于所述发射路径110的方向传播,而所述第二反射镜142A又平行于所述发射路径110,因此沿着所述发射路径110传播的图像光线1100在依次经由所述第一反射镜141A和所述第二反射镜142A的反射的过程中均在垂直于所述发射路径110的平面内传播,进而传播至所述目视图像放大系统12的所述半反半透单元121。
值得注意的是,在本发明的所述第一变形实施方式中,所述近眼显示光学系统10A的所述光路折转单元14A通过所述第一反射镜141A和所述第二反射镜142A来替代所述空间反射镜141,以实现同样的转折效果。换言之,所述近眼显示光学系统10A的所述光路折转单元14A将所述空间反射镜141的空间角度分解为所述第一反射镜141A和所述第二反射镜142A的平面角度,有助于降低所述光路折转单元14A的装配难度,减少在实际装配过程中引入的误差。此外,本发明的所述近眼显示光学系统10A的光路依次经过所述第一反射镜141A和所述第二反射镜142A的反射,使得所述近眼显示光学系统10A的光路在所述光路折转单元14A处的光程增大,有助于使得整个系统的结构更加紧凑,减小所述近眼显示光学系统10A的体积。
附图6B示出了根据本发明的上述第二实施例的所述近眼显示光学系统10的第二变形实施方式。具体地,相比于根据本发明的上述第二实施例的第一变形实施方式,根据本发明的所述第二变形实施方式的所述近眼显示光学系统10B的区别在于:所述近眼显示光学系统10B的所述光路折转单元14B被实施为一棱镜141B,其中所述棱镜141B用于折射沿着所述发射路径110传播的该图像光线1100,使得该图像光线1100被转向以传播至所述目视图像放大系统12。
优选地,在本发明的这个示例中,所述棱镜141B可以但不限于被实施为异形多面棱镜。示例性地,所述棱镜141B具有被对应地布置的一第一工作面S1、一第二工作面S2、一第三工作面S3以及一第四工作面S4,其中所述棱镜141B的所述第一工作面S1对应于所述图像源单元11的所述发射路径110,并且所述棱镜141B的所述第四工作面S4对应于所述目视图像放大系统12的所述半反半透单元121,使得经由所述图像源单元11发射的图像光线1100在通过所述中间像形成单元13之后,先经由所述棱镜141B的所述第一工作面S1射入所述棱镜141B,以传播至所述棱镜141B的所述第二工作面S2,接着经由所述棱镜141B的所述第二工作面S2反射,以传播至所述棱镜141B的所述第三工作面S3,然后经由所述棱镜141B的所述第三工作面S3反射,以传播至所述棱镜141B的所述第四工作面S4,最后经由所述棱镜141B的所述第四工作面S4射出所述棱镜141B,以传播至所述目视图像放大系统12的所述半反半透单元121。
更优选地,所述棱镜141B可以但不限于被实施为由两个直角棱镜拼接而成的异形多面棱镜。当然,在本发明的其他示例中,所述棱镜141B也可以被一体地制成。
值得注意的是,所述棱镜141B的所述第二工作面S2和所述第三工作面S3被实施为两个反射面,以通过所述棱镜141B的所述第二工作面S2和所述第三工作面S3分别替代所述第一反射镜141A和所述第二反射镜142A。由于所述棱镜141B作为一个整体,并且所述棱镜141B的所述第二工作面S2和所述第三工作面S3能够通过精密加工而制成,因此所述棱镜141B的装配要比所述第一反射镜141A和所述第二反射镜142A的装配容易的多,更接近产品的规模化生产,有助于进一步减小所述近眼显示光学系统10B在装配时可能引入的误差。此外,在根据本发明的所述第二变形实施方式中,由于图像光线1100在所述棱镜141B内传播和反射,因此所述近眼显示光学系统10B的光路在所述棱镜141B(即所述光路折转单元14B)处的光程更大,有利于使得所述近眼显示光学系统10B在相同的光程下被进一步地缩小体积。
优选地,所述棱镜141B的所述第二工作面S2和所述第三工作面S3均被实施为全内反射面,使得经由所述棱镜141B的所述第一工作面S1射入的图像光线1100在所述棱镜141B的所述第二工作面S2处发生全内反射,并且经由所述棱镜141B的所述第二工作面S2反射的图像光线1100在所述棱镜141B的所述第 三工作面S3处发生全内反射。当然,在本发明的其他示例中,所述棱镜141B的所述第二工作面S2和所述第三工作面S3也可以被实施为镀有反射膜的棱镜表面,同样能够实现反射的效果,本发明对此不再赘述。
更优选地,所述棱镜141B的所述第一工作面S1垂直于所述图像源单元11的所述发射路径110,使得沿着所述发射路径110传播的图像光线110在所述棱镜141B的所述第一工作面S1处不发生折射,以保持所述图像光线110沿着所述发射路径110继续传播至所述棱镜141B的所述第二工作面S2。
值得注意的是,所述棱镜141B的所述第一工作面S1、所述第二工作面S2、所述第三工作面S3以及所述第四工作面S4的面型分别可以但不限于选自平面面型、自由曲面面型、球面面型、非球面面型中的一种,以根据需要对所述棱镜141B上的工作面的面型进行相应地设计,有助于提升所述近眼显示光学系统10B的成像质量,减小系统的体积,本发明对此不再赘述。
附图6C示出了根据本发明的上述第二实施例的所述近眼显示光学系统10的第三变形实施方式。具体地,相比于根据本发明的上述第二实施例,根据本发明的所述第三变形实施方式的所述近眼显示光学系统10C的区别在于:所述近眼显示光学系统10C的所述光路折转单元14C包括一反射镜141C和一楔形镜142C,其中所述反射镜141C和所述楔形镜142C分别被设置于所述中间像形成单元13和所述目视图像放大系统12之间光路中,用于通过所述反射镜141C的反射和通过所述楔形镜142C的折射来改变经由所述图像源单元11发射的该图像光线的传播方向,以使该图像光线被弯折地传播至所述目视图像放大系统12。
示例性地,所述反射镜141C被对应地设置于所述图像源单元11的所述发射路径110,并且所述楔形镜142C被设置于所述反射镜141C和所述目视图像放大系统12的所述半反半透镜121之间,其中所述楔形镜142C具有面向所述反射镜141C的入射面1421C和面向所述半反半透镜121的出射面1422C,使得经由所述图像源单元11发射的图像光线1100在通过所述中间像形成单元13之后,先经由所述反射镜141C反射,以传播至所述楔形镜142C的所述入射面1421C,然后经由所述楔形镜142C的所述入射面1421C射入所述楔形镜142C,以传播至所述楔形镜142C的所述出射面1422C,最后经由所述楔形镜142C的所述出射面1422C射出所述楔形镜142C,以传播至所述目视图像放大系统12的所述半反半透单元121。
值得注意的是,在本发明的这个变形实施方式中,所述楔形镜142C的所述入射面1421C不平行于所述楔形镜142C的所述出射面1422C,使得所述图像光线1100在穿过所述楔形镜142C后的传播方向得以改变,因此所述楔形镜142C能够替代本发明的上述第二变形实施方式中的所述第二反射镜142A,实现另一方向上的倾斜角度,有助于减少所述近眼显示光学系统10C的装配误差。当然,在本发明的其他示例中,所述楔形镜142C也可以被设置于所述图像源单元11和所述反射镜142C之间,以使所述楔形镜142C能够替代本发明的上述第二变形实施方式中的所述第一反射镜141A,实现所需方向上的倾斜角度,本发明对此不再赘述。
优选地,所述反射镜141C与所述图像源单元11的所述发射路径110呈45°夹角,使得沿着所述发射路径110传播的图像光线1100在经由所述反射镜141C反射后沿着垂直于所述反射路径110的方向传播,有助于在保证所述反射镜141C具有较高的装配精度的同时,降低所述近眼显示光学系统10C的整体装配难度。
附图6D示出了根据本发明的上述第二实施例的所述近眼显示光学系统10的第四变形实施方式。具体地,相比于根据本发明的上述第二实施例,根据本发明的所述第四变形实施方式的所述近眼显示光学系统10D的区别在于:所述近眼显示光学系统10D的所述光路折转单元14D被实施为一棱镜141D,其中所述棱镜141D具有被对应地布置的一第一工作面S1’、一第二工作面S2’以及一第三工作面S3,其中所述棱镜141D的所述第一工作面S1’对应于所述图像源单元11的所述发射路径110,并且所述棱镜141D的所述第三工作面S3’对应于所述目视图像放大系统12的所述半反半透单元121,使得经由所述图像源单元11发射的图像光线1100在通过所述中间像形成单元13之后,先经由所述棱镜141D的所述第一工作面S1’射入所述棱镜141D,以传播至所述棱镜141D的所述第二工作面S2’,接着经由所述棱镜141D的所述第二工作面S2’反射,以传播至所述棱镜141D的所述第三工作面S3’,最后经由所述棱镜141D的所述第三工作面S3’射出所述棱镜141D,以传播至所述目视图像放大系统12的所述半反半透单元121。
优选地,在本发明的这个示例中,所述棱镜141D可以但不限于被实施为直角棱镜。值得注意的是,所述棱镜141D的所述第二工作面S2’被实施为反射面,以通过所述棱镜141D的所述第二工作面S2’来替代所述空间反射镜141。由于所述棱镜141D作为一个整体,并且所述棱镜141D的所述第二工作面S2’能够通过 精密加工而制成,因此所述棱镜141D的装配要比所述空间反射镜141的装配容易的多,更接近产品的规模化生产,有助于进一步减小所述近眼显示光学系统10D在装配时可能引入的误差。
更优选地,所述棱镜141D的所述第二工作面S2’被实施为全内反射面,使得经由所述棱镜141D的所述第一工作面S1’射入的图像光线1100在所述棱镜141D的所述第二工作面S2’处发生全内反射。当然,在本发明的其他示例中,所述棱镜141D的所述第二工作面S2’也可以被实施为镀有反射膜的棱镜表面,同样能够实现反射的效果,本发明对此不再赘述。
最优选地,所述棱镜141D的所述第一工作面S1’垂直于所述图像源单元11的所述发射路径110,使得沿着所述发射路径110传播的图像光线110在所述棱镜141D的所述第一工作面S1’处不发生折射,以保持所述图像光线110沿着所述发射路径110继续传播至所述棱镜141D的所述第二工作面S2’,有助于简化系统的光路设计难度。
值得一提的是,在本发明的所述第二实施例中,除了上述结构不同之外,所述近眼显示光学系统的其他结构与根据本发明的所述第一实施例的所述近眼显示光学系统的结构相同,并且所述近眼显示光学系统也具有与所述第一实施例的所述近眼显示光学系统的各种变形实施方式相似或相同的变形实施方式,在此不再赘述。此外,在本发明的其他示例中,所述近眼显示光学系统还可以包括防干扰单元(图中未示出),用于防止来自下方的环境光线的干扰,使得所述近眼显示光学系统具有较好的消伪影效果;或者,所述近眼显示光学系统进一步还可以具备隐私保护功能,以减少图像光线的溢出量,进而防止所述近眼显示光学系统显示的图像外泄。
根据本发明的另一方面,如图7所示,本发明进一步提供了配置有近眼显示光学系统的近眼显示设备,使得所述近眼显示设备具备较大的视场角、大眼点距和/或大出瞳,有助于提高用户的使用体验。示例性地,如图7所示,所述近眼显示设备1可以包括至少一上述近眼显示光学系统10和一设备主体20,其中所述近眼显示光学系统10被设置于所述设备主体20,以使所述近眼显示设备1具备较大的视场角。换句话说,当用户佩戴所述近眼显示设备1以进行增强现实体验时,用户能够通过所述近眼显示设备1看到较大的虚拟图像,进而使得用户观看到较大尺寸的虚实融合画面,提升用户的观感体验。此外,由于所述近眼显示 光学系统10的体积小、重量轻,因此所述近眼显示设备1能够提高用户的佩戴舒适度。
值得注意的是,所述设备主体20可以但不限于被实施为一眼镜主体,使得所述近眼显示设备1被实施为具有大视场角的AR眼镜,有助于提升用户的使用体验。可以理解的是,在本发明的其他示例中,所述近眼显示设备1也可以被实施为诸如AR/VR头盔等等其他类型的AR/VR设备。
根据本发明的另一方面,本发明的一实施例进一步提供了所述近眼显示光学系统的制造方法。具体地,如图8所示,所述近眼显示光学系统10的制造方法,包括步骤:
S310:设置一中间像形成单元13于一图像源单元11和一目视图像放大系统12之间的光路中,并且所述中间像形成单元13用于接收经由所述图像源单元11发射的图像光线1100,以在所述中间像形成单元13和所述目视图像放大系统12之间形成一中间像130,其中所述目视图像放大系统12用于将形成所述中间像130的该图像光线1100导入人眼以成像。
值得一提的是,如图8所示,所述近眼显示光学系统10的制造方法,进一步包括步骤:
S320:设置一光路折转单元14于所述图像源单元11的所述发射路径110,并且所述中间像形成单元13位于所述光路折转单元14和所述图像源单元11之间,其中所述光路折转单元14用于将通过所述中间像形成单元13的所述图像光线1100转向以传播至所述目视图像放大系统12。
根据本发明的另一方面,本发明的一实施例进一步提供了所述近眼显示光学系统的显示方法。具体地,如图9所示,所述近眼显示光学系统10的显示方法,包括步骤:
S410:藉由一图像源单元11,沿着所述图像源单元11的发射路径110发射一图像光线1100;
S420:藉由一中间像形成单元13,接收所述图像光线1100,以在所述中间像形成单元13和一目视图像放大系统12之间形成中间像130;以及
S440:藉由所述目视图像放大系统12,将形成所述中间像130的所述图像光线1100导入人眼以成像。
值得注意的是,在本发明的上述实施例中,如图9所示,所述近眼显示光学 系统10的显示方法,在所述步骤S420和所述步骤S440之间,进一步包括步骤:
S430:藉由一光路折转单元14,转向形成所述中间像130的所述图像光线1100,以使所述图像光线1100传播至所述目视图像放大系统12。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (15)

  1. 一近眼显示光学系统,其特征在于,包括:
    一图像源单元,其中所述图像源单元具有一发射路径,用于沿着所述发射路径发射图像光线;
    一目视图像放大系统,其中所述目视图像放大系统具有一光学观看轴;以及
    一中间像形成单元,其中所述中间像形成单元被设置于所述图像源单元和所述目视图像放大系统之间的光路中,其中所述中间像形成单元用于接收经由所述图像源单元发射的该图像光线,以在所述中间像形成单元和所述目视图像放大系统之间形成一中间像,其中所述目视图像放大系统用于将形成该中间像的该图像光线沿着所述光学观看轴导入人眼以成像。
  2. 如权利要求1所述的近眼显示光学系统,其特征在于,所述中间像形成单元包括一透镜组,其中所述透镜组由至少一透镜组成。
  3. 如权利要求2所述的近眼显示光学系统,其特征在于,所述透镜组的所述透镜的面型选自标准球面面型、非球面面型、自由曲面面型以及衍射面面型中的一种或多种。
  4. 如权利要求1所述的近眼显示光学系统,其特征在于,进一步包括一光路折转单元,其中所述光路折转单元被设置于所述图像源单元的所述发射路径,并且所述中间像形成单元位于所述图像源单元和所述光路折转单元之间,其中所述光路折转单元用于将沿着所述发射路径传播的该图像光线转向以偏离所述发射路径,进而传播至所述目视图像放大系统。
  5. 如权利要求4所述的近眼显示光学系统,其特征在于,所述光路折转单元包括至少一反射镜。
  6. 如权利要求4所述的近眼显示光学系统,其特征在于,所述光路折转单元为一棱镜。
  7. 如权利要求4所述的近眼显示光学系统,其特征在于,所述光路折转单元包括一反射镜和一楔形镜,其中所述反射镜和所述楔形镜均被设置于所述中间像形成单元和所述目视图像放大系统之间光路中,用于通过所述反射镜的反射和通过所述楔形镜的折射来改变该图像光线的传播方向,以使该图像光线传播至所述目视图像放大系统。
  8. 如权利要求1至7中任一所述的近眼显示光学系统,其特征在于,所述目视图像放大系统包括一半反半透单元和一透视反射单元,其中所述半反半透单元和所述光学观看轴之间具有一预定夹角,并且所述透视反射单元位于所述半反半透单元的反射侧,其中所述半反半透单元用于将形成该中间像的该图像光线部分地反射至所述透视反射单元,其中所述透视反射单元用于将经由所述半反半透单元反射的该图像光线部分地反射回所述半反半透单元,以部分地透过所述半反半透单元而入射至人眼中。
  9. 如权利要求8所述的近眼显示光学系统,其特征在于,所述半反半透单元与所述光学观看轴之间的所述预定夹角在50°至70°之间。
  10. 如权利要求8所述的近眼显示光学系统,其特征在于,所述半反半透单元为半反半透镜,其中所述半反半透镜的面型选自平面面型、球面面型、非球面面型以及自由曲面面型中的一种或多种。
  11. 如权利要求8所述的近眼显示光学系统,其特征在于,所述透视反射单元为部分反射镜,其中所述部分反射镜的面型选自标准球面面型、非球面面型以及自由曲面面型中的一种或多种。
  12. 如权利要求1至7中任一所述的近眼显示光学系统,其特征在于,所述目视图像放大系统包括一偏振分光单元、一透视反射单元以及一偏振转换单元,其中所述透视反射单元被设置于所述偏振分光单元的反射侧,并且所述偏振转换单元被设置于所述偏振分光单元和所述透视反射单元之间,其中所述偏振分光单 元用于反射传播至所述目视图像放大系统的该图像光线中的第一偏振图像光线,并且透射传播至所述目视图像放大系统的该图像光线中的第二偏振图像光线;其中所述透视反射单元用于将经由所述偏振分光单元反射的该第一偏振图像光线反射回所述偏振分光单元,以使被反射的该第一偏振图像光线二次穿过所述偏振转换单元;其中所述偏振转换单元用于将二次穿过的该第一偏振图像光线转换成该第二偏振图像光线,使得被转换成的该第二偏振图像光线透过所述偏振分光单元以入射至人眼中。
  13. 如权利要求12所述的近眼显示光学系统,其特征在于,所述偏振分光单元为一镀有偏振分光膜的光学镜片,所述偏振转换单元为一1/4波片。
  14. 如权利要求1至7中任一所述的近眼显示光学系统,其特征在于,所述图像源单元选自MicroLED、LCD、OLED、DMD以及LCOS型微型显示元件中的一种。
  15. 一近眼显示设备,其特征在于,包括:
    一设备主体;和
    至少一近眼显示光学系统,其中所述近眼显示光学系统被设置于所述设备主体,以组装成视场角大的近眼显示设备;
    其中所述近眼显示光学系统包括:
    一图像源单元,其中所述图像源单元具有一发射路径,用于沿着所述发射路径发射图像光线;
    一目视图像放大系统,其中所述目视图像放大系统具有一光学观看轴;以及
    一中间像形成单元,其中所述中间像形成单元被设置于所述图像源单元和所述目视图像放大系统之间的光路中,其中所述中间像形成单元用于接收经由所述图像源单元发射的该图像光线,以在所述中间像形成单元和所述目视图像放大系统之间形成一中间像,其中所述目视图像放大系统用于将形成该中间像的该图像光线沿着所述光学观看轴导入人眼以成像。
PCT/CN2020/103287 2019-09-03 2020-07-21 近眼显示光学系统和近眼显示设备 WO2021042891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910825980.1 2019-09-03
CN201910825980.1A CN112444979A (zh) 2019-09-03 2019-09-03 近眼显示光学系统和近眼显示设备

Publications (1)

Publication Number Publication Date
WO2021042891A1 true WO2021042891A1 (zh) 2021-03-11

Family

ID=74734318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103287 WO2021042891A1 (zh) 2019-09-03 2020-07-21 近眼显示光学系统和近眼显示设备

Country Status (2)

Country Link
CN (1) CN112444979A (zh)
WO (1) WO2021042891A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230044295A1 (en) * 2021-08-02 2023-02-09 Shenzhen NED Optics Co., lTD Reflective eyepiece optical system and head-mounted near-to-eye display device
US20230042416A1 (en) * 2021-08-02 2023-02-09 Shenzhen NED Optics Co., lTD Reflective eyepiece optical system and head-mounted near-to-eye display device
US20230042152A1 (en) * 2021-08-02 2023-02-09 Shenzhen NED Optics Co., lTD Reflective eyepiece optical system and head-mounted near-to-eye display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798853B (zh) * 2021-10-01 2023-04-11 佐臻股份有限公司 擴增實境顯示裝置
CN115629475A (zh) * 2022-01-30 2023-01-20 华为技术有限公司 显示装置和交通工具
CN115826251B (zh) * 2023-02-23 2023-05-02 沂普光电(天津)有限公司 一种vr透镜结构和vr显示系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195160A (ja) * 1997-09-19 1999-04-09 Seiko Epson Corp 頭部装着型表示装置
CN104570356A (zh) * 2015-02-03 2015-04-29 深圳市安华光电技术有限公司 一种单图像源双目近眼显示装置
CN104903777A (zh) * 2012-11-21 2015-09-09 拉斯特公司 增强现实光学模块
CN107561710A (zh) * 2017-09-29 2018-01-09 塔普翊海(上海)智能科技有限公司 一种基于三维激光全息投影技术的头戴显示系统
CN109765694A (zh) * 2019-03-05 2019-05-17 杭州光粒科技有限公司 混合近眼ar三维显示系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6549729B2 (ja) * 2015-12-22 2019-07-24 オリンパス株式会社 眼球投影型表示装置
CN105629476A (zh) * 2016-03-24 2016-06-01 成都理想境界科技有限公司 一种近眼显示光学系统
KR102485447B1 (ko) * 2017-08-09 2023-01-05 삼성전자주식회사 광학 윈도우 시스템 및 이를 포함하는 투시형 디스플레이 장치
CN207965356U (zh) * 2017-11-14 2018-10-12 塔普翊海(上海)智能科技有限公司 一种近眼可透视头显光学系统
CN110161688A (zh) * 2018-02-12 2019-08-23 杭州太若科技有限公司 屈光矫正ar显示装置和穿戴式ar设备
CN110088665A (zh) * 2019-03-13 2019-08-02 香港应用科技研究院有限公司 用于大视场光学透视型头戴式显示器的紧凑型光学结构设计
CN210982912U (zh) * 2019-09-03 2020-07-10 舜宇光学(浙江)研究院有限公司 近眼显示光学系统和近眼显示设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195160A (ja) * 1997-09-19 1999-04-09 Seiko Epson Corp 頭部装着型表示装置
CN104903777A (zh) * 2012-11-21 2015-09-09 拉斯特公司 增强现实光学模块
CN104570356A (zh) * 2015-02-03 2015-04-29 深圳市安华光电技术有限公司 一种单图像源双目近眼显示装置
CN107561710A (zh) * 2017-09-29 2018-01-09 塔普翊海(上海)智能科技有限公司 一种基于三维激光全息投影技术的头戴显示系统
CN109765694A (zh) * 2019-03-05 2019-05-17 杭州光粒科技有限公司 混合近眼ar三维显示系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230044295A1 (en) * 2021-08-02 2023-02-09 Shenzhen NED Optics Co., lTD Reflective eyepiece optical system and head-mounted near-to-eye display device
US20230042416A1 (en) * 2021-08-02 2023-02-09 Shenzhen NED Optics Co., lTD Reflective eyepiece optical system and head-mounted near-to-eye display device
US20230042152A1 (en) * 2021-08-02 2023-02-09 Shenzhen NED Optics Co., lTD Reflective eyepiece optical system and head-mounted near-to-eye display device
US11762187B2 (en) * 2021-08-02 2023-09-19 Shenzhen NED Optics Co., lTD Reflective eyepiece optical system and head-mounted near-to-eye display device
US11762188B2 (en) * 2021-08-02 2023-09-19 Shenzhen NED Optics Co., lTD Reflective eyepiece optical system and head-mounted near-to-eye display device
US11768382B2 (en) * 2021-08-02 2023-09-26 Shenzhen NED Optics Co., lTD Reflective eyepiece optical system and head-mounted near-to-eye display device

Also Published As

Publication number Publication date
CN112444979A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
WO2021042891A1 (zh) 近眼显示光学系统和近眼显示设备
CN107329273B (zh) 一种近眼显示装置
US9869862B2 (en) Wearable virtual reality and augmented reality display apparatus
WO2019154429A1 (zh) 穿戴式ar系统、ar显示设备及其投射源模组
JP4218553B2 (ja) 画像表示装置
WO2018233293A1 (zh) 一种成像显示系统
WO2014094581A1 (zh) 显示装置及穿戴式眼镜设备
CN210072209U (zh) 一种近眼显示光机和近眼显示设备
WO2021179786A1 (zh) Ar光学系统和ar显示设备
US11754838B2 (en) Near-eye optical system
JP2002323672A (ja) 光路分割素子及びそれを用いた画像表示装置
WO2020248539A1 (zh) 纳米波导镜片和三维显示装置及眼镜
CN215117019U (zh) 一种光学镜组及近眼显示装置
WO2023066390A1 (zh) 光学装置、光学系统、显示装置、显示设备和显示系统
CN109425985A (zh) 一种近眼显示系统及近眼显示器
TWM596873U (zh) 微型頭戴式顯示器之光學系統
WO2023137959A1 (zh) 一种光学显示装置
WO2022143011A1 (zh) 基于波导的增强现实装置及其方法
CN210109462U (zh) 一种近眼光学显示装置
CN210982912U (zh) 近眼显示光学系统和近眼显示设备
CN113126299B (zh) 一种投影光机和头戴式智能设备
CN114527573A (zh) 光波导组件和近眼显示设备
CN113031279A (zh) 一种出瞳形状为长方形的近眼显示装置
CN214846040U (zh) 一种近眼显示装置
JP2001264680A (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860046

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20860046

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20860046

Country of ref document: EP

Kind code of ref document: A1