WO2013081269A1 - 발광다이오드형 방폭등 - Google Patents

발광다이오드형 방폭등 Download PDF

Info

Publication number
WO2013081269A1
WO2013081269A1 PCT/KR2012/005454 KR2012005454W WO2013081269A1 WO 2013081269 A1 WO2013081269 A1 WO 2013081269A1 KR 2012005454 W KR2012005454 W KR 2012005454W WO 2013081269 A1 WO2013081269 A1 WO 2013081269A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
explosion
heat dissipation
housing
light emitting
Prior art date
Application number
PCT/KR2012/005454
Other languages
English (en)
French (fr)
Inventor
장영우
Original Assignee
온시스텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 온시스텍 주식회사 filed Critical 온시스텍 주식회사
Publication of WO2013081269A1 publication Critical patent/WO2013081269A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V25/00Safety devices structurally associated with lighting devices
    • F21V25/12Flameproof or explosion-proof arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/12Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening by screwing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • F21V29/717Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements using split or remote units thermally interconnected, e.g. by thermally conductive bars or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light-emitting diode type explosion-proof lamp, and more particularly, while using a housing and a lid body such as an explosion-proof lamp that is manufactured so that lighting can be performed safely even in a place where there is a risk of explosion of gas, the conventional explosion-proof lamp was used.
  • a light emitting diode (LED) light source module instead of a light source such as metal halide, mercury, or sodium, it is more efficient and energy-saving, and more stable than light sources used in existing explosion-proof lights. It is invented to reduce the replacement cost by extending the life of the product by allowing the heat generated from the LED to be quickly dissipated.
  • the explosive gas can penetrate into a small gap caused by the expansion and contraction that occurs when the lighting fixture blinks, so it is not easy to obtain the effect of explosion proof even if the apparatus is sealed.
  • explosion-proof lamps are those in which inert gas is introduced into the surroundings so that the explosion-proof gas penetrates into the apparatus so as not to be flammable. There is a problem of large size and high power consumption.
  • the explosion-proof lamp uses a ballast to control overcurrent, which is bulky and consumes a lot of power, and is often used for installation environmental factors such as a place where a lot of vibration occurs. It can also expose you to unstable conditions.
  • explosion-proof lamps are usually provided with lamps having glass spheres, such as high pressure mercury lamps, high pressure sodium lamps, metal halide lamps, etc., and have a pressure resistant casing which prevents the explosion of the lamp from leading to a second explosion when a spark occurs due to overheating. do.
  • the pressure-resistant casing has a pressure resistance that the container withstands the pressure when an explosive gas or vapor explodes due to an electric spark of a lamp, etc. inside the container, and the airtight casing has no fear of flammable to the external explosive gas through the joint or opening. Is required.
  • the casing such as explosion-proof, has a structure in which a glass glove or tempered glass is tightly bound to a casing body made of metal, and a protective net is formed outside the glass glove or tempered glass.
  • the glass globe or tempered glass since the lamp is formed with glass spheres, the glass globe or tempered glass must have sufficient internal space to accommodate the glass spheres, and the globe or tempered glass must have internal pressure against the destructive force when the glass sphere explodes.
  • the entire casing including glass is made of a heavy explosion-proof structure having a large thickness and a large size.
  • explosion-proof lamps using light-emitting diodes have been proposed in a large amount, such as Korean Patent Publication Nos. 10-0910539 and 10-1072178, and Korean Utility Model Publication No. 20-2011-0006648
  • the explosion-proof housing cannot be used as it is.
  • the entire housing, such as explosion-proof, to replace all the explosion-proof, and the economic problem the structure is complicated, the heat dissipation performance is not supported, there is a problem that the roughness is sharply reduced and the life is short.
  • the present invention has been made in order to solve such a conventional problem, while using a housing such as explosion-proof lamps and the like, which are manufactured so that lighting can be safely performed even where there is a risk of gas explosion,
  • a light emitting diode (LED) light source module instead of a light source such as metal halide, mercury, or sodium is changed to a configuration, but a plurality of heat sinks or heat pipes including a lower heat sink for fixing a printed circuit board on which the light emitting diode is mounted;
  • the upper heat sink is formed of an aluminum alloy, a magnesium (Mg) alloy or a carbonic aluminum composite material, which is lighter in weight and has better heat dissipation characteristics than the aluminum alloy.
  • the material is carbon, not aluminum
  • CMP carbon nanotube metal polymer
  • CNT conductive / polymeric heat-dissipating resin material containing no tube
  • the heat dissipation function of explosion-proof lamp can be greatly improved, and it is more efficient and energy than the light source used in existing explosion-proof lamp. It is possible to reduce the cost, to secure stability, to reduce the weight of the explosion-proof itself, and to significantly reduce the production cost of the product, and to use the light-emitting diode type explosion-proof by using the housing and the lid body of the conventional explosion-proof as it is.
  • One embodiment of the present invention for achieving the above object is a hemispherical housing having a wire passage and top cover mounting rod protruding in the center, one side portion and the peripheral portion of the bottom surface is provided with a lid catch and a plurality of screw fasteners and; Ring body is provided integrally, as well as the periphery of the lid body and the hinge piece for performing a hinge action in the state caught in the cap body locking port and a plurality of screw coupling protrusion protruding; Tempered glass is fixedly installed in the cap body through a fixing bracket and a plurality of screws in a state in which the ring-shaped fixing piece formed in the peripheral portion is in close contact with the bottom surface of the ring-shaped fixing plate of the lid body; A light source detachably installed in the housing to generate light; The top cover is detachably installed on the outer side of the wire passing through the top cover mounting rod of the housing; In the explosion-proof, etc., the bottom surface of the lower heat sink in the form having a disc
  • a hemispherical housing having a wire passage and top cover mounting rod protruding in the center, the one side portion and the peripheral portion of the bottom surface is provided with a lid catch and a plurality of screw fasteners and; Ring body is provided integrally, as well as the periphery of the lid body and the hinge piece for performing a hinge action in the state caught in the cap body locking port and a plurality of screw coupling protrusion protruding; Tempered glass is fixedly installed in the cap body through a fixing bracket and a plurality of screws in a state in which the ring-shaped fixing piece formed in the peripheral portion is in close contact with the bottom surface of the ring-shaped fixing plate of the lid body; A light source detachably installed in the housing to generate light; The top cover is detachably installed on the outer side of the wire passing through the top cover mounting rod of the housing; In the explosion-proof, etc., the bottom surface of the lower heat sink in the form having a disc
  • the light emitting diode light source module comprising: an upper plate having a disk shape and fixed to an upper surface of the heat pipe to radiate heat from the light emitting diodes transferred through the lower heat sink and the heat pipe, and to transfer some heat to the housing side. It is characterized in that the molded to be detachable to the lid body.
  • the upper heat sink of the light emitting diode light source module and the housing itself is in contact with the surface of the heat sink is further formed by inserting the heat sink or planar contact portion to facilitate the heat transfer.
  • the inner and outer air circulation holes in the lid body to allow a plurality of internal and external air circulation holes to be discharged to the outside as well as the internal and external air is circulated with each other. It is characterized by more perforated to leave.
  • the bottom peripheral portion of the lid body is characterized in that the wing-shaped radiating fins are further protruded integrally at regular intervals to increase the heat dissipation effect on the heat transmitted through the lid body.
  • the lower heat sink and the plurality of heat dissipation rods or heat pipes and the upper heat sink are formed of any one material of aluminum alloy, magnesium alloy or carbon aluminum composite material.
  • the aluminum alloy has a heat diffusion coefficient of about 0.6-0.84 [cm 2 / sec], a thermal conductivity of about 220-240 [W / mK], a density of about 2.7 [g / cm 3], and a melting temperature of 600. It is about -660 [deg.] C and has a specific heat of 0.9 [J / gK].
  • the magnesium (Mg) alloy has a thermal diffusion coefficient of about 1.3-1.4 [cm 2 / sec], a thermal conductivity of about 60-90 [W / mK], and a density of about 1.8 ⁇ 0.3 [g / cm 3].
  • the melting temperature is about 595 [° C.]
  • the specific heat is 1.02-1.05 [J / gK].
  • the carbon aluminum composite material is put into a compacting mold having a predetermined volume by heating the carbon agglomerate in 800-900 °C furnace, and poured the aluminum melt into the compression molding mold and press using a press to form an aluminum melt formed on the carbon Disc-shaped upper and lower heat sinks or heat sinks or heat pipes having a predetermined volume and volume of a carbon aluminum composite material having a state of impregnating into the pores and then sintering aluminum outside the carbon after firing and impregnating aluminum into the pores. It is characterized by processing in the form.
  • the carbon aluminum composite material has a heat diffusion coefficient of about 2.40-2.55 [cm 2 / sec], a thermal conductivity of about 415-425 [W / mk], and a density of about 2.3-2.3 [g / cm 3]. It features.
  • the bottom and top surfaces of the upper and lower heat sinks applied to the embodiment are characterized in that a plurality of heat dissipation rod settling grooves are further formed at predetermined intervals.
  • the upper and lower heat sinks and the plurality of heat dissipation rods applied to the embodiment is fixed to each other integrally using a plurality of screws, or each of the contact portion is fixed to each other by inserting a thermosetting adhesive. .
  • a plurality of heat dissipation rods are integrally protruded at a predetermined interval on the upper surface of the lower heat dissipation plate or the bottom of the upper heat dissipation plate through die casting, and the upper heat dissipation rod or the lower heat dissipation rod is not provided. It characterized in that the heat sink is fixedly installed on the upper end or the lower end of the heat dissipation rods.
  • the housing and the lid is characterized in that the molded of aluminum alloy or carbon nanotube metal polymer (CMP).
  • CMP carbon nanotube metal polymer
  • the carbon nanotube metal polymer is a conductive / polymer heat-dissipating resin material containing carbon nanotubes (CNT), and its thermal diffusion coefficient is about 0.7-1.4 [cm 2 / sec] and the thermal conductivity is 90- It is about 150 [W / mK], the density is about 1.4 ⁇ 0.3 [g / cm 3], the melting temperature is about 106-160 [° C.], and the specific heat is 1.1 ⁇ 0.4 [J / gK].
  • a light emitting diode (LED) light source is used in place of a light source such as metal halide, mercury, sodium, etc. used in a conventional explosion proof lamp while using a housing such as a conventional explosion proof lamp and a lid body as it is.
  • a light source such as metal halide, mercury, sodium, etc.
  • the production cost of the product can be greatly reduced, and a light emitting diode type explosion-proof lamp can be formed by using a housing and a lid body of a conventional explosion-proof lamp as it is, and unnecessary waste can be prevented in advance. It is a very useful invention that can dissipate the generated heat in a short time, greatly extend the life of the product, significantly reduce the replacement cost, etc., and greatly improve the compatibility and reliability of the product itself.
  • FIG. 1 is a perspective view of the coupled state of the explosion-proof lamp to which the present invention is applied.
  • Figure 2 is an exploded perspective view of the explosion-proof lamp to which an embodiment of the present invention is applied.
  • Figure 3 is a longitudinal sectional view of a light emitting diode explosion-proof lamp to which an embodiment of the present invention is applied.
  • FIGS. 4 and 5 (a) and (b) are partially enlarged longitudinal cross-sectional views illustrating examples of coupling states of a light emitting diode light source module in a light emitting diode explosion-proof lamp to which an embodiment of the present invention is applied.
  • Figure 6 is an exploded perspective view of the explosion-proof lamp to which another embodiment of the present invention is applied.
  • FIG. 7 is a longitudinal cross-sectional view of a light emitting diode explosion-proof lamp to which another embodiment of the present invention is applied.
  • FIG. 1 is a perspective view showing a coupled state of the explosion-proof lamp to which the present invention is applied
  • FIG. 2 is an exploded perspective view of an explosion-proof lamp to which an embodiment of the present invention is applied
  • FIG. 3 is a light emitting diode explosion-proof to which an embodiment of the present invention is applied.
  • 4 and 5 (a) and (b) are partial enlarged longitudinal cross-sectional views illustrating examples of coupling states of a light emitting diode light source module among light emitting diode explosion-proof lamps to which an embodiment of the present invention is applied. It is shown.
  • FIG. 6 is an exploded perspective view of an explosion-proof lamp to which another embodiment of the present invention is applied
  • FIG. 7 shows a longitudinal cross-sectional view of a light emitting diode explosion-proof lamp to which another embodiment of the present invention is applied.
  • a hemispherical housing 1 having an electric wire passage and top cover mounting rod 11 protruding from the center, and having a lid locking hole 12 and a plurality of screw fasteners 13 at one side and a peripheral portion of the bottom;
  • the ring-shaped fixing plate 21 is integrally provided, as well as a lid body having a hinge piece 22 and a plurality of screw couplers 23 protruding from each other at the periphery thereof to perform a hinge action in a state of being caught by the lid body locking hole 12.
  • the ring-shaped fixing piece 41 formed at the periphery is integrally attached to the lid body 2 through the fixing bracket 3 and the plurality of screws 7 in a state of being in close contact with the bottom surface of the ring-shaped fixing plate 21 of the lid body 2.
  • Hemispherical tempered glass (4) is fixed to the installation;
  • In the explosion-proof, etc. consisting of: a top cover (6) detachably installed on the outside of the wire passing through the top cover mounting rod (11) of the housing (1),
  • One or more printed circuit boards 51 having a disc shape and fixedly installed on a bottom surface of the lower heat sink 53 in a form in which the plurality of light emitting diodes 52 are mounted at predetermined intervals;
  • the outer circumferential surface is provided with an uneven portion 541 for widening the heat dissipation area, and is fixedly installed in a vertical direction at a predetermined interval between the upper surface of the lower heat sink 53 and the bottom surface of the upper heat sink 55 and the lower heat sink 53
  • a hemispherical housing 1 having an electric wire passage and top cover mounting rod 11 protruding from the center, and having a lid locking hole 12 and a plurality of screw fasteners 13 at one side and a peripheral portion of the bottom;
  • the ring-shaped fixing plate 21 is integrally provided, as well as a lid body having a hinge piece 22 and a plurality of screw couplers 23 protruding from each other at the periphery thereof to perform a hinge action in a state of being caught by the lid body locking hole 12.
  • the ring-shaped fixing piece 41 formed at the periphery is integrally attached to the lid body 2 through the fixing bracket 3 and the plurality of screws 7 in a state of being in close contact with the bottom surface of the ring-shaped fixing plate 21 of the lid body 2.
  • Hemispherical tempered glass (4) is fixed to the installation;
  • In the explosion-proof, etc. consisting of: a top cover (6) detachably installed on the outside of the wire passing through the top cover mounting rod (11) of the housing (1),
  • One or more printed circuit boards 51 having a disc shape and fixedly installed on a bottom surface of the lower heat sink 53 in a form in which the plurality of light emitting diodes 52 are mounted at predetermined intervals;
  • a plurality of heat dissipation fins 562 are protruded radially at a predetermined angle, and a screw 7 is formed between the upper surface of the lower heat sink 53 and the bottom of the upper heat sink 55.
  • a heat pipe 56 fixedly installed through the heat dissipation heat of the light emitting diodes 52 transferred through the lower heat sink 53;
  • the upper heat dissipation plate 55 to be delivered to the) side; molded into a light emitting diode light source module 50 is configured to be detachably installed on the lid (2).
  • the upper heat sink 55 of the light emitting diode light source module 50 and the housing 1 itself is in contact with the inner surface of the housing 1 to insert a heat sink to facilitate heat transfer or
  • the flat contact portion 14 is further molded.
  • the inner and outer air circulation holes in the cap body 2 are circulated with each other, and the expanded air is released to the outside by heat generated inside the housing. 24) characterized in that more perforated at a predetermined interval.
  • wing-shaped heat dissipation fins 25 are integrally formed at predetermined intervals at the periphery of the bottom of the lid 2 to increase the heat dissipation effect on the heat transferred through the lid. It is characterized by being protruded.
  • the lower heat sink 53 and the plurality of heat dissipation rods 54 or the heat pipes 56 and the upper heat dissipation plate 55 may be made of any one of an aluminum alloy, a magnesium alloy, and a carbon aluminum composite material. It is characterized by molded in.
  • the aluminum alloy has a heat diffusion coefficient of about 0.6-0.84 [cm 2 / sec], a thermal conductivity of about 220-240 [W / mK], a density of about 2.7 [g / cm 3], and a melting temperature of 600. It is about -660 [deg.] C and has a specific heat of 0.9 [J / gK].
  • the magnesium (Mg) alloy has a thermal diffusion coefficient of about 1.3-1.4 [cm 2 / sec], a thermal conductivity of about 60-90 [W / mK], and a density of about 1.8 ⁇ 0.3 [g / cm 3].
  • the melting temperature is about 595 [° C.]
  • the specific heat is 1.02-1.05 [J / gK].
  • the carbon aluminum composite material is put into a compacting mold having a predetermined volume by heating the carbon agglomerate in 800-900 °C furnace, and poured the aluminum melt into the compression molding mold and press using a press to form an aluminum melt formed on the carbon Disc-shaped upper and lower heat sinks 55 and 53 having a predetermined volume and volume of a carbon aluminum composite material having a state of being impregnated into the pores, and then hardening aluminum outside the carbon after firing and impregnating aluminum into the pores. Or a heat dissipation rod 54 or heat pipe 56.
  • the carbon aluminum composite material has a heat diffusion coefficient of about 2.40-2.55 [cm 2 / sec], a thermal conductivity of about 415-425 [W / mk], and a density of about 2.3-2.3 [g / cm 3]. It features.
  • bottom and top surfaces of the upper and lower heat sinks 55 and 53 applied in the above embodiment are further formed with a plurality of heat sink rod settle grooves 552 and 532 at predetermined intervals.
  • the upper and lower heat sinks 55 and 53 and the plurality of heat dissipation rods 54 applied in one embodiment may be fixed to each other integrally by using a plurality of screws 7, or may be opened to respective contact portions. It is characterized by inserting the curable adhesive (8) and fixed together integrally.
  • a plurality of heat dissipation rods 54 are formed on the upper surface of the lower heat dissipation plate 53 or the bottom surface of the upper heat dissipation plate 55 through die casting so as to protrude integrally at predetermined intervals.
  • the upper heat sink 55 or the lower heat sink 53 which is not provided with the heat dissipation rod 54 is integrally fixed to the upper end or the lower end of the heat dissipation rods 54 using a screw 7 or a thermally conductive adhesive 8. It is characterized by the installation.
  • the housing 1 and the lid 2 are formed of an aluminum alloy or a carbon nanotube metal polymer (CMP).
  • CMP carbon nanotube metal polymer
  • the carbon nanotube metal polymer is a conductive / polymer heat-dissipating resin material containing carbon nanotubes (CNT), and its thermal diffusion coefficient is about 0.7-1.4 [cm 2 / sec] and the thermal conductivity is 90- It is about 150 [W / mK], the density is about 1.4 ⁇ 0.3 [g / cm 3], the melting temperature is about 106-160 [° C.], and the specific heat is 1.1 ⁇ 0.4 [J / gK].
  • Reference numerals 551 and 531 are wire through holes formed in the upper and lower heat sinks 55 and 53, respectively.
  • an embodiment of the present invention is known as consisting of a hemispherical housing 1 and the lid 2, hemispherical tempered glass 4, the light source 5 and the top cover 6 as shown in Figs.
  • the light source 5, the plurality of light emitting diodes 52, one or more printed circuit boards 51, the lower heat sink 53, the plurality of heat sinks 54 and the upper heat sink 55 Molded by the light emitting diode light source module 50 is composed of a main technical component that can be detachably installed on the lid 2, as another embodiment of the present invention as shown in Figs.
  • the heat pipe 56 is installed instead of the plurality of heat dissipation rods 54 as main technical components.
  • the housing (1) of the components such as explosion-proof, known in both embodiments is formed to have a hemispherical shape basically, the top of the wire rod and the top cover mounting rod (11) is formed in the center upper portion,
  • the side portion and the peripheral portion has a form having a lid body locking hole 12 and a plurality of screw fasteners 13 to perform a main body function, such as explosion-proof.
  • the lid 2 is provided to be opened and closed in the bottom opening of the housing 1, the ring-shaped fixing plate 21 is provided integrally, as well as in the state of being caught in the cap body engaging opening 12 in the peripheral portion
  • the hinge piece 22 and the plurality of screw couplers 23 that perform the hinge action are protruded.
  • the tempered glass 4 having a hemispherical shape serves to protect internal components such as a light source in case of gas explosion, and a ring-shaped fixing piece 41 formed at a periphery thereof has a ring-shaped fixing plate of the lid 2. (21) It has a form fixedly installed in the lid body 2 through the fixing bracket 3 and the plurality of screws 7 in close contact with the bottom surface.
  • the light source 5 is detachably installed in the housing 1 to perform a function of generating light
  • the top cover 6 passes through the wires of the housing 1 and the outside of the top cover mounting rod 11. It is detachably installed in the housing to maintain the airtightness in the housing.
  • one or more printed circuit boards 51 correspond to the shape of the lid 2.
  • the plurality of light emitting diodes 52 are mounted at a predetermined interval and fixedly installed on a bottom surface of the lower heat sink 53 to be described later through a plurality of screws or thermally conductive adhesives.
  • the light emitting diodes 52 mounted on the printed circuit board 51 are installed and the maximum output is determined according to the output of the explosion-proof, etc. For example, in the case of the conventional maximum 250W-class explosion-proof light, the 100W light-emitting diode Install it.
  • a lens for uniformly dispersing the light emitted from each of the light emitting diodes 52 at a desired angle may be further provided integrally with the light emitting diodes, or one lens having a relatively large size may be provided.
  • the lower heat dissipation plate 53 commonly used in the above two embodiments has a shape in which the lower heat sink 53 is formed to have a disk shape by using any one material of an aluminum alloy, a magnesium alloy, or a carbon aluminum composite material.
  • the ring-shaped fixing piece 41 is fixedly installed through the screw 7
  • part of heat generated from the light emitting diode 52 is primarily radiated, and the remaining heat is radiated from the lid 2, the housing 1, and a plurality of heat radiating parts. It performs the function of transferring to the rod 54 or the heat pipe 56.
  • the plurality of heat dissipation rods 54 applied in one embodiment of the above two embodiments also uses the material of any one of an aluminum alloy, a magnesium alloy, or a carbon aluminum composite material, an uneven portion 541 for widening the heat dissipation area on the outer circumferential surface thereof. It is molded in the shape of a rod having a shape.
  • the heat dissipation rods 54 are arranged in a vertical direction at a predetermined interval between the upper surface of the lower heat dissipation plate 53 and the bottom surface of the upper heat dissipation plate 55, and then the screws 7 as shown in FIGS. 1 to 3. 4 is fixedly installed through, or is fixedly installed through the thermally conductive adhesive (8) as shown in Figure 4 to heat the secondary heat of the light emitting diodes (52) transferred through the lower heat sink 53, as well as some heat It performs the function of transferring to the upper heat sink (55) side.
  • the heat pipe 56 applied in another of the above two embodiments also uses a material of aluminum alloy, magnesium alloy or carbon aluminum composite material to provide a heat dissipation area on the outer circumferential surface of the fixed rod 561 in the center.
  • Several heat dissipation fins 562 for widening are formed to protrude radially at a predetermined angle.
  • the heat pipe 56 is disposed between the upper surface of the lower heat sink 53 and the bottom surface of the upper heat sink 55 and then fixedly installed through the screw 7 as shown in FIG. 7 to be transferred through the lower heat sink 53. Secondary heat dissipation of the light emitting diodes 52 to be performed as well as to transfer some heat to the upper heat sink (55) side.
  • the upper heat sink 55 commonly used in the above two embodiments is formed to have a disc shape using any one material of an aluminum alloy, a magnesium alloy, or a carbon aluminum composite material, similar to the lower heat sink 53 described above.
  • the upper end of the heat dissipation rods 54 is fixedly installed through a screw 7 or a thermally conductive adhesive 8, or is fixedly installed through a screw 7 on an upper surface of the heat pipe 56 so that the lower heat sink 53 is disposed.
  • the third heat dissipation of the light emitting diodes 52 transmitted through the heat dissipation rods 54 or the heat pipes 56, as well as some heat is transferred to the housing 1.
  • the upper heat sink 55 of the light emitting diode light source module 50 having a disk shape and the inner surface of the housing 1 are in line contact.
  • the upper heat sink 55 and the housing of the light emitting diode light source module 50 may be further formed by inserting the heat sink or the planar contact portion 14 into the upper portion of the housing 1 as necessary. (1) Since the heat transfer is performed smoothly by the surface contact through the heat sink insert or the flat contact portion 14, the heat dissipation effect on the light emitting diodes 52 can be performed for 4-5 times to maximize the heat dissipation effect. It becomes possible.
  • the inner and outer parts of the housing 1 by further drilling a plurality of inner and outer air circulation holes 24 at predetermined intervals on the periphery of the lid 2. Since air is circulated through the inner and outer air circulation holes 24 and the expanded air is automatically discharged to the outside by heat generated inside the housing, heat dissipation is more effectively achieved.
  • the heat dissipation effect on heat transferred through the lid 2 is improved. It can be greatly increased.
  • the lower heat sink 53 and the plurality of heat sinks 54 or heat pipes 56 and the upper heat sink 55 are made of aluminum alloy, magnesium alloy or carbon. Molded using any one of the aluminum composite material, wherein the aluminum alloy has a heat diffusion coefficient of 0.6-0.84 [cm 2 / sec], thermal conductivity of 220-240 [W / mK], density 2.7 [g / cm 3], the melting temperature is about 600-660 [° C.], and the specific heat is about 0.9 [J / gK].
  • the magnesium (Mg) alloy has a thermal diffusion coefficient of about 1.3-1.4 [cm 2 / sec], a thermal conductivity of about 60-90 [W / mK], and a density of about 1.8 ⁇ 0.3 [g / cm 3].
  • the melting temperature is about 595 [° C.]
  • the specific heat is about 1.02-1.05 [J / gK]
  • the carbon aluminum composite material has a heat diffusion mechanism of about 2.40-2.55 [cm 2 / sec] and thermal conductivity. Is about 415-425 [W / mk], and the density is 2.3-2.3 [g / cm 3].
  • any one of a magnesium alloy or a carbon aluminum composite material can reduce the weight and size thereof. Since it is possible to form the lower heat sink 53, the plurality of heat dissipation rods 54 and the upper heat sink 55 is more preferably formed of a magnesium alloy or carbon aluminum composite material.
  • the density is 2.3-2.3 [g / cm 3] and 1.02. -1.05 [J / gK], which is much smaller than an aluminum alloy having a density of 2.7 [g / cm 3] and a thermal diffusivity of 2.40-2.55 [cm 2 / sec], unlike aluminum having 0.6-0.84 [cm 2 / sec] ] Is about 3 times higher, and the thermal conductivity is about 415-425 [W / mk], which is about 2 times higher than that of aluminum having 220-240 [W / mK].
  • heat dissipation performance can be 2-3 times higher than aluminum alloys.
  • the carbon aluminum composite material is put into a furnace of 800-900 °C (not shown), and the carbon agglomerate having a predetermined weight and volume, and then transferred into a compression molding mold and the aluminum melt containing the carbon agglomerate as described above Poured into a compression mold and pressurized using a press to cause the aluminum melt to coalesce into pores formed in the carbon itself, followed by firing, cutting out the hardened aluminum from the outside of the carbon and evenly impregnating the aluminum into the pores.
  • the carbon aluminum composite material having a shape may be used by processing a disk-shaped upper and lower heat sink 55, 53, a heat dissipation rod 54, or a heat pipe 56 having a predetermined volume and volume.
  • the upper and lower heat sinks 55 and 53 are not formed in a simple disc shape, but each of the bottom and top surfaces of each of the heat dissipation rod settling grooves 552 and 532 is determined at regular intervals.
  • the heat dissipation rods 54 may be disposed at a predetermined interval between the upper and lower heat dissipation plates 55 and 53 by using a screw 7 or a thermally conductive adhesive 8 to be integrally fixed to each other using a screw 7 or a thermally conductive adhesive 8.
  • the heat dissipation rods 54 When the upper and lower ends of the heat dissipation rods 54 are fitted into a plurality of heat dissipation rod settling grooves 552 and 532 formed in the upper and lower heat dissipation plates 55 and 53, respectively, they can be accurately positioned at a desired position. During the assembling process, the heat dissipation rods 54 may be prevented from being separated between the upper and lower heat dissipation plates 55 and 53, and thus, the assemblability may be very good.
  • the printed circuit board 51 is attached to the lower heat sink 53 or the upper and lower heat sinks 55 and 53 and the contact portions of the plurality of heat sinks 54 are integrally fixed.
  • the heat curable adhesive 8 used to give the heat conductivity is higher than that of the magnesium alloy or carbon aluminum composite material and about 20% lower than that of the aluminum alloy, so that the heat generated from the light emitting diodes 52 can be removed from the lower heat sink 53. It can be quickly transferred to a plurality of heat sinks 54 or heat pipes 56 and the upper heat sink 55 through the heat radiating from each component to the atmosphere as well as for each component Each component is fixedly installed without affecting the heat dissipation efficiency.
  • a plurality of heat dissipation rods 54 protrude integrally at predetermined intervals on the upper surface of the lower heat dissipation plate 53 or the bottom of the upper heat dissipation plate 55, as shown in FIG.
  • the upper heat sink 55 or the lower heat sink 53 without the heat sink 54 is formed by die casting, and the screw 7 or the thermally conductive adhesive 8 is formed at the top or bottom end of the heat sinks 54. It is possible to reduce the manufacturing cost of the product by reducing the assembly process, time and labor costs by allowing it to be fixedly installed using.
  • the housing 1 and the lid 2 are basically formed using an aluminum alloy or the like as in the prior art, but if necessary, carbon nanotube metal polymer (CMP). ) Can also be molded.
  • CMP carbon nanotube metal polymer
  • the carbon nanotube metal polymer is a conductive / polymer heat-dissipating resin material containing carbon nanotubes (CNT), and its thermal diffusion coefficient is about 0.7-1.4 [cm 2 / sec] and the thermal conductivity is 90- It is about 150 [W / mK], the density is about 1.4 ⁇ 0.3 [g / cm 3], the melting temperature is about 106-160 [° C.], and the specific heat is about 1.1 ⁇ 0.4 [J / gK].
  • the housing 1 and the lid 2 are formed of carbon nanotube metal polymer (CMP), which is a conductive / polymer heat-dissipating resin material containing carbon nanotubes (CNT), the housing formed of a conventional aluminum alloy ( 1) and the surface area smaller than that of the lid 2, the heat release performance of hot electrons becomes high, and it can become much lighter in weight and downsized than what is molded from an aluminum alloy.
  • CMP carbon nanotube metal polymer
  • CNT carbon nanotube metal polymer
  • the housing and the lid body of the explosion-proof lamp are used as it is, and replaced with a light-emitting diode (LED) light source module instead of the metal halide, mercury, sodium, or the like used in the explosion-proof lamp.
  • the plurality of heat dissipation rods 54 or heat pipes 56 and the upper heat dissipation plate 55 may include a lower heat dissipation plate 53 for fixing one or more printed circuit boards 51 on which the light emitting diodes 52 are mounted.
  • the production cost of the product can be greatly reduced, and the light-emitting diode type explosion-proof lamp can be formed using the housing and the lid body of the conventional explosion-proof lamp as it is, and unnecessary waste can be prevented in advance.
  • the heat generated from the LED can be quickly dissipated, which can greatly extend the life of the product, greatly reduce the replacement cost, and can greatly improve the compatibility and reliability of the product itself.

Abstract

발광다이오드형 방폭등에 관한 것으로서, 가스의 폭발 위험성이 있는 곳에서도 안전하게 조명을 실시할 수 있도록 제조되는 방폭등의 하우징 및 뚜껑체 등을 그대로 사용하면서, 종래 방폭등에서 사용하던 메탈 할라이드나 수은 또는 나트륨 등의 광원 대신 발광다이오드(LED) 광원 모듈로 대체하는 구성으로 변경하여 기존 방폭등에서 사용되는 광원에 비해 고효율이면서 에너지는 절감할 수 있고, 안정성을 확보할 수 있으며, 또한, LED에서 발생되는 열을 빠른 시간에 방열이 될 수 있도록 하여 제품의 수명을 대폭 연장시켜 교체 비용 등을 절감할 수 있도록 발명한 것이다.

Description

발광다이오드형 방폭등
본 발명은 발광다이오드형 방폭등에 관한 것으로서, 더욱 상세하게는 가스의 폭발 위험성이 있는 곳에서도 안전하게 조명을 실시할 수 있도록 제조되는 방폭등의 하우징 및 뚜껑체 등을 그대로 사용하면서, 종래 방폭등에서 사용하던 메탈 할라이드나 수은 또는 나트륨 등의 광원 대신 발광다이오드(LED) 광원 모듈로 대체하는 구성으로 변경하여 기존 방폭등에서 사용되는 광원에 비해 고효율이면서 에너지는 절감할 수 있고, 안정성을 확보할 수 있으며, 또한, LED에서 발생되는 열을 빠른 시간에 방열이 될 수 있도록 하여 제품의 수명을 대폭 연장시켜 교체 비용 등을 절감할 수 있도록 발명한 것이다.
일반적으로 가연성 가스 및 증기 또는 분진에 의한 폭발 위험 분위기가 형성되는 곳이나 각종 인화성 물질을 취급하는 공장 등은 상시 위험성이 상존하는 지역이다.
이러한 위험 지역은 NEC(National Electric Code) 또는 IEC(International Electro-technical Committe)에서 위험 상태에 따라 위험 장소를 대략 0종, 1종, 2종 장소로 구분하여 분류하고 있는데, 이러한 위험 지역 중 0종과 1종 장소는 항상 화재, 폭발 및 열 발생으로 인한 위험성이 높아, 사용되는 전기기구는 대개 방폭 구조를 가지도록 규정되어 있다.
한편, 폭발성 가스는 조명기구를 점멸할 때 일어나는 팽창과 수축에 의해 생긴 작은 틈새로 침투할 수 있어 기구를 밀폐하더라도 방폭의 효과를 얻기가 쉽지 않다.
따라서, 방폭등은 기구 내부에 폭발성 가스가 침투해서 폭발을 일으키더라도 인화되지 않도록 주위에 공기가 불활성 가스를 유입시킨 것이며, 이러한 방폭등은 일반적으로 백열등, 형광등, 삼파장등 등을 광원으로 사용하기 때문에 크기가 크고 전력소비가 많은 문제점이 있다.
특히, 형광등과 같은 방전등을 광원으로 사용할 경우 방폭등은 과전류를 제어하기 위해 안정기를 사용하고 있는바, 부피가 커지고 전력소모가 많으며, 종종 설치 장소가 진동이 많이 발생하는 장소 등 설치 환경적 요인에 의해 불안정한 상태에 노출되기도 한다.
또한, 이러한 방폭등은 광원과 안정기의 방열이 제대로 이루어지지 않을 경우, 과열로 인해 수명이 단축되고 매우 위험한 상황을 야기할 수 있는 문제점이 있다.
따라서, 이러한 방폭등은 통상 고압 수은등, 고압 나트륨등, 메탈 할라이드 램프 등과 같이 유리구를 구비하는 램프를 구비하고, 과열 등에 의한 스파크 발생시 램프의 폭발이 2차 폭발로 이어지는 것을 방지하는 내압 케이싱이 구비된다.
상기 내압 케이싱은 용기 내부에서 램프의 전기 스파크 등으로 폭발성 가스 또는 증기가 폭발했을 때 용기가 그 압력에 견디는 내압력을 가지며, 접합면, 개구부 등을 통해 외부의 폭발성 가스에 인화될 우려가 없는 기밀이 요구된다.
또한, 방폭등의 케이싱은 금속재로 되는 케이싱 본체에 유리 글로브 또는 강화유리가 긴밀하게 결착되는 구조로 되고 유리 글로브 또는 강화유리 외부에는 보호망이 형성되는 견고한 구조로 된다.
또한, 램프가 유리구를 구비하는 형태로 이루어짐으로써 유리 글로브 또는 강화유리가 유리구를 수용할 수 있는 충분한 내부공간을 확보해야 되고, 유리구 폭발시의 파괴력에 대한 내 압력을 가져야 되므로 글로브 또는 강화유리를 포함하는 케이싱 전체의 두께가 두껍고 크기가 큰 육중한 형태의 방폭구조로 구성된다.
이와 같은 종래기술은 램프가 열발광 특성에 의하여 빛을 발하므로 열로 인한 스파크 발생이 빈번하게 발생되어 램프 교체가 빈번하고, 램프교체시에는 상기 육중한 구조의 케이싱을 개폐해야 되므로 램프교체 작업 및 취급이 대단히 어려운 문제점이 있었다.
한편, 발광다이오드의 경우에는 열발광이 아닌 반도체의 p-n 접합구조를 이용하여 주입된 소수캐리어(전자 또는 정공)를 만들어내고, 이들의 재결합(再結合)에 의하여 발광이 이루어짐으로써 열에 의한 램프의 스파크 발생위험이 거의 없고, 따라서 엘이디램프를 이용하여 방폭등을 구성한다면 강한 내압구조가 불필요하여 소형화 및 경량화를 가능하게 할 수 있을 것이다.
따라서 종래에도 발광다이오드를 이용하는 방폭등이 국내 등록특허공보 10-0910539호와 10-1072178호 및 국내 공개실용신안공보 20-2011-0006648호 등 다량으로 제시된 바 있으나, 방폭등 하우징을 그대로 이용할 수 없고, 새로운 하우징을 제작해야 하여 방폭등 전체를 모두 교체해야 하는 경제상의 문제점이 있을 뿐만 아니라, 그 구조가 복잡하며 방열성능이 뒷받침되지 못하여 조도가 급격히 저하되고 수명이 짧은 등의 문제점이 있었다.
본 발명은 이와 같은 종래의 제반 문제점을 해소하기 위하여 안출한 것으로, 가스의 폭발 위험성이 있는 곳에서도 안전하게 조명을 실시할 수 있도록 제조되는 방폭등의 하우징 및 뚜껑체 등을 그대로 사용하면서, 종래 방폭등에서 사용하던 메탈 할라이드나 수은 또는 나트륨 등의 광원 대신 발광다이오드(LED) 광원 모듈로 대체하는 구성으로 변경하되, 발광다이오드가 실장되는 인쇄회로기판 고정용 하부 방열판을 포함하여 복수의 방열봉 또는 히트 파이프 및 상부 방열판을 알루미늄 합금이나 상기 알루미늄 합금보다 중량이 가볍고 방열 특성이 좋은 마그네슘(Mg) 합금 또는 카본 알루미늄(carbonic aluminum) 복합소재 등으로 성형하고, 또 필요에 따라서는 방폭등의 하우징 및 뚜껑체 형상은 종래와 동일하게 성형하되, 그 재질을 알루미늄이 아닌 탄소나노튜브(CNT)가 함유된 전도성/고분자 방열 수지재인 탄소 나노튜브 메탈 폴리머(CMP)로 성형하여 줌으로써 방폭등 자체의 방열기능을 대폭 향상시킬 수 있으며, 기존 방폭등에서 사용되는 광원에 비해 고효율이면서 에너지는 절감할 수 있고, 안정성을 확보할 수 있으며, 방폭등 자체의 경량화가 가능할 뿐만 아니라 제품의 생산원가를 대폭 저감시킬 수 있고, 또한 종래 방폭등의 하우징 및 뚜껑체 등을 그대로 이용하여 발광다이오드형 방폭등을 형성시킬 수 있어 불필요한 자원 낭비를 미연에 방지할 수 있으며, 또 LED에서 발생되는 열을 빠른 시간에 방열시킬 수 있어 제품의 수명을 대폭 연장시킬 수 있음은 물론 교체 비용 등을 대폭 절감할 수 있고, 특히 제품 자체의 호환성 및 신뢰도를 대폭 향상시킬 수 있는 발광다이오드형 방폭등을 제공하는 데 그 목적이 있다.
상기한 목적을 달성하기 위한 본 발명의 일 실시 예는, 전선 통과겸 탑 커버 설치봉이 중앙에 돌출 형성되고, 저면 일측부와 주연부에는 뚜껑체 걸림구와 복수개의 스크류 체결구가 구비된 반구 형상의 하우징과; 링형 고정판이 일체로 구비됨은 물론 주연부에는 상기 뚜껑체 걸림구에 걸려진 상태에서 힌지 작용을 수행하는 힌지편과 복수개의 스크류 결합구가 돌출 형성된 뚜껑체와; 주연부에 형성된 링형 고정편이 상기 뚜껑체의 링형 고정판 저면에 밀착된 상태에서 고정용 브라켓과 복수의 스크류를 통해 뚜껑체에 일체로 고정 설치되는 강화유리와; 상기 하우징 내에 착탈 가능하게 설치되어 빛을 발생하는 광원과; 상기 하우징의 전선 통과겸 탑 커버 설치봉의 외측에 착탈 가능하게 설치되는 탑 커버;로 구성된 방폭등에 있어서, 상기 광원으로 원판 형상을 갖고 복수의 발광다이오드가 정해진 간격을 두고 실장된 형태에서 하부 방열판의 저면에 고정 설치되는 하나 또는 다수개의 인쇄회로기판과; 원판 형상을 갖도록 성형된 형태를 갖고 상기 뚜껑체의 링형 고정편에 스크류를 통해 고정 설치된 상태에서 발광다이오드에서 발생되는 열의 일부를 방열하고 나머지 열은 뚜껑체와 하우징 및 복수의 방열봉으로 전달하는 하부 방열판과; 외주면에 방열면적을 넓히기 위한 요철부를 구비하고 상기 하부 방열판의 상면과 상부 방열판의 저면 사이에서 정해진 간격을 두고 고정 설치되어 하부 방열판을 통해 전달되는 발광다이오드들의 열을 방열시켜 주는 복수의 방열봉과; 원판 형상을 갖고 상기 방열봉들의 상단부에 고정 설치되어 하부 방열판과 방열봉들을 통해 전달되는 발광다이오드들의 열을 방열시켜 줌은 물론 일부 열은 하우징 측으로 전달해 주는 상부 방열판;으로 구성되는 발광다이오드 광원 모듈로 성형하여 상기 뚜껑체에 착탈 가능하게 설치할 수 있도록 한 것을 특징으로 한다.
상기한 목적을 달성하기 위한 본 발명의 다른 실시 예는, 전선 통과겸 탑 커버 설치봉이 중앙에 돌출 형성되고, 저면 일측부와 주연부에는 뚜껑체 걸림구와 복수개의 스크류 체결구가 구비된 반구 형상의 하우징과; 링형 고정판이 일체로 구비됨은 물론 주연부에는 상기 뚜껑체 걸림구에 걸려진 상태에서 힌지 작용을 수행하는 힌지편과 복수개의 스크류 결합구가 돌출 형성된 뚜껑체와; 주연부에 형성된 링형 고정편이 상기 뚜껑체의 링형 고정판 저면에 밀착된 상태에서 고정용 브라켓과 복수의 스크류를 통해 뚜껑체에 일체로 고정 설치되는 강화유리와; 상기 하우징 내에 착탈 가능하게 설치되어 빛을 발생하는 광원과; 상기 하우징의 전선 통과겸 탑 커버 설치봉의 외측에 착탈 가능하게 설치되는 탑 커버;로 구성된 방폭등에 있어서, 상기 광원으로 원판 형상을 갖고 복수의 발광다이오드가 정해진 간격을 두고 실장된 형태에서 하부 방열판의 저면에 고정 설치되는 하나 또는 다수개의 인쇄회로기판과; 원판 형상을 갖도록 성형된 형태를 갖고 상기 뚜껑체의 링형 고정편에 스크류를 통해 고정 설치된 상태에서 발광다이오드에서 발생되는 열의 일부를 방열하고 나머지 열은 뚜껑체와 하우징 및 히트 파이프로 전달하는 하부 방열판과; 중앙의 고정봉의 외주면에 수개의 방열핀이 정해진 각도를 두고 방사형으로 돌출 성형된 형태를 갖고 상기 하부 방열판의 상면과 상부 방열판의 저면 사이에 스크류를 통해 고정 설치되어 하부 방열판을 통해 전달되는 발광다이오드들의 열을 방열시켜 주는 히트 파이프와; 원판 형상을 갖고 상기 히트 파이프의 상면에 고정 설치되어 하부 방열판과 히트 파이프를 통해 전달되는 발광다이오드들의 열을 방열시켜 줌은 물론 일부 열은 하우징 측으로 전달해 주는 상부 방열판;으로 구성되는 발광다이오드 광원 모듈로 성형하여 상기 뚜껑체에 착탈 가능하게 설치할 수 있도록 한 것을 특징으로 한다.
이때, 상기 두 실시 예에 있어서, 상기 하우징의 내측 상부에는 발광다이오드 광원 모듈의 상부 방열판과 하우징 자체가 면 접촉되어 열전달이 원활히 이루어지도록 하는 방열판 삽입 또는 평면 접촉부를 더 성형한 것을 특징으로 한다.
또, 상기 두 실시 예에 있어서, 상기 뚜껑체에는 내,외부 공기가 상호 순환됨은 물론 하우징 내부에서 발생되는 열에 의해 팽창된 공기가 외부로 방출되도록 하는 수개의 내,외부 공기 순환공을 정해진 간격을 두고 더 천공한 것을 특징으로 한다.
또한, 상기 두 실시 예에 있어서, 상기 뚜껑체의 저면 주연부에는 뚜껑체를 통해 전달되는 열에 대한 방열효과를 증대시켜 주기 위해 날개형 방열핀들을 정해진 간격을 두고 일체로 더 돌출 성형한 것을 특징으로 한다.
또, 상기 두 실시 예에 있어서, 상기 하부 방열판과 복수의 방열봉 또는 히트 파이프 및 상부 방열판은 알루미늄 합금이나 마그네슘 합금 또는 카본 알루미늄 복합소재 중 어느 한 소재로 성형한 것을 특징으로 한다.
이때, 상기 알루미늄 합금은 열 확산 계수가 0.6-0.84[㎠/sec] 정도이고, 열 전도도는 220-240[W/m.K] 정도이며, 밀도는 2.7[g/㎤] 정도이고, 용융온도가 600-660[℃] 정도이며, 비열은 0.9[J/g.K]인 것을 특징으로 한다.
또, 상기 마그네슘(Mg) 합금은 열 확산 계수가 1.3-1.4[㎠/sec] 정도이고, 열 전도도는 60-90[W/mK] 정도이며, 밀도는 1.8±0.3[g/㎤] 정도이고, 용융온도가 595[℃] 정도이며, 비열은 1.02-1.05[J/gK]인 것을 특징으로 한다.
또한, 상기 카본 알루미늄 복합소재는 카본 덩어리를 800-900℃의 로에 넣고 가열하여 소정 체적을 갖는 압축 성형 금형 내에 넣고, 알루미늄 용융물을 압축 성형 금형 내로 부어 넣고 프레스를 이용 가압시켜 알루미늄 용융물이 카본에 형성된 공극 내로 합침되게 한 다음 소성 후 카본의 외부에서 경화된 알루미늄은 제거하고 공극 내로 알루미늄이 함침된 상태를 갖는 카본알루미늄 복합소재를 소정 체적 및 부피를 갖는 원판형 상,하부 방열판이나 방열봉 또는 히트 파이프 형태로 가공한 것을 특징으로 한다.
이때, 상기 카본알루미늄 복합소재는 열 확산 계구가 2.40-2.55[㎠/sec] 정도이고, 열 전도도는 415-425[W/mk] 정도이며, 밀도는 2.3-2.3[g/㎤] 정도인 것을 특징으로 한다.
또, 상기 일 실시 예에 적용된 상기 상,하부 방열판의 저면 및 상면에는 각각 수개의 방열봉 안치홈을 정해진 각격을 두고 더 형성한 것을 특징으로 한다.
한편, 상기 일 실시 예에 적용된 상기 상,하부 방열판과 복수의 방열봉은 각각 복수개의 스크류를 이용하여 상호 일체로 고정하거나, 또는 각각의 접촉부에 열 경화성 접착제를 투입하여 상호 일체로 고정한 것을 특징으로 한다.
또, 상기 일 실시 예에 있어서, 필요에 따라서는 하부 방열판의 상면 또는 상부 방열판의 저면에 복수의 방열봉이 정해진 간격을 두고 일체로 돌출되게 다이케스팅을 통해 성형하고, 방열봉이 구비되지 않은 상부 방열판 또는 하부 방열판을 방열봉들의 상단부 또는 저단부에 일체로 고정 설치한 것을 특징으로 한다.
또한, 상기 두 실시 예에 있어서, 상기 하우징 및 뚜껑체는 알루미늄 합금 또는 탄소 나노튜브 메탈 폴리머(CMP)로 성형한 것을 특징으로 한다.
이때, 탄소 나노튜브 메탈 폴리머(CMP)는, 탄소나노튜브(CNT)가 함유된 전도성/고분자 방열 수지재로, 그의 열 확산 계수는 0.7-1.4[㎠/sec] 정도이고, 열 전도도는 90-150 [W/mK] 정도이며, 밀도는 1.4± 0.3[g/㎤] 정도이고, 용융온도는 106-160[℃] 정도이며, 비열은 1.1± 0.4[J/gK]인 것을 특징으로 한다.
이상에서 설명한 바와 같이 본 발명의 발광다이오드형 방폭등에 의하면, 종래 방폭등의 하우징 및 뚜껑체 등을 그대로 사용하면서, 종래 방폭등에서 사용하던 메탈 할라이드나 수은 또는 나트륨 등의 광원 대신 발광다이오드(LED) 광원 모듈로 대체하는 구성으로 변경하되, 발광다이오드가 실장되는 인쇄회로기판 고정용 하부 방열판을 포함하여 복수의 방열봉 또는 히트 파이프 및 상부 방열판을 알루미늄 합금이나 상기 알루미늄 합금보다 중량이 가볍고 방열 특성이 좋은 마그네슘(Mg) 합금 또는 카본 알루미늄(carbonic aluminum) 복합소재 등으로 성형하고, 또 필요에 따라서는 방폭등의 하우징 및 뚜껑체 형상은 종래와 동일하게 성형하되, 그 재질을 알루미늄이 아닌 탄소나노튜브(CNT)가 함유된 전도성/고분자 방열 수지재인 탄소 나노튜브 메탈 폴리머(CMP)로 성형하여 줌으로써 방폭등 자체의 방열기능을 대폭 향상시킬 수 있으며, 기존 방폭등에서 사용되는 광원에 비해 고효율이면서 에너지는 절감할 수 있고, 안정성을 확보할 수 있으며, 방폭등 자체의 경량화가 가능할 뿐만 아니라 제품의 생산원가를 대폭 저감시킬 수 있고, 또한 종래 방폭등의 하우징 및 뚜껑체 등을 그대로 이용하여 발광다이오드형 방폭등을 형성시킬 수 있어 불필요한 자원 낭비를 미연에 방지할 수 있으며, 또 LED에서 발생되는 열을 빠른 시간에 방열시킬 수 있어 제품의 수명을 대폭 연장시킬 수 있고, 교체 비용 등을 대폭 절감할 수 있을 뿐만 아니라 제품 자체의 호환성 및 신뢰도를 대폭 향상시킬 수 있는 등 매우 유용한 발명인 것이다.
도 1은 본 발명이 적용된 방폭등의 결합상태 사시도.
도 2는 본 발명의 일 실시 예가 적용된 방폭등의 분해 사시도.
도 3은 본 발명의 일 실시 예가 적용된 발광다이오드형 방폭등의 종단면도.
도 4 및 도 5의 (a)(b)는 본 발명의 일 실시 예가 적용된 발광다이오드형 방폭등 중 발광다이오드 광원 모듈의 결합상태 예들을 설명하기 위한 일부 확대 종단면도.
도 6은 본 발명의 다른 실시 예가 적용된 방폭등의 분해 사시도.
도 7은 본 발명의 다른 실시 예가 적용된 발광다이오드형 방폭등의 종단면도.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명하면 다음과 같다.
도 1은 본 발명이 적용된 방폭등의 결합상태 사시도를 나타낸 것이고, 도 2는 본 발명의 일 실시 예가 적용된 방폭등의 분해 사시도를 나타낸 것이며, 도 3은 본 발명의 일 실시 예가 적용된 발광다이오드형 방폭등의 종단면도를 나타낸 것이고, 도 4 및 도 5의 (a)(b)는 본 발명의 일 실시 예가 적용된 발광다이오드형 방폭등 중 발광다이오드 광원 모듈의 결합상태 예들을 설명하기 위한 일부 확대 종단면도를 나타낸 것이다.
또한 도 6은 본 발명의 다른 실시 예가 적용된 방폭등의 분해 사시도를 나타낸 것이고, 도 7은 본 발명의 다른 실시 예가 적용된 발광다이오드형 방폭등의 종단면도를 나타낸 것이다.
이에 따르면 본 발명의 일 실시 예는,
전선 통과겸 탑 커버 설치봉(11)이 중앙에 돌출 형성되고, 저면 일측부와 주연부에는 뚜껑체 걸림구(12)와 복수개의 스크류 체결구(13)가 구비된 반구 형상의 하우징(1)과; 링형 고정판(21)이 일체로 구비됨은 물론 주연부에는 상기 뚜껑체 걸림구(12)에 걸려진 상태에서 힌지 작용을 수행하는 힌지편(22)과 복수개의 스크류 결합구(23)가 돌출 형성된 뚜껑체(2)와; 주연부에 형성된 링형 고정편(41)이 상기 뚜껑체(2)의 링형 고정판(21) 저면에 밀착된 상태에서 고정용 브라켓(3)과 복수의 스크류(7)를 통해 뚜껑체(2)에 일체로 고정 설치되는 반구형 강화유리(4)와; 상기 하우징(1) 내에 착탈 가능하게 설치되어 빛을 발생하는 광원(5)과; 상기 하우징(1)의 전선 통과겸 탑 커버 설치봉(11)의 외측에 착탈 가능하게 설치되는 탑 커버(6);로 구성된 방폭등에 있어서,
상기 광원(5)으로,
원판 형상을 갖고 복수의 발광다이오드(52)가 정해진 간격을 두고 실장된 형태에서 하부 방열판(53)의 저면에 고정 설치되는 하나 또는 다수개의 인쇄회로기판(51)과;
원판 형상을 갖도록 성형된 형태를 갖고 상기 뚜껑체(2)의 링형 고정편(41)에 스크류(7)를 통해 고정 설치된 상태에서 발광다이오드(52)에서 발생되는 열의 일부를 방열하고 나머지 열은 뚜껑체(2)와 하우징(1) 및 복수의 방열봉(54)으로 전달하는 하부 방열판(53)과;
외주면에 방열면적을 넓히기 위한 요철부(541)를 구비하고 상기 하부 방열판(53)의 상면과 상부 방열판(55)의 저면 사이에서 정해진 간격을 두고 수직방향으로 세워진 형태로 고정 설치되어 하부 방열판(53)을 통해 전달되는 발광다이오드(52)들의 열을 방열시켜 주는 복수의 방열봉(54)과;
원판 형상을 갖고 상기 방열봉(54)들의 상단부에 고정 설치되어 하부 방열판(53)과 방열봉(54)들을 통해 전달되는 발광다이오드(52)들의 열을 방열시켜 줌은 물론 일부 열은 하우징(1) 측으로 전달해 주는 상부 방열판(55);으로 구성되는 발광다이오드 광원 모듈(50)로 성형하여 상기 뚜껑체(2)에 착탈 가능하게 설치할 수 있도록 한 것을 특징으로 한다.
또한, 본 발명의 다른 실시 예는,
전선 통과겸 탑 커버 설치봉(11)이 중앙에 돌출 형성되고, 저면 일측부와 주연부에는 뚜껑체 걸림구(12)와 복수개의 스크류 체결구(13)가 구비된 반구 형상의 하우징(1)과; 링형 고정판(21)이 일체로 구비됨은 물론 주연부에는 상기 뚜껑체 걸림구(12)에 걸려진 상태에서 힌지 작용을 수행하는 힌지편(22)과 복수개의 스크류 결합구(23)가 돌출 형성된 뚜껑체(2)와; 주연부에 형성된 링형 고정편(41)이 상기 뚜껑체(2)의 링형 고정판(21) 저면에 밀착된 상태에서 고정용 브라켓(3)과 복수의 스크류(7)를 통해 뚜껑체(2)에 일체로 고정 설치되는 반구형 강화유리(4)와; 상기 하우징(1) 내에 착탈 가능하게 설치되어 빛을 발생하는 광원(5)과; 상기 하우징(1)의 전선 통과겸 탑 커버 설치봉(11)의 외측에 착탈 가능하게 설치되는 탑 커버(6);로 구성된 방폭등에 있어서,
상기 광원(5)으로,
원판 형상을 갖고 복수의 발광다이오드(52)가 정해진 간격을 두고 실장된 형태에서 하부 방열판(53)의 저면에 고정 설치되는 하나 또는 다수개의 인쇄회로기판(51)과;
원판 형상을 갖도록 성형된 형태를 갖고 상기 뚜껑체(2)의 링형 고정편(41)에 스크류(7)를 통해 고정 설치된 상태에서 발광다이오드(52)에서 발생되는 열의 일부를 방열하고 나머지 열은 뚜껑체(2)와 하우징(1) 및 히트 파이프(56)로 전달하는 하부 방열판(53)과;
중앙의 고정봉(561)의 외주면에 수개의 방열핀(562)이 정해진 각도를 두고 방사형으로 돌출 성형된 형태를 갖고 상기 하부 방열판(53)의 상면과 상부 방열판(55)의 저면 사이에 스크류(7)를 통해 고정 설치되어 하부 방열판(53)을 통해 전달되는 발광다이오드(52)들의 열을 방열시켜 주는 히트 파이프(56)와;
원판 형상을 갖고 상기 히트 파이프(56)의 상면에 고정 설치되어 하부 방열판(53)과 히트 파이프(56)를 통해 전달되는 발광다이오드(52)들의 열을 방열시켜 줌은 물론 일부 열은 하우징(1) 측으로 전달해 주는 상부 방열판(55);으로 구성되는 발광다이오드 광원 모듈(50)로 성형하여 상기 뚜껑체(2)에 착탈 가능하게 설치할 수 있도록 한 것을 특징으로 한다.
이때, 상기 두 실시 예에 있어서, 상기 하우징(1)의 내측 상부에는 발광다이오드 광원 모듈(50)의 상부 방열판(55)과 하우징(1) 자체가 면 접촉되어 열전달이 원활히 이루어지도록 하는 방열판 삽입 또는 평면 접촉부(14)를 더 성형한 것을 특징으로 한다.
또, 상기 두 실시 예에 있어서, 상기 뚜껑체(2)에는 내,외부 공기가 상호 순환됨은 물론 하우징 내부에서 발생되는 열에 의해 팽창된 공기가 외부로 방출되도록 하는 수개의 내,외부 공기 순환공(24)을 정해진 간격을 두고 더 천공한 것을 특징으로 한다.
또한, 상기 두 실시 예에 있어서, 상기 뚜껑체(2)의 저면 주연부에는 뚜껑체를 통해 전달되는 열에 대한 방열효과를 증대시켜 주기 위해 수개의 날개형 방열핀(25)을 정해진 간격을 두고 일체로 더 돌출 성형한 것을 특징으로 한다.
또, 상기 두 실시 예에 있어서, 상기 하부 방열판(53)과 복수의 방열봉(54) 또는 히트 파이프(56) 및 상부 방열판(55)은 알루미늄 합금이나 마그네슘 합금 또는 카본 알루미늄 복합소재 중 어느 한 소재로 성형한 것을 특징으로 한다.
이때, 상기 알루미늄 합금은 열 확산 계수가 0.6-0.84[㎠/sec] 정도이고, 열 전도도는 220-240[W/m.K] 정도이며, 밀도는 2.7[g/㎤] 정도이고, 용융온도가 600-660[℃] 정도이며, 비열은 0.9[J/g.K]인 것을 특징으로 한다.
또, 상기 마그네슘(Mg) 합금은 열 확산 계수가 1.3-1.4[㎠/sec] 정도이고, 열 전도도는 60-90[W/mK] 정도이며, 밀도는 1.8±0.3[g/㎤] 정도이고, 용융온도가 595[℃] 정도이며, 비열은 1.02-1.05[J/gK]인 것을 특징으로 한다.
또한, 상기 카본 알루미늄 복합소재는 카본 덩어리를 800-900℃의 로에 넣고 가열하여 소정 체적을 갖는 압축 성형 금형 내에 넣고, 알루미늄 용융물을 압축 성형 금형 내로 부어 넣고 프레스를 이용 가압시켜 알루미늄 용융물이 카본에 형성된 공극 내로 합침되게 한 다음 소성 후 카본의 외부에서 경화된 알루미늄은 제거하고 공극 내로 알루미늄이 함침된 상태를 갖는 카본알루미늄 복합소재를 소정 체적 및 부피를 갖는 원판형 상,하부 방열판(55)(53)이나 방열봉(54) 또는 히트 파이프(56) 형태로 가동한 것을 특징으로 한다.
이때, 상기 카본알루미늄 복합소재는 열 확산 계구가 2.40-2.55[㎠/sec] 정도이고, 열 전도도는 415-425[W/mk] 정도이며, 밀도는 2.3-2.3[g/㎤] 정도인 것을 특징으로 한다.
또, 상기 일 실시 예에서 적용된 상기 상,하부 방열판(55)(53)의 저면 및 상면에는 각각 수개의 방열봉 안치홈(552)(532)을 정해진 각격을 두고 더 형성한 것을 특징으로 한다.
한편, 상기 일 실시 예에서 적용된 상기 상,하부 방열판(55)(53)과 복수의 방열봉(54)은 각각 복수개의 스크류(7)를 이용하여 상호 일체로 고정하거나, 또는 각각의 접촉부에 열 경화성 접착제(8)를 투입하여 상호 일체로 고정한 것을 특징으로 한다.
또, 상기 일 실시 예에 있어서, 필요에 따라서는 하부 방열판(53)의 상면 또는 상부 방열판(55)의 저면에 복수의 방열봉(54)이 정해진 간격을 두고 일체로 돌출되게 다이케스팅을 통해 성형하고, 방열봉(54)이 구비되지 않은 상부 방열판(55) 또는 하부 방열판(53)을 방열봉(54)들의 상단부 또는 저단부에 스크류(7) 또는 열 전도성 접착제(8)를 이용하여 일체로 고정 설치한 것을 특징으로 한다.
또한, 상기 두 실시 예에 있어서, 상기 하우징(1) 및 뚜껑체(2)는 알루미늄 합금 또는 탄소 나노튜브 메탈 폴리머(CMP)로 성형한 것을 특징으로 한다.
이때, 탄소 나노튜브 메탈 폴리머(CMP)는, 탄소나노튜브(CNT)가 함유된 전도성/고분자 방열 수지재로, 그의 열 확산 계수는 0.7-1.4[㎠/sec] 정도이고, 열 전도도는 90-150 [W/mK] 정도이며, 밀도는 1.4± 0.3[g/㎤] 정도이고, 용융온도는 106-160[℃] 정도이며, 비열은 1.1± 0.4[J/gK]인 것을 특징으로 한다.
여기서 미설명 부호 551, 531은 상,하부 방열판(55)(53)에 각각 형성된 전선 통과공이다.
이와 같이 구성된 본 발명의 발광다이오드형 방폭등에 대한 작용효과를 설명하면 다음과 같다.
먼저, 본 발명의 일 실시 예는 도 1 내지 도 3과 같이 반구 형상의 하우징(1)과 뚜껑체(2), 반구형 강화유리(4), 광원(5) 및 탑 커버(6)로 구성된 공지의 방폭등에 있어서, 상기 광원(5)으로 복수의 발광다이오드(52)와, 하나 또는 다수개의 인쇄회로기판(51), 하부 방열판(53), 복수의 방열봉(54) 및 상부 방열판(55)으로 구성되는 발광다이오드 광원 모듈(50)로 성형하여 상기 뚜껑체(2)에 착탈 가능하게 설치할 수 있도록 한 것을 주요기술 구성요소로 하고, 본 발명의 다른 실시 예는 도 6 및 도 7과 같이 상기한 일 실시 예의 구성요소 중 복수의 방열봉(54) 대신 히트 파이프(56)를 설치한 것을 주요기술 구성요소로 한다.
이때, 상기 두 실시 예 모두에서 공지된 방폭등의 구성부품 중 하우징(1)은 기본적으로 반구 형상을 갖도록 성형된 것으로, 그 중앙 상부에는 전선 통과겸 탑 커버 설치봉(11)이 형성되고, 저면 일측부와 주연부에는 뚜껑체 걸림구(12)와 복수개의 스크류 체결구(13)가 구비된 형태를 갖고 방폭등의 본체 기능을 수행하게 된다.
또, 상기 뚜껑체(2)는 하우징(1)의 저면 개구부에 개폐 가능하게 설치되는 것으로, 링형 고정판(21)이 일체로 구비됨은 물론 주연부에는 상기 뚜껑체 걸림구(12)에 걸려진 상태에서 힌지 작용을 수행하는 힌지편(22)과 복수개의 스크류 결합구(23)가 돌출 형성된 형태를 갖는다.
또한, 반구 형상을 갖는 상기 강화유리(4)는 가스의 폭발시 광원 등과 같은 내부 구성품들을 보호하는 기능을 수행하는 것으로, 주연부에 형성된 링형 고정편(41)이 상기 뚜껑체(2)의 링형 고정판(21) 저면에 밀착된 상태에서 고정용 브라켓(3)과 복수의 스크류(7)를 통해 뚜껑체(2)에 일체로 고정 설치된 형태를 갖는다.
그리고, 상기 광원(5)은 하우징(1) 내에 착탈 가능하게 설치되어 빛을 발생하는 기능을 수행하고, 상기 탑 커버(6)는 하우징(1)의 전선 통과겸 탑 커버 설치봉(11)의 외측에 착탈 가능하게 설치되어 하우징 내의 기밀을 유지시켜 주게 된다.
한편, 본 발명의 두 실시 예에서 방폭등의 광원(5)으로 제시된 발광다이오드 광원 모듈(50)의 구성요소 중, 하나 또는 다수개의 인쇄회로기판(51)은 뚜껑체(2)의 형상에 대응하여 원판 형상을 갖도록 알루미늄으로 성형된 형태를 갖고 복수의 발광다이오드(52)가 정해진 간격을 두고 실장된 형태에서 후술하는 하부 방열판(53)의 저면에 복수의 스크류 또는 열 전도성 접착제를 통해 고정 설치된 형태를 갖는다.
이때, 상기 인쇄회로기판(51)에 실장되는 발광다이오드(52)들은 방폭등의 출력에 따라 설치개수 및 최대 출력이 정해지는 것으로, 예를 들어 종래 최대 250W급 방폭등의 경우 100W급 발광다이오드를 설치하면 된다.
또한, 도시는 생략하였으나 각각의 발광다이오드(52)에서 조사되는 빛을 원하는 각도로 고르게 분산시켜 주기 위한 렌즈를 발광다이오드에 일체로 더 설치하거나 또는 비교적 크게 형성한 하나의 렌즈를 더 설치할 수도 있다.
또, 상기 두 실시 예에서 공통으로 사용되는 하부 방열판(53)는 알루미늄 합금이나 마그네슘 합금 또는 카본 알루미늄 복합소재 중 어느 한 소재를 이용하여 원판 형상을 갖도록 성형한 형태를 갖고 상기 뚜껑체(2)의 링형 고정편(41)에 스크류(7)를 통해 고정 설치된 상태에서 발광다이오드(52)에서 발생되는 열의 일부를 1차적으로 방열하고 나머지 열은 뚜껑체(2)와 하우징(1) 및 복수의 방열봉(54) 또는 히트 파이프(56)로 전달하는 기능을 수행하게 된다.
또한, 상기한 두 실시 예 중 일 실시 예에서 적용한 복수의 방열봉(54)도 알루미늄 합금이나 마그네슘 합금 또는 카본 알루미늄 복합소재 중 어느 한 소재를 이용하여 외주면에 방열면적을 넓히기 위한 요철부(541)를 구비한 원봉 형상으로 성형한 것이다.
이와 같은 방열봉(54)들은 상기 하부 방열판(53)의 상면과 상부 방열판(55)의 저면 사이에서 정해진 간격을 두고 수직방향으로 세워진 형태로 배치된 다음 도 1 내지 도 3과 같이 스크류(7)를 통해 고정 설치되거나, 또는 도 4와 같이 열 전도성 접착제(8)를 통해 고정 설치되어 하부 방열판(53)을 통해 전달되는 발광다이오드(52)들의 2차적으로 열을 방열시켜 줌은 물론 일부 열은 상부 방열판(55) 측으로 전달하는 기능을 수행하게 된다.
뿐만 아니라, 상기한 두 실시 예 중 다른 실시 예에서 적용한 히트 파이프(56) 역시 알루미늄 합금이나 마그네슘 합금 또는 카본 알루미늄 복합소재 중 어느 한 소재를 이용하여 중앙의 고정봉(561)의 외주면에 방열면적을 넓히기 위한 수개의 방열핀(562)이 정해진 각도를 두고 방사형으로 돌출 성형한 것이다.
이와 같은 히트 파이프(56)는 상기 하부 방열판(53)의 상면과 상부 방열판(55)의 저면 사이에 배치된 다음 도 7과 같이 스크류(7)를 통해 고정 설치되어 하부 방열판(53)을 통해 전달되는 발광다이오드(52)들의 2차적으로 열을 방열시켜 줌은 물론 일부 열은 상부 방열판(55) 측으로 전달하는 기능을 수행하게 된다.
또, 상기 두 실시 예에서 공통으로 사용되는 상부 방열판(55)은 전술한 하부 방열판(53)과 마찬가지로 알루미늄 합금이나 마그네슘 합금 또는 카본 알루미늄 복합소재 중 어느 한 소재를 이용하여 원판 형상을 갖도록 성형한 것으로, 상기 방열봉(54)들의 상단부에 스크류(7) 또는 열 전도성 접착제(8)를 통해 고정 설치되거나, 또는 히트 파이프(56)의 상면에 스크류(7)를 통해 고정 설치되어 하부 방열판(53)과 방열봉(54)들 또는 히트 파이프(56)를 통해 전달되는 발광다이오드(52)들의 열을 3차 방열시켜 줌은 물론 일부 열은 하우징(1) 측으로 전달해 주는 기능을 수행하게 된다.
이때, 상기 하우징(1)의 내면을 종래와 같이 단순히 반구형 형태를 갖도록 성형할 경우 원판 형상을 갖는 상기 발광다이오드 광원 모듈(50)의 상부 방열판(55)과 하우징(1)의 내측면이 선 접촉되거나 아예 접촉되지 않아 상기 상,하부 방열판(55)(53)과 복수의 방열봉(54)을 통해 전달되어 오는 발광다이오드(52)의 열을 하우징(1) 측으로 전달시킬 수 없어 방열효과가 저하될 우려가 있다.
따라서, 본 발명의 두 실시 예에서는 필요에 따라 상기 하우징(1)의 내측 상부에 방열판 삽입 또는 평면 접촉부(14)를 더 성형하여 줌으로써 상기 발광다이오드 광원 모듈(50)의 상부 방열판(55)과 하우징(1) 자체가 방열판 삽입 또는 평면 접촉부(14)를 통해 면 접촉되어 열전달이 원활히 이루어지게 되므로 발광다이오드(52)들에 대한 방열효과를 4-5차에 걸쳐 실시할 수 있어 방열효과를 극대화할 수 있게 된다.
또한, 본 발명이 적용된 방폭등의 하우징(1)과 뚜껑체(2) 사이를 완전히 밀폐시킬 경우 발광다이오드(52)들에서 발생되는 열에 의해 뚜껑체(2)에 의해 막혀진 하우징(1)의 내부 공기가 팽창되어 방열효과가 저하될 우려가 있다.
따라서, 본 발명의 두 실시 예에서는 필요에 따라, 상기 뚜껑체(2)의 주연부에 수개의 내,외부 공기 순환공(24)을 정해진 간격을 두고 더 천공하여 줌으로써 하우징(1)의 내,외부 공기가 상기 내,외부 공기 순환공(24)들을 통해 상호 순환되며 하우징 내부에서 발생되는 열에 의해 팽창된 공기가 외부로 자동 방출되게 되므로 방열이 더욱 효과적으로 이루어지게 된다.
뿐만 아니라, 본 발명에서는 상기 뚜껑체(2)의 저면 주연부에 수개의 날개형 방열핀(25)을 정해진 간격을 두고 일체로 더 돌출 성형하여 줌으로써 뚜껑체(2)를 통해 전달되는 열에 대한 방열효과를 대폭 증대시킬 수도 있다.
한편, 본 발명의 두 실시 예 모두에서는 전술한 바와 같이, 상기 하부 방열판(53)과 복수의 방열봉(54) 또는 히트 파이프(56) 및 상부 방열판(55)을, 알루미늄 합금이나 마그네슘 합금 또는 카본 알루미늄 복합소재 중 어느 한 소재를 이용하여 성형하였는데, 이때 상기 알루미늄 합금은 열 확산 계수가 0.6-0.84[㎠/sec] 정도이고, 열 전도도는 220-240[W/m.K] 정도이며, 밀도는 2.7[g/㎤] 정도이고, 용융온도가 600-660[℃] 정도이며, 비열은 0.9[J/g.K]을 나타나게 된다.
이에 반하여, 상기 마그네슘(Mg) 합금은 열 확산 계수가 1.3-1.4[㎠/sec] 정도이고, 열 전도도는 60-90[W/mK] 정도이며, 밀도는 1.8±0.3[g/㎤] 정도이고, 용융온도가 595[℃] 정도이며, 비열은 1.02-1.05[J/gK]을 나타내게 되며, 또한 상기 카본알루미늄 복합소재는 열 확산 계구가 2.40-2.55[㎠/sec] 정도이고, 열 전도도는 415-425[W/mk] 정도이며, 밀도는 2.3-2.3[g/㎤]를 나타나게 된다.
따라서, 상기 하부 방열판(53)과 복수의 방열봉(54) 및 상부 방열판(55)을, 알루미늄 합금으로 성형하는 것에 비해 마그네슘 합금 또는 카본 알루미늄 복합소재 중 어느 한 소재로 성형하게 되면 경량화 및 소형화가 가능하게 되므로 하부 방열판(53)과 복수의 방열봉(54) 및 상부 방열판(55)을 마그네슘 합금 또는 카본 알루미늄 복합소재로 성형하는 것이 더 바람직하다.
즉, 상기 하부 방열판(53)과 복수의 방열봉(54) 또는 히트 파이프(56) 및 상부 방열판(55)을 마그네슘(Mg) 합금으로 성형하게 되면, 밀도와 비열이 각각 1.8±0.3[g/㎤]와 1.02-1.05[J/gK]을 갖게 되므로 밀도와 비열이 각각 2.7[g/㎤]와 0.9[J/gK]를 갖는 알루미늄 합금보다 작고, 또 열 확산 계수는 0.6-0.84[㎠/sec]인 알루미늄과 달리 1.3-1.4[㎠/sec]로 높으며, 또한 열 전도도에 있어서는 220-240[W/mK]를 갖는 알루미늄에 비해 60-90[W/mK]로 낮은 특성을 갖게 되므로 알루미늄 합금으로 성형하는 것보다 경량화와 소형화가 가능하게 됨은 물론 열 방출 성능 역시 좋게 된다.
또한, 상기 하부 방열판(53)과 복수의 방열봉(54) 또는 히트 파이프(56) 및 상부 방열판(55)을 카본알루미늄 복합소재로 성형하게 되면, 밀도가 2.3-2.3[g/㎤]와 1.02-1.05[J/gK]을 갖게 되므로 밀도가 2.7[g/㎤]를 갖는 알루미늄 합금보다 매우 작고, 또 열 확산 계수는 0.6-0.84[㎠/sec]인 알루미늄과 달리 2.40-2.55[㎠/sec]로 약 3배 정도 높으며, 또한 열 전도도에 있어서는 220-240[W/mK]를 갖는 알루미늄에 비해 415-425[W/mk]로 약 2배 정도 높은 특성을 갖게 되므로 알루미늄 합금이나 마그네슘 합금으로 성형하는 것보다 더 경량화와 소형화가 가능하게 됨은 물론 열 방출 성능 역시 알루미늄 합금보다 2-3배 더 높은 효과를 얻을 수 있다.
이때, 상기 카본 알루미늄 복합소재는 소정 중량 및 체적을 갖는 카본 덩어리를 도시 생략한 800-900℃의 로에 넣고 가열한 후, 이를 압축 성형 금형 내로 옮겨 넣은 후 알루미늄 용융물을 상기와 같이 카본 덩어리가 들어 있는 압축 성형 금형 내로 부어 넣은 다음 프레스를 이용 가압시켜 알루미늄 용융물이 카본에 자체적으로 형성된 공극 내로 합침되게 한 후, 소성을 한 다음 카본의 외부에서 경화된 알루미늄을 절단해내고 공극 내로 알루미늄이 고르게 함침된 상태를 갖는 카본알루미늄 복합소재를 소정 체적 및 부피를 갖는 원판형 상,하부 방열판(55)(53)이나 방열봉(54) 또는 히트 파이프(56) 형태로 가공하여 사용하면 된다.
또, 본 발명의 일 실시 예에서는 상기 상,하부 방열판(55)(53)을 단순한 원판 형상으로 성형하지 않고 각각의 저면 및 상면에는 각각 수개의 방열봉 안치홈(552)(532)을 정해진 각격을 두고 더 형성하여 줌으로써 상기 방열봉(54)들을 상,하부 방열판(55)(53) 사이에 정해진 간격을 두고 배치시키고 스크류(7) 또는 열 전도성 접착제(8)를 이용하여 상호 일체로 고정시킬 때 방열봉(54)들의 상,하 단부가 상,하부 방열판(55)(53)에 형성된 수개의 방열봉 안치홈(552)(532)에 각각 끼워져 원하는 위치에 정확히 배치할 수 있음은 물론 상호 조립과정 중 방열봉(54)들이 상,하부 방열판(55)(53) 사이에서 이탈되는 것을 방지할 수 있어 조립성이 매우 좋게 된다.
한편, 전술한 바와 같이 상기 인쇄회로기판(51)을 하부 방열판(53)에 접착시켜 주거나, 상,하부 방열판(55)(53)과 복수의 방열봉(54)들의 접촉부를 각각 일체로 고정시켜 주기 위해 사용되는 열 경화성 접착제(8)는 열전도가 마그네슘 합금이나 카본알루미늄 복합소재보다는 높고 알루미늄 합금보다는 약 20% 정도 낮은 특성을 갖고 있어 발광다이오드(52)에서 발생되는 열을 하부 방열판(53)을 통해 복수의 방열봉(54) 또는 히트 파이프(56) 및 상부 방열판(55) 등으로 빠르게 전달시킬 수 있어 각각의 구성품에서 열을 대기중으로 빨리 방사시켜 줄 수 있게 될 뿐만 아니라 각각의 구성품들에 대한 방열 효율에는 아무런 영향을 주지 않는 상태에서 각각의 구성품이 일체로 고정 설치되게 하는 기능을 하게 된다.
또한, 지금까지 본 발명의 일 실시 예에 대한 설명은, 상기 하부 방열판(53)과 복수의 방열봉(54) 및 상부 방열판(55)을 각각 별도로 성형하여 상호 결합시킨 형태를 중심으로 설명하였는데, 이에 한정하는 것은 아니다.
즉, 필요에 따라서는 하부 방열판(53)의 상면 또는 상부 방열판(55)의 저면에 도 5의 (a)(b)와 같이, 각각 복수의 방열봉(54)이 정해진 간격을 두고 일체로 돌출되게 다이케스팅을 통해 성형하고, 방열봉(54)이 구비되지 않은 상부 방열판(55) 또는 하부 방열판(53)을 방열봉(54)들의 상단부 또는 저단부에 스크류(7) 또는 열 전도성 접착제(8)를 이용하여 일체로 고정 설치할 수 있도록 하여 조립공정과 시간 및 인건비 등의 절감을 통해 제품의 제조원가를 점감시킬 수도 있다.
뿐만 아니라, 본 발명의 두 실시 예 모두에서 상기 하우징(1) 및 뚜껑체(2)는 종래와 마찬가지로 알루미늄 합금 등을 이용하여 성형하는 것을 기본으로 하나, 필요에 따라서는 탄소 나노튜브 메탈 폴리머(CMP)로 성형할 수도 있다.
이때, 탄소 나노튜브 메탈 폴리머(CMP)는, 탄소나노튜브(CNT)가 함유된 전도성/고분자 방열 수지재로, 그의 열 확산 계수는 0.7-1.4[㎠/sec] 정도이고, 열 전도도는 90-150 [W/mK] 정도이며, 밀도는 1.4± 0.3[g/㎤] 정도이고, 용융온도는 106-160[℃] 정도이며, 비열은 1.1± 0.4[J/gK]를 나타내게 된다.
이와 같이 상기 하우징(1) 및 뚜껑체(2)를 탄소나노튜브(CNT)가 함유된 전도성/고분자 방열 수지재인 탄소 나노튜브 메탈 폴리머(CMP)로 성형하게 되면 종래 알루미늄 합금으로 성형한 상기 하우징(1) 및 뚜껑체(2)보다 적은 표면적으로도 열전자의 대기 방출 성능이 높게 되어 알루미늄 합금으로 성형하는 것보다 대폭 경량화 및 소형화시킬 수 있게 된다.
이상에서 설명한 바와 같이 본 발명에서는 종래 방폭등의 하우징 및 뚜껑체 등을 그대로 사용하면서, 종래 방폭등에서 사용하던 메탈 할라이드나 수은 또는 나트륨 등의 광원 대신 발광다이오드(LED) 광원 모듈로 대체하는 구성으로 변경하되, 발광다이오드(52)가 실장되는 하나 또는 다수의 인쇄회로기판(51) 고정용 하부 방열판(53)을 포함하여 복수의 방열봉(54) 또는 히트 파이프(56) 및 상부 방열판(55)을 알루미늄 합금이나 상기 알루미늄 합금보다 중량이 가볍고 방열 특성이 좋은 마그네슘(Mg) 합금 또는 카본 알루미늄(carbonic aluminum) 복합소재 등으로 성형하고, 또 필요에 따라서는 방폭등의 하우징(1) 및 뚜껑체(2) 형상은 종래와 동일하게 성형하되, 그 재질을 알루미늄이 아닌 탄소나노튜브(CNT)가 함유된 전도성/고분자 방열 수지재인 탄소 나노튜브 메탈 폴리머(CMP)로 성형하여 줌으로써 방폭등 자체의 방열기능을 대폭 향상시킬 수 있으며, 기존 방폭등에서 사용되는 광원에 비해 고효율이면서 에너지는 절감할 수 있고, 안정성을 확보할 수 있으며, 방폭등 자체의 경량화가 가능하게 된다.
뿐만 아니라, 제품의 생산원가를 대폭 저감시킬 수 있고, 또 종래 방폭등의 하우징 및 뚜껑체 등을 그대로 이용하여 발광다이오드형 방폭등을 형성시킬 수 있어 불필요한 자원 낭비를 미연에 방지할 수 있으며, 또한 LED에서 발생되는 열을 빠른 시간에 방열시킬 수 있어 제품의 수명을 대폭 연장시킬 수 있고, 교체 비용 등을 대폭 절감할 수 있을 뿐만 아니라 제품 자체의 호환성 및 신뢰도를 대폭 향상시킬 수 있는 것이다.
상술한 실시 예는 본 발명의 가장 바람직한 예에 대하여 설명한 것이지만, 상기 실시 예에만 한정되는 것은 아니며, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양한 변형이 가능하다는 것은 당업자에게 있어서 명백한 것이다.

Claims (10)

  1. 하우징과; 상기 하우징의 개구부에 개폐 가능하게 설치되는 뚜껑체와; 상기 뚜껑체에 일체로 고정 설치되는 강화유리와; 상기 하우징 내에 착탈 가능하게 설치되어 빛을 발생하는 광원;으로 구성된 방폭등에 있어서,
    상기 광원으로,
    원판 형상을 갖고 복수의 발광다이오드가 정해진 간격을 두고 실장된 형태에서 하부 방열판의 저면에 고정 설치되는 하나 또는 다수개의 인쇄회로기판과;
    원판 형상을 갖도록 성형된 형태를 갖고 상기 뚜껑체의 링형 고정편에 스크류를 통해 고정 설치된 상태에서 발광다이오드에서 발생되는 열의 일부를 방열하고 나머지 열은 뚜껑체와 하우징 및 복수의 방열봉으로 전달하는 하부 방열판과;
    외주면에 방열면적을 넓히기 위한 요철부를 구비하고 상기 하부 방열판의 상면과 상부 방열판의 저면 사이에서 정해진 간격을 두고 고정 설치되어 하부 방열판을 통해 전달되는 발광다이오드들의 열을 방열시켜 주는 복수의 방열봉과;
    원판 형상을 갖고 상기 방열봉들의 상단부에 고정 설치되어 하부 방열판과 방열봉들을 통해 전달되는 발광다이오드들의 열을 방열시켜 줌은 물론 일부 열은 하우징 측으로 전달해 주는 상부 방열판;으로 구성되는 발광다이오드 광원 모듈로 성형하여, 상기 뚜껑체에 착탈 가능하게 설치할 수 있도록 한 것을 특징으로 하는 발광다이오드형 방폭등.
  2. 하우징과; 상기 하우징의 개구부에 개폐 가능하게 설치되는 뚜껑체와; 상기 뚜껑체에 일체로 고정 설치되는 강화유리와; 상기 하우징 내에 착탈 가능하게 설치되어 빛을 발생하는 광원;으로 구성된 방폭등에 있어서,
    상기 광원으로,
    원판 형상을 갖고 복수의 발광다이오드가 정해진 간격을 두고 실장된 형태에서 하부 방열판의 저면에 고정 설치되는 하나 또는 다수개의 인쇄회로기판과;
    원판 형상을 갖도록 성형된 형태를 갖고 상기 뚜껑체의 링형 고정편에 스크류를 통해 고정 설치된 상태에서 발광다이오드에서 발생되는 열의 일부를 방열하고 나머지 열은 뚜껑체와 하우징 및 히트 파이프로 전달하는 하부 방열판과;
    중앙의 고정봉의 외주면에 수개의 방열핀이 정해진 각도를 두고 방사형으로 돌출 성형된 형태를 갖고 상기 하부 방열판의 상면과 상부 방열판의 저면 사이에 스크류를 통해 고정 설치되어 하부 방열판을 통해 전달되는 발광다이오드들의 열을 방열시켜 주는 히트 파이프와;
    원판 형상을 갖고 상기 히트 파이프의 상면에 고정 설치되어 하부 방열판과 히트 파이프를 통해 전달되는 발광다이오드들의 열을 방열시켜 줌은 물론 일부 열은 하우징 측으로 전달해 주는 상부 방열판;으로 구성되는 발광다이오드 광원 모듈로 성형하여 상기 뚜껑체에 착탈 가능하게 설치할 수 있도록 한 것을 특징으로 하는 발광다이오드형 방폭등.
  3. 청구항 1 또는 청구항 2 중 어느 한 항에 있어서,
    상기 하우징의 내측 상부에는 발광다이오드 광원 모듈의 상부 방열판과 하우징 자체가 면 접촉되어 열전달이 원활히 이루어지도록 하는 방열판 삽입 또는 평면 접촉부를 더 성형한 것을 특징으로 하는 발광다이오드형 방폭등.
  4. 청구항 1 또는 청구항 2 중 어느 한 항에 있어서,
    상기 뚜껑체에는 내,외부 공기가 상호 순환되며 하우징 내부에서 발생되는 열에 의해 팽창된 공기가 외부로 방출되도록 하는 수개의 내,외부 공기 순환공을 정해진 간격을 두고 더 천공한 것을 특징으로 하는 발광다이오드형 방폭등.
  5. 청구항 1 또는 청구항 2 중 어느 한 항에 있어서,
    상기 뚜껑체의 저면 주연부에는 뚜껑체를 통해 전달되는 열에 대한 방열효과를 증대시켜 주기 위해 날개형 방열핀들을 정해진 간격을 두고 일체로 더 돌출 성형한 것을 특징으로 하는 발광다이오드형 방폭등.
  6. 청구항 1 또는 청구항 2 중 어느 한 항에 있어서,
    상기 하부 방열판과 복수의 방열봉 또는 히트 파이프 및 상부 방열판은,
    알루미늄 합금이나 마그네슘 합금 또는 카본 알루미늄 복합소재 중 어느 한 소재로 성형한 것을 특징으로 하는 발광다이오드형 방폭등.
  7. 청구항 6에 있어서,
    상기 카본 알루미늄 복합소재는,
    카본 덩어리를 800-900℃의 로에 넣고 가열하여 소정 체적을 갖는 압축 성형 금형 내에 넣고, 알루미늄 용융물을 압축 성형 금형 내로 부어 넣고 프레스를 이용 가압시켜 알루미늄 용융물이 카본에 형성된 공극 내로 합침되게 한 다음 소성 후 카본의 외부에서 경화된 알루미늄은 제거하고 공극 내로 알루미늄이 함침된 상태를 갖는 카본알루미늄 복합소재를 소정 체적 및 부피를 갖는 원판형 상,하부 방열판이나 방열봉 또는 히트 파이프 형태로 가공한 것을 특징으로 하는 발광다이오드형 방폭등.
  8. 청구항 1에 있어서,
    상기 상,하부 방열판과 복수의 방열봉은 각각 복수개의 스크류를 이용하여 상호 일체로 고정하거나, 또는 각각의 접촉부에 열 경화성 접착제를 투입하여 상호 일체로 고정한 것을 특징으로 하는 발광다이오드형 방폭등.
  9. 청구항 1에 있어서,
    상기 하부 방열판의 상면 또는 상부 방열판의 저면에 복수의 방열봉이 정해진 간격을 두고 일체로 돌출되게 다이케스팅을 통해 성형하고, 방열봉이 구비되지 않은 상부 방열판 또는 하부 방열판을 방열봉들의 상단부 또는 저단부에 일체로 고정 설치한 것을 특징으로 하는 발광다이오드형 방폭등.
  10. 청구항 1 또는 청구항 2 중 어느 한 항에 있어서,
    상기 하우징 및 뚜껑체는 탄소 나노튜브 메탈 폴리머(CMP)로 성형한 것을 특징으로 하는 발광다이오드형 방폭등.
PCT/KR2012/005454 2011-11-28 2012-07-10 발광다이오드형 방폭등 WO2013081269A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110124757A KR101114947B1 (ko) 2011-11-28 2011-11-28 발광다이오드형 방폭등
KR10-2011-0124757 2011-11-28

Publications (1)

Publication Number Publication Date
WO2013081269A1 true WO2013081269A1 (ko) 2013-06-06

Family

ID=46140974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005454 WO2013081269A1 (ko) 2011-11-28 2012-07-10 발광다이오드형 방폭등

Country Status (2)

Country Link
KR (1) KR101114947B1 (ko)
WO (1) WO2013081269A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106322305A (zh) * 2015-06-25 2017-01-11 袁烽旗 一种led防爆灯
CN116357942A (zh) * 2023-06-01 2023-06-30 山东智信光电有限公司 一种煤矿防爆led灯带

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102353691B1 (ko) * 2015-02-25 2022-01-26 대우조선해양 주식회사 방열 성능이 향상된 방폭등
KR102344472B1 (ko) 2015-02-25 2021-12-29 대우조선해양 주식회사 화물창 설치용 작업등
KR102180248B1 (ko) * 2018-04-30 2020-11-19 (주)프라우텍 엘이디 방폭등
KR102097000B1 (ko) * 2018-08-17 2020-04-03 신용범 도로면으로 보조 교통신호가 조사되는 교통신호장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080093793A (ko) * 2007-04-18 2008-10-22 박준형 전동차 조명용 엘이디 모듈 및 이에 의한 전동차용 엘이디전등
KR100910539B1 (ko) * 2008-09-29 2009-07-31 화우테크놀러지 주식회사 엘이디 방폭등
KR101027908B1 (ko) * 2010-08-26 2011-04-12 주식회사 에이팩 히트싱크와 히트싱크를 포함하는 발광다이오드 조명기구 및 그 제조방법
KR20110006648U (ko) * 2011-05-20 2011-06-30 임성남 방폭등용 엘이디 광원 모듈
KR101079151B1 (ko) * 2011-08-18 2011-11-02 이슬기 발광다이오드 조명 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080093793A (ko) * 2007-04-18 2008-10-22 박준형 전동차 조명용 엘이디 모듈 및 이에 의한 전동차용 엘이디전등
KR100910539B1 (ko) * 2008-09-29 2009-07-31 화우테크놀러지 주식회사 엘이디 방폭등
KR101027908B1 (ko) * 2010-08-26 2011-04-12 주식회사 에이팩 히트싱크와 히트싱크를 포함하는 발광다이오드 조명기구 및 그 제조방법
KR20110006648U (ko) * 2011-05-20 2011-06-30 임성남 방폭등용 엘이디 광원 모듈
KR101079151B1 (ko) * 2011-08-18 2011-11-02 이슬기 발광다이오드 조명 모듈

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106322305A (zh) * 2015-06-25 2017-01-11 袁烽旗 一种led防爆灯
CN106322305B (zh) * 2015-06-25 2023-03-03 袁烽旗 一种led防爆灯
CN116357942A (zh) * 2023-06-01 2023-06-30 山东智信光电有限公司 一种煤矿防爆led灯带
CN116357942B (zh) * 2023-06-01 2023-08-01 山东智信光电有限公司 一种煤矿防爆led灯带

Also Published As

Publication number Publication date
KR101114947B1 (ko) 2012-03-06

Similar Documents

Publication Publication Date Title
WO2013081269A1 (ko) 발광다이오드형 방폭등
WO2013047929A1 (ko) 엘이디 조명 장치
KR100910539B1 (ko) 엘이디 방폭등
US8845146B2 (en) Connector for connecting a component to a heat sink
WO2012030116A2 (ko) 카본알루미늄 복합소재를 이용한 파워 발광다이오드형 조명기구
US20170045214A1 (en) Improved led lamps and luminaires
WO2014134850A1 (zh) 一种高效节能led路灯灯泡
WO2011118992A2 (ko) 엘이디 조명모듈 및 이를 이용한 조명램프
WO2013024943A1 (ko) 발광다이오드 조명 모듈
KR100909472B1 (ko) 방폭등
WO2014010778A1 (ko) 광 반도체 조명장치
WO2011096373A1 (ja) 照明装置
KR200459504Y1 (ko) 방폭등용 엘이디 광원 모듈
WO2011040671A1 (ko) 발광다이오드 조명기구
US20180087749A1 (en) Surface-mounted pluggable wiring insert key, driving power source box, and detachable modular led lamp
CN102213376A (zh) Led灯
KR101997669B1 (ko) 방열구조체 일체형 pcb가 구비된 led 모듈 및 그 제조방법
KR20120002293A (ko) 인증 방폭형 등기구를 적용하여 방열성능을 향상시킨 led광원 방폭등
WO2011030949A1 (ko) 발광다이오드 램프
CN202501276U (zh) Led防爆灯具
US10508776B2 (en) Anti-detachment capper for LED retrofit lamps
WO2015037900A1 (ko) 방열용액체의 누출 방지장치가 구비된 램프
CN219300691U (zh) 一种免维修矿灯
US7097328B2 (en) Luminaire heat sink
WO2016027913A1 (ko) 엘이디 램프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/09/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12853175

Country of ref document: EP

Kind code of ref document: A1