WO2011096373A1 - 照明装置 - Google Patents

照明装置 Download PDF

Info

Publication number
WO2011096373A1
WO2011096373A1 PCT/JP2011/051973 JP2011051973W WO2011096373A1 WO 2011096373 A1 WO2011096373 A1 WO 2011096373A1 JP 2011051973 W JP2011051973 W JP 2011051973W WO 2011096373 A1 WO2011096373 A1 WO 2011096373A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
power supply
supply circuit
heat transfer
heat radiating
Prior art date
Application number
PCT/JP2011/051973
Other languages
English (en)
French (fr)
Inventor
昌史 山本
英行 赤尾
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2011800053427A priority Critical patent/CN102695909A/zh
Priority to EP11739721.6A priority patent/EP2535635A4/en
Priority to US13/522,117 priority patent/US20120293961A1/en
Publication of WO2011096373A1 publication Critical patent/WO2011096373A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/006Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate being distinct from the light source holder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • F21V29/713Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements in direct thermal and mechanical contact of each other to form a single system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/0055Fastening of light source holders, e.g. of circuit boards or substrates holding light sources by screwing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a lighting device including a heating element, a heat conduction part that conducts heat from the heating element, and a heat radiation part that radiates heat from the heat conduction part.
  • a lighting device generally contains a heat source such as a light source and a power source that supplies power to the light source.
  • a heat source such as a light source
  • a power source that supplies power to the light source.
  • the performance of the heat generating component such as a light source such as a light emitting diode (hereinafter referred to as LED) and an electronic component constituting the power supply unit cannot be secured.
  • the temperature of the outer surface of the lighting device increases, which is not preferable from the viewpoint of safety. Therefore, conventionally, a lighting device configured to be able to dissipate heat from the heat-generating component to the air outside the lighting device has been proposed (see, for example, Patent Document 1).
  • the illumination device disclosed in Patent Document 1 includes a light source unit 110 having a light source 111, a power source unit 130 that lights the light source 111, a power terminal block 140 that supplies power to the power source unit 130, a light source unit 110, and a power source unit. 130 and an appliance main body 120 provided with a power terminal block 140.
  • the support 150 made of a spring material provided on the outer periphery of the appliance main body 120 is attached to the ceiling so that the light source 110 side becomes the installation hole side. It is installed and used as a so-called downlight (see FIG. 1).
  • the instrument main body 120 has a substantially cylindrical shape, is provided at one end, is provided with a disk-like support part 121 that supports the light source part 110, and is provided at the other end.
  • the power supply part 130 is accommodated together with the support part 121. And a disk-shaped attachment portion 122 that forms a space portion.
  • One surface of the support portion 121 is fixed with screws in a state where the wiring board 112 on which the light source 111 is mounted is in contact.
  • the other surface of the support part 121 is fixed with screws in a state where the peripheral part of the wiring board 131 of the power supply part 130 is in contact with a support step part formed integrally with the support part 121.
  • the instrument main body 120 is made of aluminum die-casting, and also serves as a heat radiating unit that radiates heat from the light source 111 and the power supply unit 130.
  • Patent Document 1 also discloses that a synthetic resin such as a high thermal conductive resin may be used as the material of the instrument body 120.
  • the wiring board 131 of the power supply unit 130 is only brought into contact with the fixture main body 120 at the peripheral portion, and the heat transfer area that transfers heat from the power supply unit 130. Cannot be secured sufficiently.
  • the high thermal conductivity resin has a lower thermal conductivity than metal, if only the material of the instrument body 120 is changed, the heat generated by the power supply unit 130 cannot be sufficiently conducted to the instrument body 120, There is a possibility that heat radiation cannot be sufficiently performed.
  • This invention is made
  • An illumination device includes a light source, a power supply circuit that supplies power to the light source, and a heat radiating portion that radiates heat from the power supply circuit housed inside to the outside air.
  • a lighting device having a heat conducting part for conducting heat from the power supply circuit to the heat radiating part, wherein the heat radiating part and the heat conducting part are thermally connected.
  • the heat dissipating part is made of an electrically insulating material and dissipates heat generated from the power circuit into the outside air, and the heat conduction conducts heat from the power circuit to the heat dissipating part.
  • the heat conduction from the heat conducting part to the heat radiating part can be improved by thermally connecting the parts to each other, for example, even when a heat radiating part made of a resin having a generally low thermal conductivity is used. it can.
  • An illumination device includes a heating element such as a light source or a power supply circuit, a heat radiating part that radiates heat from the heat generating element, and a heat conduction part that conducts heat from the heating element to the heat radiating part.
  • a heating element such as a light source or a power supply circuit
  • a heat radiating part that radiates heat from the heat generating element
  • a heat conduction part that conducts heat from the heating element to the heat radiating part. It is an illuminating device, Comprising: At least one part of the surface where the said heat conduction part and the said thermal radiation part oppose is thermally connected in order to make heat conduction favorable, It is characterized by the above-mentioned.
  • At least one of the surface of the heat radiating portion that radiates heat generated from the heating element and the surface of the heat conducting portion that conducts heat from the power supply circuit facing the surface to the heat radiating portion are connected to the parts thermally to improve heat conduction, it is possible to conduct heat over a wide range by the surface, increasing the amount of heat to be conducted, improving heat conduction from the heat conducting part to the heat radiating part can do.
  • the lighting device according to the present invention is characterized in that at least a part of the heat conducting unit is embedded in the heat radiating unit.
  • the present invention by embedding the heat conducting part in the heat radiating part, it is possible to increase the heat transfer area between the heat conducting part and the heat radiating part and to increase the degree of adhesion, and the amount of heat to be conducted is increased.
  • the gap increases between the heat conducting part and the heat dissipating part, so that the heat resistance can be reduced and efficient heat conduction can be performed from the heat conducting part.
  • the lighting device according to the present invention has a base, and the base is formed integrally with the heat radiating portion.
  • the manufacturing process can be simplified because it can be formed without using a connector such as a screw.
  • the illuminating device is characterized in that the heat conducting portion includes a connecting portion that is thermally connected to the power supply circuit, and a conducting portion that conducts heat from the power supply circuit to the heat radiating portion.
  • the heat conducting portion includes a connection portion that is thermally connected to the power supply circuit, and a conduction portion that conducts heat from the power supply circuit to the heat dissipation portion.
  • a heat transfer area for conducting heat from the power supply circuit to the heat radiating portion can be widened, a thermal resistance of the heat conducting portion can be reduced, and a temperature rise of the heat conducting portion can be suppressed.
  • the heat conducting portion includes a cylindrical portion that houses the power supply circuit, a connection portion that is provided in the cylindrical portion and is thermally connected to the power supply circuit, and the cylindrical portion.
  • a projecting portion projecting from the outer surface, and the heat radiating portion is provided so as to cover the outer surface of the tube portion and the projecting portion.
  • the heat conducting portion is provided on the outer surface of the cylindrical portion, the cylindrical portion that houses the power circuit, the connecting portion that is thermally connected to the cylindrical portion, and holds the power circuit.
  • the heat dissipating body is provided so as to cover the outer surface of the cylindrical portion of the heat conducting portion and the projecting portion. Since the outer surface of the cylindrical portion and the surface of the projecting portion are in close contact with the heat radiating body, a wide heat transfer area with good heat conduction can be obtained.
  • Heat from the power supply circuit is conducted to the tube portion and the projecting portion through the connection portion, and can be conducted well to the heat radiating portion provided in close contact with the tube portion and the projecting portion. Can be sufficiently dissipated from the heat dissipating part.
  • the heat conducting portion includes a cylindrical portion that accommodates the power supply circuit therein, and is thermally connected to the power supply circuit on an inner surface of the cylindrical portion. It is provided so that the outer surface of a heat conductive part may be covered.
  • the heat conducting portion has a cylindrical portion capable of accommodating the power supply circuit therein, and accommodates the power supply circuit by being thermally connected to the power supply circuit on the inner surface of the cylindrical portion.
  • the heat from the power supply circuit part is conducted well to the heat conduction part.
  • the heat dissipating part so as to cover the outer surface of the heat conducting part, it is possible to increase the heat transfer area between the heat conducting part and the heat dissipating part, and the heat dissipating part is the outer surface of the heat conducting part. Therefore, heat can be favorably conducted from the heat conducting portion to the heat radiating portion.
  • heat from the heating element can be conducted well to the heat radiating portion.
  • FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG. 2.
  • FIG. 5 is a schematic longitudinal sectional view taken along the line VVV in FIG. 4.
  • FIG. 6 is a schematic longitudinal sectional view taken along line VI-VI in FIG. 4. It is a typical enlarged view of the heat exchanger plate in Embodiment 1 of this invention.
  • FIG. 2 is a schematic external view of the illumination device 100 according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic exploded perspective view of lighting apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the illumination device 100 taken along line IV-IV in FIG.
  • FIG. 5 is a schematic longitudinal sectional view of the illumination device 100 taken along the line VV of FIG.
  • FIG. 6 is a schematic longitudinal sectional view of the illumination device 100 taken along line VI-VI in FIG.
  • the lighting device 100 includes a light source module 1 in which a plurality of LEDs 12 that are light sources are mounted, a dome-shaped cover 8 that covers the light source module 1, and heat dissipation to which the light source module 1 is attached.
  • the heat transfer cylinder 4, the heat conductive sheet 60 provided between the power supply circuit 6 and the heat transfer plate 5, and the heat radiating plate 2 are attached between the cover 8, and the heat transfer plate 5, the power supply circuit 6,
  • the heat conductive sheet 60 and the heat radiating part 3 that accommodates the heat transfer cylinder 4 and the base 7 that is connected to the heat radiating part 3 and the heat radiating plate 2 on the opposite side are provided.
  • the light source module 1 has a plurality of LEDs 12 as light sources mounted on one surface of a disk-shaped LED substrate 11.
  • the LED 12 is, for example, a surface mount type LED.
  • the light source module 1 is attached to a heat sink 2 having a disk shape.
  • the heat sink 2 is a good heat conductor, and is made of metal such as aluminum, for example.
  • the light source module 1 is fixed to one surface 2a of the heat sink 2 on the other surface which is the non-mounting side surface of the LED substrate 11.
  • the heat sink 2 is attached to the heat radiating part 3 on the other surface 2b.
  • the heat radiating part 3 has a thick cylindrical shape, and has a truncated cone shape whose diameter is gradually increased from the base 7 side toward the cover 8 side. Screw holes (not shown) provided in the LED substrate 11, screw holes 21 provided in the heat radiating plate 2, and screw holes 31 provided in the expanded surface 3a on the cover 8 side of the heat radiating portion 3
  • the light source module 1 and the heat radiating plate 2 are placed on the surface 3a on the cover 8 side of the heat radiating portion 3 and the screws 15 are screwed into the screw holes so that the light source module 1 and the heat radiating plate 2 are aligned. Is fixed to the heat dissipating part 3.
  • the heat radiating portion 3 is made of a resin excellent in heat dissipation and electrical insulation, so-called heat dissipation resin.
  • the heat radiating resin is a resin having electrical insulation.
  • the heat conductivity of the heat radiation resin is, for example, about 1 to 70 (W / m ⁇ K).
  • This heat radiating resin is made of, for example, a synthetic resin containing PBT (Polybutylene phthalate) as a base. Note that the heat-dissipating resin is not limited to a synthetic resin including PBT as long as it has electrical insulation.
  • the LED substrate 11 and the heat radiating plate 2 and the heat radiating plate 2 and the heat radiating portion 3 are in contact with each other over almost the entire surface, they have a sufficient heat transfer area. Therefore, the heat from the LED 12 which is a heating element is efficiently conducted to the heat radiating plate 2 through the LED substrate 11, and a part is radiated as it is from the peripheral portion of the heat radiating plate 2 to the air outside the lighting device 100, and the rest. The heat is efficiently conducted from the heat radiating plate 2 to the heat radiating portion 3 and is radiated from the heat radiating portion 3 to the air outside the lighting device 100.
  • the LED 12 Since the heat is dissipated by the heat radiating plate 2 and the heat radiating portion 3, the LED 12 is cooled to a temperature necessary for ensuring predetermined performance and life. In addition, it is desirable that a heat conductive sheet or a thermally conductive grease is interposed between the LED substrate 11 and the heat radiating plate 2 and between the heat radiating plate 2 and the heat radiating portion 3.
  • a heat transfer cylinder 4 and a heat transfer plate 5 are provided as heat conducting parts that conduct heat from a heating element such as the LED 12 and the power supply circuit 6 to the heat dissipating part 3.
  • the heat transfer cylinder 4 and the heat transfer plate 5 are heat good conductors, and are made of metal such as aluminum, for example.
  • the heat transfer cylinder 4 has a cylindrical shape, and a notch 41 is formed at two locations on one end.
  • the cutout 41 is cut out in a rectangular shape along the longitudinal direction from the edge of the heat transfer cylinder 4 on the cover 8 side.
  • the width of the notch 41 is formed to be substantially the same as the thickness of the heat transfer plate 5 to be engaged.
  • the heat transfer cylinder 4 houses the power supply circuit 6 and forms a part of a housing portion that secures a space for housing the power supply circuit 6.
  • FIG. 7 is a schematic enlarged view of the heat transfer plate 5 in the present embodiment.
  • the heat transfer plate 5 is connected to a rectangular plate-like connection plate portion 51 having a rectangular connection surface 51 a that is a connection portion that is thermally connected to the power supply circuit 6, and to both ends on the long side of the connection plate portion 51.
  • two fins 52 extending in a direction separated from each other in a direction parallel to the connection plate portion 51.
  • the two fins 52 have a shape that extends from the base 7 side to the cover 8 side along the outer shape of the heat radiating unit 3 that is the outer shell of the lighting device 100.
  • the two fins 52 have a trapezoidal shape that becomes wider from the base 7 side in the longitudinal direction toward the cover 8 side.
  • slits 53 are formed in the fin 52 over an appropriate length from the end on the base 7 side along the longitudinal direction.
  • the width of the slit 53 is substantially the same as the thickness of the heat transfer cylinder 4 to be engaged.
  • the heat transfer plate 5 is integrated with the heat transfer tube 4 by being aligned with the slit 53 and the notch 41 of the heat transfer tube 4 so that the heat transfer plate 5 is inserted into the heat transfer tube 4 along the longitudinal direction. Thermally connected.
  • most of the fins 52 of the heat transfer plate 5 protrude from the outer surface 4a of the heat transfer tube 4 in the radial direction of the heat transfer tube 4, that is, It corresponds to a protruding portion protruding from the outer surface of the cylindrical portion of the heat conducting portion.
  • the heat transfer plate 5 and the heat transfer tube 4 are the same. Is thermally connected over substantially the entire length of the fins 52 of the heat transfer plate 5 in the longitudinal direction.
  • heat conducted from the power supply circuit 6 to the heat transfer plate 5 is also conducted well from the heat transfer plate 5 to the heat transfer cylinder 4.
  • the diameter of the heat transfer tube 4 and the shape of the connection plate portion 51 of the heat transfer plate 5 are appropriately determined so that the inner surface 4b of the heat transfer tube 4 and the power supply circuit 6 approach each other.
  • the heat transfer cylinder 4 and the fins 52 described above are conductive parts that conduct heat from the power supply circuit 6 to the heat radiating part 3. Further, the fin 52 is a part of a heat conducting portion embedded in the heat radiating portion 3 as described later, and is a protruding portion protruding from the outer surface of the cylindrical portion as described above.
  • the power supply circuit 6 includes a power supply circuit board 61 having a rectangular plate shape, and a plurality of power supply circuit components 62 mounted on the power supply circuit board 61.
  • the power circuit component 62 is connected to a bridge diode for full-wave rectification of an alternating current supplied from an external alternating current power source, a transformer for transforming the rectified power supply voltage to a predetermined voltage, and a primary side and a secondary side of the transformer.
  • a diode, an IC, and the like are provided.
  • a rectangular plate-shaped heat conduction sheet 60 is interposed between the power supply circuit board 61 and the connection plate portion 51 of the heat transfer plate 5.
  • the power supply circuit 6 and the heat transfer plate 5 are thermally connected via the heat conductive sheet 60, and heat from the power supply circuit 6 is indirectly conducted to the heat transfer plate 5.
  • the size and arrangement of the heat conductive sheet 60 are appropriately determined according to the arrangement of the power supply circuit components 62.
  • a heat good conductor having electrical insulation is used, for example, a low-hardness flame-retardant silicone rubber is used.
  • the heat conductive sheet 60 is not essential and may be a heat conductive grease, and the power circuit board 61 and the heat transfer plate 5 are thermally connected while being electrically insulated, and can conduct heat well. What is necessary is just to be comprised.
  • a base 7 is provided on one end side of the heat radiating portion 3.
  • the base 7 has a cylindrical shape with a bottom, a one-pole terminal 71 having a cylindrical portion that is threaded to be screwed into a socket for a light bulb, and a projection that protrudes from the bottom surface of the base 7
  • the electrode terminal 72 is provided. These one-pole terminals 71 and other-pole terminals 72 are electrically insulated.
  • the outer shape of the cylindrical portion of the base 7 is formed in the same shape as the screw-type base of E17 or E26, for example. In the base 7, the other end side opposite to the notch 41 of the heat transfer cylinder 4 is fitted.
  • FIG.8 and FIG.9 is explanatory drawing of shaping
  • the heat transfer plate 5 is inserted into the heat transfer tube 4 so as to be engaged with each other at the notch 41 of the heat transfer tube 4 and the slit 53 of the heat transfer plate 5, and the heat transfer plate 5 is engaged by the heat transfer tube 4. Hold together.
  • the heat transfer tube 4 is fitted into the base 7 so that the other end side opposite to the notch 41 of the heat transfer tube 4 is located inside the base 7 (see FIG. 8).
  • FIG. 9 shows a completed state in which the heat radiating part 3 is integrally formed with the heat transfer cylinder 4, the heat transfer plate 5, and the base 7 after the heat radiating resin is solidified.
  • the heat transfer cylinder 4, the heat transfer plate 5, and the base 7 are integrally formed of the heat radiating resin (heat radiating part 3), and the heat radiating part 3 includes the heat transfer cylinder 4 and the heat transfer plate 5. It functions also as a connection body which connects the heat conducting part and the base 7.
  • the heat radiation part 3 and the outer surface 4a of the heat transfer cylinder 4 and The fins 52 can be brought into close contact with each other without causing a gap, an increase in thermal resistance due to the presence of air or the like can be suppressed, and heat conduction from the heat transfer cylinder 4 and the heat transfer plate 5 to the heat radiating unit 3 can be suppressed. It can be done well.
  • the heat conduction part is made into the shape which can accommodate the power supply circuit 6 inside like the heat transfer cylinder 4, and it shape
  • the heat conduction part is connected to the connection plate 51a having a connection surface 51a that is thermally connected to the power supply circuit 6 that is a heating element, and the heat from the power supply circuit 6 is thermally connected to the connection plate 51.
  • the fins 52 and the heat transfer cylinders 4 which are conductive parts that conduct heat to the heat radiating part 3, a wide heat transfer area can be secured and the thermal resistance of the heat conductive part is reduced.
  • the shape of the two fins 52 is formed integrally with the heat radiating part 3 by forming a trapezoidal shape that widens along the outer shape of the heat radiating part 3 from the base 7 side toward the cover 8 side. It is possible to secure a wide area for close contact. Accordingly, by adopting a shape like the fin 52, a wide heat transfer area can be secured, and heat from the power supply circuit 6 can be efficiently conducted to the heat radiating portion 3 through both surfaces of the two fins 52. .
  • the power supply circuit 6 accommodated in the heat transfer cylinder 4 is electrically connected to the one-pole terminal 71 and the other-pole terminal 72 of the base 7 via electric wires 76 and 77.
  • the one-pole terminal 71 of the base 7 and the power supply circuit 6 electrically connect the power supply circuit 6 and the heat transfer cylinder 4, which is an aluminum conductor, by an electric wire 76.
  • the cylinder 4 and the one-pole terminal 71 of the base 7 are connected by being electrically connected by solder (not shown).
  • the power supply circuit 6 is electrically connected to the LED 12 via a connector via an electric wire (not shown).
  • a light transmissive cover 8 is attached to the heat radiating plate 2 on the other end side of the heat radiating portion 3 so as to cover the light emitting direction side of the LED 12.
  • the cover 8 is made of milky white glass having a hemispherical shell shape. It is desirable that an anti-scattering film for preventing debris from scattering when the cover 8 is broken is provided on the inner surface of the cover 8 over substantially the entire surface.
  • the cover 8 is attached to the edge of the heat sink 2 with an adhesive or the like at the periphery on the opening side.
  • the material of the cover 8 is not limited to glass, and may be made of a resin such as polycarbonate.
  • the lighting device 100 configured as described above is connected to an external AC power source by screwing the base 7 into a socket for a light bulb.
  • an alternating current is supplied to the power supply circuit 6 through the base 7.
  • the power supply circuit 6 supplies power with a predetermined voltage and current to the LED 12 to light the LED 12.
  • the LED 12 and the power supply circuit component 62 of the power supply circuit 6 mainly generate heat.
  • the heat from the LED 12 is conducted to the heat radiating plate 2 and the heat radiating portion 3, and is radiated from the heat radiating plate 2 and the heat radiating portion 3 to the air outside the lighting device 100.
  • heat from the power supply circuit component 62 of the power supply circuit 6 is conducted to the heat transfer plate 5, and part of the conducted heat is conducted from the heat transfer plate 5 to the heat transfer cylinder 4.
  • the heat conducted to the heat transfer plate 5 and the heat transfer cylinder 4 is conducted to the heat radiating section 3 provided in close contact with the heat transfer cylinder 4 and the fins 52, and is radiated from the heat radiating section 3 to the air outside the lighting device 100. Is done.
  • the heat radiating section 3, the heat transfer cylinder 4, and the heat transfer plate 5 are integrally formed.
  • the outer surface 4a and the fins 52 and the heat radiating part 3 which is a heat radiating part can be brought into close contact with each other, the heat conduction from the heat transfer cylinder 4 and the heat transfer plate 5 to the heat radiating part 3 can be performed satisfactorily, the power circuit 6 and the like It is possible to sufficiently dissipate heat from the heating element.
  • the heat dissipating part 3 is configured so that the projecting part covers the outer surface 4a of the heat transfer cylinder 4 that accommodates the power supply circuit 6 and the outer surface 4a of the heat transfer cylinder 4 of the fin 52. Since it is provided so as to be embedded in 3, it is possible to increase a heat transfer area with good heat conduction in a close contact state. Further, since the fin 52 has a trapezoidal shape along the shape of the heat radiating part 3, a wide heat transfer area with the heat radiating part 3 can be secured, and heat is efficiently conducted to the heat radiating part 3. Therefore, heat conduction from the heat transfer cylinder 4 and the heat transfer plate 5 to the heat radiating portion 3 can be performed more satisfactorily, and the heat from the heating element such as the power supply circuit 6 can be sufficiently radiated.
  • the diameter of the heat transfer cylinder 4 and the shape of the heat transfer plate 5 are appropriately determined so that the inner surface 4b of the heat transfer cylinder 4 and the power supply circuit 6 are as close as possible. Therefore, since the power supply circuit 6 and the heat radiating part 3 are brought close to each other, the heat from the power supply circuit 6 is conducted to the opposing surface of the heat radiating part 3 and the heat radiating efficiency from the heat radiating part 3 can be improved.
  • the thermal radiation part 3 is made from resin, compared with the case where metals, such as aluminum, are used, the thermal radiation part 3, and by extension, the illuminating device 100 can be reduced in weight.
  • the heat dissipation resin has a lower thermal conductivity than the metal, but as described above, the heat dissipating part 3, the heat transfer cylinder 4, and the heat transfer plate 5 are integrally formed to form the outer surface 4a of the heat transfer cylinder 4 and Since the fins 52 and the heat radiating part 3 are in close contact with each other, the lighting device 100 is reduced in weight, and the heat from the heating element such as the power supply circuit 6 is sufficiently radiated. Accordingly, it is possible to cool the power supply circuit component 62 and the like of the power supply circuit 6 to a temperature necessary for ensuring predetermined performance.
  • the heat radiating part 3 is functioned as a connecting body, so that fastening parts such as screws are unnecessary.
  • the structure can be simplified, the manufacturing process can be simplified, and the cost can be reduced.
  • the heat dissipating part 3 is made of resin, an integrally molded product including the heat dissipating part 3 and the heat dissipating part 3 can be easily processed by injection molding or the like.
  • the energy required for processing the heat radiating part at the time of manufacture can be greatly reduced, which contributes to energy saving.
  • the heat radiation part 3 is made of an electrically insulating material.
  • an electrical insulator member is not necessary, and the number of parts can be reduced to reduce weight and size.
  • a socket for attaching an existing incandescent bulb or the like may be narrowed in accordance with the shape of the incandescent bulb.
  • an electric insulator member is provided on a light bulb with a conductive heat dissipation part, the periphery of the base becomes thicker due to the electric insulator member between the base and the heat dissipation part, and in some cases, it is attached to an existing light bulb socket There is a possibility that it cannot be done.
  • the heat dissipating part 3 is made of an electrically insulating material, an electric insulator member is not required, and therefore, the portion that fits into the socket can be thinned and molded. Can be installed in existing sockets for light bulbs.
  • the heat transfer cylinder 4 and the heat transfer plate 5 which are heat conducting portions are provided separately, but may be integrally formed. Further, only one of the heat transfer cylinder 4 and the heat transfer plate 5 may be used.
  • the heat transfer tube 4, the heat transfer plate 5, and the base 7, which are heat transfer units, are integrally formed by using the mold by the heat dissipating unit 3. May be manufactured by a method in which the heat conducting part is thermally connected to the heat radiating part 3. At that time, the heat radiating part 3 is molded so as to have a shape that allows the heat conducting part to be thermally connected to the heat radiating part after molding. For example, specifically, by forming the heat conduction portion in which the heat transfer cylinder 4 and the heat transfer plate 5 in Embodiment 1 are engaged and forming a heat radiation portion having a cavity that can be inscribed therein, Later, the heat conducting portion and the heat radiating portion can be thermally connected. Moreover, you may fix the nozzle
  • FIG. 10 is a schematic cross-sectional view of lighting apparatus 200 according to Embodiment 2 of the present invention.
  • FIG. 11 is a schematic longitudinal sectional view of the illumination device 200 according to Embodiment 2 of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a heat transfer cylinder 10 is embedded in the heat radiating section 9 as a heat conducting section that conducts heat from a heating element such as the LED 12 and the power supply circuit 6 to the heat radiating section 9.
  • the heat transfer cylinder 10 is a good heat conductor, and is made of a metal such as aluminum, for example.
  • the shape of the heat transfer cylinder 10 is a square cylinder that can accommodate the power supply circuit 6 therein.
  • the heat transfer cylinder 10 includes a connection portion 10 a having a surface that is thermally connected to the power supply circuit 6 among the four surfaces constituting the heat transfer cylinder 10 inside the heat transfer cylinder 10, and a connection portion that transfers heat from the power supply circuit 6.
  • a conductive portion 10b that conducts heat to the heat radiating portion 9.
  • the conductive portion 10b is made of a member having two surfaces connected to both ends of the connecting portion 10a and a surface facing the connecting portion 10a.
  • the power supply circuit 6 includes a power supply circuit board 61 on which the power supply circuit component 62 is mounted and a surface on the inner side of the heat transfer cylinder 10 in the connection portion 10 a via a heat conductive sheet 60. Thermally connected.
  • the heat transfer tube 10 is fitted into the base 7 so that the peripheral edge of one end in the longitudinal direction of the heat transfer tube 10 is located inside the base 7 (see FIG. 11). Note that the width and thickness of the connecting portion 10a and the conductive portion 10b constituting the heat transfer tube 10 are such that one end in the longitudinal direction of the heat transfer tube 10 can be fitted in the base 7 and the power supply circuit 6 is placed inside the heat transfer tube 10. Any dimensions that can be accommodated and thermally connected to the connecting portion 10a are acceptable.
  • the heat transfer cylinder 10 is fitted into a mold corresponding to the shape of the heat radiating portion 9 while maintaining the state in which the heat transfer cylinder 10 is fitted in the base 7. Then, the above-described heat-dissipating resin in a molten state is poured into the mold using an injection molding machine or the like to solidify the heat-dissipating resin.
  • FIG. 11 shows a longitudinal sectional view of a state in which the heat radiating section 9 is integrally formed with the heat transfer cylinder 10 and the base 7 after the heat radiating resin is solidified.
  • the heat transfer plate 10 is configured such that the heat transfer tube 10 that is a heat transfer unit has a shape such as a square tube that can directly connect the power supply circuit 6 inside the heat transfer unit. 5 can be reduced, and the structure of the heat conduction part can be simplified.
  • the heat conduction part is thermally connected to the power supply circuit 6 like the connection part 10a, and the heat dissipation part 9 and the outer surface 10c are in direct contact with each other, so that the power supply circuit 6 that is a heating element and the heat dissipation part Therefore, the thermal resistance between the power supply circuit 6 and the heat radiating portion 9 can be reduced, and heat can be conducted between a short distance. As a result, heat from the power supply circuit 6 is quickly conducted to the heat radiating portion 9, and heat can be efficiently radiated from the heat radiating portion 9.
  • the heat generated from the power supply circuit 6 is conducted to the connecting portion 10a through the heat conductive sheet 60, and then conducted from the connecting portion 10a to the heat radiating portion 9, or from the connecting portion 10a to the conducting portion 10b. Then, the heat is conducted from the conductive portion 10b to the heat radiating portion 9 and is radiated from the heat radiating portion 9 to the outside air.
  • the conduction part 10b By providing the conduction part 10b, the thermal resistance of the heat conduction part is reduced, and the heat conducted from the power supply circuit 6 to the connection part 10a is diffused to the conduction part 10b, and the temperature rise of the power supply circuit 6 can be suppressed.
  • the shape of the heat transfer cylinder 10 does not have to be a square cylinder, has a surface that can be thermally connected to the power supply circuit 6 like the connection portion 10a, and is thermally connected to the heat dissipation portion 9 on the outer surface. It only needs to have a shape that is possible. For example, a pentagonal tube may be used, or the shape may be such that the inner surface of the cylinder is partially thermally connected to the power supply circuit 6 as a substantially planar connection portion, and the arc portion other than the connection portion is a conductive portion. Furthermore, it is good also as a structure which provides the protrusion part like the fin 52 in Embodiment 1 on the outer surface of the heat transfer cylinder 10, and expands the heat transfer area of a heat conduction part.
  • the heat conducting portion may be thermally connected to the heat radiating portion 9.
  • the heat radiating part 9 is molded so as to have a shape capable of thermally connecting the heat conducting part to the heat radiating part after molding.
  • the heat conducting part and the heat dissipating part can be thermally connected after forming. It becomes. Or you may shape
  • the heat radiating portion when the heat radiating portion is previously formed as a single unit, the heat transfer cylinder 4, the heat transfer plate 5, and the heat transfer cylinder 10 as in the first and second embodiments.
  • the heat radiating part 3 and the heat radiating part 9 are made of resin, but the heat radiating part may be made of a material having electrical insulation. For example, it may be made of ceramic. In the above embodiment, only the heat radiating part 3 and the heat radiating part 9 are made of resin. However, the heat radiating plate 2 is made of resin, and similarly to the heat radiating part 3 and the heat radiating part 9, the light source module 1 and the heat radiating plate. You may comprise so that 2 may be shape
  • a heat radiation film having a good heat radiation property is formed on the outer surface of the heat radiation part in order to improve the heat radiation efficiency from the heat radiation part.
  • the heat radiation film is provided on, for example, a first ceramic film provided on the outer surface of the heat radiating portion and a surface of the first ceramic film, and the first ceramic film has a wavelength distribution of infrared emissivity different from that of the first ceramic film. 2 ceramic membranes.
  • the first ceramic film is formed by applying a coating containing a heat-radiating material having a high infrared emissivity (emissivity in the infrared wavelength region) to the outer surface of the heat dissipating part and then curing it.
  • a coating containing a heat-radiating material having a high infrared emissivity emissivity in the infrared wavelength region
  • aluminum oxide is used as the thermal radiation material contained in the coating material of the first ceramic film.
  • a metal oxide such as titanium oxide or silicon dioxide, carbon black, or the like may be used as the thermal radiation material used for the first ceramic film.
  • the thickness of the first ceramic film is appropriately set according to the temperature of the heating element.
  • a coating material containing a thermal radiation material having a thermal emissivity different from that of aluminum oxide used as the thermal radiation material of the first ceramic film is applied to the surface of the first ceramic film. It is cured afterwards.
  • titanium oxide which is a metallic oxide, is used as the heat-radiating material contained in the second ceramic film paint.
  • the thermal radiation material used for the second ceramic film is not limited to titanium oxide, and the thermal radiation material having a thermal emissivity different from that of aluminum oxide used as the thermal radiation material of the first ceramic film. Any metal oxide or carbon black having a thermal emissivity different from that of aluminum oxide may be used.
  • the first ceramic film and the second ceramic film are cured by being sintered at a temperature of about 110 ° C. after being applied.
  • the heat radiation film can be fixed to the main body of the heat radiating portion to increase the coating strength, and the molecular bond of the heat radiation film becomes dense, so that the heat radiation efficiency by radiation can be enhanced.
  • the heat radiation film By forming the heat radiation film on the surface of the heat radiating part in this way, it becomes easier to radiate infrared rays in the heat radiation film, so in addition to heat transfer by convection from the heat radiating part, Heat transfer can be performed efficiently, and the heat conducted from the LED and the heating element of the power supply circuit can be efficiently radiated to the outside.
  • the power supply circuit 6 was described as a heat generating body accommodated in the heat transfer cylinder 4 or the heat transfer cylinder 10, it is comprised so that the light quantity and / or chromaticity of LED can be adjusted. In the illumination device with a dimming function, the dimming control unit also becomes a heating element. Even in this case, the same configuration as the power supply circuit 6 described in the above embodiment, that is, by installing the control circuit board on the connection plate portion 51 of the heat transfer plate 5 or the connection portion 10a of the heat transfer cylinder 10, It is possible to efficiently conduct heat from the control unit to the heat radiating unit 3.
  • the surface mount type LED is used as the light source.
  • the present invention is not limited to this, and other types of LEDs, EL (Electro Luminescence), or the like may be used.
  • the light bulb type lighting device attached to the socket for the light bulb has been described as an example.
  • the present invention is not limited to the light bulb type lighting device, but other types of lighting devices, for example, downlights. Can be applied. When applied to a downlight, a base is not required, and the heat conducting portion and the heat radiating portion are formed integrally.
  • the present invention can be applied to a device including a heating element other than the lighting device, and can be implemented in various modifications within the scope of the matters described in the claims. Needless to say.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

 光源と、該光源に電力を供給する電源回路6と、電気絶縁性材料からなり、内部に収容する前記電源回路6からの熱を外部の空気中に放熱する放熱部3と、前記電源回路6からの熱を前記放熱部3に伝導する熱伝導部とを有する照明装置100であって、前記放熱部3と、前記熱伝導部は熱的に接続されている。照明装置100の軽量化を実現すると共に、前記熱伝導部から前記放熱部3への熱伝導を向上する。

Description

照明装置
 本発明は、発熱体と、該発熱体からの熱を伝導する熱伝導部と、該熱伝導部からの熱を放熱する放熱部とを備える照明装置に関する。
 照明装置は、一般に、光源、該光源に電力を供給する電源部等の発熱部品(発熱体)を内部に収容している。この発熱部品の発熱に伴い、発熱部品の温度が上昇すると、発光ダイオード(以下、LEDという)等の光源、電源部を構成する電子部品等の発熱部品の性能を確保できない虞が生じる。また、照明装置の外表面の温度が上昇してしまい安全性の観点から好ましくない。そこで、従来、発熱部品からの熱を照明装置の外部の空気に放熱することが可能なように構成された照明装置が提案されている(例えば、特許文献1参照)。
 特許文献1に開示された照明装置は、光源111を有する光源部110と、光源111を点灯する電源部130と、電源部130に電源を供給する電源端子台140と、光源部110、電源部130及び電源端子台140が設けられる器具本体120とを備えてなり、器具本体120の外周に設けられたバネ材からなる支持具150により光源部110の側が設置穴の側になるように天井に設置され、所謂ダウンライトとして用いられる(図1参照)。器具本体120は、略円筒状を有し、一端部に設けられ、光源部110を支持する円板状の支持部121と、他端部に設けられ、支持部121と共に電源部130が収容される空間部を形成する円板状の取付部122とを有している。支持部121の一面には、光源111が実装された配線基板112を当接させた状態にてネジにより固定してある。支持部121の他面には、該支持部121に一体に形成された支持段部に電源部130の配線基板131の周縁部を当接させた状態にてネジにより固定してある。器具本体120は、アルミニウムのダイカスト製であり、光源111、電源部130からの熱を放熱する放熱部を兼ねている。
特開2008-186776号公報
 ところで、アルミニウム等の金属を用いて放熱部を構成すると、放熱性は向上するが、照明装置が重くなるという問題があった。そこで、照明装置を軽量化すべく、金属に代えて、放熱性が良好な樹脂等の軽い材料を用いて放熱部を構成することが考えられる。特許文献1においても、器具本体120の材料として高熱伝導樹脂等の合成樹脂を用いてもよいことが開示してある。
 ところが、特許文献1に係る照明装置の器具本体120においては、電源部130の配線基板131を周縁部において器具本体120に当接させてあるのみであり電源部130からの熱を伝える伝熱面積を十分に確保できない。一般に、高熱伝導樹脂は金属よりも熱伝導率が低いから、器具本体120の材料を変更したのみであると、電源部130が発した熱を器具本体120に十分に伝導することができず、放熱が十分にできない虞がある。
 本発明は斯かる事情に鑑みてなされたものであり、発熱体からの熱を放熱部へ良好に伝導することができる照明装置を提供することを目的とする。
 本発明に係る照明装置は、光源と、該光源に電力を供給する電源回路と、電気絶縁性材料からなり、内部に収容する前記電源回路からの熱を外部の空気に放熱する放熱部と、前記電源回路からの熱を前記放熱部に伝導する熱伝導部とを有する照明装置であって、前記放熱部と前記熱伝導部は熱的に接続されていることを特徴とする。
 本発明にあっては、電気絶縁性材料からなり、前記電源回路から発生する熱を外部の空気中に放熱する前記放熱部と、前記電源回路からの熱を前記放熱部に伝導する前記熱伝導部とを、熱的に接続することで、例えば一般的に熱伝導率の低い樹脂等からなる放熱部を用いた場合でも、前記熱伝導部から前記放熱部への熱伝導を向上することができる。
 本発明に係る照明装置は、光源や電源回路等の発熱体と、該発熱体からの熱を放熱する放熱部と、該放熱部へ前記発熱体からの熱を伝導する熱伝導部とを有する照明装置であって、前記熱伝導部と前記放熱部の対向する面の少なくとも一部が、熱伝導を良好にするために熱的に接続されていることを特徴とする。
 本発明にあっては、前記発熱体から発生する熱を放熱する前記放熱部の面と、該面に対向する前記電源回路からの熱を前記放熱部に伝導する熱伝導部の面の少なくとも一部が熱伝導を良好にするために熱的に接続することで、面による広範囲での熱伝導が可能となり、伝導する熱量が増大するので前記熱伝導部から前記放熱部への熱伝導を向上することができる。
 本発明に係る照明装置は、前記熱伝導部は、少なくとも一部が前記放熱部に埋設されていることを特徴とする。
 本発明にあっては、前記熱伝導部を前記放熱部に埋設することで、前記熱伝導部と前記放熱部の伝熱面積を広げ、かつ密着度を高めることが可能となり、伝導する熱量が増大し、前記熱伝導部と前記放熱部との間で隙間が生じず熱抵抗を低減でき、前記熱伝導部から効率的な熱伝導が可能となる。
 本発明に係る照明装置は、口金を有し、該口金は前記放熱部と一体的に成形されていることを特徴とする。
 本発明にあっては、前記口金と前記放熱部とを一体的に成形することで、ネジ等の接続具を用いずに形成できるので製造工程を簡略化できる。
 本発明に係る照明装置は、前記熱伝導部は、前記電源回路と熱的に接続する接続部と、前記電源回路からの熱を前記放熱部に伝導する伝導部からなることを特徴とする。
 本発明にあっては、前記熱伝導部は、前記電源回路と熱的に接続する接続部と、前記電源回路からの熱を前記放熱部に伝導する伝導部とからなることで、伝導部により前記電源回路からの熱を前記放熱部に伝導する伝熱面積を広くとることができ、前記熱伝導部の熱抵抗を低減し、前記熱伝導部の温度上昇を抑えることができる。
 本発明に係る照明装置は、前記熱伝導部は、前記電源回路を内部に収容する筒部と、該筒部に設けられ、前記電源回路と熱的に接続する接続部と、前記筒部の外面に突設された突設部とを備え、前記放熱部は、前記筒部の外面及び突設部を覆うように設けてあることを特徴とする。
 本発明にあっては、熱伝導部は、電源回路を内部に収容する筒部と、筒部に熱的に接続され、電源回路を保持する接続部と、筒部の外面に突設された突設部とを備えてなり、熱伝導部の筒部の外面及び突設部を覆うように放熱体を設けている。筒部の外面及び突設部の表面が放熱体に密着するから、熱伝導が良好な伝熱面積を広くとることができる。電源回路からの熱は、接続部を介して筒部及び突設部に伝導され、該筒部及び突設部に密着して設けられた放熱部に良好に伝導することができ、電源回路からの熱を放熱部から十分に放熱することができる。
 本発明に係る照明装置は、前記熱伝導部は、前記電源回路を内部に収容する筒部を有し、該筒部の内面で前記電源回路と熱的に接続し、前記放熱部は、前記熱伝導部の外面を覆うように設けてあることを特徴とする。
 本発明にあっては、前記熱伝導部は前記電源回路を内部に収容できる筒部を有し、前記筒部の内面で、前記電源回路と熱的に接続することで前記電源回路を収容しながら該電源回路部からの熱を良好に熱伝導部へ伝導する。また前記熱伝導部の外面を覆うように前記放熱部を設けることで、前期熱伝導部と前記放熱部との伝熱面積を広くとることができ、かつ前記放熱部が前記熱伝導部の外面に密着させられるので、前記熱伝導部から前記放熱部へ良好に熱を伝導することができる。
 本発明によれば、発熱体からの熱を放熱部へ良好に伝導することができる。
従来技術に係る照明装置の模式的縦断面図である。 本発明の実施の形態1に係る照明装置の模式的外観図である。 本発明の実施の形態1に係る照明装置の模式的分解斜視図である。 図2のIV-IV線による模式的横断面図である。 図4の V-V 線による模式的縦断面図である。 図4のVI-VI線による模式的縦断面図である。 本発明の実施の形態1における伝熱板の模式的拡大図である。 本発明の実施の形態1における放熱部の成形の説明図である。 本発明の実施の形態1における放熱部の成形の説明図である。 本発明の実施の形態2に係る照明装置の模式的横断面図である。 本発明の実施の形態2に係る照明装置の模式的縦断面図である。
 以下、本発明をその実施の形態を示す図面に基づいて、電球型の照明装置を例に詳述する。
(実施の形態1)
 図2は、本発明の実施の形態1に係る照明装置100の模式的外観図である。図3は、本発明の実施の形態1に係る照明装置100の模式的分解斜視図である。図4は、図2のIV-IV線による照明装置100の模式的横断面図である。図5は、図4の V-V 線による照明装置100の模式的縦断面図である。図6は、図4のVI-VI線による照明装置100の模式的縦断面図である。
 実施の形態1に係る照明装置100は、図3に示すように、光源であるLED12を複数実装した光源モジュール1と、光源モジュール1を覆うドーム状のカバー8と、光源モジュール1が取付けられる放熱板2と、光源モジュールを駆動するための電力を供給する電源回路6と、電源回路6が設置される伝熱板5と、伝熱板5と嵌合し、内部に電源回路6を収容する伝熱筒4と、電源回路6と伝熱板5との間に設けられる熱伝導シート60と、放熱板2がカバー8との間に取付けられ、内部に伝熱板5、電源回路6、熱伝導シート60、および伝熱筒4を収容する放熱部3と、放熱部3と放熱板2と反対側で接続する口金7とを備えている。
 図3および図5に示すように、光源モジュール1は、円板状をなすLED基板11の一面に、光源としてのLED12を複数実装してなる。LED12は、例えば、表面実装型LEDである。
 光源モジュール1は円板状を有する放熱板2に取付けてある。放熱板2は、熱良導体であり、例えば、アルミニウム等の金属製である。光源モジュール1は、LED基板11の非実装側の面である他面にて放熱板2の一面2aに固定してある。
 放熱板2は、他面2bにて放熱部3に取付けてある。放熱部3は、肉厚円筒状を有し、口金7側からカバー8側にむけて緩やかに拡径された円錐台状の外形を有している。LED基板11に設けられたネジ用穴(図示せず)、放熱板2に設けられたネジ用穴21及び放熱部3のカバー8側の拡径された面3aに設けられたネジ用穴31が整合するように、光源モジュール1及び放熱板2を放熱部3のカバー8側の面3aに載置して、ネジ15をネジ用穴に螺合することにより、光源モジュール1及び放熱板2が放熱部3に固定してある。
 本実施の形態において、放熱部3は放熱性、電気絶縁性に優れる樹脂、所謂放熱樹脂製である。放熱樹脂は、電気絶縁性を有する樹脂である。放熱樹脂の熱伝導率は、例えば、約1~70(W/m・K)である。この放熱樹脂は、例えば、PBT(Polybutyleneterephtalate:ポリブチレンテレフタレート)をベースとして含んでなる合成樹脂製である。なお、放熱樹脂は、電気絶縁性を有していればよく、PBTを含む合成樹脂に限定されない。
 LED基板11と放熱板2、及び放熱板2と放熱部3は夫々略全面にて当接させてあるため、十分な伝熱面積を有している。従って、発熱体であるLED12からの熱は、LED基板11を介して放熱板2に効率良く伝導され、一部はそのまま放熱板2の周縁部から照明装置100の外部の空気に放熱され、残りの熱は、放熱板2から放熱部3に効率良く伝導され、放熱部3から照明装置100の外部の空気に放熱される。これら放熱板2及び放熱部3により放熱されるため、LED12は、所定の性能及び寿命を確保するために必要な温度に冷却されることになる。なお、LED基板11と放熱板2との間、及び放熱板2と放熱部3との間には、熱伝導シート又は熱良導性のグリースが介装してあることが望ましい。
 放熱部3の内部には、LED12や電源回路6等の発熱体からの熱を放熱部3に伝導する熱伝導部としての伝熱筒4及び伝熱板5が設けてある。伝熱筒4及び伝熱板5は、熱良導体であり、例えば、アルミニウム等の金属製である。
 伝熱筒4は円筒状をなし、一端部二箇所に切欠部41が形成してある。切欠部41は、伝熱筒4のカバー8側の縁から長手方向に沿って矩形状に切り欠かれてなる。切欠部41の幅は、係合する伝熱板5の肉厚と略同一になるように形成してある。なお、伝熱筒4は、電源回路6を内部に収容し、電源回路6を収容する空間を確保する収容部の一部をなす。
 図7は、本実施の形態における伝熱板5の模式的拡大図である。伝熱板5は、電源回路6と熱的に接続する接続部である矩形状の接続面51aを有する矩形板状の接続板部51と、接続板部51の長辺側の両端に連設され、接続板部51に平行をなす方向に互いに離隔する方向に延設された2つのフィン52とを備えてなる。2つのフィン52は、照明装置100の外殻である放熱部3の外形に沿って口金7側からカバー8側へ広がる形状をなしている。換言すると、2つのフィン52は、長手方向の口金7側からカバー8側に向けて幅広になる台形状をなしている。フィン52には、図6及び図7に示すように、口金7側の端から長手方向に沿って適長に亘ってスリット53が形成してある。スリット53の幅は、係合する伝熱筒4の肉厚と略同一にしてある。
 この伝熱板5は、スリット53と伝熱筒4の切欠部41が整合するように位置合わせした後に、伝熱筒4に長手方向に沿って差し込むことにより、伝熱筒4と一体化され熱的に接続される。この一体化された状態において、図4に示すように、伝熱板5のフィン52の大部分は、伝熱筒4の外面4aから該伝熱筒4の径方向に突設され、即ち、熱伝導部の筒部の外面に突設された突設部に対応する。伝熱筒4の切欠部41及び伝熱板5のスリット53は、係合する伝熱板5及び伝熱筒4の肉厚と略同一にしてあるから、伝熱板5と伝熱筒4とは、伝熱板5のフィン52の長手方向の略全長に亘って、熱的に接続される。
 従って、電源回路6から伝熱板5に伝導された熱は、伝熱板5から伝熱筒4にも良好に伝導される。伝熱筒4の直径、伝熱板5の接続板部51の形状は、伝熱筒4の内面4bと電源回路6とが接近するように適切に決定してある。なお、前述の伝熱筒4およびフィン52は、電源回路6からの熱を放熱部3に伝導する伝導部である。またフィン52は、後述するように、放熱部3に埋設される熱伝導部の一部であり、前述したように、筒部の外面に突設された突設部である。
 電源回路6は、矩形板状を有する電源回路基板61と、該電源回路基板61に実装された複数の電源回路部品62とを備えてなる。電源回路部品62は、外部交流電源から供給される交流電流を全波整流するブリッジダイオード、整流後の電源電圧を所定の電圧に変圧するトランス、トランスの1次側及び2次側に接続されたダイオード、IC等を備えてなる。この電源回路基板61と伝熱板5の接続板部51との間には、矩形板状の熱伝導シート60が介装してある。電源回路6と伝熱板5は、熱伝導シート60を介して熱的に接続され、電源回路6からの熱は間接的に伝熱板5に伝導される。熱伝導シート60は、電源回路部品62の配置に応じて、適切に寸法及び配置が決定してある。この熱伝導シート60として、電気絶縁性を有する熱良導体が用いられ、例えば、低硬度の難燃性のシリコーンゴム製が用いられる。なお、熱伝導シート60は必須ではなく、熱良導性のグリースでもよく、また電源回路基板61と伝熱板5とが電気的に絶縁されながら熱的に接続され、良好に熱伝導可能なように構成してあればよい。
 放熱部3の一端側には、口金7が設けてある。口金7は、有底円筒形状を有しており、電球用のソケットと螺合するためのネジ加工が円筒部に施されてなる一極端子71と、口金7の底面に突設された他極端子72とを備えている。これら一極端子71と他極端子72とは電気的に絶縁してある。なお、口金7の円筒部の外形状は、例えばE17又はE26のねじ込み形口金と同一形状に形成してある。口金7には、伝熱筒4の切欠部41と反対側の他端部の側が内嵌してある。
 放熱部3を成形する方法について以下説明する。図8及び図9は、本実施の形態における放熱部3の成形の説明図である。まず、伝熱筒4の切欠部41及び伝熱板5のスリット53において相互に係合するように、伝熱筒4に伝熱板5を差し込み、伝熱板5を伝熱筒4によって係合保持する。次に、伝熱筒4の切欠部41と反対側の他端部の側が口金7の内部に位置するように、伝熱筒4を口金7に内嵌する(図8参照)。伝熱筒4、伝熱板5及び口金7を保持しつつ、図8に二点鎖線にて示す放熱部3の形状に応じた金型を嵌めこむ。そして、溶融させた状態の前述した放熱樹脂を、射出成型機等を用いて前記金型に流し込み、放熱樹脂を固化させる。放熱樹脂は、電源回路6を内部に収容する伝熱筒4の外面4a、及びフィン52の伝熱筒4の外面4aから突設した部分の両面を覆うように、該突設した部分が放熱部3に埋設するように、かつ口金7の内面と伝熱筒4の外面4aとの間を埋めるように設けられることになる。図9は、放熱樹脂を固化させた後の、放熱部3を伝熱筒4、伝熱板5及び口金7と一体的に成形した完成状態を示している。
 以上のように、伝熱筒4、伝熱板5及び口金7を放熱樹脂(放熱部3)により一体的に成形してあり、放熱部3は、伝熱筒4及び伝熱板5を備えてなる熱伝導部と口金7とを連結する連結体としても機能する。そして、溶融した放熱樹脂を流し込んで固化して放熱部3、伝熱筒4、伝熱板5及び口金7を一体的に成形しているから、放熱部3と伝熱筒4の外面4a及びフィン52とを、隙間を生じさせることなく密着させることができ、空気等が介在することによる熱抵抗の増大を抑制でき、伝熱筒4及び伝熱板5から放熱部3への熱伝導を良好に行うことができる。
 また、熱伝導部として、伝熱筒4のように内部に電源回路6を収容できる形状とすることで、電源回路6を収容する空間を確保しながら射出成型で放熱部3と一体的に成形することが可能となる。さらに、熱伝導部を、発熱体である電源回路6と熱的に接続される接続面51aを有する接続板部51と、該接続板部51と熱的に接続され電源回路6からの熱を放熱部3に熱を伝導する伝導部であるフィン52および伝熱筒4とで構成することで、伝熱面積を広く確保でき、熱伝導部の熱抵抗が低減するので、発熱体からの熱を熱伝導部において散熱でき、発熱体および熱伝導部の温度上昇を低減できる。また、熱伝導部と放熱部との伝熱面積を広くできるので、単位時間当たりに伝導する熱量が増大し、熱伝導部から放熱部3へ良好に熱を伝導することが可能となる。
 さらに、2つのフィン52の形状を、口金7の側から、カバー8の側へ向かって放熱部3の外形に沿って幅広になる台形状とすることで、放熱部3と一体的に形成した際に密着する面積を広く確保できる。従ってフィン52の様な形状とすることで、伝熱面積を広く確保でき、電源回路6からの熱を2つのフィン52の両面を介して効率的に放熱部3へ伝導することが可能となる。
 伝熱筒4に収容された電源回路6は、口金7の一極端子71及び他極端子72と電線76,77を介して電気的に接続してある。口金7の一極端子71と電源回路6は、図6に示すように、電源回路6とアルミニウム製の導電体である伝熱筒4との間を電線76により電気的に接続し、伝熱筒4と口金7の一極端子71との間を半田(図示せず)により電気的に接続することにより接続してある。電源回路6と口金7の一極端子71との間を電線のみで接続する場合と比較して、電線の長さを短くすることができると共に、放熱部3の他端側の面3aの側において電線76を接続することは容易であるから、製造工程において作業性が向上する。また、電源回路6は、LED12と電線(図示せず)を介してコネクタにより電気的に接続してある。
 一方、放熱部3の他端側の放熱板2には、LED12の光出射方向の側を覆うように透光性のカバー8が取付けてある。カバー8は半球殻状の形状を有する乳白色のガラス製である。カバー8の内面には、カバー8が破損したときに破片が飛散することを防止する飛散防止膜が略全面に亘って設けてあることが望ましい。このカバー8は、開口側の周縁にて放熱板2の縁部に接着剤等により取付けられる。なお、カバー8の材料は、ガラスに限定されず、例えばポリカーボネートのような樹脂製であってもよい。
 以上のように構成された照明装置100は、口金7を電球用のソケットに螺合することにより外部交流電源に接続される。この状態にて、電源を投入したとき、口金7を介して交流電流が電源回路6に供給される。電源回路6は、所定の電圧及び電流の電力をLED12に供給してLED12を点灯させる。
 このLED12の点灯に伴って、主としてLED12及び電源回路6の電源回路部品62が発熱する。LED12からの熱は、前述したように、放熱板2及び放熱部3に伝導され、放熱板2及び放熱部3から照明装置100の外部の空気に放熱される。一方、電源回路6の電源回路部品62からの熱は、伝熱板5に伝導され、伝導された熱の一部が伝熱板5から伝熱筒4に伝導される。伝熱板5及び伝熱筒4に伝導された熱は、伝熱筒4及びフィン52に密着して設けられた放熱部3に伝導され、放熱部3から照明装置100の外部の空気に放熱される。
 本実施の形態に係る照明装置100においては、前述したように、放熱部3、伝熱筒4、伝熱板5を一体的に成形しているから、熱伝導部である伝熱筒4の外面4a及びフィン52と放熱部である放熱部3とを密着させることができ、伝熱筒4及び伝熱板5から放熱部3への熱伝導を良好に行うことができ、電源回路6等の発熱体からの熱を十分に放熱することができる。
 放熱部3は、電源回路6を内部に収容する伝熱筒4の外面4a、及びフィン52の伝熱筒4の外面4aから突設した部分を覆うように、該突設した部分が放熱部3に埋設するように設けてあるから、密着させた状態での熱伝導が良好な伝熱面積を大きくとることができる。さらに、フィン52の形状は、放熱部3の形状に沿った台形状をなしているので放熱部3との伝熱面積を広く確保でき、効率的に放熱部3に熱を伝導する。従って伝熱筒4及び伝熱板5から放熱部3への熱伝導を更に良好に行うことができ、電源回路6等の発熱体からの熱を十分に放熱することができる。
 また、伝熱筒4の直径、伝熱板5の形状を、伝熱筒4の内面4bと電源回路6とが可能な限り接近するように適切に決定してある。従って電源回路6と放熱部3を接近させてあるから、電源回路6からの熱が放熱部3の対向する面に伝導し、放熱部3からの放熱効率を向上することができる。
 そして、放熱部3を樹脂製としているから、アルミニウム等の金属を用いる場合と比較して、放熱部3、ひいては照明装置100を軽量化することができる。一般に、放熱樹脂の方が金属よりも熱伝導率が低いが、前述した如く、放熱部3、伝熱筒4、伝熱板5を一体的に成形して、伝熱筒4の外面4a及びフィン52と放熱部3とを密着させているから、照明装置100の軽量化を図ると共に、電源回路6等の発熱体からの熱を十分に放熱する。従って電源回路6の電源回路部品62等を、所定の性能を確保するために必要な温度まで冷却することが可能となる。
 また、放熱部3、伝熱筒4、伝熱板5及び口金7を一体的に成形してあるから、換言すると放熱部3を連結体として機能させているから、ネジ等の締結部品が不要となり、構造を簡易化して、製造工程を簡略化することができ、コストを低減することができる。放熱部3を樹脂製としているから、射出成型等により容易に放熱部3、及び放熱部3を含む一体成型品を加工することができる。特に、放熱部3をアルミニウムのダイカスト製とする場合と比較して、製造時における放熱部の加工のために必要となるエネルギを大幅に削減できるから、省エネルギに資する。
 更に、放熱部3を電気絶縁材料製としている。放熱部3に導電体を用いた場合、放熱部3と外部電源に接続する口金7などの間では、感電を防ぐために電気絶縁体の部材を介して絶縁する必要があるが放熱部3を絶縁材料製としているから、電気絶縁体の部材が不要であり、部品点数を低減して、軽量化及び小型化を図ることができる。
 特に、電球型の照明装置においては、既存の白熱電球等を取付けるソケットが該白熱電球の形状に合わせて細くなっている場合がある。導電製の放熱部を備える電球に電気絶縁体の部材を設けると、口金と放熱部の間の電気絶縁体の部材で口金の周縁が太くなり、場合によっては、既存の電球用のソケットに装着できない虞がある。本実施の形態に係る照明装置100においては、放熱部3を電気絶縁材料製とすることにより、電気絶縁体の部材が不要となるから、ソケットに嵌合する部分を細くして成形することができ、既存の電球用のソケットに装着することができる。
 なお、以上の実施の形態においては、熱伝導部である伝熱筒4と伝熱板5とを別体に設けているが、一体形成してもよい。また、伝熱筒4及び伝熱板5は、何れか一方のみでもよい。
 また、以上の実施の形態においては、放熱部3により熱伝導部である伝熱筒4と伝熱板5と口金7とを金型を用いて一体的に成型するとしているが、放熱部3を予め単体で成形した後、熱伝導部を放熱部3に熱的に接続する方法で製造してもよい。その際、放熱部3は、成形後に熱伝導部を放熱部に熱的に接続できる形状となるように成形する。例えば具体的には、実施の形態1における伝熱筒4と伝熱板5を係合させた熱伝導部を挿入して内接可能な空洞を内部に有する放熱部に成形することで、成形後に熱伝導部と放熱部が熱的に接続可能となる。また口金7は、成形後の放熱部3にネジ等で固定してもよい。
(実施の形態2)
 図10は、本発明の実施の形態2に係る照明装置200の模式的横断面図である。図11は、本発明の実施の形態2に係る照明装置200の模式的縦断面図である。なお、実施の形態1と同一の部分については同一の符号を付してその詳細な説明は省略する。
 放熱部9の内部には、LED12や電源回路6等の発熱体からの熱を放熱部9に伝導する熱伝導部としての伝熱筒10が埋設されてある。伝熱筒10は、熱良導体であり、例えば、アルミニウム等の金属製である。
 伝熱筒10の形状は、内部に電源回路6を収容できる四角筒である。伝熱筒10は、伝熱筒10を構成する四面のうちの電源回路6と熱的に接続する面を伝熱筒10の内側に有する接続部10aと、電源回路6からの熱を接続部から受け、放熱部9に熱を伝導する伝導部10bとで構成される。伝導部10bは、接続部10aの両端に連接される2つの面と、接続部10aと対向する面とを有する部材からなる。
 図10および図11に示すように、電源回路6は、電源回路部品62を実装する電源回路基板61と、接続部10aにおける伝熱筒10の内側の面とを、熱伝導シート60を介して熱的に接続してある。
 放熱部9の成形方法について説明する。まず、伝熱筒10の長手方向の一端の周縁が口金7の内部に位置するように、伝熱筒10を口金7に内嵌する(図11参照)。なお、伝熱筒10を構成する接続部10aおよび伝導部10bの幅および厚さは、伝熱筒10の長手方向の一端が口金7に内嵌でき電源回路6を伝熱筒10の内部に収容して接続部10aに熱的に接続可能となる寸法であればよい。次に伝熱筒10を口金7に内嵌した状態を保持しつつ、放熱部9の形状に応じた金型に嵌めこむ。そして、溶融させた状態の前述した放熱樹脂を、射出成型機等を用いて前記金型に流し込み、放熱樹脂を固化させる。
 放熱樹脂は、伝熱筒10の外面10cを覆うようにして伝熱筒10を放熱部9に埋設すべく、かつ口金7の内面と伝熱筒10の外面10cとの間を埋めるように前記金型に流し込み、放熱部9を成形する。図11は、放熱樹脂を固化させた後の、放熱部9を伝熱筒10、および口金7と一体的に成形した状態の縦断面図を示している。
 熱伝導部である伝熱筒10を、四角筒のような、熱伝導部の内部で直接電源回路6を熱的に接続できる面を有する形状とすることで、実施の形態1における伝熱板5のような電源回路6と熱的に接続する部材を減らすことができ、熱伝導部の構造も簡略化できる。また、熱伝導部が、接続部10aのように電源回路6と熱的に接続し、かつ放熱部9と外面10cが直接密着する形状を有することで、発熱体である電源回路6と放熱部9との間で空気の層などに隔たれないため、電源回路6及び放熱部9間の熱抵抗を低減でき、かつ近距離間で熱を伝導することができる。これにより、速やかに電源回路6からの熱が放熱部9に伝導し、効率的に放熱部9から熱を放熱することが可能となる。
 実施の形態2においては、電源回路6から発生した熱は、熱伝導シート60を介して接続部10aに伝導した後、接続部10aから放熱部9へ伝導し、または接続部10aから伝導部10bへ伝導した後、該伝導部10bから放熱部9へ伝導し、放熱部9から外部の空気中へ放熱される。伝導部10bを設けることで熱伝導部の熱抵抗を低減し、電源回路6から接続部10aへ伝導した熱が伝導部10bに散熱し、電源回路6の温度上昇を抑制することが可能となる。
 なお、伝熱筒10の形状は、四角筒である必要はなく、接続部10aのように電源回路6と熱的に接続できる面を有し、かつ外面で放熱部9と熱的に接続が可能である形状を有していればよい。例えば、五角筒でもよいし、円筒の内面を部分的に略平面の接続部として電源回路6と熱的に接続し、接続部以外の円弧の部分を伝導部とする形状であってもよい。さらに、伝熱筒10の外面に実施の形態1におけるフィン52のような突設部を設けて熱伝導部の伝熱面積を広げる構造としてもよい。
 また、実施の形態1と同様に、製造方法として放熱部9を予め単体で成形した後、熱伝導部を放熱部9に熱的に接続する方法であってもよい。その際、放熱部9は、成形後に熱伝導部を放熱部に熱的に接続できる形状となるように成形する。例えば具体的には、実施の形態2における伝熱筒10を挿入して内接可能な空洞を内部に有する放熱部を成形することで、成形後に熱伝導部と放熱部が熱的に接続可能となる。もしくは、予め成形した一対の放熱部で伝熱筒を挟装して固定する方法で成形してもよい。また口金7は、成形後の放熱部9にネジ等で固定してもよい。
 さらに、本発明に係る照明装置の実施の形態において、予め放熱部を単体で成形する場合、実施の形態1や実施の形態2のような伝熱筒4や伝熱板5および伝熱筒10を熱伝導部として用いずに、熱伝導シート60の如く熱良導体で柔軟性を有する熱伝導部材を熱伝導部として用い、該熱伝導部を介して電源回路を放熱部に熱的に接続してもよい。その場合、部品点数を減らすことによる軽量化が可能であるが、放熱性を向上させるために放熱部の肉厚を比較的薄く成形する等の工夫を施すことが望ましい。
 また、以上の実施の形態においては、放熱部3および放熱部9を樹脂製としているが、放熱部は、電気絶縁性を有する材料製であればよい。例えば、セラミック製であってもよい。また、以上の実施の形態においては、放熱部3および放熱部9のみを樹脂製としているが、放熱板2を樹脂製として、放熱部3や放熱部9と同様に、光源モジュール1と放熱板2を一体的に成形するように構成してもよい。
 また本発明に係る照明装置の実施の形態において、放熱部からの放熱効率を向上するために、放熱部の外面に熱放射性の良い熱放射膜が形成してあることが望ましい。熱放射膜は、例えば、放熱部の外面に設けられた第1のセラミック膜と、該第1のセラミック膜の表面に設けられ、前記第1のセラミック膜と赤外線放射率の波長分布が異なる第2のセラミック膜とを備えている。
 第1のセラミック膜は、赤外線放射率(赤外線の波長領域における放射率)の高い熱放射性材料を含む塗料を放熱部の外面に塗布した後に硬化させて形成してある。第1のセラミック膜の塗料に含有される熱放射性材料として、例えば、酸化アルミニウムを用いている。なお、第1のセラミック膜に用いられる熱放射性材料として、酸化チタン、二酸化ケイ素等の金属性酸化物やカーボンブラックなどを用いても良い。第1のセラミック膜の厚みは、発熱体の温度に応じて適切に設定される。
 第2のセラミック膜は、第1のセラミック膜の熱放射性材料として用いられる酸化アルミニウムの熱放射率と異なる熱放射率を有する熱放射性材料を含有する塗料を第1のセラミック膜の表面に塗布した後に硬化させて形成してある。なお、第2のセラミック膜の塗料に含有される熱放射性材料として、例えば、金属性酸化物である酸化チタンを用いている。なお、第2のセラミック膜に用いられる熱放射性材料は、酸化チタンに限定されず、第1のセラミック膜の熱放射性材料として用いられる酸化アルミニウムの熱放射率と異なる熱放射率を有する熱放射性材料であればよく、熱放射率が酸化アルミニウムと異なる金属性酸化物やカーボンブラックなどを用いても良い。
 なお、前記第1のセラミック膜と前記第2のセラミック膜は、それぞれ、塗布した後に110℃程度の温度で焼結させて硬化させることが望ましい。焼結することで、熱放射膜が放熱部の本体に固着して塗装強度を高めることができ、熱放射膜の分子結合が密になるので放射による放熱効率を高めることができる。
 このように熱放射膜を放熱部の表面に形成することにより、熱放射膜において赤外線を放射しやすくなるから、放熱部からの対流による熱伝達に加えて、放熱部の表面からの熱放射による熱伝達を効率良く行うことができ、LEDや、電源回路の発熱体から伝導された熱を外部に効率良く放熱することが可能となる。
 また、以上の実施の形態においては、伝熱筒4または伝熱筒10に収容される発熱体として、電源回路6について述べたが、LEDの光量及び/又は色度を調整可能なように構成された調光機能付きの照明装置においては、調光用の制御部も同様に発熱体となる。この場合においても、以上の実施の形態において述べた電源回路6と同様に構成、即ち制御回路基板を伝熱板5の接続板部51もしくは伝熱筒10における接続部10aに設置することにより、制御部からの熱を放熱部3に効率的に伝導することが可能である。
 また、以上の実施の形態においては、光源として表面実装型LEDを用いているが、これに限定されず、他のタイプのLED、EL(Electro Luminescence)等を用いてもよい。
 また、以上の実施の形態においては、電球用のソケットに取付ける電球型の照明装置を例に説明したが、電球型の照明装置に限定されず、他の型の照明装置、例えば、ダウンライトに適用することができる。ダウンライトに適用する場合、口金は不要であり、熱伝導部と放熱部を一体的に成形するように構成される。更に、本発明は、照明装置以外の発熱体を備える機器にも適用可能であり、その他、特許請求の範囲に記載した事項の範囲内において種々変更した形態にて実施することが可能であることは言うまでもない。
 12 LED(光源)
 3 放熱部
 4 伝熱筒(熱伝導部、筒部)
 5 伝熱板(熱伝導部)
 51 接続板部(接続部)
 52 フィン(突設部)
 6 電源回路
 7 口金
 9 放熱部
 10 伝熱筒(熱伝導部、筒部)
 10a 接続部
 10b 伝導部
 

Claims (7)

  1.  光源と、
     該光源に電力を供給する電源回路と、
     電気絶縁性材料からなり、内部に収容する前記電源回路からの熱を外部の空気に放熱する放熱部と、
     前記電源回路からの熱を前記放熱部に伝導する熱伝導部とを有する照明装置であって、
     前記放熱部と前記熱伝導部は熱的に接続されていることを特徴とする照明装置。
  2.  光源及び/または電源回路を含む発熱体と、
     該発熱体からの熱を放熱する放熱部と、
     該放熱部へ前記発熱体からの熱を伝導する熱伝導部とを有する照明装置であって、
     前記熱伝導部と前記放熱部の対向する面の少なくとも一部が、熱伝導を良好にするために熱的に接続されていることを特徴とする照明装置。
  3.  前記熱伝導部は、少なくとも一部が前記放熱部に埋設されていることを特徴とする請求項1または2に記載の照明装置。
  4.  口金を有し、
     該口金は前記放熱部と一体的に成形されていることを特徴とする請求項1から3のいずれか一つに記載の照明装置。
  5.  前記熱伝導部は、前記電源回路と熱的に接続する接続部と、前記電源回路からの熱を前記放熱部に伝導する伝導部とを有することを特徴とする請求項1から4のいずれか一つに記載の照明装置。
  6.  前記熱伝導部は、前記電源回路を内部に収容する筒部と、
     該筒部に設けられ、前記電源回路と熱的に接続する接続部と、
     前記筒部の外面に突設された突設部とを有し、
     前記放熱部は、前記筒部の外面及び突設部を覆うように設けてあることを特徴とする請求項1から5のいずれか一つに記載の照明装置。
  7.  前記熱伝導部は、
     前記電源回路を内部に収容する筒部を有し、
     該筒部の内面で前記電源回路と熱的に接続し、
     前記放熱部は、前記熱伝導部の外面を覆うように設けてあることを特徴とする請求項1から5のいずれか一つに記載の照明装置。
     
PCT/JP2011/051973 2010-02-08 2011-02-01 照明装置 WO2011096373A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800053427A CN102695909A (zh) 2010-02-08 2011-02-01 照明装置
EP11739721.6A EP2535635A4 (en) 2010-02-08 2011-02-01 ILLUMINATION DEVICE
US13/522,117 US20120293961A1 (en) 2010-02-08 2011-02-01 Lighting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-025750 2010-02-08
JP2010025750A JP4828639B2 (ja) 2010-02-08 2010-02-08 照明装置

Publications (1)

Publication Number Publication Date
WO2011096373A1 true WO2011096373A1 (ja) 2011-08-11

Family

ID=44355371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051973 WO2011096373A1 (ja) 2010-02-08 2011-02-01 照明装置

Country Status (5)

Country Link
US (1) US20120293961A1 (ja)
EP (1) EP2535635A4 (ja)
JP (1) JP4828639B2 (ja)
CN (1) CN102695909A (ja)
WO (1) WO2011096373A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214465A (ja) * 2012-04-04 2013-10-17 Iris Ohyama Inc Ledランプ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715931B2 (ja) * 2011-11-18 2015-05-13 三菱電機照明株式会社 照明ランプ及び鉄道車両及び照明ランプの使用方法
JPWO2014010146A1 (ja) * 2012-07-11 2016-06-20 パナソニック株式会社 電球形ランプ及び照明装置
JP6223058B2 (ja) * 2013-08-21 2017-11-01 三菱電機株式会社 照明ランプ及び照明装置
JP6226633B2 (ja) * 2013-08-21 2017-11-08 三菱電機株式会社 照明ランプ及び照明装置
TWI463093B (zh) * 2013-11-15 2014-12-01 Beautiful Light Technology Corp 發光二極體燈泡
DE102014110994A1 (de) * 2014-08-01 2016-02-04 Seidel GmbH & Co. KG Leuchtvorrichtung mit einem Anschlussmodul
CN109314161A (zh) * 2016-06-07 2019-02-05 飞利浦照明控股有限公司 Uv固态输出设备
JP6504285B2 (ja) * 2018-02-15 2019-04-24 日本精機株式会社 照明装置
US20220412533A1 (en) * 2020-04-13 2022-12-29 Mitsubishi Electric Corporation Heat dissipation structure, manufacturing method therefor, and vacuum valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119324A (ja) * 2002-09-30 2004-04-15 Hitachi Lighting Ltd 電球形蛍光ランプ
JP2004165053A (ja) * 2002-11-14 2004-06-10 Matsushita Electric Ind Co Ltd 回路一体放電管及びその製造方法
JP2007323879A (ja) * 2006-05-31 2007-12-13 Fujitsu General Ltd 光源装置及び光源装置を用いたプロジェクタ
JP2008186776A (ja) 2007-01-31 2008-08-14 Toshiba Lighting & Technology Corp 照明器具

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD110977A1 (ja) * 1974-03-04 1975-01-12
US7758223B2 (en) * 2005-04-08 2010-07-20 Toshiba Lighting & Technology Corporation Lamp having outer shell to radiate heat of light source
DE202005006332U1 (de) * 2005-04-20 2005-09-22 Taiwan Oasis Technology Co., Ltd. Leuchtdiode-Beleuchtungsapparat
US7357534B2 (en) * 2006-03-31 2008-04-15 Streamlight, Inc. Flashlight providing thermal protection for electronic elements thereof
EP1914470B1 (en) * 2006-10-20 2016-05-18 OSRAM GmbH Semiconductor lamp
US7701055B2 (en) * 2006-11-24 2010-04-20 Hong Applied Science And Technology Research Institute Company Limited Light emitter assembly
US20110128742A9 (en) * 2007-01-07 2011-06-02 Pui Hang Yuen High efficiency low cost safety light emitting diode illumination device
CN201003739Y (zh) * 2007-02-09 2008-01-09 鸿坤科技股份有限公司 发光二极管灯具
WO2008146694A1 (ja) * 2007-05-23 2008-12-04 Sharp Kabushiki Kaisha 照明装置
JP4945433B2 (ja) * 2007-12-28 2012-06-06 シャープ株式会社 照明装置
US8274241B2 (en) * 2008-02-06 2012-09-25 C. Crane Company, Inc. Light emitting diode lighting device
US8470701B2 (en) * 2008-04-03 2013-06-25 Advanced Diamond Technologies, Inc. Printable, flexible and stretchable diamond for thermal management
JP5451990B2 (ja) * 2008-06-20 2014-03-26 シャープ株式会社 照明装置
CN102175000B (zh) * 2008-07-30 2013-11-06 东芝照明技术株式会社 灯装置及照明器具
CN201326956Y (zh) * 2008-09-26 2009-10-14 光碁科技股份有限公司 免灯筒的组合式嵌灯
CN201344406Y (zh) * 2009-02-13 2009-11-11 深圳市聚作实业有限公司 一种led灯具
JP5257622B2 (ja) * 2010-02-26 2013-08-07 東芝ライテック株式会社 電球形ランプおよび照明器具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119324A (ja) * 2002-09-30 2004-04-15 Hitachi Lighting Ltd 電球形蛍光ランプ
JP2004165053A (ja) * 2002-11-14 2004-06-10 Matsushita Electric Ind Co Ltd 回路一体放電管及びその製造方法
JP2007323879A (ja) * 2006-05-31 2007-12-13 Fujitsu General Ltd 光源装置及び光源装置を用いたプロジェクタ
JP2008186776A (ja) 2007-01-31 2008-08-14 Toshiba Lighting & Technology Corp 照明器具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214465A (ja) * 2012-04-04 2013-10-17 Iris Ohyama Inc Ledランプ

Also Published As

Publication number Publication date
CN102695909A (zh) 2012-09-26
JP2011165438A (ja) 2011-08-25
JP4828639B2 (ja) 2011-11-30
EP2535635A4 (en) 2014-10-01
US20120293961A1 (en) 2012-11-22
EP2535635A1 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP4828639B2 (ja) 照明装置
JP5578361B2 (ja) 口金付ランプおよび照明器具
JP5565583B2 (ja) 電球形ランプおよび照明器具
JP4914511B2 (ja) 照明装置
WO2012043586A1 (ja) 電球形ランプおよび照明器具
JP5508113B2 (ja) ランプ及び照明装置
WO2011087021A1 (ja) 照明装置
JP5799850B2 (ja) ランプ装置および照明器具
US20130020941A1 (en) Semiconductor Lamp
JP2008034140A (ja) Led照明装置
EP2270393A1 (en) Self-ballasted lamp and lighting equipment
JP2011228126A (ja) Par型の照明装置
JP5545446B2 (ja) 電球形ランプおよび照明器具
JP2014067737A (ja) Ledランプ
KR20120139812A (ko) 방열 장치 및 조명 장치
JP2014154230A (ja) ランプ装置、発光装置および照明装置
JP2011159447A (ja) 照明装置
US20150098229A1 (en) Illumination device
WO2012008175A1 (ja) 照明装置
RU2608566C2 (ru) Осветительное устройство с держателем печатной платы
JP5204936B2 (ja) 照明装置
JP2012074145A (ja) 電球形ランプおよび照明器具
JP6197996B2 (ja) ランプ装置および照明器具
JP5816013B2 (ja) Ledランプ
JP5657319B2 (ja) 発光装置及びこの発光装置を備えた照明器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739721

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13522117

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011739721

Country of ref document: EP