WO2013081109A1 - Defect correction device and defect correction method - Google Patents

Defect correction device and defect correction method Download PDF

Info

Publication number
WO2013081109A1
WO2013081109A1 PCT/JP2012/081095 JP2012081095W WO2013081109A1 WO 2013081109 A1 WO2013081109 A1 WO 2013081109A1 JP 2012081095 W JP2012081095 W JP 2012081095W WO 2013081109 A1 WO2013081109 A1 WO 2013081109A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
needle
correction
size value
correction apparatus
Prior art date
Application number
PCT/JP2012/081095
Other languages
French (fr)
Japanese (ja)
Inventor
博明 大庭
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201280058501.4A priority Critical patent/CN103959108A/en
Publication of WO2013081109A1 publication Critical patent/WO2013081109A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8861Determining coordinates of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • G01N2021/8874Taking dimensions of defect into account
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Definitions

  • the present invention relates to a defect correction apparatus and a defect correction method, and more particularly to a defect correction apparatus and a defect correction method for correcting defects in a black matrix portion and a colored portion of a color filter.
  • Patterns, circuits, and the like are formed on substrates used in flat panel displays such as liquid crystal displays, PDPs (Plasma Display Panels), organic EL (Electro Luminescence) displays, and SEDs (Surface-conduction Electron-emitter Displays).
  • a circuit pattern is formed on a semiconductor wafer which is a semiconductor substrate.
  • a color filter which is a component part of a liquid crystal display, is formed with a lattice pattern (a material such as chromium, chromium oxide and resin) and a colored portion (hereinafter also referred to as a color filter portion or a CF portion) called a black matrix. .
  • a lattice pattern a material such as chromium, chromium oxide and resin
  • a colored portion hereinafter also referred to as a color filter portion or a CF portion
  • black defects and white defects may occur.
  • black defects occur due to the black matrix protruding to the color filter portion (no color at this stage).
  • white defects occur due to the lack of part of the black matrix.
  • black defects occur due to color mixing, and white defects occur due to color loss.
  • black defects are corrected with laser light, or ink is applied to the tip of the needle and the white ink is filled by attaching the applied ink to the substrate. It has been.
  • the defect correction apparatus includes an imaging unit and an image processing unit, calculates a range of defects to be corrected by image processing or the like, the calculated correction range, and the actual defect location that was shot It is configured so that the operator can compare. The operator can operate the defect correction apparatus so that the calculated correction range is within an appropriate correction range based on the actual defect location.
  • the number of times of ink application by the needle is determined by the application pitch and the vertical and horizontal size of the defect.
  • the larger the coating pitch the smaller the number of coatings.
  • the larger the coating diameter the larger the coating pitch. If the defect correction work is made more efficient, the defect can be corrected in a shorter time as the number of times of the ink application work by the needle is smaller, and the time efficiency is better.
  • Patent Document 1 a case of correcting a defect of 120 ( ⁇ m) ⁇ 120 ( ⁇ m) using a needle having a coating diameter of 55 ( ⁇ m) (application pitch is 50 ( ⁇ m)) is considered. . Since the application pitch of this needle is 50 ( ⁇ m), according to the “ink application position calculation” in paragraph 0174 of Patent Document 1, a total of 9 times of ink application is required 3 times ⁇ 3 times. On the other hand, when a needle having a coating diameter of 80 ( ⁇ m) (with a coating pitch of 75 ( ⁇ m)) is used, the correction can be completed in a total of four coating times of 2 ⁇ 2.
  • the ink application range is also increased. If the ink application range is large, the ink may be applied to a portion that should not be corrected at the time of correction work. For this reason, there is a possibility that the time required for the correction work becomes long instead of re-correction.
  • an object of the present invention is to provide a defect correction apparatus that enables an efficient correction work according to a defect.
  • the defect correction apparatus is for correcting a defect of a substrate.
  • the defect correcting device includes a plurality of needles having different coating diameters for correcting defects, an image processing unit for detecting a defective portion of the substrate, and a defect size indicating a size of the defect based on the detected image of the defective portion.
  • a calculation unit that calculates a value, a selection unit that selects a needle having an application diameter to be used for correction according to the calculated defect size value, and a correction processing unit that corrects a defect using the needle having the selected application diameter And comprising.
  • the selection unit stores a needle information table in which each of the plurality of needles is associated with a defect size value for which each needle is to be used, and selection is associated with the calculated defect size value.
  • the selected needle may be selected from the needle information table.
  • the image processing unit includes a determination unit that determines whether the defect portion is generated in the black matrix or the color filter opening, and the calculation unit is configured to determine the defect portion according to the determination result of the determination unit. May occur in the black matrix, the defect size value may be calculated by a calculation method corresponding to the generated site.
  • the image processing unit determines whether the site of the occurrence location is a long side portion or a short side portion of the black matrix when the defect location occurs in the black matrix, and the calculation unit determines whether the defect location is a determination unit.
  • the defect size value may be calculated based on the line width of the part depending on whether the part corresponding to the occurrence part is the long side part or the short side part.
  • the calculation unit may calculate the defect size value based on the minimum value of the sides of the rectangle circumscribing the defect part when the determination unit determines that the defect part is generated in the black matrix.
  • the calculation unit may calculate an average of the vertical and horizontal sizes of the rectangle surrounding the detected defect portion as the defect size value.
  • the calculation unit may calculate the defect size value based on the major axis length and minor axis length of an ellipse equivalent to the detected defect location.
  • the correction processing unit stores an overlap amount for correcting the ink application range for each ink, and uses the overlap amount of the ink corresponding to the needle to determine the application diameter of the needle selected by the selection unit. It is good also as correcting and determining the application position of a needle
  • correction processing unit may include a cutting laser irradiation unit and a grouping unit for grouping cut locations.
  • the substrate may be a substrate used for a flat panel display.
  • the substrate may be a color filter.
  • a method for a defect repair apparatus to repair a defect in a substrate includes a plurality of needles having different application diameters.
  • a method for correcting a defect on a substrate includes a step in which a defect correction device detects a defect location based on an image of the substrate taken by a camera, and a size of the defect based on the detected image of the defect location.
  • the defect correction apparatus calculates the size of the defect that is within the correction range as the defect size value, and selects a needle having a coating diameter suitable for correction according to the calculation result. Therefore, it can correct using the needle
  • FIG. 1 is a diagram showing an overall configuration of a defect correction apparatus 100 according to an embodiment of the present invention.
  • 3 is a perspective view showing the main parts of an observation optical system 31 and an ink application mechanism 34.
  • FIG. 3 is a diagram showing the main parts of an observation optical system 31 and an ink application mechanism 34.
  • FIG. 3 is a diagram showing the main parts of an observation optical system 31 and an ink application mechanism 34.
  • FIG. 3 is a diagram showing the main parts of an observation optical system 31 and an ink application mechanism 34.
  • It is a functional block diagram which shows the structure of the defect correction apparatus 100 of this invention. It is a figure which shows the needle information table. It is a figure which shows the application diameter of a needle
  • FIG. 4 is a flowchart showing a process for correcting a defect by the defect correcting apparatus 100. It is a flowchart which shows the process which calculates a defect size value. It is a figure which shows the rectangle circumscribed to the defect detected based on the extraction result of the defect by the image process part 21.
  • FIG. It is a figure which shows the relationship between the defect which generate
  • FIG. 1 is a diagram showing an overall configuration of a defect correction apparatus 100 according to an embodiment of the present invention.
  • the defect correction apparatus 100 includes a correction head unit composed of an observation optical system 31, a CCD camera 32, a cutting laser device 33, an ink application mechanism 34, and an ink curing light source 35, and a substrate to be corrected. 5, a Z-axis table 36 that moves in the direction perpendicular to the liquid crystal color filter substrate (Z-axis direction), an X-axis table 37 that mounts the Z-axis table 36 and moves in the X-axis direction, and a substrate 5.
  • a Y-axis table 38 that is moved in the Y-axis direction
  • a control computer 39 that controls the operation of the entire apparatus
  • a monitor 40 that displays images taken by the CCD camera 32
  • an operation panel 41 for inputting a command from.
  • the observation optical system 31 observes the surface state of the substrate 5 and the state of the correction ink applied by the ink application mechanism 34.
  • An image observed by the observation optical system 31 is converted into an electrical signal by the CCD camera 32 and displayed on the monitor 40.
  • the cutting laser device 33 removes unnecessary portions on the substrate 5 by irradiating them with laser light via the observation optical system 31.
  • the ink application mechanism 34 corrects the white defect generated on the substrate 5 by applying correction ink.
  • the ink curing light source 35 includes, for example, a CO2 laser, and cures the correction ink applied by the ink application mechanism 34 by irradiating it with laser light.
  • This apparatus configuration is an example.
  • a Z-axis table 36 on which an observation optical system 31 and the like are mounted is mounted on an X-axis table 37, and an X-axis table 37 is further mounted on a Y-axis table 38.
  • a configuration called a gantry system that allows the 36 to move in the XY directions may be used, and the Z-axis table 36 on which the observation optical system 31 and the like are mounted can be moved relative to the correction target substrate 5 in the XY directions. Any configuration is possible.
  • FIG. 2 is a perspective view showing the main parts of the observation optical system 31 and the ink application mechanism 34.
  • 3A, FIG. 3B, and FIG. 3C are views showing the main part from the direction A in FIG. 2 and showing the ink application operation.
  • the defect correcting apparatus includes a movable plate 42, a plurality of (for example, five) objective lenses 2 having different magnifications, and a plurality (for applying different color inks). For example, five coating units 43 are provided.
  • the movable plate 42 is provided between the lower end of the observation barrel 31a of the observation optical system 31 and the substrate 5 so as to be movable in the X-axis direction and the Y-axis direction.
  • the movable plate 42 is formed with five through holes 42a corresponding to the five objective lenses 2, respectively.
  • the five through holes 42a are arranged at predetermined intervals in the Y-axis direction.
  • Each objective lens 2 is fixed to the lower surface of the movable plate 42 so that its optical axis coincides with the center line of the corresponding through hole 42a.
  • the optical axis of the observation barrel 31a and the optical axis of each objective lens 2 are arranged in the Z-axis direction perpendicular to the X-axis direction and the Y-axis direction.
  • the five coating units 43 are fixed to the lower surface of the movable plate 42 at a predetermined interval in the Y-axis direction. Each of the five coating units 43 is disposed adjacent to the five objective lenses 2.
  • the defect correction apparatus 100 can correct a defect using a needle having a desired application diameter among a plurality of needles by using, for example, a mechanism as shown in FIG. 2 as the ink application mechanism 34.
  • FIG. 4 is a functional block diagram showing the configuration of the defect correction apparatus 100 of the present invention.
  • FIG. 4 mainly illustrates components for selecting a needle having a coating diameter corresponding to the size of the defect, shows a partial configuration of the defect correction apparatus 100 shown in FIG. The illustration of this configuration is omitted.
  • control computer 39 includes a control unit 22 and an image processing unit 21.
  • the control unit 22 includes a storage unit 23, a CPU (Central Processing Unit) (not shown), and the like.
  • a CPU Central Processing Unit
  • the control unit 22 functions as a control computer 39 by reading and executing a program stored in the storage unit 23.
  • the storage unit 23 stores a needle information table 24.
  • the needle information table 24 indicates which needle should be selected for each defect size in order to select a needle for ink application. Details will be described later with reference to the drawings.
  • the image processing unit 21 specifies a defect position by performing image processing on a defect image observed by the observation optical system 31 and converted into an electric signal by the CCD camera 32.
  • control unit 22 includes a calculation unit 25 and a selection unit 26 as shown in FIG.
  • the control unit 22 calculates a defect size value indicating the size of the defect based on the defect location detected by the image processing unit 21.
  • the control unit 22 selects a needle for ink application by the selection unit 26. This process will be described later.
  • the control unit 22 controls the ink application mechanism 34 and the like of the correction processing unit 50 so that ink application or the like is performed with the needle selected in this way.
  • the correction processing unit 50 includes an ink application mechanism 34, a cutting laser device 33, and the like.
  • the ink application mechanism 34 has a plurality of needles (needle 34 ⁇ / b> A, needle 34 ⁇ / b> B, needle 34 ⁇ / b> C,...), Selects a needle in accordance with instructions from the control computer 39, and selects the selected needle.
  • the defect correction process is executed in accordance with the instruction of the control computer 39.
  • FIG. 5A shows a needle information table 24, which shows for each needle used for application, predetermined information about the needle and how large the defect size is suitable for the needle.
  • One piece of information in the needle information table 24 includes a needle 51, an ink color 52, a coating diameter 53, a coating pitch 54, a defect size lower limit 55, and a defect size upper limit 56.
  • the needle 51 is an area for storing information for identifying the needle.
  • the ink color 52 is an area indicating which color of the color filter is used for each needle indicated by the needle 51.
  • the color types indicated by the ink color 52 correspond to the openings of the pixels constituting the color filter, and are generally three colors of red, green, and blue which are the three primary colors. However, it may be a single color or four or more colors.
  • the needle A is a needle corresponding to red ink, and is used for correcting a defect in the red opening of the color filter.
  • the application diameter 53 indicates the diameter value of the ink when applied with the needle indicated by the needle 51.
  • the unit is ⁇ m.
  • the application pitch 54 indicates the distance from the center of the adjacent application position when application is continuously performed at a plurality of locations with the needle indicated by the needle 51. That is, it indicates how far the distance can be continuously applied using a needle.
  • FIG. 5B is a diagram showing the coating diameter.
  • FIG. 5C is a diagram showing a coating pitch.
  • the circle shown in FIG. 5B imitates the shape of ink applied using a needle.
  • the diameter of the ink applied by the needle is the application diameter.
  • ink is applied once to a dummy substrate and the measured value is used as the application diameter.
  • the distance between the centers of the respective inks when the ink is continuously applied by the needle is defined as the application pitch.
  • the coating pitch a value experimentally obtained from the properties of the ink based on the coating diameter is used.
  • the defect size lower limit 55 and the defect size upper limit 56 are data used in the needle selection process by the control unit 22, and indicate how large the needle is suitable for the defect. A needle is selected based on the defect size lower limit 55 and the defect size upper limit 56 in accordance with the defect size value obtained by the process of calculating the size of the defect described later.
  • the needle A is used for defect correction of the opening of the red pixel, and the defect size value indicating the size of the defect is determined to be smaller than 75 ( ⁇ m) by the calculation of the control unit 22. Indicates the needle to be used in the case.
  • the defect size lower limit 55 and the defect size upper limit 56 have the same value (75 ⁇ m).
  • the control unit 22 indicates the defect size value calculated by the processing described later as the defect size lower limit 55. This is because it is determined whether the value is equal to or greater than the value to be selected, and the needle is selected when the determination condition is satisfied.
  • FIG. 6 is a diagram showing the relationship between the black matrix portion, the color filter portion, and the picture element in the color filter.
  • the color filter to be modified includes a plurality of picture elements.
  • a pixel element start DS and a pixel element end DE exist at the intersections of the black matrix portions formed vertically and horizontally. Further, the beginning DS of the picture element is referred to as a color filter position.
  • the image processing unit 21 specifies the position of this color filter. In addition, the range from the start DS of the picture element to the end DE of the picture element, which is surrounded by a square in FIG.
  • a picture element usually has a plurality of pixels.
  • a set of pixels having a value of 1 in a picture element is a color filter portion of the picture element (indicated by a color filter portion CF in the figure), and a set of pixels having a value of 0 (hatched portion in the figure) is a black matrix of the picture element. (Shown as black matrix BM in the figure).
  • each pixel of each picture element has one of RGB (Red, Green, Blue) different from each other, and is repeatedly formed at a constant period.
  • FIG. 7 is a flowchart showing a process for correcting a defect by the defect correcting apparatus 100.
  • the defect correction apparatus 100 detects the defect by controlling the image processing unit 21 and the like by the control computer 39 and corrects the defect by the correction processing unit 50.
  • the control computer 39 detects a defect on the substrate by the image processing unit 21 (step S701).
  • the processing for detecting defects on the substrate is performed by image processing and is described in detail in Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-3503) and the like, and thus description thereof is omitted.
  • the control computer 39 calculates a defect size value indicating the size of the detected defect by the control unit 22 (step S703).
  • the processing in step S703 will be described in detail later.
  • the control computer 39 determines a needle of an appropriate size by the control unit 22 with reference to the needle information table 24 in accordance with the calculated defect size value (step S705).
  • the processing in step S705 will be described in detail later.
  • the control computer 39 executes defect correction processing by the correction processing unit 50 using the determined needle (step S707).
  • a method of determining the ink application position based on the application pitch and the like for the detected defect will be described later.
  • FIG. 8 is a flowchart showing a process for calculating the defect size value.
  • the control unit 22 acquires the coordinates of the vertices of the rectangle circumscribing the detected defect based on the defect extraction result by the image processing unit 21, and the vertical size H and the horizontal size W of the rectangle based on the difference between the vertices. Is acquired (step S801).
  • FIG. 9 is a diagram illustrating a rectangle circumscribing the defect detected based on the defect extraction result by the image processing unit 21. Since the method for determining the rectangle circumscribing the defect and the method for obtaining the coordinates of the vertex are described in detail in Patent Document 1 and the like, description thereof will be omitted.
  • the control unit 22 determines whether the defect occurrence location extracted by the image processing unit 21 is a pixel opening or a black matrix (step S803). Note that, when the defect is extracted by the image processing unit 21, it is determined whether the defect occurrence place is a pixel opening or a black matrix. This determination process will be described later with reference to FIG.
  • step S803 when it is determined that the defect occurrence location is the opening of the pixel, the control unit 22 calculates the defect size value D by the following equation (1) (step S805).
  • Defect size value D Min (W, H) (2) Min () is a function that outputs the minimum value among the values listed in parentheses (in this example, W and H). In other words, in this embodiment, when the defect occurs in the black matrix, the control unit 22 outputs the smaller value of W and H as the defect size value.
  • the control unit 22 stores the calculated defect size value D in the storage unit 23 (step S809).
  • the defect size value D is calculated based on Equation (2).
  • FIG. 10 is a diagram showing the relationship between the defects generated in the black matrix and the application diameter of the needles used for defect correction.
  • ink is applied and the missing portions are filled and corrected.
  • the ink protrudes into the color filter portion and becomes a black defect in the color filter portion.
  • the white defect 65b when the white defect 65b is corrected with a needle having a coating diameter that matches the longer vertical and horizontal sizes, the amount of ink that protrudes to the pixels such as the R pixel 62 and the G pixel 63 becomes larger.
  • the defect when the defect is corrected with a needle having a coating diameter that matches the shorter one of the vertical and horizontal sizes of the defect, such as the white defect 65c, the amount of ink protruding to the pixels such as the G pixel 63 and the B pixel 64 becomes small.
  • white defect 65a and white defect 65b in FIG. 10 when the line width of the black matrix is different between the short side and the long side, it is determined whether the defect occurs on the short side or the long side.
  • a needle having a coating diameter close to the line width of each of the short side and the long side may be used.
  • the line width of the short side is wider than the long side. For this reason, a thicker needle is used for white defects occurring on the short side (white defect 65a in the figure), and a black matrix is used for white defects occurring on the long side (white defect 65b in the figure).
  • a needle having a thinner coating diameter may be used in accordance with the line width.
  • the extraction range is a range of (xi, yi) to (xi + px, yi + py) when the pixel pitch is (px, py).
  • the pixel pitch (px, py) is given in advance.
  • a rectangle circumscribing the collection of dots having a value of 1 is obtained, and the center coordinates are set to (rcx, rcy) and the vertical and horizontal sizes are set to (rw, rh). Further, a range of one pixel is defined.
  • the upper left corner coordinates of the pixel are (rcx-px / 2, rcy-py / 2) from (rcx, rcy) and the pixel pitch (px, py), and (px, py) from this coordinate toward the lower right This range is defined as one pixel.
  • a set of dots having a value of 1 is interpreted as an opening, and a set of dots having a value of 0 is interpreted as a black matrix.
  • the black matrix dot group is divided into (1) a group of short side dots, (2) a group of long side dots, and (3) a group of other dots.
  • a collection of dots other than the long side portion and the short side portion corresponds to R at the corner portion of the black matrix.
  • FIG. 11 is a diagram illustrating an extraction result of each part of the pixel.
  • (1) the short side is interpreted as a set of values 0 in contact with the upper and lower sides of the opening. That is, a set of dots having a value of 0 in which the horizontal coordinate ranges from rcx-px / 2 to rcx + px / 2 and the vertical coordinate ranges from rcy-py / 2 to rcy-rh / 2, and the horizontal direction is A group of dots with a value of 0 in the same range and having a vertical coordinate in the range of rcy + rh / 2 to rcy + py / 2 is interpreted as a group of dots on the short side.
  • a set of long-side dots has a vertical coordinate of rcy-py / of zero-valued dots excluding the short-side portion extracted as in (1) above.
  • 2 to rcy + py / 2 in the horizontal coordinate range of rcx-px / 2 to rcx-rw / 2 in the range of 0 the vertical direction is the same range and the horizontal coordinate is rcx + rw / 2 ⁇
  • each part in FIG. 11 is held using the upper left coordinates (xs, ys) of the search target S shown in “Generation of mask image of color filter portion” in Patent Document 1 as the origin. Since each position of the search target S on the binarized input image b (x, y) is detected by pattern matching, pixels are plotted by plotting each part in FIG. 11 with the coordinates of the detected position as the origin. A mask image of each part is generated.
  • FIG. 12A, FIG. 12B, FIG. 12C, and FIG. 12D are diagrams showing mask images of each part of the pixel.
  • four types of images corresponding to the arrangement of the pixels of the binarized input image b (x, y) are created as shown in FIGS. 12A, 12B, 12C, and 12D.
  • the image shown in FIG. 12A is the opening mask image
  • the image shown in FIG. 12B is the short side mask image
  • the image shown in FIG. 12C is the long side mask image
  • the image shown in FIG. 12D is the remaining mask image. Call.
  • each part in FIG. 11 is held with the upper left coordinates (xs, ys) of the search target S shown in “Generation of mask image of color filter section” in Patent Document 1 as the origin. Since each position of the search target S on the binarized input image b (x, y) is detected by pattern matching, if each part of FIG. 11 is plotted with the coordinates of the detected position as the origin, FIG. Four types of images shown in FIGS. 12B, 12C, and 12D can be created.
  • step S703 the defect size value calculation method can be switched according to whether the defect occurrence location is an opening or a black matrix as described above.
  • FIG. 13 is a flowchart illustrating a process in which the control unit 22 determines a needle according to the defect size value D.
  • control unit 22 reads the defect size value D calculated in step S703 from the storage unit 23 (step S901).
  • the control unit 22 narrows down the needles used for the correction based on the color of the ink for correcting the defect.
  • the control unit 22 refers to the ink color 52 in the needle information table 24, and extracts a record that matches the ink color (for example, red) used for correction from the needle information table 24 (step S903).
  • step S905 When it is determined in step S905 that the lower limit value ⁇ the upper limit value, the control unit 22 has the defect size value D equal to or larger than the lower limit value indicated by the defect size lower limit 55 of the record and the defect size upper limit value of the record. It is determined whether it is less than the upper limit indicated by 56 (step S907).
  • step S907 If it is determined in step S907 that the defect size value D is not less than the lower limit value and less than the upper limit value (YES in step S907), the control unit 22 applies the needle indicated in this record to the ink application for defect correction. A needle for use is determined (step S909). If it is determined in step S907 that the conditional expression is not satisfied (NO in step S907), the control unit 22 determines whether there are any other uncompared records selected in step S903 (step S913). .
  • step S913 if there is a record that has not been compared with the defect size value D (YES in step S913), the control unit 22 repeats the process of step S905 using that record as a comparison target. If there is no record that is not compared with the defect size value D in step S913, one of the needles narrowed down in step S903 is determined as an ink application needle (step S915).
  • step S905 the control unit 22 determines whether the defect size value D is equal to or greater than the lower limit value indicated by the defect size lower limit 55 of the record (step S911).
  • step S911 If an affirmative determination is made in step S911 (YES in step S911), the control unit 22 proceeds to step S909, and the needle indicated in the record relating to this determination is used as an ink application needle for defect correction. Determination is made (step S909).
  • step S911 when the conditional expression is not satisfied (NO in step S911), the control unit 22 determines whether there are any other uncompared records selected in step S903 (step S913). Subsequent processing is the same as described above.
  • the above operation will be specifically described. It is assumed that the defect size value D of the defect to be corrected is 100 ( ⁇ m), and the defect in the red pixel is corrected.
  • the control unit 22 refers to the needle information table 24 and narrows the needles based on the ink color (red) (step S903).
  • the control unit 22 refers to the defect size lower limit 55 and the defect size upper limit 56 concerning the needle A (step S905).
  • step S905 since the lower limit value ⁇ the upper limit value in this case, the process proceeds to step S907, and the control unit 22 determines whether the defect size value D is greater than or equal to the lower limit value and less than the upper limit value (step S907).
  • step S911 in the case of the needle B, in order to satisfy the conditional expression (YES in step S911), the control unit 22 determines the needle B as a needle for ink application (step S909).
  • the ink application position by the needle and the cut position by the laser light are “ink application position calculation” in paragraph 0174 of Patent Document 1 and “laser light irradiation position (cut position) calculation” in paragraph 0227. Similarly, it is determined based on a rectangle circumscribing the defect.
  • a method for determining the ink application position will be described. Since the needle to be used is determined for each correction location, the control unit 22 refers to the needle information table 24 in FIG. 5A and acquires the application pitch p of the needle. In addition, the overlap amount r (%) is registered in advance for each ink. The overlapping amount r is an adjustment parameter for coping with the fact that the ink application range gradually changes and affects the correction range.
  • FIGS. 14A, 14B, and 14C are schematic diagrams illustrating the overlapping amount r.
  • 14A, 14B, and 14C show that the smaller the overlap amount r, the smaller the range in which ink is effectively applied.
  • the original coating diameter of the needle is indicated by a circle.
  • a rectangle indicates a rectangle circumscribing the defect portion.
  • the ink is applied in a range narrower than the original application diameter.
  • the ink used for correction gradually changes in viscosity after ink replacement, and may not reach all the defects at the time of ink application. In that case, white defects remain at the corners of the defects, and it is necessary to remove and apply the ink again, resulting in a reduction in work efficiency.
  • a parameter r that can be adjusted to ensure a certain amount of overlap between the applied ink and the periphery of the defect is provided as the overlap amount r.
  • this parameter may be held in the needle information table 24 of FIG. 5A.
  • the center coordinates (xst, yst) of the application circle at the start of application and the center coordinates (xed, yed) of the application circle at the end of application are determined as follows.
  • the offset amount ⁇ is calculated by the calculation formula shown in Formula (3).
  • ⁇ (DI ⁇ r) / 100 ⁇ / 2 Expression (3)
  • (xst, yst) and (xed, yed) are determined. For example, when the coordinates of the upper left vertex of the rectangle circumscribing the defect shown in FIG. 9 are (xA, yA) and the coordinates of the diagonal vertex are (xC, yC), (xst, yst) is (xA + ⁇ , yA + ⁇ ) and (xed, yed) become (xC ⁇ , yC ⁇ ).
  • the cutting position is determined according to the procedure shown in “Laser beam irradiation position (cut position) calculation” in paragraph 0227 of Patent Document 1.
  • the position determined by the above procedure is set as a temporary cut position, and the cut portion is grouped so that the laser cut is completed as few times as possible.
  • FIG. 15 is a diagram illustrating grouping of cut locations. It is assumed that the temporary cut position is obtained as shown in FIG. Here, the portion where the illustrated lattice is shown darkly corresponds to the cut portion.
  • the grid is scanned from the upper left corner to search for the first cut site (in the figure, site A is the first cut site). Next, scan until a discontinuous point is found in either direction from the first cut part, and detect the part immediately before the discontinuous point.
  • site B The front side is designated as site B).
  • ⁇ ⁇ ⁇ From the first cut site (site A) to the site just before the discontinuity (site B), for each site, a new scan is performed until a discontinuity is found. In the figure, scanning is performed from the portion A in the vertical direction. This process is performed for each part up to the part B, and the part immediately before the discontinuous point found in the forefront is obtained in a new scan. In the figure, the part C corresponds.
  • the vertical and horizontal positions of the part A are (iA, jA), and the horizontal position iB of the part B and the vertical position jC of the part C are recognized as a group and grouped.
  • the cutting position is set by adjusting the slit size (Sx, Sy) to the vertical and horizontal size of the rectangle. calculate.
  • the defect size value D is calculated by a predetermined formula based on the rectangle circumscribing the defect.
  • the present invention is not limited to this, and a feature amount obtained by analyzing an image can be used as the defect size value D.
  • the length of the main axis length or the sub axis length of an ellipse equivalent to a defect can be used.
  • FIG. 16A, FIG. 16B, and FIG. 16C are diagrams showing calculation of defect size values using ellipses equivalent to defects.
  • FIG. 16A is a diagram illustrating a shape of a defect.
  • white areas are defined as defects.
  • FIG. 16B is a diagram showing an ellipse equivalent to the shape of the defect. Also, the coordinates of the pixels (dots) constituting the white area are (x, y).
  • the primary moment in the X direction (the total value of the X coordinates of the white dots in the figure) is expressed by the following formula 1.
  • the primary moment in the Y direction (the total value of the Y coordinates of white dots in the figure) is expressed by the following formula 2.
  • the secondary moment in the X direction (the total value of the squares of the X coordinates of white dots in the figure) is expressed by the following formula 3.
  • the secondary moment in the Y direction (the total value of the squares of the Y coordinates of white dots in the figure) is expressed by the following formula 4.
  • the main axis length L M the sub axis length L S , and ⁇ of the ellipse equivalent to the defect are calculated by the following equations 8 to 10.
  • FIG. 16C is a diagram showing a circumscribed rectangle for a similar defect. Comparing FIG. 16B with FIG. 16C, when the slit laser device 33 irradiates the laser beam, if the slit has a ⁇ rotation mechanism, the laser is irradiated in accordance with the elliptical shape, so that other than defects. It is possible to reduce the irradiation of the laser beam to this portion.
  • the area of the defect shown in the image may be used.
  • the defect correction apparatus 100 may not be able to detect the defect accurately. Therefore, in such a case, the operator may input the defect size value D by operating while looking at the monitor.
  • the present invention is used as an apparatus for correcting defects in substrates such as liquid crystal displays, PDPs, organic EL displays, and SEDs.

Abstract

This defect correction device is provided with a plurality of application needles and can carry out efficient correction operations according to defects in a substrate. A defect correction device (100) is provided with: an ink application mechanism (34) that includes a plurality of needles, for which the application diameters differ, for correcting defects; an image processing unit (21) that detects defect locations in the substrate; a calculation unit (25) that calculates defect size values that show the size of defects on the basis of images for defect locations that have been detected; a selection unit (26) that selects a needle with an application diameter that should be used for correction according to the defect size value that has been calculated; and a correction processing unit (50) that corrects the defect using a needle with an application diameter that has been selected.

Description

欠陥修正装置および欠陥修正方法Defect correction apparatus and defect correction method
 本発明は、欠陥修正装置および欠陥修正方法に関し、特に、カラーフィルタのブラックマトリックス部および着色部の欠陥を修正する欠陥修正装置および欠陥修正方法に関する。 The present invention relates to a defect correction apparatus and a defect correction method, and more particularly to a defect correction apparatus and a defect correction method for correcting defects in a black matrix portion and a colored portion of a color filter.
 液晶ディスプレイ、PDP(Plasma Display Panel)、有機EL(Electro Luminescence)ディスプレイ、およびSED(Surface-conduction Electron-emitter Display)等のフラットパネルディスプレイに用いられる基板には、パターンおよび回路等が形成される。また、半導体基板である半導体ウエハ上には、回路パターンが形成される。 Patterns, circuits, and the like are formed on substrates used in flat panel displays such as liquid crystal displays, PDPs (Plasma Display Panels), organic EL (Electro Luminescence) displays, and SEDs (Surface-conduction Electron-emitter Displays). A circuit pattern is formed on a semiconductor wafer which is a semiconductor substrate.
 液晶ディスプレイの構成部品であるカラーフィルタには、ブラックマトリックスと呼ばれる格子状のパターン(クロム、酸化クロムおよび樹脂等の材料)および着色部(以下、カラーフィルタ部またはCF部とも称する)が形成される。 A color filter, which is a component part of a liquid crystal display, is formed with a lattice pattern (a material such as chromium, chromium oxide and resin) and a colored portion (hereinafter also referred to as a color filter portion or a CF portion) called a black matrix. .
 カラーフィルタ形成の際に、黒欠陥と白欠陥とが生じることがある。
 ブラックマトリックスを形成する段階では、カラーフィルタ部(この段階では色なし)にまでブラックマトリックスがはみ出すことにより黒欠陥が生じる。また、ブラックマトリックスの一部が欠落することにより白欠陥が生じる。また、着色部に着色する段階においても、色が混色することにより黒欠陥が生じ、色抜けにより白欠陥が生じる。
When forming a color filter, black defects and white defects may occur.
At the stage where the black matrix is formed, black defects occur due to the black matrix protruding to the color filter portion (no color at this stage). Also, white defects occur due to the lack of part of the black matrix. Further, even at the stage of coloring the colored portion, black defects occur due to color mixing, and white defects occur due to color loss.
 このような黒欠陥および白欠陥を修正するため、レーザ光で黒欠陥を修正したり、針先端にインクを塗布し、塗布したインクを基板に付着させることにより白欠陥を埋めたりする技術が用いられている。 In order to correct such black and white defects, a technique is used in which black defects are corrected with laser light, or ink is applied to the tip of the needle and the white ink is filled by attaching the applied ink to the substrate. It has been.
 こうした欠陥修正作業の効率化を図るために、例えば日本国特許公開公報特開2008-3503号公報(特許文献1)等の技術がある。特許文献1の技術によると、欠陥修正装置が撮影部と画像処理部を有し、画像処理等により修正すべき欠陥の範囲を算出し、算出した修正範囲と、撮影された実際の欠陥箇所とを作業者が見比べることができるように構成されている。作業者は、算出された修正範囲に対し、実際の欠陥箇所に基づいて、適切な修正範囲となるよう欠陥修正装置を操作することができる。 In order to increase the efficiency of such defect correction work, for example, there is a technique such as Japanese Patent Publication No. 2008-3503 (Patent Document 1). According to the technique of Patent Document 1, the defect correction apparatus includes an imaging unit and an image processing unit, calculates a range of defects to be corrected by image processing or the like, the calculated correction range, and the actual defect location that was shot It is configured so that the operator can compare. The operator can operate the defect correction apparatus so that the calculated correction range is within an appropriate correction range based on the actual defect location.
特開2008-3503号公報JP 2008-3503 A
 上記特許文献1によると、針によるインクの塗布回数は、塗布ピッチと欠陥の縦横のサイズにより定まる。塗布ピッチが大きいほど塗布回数は小さくなる。一般的には塗布径が大きい針ほど塗布ピッチも大きくできる。欠陥修正作業の効率化を図るとすると、針によるインクの塗布作業の回数が少ないほど短時間で欠陥を修正することができ、時間的な効率がよい。 According to the above-mentioned Patent Document 1, the number of times of ink application by the needle is determined by the application pitch and the vertical and horizontal size of the defect. The larger the coating pitch, the smaller the number of coatings. In general, the larger the coating diameter, the larger the coating pitch. If the defect correction work is made more efficient, the defect can be corrected in a shorter time as the number of times of the ink application work by the needle is smaller, and the time efficiency is better.
 例えば、上記特許文献1において、55(μm)の塗布径の針(塗布ピッチは50(μm)とする)を使用して、120(μm)×120(μm)の欠陥を修正する場合を考える。この針の塗布ピッチは50(μm)であるため、上記特許文献1の段落0174の「インク塗布位置計算」によれば、3回×3回の計9回のインク塗布が必要となる。一方、80(μm)の塗布径の針(塗布ピッチは75(μm)とする)を用いると、2回×2回の計4回の塗布回数で修正を終えることができる。 For example, in the above-mentioned Patent Document 1, a case of correcting a defect of 120 (μm) × 120 (μm) using a needle having a coating diameter of 55 (μm) (application pitch is 50 (μm)) is considered. . Since the application pitch of this needle is 50 (μm), according to the “ink application position calculation” in paragraph 0174 of Patent Document 1, a total of 9 times of ink application is required 3 times × 3 times. On the other hand, when a needle having a coating diameter of 80 (μm) (with a coating pitch of 75 (μm)) is used, the correction can be completed in a total of four coating times of 2 × 2.
 ただし、針の塗布径を大きくすると、インクの塗布範囲も大きくなる。インクの塗布範囲が大きいと、修正作業の際、本来は修正すべきでない部分にまでインクが塗布されるおそれがある。そのため再修正などかえって修正作業に要する時間が長くなるおそれがある。 However, when the needle application diameter is increased, the ink application range is also increased. If the ink application range is large, the ink may be applied to a portion that should not be corrected at the time of correction work. For this reason, there is a possibility that the time required for the correction work becomes long instead of re-correction.
 そこで、本発明は、欠陥に応じた効率的な修正作業を可能とする欠陥修正装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a defect correction apparatus that enables an efficient correction work according to a defect.
 一実施形態に従う欠陥修正装置は、基板の欠陥を修正するためのものである。欠陥修正装置は、欠陥を修正するための、塗布径が異なる複数の針と、基板の欠陥箇所を検出する画像処理部と、検出した欠陥箇所の画像に基づき、欠陥の大きさを示す欠陥サイズ値を算出する算出部と、算出された欠陥サイズ値に応じて、修正に用いるべき塗布径の針を選択する選択部と、選択された塗布径の針を用いて欠陥を修正する修正処理部と、を備える。 The defect correction apparatus according to one embodiment is for correcting a defect of a substrate. The defect correcting device includes a plurality of needles having different coating diameters for correcting defects, an image processing unit for detecting a defective portion of the substrate, and a defect size indicating a size of the defect based on the detected image of the defective portion. A calculation unit that calculates a value, a selection unit that selects a needle having an application diameter to be used for correction according to the calculated defect size value, and a correction processing unit that corrects a defect using the needle having the selected application diameter And comprising.
 また、選択部は、複数の針それぞれと、各針が使用されるべき欠陥サイズ値とを対応付けた針情報テーブルを記憶しており、選択とは、算出された欠陥サイズ値に対応付けられた針を針情報テーブルより選択することであることとしてもよい。 The selection unit stores a needle information table in which each of the plurality of needles is associated with a defect size value for which each needle is to be used, and selection is associated with the calculated defect size value. The selected needle may be selected from the needle information table.
 また、画像処理部は、欠陥箇所がブラックマトリックスで発生しているかカラーフィルタの開口部で発生しているかを判定する判定部を含み、算出部は、判定部の判定結果に応じて、欠陥箇所がブラックマトリックスで発生している場合は、発生した部位に応じた算出方法により欠陥サイズ値を算出することとしてもよい。 In addition, the image processing unit includes a determination unit that determines whether the defect portion is generated in the black matrix or the color filter opening, and the calculation unit is configured to determine the defect portion according to the determination result of the determination unit. May occur in the black matrix, the defect size value may be calculated by a calculation method corresponding to the generated site.
 また、画像処理部は、欠陥箇所がブラックマトリックスで発生している場合に、発生箇所にかかる部位がブラックマトリックスの長辺部か短辺部かを判別し、算出部は、欠陥箇所が判定部によりブラックマトリックスで発生していると判定された場合、発生箇所にかかる部位が長辺部か短辺部かに応じて、部位の線幅に基づいて欠陥サイズ値を算出することとしてもよい。 In addition, the image processing unit determines whether the site of the occurrence location is a long side portion or a short side portion of the black matrix when the defect location occurs in the black matrix, and the calculation unit determines whether the defect location is a determination unit. When it is determined that the defect occurs in the black matrix, the defect size value may be calculated based on the line width of the part depending on whether the part corresponding to the occurrence part is the long side part or the short side part.
 また、算出部は、欠陥箇所が判定部によりブラックマトリックスで発生していると判定された場合、欠陥箇所に外接する長方形の辺の最小値に基づいて欠陥サイズ値を算出することとしてもよい。 Further, the calculation unit may calculate the defect size value based on the minimum value of the sides of the rectangle circumscribing the defect part when the determination unit determines that the defect part is generated in the black matrix.
 また、算出部は、検出された欠陥箇所を取り囲む長方形の縦横それぞれのサイズの平均を欠陥サイズ値と算出することとしてもよい。 Further, the calculation unit may calculate an average of the vertical and horizontal sizes of the rectangle surrounding the detected defect portion as the defect size value.
 また、算出部は、検出された欠陥箇所に等価な楕円の主軸長および副軸長に基づいて欠陥サイズ値を算出することとしてもよい。 Further, the calculation unit may calculate the defect size value based on the major axis length and minor axis length of an ellipse equivalent to the detected defect location.
 また、修正処理部は、インクごとにインクの塗布範囲を補正するための重ね量を記憶しており、選択部により選択された針の塗布径を、針に対応するインクの重ね量を用いて補正して針の塗布位置を決定することとしてもよい。 The correction processing unit stores an overlap amount for correcting the ink application range for each ink, and uses the overlap amount of the ink corresponding to the needle to determine the application diameter of the needle selected by the selection unit. It is good also as correcting and determining the application position of a needle | hook.
 また、修正処理部は、カット用レーザ照射部と、カット箇所をグルーピングするグルーピング部とを含むこととしてもよい。 Further, the correction processing unit may include a cutting laser irradiation unit and a grouping unit for grouping cut locations.
 また、基板は、フラットパネルディスプレイに用いられる基板であることとしてもよい。 Further, the substrate may be a substrate used for a flat panel display.
 また、基板はカラーフィルタであることとしてもよい。
 また、別の実施形態に従うと、欠陥修正装置が、基板の欠陥を修正するための方法が提供される。欠陥修正装置は、塗布径が異なる複数の針を備える。基板の欠陥を修正するための方法は、欠陥修正装置が、カメラにより撮影された基板の画像に基づいて、欠陥箇所を検出するステップと、検出された欠陥箇所の画像に基づき、欠陥の大きさを示す欠陥サイズ値を算出するステップと、算出された欠陥サイズ値に応じて、修正に用いるべき塗布径の針を選択するステップと、選択された塗布径の針を用いて欠陥を修正するステップとを含む。
The substrate may be a color filter.
In accordance with another embodiment, a method is provided for a defect repair apparatus to repair a defect in a substrate. The defect correcting device includes a plurality of needles having different application diameters. A method for correcting a defect on a substrate includes a step in which a defect correction device detects a defect location based on an image of the substrate taken by a camera, and a size of the defect based on the detected image of the defect location. A step of calculating a defect size value indicating, a step of selecting a needle having a coating diameter to be used for correction in accordance with the calculated defect size value, and a step of correcting a defect using the needle of the selected coating diameter Including.
 本発明によると、欠陥修正装置は、修正範囲となる欠陥の大きさを欠陥サイズ値として算出し、算出結果に応じて修正に適した塗布径の針を選択する。したがって、修正範囲に応じて修正作業に適した針を用いて修正することができ、修正作業が効率化する。 According to the present invention, the defect correction apparatus calculates the size of the defect that is within the correction range as the defect size value, and selects a needle having a coating diameter suitable for correction according to the calculation result. Therefore, it can correct using the needle | hook suitable for correction work according to the correction range, and correction work becomes efficient.
この発明の実施の形態による欠陥修正装置100の全体構成を示す図である。1 is a diagram showing an overall configuration of a defect correction apparatus 100 according to an embodiment of the present invention. 観察光学系31およびインク塗布機構34の要部を示す斜視図である。3 is a perspective view showing the main parts of an observation optical system 31 and an ink application mechanism 34. FIG. 観察光学系31およびインク塗布機構34の要部を示す図である。FIG. 3 is a diagram showing the main parts of an observation optical system 31 and an ink application mechanism 34. 観察光学系31およびインク塗布機構34の要部を示す図である。FIG. 3 is a diagram showing the main parts of an observation optical system 31 and an ink application mechanism 34. 観察光学系31およびインク塗布機構34の要部を示す図である。FIG. 3 is a diagram showing the main parts of an observation optical system 31 and an ink application mechanism 34. 本発明の欠陥修正装置100の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the defect correction apparatus 100 of this invention. 針情報テーブル24を示す図である。It is a figure which shows the needle information table. 針の塗布径を示す図である。It is a figure which shows the application diameter of a needle | hook. 針の塗布ピッチを示す図である。It is a figure which shows the application | coating pitch of a needle | hook. カラーフィルタにおけるブラックマトリックス部、カラーフィルタ部および絵素の関係を示す図である。It is a figure which shows the relationship between the black matrix part in a color filter, a color filter part, and a pixel. 欠陥修正装置100による欠陥を修正する処理を示すフローチャートである。4 is a flowchart showing a process for correcting a defect by the defect correcting apparatus 100. 欠陥サイズ値を算出する処理を示すフローチャートである。It is a flowchart which shows the process which calculates a defect size value. 画像処理部21による欠陥の抽出結果に基づいて検出された、欠陥に外接する長方形を示す図である。It is a figure which shows the rectangle circumscribed to the defect detected based on the extraction result of the defect by the image process part 21. FIG. ブラックマトリックスで発生する欠陥と欠陥修正に用いる針の塗布径との関係を示す図である。It is a figure which shows the relationship between the defect which generate | occur | produces in a black matrix, and the application diameter of the needle | hook used for defect correction. 画素の各部位の抽出結果を示す図である。It is a figure which shows the extraction result of each site | part of a pixel. 画素の各部位のマスク画像であって、開口部マスク画像を示す図である。It is a mask image of each part of a pixel, and is a figure showing an opening portion mask image. 画素の各部位のマスク画像であって、短辺部マスク画像を示す図である。It is a mask image of each part of a pixel, and is a figure showing a short side mask image. 画素の各部位のマスク画像であって、長辺部マスク画像を示す図である。It is a mask image of each part of a pixel, and is a figure showing a long side part mask image. 画素の各部位のマスク画像であって、残りのマスク画像を示す図である。It is a mask image of each part of a pixel, and is a figure showing the remaining mask images. 制御部22が、欠陥サイズ値Dに応じて針を決定する処理を示すフローチャートである。7 is a flowchart illustrating a process in which the control unit 22 determines a needle according to a defect size value D. 重ね量r=50%の場合を示す模式図である。It is a schematic diagram which shows the case where the amount of overlap r = 50%. 重ね量r=70%の場合を示す模式図である。It is a schematic diagram which shows the case where overlap amount r = 70%. 重ね量r=100%の場合を示す模式図である。It is a schematic diagram which shows the case where overlap amount r = 100%. カット箇所のグルーピングを示す図である。It is a figure which shows grouping of the cut location. 欠陥の形状を示す図である。It is a figure which shows the shape of a defect. 欠陥の形状に等価な楕円を示す図である。It is a figure which shows the ellipse equivalent to the shape of a defect. 欠陥に外接する長方形を示す図である。It is a figure which shows the rectangle circumscribing a defect.
 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図1は、この発明の実施の形態による欠陥修正装置100の全体構成を示す図である。欠陥修正装置100は、観察光学系31、CCDカメラ32、カット用レーザ装置33、インク塗布機構34、およびインク硬化用光源35から構成される修正ヘッド部と、この修正ヘッド部を修正対象の基板5(液晶カラーフィルタ基板)に対して垂直方向(Z軸方向)に移動させるZ軸テーブル36と、Z軸テーブル36を搭載してX軸方向に移動させるX軸テーブル37と、基板5を搭載してY軸方向に移動させるY軸テーブル38と、装置全体の動作を制御する制御用コンピュータ39と、CCDカメラ32によって撮影された画像などを表示するモニタ40と、制御用コンピュータ39に作業者からの指令を入力するための操作パネル41とを備える。 FIG. 1 is a diagram showing an overall configuration of a defect correction apparatus 100 according to an embodiment of the present invention. The defect correction apparatus 100 includes a correction head unit composed of an observation optical system 31, a CCD camera 32, a cutting laser device 33, an ink application mechanism 34, and an ink curing light source 35, and a substrate to be corrected. 5, a Z-axis table 36 that moves in the direction perpendicular to the liquid crystal color filter substrate (Z-axis direction), an X-axis table 37 that mounts the Z-axis table 36 and moves in the X-axis direction, and a substrate 5. Then, a Y-axis table 38 that is moved in the Y-axis direction, a control computer 39 that controls the operation of the entire apparatus, a monitor 40 that displays images taken by the CCD camera 32, and an operator on the control computer 39 And an operation panel 41 for inputting a command from.
 観察光学系31は、基板5の表面状態や、インク塗布機構34によって塗布された修正インクの状態を観察する。観察光学系31によって観察される画像は、CCDカメラ32により電気信号に変換され、モニタ40に表示される。カット用レーザ装置33は、観察光学系31を介して基板5上の不要部にレーザ光を照射して除去する。 The observation optical system 31 observes the surface state of the substrate 5 and the state of the correction ink applied by the ink application mechanism 34. An image observed by the observation optical system 31 is converted into an electrical signal by the CCD camera 32 and displayed on the monitor 40. The cutting laser device 33 removes unnecessary portions on the substrate 5 by irradiating them with laser light via the observation optical system 31.
 インク塗布機構34は、基板5に発生した白欠陥に修正インクを塗布して修正する。インク硬化用光源35は、たとえばCO2レーザを含み、インク塗布機構34によって塗布された修正インクにレーザ光を照射して硬化させる。 The ink application mechanism 34 corrects the white defect generated on the substrate 5 by applying correction ink. The ink curing light source 35 includes, for example, a CO2 laser, and cures the correction ink applied by the ink application mechanism 34 by irradiating it with laser light.
 なお、この装置構成は一例であり、たとえば、観察光学系31などを搭載したZ軸テーブル36をX軸テーブル37に搭載し、さらにX軸テーブル37をY軸テーブル38に搭載し、Z軸テーブル36をXY方向に移動可能とするガントリー方式と呼ばれる構成でもよく、観察光学系31などを搭載したZ軸テーブル36を、修正対象の基板5に対してXY方向に相対的に移動可能な構成であればどのような構成でもよい。 This apparatus configuration is an example. For example, a Z-axis table 36 on which an observation optical system 31 and the like are mounted is mounted on an X-axis table 37, and an X-axis table 37 is further mounted on a Y-axis table 38. A configuration called a gantry system that allows the 36 to move in the XY directions may be used, and the Z-axis table 36 on which the observation optical system 31 and the like are mounted can be moved relative to the correction target substrate 5 in the XY directions. Any configuration is possible.
 次に、複数の針を用いたインク塗布機構の例について説明する。
 図2は、観察光学系31およびインク塗布機構34の要部を示す斜視図である。図3A、図3B、図3Cは、図2のA方向から要部を見た図であって、インク塗布動作を示す図である。図2および図3A、図3B、図3Cにおいて、この欠陥修正装置は、可動板42と、倍率の異なる複数(たとえば5個)の対物レンズ2と、異なる色のインクを塗布するための複数(たとえば5個)の塗布ユニット43とを備える。
Next, an example of an ink application mechanism using a plurality of needles will be described.
FIG. 2 is a perspective view showing the main parts of the observation optical system 31 and the ink application mechanism 34. 3A, FIG. 3B, and FIG. 3C are views showing the main part from the direction A in FIG. 2 and showing the ink application operation. 2 and 3A, 3B, and 3C, the defect correcting apparatus includes a movable plate 42, a plurality of (for example, five) objective lenses 2 having different magnifications, and a plurality (for applying different color inks). For example, five coating units 43 are provided.
 可動板42は、観察光学系31の観察鏡筒31aの下端と基板5との間で、X軸方向およびY軸方向に移動可能に設けられている。また、可動板42には、それぞれ5個の対物レンズ2に対応する5個の貫通孔42aが形成されている。 The movable plate 42 is provided between the lower end of the observation barrel 31a of the observation optical system 31 and the substrate 5 so as to be movable in the X-axis direction and the Y-axis direction. The movable plate 42 is formed with five through holes 42a corresponding to the five objective lenses 2, respectively.
 5個の貫通孔42aは、Y軸方向に所定の間隔で配置されている。各対物レンズ2は、その光軸が対応する貫通孔42aの中心線に一致するようにして、可動板42の下面に固定されている。なお、観察鏡筒31aの光軸および各対物レンズ2の光軸は、X軸方向およびY軸方向に垂直なZ軸方向に配置されている。 The five through holes 42a are arranged at predetermined intervals in the Y-axis direction. Each objective lens 2 is fixed to the lower surface of the movable plate 42 so that its optical axis coincides with the center line of the corresponding through hole 42a. The optical axis of the observation barrel 31a and the optical axis of each objective lens 2 are arranged in the Z-axis direction perpendicular to the X-axis direction and the Y-axis direction.
 また、5個の塗布ユニット43は、Y軸方向に所定の間隔で、可動板42の下面に固定されている。5個の塗布ユニット43は、それぞれ5個の対物レンズ2に隣接して配置されている。 The five coating units 43 are fixed to the lower surface of the movable plate 42 at a predetermined interval in the Y-axis direction. Each of the five coating units 43 is disposed adjacent to the five objective lenses 2.
 複数の針を用いたインク塗布機構は、この他にも様々な技術が知られており、例えば日本国特許公開公報2009-122259号などに示されている。欠陥修正装置100は、例えば図2に示すような機構をインク塗布機構34として用いることにより、複数の針のうち所望の塗布径の針を用いて欠陥を修正することができる。 Various other techniques are known for the ink application mechanism using a plurality of needles, such as shown in Japanese Patent Publication No. 2009-122259. The defect correction apparatus 100 can correct a defect using a needle having a desired application diameter among a plurality of needles by using, for example, a mechanism as shown in FIG. 2 as the ink application mechanism 34.
 図4は、本発明の欠陥修正装置100の構成を示す機能ブロック図である。
 なお、図4では、欠陥の大きさに応じた塗布径の針を選択するための構成要素を中心に図示しており、図1に示した欠陥修正装置100の一部の構成を示し、その他の構成については図示を省略している。
FIG. 4 is a functional block diagram showing the configuration of the defect correction apparatus 100 of the present invention.
FIG. 4 mainly illustrates components for selecting a needle having a coating diameter corresponding to the size of the defect, shows a partial configuration of the defect correction apparatus 100 shown in FIG. The illustration of this configuration is omitted.
 図4に示すように、制御用コンピュータ39は、制御部22と、画像処理部21を含む。 As shown in FIG. 4, the control computer 39 includes a control unit 22 and an image processing unit 21.
 制御部22は、記憶部23や図示しないCPU(Central Processing Unit)等を含む。 The control unit 22 includes a storage unit 23, a CPU (Central Processing Unit) (not shown), and the like.
 制御部22は、記憶部23に格納されているプログラムを読み出して実行することにより制御用コンピュータ39としての機能を発揮する。 The control unit 22 functions as a control computer 39 by reading and executing a program stored in the storage unit 23.
 記憶部23は、針情報テーブル24を記憶している。針情報テーブル24は、インク塗布のための針を選択するために、欠陥の大きさごとにどの針を選択すべきかを示す。詳しくは図面を用いて後述する。 The storage unit 23 stores a needle information table 24. The needle information table 24 indicates which needle should be selected for each defect size in order to select a needle for ink application. Details will be described later with reference to the drawings.
 画像処理部21は、観察光学系31によって観察され、CCDカメラ32により電気信号に変換された欠陥画像について画像処理を行うことにより、欠陥位置を特定する。 The image processing unit 21 specifies a defect position by performing image processing on a defect image observed by the observation optical system 31 and converted into an electric signal by the CCD camera 32.
 また、制御部22は、同図に示すように算出部25と選択部26とを含む。
 制御部22は、算出部25において、画像処理部21により検出された欠陥箇所に基づいて、欠陥の大きさを示す欠陥サイズ値を算出する。制御部22は、この算出結果や記憶部23に記憶された針情報テーブル24に基づいて、選択部26によりインク塗布のための針を選択する。この処理は後述する。このようにして選択した針でインク塗布等を行うよう、制御部22は、修正処理部50のインク塗布機構34等を制御する。
Further, the control unit 22 includes a calculation unit 25 and a selection unit 26 as shown in FIG.
In the calculation unit 25, the control unit 22 calculates a defect size value indicating the size of the defect based on the defect location detected by the image processing unit 21. Based on the calculation result and the needle information table 24 stored in the storage unit 23, the control unit 22 selects a needle for ink application by the selection unit 26. This process will be described later. The control unit 22 controls the ink application mechanism 34 and the like of the correction processing unit 50 so that ink application or the like is performed with the needle selected in this way.
 修正処理部50は、インク塗布機構34、カット用レーザ装置33等からなる。インク塗布機構34は、図4に示すように、複数の針(針34A、針34B、針34C、・・)を有しており、制御用コンピュータ39の指示に従って針を選択し、選択した針により、制御用コンピュータ39の指示に従って欠陥の修正処理を実行する。 The correction processing unit 50 includes an ink application mechanism 34, a cutting laser device 33, and the like. As shown in FIG. 4, the ink application mechanism 34 has a plurality of needles (needle 34 </ b> A, needle 34 </ b> B, needle 34 </ b> C,...), Selects a needle in accordance with instructions from the control computer 39, and selects the selected needle. Thus, the defect correction process is executed in accordance with the instruction of the control computer 39.
 <データ 針情報テーブル24>
 ここで、針情報テーブル24について図面を用いて詳しく説明する。図5Aは針情報テーブル24を示しており、塗布に用いられる針ごとに、針に関する所定の情報と、針がどの程度の大きさの欠陥サイズに適しているかを示している。
<Data needle information table 24>
Here, the needle information table 24 will be described in detail with reference to the drawings. FIG. 5A shows a needle information table 24, which shows for each needle used for application, predetermined information about the needle and how large the defect size is suitable for the needle.
 針情報テーブル24の1件の情報は、針51と、インクの色52と、塗布径53と、塗布ピッチ54と、欠陥サイズ下限55と、欠陥サイズ上限56とを含む。 One piece of information in the needle information table 24 includes a needle 51, an ink color 52, a coating diameter 53, a coating pitch 54, a defect size lower limit 55, and a defect size upper limit 56.
 針51は、針を識別するための情報を格納する領域である。
 インクの色52は、針51に示される針ごとに、カラーフィルタのどの色の修正に用いられるものかを示す領域である。インクの色52に示される色の種類は、カラーフィルタを構成する画素の開口部に対応しており、一般的には色の3原色である赤、緑、青の3色である。ただし、単色であっても4色以上となってもよい。図5Aでは、例えば、針Aは、赤色のインクに対応した針であり、カラーフィルタの赤色の開口部の欠陥修正に用いられる。
The needle 51 is an area for storing information for identifying the needle.
The ink color 52 is an area indicating which color of the color filter is used for each needle indicated by the needle 51. The color types indicated by the ink color 52 correspond to the openings of the pixels constituting the color filter, and are generally three colors of red, green, and blue which are the three primary colors. However, it may be a single color or four or more colors. In FIG. 5A, for example, the needle A is a needle corresponding to red ink, and is used for correcting a defect in the red opening of the color filter.
 塗布径53は、針51に示される針で塗布したときのインクの直径値を示す。図5Aの例では、単位はμmとしている。 The application diameter 53 indicates the diameter value of the ink when applied with the needle indicated by the needle 51. In the example of FIG. 5A, the unit is μm.
 塗布ピッチ54は、針51に示される針で複数箇所に続けて塗布する際に、隣接する塗布位置の中心との距離を示す。すなわち、針を用いてどの程度の距離間隔で連続した塗布をすることができるかを示す。 The application pitch 54 indicates the distance from the center of the adjacent application position when application is continuously performed at a plurality of locations with the needle indicated by the needle 51. That is, it indicates how far the distance can be continuously applied using a needle.
 図5Bは塗布径を示す図である。図5Cは塗布ピッチを示す図である。図5Bに示す円は、針を用いて塗布したインクの形状を模したものである。針により塗布されるインクの直径を塗布径としている。通常はダミー基板等にインクを一度塗布し、測長した値が塗布径として用いられる。 FIG. 5B is a diagram showing the coating diameter. FIG. 5C is a diagram showing a coating pitch. The circle shown in FIG. 5B imitates the shape of ink applied using a needle. The diameter of the ink applied by the needle is the application diameter. Usually, ink is applied once to a dummy substrate and the measured value is used as the application diameter.
 また、図5Cに示すように、針により連続してインクが塗布される場合の、各インクの中心間の距離を塗布ピッチとしている。この塗布ピッチは、塗布径に基づいてインクの性質により実験的に求められた値が用いられる。 Further, as shown in FIG. 5C, the distance between the centers of the respective inks when the ink is continuously applied by the needle is defined as the application pitch. As the coating pitch, a value experimentally obtained from the properties of the ink based on the coating diameter is used.
 図5Aに戻り、欠陥サイズ下限55および欠陥サイズ上限56について説明する。
 欠陥サイズ下限55および欠陥サイズ上限56は、制御部22による針選択の処理の際に用いられるデータであり、針がどの程度の大きさの欠陥に適しているかを示している。後述する欠陥の大きさを算出する処理により求まった欠陥サイズ値に応じて、欠陥サイズ下限55や欠陥サイズ上限56に基づいて針が選択される。
Returning to FIG. 5A, the defect size lower limit 55 and the defect size upper limit 56 will be described.
The defect size lower limit 55 and the defect size upper limit 56 are data used in the needle selection process by the control unit 22, and indicate how large the needle is suitable for the defect. A needle is selected based on the defect size lower limit 55 and the defect size upper limit 56 in accordance with the defect size value obtained by the process of calculating the size of the defect described later.
 図5Aの例では、針Aは、赤色の画素の開口部の欠陥修正に用いられ、その欠陥の大きさを示す欠陥サイズ値が制御部22の算出により75(μm)より小さいと求められた場合に用いられるべき針であることを示す。 In the example of FIG. 5A, the needle A is used for defect correction of the opening of the red pixel, and the defect size value indicating the size of the defect is determined to be smaller than 75 (μm) by the calculation of the control unit 22. Indicates the needle to be used in the case.
 なお、図5Aの例では、針Bにおいて、欠陥サイズ下限55と欠陥サイズ上限56とが同値(75μm)となっている。これは、この実施形態の説明においては、欠陥サイズ下限55と欠陥サイズ上限56とが同値である場合に、制御部22は、後述する処理により算出する欠陥サイズ値が、欠陥サイズ下限55に示される値以上であるかを判定し、判定条件を満たすときに、その針を選択することとしているためである。 In the example of FIG. 5A, in the needle B, the defect size lower limit 55 and the defect size upper limit 56 have the same value (75 μm). In the description of this embodiment, when the defect size lower limit 55 and the defect size upper limit 56 are the same value, the control unit 22 indicates the defect size value calculated by the processing described later as the defect size lower limit 55. This is because it is determined whether the value is equal to or greater than the value to be selected, and the needle is selected when the determination condition is satisfied.
 <カラーフィルタとブラックマトリックス>
 ここで、カラーフィルタとブラックマトリックスとの関係について説明する。
<Color filter and black matrix>
Here, the relationship between the color filter and the black matrix will be described.
 図6は、カラーフィルタにおけるブラックマトリックス部、カラーフィルタ部および絵素の関係を示す図である。 FIG. 6 is a diagram showing the relationship between the black matrix portion, the color filter portion, and the picture element in the color filter.
 修正対象であるカラーフィルタは、複数個の絵素を含む。縦横に形成されているブラックマトリックス部の交差位置に、絵素の始まりDSおよび絵素の終わりDEが存在する。また、絵素の始まりDSをカラーフィルタの位置と称する。 The color filter to be modified includes a plurality of picture elements. A pixel element start DS and a pixel element end DE exist at the intersections of the black matrix portions formed vertically and horizontally. Further, the beginning DS of the picture element is referred to as a color filter position.
 画像処理部21はこのカラーフィルタの位置を特定する。また、同図において四角で囲まれた絵素の始まりDSから絵素の終わりDEまでの範囲が絵素Pを構成する。 The image processing unit 21 specifies the position of this color filter. In addition, the range from the start DS of the picture element to the end DE of the picture element, which is surrounded by a square in FIG.
 絵素は、通常、各々が複数個の画素を有する。絵素における値1の画素の集合が絵素のカラーフィルタ部(同図中にカラーフィルタ部CFで示す)であり、値0(同図のハッチング部分)の画素の集合が絵素のブラックマトリックス部(同図中にブラックマトリックスBMで示す)である。また、各絵素のそれぞれの画素は互いに異なるRGB(Red,Green,Blue)のうちのいずれかの色を有し、一定の周期で繰り返し形成されている。 A picture element usually has a plurality of pixels. A set of pixels having a value of 1 in a picture element is a color filter portion of the picture element (indicated by a color filter portion CF in the figure), and a set of pixels having a value of 0 (hatched portion in the figure) is a black matrix of the picture element. (Shown as black matrix BM in the figure). In addition, each pixel of each picture element has one of RGB (Red, Green, Blue) different from each other, and is repeatedly formed at a constant period.
 <動作 全体の動作>
 次に、欠陥修正装置100の動作について説明する。本実施形態では、欠陥修正装置100が欠陥を検出し、欠陥を修正するための塗布径の針をどのように決定するかを中心に説明する。
<Operation Overall operation>
Next, the operation of the defect correction apparatus 100 will be described. In the present embodiment, the description will focus on how the defect correction apparatus 100 detects a defect and determines a needle having a coating diameter for correcting the defect.
 図7は、欠陥修正装置100による欠陥を修正する処理を示すフローチャートである。欠陥修正装置100は、制御用コンピュータ39により画像処理部21などを制御して欠陥を検出し、修正処理部50により欠陥を修正する。 FIG. 7 is a flowchart showing a process for correcting a defect by the defect correcting apparatus 100. The defect correction apparatus 100 detects the defect by controlling the image processing unit 21 and the like by the control computer 39 and corrects the defect by the correction processing unit 50.
 図7に示すように、制御用コンピュータ39は、画像処理部21により基板上の欠陥を検出する(ステップS701)。基板上の欠陥を検出する処理は、画像処理により行われ、特許文献1(特開2008-3503号公報)等に詳しく記載されているため説明を省略する。 As shown in FIG. 7, the control computer 39 detects a defect on the substrate by the image processing unit 21 (step S701). The processing for detecting defects on the substrate is performed by image processing and is described in detail in Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-3503) and the like, and thus description thereof is omitted.
 制御用コンピュータ39は、検出された欠陥に対し、その大きさを示す欠陥サイズ値を制御部22により算出する(ステップS703)。このステップS703の処理は後で詳しく説明する。 The control computer 39 calculates a defect size value indicating the size of the detected defect by the control unit 22 (step S703). The processing in step S703 will be described in detail later.
 制御用コンピュータ39は、算出された欠陥サイズ値に応じて、針情報テーブル24を参照して制御部22により適切なサイズの針を決定する(ステップS705)。このステップS705の処理は後で詳しく説明する。 The control computer 39 determines a needle of an appropriate size by the control unit 22 with reference to the needle information table 24 in accordance with the calculated defect size value (step S705). The processing in step S705 will be described in detail later.
 制御用コンピュータ39は、決定された針を用いて修正処理部50による欠陥の修正処理を実行する(ステップS707)。検出された欠陥に対して、塗布ピッチ等に基づいてインク塗布位置を決定する方法は、後述する。 The control computer 39 executes defect correction processing by the correction processing unit 50 using the determined needle (step S707). A method of determining the ink application position based on the application pitch and the like for the detected defect will be described later.
 <動作 欠陥サイズ値を算出する処理>
 ここで、ステップS703における、制御部22による欠陥サイズ値の算出処理について説明する。
<Operation Processing to calculate defect size value>
Here, the defect size value calculation process by the control unit 22 in step S703 will be described.
 (欠陥を取り囲む長方形に基づき欠陥サイズ値を算出)
 図8は、欠陥サイズ値を算出する処理を示すフローチャートである。
(Defect size value is calculated based on the rectangle surrounding the defect)
FIG. 8 is a flowchart showing a process for calculating the defect size value.
 制御部22は、画像処理部21による欠陥の抽出結果に基づいて、検出された欠陥に外接する長方形の頂点の座標を取得し、各頂点の差分に基づいて長方形の縦サイズHおよび横サイズWを取得する(ステップS801)。図9は、画像処理部21による欠陥の抽出結果に基づいて検出された、欠陥に外接する長方形を示す図である。欠陥に外接する長方形の決定方法および頂点の座標の取得方法は、特許文献1等に詳しく記載されているため説明を省略する。 The control unit 22 acquires the coordinates of the vertices of the rectangle circumscribing the detected defect based on the defect extraction result by the image processing unit 21, and the vertical size H and the horizontal size W of the rectangle based on the difference between the vertices. Is acquired (step S801). FIG. 9 is a diagram illustrating a rectangle circumscribing the defect detected based on the defect extraction result by the image processing unit 21. Since the method for determining the rectangle circumscribing the defect and the method for obtaining the coordinates of the vertex are described in detail in Patent Document 1 and the like, description thereof will be omitted.
 図8に戻って説明を続ける。制御部22は、画像処理部21により抽出された欠陥の発生箇所が、画素の開口部であるかブラックマトリックスであるかを判断する(ステップS803)。なお画像処理部21による欠陥抽出時に、欠陥の発生箇所が画素の開口部であるかブラックマトリックスであるかが判別されている。この判別の処理は、図11等を用いて後述する。 Referring back to FIG. The control unit 22 determines whether the defect occurrence location extracted by the image processing unit 21 is a pixel opening or a black matrix (step S803). Note that, when the defect is extracted by the image processing unit 21, it is determined whether the defect occurrence place is a pixel opening or a black matrix. This determination process will be described later with reference to FIG.
 ステップS803において、欠陥発生箇所が画素の開口部と判断されると、制御部22は、下記の数式(1)により欠陥サイズ値Dを算出する(ステップS805)。 In step S803, when it is determined that the defect occurrence location is the opening of the pixel, the control unit 22 calculates the defect size value D by the following equation (1) (step S805).
 欠陥サイズ値 D = (W+H)/2     ・・・数式(1)
 ステップS803において、欠陥発生箇所がブラックマトリックスと判断されると、制御部22は、下記の数式(2)により欠陥サイズ値Dを算出する(ステップS807)。
Defect size value D = (W + H) / 2 Formula (1)
If it is determined in step S803 that the defect occurrence location is a black matrix, the control unit 22 calculates a defect size value D by the following mathematical formula (2) (step S807).
 欠陥サイズ値 D = Min(W,H)    ・・・数式(2)
 なお、Min()は、カッコ内に列挙された値(この例ではWとH)の中の最小値を出力する関数である。すなわち、この実施例では、制御部22は、欠陥がブラックマトリックスで発生している場合、WとHの小さいほうの値を欠陥サイズ値と出力する。
Defect size value D = Min (W, H) (2)
Min () is a function that outputs the minimum value among the values listed in parentheses (in this example, W and H). In other words, in this embodiment, when the defect occurs in the black matrix, the control unit 22 outputs the smaller value of W and H as the defect size value.
 制御部22は、算出された欠陥サイズ値Dを記憶部23に格納する(ステップS809)。 The control unit 22 stores the calculated defect size value D in the storage unit 23 (step S809).
 (ブラックマトリックスでは数式(2)に基づき欠陥サイズ値Dを算出)
 上記の説明では、欠陥の発生箇所が画素の開口部であるかブラックマトリックスであるかを判断し、判断結果に応じて、欠陥サイズ値Dを算出する数式を切り替えている。
(In the black matrix, the defect size value D is calculated based on Equation (2).)
In the above description, it is determined whether the defect occurrence location is an opening of a pixel or a black matrix, and the mathematical formula for calculating the defect size value D is switched according to the determination result.
 これは、ブラックマトリックスで発生する欠陥に対しては、欠陥の修正のために塗布したインクが欠陥からはみ出すことでかえって修正の効率が下がるおそれがあるためである。 This is because, with respect to defects that occur in the black matrix, the ink applied for correcting the defects may protrude from the defects, which may reduce the efficiency of the correction.
 図10は、ブラックマトリックスで発生する欠陥と欠陥修正に用いる針の塗布径との関係を示す図である。ブラックマトリックス部における白欠陥に対しては、インクを塗布して抜けの部分を埋めて修正する。この修正の際に、インクがカラーフィルタ部にはみ出してカラーフィルタ部の黒欠陥となる。 FIG. 10 is a diagram showing the relationship between the defects generated in the black matrix and the application diameter of the needles used for defect correction. For white defects in the black matrix portion, ink is applied and the missing portions are filled and corrected. At the time of this correction, the ink protrudes into the color filter portion and becomes a black defect in the color filter portion.
 そうすると、このカラーフィルタ部における黒欠陥を検出し、レーザ光を照射して黒欠陥を除去し、黒欠陥を除去した部分にインクを塗布する必要が生じる。そのため、ブラックマトリックスにおける白欠陥を修正する際、なるべくカラーフィルタ部にインクがはみ出さないようにすることが望ましい。 Then, it is necessary to detect a black defect in the color filter portion, remove the black defect by irradiating a laser beam, and apply ink to a portion where the black defect is removed. Therefore, when correcting white defects in the black matrix, it is desirable to prevent ink from protruding into the color filter portion as much as possible.
 図10に示すように、ブラックマトリックスにおいて、例えば白欠陥65bに対して、縦横サイズの長い方にあわせた塗布径の針によって修正すると、R画素62やG画素63など画素へとインクがはみ出す量が大きくなる。一方、白欠陥65cのように、欠陥の縦横サイズの短いほうにあわせた塗布径の針によって修正すると、G画素63やB画素64など画素へとインクがはみ出す量が小さくなる。 As shown in FIG. 10, in the black matrix, for example, when the white defect 65b is corrected with a needle having a coating diameter that matches the longer vertical and horizontal sizes, the amount of ink that protrudes to the pixels such as the R pixel 62 and the G pixel 63 Becomes larger. On the other hand, when the defect is corrected with a needle having a coating diameter that matches the shorter one of the vertical and horizontal sizes of the defect, such as the white defect 65c, the amount of ink protruding to the pixels such as the G pixel 63 and the B pixel 64 becomes small.
 また、図10に白欠陥65aや白欠陥65bとして示すように、ブラックマトリックスの線幅が短辺と長辺とで異なる場合に、欠陥が短辺と長辺いずれで発生しているかを判別し、短辺および長辺それぞれの線幅に近い塗布径の針を用いることとしてもよい。同図では、長辺と比較して短辺の線幅が広い。そのため短辺で発生した白欠陥(図中では白欠陥65a)に対しては、より太い針を用いて、長辺で発生した白欠陥(図中では白欠陥65b)に対しては、ブラックマトリックスの線幅にあわせて、より細い塗布径の針を用いることとしてもよい。 Further, as shown as white defect 65a and white defect 65b in FIG. 10, when the line width of the black matrix is different between the short side and the long side, it is determined whether the defect occurs on the short side or the long side. A needle having a coating diameter close to the line width of each of the short side and the long side may be used. In the figure, the line width of the short side is wider than the long side. For this reason, a thicker needle is used for white defects occurring on the short side (white defect 65a in the figure), and a black matrix is used for white defects occurring on the long side (white defect 65b in the figure). A needle having a thinner coating diameter may be used in accordance with the line width.
 こうすることで、インクの塗布回数を少なくしつつ、ブラックマトリックスの白欠陥修正時に画素へとインクがはみ出す量が小さくなり、修正に要する時間が短くなる。 By doing this, while reducing the number of times of ink application, the amount of ink protruding to the pixel when correcting the white defect of the black matrix is reduced, and the time required for correction is shortened.
 <発生した欠陥が開口部であるかブラックマトリックスの短辺か長辺で発生しているかの判別>
 ここでは、発生した欠陥が開口部であるのかブラックマトリックスの短辺か長辺で発生しているのかの判別方法について説明する。特許文献1の段落0085の「カラーフィルタ部のマスク画像の生成」では、2値化入力画像b(x,y)の画素と同じ並びとなるマスク画像が生成される。その際の情報を利用する。
<Determination of whether the generated defect is an opening or a short side or a long side of the black matrix>
Here, a method for determining whether a generated defect is an opening, a short side or a long side of the black matrix will be described. In “Generation of mask image of color filter portion” in paragraph 0085 of Patent Document 1, a mask image having the same arrangement as the pixels of the binarized input image b (x, y) is generated. Use the information at that time.
 カラーフィルタ部CFの端点の座標(xi,yi)からみて右下の値1のドットの集まりを抽出する。抽出する範囲としては、画素ピッチを(px,py)とおくと(xi,yi)~(xi+px,yi+py)の範囲とする。ここで、画素ピッチ(px,py)はあらかじめ与えられている。 Extract a set of dots having a value of 1 at the lower right when viewed from the coordinates (xi, yi) of the end points of the color filter portion CF. The extraction range is a range of (xi, yi) to (xi + px, yi + py) when the pixel pitch is (px, py). Here, the pixel pitch (px, py) is given in advance.
 次に、抽出された値1のドットの集まりに外接する長方形を求め、その中心座標を(rcx,rcy)、縦横サイズを(rw,rh)とおく。さらに、1画素の範囲を定義する。画素の左上端座標は、(rcx,rcy)と画素ピッチ(px,py)とから(rcx-px/2,rcy-py/2)とし、この座標から右下に向かって(px,py)だけの範囲を1画素とする。 Next, a rectangle circumscribing the collection of dots having a value of 1 is obtained, and the center coordinates are set to (rcx, rcy) and the vertical and horizontal sizes are set to (rw, rh). Further, a range of one pixel is defined. The upper left corner coordinates of the pixel are (rcx-px / 2, rcy-py / 2) from (rcx, rcy) and the pixel pitch (px, py), and (px, py) from this coordinate toward the lower right This range is defined as one pixel.
 このように定義された1画素の範囲内で、値1のドットの集まりを開口部と解釈し、値0のドットの集まりをブラックマトリックスと解釈する。 In the range of one pixel defined in this way, a set of dots having a value of 1 is interpreted as an opening, and a set of dots having a value of 0 is interpreted as a black matrix.
 次に、ブラックマトリックスのドットの集まりを(1)短辺部のドットの集まり、(2)長辺部のドットの集まり、および(3)それ以外のドットの集まりに分割する。長辺部と短辺部以外のドットの集まりはブラックマトリックスのコーナー部のRなどに相当する。 Next, the black matrix dot group is divided into (1) a group of short side dots, (2) a group of long side dots, and (3) a group of other dots. A collection of dots other than the long side portion and the short side portion corresponds to R at the corner portion of the black matrix.
 最初に、短辺と長辺が縦か横のどちらであるかを画素ピッチ(px,py)で判定する。図10の場合は、px<pyであるため、短辺が横、長辺が縦である。px>pyであれば逆となる。図10の画素を例にして、各部の抽出方法を具体的に説明する。 First, it is determined by pixel pitch (px, py) whether the short side and the long side are vertical or horizontal. In the case of FIG. 10, since px <py, the short side is horizontal and the long side is vertical. The opposite is true if px> py. The extraction method of each part will be specifically described using the pixel in FIG. 10 as an example.
 図11は、画素の各部位の抽出結果を示す図である。
 図11に示すように、(1)短辺は開口部の上下に接している値0の集まりと解釈する。すなわち、水平方向の座標がrcx-px/2 ~ rcx+px/2の範囲で垂直方向の座標がrcy-py/2 ~ rcy-rh/2の範囲の値0のドットの集まり、および、水平方向は同じ範囲で垂直方向の座標がrcy+rh/2 ~ rcy+py/2の範囲の値0のドットの集まりを短辺部のドットの集まりと解釈する。
FIG. 11 is a diagram illustrating an extraction result of each part of the pixel.
As shown in FIG. 11, (1) the short side is interpreted as a set of values 0 in contact with the upper and lower sides of the opening. That is, a set of dots having a value of 0 in which the horizontal coordinate ranges from rcx-px / 2 to rcx + px / 2 and the vertical coordinate ranges from rcy-py / 2 to rcy-rh / 2, and the horizontal direction is A group of dots with a value of 0 in the same range and having a vertical coordinate in the range of rcy + rh / 2 to rcy + py / 2 is interpreted as a group of dots on the short side.
 同図に示すように、(2)長辺部のドットの集まりは、上記(1)のように抽出された短辺部を除く値0のドットの内、垂直方向の座標がrcy-py/2 ~ rcy+py/2の範囲で水平方向の座標がrcx-px/2 ~ rcx-rw/2の範囲の値0のドットの集まりと、垂直方向は同じ範囲で水平方向の座標がrcx+rw/2 ~ rcx+px/2の範囲の値0のドットの集まりと解釈する。 As shown in the figure, (2) a set of long-side dots has a vertical coordinate of rcy-py / of zero-valued dots excluding the short-side portion extracted as in (1) above. 2 to rcy + py / 2 in the horizontal coordinate range of rcx-px / 2 to rcx-rw / 2 in the range of 0, the vertical direction is the same range and the horizontal coordinate is rcx + rw / 2 ~ This is interpreted as a collection of dots having a value of 0 in the range of rcx + px / 2.
 (3)短辺とも長辺とも解釈されず、残された値0のドットは短辺にも長辺にも含まれないそれ以外のドットの集まりと解釈する。 (3) Neither the short side nor the long side is interpreted, and the remaining zero value is interpreted as a collection of other dots not included in the short side or the long side.
 図11の抽出結果を元に2値化入力画像b(x,y)の画素の並びに対応した4種類の画像を作成する。画像はそれぞれ、開口部マスク画像、短辺部マスク画像、長辺部マスク画像、残りのマスク画像と呼ぶ。図11の各部位の座標情報を、特許文献1の「カラーフィルタ部のマスク画像の生成」で示されるサーチ対象Sの左上端座標(xs,ys)を原点として保持しておく。2値化入力画像b(x,y)上のサーチ対象Sの各位置はパターンマッチングにより検出されているため、検出位置の座標を原点として図11の各部位をプロットしていくことにより、画素の各部位のマスク画像が生成される。 11) Four types of images corresponding to the arrangement of the pixels of the binarized input image b (x, y) are created based on the extraction result of FIG. The images are referred to as an opening mask image, a short side mask image, a long side mask image, and a remaining mask image, respectively. The coordinate information of each part in FIG. 11 is held using the upper left coordinates (xs, ys) of the search target S shown in “Generation of mask image of color filter portion” in Patent Document 1 as the origin. Since each position of the search target S on the binarized input image b (x, y) is detected by pattern matching, pixels are plotted by plotting each part in FIG. 11 with the coordinates of the detected position as the origin. A mask image of each part is generated.
 図12A、図12B、図12C、図12Dは、画素の各部位のマスク画像を示す図である。図11の抽出結果を元に、図12A、図12B、図12C、図12Dに示すように、2値化入力画像b(x,y)の画素の並びに対応した4種類の画像を作成する。画像はそれぞれ、図12Aに示す画像を開口部マスク画像、図12Bに示す画像を短辺部マスク画像、図12Cに示す画像を長辺部マスク画像、図12Dに示す画像を残りのマスク画像と呼ぶ。 FIG. 12A, FIG. 12B, FIG. 12C, and FIG. 12D are diagrams showing mask images of each part of the pixel. Based on the extraction result of FIG. 11, four types of images corresponding to the arrangement of the pixels of the binarized input image b (x, y) are created as shown in FIGS. 12A, 12B, 12C, and 12D. The image shown in FIG. 12A is the opening mask image, the image shown in FIG. 12B is the short side mask image, the image shown in FIG. 12C is the long side mask image, and the image shown in FIG. 12D is the remaining mask image. Call.
 図11の各部位の座標情報を、特許文献1の「カラーフィルタ部のマスク画像の生成」で示されるサーチ対象Sの左上端座標(xs,ys)を原点として保持しておく。2値化入力画像b(x,y)上のサーチ対象Sの各位置はパターンマッチングにより検出されているため、検出位置の座標を原点として図11の各部位をプロットしていくと図12A、図12B、図12C、図12Dに示す4種類の画像を作成することができる。 The coordinate information of each part in FIG. 11 is held with the upper left coordinates (xs, ys) of the search target S shown in “Generation of mask image of color filter section” in Patent Document 1 as the origin. Since each position of the search target S on the binarized input image b (x, y) is detected by pattern matching, if each part of FIG. 11 is plotted with the coordinates of the detected position as the origin, FIG. Four types of images shown in FIGS. 12B, 12C, and 12D can be created.
 以上のようにして作成されたマスク画像と特許文献1の段落0096の「欠陥検出」で得られた欠陥抽出画像との論理積を演算することにより、開口部や短辺部、長辺部など部位ごとの欠陥画像を作成することができる。得られたそれぞれの欠陥画像から、部位ごとの欠陥が抽出される。 By calculating the logical product of the mask image created as described above and the defect extraction image obtained by “defect detection” in paragraph 0096 of Patent Document 1, an opening, a short side, a long side, etc. A defect image for each part can be created. A defect for each part is extracted from each obtained defect image.
 このように、部位ごとに欠陥を検出できるため、ステップS703において、上記したように欠陥の発生箇所が開口部かブラックマトリックスかに応じて欠陥サイズ値の算出方法を切り替えることができる。 As described above, since the defect can be detected for each part, in step S703, the defect size value calculation method can be switched according to whether the defect occurrence location is an opening or a black matrix as described above.
 <動作:欠陥サイズ値Dに応じた塗布径の針を決定する処理>
 ここで、ステップS705における、欠陥サイズ値Dに応じた塗布径の針を制御部22により決定する処理について説明する。
<Operation: Processing to determine a needle having a coating diameter corresponding to the defect size value D>
Here, the process in which the control part 22 determines the needle | hook of the application diameter according to the defect size value D in step S705 is demonstrated.
 図13は、制御部22が、欠陥サイズ値Dに応じて針を決定する処理を示すフローチャートである。 FIG. 13 is a flowchart illustrating a process in which the control unit 22 determines a needle according to the defect size value D.
 同図に示すように、制御部22は、ステップS703で算出された欠陥サイズ値Dを記憶部23から読み出す(ステップS901)。 As shown in the figure, the control unit 22 reads the defect size value D calculated in step S703 from the storage unit 23 (step S901).
 制御部22は、欠陥を修正するためのインクの色に基づいて、修正に用いる針を絞り込む。制御部22は、針情報テーブル24のインクの色52を参照し、修正に用いるインクの色(例えば、赤色)に一致するレコードを針情報テーブル24から抽出する(ステップS903)。 The control unit 22 narrows down the needles used for the correction based on the color of the ink for correcting the defect. The control unit 22 refers to the ink color 52 in the needle information table 24, and extracts a record that matches the ink color (for example, red) used for correction from the needle information table 24 (step S903).
 制御部22は、ステップS903において抽出されたレコード(いくつかの針候補)と、ステップS901で読み出した欠陥サイズ値Dを順に比較して、欠陥修正に適した塗布径の針を決定する。具体的には、本実施の形態では、制御部22は、針情報テーブル24から抽出したレコードのある1件について、そのレコードの欠陥サイズ下限55に示される下限値と欠陥サイズ上限56に示される上限値とが、下限値<上限値であるか、下限値=上限値であるかを判定する(ステップS905)。 The control unit 22 sequentially compares the records (several needle candidates) extracted in step S903 and the defect size value D read in step S901, and determines a needle having a coating diameter suitable for defect correction. Specifically, in the present embodiment, the control unit 22 indicates a certain record extracted from the needle information table 24 by a lower limit value and a defect size upper limit 56 indicated by the defect size lower limit 55 of the record. It is determined whether the upper limit value is lower limit value <upper limit value or lower limit value = upper limit value (step S905).
  (針情報テーブル24のレコードが下限値<上限値の場合)
 ステップS905において、下限値<上限値と判定された場合、制御部22は、欠陥サイズ値Dが、そのレコードの欠陥サイズ下限55に示される下限値以上であり、かつ、そのレコードの欠陥サイズ上限56に示される上限値未満であるか判定する(ステップS907)。
(When the record of the needle information table 24 is lower limit value <upper limit value)
When it is determined in step S905 that the lower limit value <the upper limit value, the control unit 22 has the defect size value D equal to or larger than the lower limit value indicated by the defect size lower limit 55 of the record and the defect size upper limit value of the record. It is determined whether it is less than the upper limit indicated by 56 (step S907).
 ステップS907において、欠陥サイズ値Dが下限値以上かつ上限値未満であると判定されると(ステップS907においてYES)、制御部22は、このレコードに示される針を、欠陥修正のためのインク塗布用の針と決定する(ステップS909)。ステップS907において、条件式を満たさないと判定されると(ステップS907においてNO)、制御部22は、他にステップS903で絞り込んだレコードのうち、未比較のものがあるか判定する(ステップS913)。 If it is determined in step S907 that the defect size value D is not less than the lower limit value and less than the upper limit value (YES in step S907), the control unit 22 applies the needle indicated in this record to the ink application for defect correction. A needle for use is determined (step S909). If it is determined in step S907 that the conditional expression is not satisfied (NO in step S907), the control unit 22 determines whether there are any other uncompared records selected in step S903 (step S913). .
 ステップS913において、欠陥サイズ値Dと未比較のレコードがあれば(ステップS913においてYES)、制御部22は、そのレコードを比較対象としてステップS905の処理を繰り返す。ステップS913において欠陥サイズ値Dと未比較のレコードがなければ、ステップS903で絞り込んだいずれかの針をインク塗布用の針と決定する(ステップS915)。 In step S913, if there is a record that has not been compared with the defect size value D (YES in step S913), the control unit 22 repeats the process of step S905 using that record as a comparison target. If there is no record that is not compared with the defect size value D in step S913, one of the needles narrowed down in step S903 is determined as an ink application needle (step S915).
  (針情報テーブル24のレコードが下限値=上限値の場合)
 ステップS905において、下限値=上限値と判定された場合、制御部22は、欠陥サイズ値Dが、そのレコードの欠陥サイズ下限55に示される下限値以上であるか判定する(ステップS911)。
(When the record of the needle information table 24 is the lower limit value = the upper limit value)
When it is determined in step S905 that the lower limit value = the upper limit value, the control unit 22 determines whether the defect size value D is equal to or greater than the lower limit value indicated by the defect size lower limit 55 of the record (step S911).
 ステップS911において、肯定的に判定されると(ステップS911においてYES)、制御部22は、ステップS909に進み、この判定にかかるレコードに示される針を、欠陥修正のためのインク塗布用の針と決定する(ステップS909)。 If an affirmative determination is made in step S911 (YES in step S911), the control unit 22 proceeds to step S909, and the needle indicated in the record relating to this determination is used as an ink application needle for defect correction. Determination is made (step S909).
 ステップS911において、条件式を満たさない場合(ステップS911においてNO)、制御部22は、他にステップS903で絞り込んだレコードのうち、未比較のものがあるか判定する(ステップS913)。その後の処理は上記と同様である。 In step S911, when the conditional expression is not satisfied (NO in step S911), the control unit 22 determines whether there are any other uncompared records selected in step S903 (step S913). Subsequent processing is the same as described above.
 上記の動作について、具体的に説明する。なお、修正の対象となる欠陥の欠陥サイズ値Dは、100(μm)とし、赤色の画素における欠陥が修正されるとする。制御部22は、針情報テーブル24を参照し、インクの色(赤色)に基づき針を絞り込む(ステップS903)。 The above operation will be specifically described. It is assumed that the defect size value D of the defect to be corrected is 100 (μm), and the defect in the red pixel is corrected. The control unit 22 refers to the needle information table 24 and narrows the needles based on the ink color (red) (step S903).
 ここでは、針情報テーブル24に基づいて、針Aと針Bに絞り込まれたとする。針Aにかかるレコードを針Bよりも先に欠陥サイズ値Dと比較する場合、制御部22は、針Aにかかる欠陥サイズ下限55および欠陥サイズ上限56を参照する(ステップS905)。 Here, it is assumed that the needles A and B are narrowed down based on the needle information table 24. When the record concerning the needle A is compared with the defect size value D before the needle B, the control unit 22 refers to the defect size lower limit 55 and the defect size upper limit 56 concerning the needle A (step S905).
 ステップS905において、この場合は下限値<上限値であるため、ステップS907に進み、制御部22は、欠陥サイズ値Dが下限値以上上限値未満であるか判定する(ステップS907)。 In step S905, since the lower limit value <the upper limit value in this case, the process proceeds to step S907, and the control unit 22 determines whether the defect size value D is greater than or equal to the lower limit value and less than the upper limit value (step S907).
 この場合は欠陥サイズ値D=100としているため、ステップS907の条件式を満たさずステップS913へ進む。ステップS903で抽出したレコードは針Aの他に針Bがあるため、制御部22は、欠陥サイズ値Dとレコードとの比較を続ける。針BについてステップS905の処理が行われ、針Bの場合は下限値=上限値であるためステップS911へ進む。 In this case, since the defect size value D = 100, the conditional expression of step S907 is not satisfied, and the process proceeds to step S913. Since the record extracted in step S903 includes the needle B in addition to the needle A, the control unit 22 continues to compare the defect size value D with the record. The process of step S905 is performed for the needle B. In the case of the needle B, since the lower limit value = the upper limit value, the process proceeds to step S911.
 ステップS911において、針Bの場合は条件式を満たすため(ステップS911においてYES)、制御部22は、針Bをインク塗布用の針と決定する(ステップS909)。 In step S911, in the case of the needle B, in order to satisfy the conditional expression (YES in step S911), the control unit 22 determines the needle B as a needle for ink application (step S909).
 このようにして針が選択されて欠陥が修正される。
 <修正ポイントを決定するための処理>
 次に、上記ステップS707で、制御部22が欠陥を修正するための修正ポイント(針によるインク塗布位置)を決定する処理について説明する。
In this way, the needle is selected and the defect is corrected.
<Process for determining correction points>
Next, a process of determining a correction point (ink application position by the needle) for the controller 22 to correct the defect in step S707 will be described.
 本実施の形態の場合、針によるインク塗布位置やレーザ光によるカット位置は、特許文献1の段落0174の「インク塗布位置計算」、段落0227の「レーザ光の照射位置(カット位置)計算」と同様に、欠陥に外接する長方形に基づいて決定される。 In the case of the present embodiment, the ink application position by the needle and the cut position by the laser light are “ink application position calculation” in paragraph 0174 of Patent Document 1 and “laser light irradiation position (cut position) calculation” in paragraph 0227. Similarly, it is determined based on a rectangle circumscribing the defect.
  (塗布位置の決定方法)
 インクの塗布位置の決定方法について説明する。使用する針は修正箇所毎に定まるため、制御部22は、図5Aの針情報テーブル24を参照して、その針の塗布ピッチpを取得する。また、予めインク毎に重ね量r(%)を登録しておく。重ね量rは、インクによる塗布範囲が徐々に変化して修正範囲に影響していくことに対処するための調整用のパラメータである。
(Method for determining application position)
A method for determining the ink application position will be described. Since the needle to be used is determined for each correction location, the control unit 22 refers to the needle information table 24 in FIG. 5A and acquires the application pitch p of the needle. In addition, the overlap amount r (%) is registered in advance for each ink. The overlapping amount r is an adjustment parameter for coping with the fact that the ink application range gradually changes and affects the correction range.
 図14A、図14B、図14Cは、重ね量rを示す模式図である。
 図14A、図14B、図14C、では、重ね量rが小さいほど、インクが有効に塗布される範囲が小さくなることを示している。図中では、針が有する本来の塗布径を円で示している。長方形は、欠陥箇所に外接する長方形を示している。重ね量が小さい場合は、この本来の塗布径よりも狭い範囲でインクが塗布される。図14Aは、重ね量r=50%の場合を示す。図14Bは、重ね量r=70%の場合を示す。図14Cは、重ね量r=100%の場合を示す。修正に使用するインクは、インク交換後、徐々に粘性などが変化し、インク塗布時に欠陥のすみずみまで行き届かない場合がある。その場合、欠陥のコーナー部に白欠陥が残り、再度インクを除去して塗布する作業が必要となり作業効率が低下する。
14A, 14B, and 14C are schematic diagrams illustrating the overlapping amount r.
14A, 14B, and 14C show that the smaller the overlap amount r, the smaller the range in which ink is effectively applied. In the figure, the original coating diameter of the needle is indicated by a circle. A rectangle indicates a rectangle circumscribing the defect portion. When the overlapping amount is small, the ink is applied in a range narrower than the original application diameter. FIG. 14A shows a case where the overlap amount r = 50%. FIG. 14B shows a case where the overlap amount r = 70%. FIG. 14C shows the case where the overlap amount r = 100%. The ink used for correction gradually changes in viscosity after ink replacement, and may not reach all the defects at the time of ink application. In that case, white defects remain at the corners of the defects, and it is necessary to remove and apply the ink again, resulting in a reduction in work efficiency.
 そこで、塗布したインクと欠陥周囲との重ね量をある程度確保できるよう調整できるパラメータを重ね量rとして設けた。ただし、本パラメータは図5Aの針情報テーブル24で保持してもよい。 Therefore, a parameter r that can be adjusted to ensure a certain amount of overlap between the applied ink and the periphery of the defect is provided as the overlap amount r. However, this parameter may be held in the needle information table 24 of FIG. 5A.
 塗布開始時の塗布円の中心座標(xst,yst)と塗布終了時の塗布円の中心座標(xed,yed)は次のように決定される。 The center coordinates (xst, yst) of the application circle at the start of application and the center coordinates (xed, yed) of the application circle at the end of application are determined as follows.
 塗布径をDIとおくと数式(3)に示す計算式でオフセット量Δを算出する。
  Δ = {(DI×r)/100}/2     ・・・数式(3)
 このオフセット量Δを用いて(xst,yst)および(xed,yed)を決定する。例えば図9に示す欠陥に外接する長方形の、左上の頂点の座標を(xA,yA)とし、その対角線上の頂点の座標を(xC,yC)とすると、(xst,yst)は(xA+Δ,yA+Δ)、(xed,yed)は(xC-Δ,yC-Δ)となる。
When the coating diameter is set to DI, the offset amount Δ is calculated by the calculation formula shown in Formula (3).
Δ = {(DI × r) / 100} / 2 Expression (3)
Using this offset amount Δ, (xst, yst) and (xed, yed) are determined. For example, when the coordinates of the upper left vertex of the rectangle circumscribing the defect shown in FIG. 9 are (xA, yA) and the coordinates of the diagonal vertex are (xC, yC), (xst, yst) is (xA + Δ, yA + Δ) and (xed, yed) become (xC−Δ, yC−Δ).
  (レーザ光によるカット位置の決定方法)
 次に、カット位置の計算方法を説明する。カット位置は特許文献1の段落0227の「レーザ光の照射位置(カット位置)計算」に示す手順で決定する。
(Determination method of cutting position by laser light)
Next, a method for calculating the cut position will be described. The cutting position is determined according to the procedure shown in “Laser beam irradiation position (cut position) calculation” in paragraph 0227 of Patent Document 1.
 本実施の形態では、さらに、上記の手順で決定された位置を仮のカット位置とし、できる限り少ない回数でレーザカットを終えるようカット箇所をグルーピングする機能を有している。 In the present embodiment, the position determined by the above procedure is set as a temporary cut position, and the cut portion is grouped so that the laser cut is completed as few times as possible.
 図15はカット箇所のグルーピングを示す図である。
 仮のカット位置が図15に示すように得られたとする。ここで、図示されている格子が濃く示されている部分がカット部位に相当する。格子を左上端からスキャンし、最初のカット部位を探す(同図では部位Aを最初のカット部位とする)。次に、最初のカット部位からいずれかの方向に不連続点が見つかるまでスキャンし、不連続点の一つ手前の部位を検出する(同図では横方向にスキャンし、不連続点の一つ手前を部位Bとする)。
FIG. 15 is a diagram illustrating grouping of cut locations.
It is assumed that the temporary cut position is obtained as shown in FIG. Here, the portion where the illustrated lattice is shown darkly corresponds to the cut portion. The grid is scanned from the upper left corner to search for the first cut site (in the figure, site A is the first cut site). Next, scan until a discontinuous point is found in either direction from the first cut part, and detect the part immediately before the discontinuous point. The front side is designated as site B).
 最初のカット部位(部位A)から不連続点の一つ手前の部位(部位B)まで、部位ごとに、不連続点が見つかるまで別方向に新たにスキャンする。同図では、部位Aから縦方向にスキャンしている。この処理を、部位Bまで各部位について行い、新たなスキャンにおいて、最も手前で見つかった不連続点の一つ手前の部位を求める。同図では、部位Cが該当する。 ・ ・ ・ From the first cut site (site A) to the site just before the discontinuity (site B), for each site, a new scan is performed until a discontinuity is found. In the figure, scanning is performed from the portion A in the vertical direction. This process is performed for each part up to the part B, and the part immediately before the discontinuous point found in the forefront is obtained in a new scan. In the figure, the part C corresponds.
 部位Aの縦横位置を(iA,jA)とし、部位Bの横位置iB、部位Cの縦位置jCまでを一まとまりと認識してグルーピングする。 The vertical and horizontal positions of the part A are (iA, jA), and the horizontal position iB of the part B and the vertical position jC of the part C are recognized as a group and grouped.
 このようにグルーピングしておくと、レーザ光の照射の際のスリットを調節することで、ある一定の修正範囲について効率よく修正できる。レーザ光によるカットに先立ち、あらかじめカット可能なスリットの最大サイズを登録しておく。特許文献1の「レーザ光の照射位置(カット位置)計算」のスリットサイズ(Sx,Sy)に、上記登録した最大サイズを代入する。続いて、縦横位置(iA,jA)の中心座標を(xA,yA)、縦横位置(iB,jC)の中心座標を(xC,yC)として同様の要領で再計算を行う。ただし、スリットの最大サイズの方が(xA,yA)および(xC,yC)で決まる長方形の縦横サイズよりも大きいときは、スリットサイズ(Sx,Sy)を長方形の縦横サイズにあわせてカット位置を算出する。 If grouping is performed in this way, it is possible to efficiently correct a certain correction range by adjusting the slit at the time of laser light irradiation. Prior to cutting with laser light, the maximum size of the slit that can be cut is registered in advance. The registered maximum size is substituted into the slit size (Sx, Sy) in “Laser beam irradiation position (cut position) calculation” in Patent Document 1. Subsequently, recalculation is performed in the same manner with the center coordinates of the vertical and horizontal positions (iA, jA) as (xA, yA) and the center coordinates of the vertical and horizontal positions (iB, jC) as (xC, yC). However, when the maximum size of the slit is larger than the vertical and horizontal size of the rectangle determined by (xA, yA) and (xC, yC), the cutting position is set by adjusting the slit size (Sx, Sy) to the vertical and horizontal size of the rectangle. calculate.
 <変形例>
 上述のように本発明の欠陥修正装置100について説明してきたが、上記の例に限らず、下記のように変形することもできる。
<Modification>
Although the defect correcting apparatus 100 of the present invention has been described as described above, the present invention is not limited to the above example, and can be modified as follows.
  (欠陥サイズ値の算出方法)
 上記では、欠陥に外接する長方形に基づいて、所定の式により欠陥サイズ値Dを算出した。これに限らず、画像を解析することにより求められる特徴量を欠陥サイズ値Dとすることもできる。例えば、欠陥と等価な楕円の主軸長や副軸長の長さを用いることができる。
(Calculation method of defect size value)
In the above description, the defect size value D is calculated by a predetermined formula based on the rectangle circumscribing the defect. However, the present invention is not limited to this, and a feature amount obtained by analyzing an image can be used as the defect size value D. For example, the length of the main axis length or the sub axis length of an ellipse equivalent to a defect can be used.
 図16A、図16B、図16Cは、欠陥と等価な楕円による欠陥サイズ値の算出を示す図である。 FIG. 16A, FIG. 16B, and FIG. 16C are diagrams showing calculation of defect size values using ellipses equivalent to defects.
 図16Aは、欠陥の形状を示す図である。図中、白の領域を欠陥とする。
 図16Bは、欠陥の形状に等価な楕円を示す図である。また、白の領域を構成するピクセル(ドット)の座標を(x,y)とする。
FIG. 16A is a diagram illustrating a shape of a defect. In the figure, white areas are defined as defects.
FIG. 16B is a diagram showing an ellipse equivalent to the shape of the defect. Also, the coordinates of the pixels (dots) constituting the white area are (x, y).
 ここで、X方向の一次モーメント(同図中、白いドットのX座標の合計値)は、下記の数1で表される。 Here, the primary moment in the X direction (the total value of the X coordinates of the white dots in the figure) is expressed by the following formula 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 Y方向の一次モーメント(同図中、白いドットのY座標の合計値)は、下記の数2で表される。 The primary moment in the Y direction (the total value of the Y coordinates of white dots in the figure) is expressed by the following formula 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 X方向の二次モーメント(同図中、白いドットのX座標の二乗の合計値)は、下記の数3で表される。 The secondary moment in the X direction (the total value of the squares of the X coordinates of white dots in the figure) is expressed by the following formula 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 Y方向の二次モーメント(同図中、白いドットのY座標の二乗の合計値)は、下記の数4で表される。 The secondary moment in the Y direction (the total value of the squares of the Y coordinates of white dots in the figure) is expressed by the following formula 4.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 これらを用いると、重心周りの二次モーメントは、下記の数5~7により算出される。 Using these, the second moment around the center of gravity is calculated by the following equations 5-7.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 このようにして算出された3つの特徴量を用いると、欠陥と等価な楕円の主軸長L、副軸長L、θは下記に示す数8~10で算出される。 Using the three feature quantities calculated in this way, the main axis length L M , the sub axis length L S , and θ of the ellipse equivalent to the defect are calculated by the following equations 8 to 10.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 図16Cは、同様の欠陥に対し、外接する長方形を示す図である。
 図16Bと図16Cとを比較すると、カット用レーザ装置33によりレーザ光を照射する際に、スリットにθ回転機構が備わっている場合は、楕円形状にあわせてレーザを照射することで、欠陥以外の部分へのレーザ光の照射を低減することができる。
FIG. 16C is a diagram showing a circumscribed rectangle for a similar defect.
Comparing FIG. 16B with FIG. 16C, when the slit laser device 33 irradiates the laser beam, if the slit has a θ rotation mechanism, the laser is irradiated in accordance with the elliptical shape, so that other than defects. It is possible to reduce the irradiation of the laser beam to this portion.
  (その他の欠陥サイズ値の算出方法)
 また、欠陥サイズ値Dを算出するため、画像に示される欠陥の面積を用いることとしてもよい。
(Other defect size calculation methods)
Further, in order to calculate the defect size value D, the area of the defect shown in the image may be used.
 この他に、欠陥の性状によっては欠陥修正装置100により正確に欠陥を検出できない場合がある。そこで、このようなときは、作業者がモニタを見ながら操作して欠陥サイズ値Dを入力してもよい。 In addition, depending on the nature of the defect, the defect correction apparatus 100 may not be able to detect the defect accurately. Therefore, in such a case, the operator may input the defect size value D by operating while looking at the monitor.
 本発明は、液晶ディスプレイ、PDP、有機ELディスプレイ、SEDなどの基板の欠陥を修正する装置として用いられる。 The present invention is used as an apparatus for correcting defects in substrates such as liquid crystal displays, PDPs, organic EL displays, and SEDs.
 2 対物レンズ、5 基板、21 画像処理部、22 制御部、23 記憶部、24 針情報テーブル、31 観察光学系、31a 観察鏡筒、32 カメラ、33 カット用レーザ装置、34 インク塗布機構、35 インク硬化用光源、36 Z軸テーブル、37 X軸テーブル、38 Y軸テーブル、39 制御用コンピュータ、40 モニタ、41 操作パネル、42 可動板、42a 貫通孔、43 塗布ユニット、50 修正処理部、100 欠陥修正装置。 2 objective lens, 5 substrate, 21 image processing unit, 22 control unit, 23 storage unit, 24 needle information table, 31 observation optical system, 31a observation tube, 32 camera, 33 cutting laser device, 34 ink application mechanism, 35 Ink curing light source, 36 Z axis table, 37 X axis table, 38 Y axis table, 39 control computer, 40 monitor, 41 operation panel, 42 movable plate, 42a through hole, 43 coating unit, 50 correction processing unit, 100 Defect correction device.

Claims (12)

  1.  基板の欠陥を修正する欠陥修正装置であって、
     欠陥を修正するための、塗布径が異なる複数の針と、
     前記基板の欠陥箇所を検出する画像処理部と、
     前記検出した欠陥箇所の画像に基づき、当該欠陥の大きさを示す欠陥サイズ値を算出する算出部と、
     算出された欠陥サイズ値に応じて、修正に用いるべき塗布径の針を選択する選択部と、
     前記選択された塗布径の針を用いて欠陥を修正する修正処理部と、
    を備える欠陥修正装置。
    A defect correcting device for correcting defects on a substrate,
    Multiple needles with different application diameters to correct defects,
    An image processing unit for detecting a defective portion of the substrate;
    Based on the image of the detected defect location, a calculation unit that calculates a defect size value indicating the size of the defect,
    In accordance with the calculated defect size value, a selection unit for selecting a needle having a coating diameter to be used for correction,
    A correction processing unit for correcting a defect using the needle of the selected application diameter;
    A defect correction apparatus comprising:
  2.  前記選択部は、前記複数の針それぞれと、各針が使用されるべき欠陥サイズ値とを対応付けた針情報テーブルを記憶しており、前記選択とは、前記算出された欠陥サイズ値に対応付けられた針を前記針情報テーブルより選択することである、
    請求項1記載の欠陥修正装置。
    The selection unit stores a needle information table in which each of the plurality of needles is associated with a defect size value for which each needle is to be used, and the selection corresponds to the calculated defect size value. Selecting the attached needle from the needle information table;
    The defect correction apparatus according to claim 1.
  3.  前記画像処理部は、欠陥箇所がブラックマトリックスで発生しているかカラーフィルタの開口部で発生しているかを判定する判定部を含み、
     前記算出部は、前記判定部の判定結果に応じて、欠陥箇所がブラックマトリックスで発生している場合は、発生した部位に応じた算出方法により欠陥サイズ値を算出する、
    請求項1記載の欠陥修正装置。
    The image processing unit includes a determination unit that determines whether the defective portion is generated in the black matrix or the color filter opening,
    In accordance with the determination result of the determination unit, the calculation unit calculates a defect size value by a calculation method according to the generated site when a defect location occurs in the black matrix.
    The defect correction apparatus according to claim 1.
  4.  前記画像処理部は、欠陥箇所がブラックマトリックスで発生している場合に、発生箇所にかかる部位がブラックマトリックスの長辺部か短辺部かを判別し、
     前記算出部は、欠陥箇所が前記判定部によりブラックマトリックスで発生していると判定された場合、発生箇所にかかる部位が長辺部か短辺部かに応じて、部位の線幅に基づいて欠陥サイズ値を算出する、
    請求項3記載の欠陥修正装置。
    The image processing unit, when a defective portion occurs in the black matrix, determines whether the portion of the generated portion is a long side portion or a short side portion of the black matrix,
    The calculation unit, when it is determined by the determination unit that the defective part is generated in the black matrix, based on the line width of the part depending on whether the part over the generated part is a long side part or a short side part Calculate the defect size value,
    The defect correction apparatus according to claim 3.
  5.  前記算出部は、欠陥箇所が前記判定部によりブラックマトリックスで発生していると判定された場合、欠陥箇所に外接する長方形の辺の最小値に基づいて欠陥サイズ値を算出する、
    請求項3記載の欠陥修正装置。
    The calculation unit calculates a defect size value based on a minimum value of a side of a rectangle circumscribing the defect part when it is determined that the defect part is generated in the black matrix by the determination unit;
    The defect correction apparatus according to claim 3.
  6.  前記算出部は、前記検出された欠陥箇所を取り囲む長方形の縦横それぞれのサイズの平均を欠陥サイズ値と算出する、
    請求項1記載の欠陥修正装置。
    The calculation unit calculates the average size of each of the rectangles surrounding the detected defect location as a defect size value,
    The defect correction apparatus according to claim 1.
  7.  前記算出部は、前記検出された欠陥箇所に等価な楕円の主軸長および副軸長に基づいて前記欠陥サイズ値を算出する、
    請求項1記載の欠陥修正装置。
    The calculation unit calculates the defect size value based on a principal axis length and a minor axis length of an ellipse equivalent to the detected defect location;
    The defect correction apparatus according to claim 1.
  8.  前記修正処理部は、インクごとにインクの塗布範囲を補正するための重ね量を記憶しており、前記選択部により選択された針の塗布径を、当該針に対応するインクの前記重ね量を用いて補正して針の塗布位置を決定する、
    請求項1記載の欠陥修正装置。
    The correction processing unit stores an overlap amount for correcting the ink application range for each ink, and sets the application diameter of the needle selected by the selection unit to the overlap amount of the ink corresponding to the needle. Use to correct and determine the needle application position,
    The defect correction apparatus according to claim 1.
  9.  前記修正処理部は、カット用レーザ照射部と、カット箇所をグルーピングするグルーピング部とを含む、
    請求項1記載の欠陥修正装置。
    The correction processing unit includes a cutting laser irradiation unit, and a grouping unit that groups the cut locations.
    The defect correction apparatus according to claim 1.
  10.  前記基板は、フラットパネルディスプレイに用いられる基板である、請求項1から9のいずれか1項に記載の欠陥修正装置。 The defect correction apparatus according to any one of claims 1 to 9, wherein the substrate is a substrate used for a flat panel display.
  11.  前記基板はカラーフィルタである請求項10記載の欠陥修正装置。 The defect correction apparatus according to claim 10, wherein the substrate is a color filter.
  12.  塗布径が異なる複数の針を備える欠陥修正装置が、基板の欠陥を修正するための方法であって、
     欠陥修正装置が、カメラにより撮影された前記基板の画像に基づいて、欠陥箇所を検出するステップと、
     欠陥修正装置が、前記検出された欠陥箇所の画像に基づき、当該欠陥の大きさを示す欠陥サイズ値を算出するステップと、
     欠陥修正装置が、算出された欠陥サイズ値に応じて、修正に用いるべき塗布径の針を選択するステップと、
     欠陥修正装置が、前記選択された塗布径の針を用いて欠陥を修正するステップと、
    を含む方法。
    A defect correction apparatus comprising a plurality of needles having different application diameters is a method for correcting a defect in a substrate,
    A defect correcting device detecting a defect location based on the image of the substrate imaged by the camera; and
    A defect correcting device calculating a defect size value indicating a size of the defect based on the image of the detected defect portion;
    A step in which the defect correction device selects a needle having a coating diameter to be used for correction in accordance with the calculated defect size value;
    A defect correcting device correcting the defect using the needle of the selected application diameter;
    Including methods.
PCT/JP2012/081095 2011-12-02 2012-11-30 Defect correction device and defect correction method WO2013081109A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280058501.4A CN103959108A (en) 2011-12-02 2012-11-30 Defect correction device and defect correction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-264802 2011-12-02
JP2011264802A JP2013117615A (en) 2011-12-02 2011-12-02 Defect correction device and defect correction method

Publications (1)

Publication Number Publication Date
WO2013081109A1 true WO2013081109A1 (en) 2013-06-06

Family

ID=48535557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081095 WO2013081109A1 (en) 2011-12-02 2012-11-30 Defect correction device and defect correction method

Country Status (4)

Country Link
JP (1) JP2013117615A (en)
CN (1) CN103959108A (en)
TW (1) TW201346247A (en)
WO (1) WO2013081109A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6522344B2 (en) * 2014-01-10 2019-05-29 Ntn株式会社 Height detection device, coating device and height detection method
CN104103543B (en) * 2014-08-01 2019-11-22 上海华力微电子有限公司 Wafer defect dimension correction method
WO2022110219A1 (en) * 2020-11-30 2022-06-02 京东方科技集团股份有限公司 Inspection method, device, and system for display panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318556A (en) * 1996-03-28 1997-12-12 Aisin Seiki Co Ltd Flaw inspection apparatus
JP2004013133A (en) * 2002-06-12 2004-01-15 Dainippon Printing Co Ltd Method for correcting color filter defect
JP2007123534A (en) * 2005-10-27 2007-05-17 Sony Corp Method and device for correcting defect in wiring pattern
JP2009151261A (en) * 2007-11-27 2009-07-09 Lasertec Corp Defect correction device, defect correction method and method of manufacturing pattern substrate
JP2009237086A (en) * 2008-03-26 2009-10-15 Ntn Corp Color filter defect correction method and color filter defect correction device
JP2010247394A (en) * 2009-04-14 2010-11-04 Toppan Printing Co Ltd Printer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100570439C (en) * 2005-03-28 2009-12-16 Ntn株式会社 Applying mechanism and coating method, defect correction device and defect correcting method
JP4767567B2 (en) * 2005-03-28 2011-09-07 Ntn株式会社 Pattern correction device
JP2008180796A (en) * 2007-01-23 2008-08-07 Ntn Corp Method and apparatus for correcting defect
JP2010113065A (en) * 2008-11-05 2010-05-20 Ntn Corp Method and device for correcting pattern
CN202033298U (en) * 2011-03-15 2011-11-09 中国计量学院 Device based on machine vision and used for on-line detecting appearance defects of small-sized connecting pieces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318556A (en) * 1996-03-28 1997-12-12 Aisin Seiki Co Ltd Flaw inspection apparatus
JP2004013133A (en) * 2002-06-12 2004-01-15 Dainippon Printing Co Ltd Method for correcting color filter defect
JP2007123534A (en) * 2005-10-27 2007-05-17 Sony Corp Method and device for correcting defect in wiring pattern
JP2009151261A (en) * 2007-11-27 2009-07-09 Lasertec Corp Defect correction device, defect correction method and method of manufacturing pattern substrate
JP2009237086A (en) * 2008-03-26 2009-10-15 Ntn Corp Color filter defect correction method and color filter defect correction device
JP2010247394A (en) * 2009-04-14 2010-11-04 Toppan Printing Co Ltd Printer

Also Published As

Publication number Publication date
CN103959108A (en) 2014-07-30
TW201346247A (en) 2013-11-16
JP2013117615A (en) 2013-06-13

Similar Documents

Publication Publication Date Title
KR101368167B1 (en) Repair device and repair method
JP2010139693A (en) Laser repair device, laser repair method, and information processor
JP2009082966A (en) Regulating device, laser beam machining device, regulating method and regulating program
JP2013171425A (en) Image processing device
WO2012077497A1 (en) Defect inspecting apparatus
JP2007163450A (en) Multiple angle measuring system and method for display
WO2013081109A1 (en) Defect correction device and defect correction method
JP2009115566A (en) Apparatus for determining detect position of panel
JP2008305667A (en) Charged particle beam device
US10276341B2 (en) Control method and control program for focused ion beam device
JP2007071835A (en) Device, method, and program for generating part program for image measuring device
JP4987323B2 (en) Color filter defect correcting apparatus and color filter defect correcting method
JP6184746B2 (en) Defect detection apparatus, defect correction apparatus, and defect detection method
JP4880380B2 (en) Substrate defect correcting apparatus and substrate defect correcting method
JP5015552B2 (en) Pattern correction device
JP6169330B2 (en) Pattern drawing apparatus and pattern drawing method
JP2005181250A (en) Method and device for inspecting liquid crystal display panel
JP5077887B2 (en) Color filter defect correcting method and color filter defect correcting apparatus
KR101665764B1 (en) Drawing apparatus, substrate processing system and drawing method
KR100859533B1 (en) Position calibration method of display panel
JP5099689B2 (en) Color filter defect correcting apparatus and color filter defect correcting method
JP5691264B2 (en) Exposure equipment
KR20220018974A (en) laser correction method, laser correction device
JP2008015472A (en) Device and method for correcting defect of color filter
JP2008135423A (en) Contour detector, positioning apparatus, pattern-drawing device, and contour detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853731

Country of ref document: EP

Kind code of ref document: A1