WO2013080777A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2013080777A1
WO2013080777A1 PCT/JP2012/079159 JP2012079159W WO2013080777A1 WO 2013080777 A1 WO2013080777 A1 WO 2013080777A1 JP 2012079159 W JP2012079159 W JP 2012079159W WO 2013080777 A1 WO2013080777 A1 WO 2013080777A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
sub
crystal display
display device
Prior art date
Application number
PCT/JP2012/079159
Other languages
English (en)
French (fr)
Inventor
伸一 平戸
敢 三宅
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/361,352 priority Critical patent/US9817277B2/en
Priority to JP2013547085A priority patent/JP5759565B2/ja
Priority to CN201280059192.2A priority patent/CN103959154B/zh
Publication of WO2013080777A1 publication Critical patent/WO2013080777A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13373Disclination line; Reverse tilt
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133738Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homogeneous alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device suitable for a liquid crystal display device including a horizontal alignment type liquid crystal layer, a sub-spacer, and a horizontal light alignment film.
  • Liquid crystal display controls light transmission / blocking (display on / off) by controlling the orientation of birefringent liquid crystal molecules (liquid crystal layer) sandwiched between two substrates.
  • Examples of a method for aligning liquid crystal molecules include a method in which an alignment film that has been subjected to an alignment treatment such as a rubbing method or a photo-alignment method is provided on the surface of the substrate that contacts the liquid crystal layer.
  • the alignment control structure can control the alignment of the liquid crystal when a voltage is applied to a plurality of different directions, and thus has better viewing angle characteristics than, for example, the conventional TN mode.
  • the thickness (cell gap) of the liquid crystal layer is kept uniform. If the cell gap is uneven, display unevenness may occur.
  • a method of keeping the cell gap uniform a method of forming a spacer on a substrate is known. Specifically, as the above-described alignment regulating structure and spacer, for example, a negative-type photoresist is used to form a stable photo spacer and an alignment control protrusion that does not have a recess on the upper surface. A photomask that can be used is known (see, for example, Patent Document 1).
  • the present inventors have been researching a photo-alignment technique that can control the liquid crystal alignment azimuth when a voltage is applied to a plurality of azimuths without applying a rubbing treatment to the alignment film, and can obtain excellent viewing angle characteristics.
  • the photo-alignment technique is a technique that uses an active material for light as the material of the alignment film, and irradiates the formed film with light rays such as ultraviolet rays, thereby generating alignment regulating force in the alignment film.
  • the alignment process can be performed in a non-contact manner with respect to the film surface, so that generation of dirt, dust, and the like during the alignment process can be suppressed.
  • the rubbing treatment it can be suitably applied to a large-sized panel, and the manufacturing yield can be improved.
  • the alignment film formed by the photo-alignment technique is also referred to as a photo-alignment film.
  • the current photo-alignment technology is mainly introduced for mass production of TVs using a vertical alignment film such as VA mode, and is still introduced for mass production of TVs using a horizontal alignment film such as IPS mode.
  • a horizontal alignment film (hereinafter also referred to as a horizontal photo alignment film) formed by a photo-alignment technique has a weak alignment regulating force on liquid crystal molecules, and the liquid crystal molecules are uniformly regulated in the horizontal direction in the entire pixel. , The liquid crystal is easily affected by a force (disturbance) that attempts to align the liquid crystal in a direction different from the desired alignment direction. As a result, alignment defects of the liquid crystal as shown in FIG. May cause omission.
  • such a thread-like alignment defect is also referred to as disclination.
  • a spacer (hereinafter also referred to as a main spacer) for keeping the cell gap uniform is usually provided on one of a pair of substrates, and has an end portion on the other substrate opposed to each other under atmospheric pressure.
  • the sub-spacer is provided on one of the pair of substrates and is not in contact with the opposite substrate under atmospheric pressure.
  • FIG. 15 is a schematic cross-sectional view showing a state in which disclination occurs in the liquid crystal display device according to the comparative embodiment studied by the present inventors.
  • FIG. 16 is a schematic plan view showing a state in which the disclination is generated in the horizontal direction in the liquid crystal display device according to the comparative embodiment examined by the present inventors, and FIG. In the liquid crystal display device which concerns on the comparative form which they examined, it is a plane schematic diagram which shows a mode when the disclination has generate
  • 16 and 17 are schematic views of the color filter substrate side to the liquid crystal interface as seen through, except for members not related to the occurrence of disclination. As shown in FIG.
  • the liquid crystal display device includes a color filter substrate 110 and a horizontal alignment type liquid crystal layer 130 sandwiched between active matrix substrates 120.
  • the liquid crystal layer 130 includes liquid crystal molecules 108.
  • the color filter substrate 110 includes an insulating substrate 102, and a color filter (not shown) and a BM 104 are formed on the surface of the insulating substrate 102 on the liquid crystal layer 130 side.
  • a sub-spacer 105 and a main spacer (not shown) are formed on the BM 104.
  • a horizontal light alignment film 107 is formed so as to cover these members.
  • the horizontal photo-alignment film 107 may be provided on the sub-spacer 105 as shown in FIG.
  • a linearly polarizing plate 112 is provided on the surface of the insulating substrate 102 opposite to the liquid crystal layer 130.
  • the active matrix substrate 120 includes an insulating substrate 101. On the surface of the insulating substrate 101 on the liquid crystal layer 130 side, a pixel electrode (not shown), a common electrode 103, and a horizontal alignment film 106 covering these members are provided. Is formed.
  • a linearly polarizing plate 111 is provided on the surface of the insulating substrate 101 opposite to the liquid crystal layer 130.
  • the sub-spacer 105 included in the liquid crystal display device according to the comparative example has a protruding shape (convex shape) as a whole, but the tip thereof has a depression (recessed portion).
  • the inventors have found.
  • the liquid crystal molecules 108 are not aligned horizontally with respect to the substrate, but are aligned so as to draw an arc along the shape of the recess.
  • an alignment defect occurs in which the liquid crystal molecules 108 are rounded and aligned so as to draw a sphere. It is considered that the liquid crystal molecules 108 that are aligned in such a manner become the core of disclination.
  • FIGS. 16 and 17 show the case where the direction connecting the adjacent sub-spacers 105 (the horizontal direction in FIGS. 16 and 17) is parallel to the initial alignment direction of the liquid crystal molecules 108, but both directions are orthogonal to each other. Even in this case, disclination similarly occurs.
  • the present invention has been made in view of the above-described situation, and is a liquid crystal display device including a horizontal alignment type liquid crystal layer, a sub-spacer, and a photo alignment film, which can suppress the occurrence of disclination.
  • the object is to provide a display device.
  • the present inventors have made various studies on a liquid crystal display device that includes a horizontal alignment type liquid crystal layer, a sub-spacer, and a photo-alignment film, and can suppress the occurrence of disclination.
  • a liquid crystal display device that includes a horizontal alignment type liquid crystal layer, a sub-spacer, and a photo-alignment film, and can suppress the occurrence of disclination.
  • the tip portion of the sub-spacer has a concave portion, and disclination occurs due to the disorder of orientation generated in the concave portion. I found. Therefore, as a result of further intensive studies on the shape of the sub-spacer, the thickness of the sub-spacer increases monotonously from one end of the sub-spacer to the other end, and then decreases monotonically.
  • one aspect of the present invention includes a pair of substrates facing each other and a horizontal alignment type liquid crystal layer provided between the pair of substrates, and at least one of the pair of substrates includes a photo-alignment film.
  • One of the pair of substrates includes a plurality of sub-spacers, and the plurality of sub-spacers are not in contact with the opposing substrate under atmospheric pressure, and in a cross section of each of the plurality of sub-spacers, The thickness of each of the plurality of sub-spacers increases monotonically from one end to the other end of the sub-spacer and then monotonously decreases (hereinafter also referred to as “first liquid crystal display device of the present invention”). .)
  • another aspect of the present invention includes a pair of substrates facing each other and a horizontal alignment type liquid crystal layer provided between the pair of substrates, and at least one of the pair of substrates is a photo-alignment film
  • One of the pair of substrates includes a plurality of sub-spacers, and the plurality of sub-spacers are not in contact with the opposing substrate under atmospheric pressure, and in a cross section of each of the plurality of sub-spacers.
  • the thickness of each of the plurality of sub-spacers increases monotonously from one end of the sub-spacer to the other end, then decreases monotonically from the first point, and then monotonously increases from the second point.
  • the liquid crystal display device (hereinafter referred to as “second liquid of the present invention”). Also referred to as a display device ".) A.
  • each of the pair of substrates includes an insulating substrate and a member provided on the insulating substrate, and usually one of them is active.
  • the matrix substrate the other functions as a color filter substrate.
  • the cross section is a cross section perpendicular to the substrate on which the plurality of sub-spacers are provided, and preferably passes through the center of the sub-spacer.
  • at least one cross section in which the thickness of the sub-spacer changes as described above may be provided for each sub-spacer, and the number is not particularly limited.
  • the thickness of each sub-spacer may change as described above in two or more cross sections intersecting each other.
  • the thickness of the sub-spacer monotonously increases or monotonously decreases as follows.
  • an orthogonal coordinate system is introduced on the cross section, the x-axis is set with the right direction as a positive direction in a direction parallel to the substrate on which the plurality of sub-spacers are provided, and a direction perpendicular to the x-axis
  • the z-axis is set with the upward direction (direction toward the liquid crystal layer) as a positive direction.
  • the coordinates of an arbitrary point on the outline of the sub-spacer are represented by (x, z).
  • each of the plurality of sub-spacers is usually a projection shape (convex shape) having no recess.
  • the protrusion shape may have a portion formed flat in a part thereof.
  • Patent Document 1 describes an alignment control protrusion in which no recess is formed on the upper surface.
  • the invention described in Patent Document 1 solves a problem related to the alignment control protrusion.
  • the disclination nucleus is likely to be generated depending on the shape of the sub-spacer.
  • Patent Document 1 has no description or suggestion.
  • the liquid crystal layer includes liquid crystal molecules.
  • the liquid crystal molecules may be one type or a mixture of a plurality of types of liquid crystal molecules.
  • the liquid crystal layer may be divided into a plurality of liquid crystals. It can be a mixture of molecules.
  • the liquid crystal molecules contained in the liquid crystal layer may be either one having positive dielectric anisotropy (positive type) or one having negative dielectric anisotropy (negative type).
  • the horizontal alignment type liquid crystal layer contains liquid crystal molecules whose alignment is controlled substantially horizontally by a photo alignment film with respect to the substrate surface when no voltage is applied. It is a liquid crystal layer. Therefore, in the first and second liquid crystal display devices of the present invention, the photo-alignment film is a horizontal photo-alignment film.
  • the pretilt angle of the liquid crystal layer is usually 0 ° or more and 0.5 ° or less. When a horizontal alignment film that has been subjected to alignment treatment by rubbing is used, the pretilt angle of the liquid crystal layer is usually 0.5 ° or more and 5 ° or less.
  • the first and second liquid crystal display devices of the present invention are not particularly limited by other components as long as such components are formed as essential.
  • first and second liquid crystal display devices of the present invention will be described.
  • Various forms of the first and second liquid crystal display devices of the present invention can be combined as appropriate.
  • the first and second liquid crystal display devices of the present invention further comprise a polymer layer formed by polymerizing a monomer added to the liquid crystal layer on the liquid crystal layer side of the photo-alignment film and having an alignment regulating force.
  • the form (hereinafter also referred to as the first form) is preferable. Since the horizontal light alignment film has a weak alignment regulating force, there is a possibility that image sticking may occur remarkably. However, by forming a polymer layer having the alignment regulating force, the occurrence of image sticking can be suppressed. Note that image sticking is a phenomenon in which brightness is different between a portion where voltage is continuously applied and a portion where voltage is not applied after the same voltage is continuously applied to the liquid crystal cell for a certain period of time.
  • the disclination may be fixed by the polymer layer. According to the present invention, the disclination is not generated. Therefore, even if the polymer layer is formed, the disclination is hardly fixed.
  • a technique for stabilizing the alignment using a polymer is also referred to as a PSA (Polymer Sustained Alignment) technique.
  • the polymer layer is formed by polymerizing monomers added to the liquid crystal layer.
  • the polymer layer usually controls the alignment of liquid crystal molecules adjacent to the polymer layer.
  • a polymerizable functional group of a monomer Among these, an acrylate group and / or a methacrylate group are preferable.
  • Such a polymerizable functional group has a high radical generation probability and is effective for shortening the manufacturing tact time.
  • the monomer preferably has at least two polymerizable functional groups. This is because the greater the number of polymerizable functional groups, the higher the reaction efficiency. Furthermore, the preferable upper limit of the polymerizable functional group in the monomer is four.
  • the monomer is preferably a monomer that initiates a polymerization reaction (photopolymerization) by light irradiation, or a monomer that initiates a polymerization reaction (thermal polymerization) by heating. That is, the polymer layer is preferably formed by photopolymerization or thermal polymerization. In particular, photopolymerization is preferable, whereby the polymerization reaction can be easily started at room temperature.
  • the light used for photopolymerization is preferably ultraviolet light, visible light, or both.
  • the polymerization reaction for forming the polymer layer is not particularly limited, and may be sequential polymerization in which a bifunctional monomer gradually increases in molecular weight while creating a new bond, It may be a chain polymerization in which monomers are successively bonded to active species generated from a catalyst (initiator) and chain-grow.
  • sequential polymerization include polycondensation and polyaddition.
  • chain polymerization include radical polymerization, ionic polymerization (anionic polymerization, cationic polymerization, etc.) and the like.
  • the polymer layer can improve the alignment regulating force of the horizontal light alignment film that has been subjected to the alignment treatment, and can reduce the occurrence of display burn-in. Further, the polymer layer is formed by applying a voltage to the liquid crystal layer or applying a voltage lower than a threshold voltage to polymerize the monomer in a state where the liquid crystal molecules are pretilt aligned, thereby forming a polymer layer. Is formed in a shape having a pretilt alignment with respect to the liquid crystal molecules.
  • the substrate on which the plurality of sub-spacers are provided further includes a plurality of main spacers, and the plurality of main spacers are in contact with opposing substrates under atmospheric pressure, and each bottom surface of the plurality of sub-spacers.
  • the diameter of the (circular bottom surface) is preferably 80% or more of the diameter of each bottom surface (circular bottom surface) of the plurality of main spacers.
  • the diameter of the sub spacer is set to about 75% with respect to the main spacer.
  • the upper limit of the ratio of the two bottom surfaces is not particularly limited.
  • the diameter of each bottom surface (circular bottom surface) of each of the plurality of sub-spacers is equal to the bottom surface (circular bottom surface) of each of the plurality of main spacers. ) Is set to 100% or less of the diameter. This is because if the ratio exceeds 100%, the aperture ratio decreases.
  • the alignment film material forming the photo alignment film preferably contains at least one photoreactive functional group selected from the group consisting of a chalcone group, a coumarin group, a cinnamate group, an azobenzene group, and a stilbene group. These photoreactive functional groups can be formed relatively easily on the side chain of the polymer, and are also excellent in reactivity during photoalignment treatment.
  • a modifying group suitably in the said photoreactive functional group.
  • the benzene ring of the cinnamate group is modified with at least one group selected from the group consisting of fluorine, alkyl group, alkoxy group, benzyl group, phenoxy group, benzoyl group, benzoate group, and benzoyloxy group.
  • a polymer serving as an alignment film material may be formed using a derivative of a monomer having the photoreactive functional group and a derivative of a monomer having a photoreactive functional group having the modifying group.
  • the alignment film material having the modifying group or the alignment film material using the derivative can improve electrical characteristics and alignment stability.
  • the alignment film material forming the photo-alignment film preferably has a form containing a cyclobutane skeleton in a repeating unit (hereinafter also referred to as a second form).
  • An alignment film material containing a cyclobutane skeleton exhibits an alignment control ability by a photodecomposition reaction, but usually the light energy (for example, ultraviolet rays) irradiated to the alignment film material during the alignment process increases, so that an alignment film is formed.
  • the main chain of the structure and the color filter etc. are also photolyzed, and there is a risk that long-term reliability may be impaired.
  • the polymer layer can assist the alignment control ability of the photo-alignment film, so that the light energy of the light irradiated to the alignment film material during the alignment process can be relatively reduced.
  • the alignment film itself, the color filter, and the like can be prevented from being damaged by light irradiation.
  • light having a wavelength of about 254 nm is used for reacting (orienting) the photodegradable alignment film material, but in order to photopolymerize the monomer added to the liquid crystal layer in the PSA technology, light of 313 nm or more is used. Is available.
  • the light irradiation for photopolymerizing the monomer does not deteriorate the alignment control ability of the photo-alignment film that has been irradiated with light before that.
  • the alignment film material containing the photoreactive functional group in order to react (align) the alignment film material containing the photoreactive functional group, light around 313 nm is usually used. Therefore, when using the photo-alignment film material containing the photoreactive functional group, it is necessary to pay attention to irradiation energy or the like so that the photo-alignment film itself does not deteriorate during light irradiation for photopolymerizing the monomer. .
  • the photodegradable photoalignment film material having a cyclobutane skeleton is more advantageous than the photoalignment film material containing the photoreactive functional group.
  • the second form is preferably combined with the first form. However, even when the second form is not combined with the first form, it is possible to achieve the same degree of disclination suppression effect as when the photoreactive functional group is used. Significance is great.
  • the photo-alignment film may be a horizontal photo-alignment film irradiated with light (for example, ultraviolet rays) from the outside of the liquid crystal cell.
  • light for example, ultraviolet rays
  • the photo-alignment film is formed by photo-alignment processing and the polymer layer is formed by photo-polymerization, these are formed simultaneously using the same light. It is preferable. That is, it is preferable to form a polymer layer by irradiating light (for example, ultraviolet rays) from the outside of the liquid crystal cell to perform the alignment treatment of the photo-alignment film and simultaneously photopolymerize the monomer in the liquid crystal layer. Thereby, a liquid crystal display device with high manufacturing efficiency is obtained.
  • the photo-alignment film preferably has a main chain structure of at least one polymer selected from the group consisting of polyimide, polyamic acid, polymaleimide, and polysiloxane.
  • the photo-alignment films having these main chain structures (especially photo-alignment films mainly composed of these polymers) have high stability against heat, light, chemicals, etc., and are advantageous in that the alignment films are not easily deteriorated.
  • the substrate including the photo-alignment film may be any of the pair of substrates. Therefore, in this case, of the pair of substrates, the substrate that does not include the plurality of sub-spacers may or may not include the photo-alignment film.
  • each of the pair of substrates preferably includes a photo-alignment film.
  • both substrates each include a photo-alignment film, various items such as materials and alignment processing conditions can be appropriately set in each photo-alignment film, but these items are usually common to both photo-alignment films. .
  • the display modes of the first and second liquid crystal display devices of the present invention are preferably IPS (In-Plane Switching) mode or FFS (Fringe Field Switching) mode.
  • the present invention is suitable for a display mode that generates such a lateral electric field.
  • An IPS mode liquid crystal display device is usually a horizontal electric field type liquid crystal display device in which two types of electrodes are provided on one of a pair of substrates so as to face each other when the substrate main surface is viewed in plan view.
  • an FFS mode liquid crystal display device usually has a planar electrode on one of a pair of substrates and a slit electrode (a slit formed in a separate layer through the planar electrode and an insulating layer). Fringe electric field type liquid crystal display device. Both liquid crystal display devices will be described in more detail in the embodiment.
  • a liquid crystal display device in FLC (Ferroelectrics Liquid Crystal) mode or AFLC (Anti-Ferroelectrics Liquid Crystal) mode has a wide viewing angle and a high response speed, and research and development are in progress.
  • FLC Fluoroelectrics Liquid Crystal
  • AFLC Anti-Ferroelectrics Liquid Crystal
  • suitable display modes of the first and second liquid crystal display devices of the present invention include FLC mode and AFLC mode.
  • One of the pair of substrates preferably includes a color filter.
  • the substrate including the color filter may be any one of the pair of substrates. Therefore, the substrate including the plurality of sub-spacers may or may not include a color filter.
  • One of the pair of substrates preferably includes an IGZO-TFT.
  • the substrate including the IGZO-TFT may be any of the pair of substrates. Therefore, the substrate including the plurality of sub-spacers may or may not include an IGZO-TFT.
  • the IGZO-TFT means a TFT in which the semiconductor layer material included in the TFT is IGZO (indium-gallium-zinc-oxygen).
  • liquid crystal display device provided with the horizontal alignment type liquid crystal layer, the subspacer, and the photo-alignment film
  • the liquid crystal display device which can suppress generation
  • FIG. 3 is a schematic plan view illustrating a color filter substrate included in the liquid crystal display device according to Embodiment 1.
  • FIG. It is a cross-sectional schematic diagram of the sub-spacer with which the liquid crystal display device which concerns on Embodiment 1 is provided, and the sub-spacer with which the liquid crystal display device which concerns on a comparison form is provided.
  • the liquid crystal display device according to Embodiment 1 it is a schematic plan view in which two sub-spacers and their periphery are enlarged.
  • FIG. 2 is a schematic cross-sectional view of the entire liquid crystal display device at a portion corresponding to a line segment B1-B2 in FIG. 3 is a schematic plan view of an active matrix substrate included in the IPS mode liquid crystal display device according to Embodiment 1.
  • FIG. 3 is a schematic plan view of an active matrix substrate included in the FFS mode liquid crystal display device according to Embodiment 1.
  • FIG. FIGS. 4A to 4C are schematic views illustrating examples of cross-sectional shapes of sub-spacers included in the liquid crystal display device according to the first embodiment.
  • (A)-(c) is a schematic diagram which shows the other example of the cross-sectional shape of the sub-spacer with which the liquid crystal display device which concerns on Embodiment 1 is provided.
  • (A) And (b) is a schematic diagram which shows the further another example of the cross-sectional shape of the sub-spacer with which the liquid crystal display device which concerns on Embodiment 1 is provided.
  • FIG. 6 is another schematic cross-sectional view of a sub-spacer provided in the liquid crystal display device according to Embodiment 2.
  • FIG. It is a graph which shows the relationship between angle (theta) and the incidence rate of disclination. It is a photograph of the liquid crystal display device in which disclination has occurred.
  • FIG. 1 is a schematic plan view illustrating a color filter substrate included in the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of a sub-spacer included in the liquid crystal display device according to the first embodiment and a sub-spacer included in the liquid crystal display device according to the comparative example.
  • the cross-sectional schematic diagram of the sub-spacer included in the liquid crystal display device according to Embodiment 1 in FIG. 2 corresponds to the cross-sectional schematic diagram along line segment A1-A2 in FIG. FIG.
  • FIG. 3 is a schematic plan view in which the two sub-spacers and the periphery thereof are enlarged in the liquid crystal display device according to the first embodiment.
  • FIG. 4 is a schematic cross-sectional view of the entire liquid crystal display device at a portion corresponding to the line segment B1-B2 in FIG.
  • the color filter substrate included in the liquid crystal display device includes any one of the red color filter 13R, the blue color filter 13B, and the green color filter 13G for each subpixel. Is done.
  • a black matrix (BM) 4 is disposed on the boundary of the sub-pixels, and a sub-spacer 5 and a main spacer 15 are disposed on the BM 4.
  • the sub-spacer 5 is arranged for almost all sub-pixels except for some sub-pixels, and the main spacer 15 is arranged for the sub-pixel where the sub-spacer 5 is not arranged.
  • the sub-spacers 5 are arranged so as to occupy more than the main spacers 15.
  • the sub-spacer 5 is not in contact with the opposing active matrix substrate under atmospheric pressure, while the main spacer 15 is in contact with the opposing active matrix substrate under atmospheric pressure.
  • the sub-spacer 105 included in the liquid crystal display device according to the comparative example has a depression (concave portion) at the tip.
  • the sub-spacer 5 in the cross section of the sub-spacer 5 (usually a cross-section passing through the center of the sub-spacer 5) and perpendicular to the color filter substrate (substrate main surface), the sub-spacer 5 extends from one end 5a.
  • the thickness (height at the position on the contour line) monotonously increases toward the other end 5b and then monotonously decreases. That is, the sub-spacer 5 does not have a recess at the tip.
  • the sub-spacer 5 is formed in a rounded convex shape.
  • a liquid crystal display device including a substrate having a sub-spacer in which a tip portion does not include a recess and the tip portion is formed in a rounded convex shape is also one aspect of the present invention.
  • FIG. 3 shows a case where the direction connecting the adjacent sub-spacers 5 (the left-right direction in FIG. 3) is parallel to the initial alignment direction of the liquid crystal molecules 8.
  • the relationship between the direction connecting the spacers 5 and the initial alignment direction of the liquid crystal molecules 8 is not particularly limited. For example, the occurrence of disclination is suppressed even when both directions are orthogonal to each other or when both directions are oblique to each other. Can do.
  • the liquid crystal display device according to Embodiment 1 includes a color filter substrate 10 and a horizontally aligned liquid crystal layer 30 sandwiched between an active matrix substrate 20 (corresponding to the pair of substrates).
  • the liquid crystal layer 30 includes liquid crystal molecules 8 (nematic liquid crystal).
  • the color filter substrate 10 includes a transparent insulating substrate 2 such as a glass substrate, and a color filter (not shown in FIG. 4) and BM4 are formed on the surface of the insulating substrate 2 on the liquid crystal layer 30 side. .
  • a sub-spacer 5 and a main spacer are formed on the BM 4.
  • a horizontal light alignment film 7 is formed so as to cover these members.
  • the horizontal photo-alignment film 7 may be provided on the sub-spacer 5 as shown in FIG. 4, but is usually not formed on the sub-spacer 5 or is formed on the sub-spacer 5 by a very small amount. Is done.
  • a linearly polarizing plate 12 is provided on the surface of the insulating substrate 2 opposite to the liquid crystal layer 30.
  • the active matrix substrate 20 includes a transparent insulating substrate 1 such as a glass substrate. On the surface of the insulating substrate 1 on the liquid crystal layer 30 side, thin film transistors (TFTs not shown in FIG. 4) that function as various wirings and switching elements. ), A pixel electrode (not shown in FIG.
  • a linearly polarizing plate 11 is provided on the surface of the insulating substrate 1 opposite to the liquid crystal layer 30.
  • a retardation plate may be further arranged to constitute a circularly polarizing plate.
  • the liquid crystal display device may be in the form of a color filter on array (Color ⁇ ⁇ ⁇ Filter On Array) including color filters on the active matrix substrate 20.
  • the liquid crystal display device according to the first embodiment may be a monochrome display. In that case, it is not necessary to form a color filter.
  • the sub-spacer 5 and the main spacer 15 may be formed on the active matrix substrate 20 instead of the color filter substrate 10.
  • FIG. 5 is a schematic plan view of an active matrix substrate included in the IPS mode liquid crystal display device according to the first embodiment.
  • FIG. 6 is a schematic plan view of the active matrix substrate included in the FFS mode liquid crystal display device according to the first embodiment.
  • FIG. 5 for example, in the IPS mode, the pixel electrode 23 and the common electrode 3 are comb electrodes, and are formed in the same or different layers. Further, as shown in FIG. 6, in the FFS mode, the pixel electrode 23 and the common electrode 3 are formed in different layers via an insulating layer, and are formed on one of the pixel electrode 23 and the common electrode 3.
  • An opening is formed, and the other electrode is formed at a position covering the opening.
  • One electrode in which an opening is formed is disposed in the upper layer, and the other electrode is disposed in the lower layer.
  • an opening is formed in the pixel electrode 23, and the common electrode 3 is formed so as to cover a display region including the opening.
  • the opening is preferably a slit.
  • the display mode of the liquid crystal display device according to the first embodiment is not particularly limited to the IPS mode and the FFS mode, and can be applied to a known mode using a horizontal alignment film.
  • the FLC mode and the AFLC mode are also suitable. It is.
  • the active matrix substrate 20 includes a thin film transistor (TFT) and various wirings (for example, a gate bus line, a source bus line, and a storage capacitor wiring).
  • TFT thin film transistor
  • various wirings for example, a gate bus line, a source bus line, and a storage capacitor wiring.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • the material of the semiconductor layer included in the TFT included in the active matrix substrate 20 is not particularly limited.
  • amorphous silicon, polysilicon, or the like can be used, but IGZO (indium-gallium-zinc-oxygen) or the like has high mobility. It is preferable to use an oxide semiconductor.
  • IGZO indium-gallium-zinc-oxygen
  • the size of the TFT element can be reduced as compared with the case of using amorphous silicon, which is suitable for a high-definition liquid crystal display.
  • IGZO is preferably used in a method that requires a high-speed response such as a field sequential color method.
  • the formation method of the sub-spacer 5 according to the first embodiment is not particularly limited, but is usually formed using a photoresist.
  • the type of the photoresist is not particularly limited and may be either a positive type photoresist or a negative type photoresist.
  • a negative photoresist is preferably used.
  • the size of the sub-spacer changes if it changes. Further, it has been found that when the size (particularly volume) of the sub-spacer relative to the main spacer is small, the sub-spacer shrinks due to post-baking, and a recess is likely to occur. Therefore, in order to suppress the formation of the recess, it is important that the size (particularly the volume) of the sub-spacer with respect to the main spacer does not become too small.
  • a method of changing the relative size (especially volume) of the sub-spacer there is a method of changing exposure conditions such as exposure amount, intensity of light applied to the mask, proximity gap, and transmittance of the halftone mask.
  • Patent Document 1 describes that a halftone mask having a transmittance of 10 to 15% is used when forming the alignment control protrusions with a negative photoresist.
  • the transmittance of the halftone mask used for forming the sub-spacer 5 is set to 12 to 18% and the transmission intensity is increased, whereby the exposure amount can be increased and the depressed shape can be improved.
  • the sub-spacer 5 is fine, it is difficult to form the horizontal light alignment film 7 especially on the front end portion thereof, and it is difficult to restrict light distribution particularly at the front end portion. Therefore, from the viewpoint of suppressing disclination, it is preferable to reduce the area of the upper base of the sub-spacer 5, that is, to make the shape of the sub-spacer 5 close to a convex shape.
  • the shape of the bottom surface of the sub-spacer 5 is circular, but the shape of the bottom surface of the sub-spacer 5 is not particularly limited to a circle, and for example, a rhombus or octagon Such a polygon may be used, or an ellipse may be used.
  • the absolute size of the bottom surface of the sub-spacer 5 is not particularly limited, but the relative size with respect to the main spacer 15 is preferably set as follows.
  • the ratio of the diameter of the bottom surface of the sub-spacer 5 to the diameter of the bottom surface of the main spacer 15 is from the viewpoint of effectively suppressing the occurrence of disclination. It is preferably set to 80% or more, and is preferably set to 100% or less from the viewpoint of preventing a decrease in the aperture ratio.
  • the thickness (height) of the sub-spacer 5 is not particularly limited, but the difference in height between the main spacer 15 and the sub-spacer 5 is usually 0.2 ⁇ m or more and 1 ⁇ m or less, and preferably 0.6 ⁇ m.
  • FIGS. 7A to 7C are schematic views showing examples of the cross-sectional shape of the sub-spacer provided in the liquid crystal display device according to the first embodiment.
  • the sub-spacer 5 according to the first embodiment is not particularly limited to the shape shown in FIG. 2 as long as the thickness (position on the contour line) monotonously increases and then monotonously decreases when viewed in cross section.
  • a shape having a step as shown in FIG. 7A, a conical shape as shown in FIG. 7B, or a shape shown in FIG. As shown in c) it may be cylindrical.
  • the tip of the sub-spacer 5 is rounded in a spherical shape.
  • the sub-spacer 5 may be partially flat.
  • the sub-spacer 5 may have a trapezoidal cross-sectional shape, or FIG. ),
  • the shape may be a pyramid including one or more steps, or may be a cylindrical shape with a flat tip as shown in FIG.
  • the shapes shown in FIGS. 2, 7A to 8C, and 8A to 8C are all symmetrical when viewed in cross section.
  • the shape when viewed in cross-section, the shape may be asymmetrical and laterally asymmetric. Any of the shapes shown in FIGS. 7 to 9 can suppress the occurrence of disclination, similarly to the shape shown in FIG.
  • the interval at which the sub-spacers 5 are arranged is not particularly limited, and can be appropriately adjusted according to the design of the liquid crystal display device, such as the size of the pixels and sub-pixels. If the interval between the sub-spacers 5 is increased, a large disclination is likely to occur, and disclinations are confirmed in a plurality of pixels straddling the sub-spacers, which causes a problem of deterioration in display quality. It will be more prominent. However, in the present embodiment, the occurrence of disclination can be suppressed even when the interval at which the sub-spacers 5 are arranged is long.
  • the horizontal light alignment films 6 and 7 are formed by applying a coating solution obtained by diluting an alignment film material with a good solvent or a poor solvent to a substrate by an inkjet method or the like to form a coating film having a thickness of about 1000 to 1500 mm. For example, it is formed by irradiating polarized ultraviolet rays as an alignment treatment after drying and baking.
  • the horizontal light alignment film 7 is It is not formed on the sub-spacer 5 or a very small amount is formed on the sub-spacer 5.
  • the horizontal light alignment film 7 may be formed on the sub-spacer 5.
  • an alignment film material having a photoreactive functional group is used as the alignment film material.
  • the photoreactive functional group is at least one functional group selected from the group consisting of a chalcone group, a coumarin group, a cinnamate group, an azobenzene group, and a stilbene group.
  • an alignment film material containing a cyclobutane skeleton as a repeating unit may be used. In this way, an isomerization type, dimerization type, realignment type, or decomposition type alignment film material is used. Regardless of which material is used, the pretilt angle of the liquid crystal layer 30 is approximately the same (for example, 0 °), so that the same degree of disclination suppression effect can be achieved.
  • the present inventors have examined whether or not disclination can be suppressed by increasing the alignment regulating force of the alignment film in the liquid crystal display device according to the comparative example as shown in FIGS. At this time, a sufficient effect was not obtained. This is because, particularly in the vicinity of the tip of the sub-spacer, the solution (coating solution) containing the alignment film material applied by inkjet hardly flows and flows around the bottom of the sub-spacer. It was confirmed by observation with an electron microscope that the alignment film was difficult to be formed and sufficient alignment regulating force could not be obtained. Therefore, it can be said that improving the shape of the sub-spacer is effective in suppressing disclination.
  • the liquid crystal display device may further include a polymer layer having an alignment regulating force on at least one of the horizontal light alignment films 6 and 7.
  • the polymer layer is preferably formed on the entire surface of the horizontal photo-alignment films 6 and 7, and more preferably has a substantially uniform thickness and is densely formed. Further, the polymer layer may be formed in a spot shape on the horizontal photo-alignment films 6 and 7, that is, the polymer layer may be discretely formed on the surfaces of the horizontal photo-alignment films 6 and 7. Sometimes, the alignment regulating force of the horizontal light alignment films 6 and 7 can be kept uniform, and the burn-in can be suppressed. Furthermore, a polymer layer may be formed on the entire liquid crystal layer 30 after a polymer layer is formed on at least a part of the surface of the horizontal light alignment films 6 and 7.
  • a liquid crystal composition containing a liquid crystal material and one or more monomers is injected between the active matrix substrate 20 and the color filter substrate 10.
  • a polarizing plate is attached to each of the active matrix substrate 20 and the color filter substrate 10 to produce a liquid crystal display panel, and a backlight is provided on the side opposite to the display surface side of the liquid crystal display panel.
  • the monomer is polymerized by irradiating the liquid crystal layer 30 with a certain amount of visible light emitted from the backlight.
  • the light used in the monomer polymerization step is not particularly limited, and is appropriately selected depending on the type of monomer.
  • it may be ultraviolet light or visible light.
  • visible light when visible light is used, deterioration or damage of constituent members such as a liquid crystal layer and an alignment film can be greatly reduced.
  • the monomer can be polymerized even after the polarizing plate and the backlight are provided on the liquid crystal display panel, so a new facility is prepared as in the case of irradiating ultraviolet rays. This is not necessary and greatly contributes to the efficiency of the manufacturing process and cost reduction.
  • the monomer used suitably in order to form the said polymer layer is explained in full detail.
  • the monomer used for polymer layer formation can be confirmed by confirming the molecular structure of the monomer unit in the polymer layer of this embodiment.
  • the polymer layer is preferably formed by polymerization of a monomer having a monofunctional or polyfunctional polymerizable group having one or more ring structures.
  • a monomer having a monofunctional or polyfunctional polymerizable group having one or more ring structures examples include a monomer represented by the following chemical formula (1).
  • R 1 is —R 2 —Sp 1 —P 1 group, hydrogen atom, halogen atom, —CN group, —NO 2 group, —NCO group, —NCS group, —OCN group, —SCN Group, -SF 5 group, or a linear or branched alkyl group having 1 to 12 carbon atoms.
  • P 1 represents a polymerizable group.
  • Sp 1 represents a linear, branched or cyclic alkylene group or alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
  • Hydrogen atoms R 1 has may be substituted by a fluorine atom or a chlorine atom.
  • the —CH 2 — group of R 1 is an —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group unless an oxygen atom and a sulfur atom are adjacent to each other.
  • —O—COO— group —OCH 2 — group, —CH 2 O— group, —SCH 2 — group, —CH 2 S— group, —N (CH 3 ) — group, —N (C 2 H 5 ) — Group, —N (C 3 H 7 ) — group, —N (C 4 H 9 ) — group, —CF 2 O— group, —OCF 2 — group, —CF 2 S— group, —SCF 2 — Group, —N (CF 3 ) — group, —CH 2 CH 2 — group, —CF 2 CH 2 — group, —CH 2 CF 2 — group, —CF 2 CF 2 — group, —CH ⁇ CH— group, It may be substituted with a —CF ⁇ CF— group, —C ⁇ C— group, —CH ⁇ CH—COO— group, or —OCO—CH ⁇ CH— group.
  • R 2 represents —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —O—COO— group, —OCH 2 — group, —CH 2 O— group, —SCH 2 — group, —CH 2 S— group, —N (CH 3 ) — group, —N (C 2 H 5 ) — group, —N (C 3 H 7 ) — group, —N (C 4 H 9 ) — group, —CF 2 O— group, —OCF 2 — group, —CF 2 S— group, —SCF 2 — group, —N (CF 3 ) — group, —CH 2 CH 2 — Group, —CF 2 CH 2 — group, —CH 2 CF 2 — group, —CF 2 CF 2 — group, —CH ⁇ CH— group, —CF ⁇ CF— group, —C ⁇ C— group, —CH ⁇ It
  • a 1 and A 2 are the same or different and each represents 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, naphthalene-1,4-diyl group, naphthalene-1,5-diyl group , Naphthalene-2,6-diyl group, 1,4-cyclohexylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group , Naphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, indane-1,3-diyl group, indane- 1,5-diyl group, indan-2,5-diyl group, phenanthrene-1,6-diyl group, phenanthrene-1,8
  • the —CH 2 — groups of A 1 and A 2 may be substituted with —O— groups or —S— groups as long as they are not adjacent to each other.
  • a hydrogen atom of A 1 and A 2 is substituted with a fluorine atom, a chlorine atom, a —CN group, or an alkyl group having 1 to 6 carbon atoms, an alkoxy group, an alkylcarbonyl group, an alkoxycarbonyl group, or an alkylcarbonyloxy group. It may be.
  • Z is the same or different and represents an —O— group, —S— group, —NH— group, —CO— group, —COO— group, —OCO— group, —O—COO— group, —OCH 2 — group.
  • m is 0, 1 or 2.
  • examples include monomers represented by the following chemical formulas (2-1) to (2-5).
  • P 1 are the same or different and each represents a polymerizable group.
  • Examples of P 1 include an acryloyloxy group, a methacryloyloxy group, a vinyl group, a vinyloxy group, an acryloylamino group, and a methacryloylamino group.
  • the hydrogen atom of the benzene ring and the condensed ring in the compounds represented by the chemical formulas (2-1) to (2-5) is a halogen atom, or a partial alkyl group or alkoxy group having 1 to 12 carbon atoms.
  • the hydrogen atom of the alkyl group or alkoxy group may be partially or completely substituted with a halogen atom.
  • the bonding position of P 1 to the benzene ring and condensed ring is not limited thereto.
  • the monomer represented by the chemical formula (1) is a monomer that is polymerized by irradiation with ultraviolet light.
  • the polymer layer in this embodiment may be formed by polymerizing a monomer that is polymerized by irradiation with visible light.
  • the monomer that is polymerized by irradiation with visible light may be a monomer that polymerizes another monomer.
  • the wavelength range of reaction differs from the monomer that polymerizes the other monomers, but, for example, polymerization of other monomers that undergo a chemical reaction upon irradiation with visible light and cannot be polymerized alone by irradiation with visible light Initiates and promotes self and also polymerizes itself.
  • Many monomers that are not polymerized by light irradiation such as existing visible light can be used as the material of the polymer layer by the monomer for polymerizing the other monomer.
  • the monomer for polymerizing the other monomer include monomers having a structure that generates radicals by irradiation with visible light.
  • a 3 and A 4 are the same or different and each represents a benzene ring, a biphenyl ring, or a linear or branched alkyl group or alkenyl group having 1 to 12 carbon atoms. At least one of A 3 and A 4 includes a —Sp 2 —P 2 group.
  • the hydrogen atoms of A 3 and A 4 are -Sp 2 -P 2 group, halogen atom, -CN group, -NO 2 group, -NCO group, -NCS group, -OCN group, -SCN group, -SF 5 Or a linear or branched alkyl group, alkenyl group or aralkyl group having 1 to 12 carbon atoms.
  • Two adjacent hydrogen atoms of A 3 and A 4 may be substituted with a linear or branched alkylene group or alkenylene group having 1 to 12 carbon atoms to form a cyclic structure.
  • the hydrogen atom of the alkyl group, alkenyl group, alkylene group, alkenylene group or aralkyl group of A 3 and A 4 may be substituted with a —Sp 2 —P 2 group.
  • the —CH 2 — group of the alkyl group, alkenyl group, alkylene group, alkenylene group or aralkyl group of A 3 and A 4 is an —O— group, —S—, unless an oxygen atom, a sulfur atom and a nitrogen atom are adjacent to each other.
  • P 2 represents a polymerizable group.
  • Sp 2 represents a linear, branched or cyclic alkylene group or alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
  • n 1 or 2.
  • a dotted line portion connecting A 3 and Y and a dotted line portion connecting A 4 and Y indicate that a bond via Y may exist between A 3 and A 4 .
  • Y represents a —CH 2 — group, —CH 2 CH 2 — group, —CH ⁇ CH— group, —O— group, —S— group, —NH— group, —N (CH 3 ) — group, —N (C 2 H 5 ) — group, —N (C 3 H 7 ) — group, —N (C 4 H 9 ) — group, —OCH 2 — group, —CH 2 O— group, —SCH 2 — group, —CH 2 S— group or a direct bond is represented.
  • examples include monomers represented by the following chemical formulas (4-1) to (4-8).
  • R 3 and R 4 are the same or different and represent a —Sp 2 —P 2 group, a hydrogen atom, a halogen atom, a —CN group, a —NO 2 group, — It represents an NCO group, —NCS group, —OCN group, —SCN group, —SF 5 group, or a linear or branched alkyl group having 1 to 12 carbon atoms, an aralkyl group or a phenyl group. At least one of R 3 and R 4 includes a —Sp 2 —P 2 group.
  • P 2 represents a polymerizable group.
  • Sp 2 represents a linear, branched or cyclic alkylene group or alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
  • R 3 and R 4 is a linear or branched alkyl group having 1 to 12 carbon atoms, an aralkyl group, or a phenyl group
  • the hydrogen atom that at least one of R 3 and R 4 has is ,
  • a fluorine atom, a chlorine atom or a —Sp 2 —P 2 group may be substituted.
  • the —CH 2 — group of R 3 and R 4 is an —O— group, —S— group, —NH— group, —CO— group, —COO— unless an oxygen atom, a sulfur atom and a nitrogen atom are adjacent to each other.
  • Examples of P 2 include an acryloyloxy group, a methacryloyloxy group, a vinyl group, a vinyloxy group, an acryloylamino group, and a methacryloylamino group.
  • the hydrogen atom of the benzene ring in the compounds represented by the chemical formulas (4-1) to (4-8) is partially or partially a halogen atom or an alkyl group or alkoxy group having 1 to 12 carbon atoms. All may be substituted, and the hydrogen atom of the alkyl group or alkoxy group may be partially or completely substituted with a halogen atom.
  • the bonding position of R 3 and R 4 to the benzene ring is not limited thereto.
  • Monomers forming the polymer layer for example, compounds represented by chemical formulas (2-1) to (2-5) and compounds represented by chemical formulas (4-1) to (4-8)) It is preferable to have two or more polymerizable groups. For example, those having two polymerizable groups are preferred.
  • the monomer described above may be added to the liquid crystal without using a conventional polymerization initiator.
  • the polymerization initiator which can become an impurity does not remain in the liquid crystal layer, and the electrical characteristics can be remarkably improved. That is, when the monomer is polymerized, the monomer polymerization initiator can be substantially absent in the liquid crystal layer.
  • a biphenyl-based bifunctional methacrylate monomer represented by the following chemical formula (5) may be used.
  • radical generation processes as shown in the following formulas (6-1) and (6-2) are caused by light irradiation.
  • a methacrylate group exists, it contributes also to self-forming a polymer by radical polymerization reaction.
  • the monomer those that are soluble in liquid crystal are desirable, and rod-like molecules are desirable.
  • the biphenyl type, naphthalene type, phenanthrene type, and anthracene type are also conceivable.
  • Some or all of these hydrogen atoms may be substituted with a halogen atom, an alkyl group, or an alkoxy group (the hydrogen atom may be partially or entirely substituted with a halogen atom).
  • an acryloyloxy group in addition to the methacryloyloxy group, an acryloyloxy group, a vinyloxy group, an acryloylamino group, and a methacryloylamino group are also conceivable.
  • radicals can be generated with light having a wavelength in the range of about 300 to 380 nm.
  • monomers such as acrylates and diacrylates that do not have a photopolymerization initiation function may be mixed, whereby the photopolymerization reaction rate can be adjusted.
  • a mixture of a monomer represented by the following chemical formula (7-1) and a monomer represented by the following chemical formula (7-2) can also be used.
  • the light irradiated for polymerizing the monomer is visible light, thereby suppressing damage to the liquid crystal and the photo-alignment film.
  • Other monomers that can be used include benzoin ether, acetophenone, benzyl catal, and ketone that generate radicals by photocleavage or hydrogen abstraction.
  • the polymerizable groups need to be given a polymerizable group. Examples of the polymerizable group include acryloyloxy group, vinyloxy group, acryloylamino group, and methacryloylamino group. It is done.
  • the polymer layer preferably includes a structure represented by the following chemical formula (8) in the repeating unit.
  • X represents —H or —CH 3 .
  • Y represents —O—, —COO—, —CONH—, or a direct bond.
  • R represents a divalent group containing a benzene ring structure bonded to at least Y.
  • Q represents a monovalent organic group.
  • the monomer forming the repeating unit it is preferable to use a monomer that is polymerized by irradiation of light with the monomer itself as a polymerization initiator.
  • a monomer is also referred to as a monomer with an initiator function.
  • the monomer preferably includes a structure in which an acryloyloxy group, a methacryloyloxy group, a vinyl group, a vinyloxy group, an acryloylamino group, or a methacryloylamino group is bonded to a benzene ring.
  • the monomer has a structure that forms a repeating unit represented by the chemical formula (8), and preferably includes a structure having the benzene ring, so that, for example, the monomer is represented by the following chemical reaction formula (9).
  • radicals can be generated by light irradiation. This reaction is considered to be the same as the reaction in which the functional group is cleaved and a radical is generated in the process of photo-Fries rearrangement.
  • a radical polymerization reaction can be caused to form a polymer.
  • a monomer that is polymerized by light irradiation is referred to as a photopolymerizable monomer.
  • the photopolymerizable monomer itself generates a radical and polymerizes, so that a polymerization initiator is not required.
  • a polymerization initiator when forming a polymer layer, you may use a polymerization initiator, However, In that case, since the remaining polymerization initiator affects liquid crystal display performance, it is preferable to keep it to the minimum. Most preferably, no polymerization initiator is used.
  • a monomer with an initiator function is a polymerization initiator that is usually used by irradiation with visible light or ultraviolet light having the same intensity as the ultraviolet light irradiated for the polymerization reaction of the monomer in ordinary PSA technology.
  • R preferably includes a structure selected from the following chemical formula group (10).
  • the hydrogen atoms may be partially or entirely substituted with halogen atoms.
  • Each ring structure may be a heterocycle in which a carbon atom is substituted with another atom.
  • the polymer layer preferably includes a structure represented by the following chemical formula (11) or (12) in the repeating unit.
  • X represents —H or —CH 3 .
  • Y represents —O—, —COO—, —CONH—, or a direct bond.
  • Q represents a monovalent organic group.
  • the polymer layer preferably has a benzoyl skeleton. Since the monomer having a benzoyl skeleton generates a radical by a hydrogen atom extraction reaction as represented by the following chemical reaction formula (13), the probability of radical generation is higher than that of a monomer having a non-benzoyl skeleton. Therefore, the polymerization time required for forming the polymer layer can be shortened, and a dense polymer layer can be formed.
  • Q preferably includes a benzene ring structure bonded to the R site.
  • the rod-like skeleton in the repeating unit can be made more similar to the rod-like skeleton of the liquid crystal molecule.
  • the affinity between the monomer skeleton and the liquid crystal molecule is improved, and the ability to fix the liquid crystal alignment by the formed polymer layer Can be increased.
  • the liquid crystal is sealed in the panel under vacuum.
  • the molecular weight of the monomer is low, there is a concern that the monomer concentration decreases and the concentration unevenness due to volatilization. By introducing a benzene ring, the molecular weight can be increased and volatility can be reduced.
  • Q preferably contains a polymer chain.
  • the polymer layer is preferably formed from a bifunctional monomer, and more preferably includes at least one structure selected from the following chemical formula group (14) in the repeating unit. Thereby, the density of the polymerization start point in a liquid crystal display panel can be increased more.
  • each of the cleavages has a polymerization reactive group, so that unreacted substances remain in the liquid crystal. It can also be suppressed.
  • X and X ′ each independently represent —H or —CH 3 .
  • Y and Y ′ each independently represent —O—, —COO—, —CONH—, or a direct bond.
  • the average molecular weight of the polymer constituting the polymer layer is not particularly specified, and may be approximately the same as the number average molecular weight or the weight average molecular weight of the polymer formed by a normal PSA technique. Typically, for example, the number of repeating units is 8 or more, or the molecular weight is 1000 or more.
  • Example 1 As Example 1, a liquid crystal cell (liquid crystal display panel) according to Embodiment 1 was actually produced.
  • an IGZO-TFT substrate having a 10-inch FFS structure and a color filter substrate as a counter substrate were prepared.
  • the IGZO-TFT substrate refers to an active matrix substrate using indium gallium zinc composite oxide as a semiconductor.
  • a negative photoresist was applied to the color filter substrate, a mask was disposed, and light with an intensity of 150 mJ / cm 2 was irradiated at a wavelength of 365 nm.
  • a halftone mask having a transmittance of 15% was used for the formation of the sub-spacer.
  • the proximity gap between the mask and the color filter substrate was set to 240 ⁇ m.
  • the sub-spacer of Example 1 had the same shape as the sub-spacer 5 shown in FIG.
  • the diameter of the bottom surface of the sub-spacer was 12 ⁇ m and the height was 2.5 ⁇ m.
  • the height of the main spacer was set so that the thickness of the liquid crystal layer in the active area was 3.3 ⁇ m, and the diameter of the bottom surface of the main spacer was 14 ⁇ m.
  • a sub-spacer is provided for most of the sub-pixels, and a main spacer is provided for sub-pixels where no sub-spacer is provided.
  • the distance between the most adjacent sub-spacers was 30 ⁇ m.
  • a coating liquid containing an alignment film material having a photoreactive functional group of a side chain photoreactive type is applied to these substrates by an ink jet method, and after application, temporarily dried at 80 ° C. for 3 minutes, while purging with nitrogen
  • the alignment film was baked at 200 ° C. for 40 minutes.
  • the thickness of the alignment film on the transparent electrode, which is the uppermost layer (most liquid crystal layer side) on the active matrix substrate side, was 45 nm in the active area.
  • the thickness of the alignment film on the color filter substrate side was 50 nm in the active area.
  • these substrates were irradiated with linearly polarized ultraviolet rays at a wavelength of 313 nm from 5 J / cm 2 from the normal direction of the substrate to form a horizontal photo-alignment film.
  • the horizontal photo-alignment film was monodomain alignment. That is, the liquid crystal alignment treatment was performed without a mask, and the alignment division was not performed.
  • thermosetting seal (HC1413FP: manufactured by Mitsui Chemicals, Inc.) was printed on the active matrix substrate using a screen plate. Then, these two kinds of substrates were bonded so that the polarization directions of the irradiated ultraviolet rays coincided between the substrates. Next, the bonded substrate was heated at 200 ° C. for 60 minutes in a furnace purged with nitrogen while being pressurized at 0.5 kgf / cm 2 to cure the seal.
  • a liquid crystal material containing liquid crystal molecules having positive dielectric anisotropy was injected into the cell produced by the above method under vacuum.
  • the injection port of the cell into which the liquid crystal material was injected was sealed with an epoxy adhesive (Araldite AR-S30; manufactured by Nichiban Co., Ltd.).
  • the electrodes were short-circuited so that the liquid crystal alignment was not disturbed by the external field, and the surface of the glass was subjected to a charge removal treatment.
  • the panel is heated at 130 ° C. for 40 minutes to reorient the liquid crystal in the isotropic phase. Processed.
  • an FFS mode liquid crystal cell in which the liquid crystal molecules were uniaxially aligned in the direction perpendicular to the polarization direction of the ultraviolet rays irradiated to the alignment film was obtained. All of the above was performed under a yellow fluorescent lamp so that the ultraviolet light from the fluorescent lamp was not exposed to the liquid crystal panel.
  • Comparative Example 1 As Comparative Example 1, the same liquid crystal cell as in Example 1 was produced except that the proximity gap was reduced and the intensity of light applied to the mask was reduced to form the sub-spacer. Specifically, when the proximity gap is set to 100 ⁇ m and the intensity of light at the wavelength 365 nm in Example 1 is 110%, the intensity of light at the wavelength 365 nm in Comparative Example 1 is 100%. Set to. The sub-spacer of Comparative Example 1 had the same shape as the sub-spacer 105 of the comparative form shown in FIG.
  • the occurrence rate of disclination was calculated.
  • the occurrence rate of disclination is the same as the measurement of the yield of so-called liquid crystal display devices. Specifically, the liquid crystal cell was sandwiched between crossed Nicols polarizing plates, a voltage equal to or higher than the threshold was applied to the electrodes, and it was visually determined whether or not disclination occurred under dark room conditions. The liquid crystal cell in which one or more disclinations are confirmed in the display area is rejected. When 100 liquid crystal cells are inspected and there are 5 rejected cells, the occurrence rate of disclination is 5%. And calculate.
  • Modification 1 The same liquid crystal cell as in Example 1 was prepared except that the diameter of the bottom surface of the sub-spacer was 11.3 ⁇ m, 12 ⁇ m, and 12.7 ⁇ m, respectively, and the diameter of the bottom surface of the main spacer was 15 ⁇ m. The incidence of disclination was measured. The results are shown in FIG. FIG. 10 is a graph showing the relationship between the diameter of the bottom surface of the sub-spacer and the occurrence rate of disclination.
  • the diameter of the bottom surface of the main spacer when the diameter of the bottom surface of the main spacer is 15 ⁇ m, the diameter of the bottom surface of the sub-spacer is preferably 12 ⁇ m or more, and the difference between the diameter of the bottom surface of the main spacer and the bottom surface of the sub-spacer is It has been found that the thickness is preferably 3 ⁇ m or less. Further, from Modification 1, it was found that the diameter of the bottom surface of the sub-spacer is preferably 80% or more of the diameter of the bottom surface of the main spacer.
  • Embodiment 2 The sub-spacer 5 included in the liquid crystal display device according to the first embodiment has no recess, but the sub-spacer included in the liquid crystal display device according to the second embodiment has a recess.
  • the liquid crystal display device according to the second embodiment is the same as the liquid crystal display device according to the first embodiment, and a description thereof will be omitted.
  • Various forms described in the first embodiment can also be applied to the second embodiment as appropriate.
  • FIG. 11 is a schematic cross-sectional view of a sub-spacer included in the liquid crystal display device according to the second embodiment and a sub-spacer included in the liquid crystal display device according to the comparative example.
  • the sub-spacer 205 included in the liquid crystal display device according to the second embodiment is similar to the sub-spacer 105 included in the liquid crystal display device according to the comparative example.
  • the thickness increases monotonically, then decreases monotonically at the first point, then monotonically increases at the second point, and then increases at the third point. Monotonously decreases. That is, the tip portions of the sub-spacers 105 and 205 have a shape having a recess.
  • the cross-sectional view is a cross-section of the sub-spacers 105 and 205 (usually a cross-section passing through the center of the sub-spacers 105 and 205) as in the first embodiment, and is a color filter substrate (substrate It means the case where a cross section perpendicular to the main surface is observed.
  • the recess of the sub-spacer 205 is looser than the recess of the sub-spacer 105.
  • an angle ⁇ formed by a line segment connecting the first point and the second point and a line segment connecting the second point and the third point is 168 ° or more (preferably, 177 ° or more) and less than 180 °.
  • the concave portion is gently formed, the disorder of the orientation that becomes the core of the disclination is less likely to occur in the concave portion, so that the occurrence of disclination is suppressed.
  • FIG. 12 is another schematic cross-sectional view of the sub-spacer included in the liquid crystal display device according to the second embodiment.
  • the coordinates of the first point a are (X1, Z1)
  • the coordinates of the second point b are (X2, Z2)
  • the contour line extends in the thickness direction of the sub-spacer
  • the second point is
  • Tan ( ⁇ / 2) (X2-X1) / (Z2-Z1)
  • Example 2 As Example 2, a liquid crystal cell according to Embodiment 2 was actually manufactured.
  • a liquid crystal cell of Example 2 was fabricated in the same manner as the liquid crystal cell of Example 1, except that the proximity gap was reduced and the intensity of light applied to the mask was reduced to form the subspacer. Specifically, when the proximity gap is set to 100 ⁇ m and the intensity of light at the wavelength 365 nm in Example 1 is 110%, the intensity of light at the wavelength 365 nm in Example 2 is 91%. Set to.
  • the sub-spacer of Example 2 had the same shape as the sub-spacer 205 shown in FIG.
  • the occurrence rate of disclination was calculated.
  • the results are shown in Table 2.
  • the occurrence rate of disclination was a very high value of 58.9%, whereas in the liquid crystal cell according to Example 2, the occurrence rate of disclination. was as low as 11.4%.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明は、水平配向型の液晶層と、サブスペーサと、光配向膜とを備えた液晶表示装置であって、ディスクリネーションの発生を抑制できる液晶表示装置を提供する。本発明は、互いに対向する一対の基板と、前記一対の基板の間に設けられた水平配向型の液晶層とを備え、前記一対の基板の少なくとも一方は、光配向膜を含み、前記一対の基板の一方は、複数のサブスペーサを含み、前記複数のサブスペーサは、大気圧下において、対向する基板に接しておらず、前記複数のサブスペーサの各々のある断面において、前記複数のサブスペーサの各々の厚みは、当該サブスペーサの一端から他端に向かって、単調増加した後、単調減少する液晶表示装置である。

Description

液晶表示装置
本発明は、液晶表示装置に関する。より詳しくは、水平配向型の液晶層と、サブスペーサと、水平光配向膜とを備えた液晶表示装置に好適な液晶表示装置に関するものである。
液晶表示装置(LCD:Liquid Crystal Display)は、2つの基板に挟持された複屈折性を有する液晶分子(液晶層)の配向を制御することにより光の透過/遮断(表示のオン/オフ)を制御する表示装置である。液晶分子を配向させる方法としては、基板の液晶層と接する面にラビング法、光配向法等の配向処理がなされた配向膜を配置する方法が挙げられる。
また、マルチドメイン垂直配向(MVA:Multi-domain Vertical Alignment)モードのように、配向処理を行わずに、配向規制用構造物として電極上に誘電体の突起物や電極の抜き部(スリット)を設け、液晶分子の配向を制御する方法もある。MVAモードでは、配向規制用構造物により、電圧印加時の液晶の配向を異なる複数の方位に制御可能であるため、例えば、従来のTNモードに比べて視角特性に優れている。
更に、液晶表示装置において、良好な表示品位を得るためには、液晶層の厚さ(セルギャップ)が均一に保たれることが好ましい。セルギャップにムラがあると表示ムラが発生するおそれがある。セルギャップを均一に保つ方法として、基板上に、スペーサを形成する方法が知られている。上記の配向規制用構造物、及び、スペーサとしては、具体的には、例えば、ネガ型フォトレジストを用いて、高さの安定したフォトスペーサ、及び、上面に凹部が生じない配向制御突起を形成することができるフォトマスク等が知られている(例えば、特許文献1参照。)。
特開2010-181687号公報
本発明者らは、配向膜にラビング処理を施さなくても電圧印加時の液晶配向方位を複数方位に制御可能とし、優れた視角特性を得ることができる光配向技術の研究を行っている。光配向技術は、配向膜の材料として光に活性の材料を用い、形成した膜に対して紫外線等の光線を照射することによって、配向膜に配向規制力を生じさせる技術である。光配向技術によれば、配向処理を膜面に対して非接触で行うことができるので、配向処理中における汚れ、ごみ等の発生を抑制することができる。また、ラビング処理と異なり大型のサイズのパネルにも好適に適用することができ、更に、製造歩留まりも優れたものとすることができる。光配向技術によって形成された配向膜を以下では光配向膜とも言う。
現在の光配向技術は、主にVAモード等の垂直配向膜を用いるタイプのTVの量産用として導入されており、IPSモード等の水平配向膜を用いるタイプのTVの量産用には未だ導入されていない。光配向技術によって形成された水平配向膜(以下では、水平光配向膜とも言う。)は、液晶分子への配向規制力が弱く、画素全体において、液晶分子を一様に水平方向に配向規制しようとしたとき、所望の配向方位と異なる方位に液晶を配向させようとする力(外乱)の影響を受けやすく、その結果、図14に示すような液晶の配向欠陥が糸状に発生して、光抜けを引き起こすおそれがある。このような糸状の配向欠落を以下では、ディスクリネーションとも言う。
本発明者らは、上記のディスクリネーションが発生する原因について検討した結果、サブスペーサの周辺で発生する外乱がディスクリネーションを引き起こしていることを見出した。上記のセルギャップを均一に保つためのスペーサ(以下では、メインスペーサとも言う。)は、通常、一対の基板の一方上に設けられるとともに、大気圧下において、対向する他方の基板に端部が接しているが、サブスペーサは、一対の基板の一方上に設けられ、大気圧下において、対向する他方の基板には接していない。このようなサブスペーサを設けることにより、液晶パネルを押した時の押圧等によるガラスの変形量を小さくすることができる。
図15~17を用いて、ディスクリネーションが生じる原因について説明する。図15は、本発明者らが検討を行った比較形態に係る液晶表示装置において、ディスクリネーションが発生しているときの様子を示す断面模式図である。図16は、本発明者らが検討を行った比較形態に係る液晶表示装置において、横方向にディスクリネーションが発生しているときの様子を示す平面模式図であり、図17は、本発明者らが検討を行った比較形態に係る液晶表示装置において、縦方向にディスクリネーションが発生しているときの様子を示す平面模式図である。なお、図16及び図17は、カラーフィルタ基板側から液晶界面までを、ディスクリネーションの発生に関係しない部材を除き、透視したときの模式図である。図15に示すように、比較形態に係る液晶表示装置は、カラーフィルタ基板110、及び、アクティブマトリクス基板120に挟持された水平配向型の液晶層130を備える。液晶層130は、液晶分子108を含む。カラーフィルタ基板110は、絶縁基板102を含み、絶縁基板102の液晶層130側の面上には、カラーフィルタ(図示せず)、及び、BM104が形成される。BM104上には、サブスペーサ105、及び、メインスペーサ(図示せず)が形成される。更に、これらの部材を覆うように、水平光配向膜107が形成される。ただし、水平光配向膜107は、図15に示すようにサブスペーサ105上に設けられてもよいが、通常は、サブスペーサ105上に形成されないか、又は、サブスペーサ105上にごく微量だけ形成される。絶縁基板102の液晶層130と反対側の面上には、直線偏光板112が設けられる。アクティブマトリクス基板120は、絶縁基板101を含み、絶縁基板101の液晶層130側の面上には、画素電極(図示せず)、共通電極103、及び、これらの部材を覆う水平光配向膜106が形成される。絶縁基板101の液晶層130と反対側の面上には、直線偏光板111が設けられる。
図15に示すように、比較形態に係る液晶表示装置が備えるサブスペーサ105は、全体としては突起形状(凸形状)であるが、その先端部は窪み(凹部)を有していることを本発明者らは見出した。このとき、凹部の近辺では、液晶分子108は、基板に対して水平に配向せず、凹部の形状に沿って弧を描くように配向する。その結果、図15に示すように、凹部の近辺では、液晶分子108同士が球を描くように丸まって配向する配向欠陥が生じる。このように丸まって配向した液晶分子108がディスクリネーションの核となると考えられる。そして、図16及び図17に示すように、隣接するサブスペーサ105における配向欠陥が繋がることで、その結果、ディスクリネーションとして認識される表示不良が発生すると考えられる。図16及び図17では、最隣接のサブスペーサ105を結ぶ方向(図16及び図17における左右方向)が液晶分子108の初期配向方向と平行である場合を示しているが、両方向が互いに直交する場合においても同様にディスクリネーションが発生する。
なお、本願出願人は、先の出願(特願2011-185045号)において、スペーサ間距離のうち、より短いスペーサ間距離のスペーサを結ぶ線と、液晶層における閾値電圧未満での液晶分子の配向方向とのなす角が20°以内とすることで、ディスクリネーションの発生を抑制できることを示している。先の出願に係る発明においても、最も隣接するサブスペーサ間で生じるディスクリネーションは、充分に抑制することができるが、より表示品位を高める観点からは、最も隣接するサブスペーサ間で生じるディスクリネーションは、更に抑制されることが望ましい。また、例えば、図17に示すように、最も隣接するサブスペーサ105間以外でも、サブスペーサ105間でディスクリネーションは発生し得るが、先の出願に係る発明ではこのようなディスクリネーションを充分には抑制できない可能性がある点で改善の余地があった。
本発明は、上記現状に鑑みてなされたものであり、水平配向型の液晶層と、サブスペーサと、光配向膜とを備えた液晶表示装置であって、ディスクリネーションの発生を抑制できる液晶表示装置を提供することを目的とするものである。
本発明者らは、水平配向型の液晶層と、サブスペーサと、光配向膜とを備えた液晶表示装置であって、ディスクリネーションの発生を抑制できる液晶表示装置について種々検討したところ、サブスペーサの形状に着目した。そして、比較形態に係る液晶表示装置においては、上記の通り、サブスペーサの先端部は、凹部を有しており、この凹部に発生する配向の乱れが核となってディスクリネーションが発生することを見出した。そこで、サブスペーサの形状について更に鋭意検討した結果、サブスペーサのある断面において、サブスペーサの厚みが、当該サブスペーサの一端から他端に向かって、単調増加した後、単調減少することにより、サブスペーサ内(特に先端部)に凹部が発生するのを防止でき、また、先端部を平滑化でき、その結果、サブスペーサの先端部において、ディスクリネーションの核となる配向欠陥が生じるのが抑制されることを見出し、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一側面は、互いに対向する一対の基板と、前記一対の基板の間に設けられた水平配向型の液晶層とを備え、前記一対の基板の少なくとも一方は、光配向膜を含み、前記一対の基板の一方は、複数のサブスペーサを含み、前記複数のサブスペーサは、大気圧下において、対向する基板に接しておらず、前記複数のサブスペーサの各々のある断面において、前記複数のサブスペーサの各々の厚みは、当該サブスペーサの一端から他端に向かって、単調増加した後、単調減少する液晶表示装置(以下、「本発明の第一の液晶表示装置」とも言う。)である。
また、本発明者らは、更に鋭意検討した結果、サブスペーサの先端部に凹部が形成されている場合であっても、その凹部の凹み具合が緩やかであり、凹部において配向の乱れが生じにくいものであれば、ディスクリネーションの発生が抑制されることを見出し、上記課題をみごとに解決することができることに想到し、本発明に到達したものでもある。
すなわち、本発明の他の側面は、互いに対向する一対の基板と、前記一対の基板の間に設けられた水平配向型の液晶層とを備え、前記一対の基板の少なくとも一方は、光配向膜を含み、前記一対の基板の一方は、複数のサブスペーサを含み、前記複数のサブスペーサは、大気圧下において、対向する基板に接しておらず、前記複数のサブスペーサの各々のある断面において、前記複数のサブスペーサの各々の厚みは、当該サブスペーサの一端から他端に向かって、単調増加した後、第一点を境に単調減少し、その後、第二点を境に単調増加し、更にその後、第三点を境に単調減少し、前記第一点及び前記第二点を結ぶ線分と、前記第二点及び前記第三点を結ぶ線分とがなす角は、168°以上である液晶表示装置(以下、「本発明の第二の液晶表示装置」とも言う。)である。
なお、本発明の第一及び第二の液晶表示装置において、前記一対の基板は各々、絶縁性基板と、絶縁性基板上に設けられた部材とを含むものであり、通常は、一方がアクティブマトリクス基板として、他方がカラーフィルタ基板として機能する。
また、前記断面は、前記複数のサブスペーサが設けられた基板に対して垂直な断面であり、好適には、当該サブスペーサの中心部を通る。本発明の第一及び第二の液晶表示装置において、サブスペーサの厚みが上述のように変化する断面は、各サブスペーサに少なくとも一つあればよく、その数は特に限定されない。例えば、互いに交差する2以上の断面において、各サブスペーサの厚みは上述のように変化してもよい。
また、本発明の第一及び第二の液晶表示装置において、サブスペーサの厚みが単調増加又は単調減少するとは、以下の通りである。まず、前記断面上に直交座標系を導入し、前記複数のサブスペーサが設けられた基板に平行な方向に右方向を正の向きにしてx軸を設定し、x軸に対して垂直な方向に上方向(液晶層に向かう方向)を正の向きにしてz軸を設定する。次に、サブスペーサの輪郭線上の任意の点の座標を(x,z)で表す。そして、サブスペーサの厚みが単調増加するとは、x1<x2であれば、z1≦z2となることを意味し、サブスペーサの厚みが単調減少するとは、x1<x2であれば、z1≧z2となることを意味する。このように、前記複数のサブスペーサの各々の形状は、通常、凹部を有さない突起形状(凸形状)である。なお、前記突起形状は、その一部に平坦に形成される部分があってもよい。
また、特許文献1には、上面に凹部が生じない配向制御突起が記載されているが、特許文献1に記載の発明は、配向制御突起に関する課題を解決するものである。そして、本願とは異なり、水平配向型の液晶層と、サブスペーサと、光配向膜とを備えた液晶表示装置において、サブスペーサの形状によって、ディスクリネーションの核が発生しやすくなることについては、特許文献1には何ら記載も示唆もない。
本発明の第一及び第二の液晶表示装置において、前記液晶層は、液晶分子を含む。液晶分子は、一種類であってもよいし、複数の種類の液晶分子を混ぜたものでもよい。信頼性の確保、応答速度の向上、並びに、液晶相温度域、その他の弾性定数、誘電率異方性及び屈折率異方性の調整の少なくとも一つの目的のために、液晶層を複数の液晶分子の混合物とすることができる。また、前記液晶層が含有する液晶分子は、正の誘電率異方性を有するもの(ポジ型)及び負の誘電率異方性を有するもの(ネガ型)のいずれであってもよい。
本発明の第一及び第二の液晶表示装置において、水平配向型の液晶層とは、電圧無印加時に基板面に対して、光配向膜によって、略水平に配向制御される液晶分子を含有する液晶層である。したがって、本発明の第一及び第二の液晶表示装置において、光配向膜は、水平光配向膜である。前記液晶層のプレチルト角は、通常、0°以上、0.5°以下である。なお、ラビングによる配向処理が施された水平配向膜を用いた場合、液晶層のプレチルト角は、通常、0.5°以上、5°以下である。
本発明の第一及び第二の液晶表示装置としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。
以下、本発明の第一及び第二の液晶表示装置の他の好ましい形態について説明する。なお、本発明の第一及び第二の液晶表示装置の各種形態は、適宜組み合わせることができる。
本発明の第一及び第二の液晶表示装置は、前記光配向膜の前記液晶層側に、前記液晶層中に添加したモノマーを重合して形成され、配向規制力を有するポリマー層を更に備える形態(以下、第一形態とも言う。)が好ましい。水平光配向膜は、配向規制力が弱いため、焼き付きが顕著に発生するおそれがあるが、配向規制力を有するポリマー層を形成することで、焼き付きの発生を抑制することができる。なお、焼き付きとは、液晶セルに対して同じ電圧を一定時間印加し続けた後に、電圧を印加し続けた部分と電圧を印加していない部分とで、明るさが違って見える現象である。また、ポリマー層を形成する際に、ディスクリネーションが発生していると、このディスクリネーションがポリマー層によって固定化されてしまうおそれがあるが、本発明によれば、ディスクリネーションの発生を抑制することができるため、ポリマー層を形成してもディスクリネーションは固定化されにくい。このようにポリマーを用いて配向安定化を図る技術を以下では、PSA(Polymer Sustained Alignment:高分子配向安定化)技術とも言う。
前記ポリマー層は、上記液晶層中に添加したモノマーを重合して形成されたものである。ポリマー層は、通常、ポリマー層に近接する液晶分子を配向制御する。モノマーの重合性官能基としては特に限定されないが、中でも、アクリレート基及び/又はメタクリレート基が好ましい。このような重合性官能基はラジカル生成確率が高く、製造上のタクト短縮に有効である。また、モノマーが、少なくとも2つの重合性官能基を有することが好ましい。重合性官能基の数が多いほど反応効率が高いためである。更に、モノマー中の重合性官能基の好ましい上限値は4つである。これにより、分子量を充分小さくし、モノマーを液晶へ溶けやすくすることができる。また、モノマーは、光の照射によって重合反応(光重合)を開始するモノマー、又は、加熱によって重合反応(熱重合)を開始するモノマーであることが好ましい。すなわち、前記ポリマー層は、光重合によって形成される、又は、熱重合によって形成されることが好ましい。特に光重合が好ましく、これにより、常温でかつ容易に重合反応を開始することができる。光重合に用いられる光は、紫外線、可視光線、又は、これらの両方であることが好ましい。
第一形態において、ポリマー層を形成するための重合反応は特に限定されず、二官能性の単量体が新しい結合をつくりながら段階的に高分子量化する逐次重合であってもよく、少量の触媒(開始剤)から生じた活性種に単量体が次々に結合し、連鎖的に成長する連鎖重合であってもよい。上記逐次重合としては、重縮合、重付加等が挙げられる。連鎖重合としては、ラジカル重合、イオン重合(アニオン重合、カチオン重合等)等が挙げられる。
前記ポリマー層は、配向処理がなされた水平光配向膜の配向規制力を向上させ、表示の焼き付きの発生を低減することができる。また、液晶層に対して電圧を印加しないか、又は、閾値電圧未満の電圧を印加し、液晶分子がプレチルト配向している状態でモノマーを重合させ、ポリマー層を形成することで、前記ポリマー層は液晶分子に対してプレチルト配向させる構造を有する形で形成されることになる。
前記複数のサブスペーサが設けられた前記基板は、複数のメインスペーサを更に含み、前記複数のメインスペーサは、大気圧下において、対向する基板に接しており、前記複数のサブスペーサの各々の底面(円形の底面)の直径は、前記複数のメインスペーサの各々の底面(円形の底面)の直径の80%以上であることが好ましい。メインスペーサを形成するとき、好適には、フォトレジストを用いて、メインスペーサとサブスペーサとを一括して形成することができる。このとき、メインスペーサに対して、サブスペーサの大きさが小さくなる程、フォトレジストのサブスペーサに対応する部分への光の照射量が少なくなるため、凹部が生じるおそれがある。従来は、メインスペーサに対してサブスペーサの直径を75%前後の設定することがあった。なお、上記2つの底面の比率の上限は特に限定されないが、通常は、前記複数のサブスペーサの各々の底面(円形の底面)の直径は、前記複数のメインスペーサの各々の底面(円形の底面)の直径の100%以下に設定される。100%を超えると、開口率が低下してしまうからである。
前記光配向膜を形成する配向膜材料は、カルコン基、クマリン基、シンナメート基、アゾベンゼン基、及び、スチルベン基からなる群より選ばれる少なくとも一種の光反応性官能基を含むことが好ましい。これらの光反応性官能基は、ポリマーの側鎖に比較的容易に形成することができ、更に、光配向処理の際の反応性にも優れている。
また、前記光反応性官能基に適宜、修飾基を設けてもよい。例えば、シンナメート基のベンゼン環は、フッ素、アルキル基、アルコキシ基、ベンジル基、フェノキシ基、ベンゾイル基、ベンソエート基、及び、ベンゾイルオキシ基からなる群より選択される少なくとも1種の基により修飾されていてもよい。更に、前記光反応性官能基を有するモノマーの誘導体、前記修飾基をもつ光反応性官能基を有するモノマーの誘導体を用いて配向膜材料となるポリマーを形成してもよい。前記修飾基をもつ配向膜材料や前記誘導体を用いた配向膜材料によって、電気特性や配向安定性の向上が可能になる。
前記光配向膜を形成する配向膜材料は、シクロブタン骨格を繰り返し単位に含む形態(以下、第二形態とも言う。)が好ましい。シクロブタン骨格を含む配向膜材料は、光分解反応により配向制御能を発揮するが、通常、配向処理時に配向膜材料に照射される光(例えば紫外線)の光エネルギーは大きくなるため、配向膜を形成する構造の主鎖やカラーフィルタ等も光分解してしまい、長期信頼性が損なわれるおそれがある。一方、第一形態においては、ポリマー層により、光配向膜の配向制御能を補助できるため、配向処理時に配向膜材料に照射される光の光エネルギーを相対的に小さくすることができる。その結果、光照射によって配向膜自身やカラーフィルタ等がダメージを受けるのを抑制することができる。通常、光分解性の配向膜材料を反応(配向)させるためには波長254nm付近の光を利用するが、PSA技術において液晶層中に添加したモノマーを光重合するためには313nm以上の光が利用可能である。したがって、モノマーを光重合させるための光照射により、その前に既に光が照射されている光配向膜の配向制御能を劣化させることは無いと評価することができる。一方、前記光反応性官能基を含む配向膜材料を反応(配向)させるためには、通常313nm付近の光を利用する。よって、前記光反応性官能基を含む光配向膜材料を使用する場合は、モノマーを光重合させるための光照射時に光配向膜自体の劣化がないように照射エネルギー等を注意する必要性がある。この点においては、シクロブタン骨格を有する光分解性の光配向膜材料の方が前記光反応性官能基を含む光配向膜材料に比べて有利となる。以上のような観点からは、第二形態は、第一形態と組み合わされることが好ましい。しかしながら、第二形態が第一形態と組み合わされない場合であっても、前記光反応性官能基を用いる場合と同程度のディスクリネーションの抑制効果を奏することができるため、第二形態の技術的意義は大きい。
前記光配向膜は、液晶セルの外側から光(例えば紫外線)が照射された水平光配向膜であってもよい。この場合、第一形態においては、前記光配向膜が光配向処理によって形成され、かつ前記ポリマー層が光重合によって形成される場合には、これらは同じ光を用いて同時に形成されたものであることが好ましい。すなわち、液晶セルの外側から光(例えば紫外線)を照射することによって、光配向膜の配向処理を行うことと同時に液晶層中のモノマーを光重合してポリマー層を形成することが好ましい。これにより、製造効率の高い液晶表示装置が得られる。
前記光配向膜は、ポリイミド、ポリアミック酸、ポリマレイミド、及び、ポリシロキサンからなる群より選ばれる少なくとも一種のポリマーの主鎖構造を有することが好ましい。これらの主鎖構造を有する光配向膜(特にこれらのポリマーを主成分とする光配向膜)は、熱、光、薬品等に対して高い安定性を有し、配向膜が劣化しにくいという利点を有する。
なお、前記一対の基板の一方のみが光配向膜を含む場合は、光配向膜を含む基板は、前記一対の基板のいずれの基板であってもよい。したがって、この場合、前記一対の基板のうち、前記複数のサブスペーサを含んでいない方の基板は、光配向膜を含んでも含んでいなくてもよい。しかしながら、前記一対の基板は各々、光配向膜を含むことが好ましい。両基板が各々光配向膜を含む場合、材料、配向処理条件等の各種の事項は各々の光配向膜において適宜設定することができるが、通常は、これらの事項は両光配向膜で共通する。
本発明の第一及び第二の液晶表示装置の表示モードは、IPS(In-Plane Switching)モード又はFFS(Fringe Field Switching)モードであることが好ましい。本発明は、このような横電界を発生させる表示モードに好適である。IPSモードの液晶表示装置は、通常は、一対の基板の一方に、基板主面を平面視したときに2種類の電極が対向して設けられる、横電界方式の液晶表示装置である。また、FFSモードの液晶表示装置は、通常は、一対の基板の一方に、面状の電極と、該面状の電極と絶縁層を介して別層に配置されたスリット電極(スリットが形成された電極)とが設けられる、フリンジ電界方式の液晶表示装置である。両液晶表示装置については、実施形態において更に詳述する。
また、FLC(Ferroelectrics Liquid Crystal)モード、又は、AFLC(Anti-Ferroelectrics Liquid Crystal)モードの液晶表示装置は広視野角でかつ、応答速度が高速であり、研究開発が進められている。これらのモードも液晶分子を水平配向させることが必須であることから、本発明の第一及び第二の液晶表示装置の好適な表示モードとしては、FLCモード、及び、AFLCモードも挙げられる。
前記一対の基板の一方は、カラーフィルタを含むことが好ましい。なお、この場合、カラーフィルタを含む基板は、前記一対の基板のいずれの基板であってもよい。したがって、前記複数のサブスペーサを含む前記基板がカラーフィルタを含んでもよいし、含まなくてもよい。
前記一対の基板の一方は、IGZO-TFTを含むことが好ましい。なお、この場合、IGZO-TFTを含む基板は、前記一対の基板のいずれの基板であってもよい。したがって、前記複数のサブスペーサを含む前記基板がIGZO-TFTを含んでもよいし、含まなくてもよい。また、IGZO-TFTとは、TFTに含まれる半導体層の材料がIGZO(インジウム-ガリウム-亜鉛-酸素)であるTFTを意味する。
本発明によれば、水平配向型の液晶層と、サブスペーサと、光配向膜とを備えた液晶表示装置であって、ディスクリネーションの発生を抑制できる液晶表示装置を提供することができる。
実施形態1に係る液晶表示装置が備えるカラーフィルタ基板を示す平面模式図である。 実施形態1に係る液晶表示装置が備えるサブスペーサ、及び、比較形態に係る液晶表示装置が備えるサブスペーサの断面模式図である。 実施形態1に係る液晶表示装置において、2つのサブスペーサとその周辺を拡大した平面模式図である。 図1中の線分B1-B2に対応する部分の液晶表示装置全体の断面模式図である。 実施形態1に係るIPSモードの液晶表示装置が備えるアクティブマトリクス基板の平面模式図である。 実施形態1に係るFFSモードの液晶表示装置が備えるアクティブマトリクス基板の平面模式図である。 (a)~(c)は、実施形態1に係る液晶表示装置が備えるサブスペーサの断面形状の例を示す模式図である。 (a)~(c)は、実施形態1に係る液晶表示装置が備えるサブスペーサの断面形状の他の例を示す模式図である。 (a)及び(b)は、実施形態1に係る液晶表示装置が備えるサブスペーサの断面形状の更に他の例を示す模式図である。 サブスペーサの底面の直径とディスクリネーションの発生率との関係を示すグラフである。 実施形態2に係る液晶表示装置が備えるサブスペーサ、及び、比較形態に係る液晶表示装置が備えるサブスペーサの断面模式図である。 実施形態2に係る液晶表示装置が備えるサブスペーサの他の断面模式図である。 角度θとディスクリネーションの発生率との関係を示すグラフである。 ディスクリネーションが発生している液晶表示装置の写真である。 比較形態に係る液晶表示装置において、ディスクリネーションが発生しているときの様子を示す断面模式図である。 比較形態に係る液晶表示装置において、横方向にディスクリネーションが発生しているときの様子を示す平面模式図である。 比較形態に係る液晶表示装置において、縦方向にディスクリネーションが発生しているときの様子を示す平面模式図である。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
実施形態1
図1~図4を用いて、実施形態1に係る液晶表示装置について詳述する。図1は、実施形態1に係る液晶表示装置が備えるカラーフィルタ基板を示す平面模式図である。また、図2は、実施形態1に係る液晶表示装置が備えるサブスペーサ、及び、比較形態に係る液晶表示装置が備えるサブスペーサの断面模式図である。図2中の実施形態1に係る液晶表示装置が備えるサブスペーサの断面模式図は、図1中の線分A1-A2における断面模式図に相当する。また、図3は、実施形態1に係る液晶表示装置において、2つのサブスペーサとその周辺を拡大した平面模式図である。更に、図4は、図1中の線分B1-B2に対応する部分の液晶表示装置全体の断面模式図である。
図1に示すように、実施形態1に係る液晶表示装置が備えるカラーフィルタ基板は、サブ画素毎に赤色のカラーフィルタ13R、青色のカラーフィルタ13B、又は、緑色のカラーフィルタ13Gのいずれかが配される。サブ画素の境界には、ブラックマトリクス(BM)4が配され、BM4の上には、サブスペーサ5、及び、メインスペーサ15が配される。サブスペーサ5は、一部のサブ画素を除き、ほぼ全てのサブ画素毎に配され、メインスペーサ15は、サブスペーサ5が配されなかったサブ画素に配される。このようにサブスペーサ5は、メインスペーサ15に比べ多く占めるように配される。サブスペーサ5は、大気圧下では、対向するアクティブマトリクス基板には接しておらず、一方、メインスペーサ15は、大気圧下で、対向するアクティブマトリクス基板に先端が接触している。
図2に示すように、比較形態に係る液晶表示装置が備えるサブスペーサ105は、先端部に窪み(凹部)を有していた。それに対して、サブスペーサ5の断面(通常はサブスペーサ5の中心部を通る断面)であって、カラーフィルタ基板(基板主面)に対して垂直な断面において、サブスペーサ5は、一端5aから他端5bに向かって、厚み(輪郭線上の位置の高さ)が単調増加した後、単調減少している。すなわち、サブスペーサ5は、先端部に凹部を有していない。図2において、サブスペーサ5は、丸みがある凸形状に形成されている。
また、図3に示すように、サブスペーサ5の先端において、ディスクリネーションの核となる配向欠陥の発生が抑制されるため、ディスクリネーションの発生が抑制される。
このように、先端部に凹部を含まず、先端部が丸みのある凸形状に形成されたサブスペーサを有する基板を備える液晶表示装置もまた本発明の一側面である。
なお、図3では、最隣接のサブスペーサ5を結ぶ方向(図3における左右方向)が液晶分子8の初期配向方向と平行である場合を示しているが、本実施形態において、最隣接のサブスペーサ5を結ぶ方向と、液晶分子8の初期配向方向との関係は特に限定されず、例えば、両方向が互いに直交する場合や両方向が互いに斜めに交わる場合においてもディスクリネーションの発生を抑制することができる。
図4を用いて、実施形態1に係る液晶表示装置について更に詳述する。実施形態1に係る液晶表示装置は、カラーフィルタ基板10、及び、アクティブマトリクス基板20(前記一対の基板に相当する。)に挟持された水平配向型の液晶層30を備える。液晶層30は、液晶分子8(ネマチック液晶)を含む。カラーフィルタ基板10は、ガラス基板等の透明な絶縁基板2を含み、絶縁基板2の液晶層30側の面上には、カラーフィルタ(図4では図示せず)、及び、BM4が形成される。BM4上には、サブスペーサ5、及び、メインスペーサ(図4では、図示せず)が形成される。更に、これらの部材を覆うように、水平光配向膜7が形成される。ただし、水平光配向膜7は、図4に示すようにサブスペーサ5上に設けられてもよいが、通常は、サブスペーサ5上に形成されないか、又は、サブスペーサ5上にごく微量だけ形成される。絶縁基板2の液晶層30と反対側の面上には、直線偏光板12が設けられる。アクティブマトリクス基板20は、ガラス基板等の透明な絶縁基板1を含み、絶縁基板1の液晶層30側の面上には、各種配線、スイッチング素子として機能する薄膜トランジスタ(TFT、図4では図示せず)、画素電極(図4では図示せず)、共通電極3、及び、これらの部材を覆う水平光配向膜6が形成される。絶縁基板1の液晶層30と反対側の面上には、直線偏光板11が設けられる。直線偏光板11、12に対しては、更に位相差板が配置され、円偏光板が構成されていてもよい。
なお、実施形態1に係る液晶表示装置は、カラーフィルタをアクティブマトリクス基板20に備えるカラーフィルタオンアレイ(Color Filter On Array)の形態であってもよい。また、実施形態1に係る液晶表示装置はモノクロディスプレイであってもよく、その場合、カラーフィルタを形成する必要はない。また、サブスペーサ5及びメインスペーサ15は、カラーフィルタ基板10ではなくアクティブマトリクス基板20に形成されてもよい。
画素電極、及び、共通電極3の形状、及び、配置は、液晶表示装置の表示モードによって異なる。図5は、実施形態1に係るIPSモードの液晶表示装置が備えるアクティブマトリクス基板の平面模式図であり、図6は、実施形態1に係るFFSモードの液晶表示装置が備えるアクティブマトリクス基板の平面模式図である。図5に示すように、例えば、IPSモードのときは、画素電極23、及び、共通電極3は、それぞれ、櫛歯電極であり、互いに同一の又は異なる層に形成される。また、図6に示すように、FFSモードのときは、画素電極23、及び、共通電極3は、絶縁層を介して互いに異なる層に形成され、画素電極23、又は、共通電極3の一方に開口が形成され、他方の電極は開口を覆う位置に形成される。開口が形成された一方の電極が上層に、他方の電極が下層に配置される。図6では、画素電極23に開口が形成され、共通電極3は、開口を含む表示領域を覆うように形成されている。開口は、好ましくはスリットである。
なお、実施形態1に係る液晶表示装置の表示モードは、IPSモード及びFFSモードに特に限定されず、水平配向膜を用いる既知のモードに適用することができ、例えば、FLCモードやAFLCモードも好適である。
更に、アクティブマトリクス基板20は、上述のように、薄膜トランジスタ(TFT)や、各種配線(例えば、ゲートバスライン、ソースバスライン、保持容量配線)を備える。画素電極23、及び、共通電極3の材料としては、ITO(Indium Tin Oxide:酸化インジウムスズ)、IZO(Indium Zinc Oxide;酸化インジウム亜鉛)等の公知の材料を用いることができる。
アクティブマトリクス基板20が備えるTFTが含む半導体層の材料は、特に限定されず、例えばアモルファスシリコン、ポリシリコン等を用いることができるが、IGZO(インジウム-ガリウム-亜鉛-酸素)等の移動度の高い酸化物半導体を用いることが好ましい。IGZOを用いることで、アモルファスシリコンを用いる場合と比べてTFT素子のサイズを小さくすることができるため、高精細な液晶ディスプレイに適している。特に、フィールドシーケンシャルカラー方式のように高速応答が求められる方式においては、IGZOが好適に用いられる。
実施形態1に係るサブスペーサ5の形成方法は特に限定されないが、通常、フォトレジストを用いて形成される。フォトレジストの種類は特に限定されず、ポジ型のフォトレジスト及びネガ型のフォトレジストのいずれであってもよいが、例えば、モバイル機器に用いられる液晶パネルの画素のサイズに見合うサブスペーサ径(サブスペーサの底面の直径)を実現するためには、ネガ型のフォトレジストが用いられることが好ましい。本発明者らが検討した結果、ネガ型のフォトレジストを用いてサブスペーサを形成する場合、例え同じハーフトーンマスクを用いた場合でも、マスクに照射する光の強度、プロキシミティギャップ等の条件が変化すれば、サブスペーサの大きさは変化することを見いだした。また、メインスペーサに対するサブスペーサの大きさ(特に体積)が小さいと、サブスペーサは、ポストベークにより、収縮し、凹部が生じやすくなることを見出した。したがって、凹部の形成を抑制するためには、メインスペーサに対するサブスペーサの大きさ(特に体積)が小さくなりすぎないことが重要である。サブスペーサの相対的な大きさ(特に体積)を変化させる方法としては、露光量、マスクに照射する光の強度、プロキシミティギャップ、ハーフトーンマスクの透過率等の露光条件を変更する方法が挙げられ、例えば、サブスペーサの形成に用いるハーフトーンマスクのメッシュの透過率を上げて、露光量を増やすことで、ポストベーク時の収縮を抑制できる場合もある。より具体的には、例えば、特許文献1には、配向制御突起をネガ型のフォトレジストで形成する際に、透過率が10~15%のハーフトーンマスクを用いることが記載されているが、実施形態1では、サブスペーサ5の形成に用いられるハーフトーンマスクの透過率を12~18%とし、透過強度を強めることで、露光量を大きくし、陥没形状を改善することができる。また、サブスペーサの相対的な大きさ(特に体積)を確保し、凹部の形成を抑制するための他の方法としては、マスクに照射する光の強度を増加又は減少させる方法、プロキシミティギャップの大きさを増加させる方法等も挙げられる。なお、フォトレジストを用いた場合は、サブスペーサ5は角張らず、角は丸くなる。
また、サブスペーサ5は、微細なため、特にその先端部上には水平光配向膜7が形成されにくく、特に先端部において配光規制が及びにくい。そのため、ディスクリネーション抑制の観点からは、サブスペーサ5の上底の面積を小さくする、すなわち、サブスペーサ5の形状を凸形状に近づけることが好ましい。
図1においては、カラーフィルタ基板を平面視したとき、サブスペーサ5の底面の形状は円形となっているが、サブスペーサ5の底面の形状は円形に特に限定されず、例えば、ひし形や八角形等の多角形であってもよいし、楕円であってもよい。サブスペーサ5の底面の絶対的な大きさは特に限定されないが、メインスペーサ15に対する相対的な大きさは以下のよう設定されることが好ましい。サブスペーサ5及びメインスペーサ15の底面の形状が円形である場合、メインスペーサ15の底面の直径に対するサブスペーサ5の底面の直径の割合は、ディスクリネーションの発生を効果的に抑制する観点からは80%以上に設定されることが好ましく、開口率の低下を防止する観点からは100%以下に設定されることが好ましい。
サブスペーサ5の厚み(高さ)は特に限定されないが、メインスペーサ15とサブスペーサ5の高さの差は、通常、0.2μm以上、1μm以下であり、好ましくは、0.6μmである。
図7~図9は、いずれも実施形態1に係る液晶表示装置が備えるサブスペーサの断面形状の例を示す模式図である。実施形態1に係るサブスペーサ5は、断面視したときに、厚み(輪郭線上の位置)が単調増加した後、単調減少していればよく、図2の形状に特に限定されない。具体的には、例えば、図7(a)に示すように、段差を有する形状であってもよいし、図7(b)に示すように、円錐状であってもよいし、図7(c)に示すように、円柱状であってもよい。図7(a)~(c)に示す場合は、サブスペーサ5の先端部が球状に丸まっている。また、サブスペーサ5は、一部が平坦となっていてもよく、具体的には、例えば、図8(a)に示すように、断面視台形状であってもよいし、図8(b)に示すように、1以上の段差を含むピラミットのような形状であってもよし、図8(c)に示すように、先端部が平坦な円柱状であってもよい。更に、図2、図7(a)~(c)及び図8(a)~(c)に示した形状は、断面視したときに、いずれも左右対称な形状であったが、図9(a)及び(b)に示すように、断面視したときに、左右が非対称で偏りを含んだ形状であってもよい。図7~図9に示したいずれの形状であっても、図2に示した形状と同様に、ディスクリネーションの発生を抑制することができる。
サブスペーサ5が配される間隔は特に限定されず、例えば画素及びサブ画素の大きさ等、液晶表示装置の設計に応じて適宜調整することができる。サブスペーサ5が配される間隔が長くなると、大きなディスクリネーションが発生しやすくなり、サブスペーサ間に跨る複数の画素においてディスクリネーションが確認されることとなるため、表示品位の低下という問題がより顕著になると考えられる。しかしながら、本実施形態では、サブスペーサ5が配される間隔が長い場合でもディスクリネーションの発生を抑制することができる。
水平光配向膜6、7は、配向膜材料を良溶媒又は貧溶媒で希釈した塗液をインクジェット法等によって基板に塗布し、1000~1500Å程度の厚みを有する塗膜を形成し、塗布後、乾燥及び焼成を行い、その後配向処理として、例えば、偏光紫外線を照射して形成される。このように、サブスペーサ5が形成されたカラーフィルタ基板に配向膜材料を含む塗液を塗布した場合は、通常、塗液はサブスペーサ5上にほとんど残らないため、水平光配向膜7は、サブスペーサ5上に形成されないか、又は、サブスペーサ5上にごく微量だけ形成される。ただし、図4に示したように、水平光配向膜7は、サブスペーサ5上に形成されてもよい。
配向膜材料としては、光反応性官能基を有する配向膜材料が用いられる。光反応性官能基は、カルコン基、クマリン基、シンナメート基、アゾベンゼン基、及び、スチルベン基からなる群より選ばれる少なくとも一種の官能基である。また、シクロブタン骨格を繰り返し単位に含む配向膜材料を用いてもよい。このように、異性化型、二量化型、再配向型、又は、分解型の配向膜材料が用いられる。いずれの材料を用いても液晶層30のプレチルト角は同程度(例えば0°)になるため、同程度のディスクリネーションの抑制効果を奏することができる。
なお、本発明者らは、図15~17で示したような比較形態に係る液晶表示装置において、配向膜の配向規制力を高めることによって、ディスクリネーションを抑制できないか検討を行ったが、現時点では充分な効果が得られなかった。これは、サブスペーサの特に先端近傍においては、インクジェットで塗布した配向膜材料を含む溶液(塗液)が残りにくく、サブスペーサのボトムの周囲へと流れてしまうため、サブスペーサの特に先端近傍では、配向膜が形成されにくく、充分な配向規制力が得られないためであることを電子顕微鏡観察によって確認した。したがって、ディスクリネーションの抑制には、サブスペーサの形状改善が有効であると言える。
実施形態1に係る液晶表示装置は、水平光配向膜6、7の少なくとも一方上に配向規制力を有するポリマー層を更に備えていてもよい。ポリマー層は、水平光配向膜6、7上一面に形成されていることが好ましく、より好ましくは、略均一な厚さでち密に形成されたものである。また、ポリマー層は、水平光配向膜6、7上に点状に形成されている、すなわち、水平光配向膜6、7の表面上に離散的に形成されたものであってもよく、このときも、水平光配向膜6、7のもつ配向規制力を均一に保ち、焼き付きを抑制することができる。更に、水平光配向膜6、7の表面上の少なくとも一部にポリマー層が形成された上で、液晶層30全体にネットワーク状に形成されたポリマーネットワーク構造が形成されていてもよい。
ポリマー層を形成する具体的な手順の一例を示す。まず、液晶材料と、1種以上のモノマーとを含む液晶組成物をアクティブマトリクス基板20とカラーフィルタ基板10との間に注入する。続いて、偏光板をアクティブマトリクス基板20及びカラーフィルタ基板10のそれぞれに貼り付けて液晶表示パネルを作製し、更に、バックライトを液晶表示パネルの表示面側と反対側に備え付ける。そして、バックライトから出射された可視光を液晶層30に一定量照射することでモノマーを重合させる。
モノマーの重合工程に用いる光は、特に限定されず、モノマーの種類によって適宜選択される。例えば、紫外線であってもよいし、可視光であってもよい。特に、可視光を用いる場合、液晶層、配向膜等の構成部材の劣化又は損傷を大きく低減することができる。また、可視光を用いることで、偏光板及びバックライトを液晶表示パネルに備え付けた後であってもモノマーの重合を行うことができるので、紫外線を照射する場合のように新たな設備を用意する必要がなく、製造工程の効率化及びコストの削減に大きく寄与する。
以下に、上記ポリマー層を形成するために好適に用いられるモノマーについて詳述する。なお、ポリマー層形成に用いられたモノマーは、本実施形態のポリマー層における単量体単位の分子構造を確認することにより、確認することが可能である。
また上記ポリマー層は、一種以上の環構造を有する単官能又は多官能の重合性基を有するモノマーが重合することによって形成されたものであることが好ましい。そのようなモノマーとしては、例えば、下記化学式(1)で表されるモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000001
化学式(1)中、Rは、-R-Sp-P基、水素原子、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、又は、炭素数1~12の直鎖状若しくは分枝状のアルキル基である。
は、重合性基を表す。Spは、炭素数1~6の直鎖状、分枝状若しくは環状のアルキレン基若しくはアルキレンオキシ基、又は、直接結合を表す。
が有する水素原子は、フッ素原子又は塩素原子に置換されていてもよい。Rが有する-CH-基は、酸素原子及び硫黄原子が互いに隣接しない限り-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。
は、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。
及びAは、同一又は異なって、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-2,6-ジイル基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、インダン-1,3-ジイル基、インダン-1,5-ジイル基、インダン-2,5-ジイル基、フェナントレン-1,6-ジイル基、フェナントレン-1,8-ジイル基、フェナントレン-2,7-ジイル基、フェナントレン-3,6-ジイル基、アントラセン-1,5-ジイル基、アントラセン-1,8-ジイル基、アントラセン-2,6-ジイル基、又は、アントラセン-2,7-ジイル基を表す。A及びAが有する-CH-基は、互いに隣接しない限り-O-基又は-S-基で置換されていてもよい。A及びAが有する水素原子は、フッ素原子、塩素原子、-CN基、又は、炭素数1~6のアルキル基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基若しくはアルキルカルボニルオキシ基で置換されていてもよい。
Zは、同一又は異なって、-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、-OCO-CH=CH-基、又は、直接結合を表す。mは、0、1又は2である。
より具体的には、例えば、下記化学式(2-1)~(2-5)で表されるモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000002
化学式(2-1)~(2-5)中、Pは、同一又は異なって、重合性基を表す。
上記Pとしては、例えば、アクリロイルオキシ基、メタアクリロイルオキシ基、ビニル基、ビニルオキシ基、アクリロイルアミノ基、又は、メタアクリロイルアミノ基が挙げられる。ここで、上記化学式(2-1)~(2-5)で表される化合物におけるベンゼン環及び縮合環の水素原子は、ハロゲン原子、又は、炭素数1~12のアルキル基若しくはアルコキシ基に部分的に又はすべて置換されてもよく、また、アルキル基、アルコキシ基の水素原子はハロゲン原子に部分的に又はすべて置換されていてもよい。また、Pのベンゼン環及び縮合環への結合位置は、これに限らない。
上記化学式(1)で表されるモノマーは、紫外光の照射により重合するモノマーである。なお、本実施形態における上記ポリマー層は、可視光の照射により重合するモノマーを重合して形成されたものであっても良い。
上記ポリマー層を形成するモノマーは、二種以上であり、上記可視光の照射により重合するモノマーは、他のモノマーを重合させるモノマーであっても良い。上記他のモノマーを重合させるモノマーとは、分子構造により反応する波長域は異なるが、例えば、可視光の照射を受けて化学反応を起こし、可視光の照射により単独で重合できない他のモノマーの重合を開始、促進させるとともに、自己も重合するものを指す。上記他のモノマーを重合させるモノマーにより、現存の可視光等の光照射で重合しない多くのモノマーをポリマー層の材料として用いることができる。上記他のモノマーを重合させるモノマーの例としては、可視光の照射によりラジカルを生成する構造をもつモノマーが挙げられる。
上記他のモノマーを重合させるモノマーとしては、例えば、下記化学式(3)で表されるモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000003
化学式(3)中、A及びAは、同一又は異なって、ベンゼン環、ビフェニル環、又は、炭素数1~12の直鎖状若しくは分枝状のアルキル基若しくはアルケニル基を表す。A及びAの少なくとも一方は、-Sp-P基を含む。A及びAが有する水素原子は、-Sp-P基、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、又は、炭素数1~12の直鎖状若しくは分枝状のアルキル基、アルケニル基若しくはアラルキル基で置換されていてもよい。A及びAが有する隣接する2つの水素原子は、炭素数1~12の直鎖状又は分枝状のアルキレン基又はアルケニレン基で置換されて環状構造となっていてもよい。A及びAのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する水素原子は、-Sp-P基で置換されていてもよい。A及びAのアルキル基、アルケニル基、アルキレン基、アルケニレン基又はアラルキル基が有する-CH-基は、酸素原子、硫黄原子及び窒素原子が互いに隣接しない限り-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。
は、重合性基を表す。Spは、炭素数1~6の直鎖状、分枝状若しくは環状のアルキレン基若しくはアルキレンオキシ基、又は、直接結合を表す。
nは、1又は2である。AとYとをつなぐ点線部分、及び、AとYとをつなぐ点線部分は、AとAとの間にYを介した結合が存在していてもよいことを表す。
Yは、-CH-基、-CHCH-基、-CH=CH-基、-O-基、-S-基、-NH-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、又は、直接結合を表す。
より具体的には、例えば、下記化学式(4-1)~(4-8)で表されるモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000004
化学式(4-1)~(4-8)中、R及びRは、同一又は異なって、-Sp-P基、水素原子、ハロゲン原子、-CN基、-NO基、-NCO基、-NCS基、-OCN基、-SCN基、-SF基、又は、炭素数1~12の直鎖状若しくは分枝状のアルキル基、アラルキル基若しくはフェニル基を表す。R及びRの少なくとも一方は、-Sp-P基を含む。
は、重合性基を表す。Spは、炭素数1~6の直鎖状、分枝状若しくは環状のアルキレン基若しくはアルキレンオキシ基、又は、直接結合を表す。R及びRの少なくとも一方が、炭素数1~12の直鎖状又は分枝状のアルキル基、アラルキル基又はフェニル基であるとき、上記R及びRの少なくとも一方が有する水素原子は、フッ素原子、塩素原子又は-Sp-P基に置換されていてもよい。R及びRが有する-CH-基は、酸素原子、硫黄原子及び窒素原子が互いに隣接しない限り-O-基、-S-基、-NH-基、-CO-基、-COO-基、-OCO-基、-O-COO-基、-OCH-基、-CHO-基、-SCH-基、-CHS-基、-N(CH)-基、-N(C)-基、-N(C)-基、-N(C)-基、-CFO-基、-OCF-基、-CFS-基、-SCF-基、-N(CF)-基、-CHCH-基、-CFCH-基、-CHCF-基、-CFCF-基、-CH=CH-基、-CF=CF-基、-C≡C-基、-CH=CH-COO-基、又は、-OCO-CH=CH-基で置換されていてもよい。
上記Pとしては、例えば、アクリロイルオキシ基、メタアクリロイルオキシ基、ビニル基、ビニルオキシ基、アクリロイルアミノ基、又は、メタアクリロイルアミノ基が挙げられる。ここで、上記化学式(4-1)~(4-8)で表される化合物におけるベンゼン環の水素原子は、ハロゲン原子、又は、炭素数1~12のアルキル基若しくはアルコキシ基に部分的に又はすべて置換されてもよく、また、アルキル基、アルコキシ基の水素原子はハロゲン原子に部分的に又はすべて置換されていてもよい。更に、R、Rのベンゼン環への結合位置は、これに限らない。
上記ポリマー層を形成するモノマー(例えば、化学式(2-1)~(2-5)で表される化合物、及び、上記化学式(4-1)~(4-8)で表される化合物)は、重合性基を2つ以上もつことが好ましい。例えば、重合性基を2つもつものが好適なものとして挙げられる。
従来の重合開始剤(initiator)は用いずに、上述したモノマーを液晶に添加しても良い。これにより、液晶層中に不純物となりえる重合開始剤は残存しなくなり、電気特性を格段に向上することができる。すなわち、モノマーを重合させる際に、液晶層中にモノマーの重合開始剤が実質的に存在しないものとすることができる。
本実施形態においては、例えば、以下の下記化学式(5)で示されるビフェニル系の二官能メタクリレートモノマーを用いても良い。
Figure JPOXMLDOC01-appb-C000005
この場合、光重合開始剤を混合しなくても、ポリマー形成を確認することができる。光照射により下記式(6-1)、(6-2)に示したようなラジカル生成過程を生じているものと考えられる。
Figure JPOXMLDOC01-appb-C000006
また、メタクリレート基が存在するため、ラジカル重合反応により自身がポリマーを形成することにも寄与する。モノマーとしては、液晶に溶解するものが望ましく、棒状分子が望ましい。上記ビフェニル系のほかに、ナフタレン系、フェナントレン系、アントラセン系も考えられる。また、これらの水素原子の一部又はすべてはハロゲン原子や、アルキル基、アルコキシ基(その水素原子がハロゲン原子に一部又はすべて置換してもよい)に置換されていてもよい。重合性基としては、上記メタアクリロイルオキシ基のほかに、アクリロイルオキシ基、ビニルオキシ基、アクリロイルアミノ基、メタアクリロイルアミノ基も考えられる。このようなモノマーであれば、300~380nm程度の範囲の波長の光で、ラジカル生成が可能である。また、上記モノマー以外に、光重合開始機能を有しないアクリレート、ジアクリレートのようなモノマーを混合させてもよく、これにより光重合反応速度を調整することができる。
また、本実施形態において、下記化学式(7-1)で示されるモノマー及び下記化学式(7-2)で示されるモノマーの混合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000007
この場合、モノマーを重合させるために照射する光を可視光とし、これにより、液晶及び光配向膜へのダメージを抑制することもできる。モノマーとしては、他にも光開裂や水素引き抜きによってラジカルを生成するベンゾインエーテル系、アセトフェノン系、ベンジルケータル系、ケトン系を用いることができる。また、これらに重合性基が付与されている必要があるが、当該重合性基としては、上記メタアクリロイルオキシ基のほかに、アクリロイルオキシ基、ビニルオキシ基、アクリロイルアミノ基、メタアクリロイルアミノ基が挙げられる。また、配向膜材料のポリマー主鎖として、シクロブタンを骨格に有するポリイミドを用いても良い。
また、以下に、上記ポリマー層に含まれる好適な構造について詳述する。上記ポリマー層は、下記化学式(8)で表される構造を繰り返し単位中に含むことが好ましい。
Figure JPOXMLDOC01-appb-C000008
化学式(8)中、Xは、-H、又は、-CHを表す。Yは、-O-、-COO-、-CONH-、又は、直接結合を表す。Rは、少なくともYと結合するベンゼン環構造を含む二価の基を表す。Qは、一価の有機基を表す。
本発明においては、該繰り返し単位を形成するモノマーとしては、光の照射により、モノマー自身が重合開始剤となって重合するものを用いることが好ましい。本明細書においては、このようなモノマーを開始剤機能付モノマーとも言う。該モノマーとしては、ベンゼン環に、アクリロイルオキシ基、メタアクリロイルオキシ基、ビニル基、ビニルオキシ基、アクリロイルアミノ基、又は、メタアクリロイルアミノ基が結合する構造を含むものが好ましい。該モノマーが上記化学式(8)で表される繰り返し単位を形成する構造を有することで、好ましくは、上記ベンゼン環をもつ構造を含むことで、例えば、下記化学反応式(9)に表されるように、光照射によりラジカルを生成することが可能となる。この反応は、光フリース転位の過程において、上記の官能基が開裂し、ラジカルを発生する反応と同じ反応であると考えられる。更に、下記化学反応式(9)に表されるように、例えば、メタクリレート基を有するため、ラジカル重合反応を起こし、ポリマーを形成することができる。一般に、光照射によって重合するモノマーを光重合性モノマーと言うが、開始剤機能付モノマーの場合、光重合性モノマー自体がラジカルを発生し重合するため、重合開始剤を必要としない。なお、ポリマー層を形成する際、重合開始剤を用いてもよいが、その場合は、残留した重合開始剤が液晶表示性能に影響を与えることから、最小限にとどめることが好ましい。最も好ましくは、重合開始剤を用いないことである。
Figure JPOXMLDOC01-appb-C000009
上記化学反応式(9)において、※は、任意の有機基を表す。以下同様である。
なお、上記化学反応式(9)においては、開始剤機能付モノマーが、光によって開裂し、ラジカルを発生する態様と、モノマー中の二重結合が重合してポリマーの繰り返し単位を形成する態様とを示す。
開始剤機能付モノマーとは、通常のPSA技術においてモノマーの重合反応のために照射される紫外線等と同程度の強度の紫外線等、又は、可視光の照射によって、通常用いられる重合開始剤が存在しなくともラジカルを発生し、重合反応を起こすモノマーを言う。
上記化学式(8)中、上記Rは、下記化学式群(10)より選択される構造を含むことが好ましい。棒状の液晶分子と親和性の高い類似の棒状骨格を繰り返し単位中に有することで、モノマーの液晶中への溶解性を高めるとともに、水平光配向膜の配向規制力をより高めることができる。
Figure JPOXMLDOC01-appb-C000010
化学式群(10)中、水素原子は、部分的又は全体的にハロゲン原子に置換されていてもよい。また、各環構造は、炭素原子が他原子に置換されたヘテロ環となっていてもよい。
上記ポリマー層は、下記化学式(11)又は(12)で示される構造を繰り返し単位中に含むことが好ましい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
化学式(11)及び(12)中、Xは、-H、又は、-CHを表す。Yは、-O-、-COO-、-CONH-、又は、直接結合を表す。Qは、一価の有機基を表す。
すなわち、上記ポリマー層は、ベンゾイル骨格を有することが好ましい。ベンゾイル骨格を有するモノマーは、下記化学反応式(13)に表されるように、水素原子の引き抜き反応によりラジカルを発生するため、非ベンゾイル骨格を有するモノマーよりもラジカルの生成確率が高くなる。したがって、ポリマー層を形成する際に要する重合時間を短縮することができるとともに、ち密なポリマー層を形成することができる。
Figure JPOXMLDOC01-appb-C000013
上記化学式(8)中、上記Qは、上記R部位と結合するベンゼン環構造を含むことが好ましい。これにより、繰り返し単位中の棒状骨格をより液晶分子の棒状骨格と類似させることができ、その結果、モノマー骨格と液晶分子の親和性が向上し、形成されたポリマー層による液晶配向の固定化能力を高めることができる。また、通常、液晶をパネル内に封入するには真空下で行われるが、モノマーの分子量が低い場合には揮発によるモノマー濃度低下及び濃度ムラが懸念される。ベンゼン環導入により分子量を上げることができ、揮発性を低減させることもできる。
上記Qは、高分子鎖を含むことが好ましい。これにより、ポリマー層を緻密な3次元構造にできるため、液晶配向の固定化能力を向上させることができる。
上記ポリマー層は、二官能モノマーから形成されることが好ましく、下記化学式群(14)より選択される少なくとも一種の構造を繰り返し単位中に含むことがより好ましい。これにより、液晶表示パネル中の重合開始点の密度をより増加させることができる。加えて、上記化学反応式(9)のような開裂を起こしてラジカル生成した場合、二官能モノマーであれば開裂したそれぞれに重合反応基を有することになるため、未反応物質が液晶中に残存することを抑制することもできる。
Figure JPOXMLDOC01-appb-C000014
化学式群(14)中、X及びX´は、それぞれ独立に、-H、又は、-CHを表す。Y及びY´は、それぞれ独立に、-O-、-COO-、-CONH-、又は、直接結合を表す。
上記ポリマー層を構成するポリマーの平均分子量は特に特定されず、通常のPSA技術により形成されるポリマーの数平均分子量又は重量平均分子量と同程度となればよい。典型的には、例えば、繰り返し単位数で8以上、又は、分子量1000以上が望ましい。
上記に例示したモノマー及び上記に例示した構造を含むポリマー以外にも、通常のPSA技術に用いられるモノマー及びポリマーを本発明に適宜用いることができる。
実施例1
実施例1として実施形態1に係る液晶セル(液晶表示パネル)を実際に作製した。
まず、大きさが10インチのFFS構造を有するIGZO-TFT基板と、対向基板として、カラーフィルタ基板とを用意した。なお、IGZO-TFT基板とは、半導体としてインジウムガリウム亜鉛複合酸化物を用いたアクティブマトリクス基板を示す。また、上層のスリットを有する電極の電極幅Lは3μm、電極間距離(スリット幅)Sは5μmとした(L/S=3μm/5μm)。
メインスペーサ及びサブスペーサの材料として、カラーフィルタ基板にネガ型フォトレジストを塗布し、マスクを配した後、波長365nmで強度150mJ/cmの光を照射した。サブスペーサの形成には、透過率が15%のハーフトーンマスクを用いた。マスクとカラーフィルタ基板の間のプロキシミティギャップは、240μmに設定した。実施例1のサブスペーサは、図2に示したサブスペーサ5と同じ形状であった。サブスペーサの底面の直径を12μmとし、高さを2.5μmとした。メインスペーサの高さは、アクティブエリアの液晶層の厚みが3.3μmになるように設定し、メインスペーサの底面の直径は14μmとした。図1に示すように、大半のサブ画素毎にサブスペーサを配し、サブスペーサを配さなかったサブ画素にはメインスペーサを配した。最も隣接するサブスペーサ間の距離を30μmとした。
これらの基板に、側鎖光反応型の光反応性官能基を有する配向膜材料を含有する塗液をインクジェット法により塗布し、塗布後、80℃で3分仮乾燥して、窒素パージしながら200℃で40分配向膜を焼成した。アクティブマトリクス基板側の最上層(最も液晶層側)である透明電極上の配向膜の膜厚は、アクティブエリアにおいて45nmとなった。カラーフィルタ基板側の配向膜の膜厚は、アクティブエリアにおいて50nmとなった。
次に、これらの基板に、液晶配向処理(光配向処理)として、直線偏光紫外線を波長313nmにおいて5J/cm、基板法線方向から照射し、水平光配向膜を形成した。なお、水平光配向膜は、モノドメイン配向とした。すなわち、液晶配向処理はマスクレスで行い、配向分割を行わなかった。
次に、アクティブマトリクス基板に、スクリーン版を使用して熱硬化性シール(HC1413FP:三井化学社製)を印刷した。そして、この二種類の基板を、照射した紫外線の偏光方向が基板同士で一致するように貼り合せた。次に、貼り合わせた基板を0.5kgf/cmで加圧しながら窒素パージした炉で200℃で60分加熱して、シールを硬化させた。
以上の方法で作製したセルに、正の誘電率異方性を有する液晶分子を含む液晶材料を真空下で注入した。液晶材料を注入したセルの注入口はエポキシ系接着剤(アラルダイトAR-S30;ニチバン社製)で封止した。またこの時、液晶配向が外場によって乱されないように、電極間を短絡し、ガラス表面にも除電処理を行った。次に、液晶の流動配向を消し、量産時のODF(One Drop Fill;液晶滴下)工程のシール硬化を再現するために、パネルを130℃で40分加熱し液晶を等方相にして再配向処理を行った。これにより、配向膜へ照射した紫外線の偏光方向に垂直な方向に液晶分子が一軸配向したFFSモードの液晶セルが得られた。以上は、全てイエロー蛍光灯の下で作業し、液晶パネルに蛍光灯からの紫外線が暴露されないようにした。
比較例1
比較例1として、プロキシミティギャップを小さくし、また、マスクに照射する光の強度を小さくしてサブスペーサを形成したこと以外は、実施例1と同じ液晶セルを作製した。具体的には、プロキシミティギャップは、100μmに設定し、また、実施例1における波長365nmでの光の強度を110%としたとき、比較例1における波長365nmでの光の強度は、100%に設定した。比較例1のサブスペーサは、図2に示した比較形態のサブスペーサ105と同じ形状であった。
実施例1及び比較例1に係る液晶セルについて、それぞれ、ディスクリネーションの発生率を算出した。ディスクリネーションの発生率は、いわゆる液晶表示装置の歩留まりの測定と同じである。具体的には、液晶セルをクロスニコルの偏光板で挟み、閾値以上の電圧を電極に印加し、暗室条件下でディスクリネーションが発生しているか否かを目視により判断した。表示領域内にディスクリネーションが1つ以上確認された液晶セルは不合格とし、液晶セル100個検査したときに、不合格のセルが5個あった場合、ディスクリネーションの発生率は5%と計算する。
結果を表1に示す。比較例1に係る液晶セルにおいては、ディスクリネーションの発生率が58.9%と非常に高い値となったのに対して、実施例1に係る液晶セルにおいては、ディスクリネーションの発生率は3.4%と激減した。
Figure JPOXMLDOC01-appb-T000015
変形例1
サブスペーサの底面の直径をそれぞれ、11.3μm、12μm、及び、12.7μmとし、メインスペーサの底面の直径をいずれも15μmとしたこと以外は、実施例1と同じ液晶セルを作製し、それぞれのディスクリネーションの発生率を測定した。結果を図10に示す。図10は、サブスペーサの底面の直径とディスクリネーションの発生率との関係を示すグラフである。
図10に示すように、サブスペーサの底面の直径が12μm、及び、12.7μmのときには、ディスクリネーションの発生率は低く抑えられたが、サブスペーサの底面の直径が11.3μmのときは、ディスクリネーションの発生率は高くなった。これは、メインスペーサの底面の直径に対して、サブスペーサの底面の直径が小さくなりすぎると、フォトレジストへの光の照射時に、サブスペーサに対応する部分への光の照射量が少なくなるため、ポストベーク時に収縮して、サブスペーサの先端に凹部が生じるためと考えられる。
以上、変形例1から、メインスペーサの底面の直径が15μmのとき、サブスペーサの底面の直径は12μm以上であることが好ましく、メインスペーサの底面の直径とサブスペーサの底面の直径との差が3μm以下であることが好ましいことが判明した。また、変形例1から、サブスペーサの底面の直径は、メインスペーサの底面の直径の80%以上であることが好ましいことが判明した。
実施形態2
実施形態1に係る液晶表示装置が備えるサブスペーサ5は、凹部を有していなかったが、実施形態2に係る液晶表示装置が備えるサブスペーサは、凹部を有する。それ以外の点では、実施形態2に係る液晶表示装置は、実施形態1に係る液晶表示装置と同じであるため、ここでの説明は省略する。また、実施形態1において説明した各種形態は、実施形態2にも適宜適用することができる。
図11は、実施形態2に係る液晶表示装置が備えるサブスペーサ、及び、比較形態に係る液晶表示装置が備えるサブスペーサの断面模式図である。図11に示すように、実施形態2に係る液晶表示装置が備えるサブスペーサ205は、比較形態に係る液晶表示装置が備えるサブスペーサ105同様に、断面視したときに、一端205aから他端205bに向かって、厚み(輪郭線上の位置の高さ)が単調増加した後、第一点を境に単調減少し、その後、第二点を境に単調増加し、更にその後、第三点を境に単調減少する。すなわち、サブスペーサ105、205の先端部は、凹部を有する形状となる。なお、断面視とは、より詳細には、実施形態1と同様に、サブスペーサ105、205の断面(通常はサブスペーサ105、205の中心部を通る断面)であって、カラーフィルタ基板(基板主面)に対して垂直な断面を観察した場合を意味する。
一方、サブスペーサ205の凹部は、サブスペーサ105の凹部に比べて、凹み具合が緩やかである。具体的には、サブスペーサ205においては、第一点及び第二点を結ぶ線分と、第二点及び第三点を結ぶ線分とがなす角θが168°以上(好適には、177°以上)、180°未満となる。
このように、凹部の凹み具合が緩やかに形成されていることによって、凹部において、ディスクリネーションの核となる配向の乱れが生じにくくなるため、ディスクリネーションの発生が抑制される。
図12は、実施形態2に係る液晶表示装置が備えるサブスペーサの他の断面模式図である。図12に示すように、第一点aの座標を(X1,Z1)、第二点bの座標を(X2,Z2)とし、輪郭線が、サブスペーサの厚み方向に伸び、第二点を通る線に対して左右対称となる形状のとき、第一点a及び第二点bを結ぶ線分と、第二点b及び第三点cを結ぶ線分とがなす角θは、以下の式から算出することができる。
Tan(θ/2)=(X2-X1)/(Z2-Z1)
実施例2
実施例2として実施形態2に係る液晶セルを実際に作製した。
プロキシミティギャップを小さくし、また、マスクに照射する光の強度を小さくしてサブスペーサを形成したこと以外は、実施例1の液晶セルと同様にして実施例2の液晶セルを作製した。具体的には、プロキシミティギャップは、100μmに設定し、また、実施例1における波長365nmでの光の強度を110%としたとき、実施例2における波長365nmでの光の強度は、91%に設定した。実施例2のサブスペーサは、図11に示したサブスペーサ205と同じ形状であった。
実施例2及び比較例1に係る液晶セルについて、それぞれ、ディスクリネーションの発生率を算出した。なお、比較例1のサブスペーサは、図11に示したサブスペーサ105と同じ形状であり、角度θ=164°であった。結果を表2に示す。比較例1に係る液晶セルにおいては、ディスクリネーションの発生率が58.9%と非常に高い値となったのに対して、実施例2に係る液晶セルにおいては、ディスクリネーションの発生率は11.4%と低く抑えられた。
Figure JPOXMLDOC01-appb-T000016
変形例2
角度θを180°としたこと以外は、実施例2と同じ液晶セルを作製し、ディスクリネーションの発生率を測定した。結果を図13に示す。図13は、角度θとディスクリネーションの発生率との関係を示すグラフである。
図13に示すように、ディスクリネーションの発生率は、θ=168°を境に低く抑えられることが判明した。
上述した実施形態は、本発明の要旨を逸脱しない範囲において、適宜組み合わされてもよい。また、各実施形態の各種形態は、他の実施形態に適宜組み合わされてもよい。
本願は、2011年11月30日に出願された日本国特許出願2011-262528号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
1、2、101、102:絶縁基板
3、103:共通電極
4、104:ブラックマトリクス(BM)
5、105、205:サブスペーサ
5a、5b、205a、205b:端
6、7、106、107:水平光配向膜
8、108:液晶分子
10、110:カラーフィルタ基板
11、12、111、112:直線偏光板
13R、13B、13G:カラーフィルタ
15:メインスペーサ
20、120:アクティブマトリクス基板
23:画素電極
30、130:液晶層
a:第一点
b:第二点
c:第三点
 

Claims (16)

  1. 互いに対向する一対の基板と、
    前記一対の基板の間に設けられた水平配向型の液晶層とを備え、
    前記一対の基板の少なくとも一方は、光配向膜を含み、
    前記一対の基板の一方は、複数のサブスペーサを含み、
    前記複数のサブスペーサは、大気圧下において、対向する基板に接しておらず、
    前記複数のサブスペーサの各々のある断面において、前記複数のサブスペーサの各々の厚みは、当該サブスペーサの一端から他端に向かって、単調増加した後、単調減少することを特徴とする液晶表示装置。
  2. 前記光配向膜を形成する配向膜材料は、カルコン基、クマリン基、シンナメート基、アゾベンゼン基、及び、スチルベン基からなる群より選ばれる少なくとも一種の光反応性官能基を含むことを特徴とする請求項1記載の液晶表示装置。
  3. 前記光配向膜を形成する配向膜材料は、シクロブタン骨格を繰り返し単位に含むことを特徴とする請求項1記載の液晶表示装置。
  4. 前記液晶表示装置は、前記光配向膜の前記液晶層側に、前記液晶層中に添加したモノマーを重合して形成され、配向規制力を有するポリマー層を更に備えることを特徴とする請求項2又は3記載の液晶表示装置。
  5. 前記複数のサブスペーサが設けられた前記基板は、複数のメインスペーサを更に含み、
    前記複数のメインスペーサは、大気圧下において、対向する基板に接しており、
    前記複数のサブスペーサの各々の底面の直径は、前記複数のメインスペーサの各々の底面の直径の80%以上であることを特徴とする請求項2~4のいずれかに記載の液晶表示装置。
  6. 前記光配向膜は、ポリイミド、ポリアミック酸、ポリマレイミド、及び、ポリシロキサンからなる群より選ばれる少なくとも一種のポリマーの主鎖構造を有することを特徴とする請求項1~5のいずれかに記載の液晶表示装置。
  7. 前記液晶表示装置の表示モードは、IPSモード又はFFSモードであることを特徴とする請求項1~6のいずれかに記載の液晶表示装置。
  8. 互いに対向する一対の基板と、
    前記一対の基板の間に設けられた水平配向型の液晶層とを備え、
    前記一対の基板の少なくとも一方は、光配向膜を含み、
    前記一対の基板の一方は、複数のサブスペーサを含み、
    前記複数のサブスペーサは、大気圧下において、対向する基板に接しておらず、
    前記複数のサブスペーサの各々のある断面において、前記複数のサブスペーサの各々の厚みは、当該サブスペーサの一端から他端に向かって、単調増加した後、第一点を境に単調減少し、その後、第二点を境に単調増加し、更にその後、第三点を境に単調減少し、
    前記第一点及び前記第二点を結ぶ線分と、前記第二点及び前記第三点を結ぶ線分とがなす角は、168°以上であることを特徴とする液晶表示装置。
  9. 前記光配向膜を形成する配向膜材料は、カルコン基、クマリン基、シンナメート基、アゾベンゼン基、及び、スチルベン基からなる群より選ばれる少なくとも一種の光反応性官能基を含むことを特徴とする請求項8記載の液晶表示装置。
  10. 前記光配向膜を形成する配向膜材料は、シクロブタン骨格を繰り返し単位に含むことを特徴とする請求項8記載の液晶表示装置。
  11. 前記液晶表示装置は、前記光配向膜の前記液晶層側に、前記液晶層中に添加したモノマーを重合して形成され、配向規制力を有するポリマー層を更に備えることを特徴とする請求項9又は10記載の液晶表示装置。
  12. 前記複数のサブスペーサが設けられた前記基板は、複数のメインスペーサを更に含み、
    前記複数のメインスペーサは、大気圧下において、対向する基板に接しており、
    前記複数のサブスペーサの各々の底面の直径は、前記複数のメインスペーサの各々の底面の直径の80%以上であることを特徴とする請求項9~11のいずれかに記載の液晶表示装置。
  13. 前記光配向膜は、ポリイミド、ポリアミック酸、ポリマレイミド、及び、ポリシロキサンからなる群より選ばれる少なくとも一種のポリマーの主鎖構造を有することを特徴とする請求項8~12のいずれかに記載の液晶表示装置。
  14. 前記液晶表示装置の表示モードは、IPSモード又はFFSモードであることを特徴とする請求項8~13のいずれかに記載の液晶表示装置。
  15. 前記一対の基板の一方は、カラーフィルタを含むことを特徴とする請求項1~14のいずれかに記載の液晶表示装置。
  16. 前記一対の基板の一方は、IGZO-TFTを含むことを特徴とする請求項1~15のいずれかに記載の液晶表示装置。
     
PCT/JP2012/079159 2011-11-30 2012-11-09 液晶表示装置 WO2013080777A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/361,352 US9817277B2 (en) 2011-11-30 2012-11-09 Liquid crystal display device
JP2013547085A JP5759565B2 (ja) 2011-11-30 2012-11-09 液晶表示装置
CN201280059192.2A CN103959154B (zh) 2011-11-30 2012-11-09 液晶显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-262528 2011-11-30
JP2011262528 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013080777A1 true WO2013080777A1 (ja) 2013-06-06

Family

ID=48535244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079159 WO2013080777A1 (ja) 2011-11-30 2012-11-09 液晶表示装置

Country Status (4)

Country Link
US (1) US9817277B2 (ja)
JP (1) JP5759565B2 (ja)
CN (1) CN103959154B (ja)
WO (1) WO2013080777A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084896A1 (ja) * 2014-11-28 2016-06-02 シャープ株式会社 液晶表示装置の製造方法
WO2016098318A1 (ja) * 2014-12-18 2016-06-23 パナソニック液晶ディスプレイ株式会社 液晶表示装置及びその製造方法
WO2018216769A1 (ja) * 2017-05-25 2018-11-29 シャープ株式会社 組成物および液晶表示装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104503150A (zh) * 2014-12-04 2015-04-08 深圳市华星光电技术有限公司 液晶面板及其制作方法
CN104698524B (zh) * 2015-02-13 2018-04-03 上海天马微电子有限公司 一种偏振片及其制备方法和图像显示面板、图像显示装置
CN105093688B (zh) * 2015-07-16 2018-07-27 深圳市华星光电技术有限公司 一种液晶显示面板及其制作方法
KR20170104079A (ko) * 2016-03-04 2017-09-14 삼성디스플레이 주식회사 액정표시장치 및 이의 제조방법
CN106773349A (zh) * 2016-12-28 2017-05-31 张家港康得新光电材料有限公司 隔垫物、隔垫物的制造方法及液晶显示装置
JP6968599B2 (ja) * 2017-06-30 2021-11-17 株式会社ジャパンディスプレイ 表示装置
KR102166474B1 (ko) * 2017-06-30 2020-10-16 주식회사 엘지화학 기판
CN112083606A (zh) * 2019-06-14 2020-12-15 夏普株式会社 液晶显示装置、以及、液晶显示装置的制造方法
CN111061112B (zh) * 2020-01-02 2023-02-17 上海天马微电子有限公司 显示面板及其制作方法、显示装置
CN113160155B (zh) * 2021-04-09 2023-11-28 深圳市华星光电半导体显示技术有限公司 辅间隔物最高点确定方法、装置、电子设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182220A (ja) * 2000-12-08 2002-06-26 Hitachi Ltd 液晶表示装置
JP2004206091A (ja) * 2002-12-09 2004-07-22 Hitachi Ltd 液晶表示装置およびその製造方法
JP2005241858A (ja) * 2004-02-25 2005-09-08 Seiko Epson Corp 電気光学装置、電子機器、および電気光学装置の製造方法
JP2009265308A (ja) * 2008-04-24 2009-11-12 Sony Corp 液晶表示素子
WO2010070988A1 (ja) * 2008-12-16 2010-06-24 株式会社ブイ・テクノロジー 凸状パターン形成方法、露光装置及びフォトマスク
JP2010197795A (ja) * 2009-02-26 2010-09-09 Toppan Printing Co Ltd カラーフィルタ基板及びそれを用いた液晶表示装置
JP2010231198A (ja) * 2009-03-02 2010-10-14 Fujifilm Corp 光学補償シート、偏光板、液晶表示装置及び光学補償シートの製造方法
JP2011209539A (ja) * 2010-03-30 2011-10-20 Dainippon Printing Co Ltd アクティブマトリクス型駆動基板、その製造方法及び表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132528B2 (ja) * 2000-01-14 2008-08-13 シャープ株式会社 液晶表示装置の製造方法
US6977704B2 (en) * 2001-03-30 2005-12-20 Fujitsu Display Technologies Corporation Liquid crystal display
WO2006028194A1 (en) * 2004-09-09 2006-03-16 Sharp Kabushiki Kaisha Substrate for liquid crystal display panel
US7821613B2 (en) * 2005-12-28 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
JP4870436B2 (ja) * 2006-01-10 2012-02-08 株式会社 日立ディスプレイズ 液晶表示装置
JP5453723B2 (ja) * 2008-03-05 2014-03-26 大日本印刷株式会社 横電界液晶駆動方式用カラーフィルタおよびその製造方法
US20110261295A1 (en) * 2008-09-17 2011-10-27 Kim Jae-Hoon Liquid crystal display and manufacturing method of the same
JP5557177B2 (ja) * 2008-11-11 2014-07-23 Nltテクノロジー株式会社 液晶表示装置
JP2010181687A (ja) 2009-02-06 2010-08-19 Toppan Printing Co Ltd フォトマスク、カラーフィルタの製造方法、カラーフィルタ、及び液晶表示装置
JP2011186410A (ja) * 2010-03-11 2011-09-22 Hitachi Displays Ltd 液晶表示装置及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182220A (ja) * 2000-12-08 2002-06-26 Hitachi Ltd 液晶表示装置
JP2004206091A (ja) * 2002-12-09 2004-07-22 Hitachi Ltd 液晶表示装置およびその製造方法
JP2005241858A (ja) * 2004-02-25 2005-09-08 Seiko Epson Corp 電気光学装置、電子機器、および電気光学装置の製造方法
JP2009265308A (ja) * 2008-04-24 2009-11-12 Sony Corp 液晶表示素子
WO2010070988A1 (ja) * 2008-12-16 2010-06-24 株式会社ブイ・テクノロジー 凸状パターン形成方法、露光装置及びフォトマスク
JP2010197795A (ja) * 2009-02-26 2010-09-09 Toppan Printing Co Ltd カラーフィルタ基板及びそれを用いた液晶表示装置
JP2010231198A (ja) * 2009-03-02 2010-10-14 Fujifilm Corp 光学補償シート、偏光板、液晶表示装置及び光学補償シートの製造方法
JP2011209539A (ja) * 2010-03-30 2011-10-20 Dainippon Printing Co Ltd アクティブマトリクス型駆動基板、その製造方法及び表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084896A1 (ja) * 2014-11-28 2016-06-02 シャープ株式会社 液晶表示装置の製造方法
WO2016098318A1 (ja) * 2014-12-18 2016-06-23 パナソニック液晶ディスプレイ株式会社 液晶表示装置及びその製造方法
WO2018216769A1 (ja) * 2017-05-25 2018-11-29 シャープ株式会社 組成物および液晶表示装置

Also Published As

Publication number Publication date
JPWO2013080777A1 (ja) 2015-12-10
US9817277B2 (en) 2017-11-14
JP5759565B2 (ja) 2015-08-05
CN103959154A (zh) 2014-07-30
US20140354930A1 (en) 2014-12-04
CN103959154B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5759565B2 (ja) 液晶表示装置
JP5525108B2 (ja) 液晶表示装置
JP5555381B2 (ja) 液晶表示パネル及び液晶表示装置
CN107037635B (zh) 液晶显示装置的制造方法
WO2010116565A1 (ja) 液晶表示装置、液晶表示装置の製造方法、光重合体膜形成用組成物、及び、液晶層形成用組成物
JP5620006B2 (ja) 液晶表示装置の製造方法
TWI574994B (zh) Liquid crystal display device
TWI578063B (zh) A liquid crystal display device, and a liquid crystal display device
TWI524122B (zh) Liquid crystal display device
TWI519868B (zh) Liquid crystal display device
JP2004302061A (ja) 液晶表示装置及びその製造方法
WO2013031616A1 (ja) 液晶表示パネル及び液晶表示装置
WO2014045923A1 (ja) 液晶表示装置及びその製造方法
WO2013008727A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
WO2012063936A1 (ja) 液晶表示装置、及び、液晶表示装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547085

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14361352

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853095

Country of ref document: EP

Kind code of ref document: A1