WO2013079398A1 - Metallisierter mehrschichtkörper aus speziellen polycarbonaten mit niedrigem wärmeausdehnungskoeffizient - Google Patents

Metallisierter mehrschichtkörper aus speziellen polycarbonaten mit niedrigem wärmeausdehnungskoeffizient Download PDF

Info

Publication number
WO2013079398A1
WO2013079398A1 PCT/EP2012/073428 EP2012073428W WO2013079398A1 WO 2013079398 A1 WO2013079398 A1 WO 2013079398A1 EP 2012073428 W EP2012073428 W EP 2012073428W WO 2013079398 A1 WO2013079398 A1 WO 2013079398A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
body according
multilayer body
reflectors
metal layer
Prior art date
Application number
PCT/EP2012/073428
Other languages
English (en)
French (fr)
Inventor
Alexander Meyer
Martin Döbler
Ulrich Grosser
Rafael Oser
Birte SÄMISCH
Thomas THULKE
Original Assignee
Bayer Intellectual Property Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property Gmbh filed Critical Bayer Intellectual Property Gmbh
Priority to US14/360,990 priority Critical patent/US9823393B2/en
Priority to KR1020147017564A priority patent/KR102013972B1/ko
Priority to EP12794690.3A priority patent/EP2785764B1/de
Priority to CN201280058729.3A priority patent/CN103946268B/zh
Priority to ES12794690.3T priority patent/ES2603277T3/es
Publication of WO2013079398A1 publication Critical patent/WO2013079398A1/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/14Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/37Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors characterised by their material, surface treatment or coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C2045/0079Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping applying a coating or covering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate

Definitions

  • Metallized multilayer body made of special polycarbonates with a low thermal expansion coefficient
  • the invention relates to multilayer bodies of at least one thermoplastic material which have at least one metal layer. Furthermore, the invention relates to multilayer products comprising at least three layers comprising a substrate layer of a substrate containing specific copolycarbonates and at least one inorganic filler, a metal layer and one or more further layer (s). Furthermore, the method for producing these multilayer bodies is the subject of the invention.
  • Polycarbonates are due to their high heat resistance u. a. used in areas where an increased temperature load is expected.
  • copolycarbonates such as, for example, a copolycarbonate based on bisphenol A and bisphenol TMC (1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane)
  • these polycarbonates are therefore also suitable for the production of lenses, reflectors, lamp covers and housings, etc., which are exposed to a higher temperature load.
  • thermal properties such as high Vicat softening temperature (heat resistance) or high glass transition temperature in combination with sufficient mechanical properties are mandatory.
  • Copolycarbonates of bisphenol A and bisphenol TMC are commercially available under the tradename Apec® from Bayer Material Science AG.
  • these materials must also meet other requirements such as a good surface quality in the resulting injection-molded part / extrudate and a good metal adhesion.
  • the heat resistance and the mechanical properties can be varied within a wide range.
  • the reflector In the field of reflector applications, in addition to good metal adhesion, low thermal expansion is often required or advantageous, since high thermal expansion can adversely affect light bundling and luminous efficacy.
  • the reflector is usually arranged in the immediate vicinity of the light source, such as a light bulb, which often a has high heat radiation.
  • the reflector of a high heat load often above 160 ° C - exposed.
  • the material should be dimensionally stable over a wide temperature range, in particular even at temperatures above 160 ° C., ie the expansion and shrinkage behavior must be as isotropic as possible in order to avoid optical distortions in the refiector application as described above.
  • the metal layer of the multi-layer article has a similar expansion behavior and shrinkage behavior as the base layer, since otherwise tensions on the surface and thus irrational phenomena can occur as a result of stresses.
  • the adaptation of the thermal expansion behavior thus reduces surface defects such as cracking, irrigation and compression.
  • the material for the base layer should preferably be processed by injection molding and relative to other thermoplastics with Vicat softening temperatures greater than 160 ° C be relatively inexpensive.
  • the corresponding metallized parts must have high temperature resistance. Thus, neither the mechanical properties nor the optical properties, such as the quality of the metal surface, must decrease. It has been found, however, that metallized moldings of certain thermoplastics including copolycarbonates which Vicat softening temperatures of more than 160 ° C, in particular more than 170 ° C, and which, inter alia, l, l-bis (4-hydroxyphenyl) cyclohexane Derivatives contain, for special applications often have insufficient optical quality at very high temperatures.
  • the surface is freed from impurities by means of plasma and the polymer is optionally activated for the subsequent metal deposition or the deposition of the top coat.
  • This step is essential due to the cleaning and activating effect of the surface in an industrial process.
  • the multilayer body according to the invention should be coated in a DC sputtering process - this assumes that the substrate material is suitable for this coating method.
  • surface defects after heat stress as described above, especially bubbles which result in destruction of the metallic surface are meant.
  • it can lead to the formation of a cloudy metal surface after heat stress.
  • an error in the surface after heat stress can occur as an error. All these errors only occur when the metallized body is subjected to a heat load - so it is before, i. E. Immediately after the metallization, it is not possible to detect whether a metallized molded body will form surface defects.
  • thermosets and more rarely thermoplastics, have been used to manufacture reflectors.
  • amorphous thermoplastics e.g. Polyetherimide (PEI), polyamide-imide (PAI) or polysulfones, e.g.
  • PES Polyethersulfone
  • PSU polysulfone
  • PPSU polyphenylene ether sulfone
  • Tg glass transition temperature
  • These amorphous high Tg thermoplastics can be used without fillers to produce reflector Blanks with excellent surface smoothness are used.
  • the reflector blanks can be metallized directly.
  • a disadvantage of mass production is the sometimes very high price of the amorphous high-Tg thermoplastics mentioned.
  • the processing of these high-Tg thermoplastics is sometimes difficult.
  • BMC Bulk Molding Compounds
  • This is a fiber-matrix semifinished product. It consists mostly of short glass fibers and a polyester or vinyl ester resin, other reinforcing fibers or resin systems are possible.
  • BMC is processed by hot pressing, which enables short cycle times. The BMC compound is placed centrally in a heated, split tool. When closing the BMC is distributed in the tool. Due to the short fiber lengths, thin ribs and wall thicknesses can be filled during pressing. However, there is a risk that BMC will segregate at bottlenecks. This happens when a bottleneck clogged with fibers, so that only the resin can continue to flow.
  • the individual reinforcing fibers are generally oriented in the flow direction, so that locally strongly oriented fibers can occur.
  • BMC can also be processed by injection molding with correspondingly short fiber lengths.
  • a typical application for duroplastics are car headlights, more precisely the reflectors of the headlight.
  • the process is very similar to elastomer injection molding. Cycle times for thermoset processing are generally longer with wall thicknesses of up to approx. 4 mm than with thermoplastics.
  • duroplastics usually lose in comparison with the thermoplastics when the good electrical or mechanical properties are not needed.
  • Polishing and painting take place, which further deteriorates the cost-effectiveness compared to directly metallizable thermoplastics.
  • fillers The primary purpose of fillers is to make BMC more cost-effective by replacing fiber and resin volumes with cheaper fillers.
  • additives are added. For example, magnesia increases plasticity, and kaolin increases acid resistance. Naturally, the highest temperatures occur in the lighting unit.
  • the reflectors have been made of either sheet metal, thermosets such as BMC, or metallized injection molded amorphous high Tg thermoplastics (PEI, PSU, PES).
  • PEI, PSU, PES metallized injection molded amorphous high Tg thermoplastics
  • a very homogeneous, very smooth, high-gloss surface for the coating must be provided. Poorly flowing or too early solidifying plastics or an addition of fillers often lead to a rough, matt or irregular impression in the injection mold, measured against the extremely high demands of a mirror-smooth surface, even if the corresponding surface of the shaping tool is highly polished.
  • the transparent, colorless and amorphous homopolyamides disclosed in European patent EP 725 101 B2 have a glass transition temperature of about 157 ° C. and are at best suitable for the production of subreflectors, but not for the production of light reflecting components which are designed for higher operating temperatures.
  • US Pat. No. 6,355,723 B1 discloses injection-molded reflectors made of amorphous thermoplastics, such as polyetherimides, polyarylethers, polyethersulfones, polysulfones, polycarbonates, polyestercarbonates, polyarylates, polyamides, polyesters and single-phase mixtures of such thermoplastics.
  • These reflectors can be provided directly with a metal layer and have a glass transition temperature (Tg) of at least 170 ° C to 200 ° C.
  • Tg glass transition temperature
  • all these reflectors are colored black by admixing dyes.
  • these materials and moldings do not have the desired low coefficients of thermal expansion and are sometimes too expensive for the desired application.
  • Copolycarbonates by their high expansion coefficients the disadvantage that they are when used as a metallized component at z.
  • Polyimides sometimes have very high glass transition temperatures in combination with very low thermal expansion coefficients - but they appear orange to brown in appearance. The cost of these materials is also very high.
  • a polymer material which, at a reasonable cost and with a high glass transition temperature, low thermal expansion, a high optical surface quality would be desirable for reflectors.
  • the application of metals to the polymer can be accomplished by various methods, e.g. done by vapor deposition or sputtering. The methods are described in more detail e.g. in "Vacuum coating Bd. l to 5", H. Frey, VDI-Verlag Dusseldorf 1995 or "Surface and thin-film technology" Part 1, R.A. Haefer, Springer Verlag 1987.
  • the substrates are normally subjected to plasma pretreatment.
  • a plasma pretreatment may u. U. change the surface properties of polymers.
  • These methods are e.g. in Friedrich et al. in Metallized Plastics 5 & 6: Fundamental and Applied Aspects and H. Grünwald et al. In Surface and Coatings Technology 111 (1999) 287-296.
  • HMDSO hexamethyldisiloxane
  • tetramethyldisiloxane decamethylcyclopentasiloxane
  • octamethylcyclotetrasiloxane trimethoxymethylsilane.
  • Copolycarbonates based on Cycloalkylidendiphenolen are known and described in various publications.
  • DE 3 903 103 A1, EP 414 083 A2 and EP 359 953 A1 describe the preparation and use of polycarbonates based on cycloalkylidenediphenols.
  • compositions containing copolycarbonates with cycloalkylidenediphenols and various other polymeric components have also been described.
  • the multilayer body should consist of a substrate material (base layer), which has a high melt stability, since it can lead to comparatively high thermal loads in the processing of thermoplastics with high Vicat softening temperature.
  • the substrate material should be less expensive than conventional polyetherimide, polysulfone or polyethersulfone-based materials.
  • the base layer should have as isotropic a behavior with regard to thermal expansion. Thus, the thermal expansion in the longitudinal direction should not deviate from the corresponding value in the transverse direction by more than 25%, preferably not more than 20%, particularly preferably not more than 15%, or vice versa.
  • the base layer must have a high heat resistance, i. have a glass transition temperature or Vicat softening temperature of more than 160 ° C.
  • the reflector should have a high thermal conductivity in order to minimize the heat load frequently occurring in reflectors by means of a correspondingly high thermal conductivity.
  • the thermal conductivity should be more than 0.3 W / m, preferably more than 0.4 W / m.
  • the substrate layer in order to produce the multilayer body according to the invention, the substrate layer must be coated in a special method in order to obtain the good reflection properties even under high temperatures. Furthermore, a corresponding shaped body (substrate material, base layer) must be produced in an injection molding or thermoforming process at mold temperatures of greater than 160 ° C. in order to produce a defect-free surface.
  • the methods for producing high-quality surfaces at high mold temperatures are known, but it is not known to the person skilled in the art which substrate materials are suitable for such a method and, moreover, for the production of metallized multilayer bodies.
  • the problem could be solved by using a substrate material of special copolycarbonates in conjunction with special fillers. It was found that special inorganic particles with spherical or platelet-shaped geometry are suitable for solving the problem. Particular preference is given to substrate materials containing at least 60% by weight of copolycarbonates based on 1,1-bis (4-hydroxyphenyl) cyclohexane derivatives.
  • the object has been achieved by a multi-layer body, which has the following structure:
  • a) base layer consisting of a copolycarbonate with a Vicat softening temperature of more than 160 ° C.
  • the substrate material preferably consists of copolycarbonates having a Vicat softening temperature of greater than 160 ° C., preferably of greater than 165 ° C., particularly preferably greater than 170 ° C., containing a structural unit of the formula as chain terminator (end group)
  • R 1 is hydrogen or C 1 -C 6 -alkyl;
  • Very particular preference is given as a chain terminator phenol or tert-butylphenol or n-butylphenol, in particular phenol and p-tert. butylphenol,
  • Pv2 is C 1 -C 4 -alkyl (including methyl, ethyl, propyl, isopropyl and butyl and also isobutyl radicals), preferably methyl,
  • n is 0, 1, 2 or 3, preferably 2 or 3, and one or more inorganic fillers with spherical or platelet geometry to 5 to 50 wt .-%, preferably 10 wt .-% - 40 wt .-% particularly preferred 15 wt .-% -35 wt .-%, based on the total thermoplastic used, contains;
  • the layer a) has a layer thickness of 0.1 mm to 6.0 mm, preferably 0.2 mm to 5.0 mm and particularly preferably 0.5 mm to 4.0 mm
  • a metal layer of aluminum, silver, chromium, titanium, palladium, preferably of silver or aluminum, particularly preferably aluminum with a thickness of the metal layer is preferably 10 nm - 1000 nm, preferably 50 nm - 800 nm, more preferably 60 nm - 500 nm and most preferably 60 nm - 300 nm.
  • this metal layer is produced in a plasma process, and
  • top coat a protective layer of polysiloxane, preferably prepared in a plasma process with hexamethyldisiloxane (CAS 107-46) 0) as a coating material.
  • the layer thickness of the top coat is 10 nm - 200 nm, preferably 20 nm - 100 nm.
  • a layer which prevents condensation on the surface can furthermore be contained.
  • the metallization process comprises three process steps:
  • the metal layer is typically vapor deposited or DC sputtered (sputtering over DC plasma).
  • steps 1 and 3 typically the same technical devices are used. This is also the state of the art.
  • Preferred diphenol building blocks of formula (2) are e.g. l, l-bis (4-hydroxyphenyl) cyclohexane and l, l-bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, preferably l, l-bis- (4-hydroxyphenyl-l) -3 3,5-trimethylcyclohexane.
  • Copolycarbonates which contain 15% by weight to 95% by weight, particularly preferably 25% by weight to 90% by weight, of diphenol unit of the formula (2) based on the sum of the bisphenol components.
  • diphenols of the formula (2) dihydroxyaryl compounds suitable for the preparation of the copolycarbonates are those of the formula (3)
  • Z in formula (3) preferably represents a radical of the formula (3a)
  • R6 and R7 independently of one another are H, Ci-Cis-alkyl, Ci-Cis-alkoxy, halogen such as Cl or Br or each optionally substituted aryl or aralkyl, preferably for H or Ci-Ci2-alkyl, particularly preferably for H or C 1 -C 8 -alkyl and very particularly preferably H or methyl, and
  • X is -CO-, -O-, -S-, Cl- to C6-alkylene, C 2 - to Cs-alkylidene or C 6 - to C 2 -arylene, which may optionally be condensed with further heteroatom-containing aromatic rings , stands.
  • X is preferably C 1 -C 5 -alkylene, C 2 -C 5 -alkylidene, -O-, -SO-, -CO-, -S-, -SO 2 -, isopropylidene or oxygen, in particular isopropylidene.
  • Diphenols of the formula (3) which are suitable for the preparation of the copolycarbonates to be used according to the invention are, for example, hydroquinone, resorcinol, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) sulfides, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) - ketones, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) sulfoxides, [alp ha], [alpha] 'bis (hydroxyphenyl) diisopropylbenzenes, and their alkylated, nuclear alkylated and nuclear halogenated compounds.
  • diphenols of the formula (3) are 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) -1-phenyl-propane, 1,1-bis- (4-hydroxyphenyl) -phenyl-ethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3-methyl, 4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1 , 3-Bis- [2- (4-hydroxyphenyl) -2-propyl] benzene (bisphenol M), 2,2-bis (3-methyl-4-hydroxyphenyl) -propane, bis (3,5-dimethyl 4-hydroxyphenyl) methane, 2,2-bis- (3,5-dimethyl-4-hydroxyphenyl) -propane, bis- (3,5-dimethyl-4-hydroxyphenyl) -sulfone, 2,4-bis- (3,5-dimethyl-4-hydroxyphenyl) -2-methylbutane, 1,
  • copolycarbonates of bisphenol A and bisphenol TMC are especially preferred.
  • random copolycarbonates are particularly preferred.
  • thermoplastic copolycarbonates have molecular weights Mw (weight average Mw, determined by gel permeation chromatography GPC measurement) of from 12,000 to 120,000, preferably from 15,000 to 80,000, in particular from 18,000 to 60,000, very particularly preferably from 18,000 to 40,000 g / mol. Molecular weights can also be indicated by the number average Mn, which are likewise determined after prior calibration on polycarbonate by means of GPC.
  • the base layer contains 5 wt .-% - 50 wt .-%, preferably 10 wt .-% - 40 wt .-%, more preferably 15 wt .-% -35 wt .-%, based on the sum of the used thermoplastics , inorganic fillers with spherical or platelet geometry Preferred are the fillers with spherical or platelet geometry in finely divided and / or porous form with a large outer and / or inner surface. Platelet-shaped in this context means flat bodies with a large different extent in the three dimensions - for example, the thickness has a significantly smaller values than the expansion of the particle in length or width. The quotient of length or diameter is also called the aspect ratio.
  • particles having an aspect ratio of 1000: 1 to 10: 1 are suitable.
  • These are preferably thermally inert inorganic materials, in particular based on nitrides such as boron nitride, oxides or mixed oxides, carbides such as tungsten carbide or boron carbide, powdered quartz such as quartz flour, SiO 2 particles such as nanoparticles, amorphous SiO 2 , ground sand, glass particles such as glass powder , in particular glass beads, graphite, in particular high-purity synthetic graphite. Particularly preferred are quartz and synthetic graphite.
  • the graphite usable in the present invention may be electrically conductive.
  • the graphite is preferably selected from a synthetic or natural graphite.
  • the graphite may have a platy or spherical particle shape or a mixture of these particle shapes. Is preferred the graphite platelet-shaped. Platelet-shaped in this context means flat bodies with a large differential expansion in the three dimensions - for example, the thickness has a much smaller value than the extension of the particle in length or width.
  • the platelets may consist of a layer of graphite or of several layers which are densely packed. The smallest dimension (thickness) is less than 1 ⁇ preferably less than 500 nm and most preferably less than 200 nm and at least 0.4 nm, preferably 1 nm, wherein the aspect ratio in the range of 1000: 1 to 10: 1.
  • all platelet-shaped particles have a flat shape. Due to the small thickness of the particles, they may have a curved or curved shape or other deformities.
  • the thickness of the particles can be determined by standard methods such as transmission electron microscopy.
  • the graphite may contain individual graphite particles or aggregates or agglomerations of graphite particles.
  • the particles, aggregates or agglomerations have an average particle size (d90%) of 1-160 ⁇ , more preferably 5-100 and more preferably 10 to 60 ⁇ on.
  • the graphite has an ashing residue of less than 0.5%, preferably less than 0.1% by weight, measured according to ASTM D 1506.
  • the graphite has a moisture content of less than 0.5 %>, measured according to ASTM D 1509-95.
  • the graphite preferably has a BET surface area of at least 5 m 2 / g, particularly preferably at least 8 m 2 / g. The BET surface area is determined according to ASTM D3037.
  • the graphite is produced by means of a well-known graphitization process.
  • the starting substances are, for example, lignite, petroleum and pitch, but also plastics.
  • In the graphitization is carried out by heating under exclusion of air to about 3,000 ° C nor a transformation from amorphous carbon to polycrystalline graphite.
  • the graphite is used as a solid.
  • Commercially available graphite for printing applications can be used, as described, for example, by TIMCAL AG, CH-6743 Bodio, Switzerland, preferably under the name TIMREX KS44 or TIMREX KS150, KS 75, KS 5-75TT, KS 5-44, KS 6 in particular preferably KS 44, is available.
  • glass beads are used, they are preferably in the form of glass beads or
  • Glass beads also called round glass spheres or microspheres used with a diameter of 4 ⁇ to 120 ⁇ .
  • the glass beads used are commercially available - such as products of the company Potters Europe) and become for example, as Spheriglas, type 5000, with a diameter of 4 ⁇ to 25 ⁇ Spheriglas, type 3000, with a diameter of 12 ⁇ to 48 ⁇ and Spheriglas, type 2429, traded with a diameter of 53 ⁇ to 106 ⁇ .
  • the grain shape is approximately spherical. Preference is given to solid glass spheres, no hollow glass spheres.
  • inorganic fillers which are built up to more than 97% by weight on the basis of quartz (SiO 2 ).
  • the grain shape is approximately spherical.
  • quartz particles having a particle size of D50% of 0.1 ⁇ m - ⁇ , preferably ⁇ to 50 ⁇ m, and very particularly preferably of ⁇ m to 5 ⁇ m and a D98% value of ⁇ m - ⁇ , preferably 5 ⁇ m to 50 ⁇ m.
  • the quartz particles preferably have a specific BET surface area, determined by nitrogen adsorption according to ISO 9277, of 0.5-10 m 2 / g. If appropriate, the particles may be coated, epoxysilane, methylsiloxane, and methacrylic silane sizes being preferably used.
  • Suitable commercially available products include, for example, Sikron SF 500 and Sikron SF 800 from Quarzwerke GmbH (50226 Frechen, Germany). It is also possible to use mixtures of different fillers.
  • This layer is preferably produced in an injection molding process or thermoforming process with mold temperatures of similar or above the Vicat softening temperature of the substrate material used.
  • the copolycarbonate of the substrate layer a) is admixed with further polymers based on polsulfone, polyethersulfone or polyetherimide.
  • the polycarbonate content in the mixture is preferably more than 50% by weight, more preferably more than 60% by weight and especially preferably more than 70% by weight.
  • Preferred are e.g. so-called polyethersulfones (CAS: 25608-63-3) which are e.g. available under the trade name Ultrason® E 2010 from BASF SE (67056 Ludwigshafen, Germany).
  • polyphenylsulfones CAS 25608-64-4
  • Rädel® R for example Rädel® R 5900
  • Polyetherimides are e.g. known under trade name Ultem® (CAS 61128-46-9) (Sabic Innovative Plastics).
  • the layer b) carries a protective layer c) consisting of plasma-polymerized siloxanes of thickness 5 nm - 200 nm, preferably 15 nm - 150 nm, most preferably 20 nm - 100 nm.
  • a layer d which prevents condensation on the surface, can furthermore be contained.
  • the multilayer bodies according to the invention have significantly improved thermal properties (Vicat softening temperature) in conjunction with good metallizability. The surface quality obtained even under high temperature load. The mechanical, thermal and theological properties remain unchanged compared to the standard copolycarbonates (such as Apec). Furthermore, they have the required low linear thermal expansion coefficients.
  • the substrate material has a high melt stability.
  • the polymer composition of the substrate material may contain low molecular weight additives. However, it is preferable to work with as small amounts of additives as possible. In a particular embodiment, the polymer composition contains no low molecular weight additives - fillers are hereby expressly excluded.
  • thermostabilizers are tris- (2,4-di-tert-butylphenyl) phosphite (Irgafos 168), tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylbisphosphonite , Trisoctyl phosphate, octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (Irganox 1076), bis (2,4-dicumylphenyl) pentaerythritol diphosphite (Doverphos S-9228), bis (2.6 -di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite (ADK STAB PEP-36). They are used alone or in a mixture (eg Irganox B900 or Doverphos S-92228
  • Pentaerythritol tetrastearate, glycerol monostearate, stearyl stearate or propoandiol mono- or distearate are preferably suitable as mold release agents. They are used alone or in a mixture. In a particular embodiment, no mold release agent is used.
  • Preferred UV stabilizers are 2- (2'-hydroxyphenyl) benzotriazoles, 2-hydroxybenzophenones, esters of substituted and unsubstituted benzoic acids, acrylates, sterically hindered amines, oxamides, 2- (2-hydroxyphenyl) -l, 3,5- triazines, particularly preferred are substituted benzotriazoles such as Tinuvin 360, Tinuvin 350, Tinuvin 234, Tinuvin 329 or UV CGX 006 (Ciba). In a particular embodiment, no UV absorber is used.
  • composition according to the invention is preferably free of titanium dioxide.
  • the composition may contain other commercial polymer additives such as flame retardants, flame retardant synergists, anti-drip agents (for example compounds of the fluorinated polyolefin and silicones classes of compounds), nucleating agents, antistatics such as polyalkylene ethers, alkyl sulfonates or polyamide-containing polymers) in amounts which do not compromise the mechanical properties of the composition to the extent that the target profile is no longer fulfilled.
  • Suitable additives include, but are not limited to, those described in "Additives for Plastics Handbook, John Murphy, Elsevier, Oxford 1999", “Plastics Additives Handbook, Hans Zweifel, Hanser, Kunststoff 2001” or WO 99/55772, p -25.
  • thermoplastic molding compositions required for the substrate material of the multilayer body according to the invention is carried out by mixing the respective components in a known manner and at temperatures of 200 ° C to 380 ° C, preferably at 240 to 350 ° C, in conventional units such as internal kneading extruders and twin screw melt compounded and melt extruded (melt blended).
  • the polymer compositions are used in particular for the production of components in which optical, thermal and mechanical properties are used, such as, for example, housings, E / E objects, plates, lamp holders, covers, in the automotive sector, such as lamp sockets and covers
  • extrudates and moldings or moldings of the novel polymers are also the subject of the present application.
  • copolycarbonates for the preparation of layer a) are prepared by a continuous interfacial process.
  • the preparation of the copolycarbonates to be used according to the invention is carried out in principle in a known manner from diphenols, carbonic acid derivatives and optionally branching agents.
  • the diphenols used, as well as all other chemicals and auxiliaries added to the synthesis, may be contaminated with the impurities derived from their own synthesis, handling and storage. However, it is desirable to work with as pure as possible raw materials.
  • the copolycarbonate synthesis is carried out continuously.
  • the reaction can therefore in Umpumpreaktoren, tubular reactors, or Rhackkesselkaskaden or their Combinations are carried out, it being ensured by using the above-mentioned mixing elements that aqueous and organic phase separate as possible only when the synthesis mixture has reacted, that contains no saponifiable chlorine of phosgene or chloroformates more.
  • the amount of Kettenabrecher to be used is 0.5 mol% to 10 mol%, preferably 1 mol% to 8 mol%, more preferably 2 mol% to 6 mol%> based on moles of diphenols used in each case.
  • the addition of the chain terminators can take place before, during or after the phosgenation, preferably as a solution in a solvent mixture of methylene chloride and chlorobenzene (8-15% by weight).
  • the production of the molding from the substrate material for the production of the multilayer body according to the invention is preferably carried out by injection molding wherein the mold temperature is set to a similar order of magnitude as the Vicat softening temperature of the substrate material used - see below.
  • the process of the so-called dynamic mold temperature control is characterized in that the mold wall is heated rapidly before the injection of the melt.
  • the temperature of the mold wall should be within the range of the Vicattemperatur +/- 20 ° C (meaning with a deviation of 20 ° C up or down), preferably in the range +/- 10 ° C, more preferably in the range + 3 ° C to +7 ° C above the Vicat temperature.
  • the dynamic mold temperature control is characterized in that the temperature of the mold wall is cooled as quickly as possible after the injection process back to the original temperature and cools the component as usual to the demolding temperature in the tool.
  • the dynamic mold temperature control is particularly well suited with the help of induction heating.
  • the metallization of the layer a) is preferably carried out in a DC sputtering process.
  • the multilayer body according to the invention is preferably produced in the following steps:
  • the process gases used are air, N 2 , N 2 O, Ar, He, O 2 , preferably air or argon, particularly preferably argon.
  • the duration of the treatment is 10 seconds to 1000 seconds, preferably 30 seconds to 500 seconds and more preferably 30 seconds to 180 seconds.
  • the thickness of the metal layer is preferably 10 nm-1000 nm, preferably 50 nm-800 nm, more preferably 60 nm-500 nm and most preferably 60 nm-300 nm.
  • the layer thickness of the top coat is 10 nm - 200 nm, preferably 20 nm - 100 nm.
  • the applied power is 100W - 5000W.
  • melt volume rate is carried out according to ISO 1133 under the conditions given below.
  • Substrate material 1 (for comparative example)
  • Copolycarbonate containing 70% by weight of 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and 30% by weight of bisphenol A with phenol as chain terminator and an MVR of 8 cm 3 / (10 min) (330 ° C, 2.16 kg) according to ISO 1133.
  • the material has a Vicat softening temperature of 208 ° C (ISO 306, 50 N, 120 K / h).
  • Substrate material 2 (for multilayer bodies according to the invention)
  • Copolycarbonate containing 70% by weight of 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and 30% by weight of bisphenol A with phenol as chain terminator and an MVR of 8 cm 3 / (10 min) (330 ° C., 2.16 kg) according to ISO 1133 is compounded with 20% by weight of graphite (Timrex KS 44 from Timcal AG, CH-6743 Bodio, Switzerland) under the conditions described below.
  • the resulting material has a Vicat softening temperature of 203 ° C (ISO 306, 50 N, 120 K h).
  • Substrate material 3 (for comparative example)
  • Copolycarbonate containing 70% by weight of 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and 30% by weight of bisphenol A with phenol as chain terminator and an MVR of 8 cm 3 / (10 min) (330 ° C., 2.16 kg) according to ISO 1133 is compounded with 20% by weight of talc (Finntalc M05SL-AW from Mondo Minerals BV, NL-1041 Amsterdam) under the conditions described below.
  • the resulting material has a Vicat softening temperature of 198 ° C (ISO 306, 50 N, 120 K / h).
  • the materials were compounded on a twin-screw extruder from KraussMaffei Berstorff, type ZE25, at a housing temperature of 320 ° C. or a melt temperature of about 340 ° C. and a speed of 100 rpm with the amounts of components given in the examples.
  • test specimens For the production of molded parts (rectangular pattern plates with side gable in optical quality in 2 mm thickness), which were used in Examples 1 and 2 for the metallization, a dynamic mold temperature control was used. The injection molding was carried out on a Battenfeld HM 210 at a melt temperature of about 350 ° C and a mold temperature of about 210 ° C. The granules were dried before processing for 5 hours in a vacuum oven at 120 ° C. Substrate material 2 was used as the substrate material.
  • the Vicat softening temperature according to DIN EN ISO 306 is measured with a needle (with a circular area of 1 mm 2 ). This is loaded with a test load of 50 N (test load B). The above test specimen is exposed to a defined heating rate of 120 K / h. The Vicattemperatur is reached when the indenter reaches a penetration depth of 1 mm. It is measured according to DIN ISO 306.
  • the coefficients of linear expansion are determined using a Mettler TMA 841 measuring instrument under nitrogen (measuring range 23-55 ° C).
  • the standard is the ASTM E 831.
  • test pieces (rectangular sample plate) required for the measurement are produced by injection molding at 130 ° C. after drying the granules overnight. In each case, measurements are taken transversely and along the test specimen.
  • melt volume rate (MVR) is measured after various preheat times.
  • the coating equipment consisted of a vacuum chamber in which the samples were positioned on a rotating sample holder. The sample holder rotated at about 20 rpm. The test specimens, before being placed in the vacuum chamber, were blown with ionized air to remove dust. Thereafter, the vacuum chamber with the test specimens was evacuated to a pressure p ⁇ 1.times.10.sup.- 5 mbar.
  • argon gas was admitted to a certain pressure, which is described in the exemplary embodiments (process pressure 1) and at a certain power, which is in the For 2 minutes, a plasma was ignited and the samples were exposed to this plasma (plasma pretreatment) .
  • the plasma source used was a diode arrangement consisting of 2 parallel metal electrodes, which was operated at an alternating frequency of 40 kHz and a voltage greater than 1000V Thereafter, the samples were metallized, for which Ar gas was introduced at a pressure of 5 ⁇ 10 -3 mbar.
  • An aluminum layer of about 100 nm thick with a power density of 6.4 W / cm 2 was applied to the samples by means of a DC magnetron. The sputtering time was 2.5 minutes.
  • HMD SO hexamethyldisiloxane
  • the test is performed immediately after metallization. By this is meant that the plates are subjected to this test within one hour after metallization.
  • the metallized plates are stored in a climatic chamber for 2 hours at 45 ° C and 100% relative humidity. Immediately after the climate storage, the plates are stored for one hour at 170 and 180 ° C in an oven.
  • Example 1 (Inventive) Injection molded rectangular plates of component substrate material 2 are prepared as described above.
  • the process pressure 1 is 0.09 mbar and the process performance 1 is 1.67 W / cm 2 . All other parameters for producing the metal layer or production of the topcoat are set as described above.
  • Injection molded rectangular plates of component substrate material 2 are prepared as described above. Thereafter, the specimens are metallized as described above. The process pressure 1 is 0.09 mbar and the process performance 1 is 0.17 W / cm 2 . All other parameters for producing the metal layer or production of the topcoat are set as described above. The result of the test (heat storage) is shown in Table 1.
  • Example 1 according to the invention shows that very good surface qualities are possible with special pressures and special sputtering energies. On the other hand, there are metallization conditions that lead to errors in the surface in a subsequent stress test
  • the substrate material 2 is processed under conventional conditions to pattern plates - it is not worked with a dynamic mold temperature control, ie pattern plates are made with side gate in optical quality.
  • the melt temperature was 300 - 330 ° C and the tool temperature 100 ° C.
  • the granules were dried before processing for 5 hours in a vacuum oven at 120 ° C.
  • the substrate material 2 serving to produce the multilayer body according to the invention has a significantly lower thermal expansion.
  • Table 4 melt stability
  • the substrate material 2 suitable for the invention exhibits a significantly higher melt stability compared to the substrate material 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft Mehrschichtkörper aus wenigstens einem thermoplastischen Material, welche mindestens eine Metallschicht aufweisen. Desweiteren betrifft die Erfindung mehrschichtige Erzeugnisse umfassend mindestens drei Schichten enthaltend eine Substratschicht aus einem Substrat enthaltend spezielle Copolycarbonate sowie mindestens einen anorganischen Füllstoff, eine Metallschicht und eine oder mehrere weitere Schicht. Ferner ist das Verfahren zur Herstellung dieser Mehrschichtkörper Gegenstand der Erfindung.

Description

Metallisierter Mehrschichtkörper aus speziellen Polycarbonaten mit niedrigem Wärmeausdehnungskoeffizient
Die Erfindung betrifft Mehrschichtkörper aus wenigstens einem thermoplastischen Material, welche mindestens eine Metallschicht aufweisen. Desweiteren betrifft die Erfindung mehrschichtige Erzeugnisse umfassend mindestens drei Schichten enthaltend eine Substratschicht aus einem Substrat enthaltend spezielle Copolycarbonate sowie mindestens einen anorganischen Füllstoff, eine Metallschicht und eine oder mehrere weitere Schicht(en). Ferner ist das Verfahren zur Herstellung dieser Mehrschichtkörper Gegenstand der Erfindung.
Polycarbonate werden aufgrund ihrer hohen Wärmeformbeständigkeit u. a. in Bereichen eingesetzt, in denen mit einer erhöhten Temperaturbelastung zu rechnen ist. Mit speziellen Copolycarbonaten (wie z.B. bei einem Copolycarbonat basierend auf Bisphenol A und Bisphenol TMC (l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan)) gelingt es, die Wärmeformbeständigkeit weiter zu erhöhen. Diese Polycarbonate eignen sich daher auch zur Herstellung von Linsen, Reflektoren, Lampenabdeckungen und -gehäusen etc., die einer höheren Temperaturbelastung ausgesetzt sind. Bei diesen Anwendungen sind praktisch immer erhöhte thermische Eigenschaften wie hohe Vicat-Erweichungstemperatur (Wärmeformbeständigkeit) bzw. hohe Glastemperatur in Kombination mit ausreichenden mechanischen Eigenschaften zwingend gefordert.
Copolycarbonate aus Bisphenol A und Bisphenol TMC sind unter dem Handelsnamen Apec® von Bayer Materialscience AG kommerziell erhältlich.
Neben einer guten Verarbeitbarkeit und guten mechanischen Eigenschaften müssen diese Materialien auch weiteren Anforderungen wie einer guten Oberflächenqualität im resultierenden Spritzgussteil / Extrudat sowie einer guten Metallhaftung genügen.
Je nach eingesetzten Bisphenolen und geeigneter Einstellung des Molekulargewichts der Copolycarbonate lassen sich die Wärmeformbeständigkeit und die mechanischen Eigenschaften in einem weiten Bereich variieren.
Im Bereich der Reflektoranwendungen ist neben einer guten Metallhaftung häufig auch eine geringe Wärmeausdehnung gefordert bzw. von Vorteil, da eine hohe Wärmeausdehnung sich nachteilig auf Lichtbündelung und Lichtausbeute auswirken kann. Der Reflektor ist meist in direkter Umgebung der Lichtquelle, z.B. einer Glühlampe angeordnet, welche häufig eine hohe Wärmeabstrahlung aufweist. Damit ist der Reflektor einer hohen Wärmebelastung - häufig von über 160 °C - ausgesetzt. Aus diesem Grund ist es also nötig, ein Material mit einem möglichst niedrigen linearen thermischen Ausdehnungskoeffizienten einzusetzen. Darüber hinaus soll das Material in einem weiten Temperaturbereich insbesondere auch bei Temperaturen oberhalb von 160 °C formstabil sein, d.h. das Ausdehnungs- und Schwindungsverhalten muss möglichst isotrop sein, um wie oben beschrieben optische Verzerrungen bei der Refiektoranwendung zu vermeiden. Bevorzugt weist die Metallschicht des Mehrschichtartikels ein ähnliches Ausdehnungsverhalten und Schwindungsverhalten wie die Basisschicht auf, da es sonst in Folge von Spannungen es zu Verwerfungen an der Oberfläche und somit zu Irisierungsphänomenen kommen kann. Durch die Anpassung des Wärmeausdehnungsverhaltens werden somit Oberfiächenstörungen wie Rissbildung, Irisierung und Stauchung reduziert.
Zur Abdeckung von Reflektoren im Automobilbereich sind heute häufig profilose Klarsichtscheiben aus Polycarbonat im Einsatz. Dies erhöht die Anforderungen an die Oberflächengüte der von außen gut sichtbaren Elemente (z. B. Reflektor, Subrefiektor, Blendrahmen), wobei die Dimensionsbeständigkeit in der Wärme, ein geringes Ausgasen um Blasenbildung zu vermeiden, die mechanische Festigkeit, eine einfache Verarbeitung und geringe Fertigungstoleranzen weiterhin wichtig sind.
Das Material für die Basisschicht soll sich bevorzugt im Spritzguss verarbeiten lassen und gegenüber anderen Thermoplasten mit Vicat-Erweichungstemperaturen von größer 160 °C verhältnismäßig preiswert sein.
Wie oben beschrieben müssen die entsprechenden metallisierten Teile eine hohe Temperaturbeständigkeit aufweisen. So dürfen weder die mechanischen Eigenschaften noch die optischen Eigenschaften wie z.B. die Qualität der Metalloberfiäche abnehmen. Es zeigte sich jedoch, dass metallisierte Formkörper aus bestimmten Thermoplasten darunter auch Copolycarbonate, welche Vicat-Erweichungstemperaturen von mehr als 160 °C, insbesondere mehr als 170 °C, aufweisen und welche u.a. l,l-Bis-(4-hydroxyphenyl)-cyclohexan-Derivate enthalten, für spezielle Anwendungen eine oftmals nicht ausreichende optische Qualität bei sehr hohen Temperaturen aufweisen. So neigen derartige Formkörper, die unter speziellen Bedingungen, insbesondere unter Plasma-Bedingungen, metallisiert und vorbehandelt wurden, unter speziellen Bedingungen zu Blasenbildung (Blasen- und Rissbildung der Beschichtung) bei hohen Temperaturen (insbesondere bei Temperaturen oder Temperaturspitzen von größer 170 °C). Dies kann zum Ausfall des entsprechenden Formköpers in der jeweiligen Anwendung führen. Durch die Blasenbildung verliert die Metalloberfläche ihr einheitliches Aussehen - ferner wird die Reflexion von Licht negativ beeinflusst.
Weiterhin war überraschend, dass nicht jedes Metallisierungsverfahren zu einer Schädigung der Oberfläche unter Wärmebelastung führt. Wenn das entsprechende Metall nur aufgedampft und dabei das Substrat keinem Ionenbeschuß wie es in eine niederfrequenten Plasmavorbehandlung oder dem DC-sputtern der Fall ist ausgesetzt wird, ist der Polymer- Metallverbund sehr stabil und zeigt auch unter Wärmebelastung keine Ausbildung von Oberflächenstörungen. Die Oberflächenstörungen treten dann auf, wenn die Spritzgussteile im Plasma in einem DC-Sputterprozess beschichtet wurden. Aber auch hier führt nicht jedes Plasma-gestützte Verfahren zu einer anschließenden Oberflächenstörung. So muss noch ein weiterer niederfrequenter Plasmaschritt wie z.B. eine Plasmavorbehandlung geschehen. In diesem Verfahrenschritt wird mittels Plasma die Oberfläche von Verunreinigungen befreit und das Polymer für den anschließenden Metallauftrag ggf. aktiviert oder die Abscheidung des Top Coats. Dieser Schritt ist aufgrund des Reinigungs- und Aktivierungseffektes der Oberfläche in einem industriellen Prozess unerlässlich. Aus Gründen der Wirtschaftlichkeit soll sich der erfindungsgemäße Mehrschichtkörper in einem DC-Sputterprozess beschichten lassen - dies setzt voraus, dass sich das Substratmaterial für diese Beschichtungsmethode eignet. Mit Oberflächenstörungen nach Wärmebelastung sind wie oben beschrieben vor allem Blasen, welche eine Zerstörung der metallischen Oberfläche zur Folge haben, gemeint. Darüber hinaus kann es zur Ausbildung einer eingetrübten Metalloberfläche nach Wärmebelastung kommen. Ferner kann als Fehler eine Irisierung der Oberfläche nach Wärmebelastung auftreten. Alle diese Fehler treten nur auf, wenn der metallisierte Körper einer Wärmebelastung unterzogen wird - es ist also vorher, d.h. direkt nach der Metallisierung, nicht zu erkennen, ob ein metallisierter Formkörper Oberflächenfehler ausbilden wird.
Bisher wurden zum Herstellen von Reflektoren zumeist Duroplaste, seltener auch Thermoplaste eingesetzt. Von den letzteren weisen die hauptsächlich verwendeten amorphen Thermoplaste, z.B. Polyetherimid (PEI), Polyamidimid (PAI) oder Polysulfone, z.B.
Polyethersulfon (PES) bzw. Polysulfon (PSU) bzw. Polyphenylenethersulfon (PPSU), eine hohe bis sehr hohe Vicat-Erweichungstemperatur bzw. Glastemperatur (Tg) auf. Diese amorphen Hoch-Tg-Thermoplaste können ohne Füllstoffe zum Erzeugen von Reflektor- Rohlingen mit einer hervorragenden Oberflächenglätte verwendet werden. Die Reflektor- Rohlinge können direkt metallisiert werden. Nachteilig für eine Massenproduktion ist allerdings der zum Teil sehr hohe Preis der genannten amorphen Hoch-Tg-Thermoplaste. Zudem gestaltet sich die Verarbeitung dieser Hoch-Tg-Thermoplaste zum Teil als schwierig. Ferner weisen Sie z.T. Wärmeausdehnungskoeffizienten auf, die für anspruchsvolle Reflektorgeometrien zu hoch sind.
Für Scheinwerferreflektoren kommen hauptsächlich Bulk Molding Compounds (BMC) zur Anwendung. Dabei handelt es sich um ein Faser-Matrix-Halbzeug. Es besteht zumeist aus Kurz-Glasfasern und einem Polyester- oder Vinylesterharz, andere Verstärkungsfasern oder Harzsysteme sind möglich. BMC wird im Heisspressverfahren verarbeitet, was kurze Taktzeiten ermöglicht. Die BMC Masse wird dazu zentral in ein beheiztes, geteiltes Werkzeug eingelegt. Beim Schliessen verteilt sich das BMC im Werkzeug. Durch die kurzen Faserlängen können beim Pressen auch dünne Rippen und Wanddicken gefüllt werden. Es besteht jedoch die Gefahr, dass sich an Engstellen das BMC entmischt. Dies geschieht dann, wenn eine Engstelle mit Fasern verstopft, so dass nur noch das Harz weiterfliessen kann. Die einzelnen Verstärkungsfasern orientieren sich in der Regel in Strömungsrichtung, so dass lokal stark orientierte Fasern auftreten können. In Spezialverfahren kann BMC, bei entsprechend kleinen Faserlängen, auch im Spritzgussverfahren verarbeitet werden.
Eine typische Anwendung für Duroplaste (BMC) sind PKW- Scheinwerfer, genauer die Reflektoren des Scheinwerfers. Hier kommt die gute Masshaltigkeit und Temperaturbeständigkeit zum Tragen. Der Prozess ähnelt sehr stark dem Elastomer-Spritzgiessen. Die Zykluszeiten sind bei der Duroplastverarbeitung in der Regel bei Wanddicken bis ca. 4 mm länger als bei Thermoplasten. Dadurch verlieren Duroplaste im Wirtschaftlichkeitsvergleich meist gegenüber den Thermoplasten, wenn die guten elektrischen oder mechanischen Eigenschaften nicht benötigt werden. Für die Metallisierung dieser Duroplaste müssen weitere Fertigungschritte wie z.B. Polieren und Lackieren erfolgen, was die Wirtschaftlichkeit gegenüber direkt metallisierbare Thermoplaste weiter verschlechtert.
Füllstoffe haben dabei überwiegend die Aufgabe das BMC kostengünstiger herzustellen, indem Faser- und Harzvolumen durch billigere Füllstoffe ersetzt wird. Je nach gewünschten Eigenschaften, zum Beispiel erhöhter Flammschutz oder niedriger Schrumpf, werden Zusatzstoffe zugesetzt. So erhöht zum Beispiel Magnesiumoxid die Plastizität und Kaolin die Säurebeständigkeit. In der Beleuchtungseinheit treten naturgemäß die höchsten Temperaturen auf. Daher wurden bisher die Reflektoren entweder aus Blech, aus Duroplasten, wie BMC oder aus metallisierten, spritzgegossenen amorphen Hoch-Tg-Thermoplasten (PEI, PSU, PES) hergestellt. Die hohen Toleranzanforderungen, gekoppelt mit der für die Metallisierung erforderlichen Oberflächengüte der Spritzgussteile, wurden bisher hauptsächlich von ungefüllten amorphen Hoch-Tg-Thermoplasten oder lackierten Duroplasten erfüllt.
Eine weitere Anforderung betrifft die Oberflächengüte der zu beschichtenden (meist gekrümmten) Kunststoffoberfläche. Speziell bei Reflektoren, bei welchen die Lichtausbeute essentiell ist, muss eine möglichst homogene, sehr glatte, hochglänzende Oberfläche für die Beschichtung bereitgestellt werden. Schlecht fließende oder zu früh erstarrende Kunststoffe bzw. eine Zugabe von Füllstoffen führen in der Spritzgussform oft zu einem rauen, matten oder unregelmäßigen Abdruck, gemessen an den extrem hohen Anforderungen einer spiegelglatten Oberfläche, selbst wenn die entsprechende Oberfläche des formgebenden Werkzeugs hochglanzpoliert ist. Die im europäischen Patent EP 725 101 B2 offenbarten transparenten, farblosen und amorphen Homopolyamide weisen eine Glastemperatur von ca. 157 °C auf und sind allenfalls für die Herstellung von Subreflektoren, aber nicht für die Herstellung von Lichtreflektierbauteilen geeignet, die für höhere Betriebstemperaturen ausgelegt sind.
Aus dem Patent US 6,355,723 Bl sind spritzgegossene Reflektoren aus amorphen Thermoplasten, wie Polyetherimiden, Polyarylethern, Polyethersulfonen, Polysulfonen, Polycarbonaten, Polyestercarbonaten, Polyarylaten, Polyamiden, Polyestern und Einzelphasengemischen solcher Thermoplaste bekannt. Diese Reflektoren können direkt mit einer Metallschicht versehen werden und eine Glasübergangstemperatur (Tg) von mindestens 170 °C bis 200 °C aufweisen. Um auffällige Oberflächenfehler vor dem Metallisieren der Reflektoroberfläche mittels Sichtinspektion einfacher feststellen zu können und um unerwünschte Lichteffekte durch nicht-metallisierte Teile der Reflektoren zu unterbinden, sind alle diese Reflektoren mittels Beimischen von Farbstoffen schwarz eingefärbt. Diese Materialien und Formteile weisen allerdings nicht die gewünschten niedrigen Wärmeausdehnungskoeffizienten auf und sind teilweise für die gewünschte Anwendung zu teuer. Generell haben die im Stand der Technik vorbeschriebenen Polycarbonate bzw.
Copolycarbonate durch ihre zu hohen Ausdehnungskoeffizienten den Nachteil, dass sie beim Einsatz als metallisiertes Bauteil bei z. B. Hochtemperaturanwendungen als Reflektor nur beschränkt oder gar nicht geeignet sein können. Polyimide weisen z.T. sehr hohe Glastemperaturen auf in Kombination mit sehr geringen thermischen Ausdehnungskoeffizienten - sie erscheinen jedoch orange bis braun im optischen Aussehen. Die Kosten für diese Materialien sind ebenfalls sehr hoch. Ein Polymermaterial, welches zu vertretbaren Kosten bei gleichzeitiger hoher Glastemperatur, geringer thermischen Ausdehnung eine hohe optische Oberflächengüte wäre für Reflektoren wünschenswert.
Der Auftrag von Metallen auf das Polymer kann über verschiedene Methoden wie z.B. durch Aufdampfen oder Sputtern geschehen. Die Verfahren sind näher beschrieben z.B. in „Vakuumbeschichtung Bd. l bis 5", H. Frey, VDI-Verlag Düsseldorf 1995 oder„Oberflächen- und Dünnschicht-Technologie" Teil 1, R.A. Haefer, Springer Verlag 1987. Um eine bessere Metallhaftung zu erreichen und um die Substratoberfläche zu reinigen, werden die Substrate normalerweise einer Plasmavorbehandlung unterzogen. Eine Plasmavorbehandlung kann u. U. die Oberflächeneigenschaften von Polymeren verändern. Diese Methoden sind z.B. bei Friedrich et al. in Metallized Plastics 5&6: Fundamental and applied aspects und H. Grünwald et al. In Surface and Coatings Technology 111 (1999) 287- 296 beschrieben.
Weitere Schichten wie korrosionsmindernde Schutzschlichten kann in einem PECVD (Plasma Enhanced Chemical Vapour Deposition) oder Plasmapolymerisationsprozess aufgebracht werden. Hierbei werden niedrigsiedende Precursoren haupsächlich auf Siloxan-Basis in ein Plasma verdampft und dadurch aktiviert, so dass sie einen Film bilden können. Typsiche Substanzen hierbei sind Hexamethyldisiloxan (HMDSO), Tetrametyldisiloxan, Decamethylcyclopentasiloxan, Octamethylcyclotetrasiloxan und Trimethoximethylsilan.
Copolycarbonate basierend auf Cycloalkylidendiphenolen sind bekannt und in verschiedenen Publikationen beschrieben worden.
So beschreiben die DE 3 903 103 AI, EP 414 083 A2 und die EP 359 953 AI die Herstellung und Verwendung von Polycarbonaten auf Basis von Cycloalkylidendiphenolen.
Auch eine Reihe von Zusammensetzungen enthaltend Copolycarbonate mit Cycloalkylidendiphenolen und verschiedene weitere polymere Komponenten sind beschrieben worden.
Keine dieser Anmeldungen beschäftigt sich jedoch mit verbesserten optischen Eigenschaften an metallisierten Formkörpern bei Temperaturen oberhalb 160°C bzw. oberhalb von 170 °C.
Es werden ebenfalls keine Materialien mit niedrigem thermischen Ausdehnungskoeffizienten beschrieben. Aus dem bisherigen Stand der Technik ist nicht ersichtlich, wie das oben beschriebene Problem zu lösen ist.
Es bestand daher die Aufgabe, einen Mehrschichtkörper mit hochreflektierender Oberfläche zur Verfügung zu stellen, welcher einen linearen Wärmeausdehnungskoeffizienten nach ASTM E 831 von weniger als 58 xlO"6/K, bevorzugt weniger als 55xlO"6/K , besonders bevorzugt weniger als 53 x 10"6/K, insbesondere bevorzugt weniger als 50xlO"6/K (in längs und quer-Richtung) aufweist und eine Oberfläche mit einem Glanzgrad (Gloss) von mindestens 800 (20° Einfallswinkel und Ausfallswinkel) bevorzugt größer 1000 (20° Einfallswinkel und Ausfallswinkel) gemessen nach ASTM D523 aufweist. Die Oberfläche soll dabei die fehlerfreien, hochglänzen Eigenschaften auch bei hohen Temperaturen über einen längeren Zeitraum beibehalten (Thermo Stabilität).
Ferner soll der Mehrschichtkörper aus einem Substratmaterial bestehen (Basisschicht), welches eine hohe Schmelzestabilität aufweist, da es bei der Verarbeitung von Thermoplasten mit hoher Vicat-Erweichungstemperatur zu vergleichsweise hohen thermischen Belastungen kommen kann. Weiterhin soll das Substratmaterial preislich günstiger als gängige Polyetherimid, Polysulfon bzw. Polyethersulfon basierende Materialien sein.. Weiterhin soll die Basisschicht ein möglichst isotropes Verhalten bezüglich der Wärmeausdehnung aufweisen. So soll die Wärmeausdehnung in längs-Richtung um nicht mehr als 25 %, bevorzugt nicht mehr als 20%, besonders bevorzugt nicht mehr als 15% vom entsprechenden Wert in quer-Richtung abweichen bzw. umgekehrt. Die Basisschicht muss dabei eine hohe Wärmeformbeständigkeit, d.h. eine Glastemperatur bzw. Vicat-Erweichungstemperatur von mehr als 160 °C aufweisen.
In einer besonders bevorzugten Ausführungsform soll der Reflektor eine hohe thermische Leitfähigkeit besitzen, um die bei Reflektoren häufig auftretende Wärmebelastung durch eine entsprechend hohe Wärmeleitfähigkeit zu minimieren. So soll die thermische Leitfähigkeit in einer besonderen Ausführungsform mehr als 0,3 W/m , bevorzugt mehr als 0,4 W/m , betragen.
Ferner muss zur Herstellung des erfindungsgemäßen Mehrschichtkörpers die Substratschicht in einem speziellen Verfahren beschichtet werden, um die guten Reflexionseigenschaften auch unter hohen Temperaturen zu erhalten. Ferner muss ein entsprechender Formkörper (Substratmaterial; Basisschicht) in einem Spritzgussverfahren bzw. Thermo formverfahren bei Werkzeugtemperaturen von größer 160°C erzeugt werden, um eine Defektstellen- freie Oberfläche zu erzeugen. Prinzipiell sind die Methoden zur Herstellung von hochqualitativen Oberflächen bei hohen Werkzeugtemperaturen bekannt, jedoch ist es dem Fachmann nicht bekannt, welche Substratmaterialien sich für ein derartiges Verfahren und darüber hinaus für die Herstellung metallisierter Mehrschichtkörper eignen.
Überraschenderweise konnte das Problem gelöst werden, indem ein Substratmaterial aus speziellen Copolycarbonaten in Verbindung mit speziellen Füllstoffen verwendet wurde. Dabei zeigte sich, dass spezielle anorganische Partikel mit sphärischer bzw. plättchenförmiger Geometrie für die Lösung der Aufgabe geeignet sind. Insbesondere bevorzugt sind dabei Substratmaterialien enthaltend zumindest zu 60 Gew.-% Copolycarbonate auf Basis von 1,1- Bis-(4-hydroxyphenyl)-cyclohexan-Derivaten.
Die Aufgabe wurde erfindungsgemäß durch einen Mehrschichtkörper gelöst, welcher folgenden Aufbau hat:
- eine Basisschicht a)
- eine Metallschicht b)
- eine oder mehrere Schichten c)
- optional eine oder mehrere weitere Schichten
a) Basisschicht bestehend aus einem Copolycarbonat mit einer Vicat- Erweichungstemperatur von mehr als 160 °C. Bevorzugt besteht dabei das Substratmaterial aus Copolycarbonaten mit einer Vicat-Erweichungstemperaturen von größer als 160 °C bevorzugt von größer als 165 °C insbesondere bevorzugt größer als 170 °C enthaltend als Kettenabbrecher (Endgruppe) eine Struktureinheit der Formel
(1)
Figure imgf000009_0001
in der Rl für Wasserstoff oder Ci-Cis-Alkyl stehen; ganz besonders bevorzugt sind als Kettenabbrecher Phenol oder tert.-Butylphenol oder n-Butylphenol, insbesondere Phenol und p-tert. Butylphenol,
und mindestens ein Diphenolbaustein der Formel (2) enthält,
Figure imgf000010_0001
in der
Pv2 für Ci-C4-Alkyl (hiermit ist Methyl, Ethyl-, Propyl, Isopropyl- und Butyl sowie Isobutylreste umfasst), bevorzugt Methyl,
n für 0, 1, 2 oder 3, bevorzugt 2 oder 3 stehen, sowie einen oder mehrere anorganische Füllstoffe mit sphärischer oder Plättchengeometrie zu 5 bis 50 Gew.-%, bevorzugt 10 Gew.-% - 40 Gew.-% insbesondere bevorzugt zu 15 Gew.-% -35 Gew.-%, bezogen auf die die Summe eingesetzter Thermoplaste, enthält; dabei weist die Schicht a) eine Schichtdicke von 0,1 mm bis 6,0 mm bevorzugt 0,2 mm bis 5,0 mm und besonders bevorzugt 0,5 mm bis 4,0 mm auf
b) eine Metallschicht aus Aluminium, Silber, Chrom, Titan, Palladium, bevorzugt aus Silber oder Aluminium, insbesondere bevorzugt Aluminium mit einer Dicke der Metallschicht beträgt bevorzugt 10 nm - 1000 nm, bevorzugt 50 nm - 800 nm insbesondere bevorzugt 60 nm - 500 nm und ganz besonders bevorzugt 60 nm - 300 nm. Bevorzugt wird diese Metallschicht in einem Plasmaverfahren hergestellt, und
c) optional eine Schutzschicht (nachfolgend auch Top Coat genannt) aus Polysiloxan bevorzugt hergestellt in einem Plasmaprozess mit Hexamethyldisiloxan (CAS 107-46- 0) als Beschichtungsmaterial. Die Schichtdicke des Top Coats beträgt 10 nm - 200 nm bevorzugt 20 nm - 100 nm.
In einer weiteren speziellen Ausführungsform kann weiterhin eine Schicht enthalten sein, die eine Kondensatbildung auf der Oberfläche verhindert. Der Metallisierungsprozess umfasst drei Prozessschritte:
1. Plasmavorbehandlung
2. Metallisierung
3. Abscheidung einer Korrosionsschutzschicht
Die Metallschicht wird typischerweise aufgedampft oder DC-gesputtert (Kathodenzerstäubung über Gleichspannungsplasma). Für Schritt 1 und 3 werden typischerweise dieselben technischen Einrichtungen verwendet. Dies ist auch der Stand der Technik.
Bevorzugte Diphenolbausteine der Formel (2) sind z.B. l,l-Bis-(4-hydroxyphenyl)- cyclohexan und l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan, bevorzugt l,l-Bis-(4- hy droxypheny l)-3 ,3,5 -trimethy lcyclo hexan.
Dabei sind Copolycarbonate bevorzugt, die 15 Gew.-% bis 95 Gew.-% insbesondere bevorzugt 25 Gew.-% bis 90 Gew.-% Diphenolbaustein der Formel (2) bezogen auf die Summe der Bisphenolkomponenten enthalten. Ausser den Diphenolen der Formel (2) sind für die Herstellung der Copolycarbonate geeignete Dihydroxyarylverbindungen solche der Formel (3)
HO— Z— OH
(3)
in welcher Z ein aromatischer Rest mit 6 bis 30 C-Atomen ist, der einen oder mehrere aromatische Kerne enthalten kann, substituiert sein kann und aliphatische oder cycloaliphatische Reste bzw. Alkylaryle oder Heteroatome als Brückenglieder enthalten kann. Bevorzugt steht Z in Formel (3) für einen Rest der Formel (3 a)
Figure imgf000012_0001
in der
R6 und R7 unabhängig voneinander für H, Ci-Cis-Alkyl-, Ci-Cis-Alkoxy, Halogen wie Cl oder Br oder für jeweils gegebenenfalls substituiertes Aryl- oder Aralkyl, bevorzugt für H oder Ci-Ci2-Alkyl, besonders bevorzugt für H oder Ci-Cs-Alkyl und ganz besonders bevorzugt für H oder Methyl stehen, und
X für -CO-, -O-, -S-, Cl- bis C6-Alkylen, C2- bis Cs-Alkyliden oder für C6- bis Ci2-Arylen, welches gegebenenfalls mit weiteren Heteroatome enthaltenden aromatischen Ringen kondensiert sein kann, steht.
Bevorzugt steht X für, Ci bis C5-Alkylen, C2 bis Cs-Alkyliden, -O-, -SO-, -CO-, -S-, -S02-, Isopropyliden oder Sauerstoff, insbesondere für Isopropyliden.
Für die Herstellung der erfmdungsgemäss zu verwendenden Copolycarbonate geeignete Diphenole der Formel (3) sind beispielsweise Hydrochinon, Resorcin, Bis-(hydroxyphenyl)- alkane, Bis-(hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-ether, Bis-(hydroxyphenyl)- ketone, Bis-(hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)-sulfoxide, [alp ha], [alpha] '-Bis- (hydroxyphenyl)-diisopropylbenzole, sowie deren alkylierte, kernalkylierte und kernhalogenierte Verbindungen.
Ferner bevorzugte Diphenole der Formel (3) sind 4,4'-Dihydroxydiphenyl, 2,2-Bis-(4- hydroxyphenyl)- 1 -phenyl-propan, 1 , 1 -Bis-(4-hydroxyphenyl)-phenyl-ethan, 2,2-Bis-(4- hydroxyphenyl)propan, 2,2-Bis-(3-methyl, 4-hydroxyphenyl)-propan, 2,4-Bis-(4-hydroxy- phenyl)-2-methylbutan, l,3-Bis-[2-(4-hydroxyphenyl)-2-propyl]benzol (Bisphenol M), 2,2- Bis-(3-methyl-4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan, 2,2- Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfon, 2,4-Bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutan, l,3-Bis-[2-(3,5-dimethyl-4-hydroxy- phenyl)-2-propyl]-benzol. Besonders bevorzugte Diphenole der Formel (3) sind 2,2-Bis-(4-hydroxyphenyl)-propan (BPA), und 2,2-Bis-(3-methyl, 4-hydroxyphenyl)-propan.
Insbesondere bevorzugt sind Copolycarbonate aus Bisphenol A und Bisphenol TMC.
Diese und weitere geeignete Diphenole sind kommerziell erhältlich und z. B. in "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964, S. 28 ff; S. 102 ff , und in "D. G. Legrand, J. T. Bendler, Handbook of Polycarbonate Science and Technology, Marcel Dekker New York 2000, S. 72 ff." beschrieben.
Besonders bevorzugt sind statistische Copolycarbonate.
Die thermoplastischen Copolycarbonate haben Molekulargewichte Mw (Gewichtsmittel Mw, ermittelt durch Gelpermeationschromatographie GPC Messung) von 12 000 bis 120 000, vorzugsweise von 15 000 bis 80 000, insbesondere von 18 000 bis 60 000, ganz besonders bevorzugt von 18 000 bis 40 000 g/mol. Molekulargewichte lassen sich auch durch die Zahlenmittel Mn angeben, welche ebenfalls nach vorheriger Eichung auf Polycarbonat mittels GPC bestimmt werden. Die Basisschicht enthält dabei zu 5 Gew.-% - 50 Gew.-% bevorzugt 10 Gew.-% - 40 Gew.-% insbesondere bevorzugt zu 15 Gew.-% -35 Gew.-%, bezogen auf die die Summe eingesetzter Thermoplaste, anorganische Füllstoffe mit sphärischer oder Plättchengeometrie Bevorzugt sind die Füllstoffe mit sphärischer oder Plättchengeometrie in feinteiliger und/oder poröser Form mit großer äußerer und/oder innerer Oberfläche. Plättchenförmig meint in diesem Zusammenhang flache Körper mit einer großen unterschiedlichen Ausdehnung in den drei Dimensionen - so hat z.B. die Dicke einen deutlich kleineren Werte als die Ausdehnung des Partikels in der Länge bzw. Breite. Der Quotient aus Länge bzw. Durchmesser wird auch als Aspektverhältnis bezeichnet. Für die vorliegende Erfindung sind dabei Teilchen mit einem Aspektverhältnis von 1000: 1 bis 10: 1 geeignet. Dabei handelt es sich bevorzugt um thermisch inerte anorganische Materialien insbesondere basierend auf Nitriden wie Bornitrid, um Oxide oder Mischoxide, um Carbide wie Wolframcarbid oder Borcarbid, gepulvertem Quarz wie Quarzmehl, Si02-Partikel wie Nanopartikeln, amorphes Si02, gemahlener Sand, Glaspartikel wie Glaspulver, insbesondere Glaskugeln, Graphit, insbesondere hochreiner synthetischer Graphit. Insbesondere bevorzugt sind dabei Quarz und synthetischer Graphit. Der in der vorliegenden Erfindung verwendbare Graphit kann elektrisch leitfähig sein. Der Graphit ist vorzugsweise ausgewählt aus einem synthetischen oder natürlichen Graphit. Insbesondere bevorzugt ist synthetischer Graphit. Der Graphit kann, plättchenartige oder sphärische Teilchenform oder ein Gemisch dieser Teilchenformen aufweisen. Bevorzugt ist der Graphit plättchenförmig. Plättchenförmig meint in diesem Zusammenhang flache Körper mit einer großen unterschiedlichen Ausdehnung in den drei Dimensionen - so hat z.B. die Dicke einen deutlich kleineren Wert als die Ausdehnung des Partikels in der Länge bzw. Breite. Die Plättchen können aus einer Graphitlage oder aus mehreren Lagen bestehen, welche dicht gepackt vorliegen. Die kleinste Dimension (Dicke) ist dabei geringer als 1 μιη bevorzugt geringer als 500 nm und am meisten bevorzugt geringer als 200 nm und wenigstens 0,4 nm bevorzugt 1 nm, wobei das Aspektverhältnis im Bereich von 1000: 1 bis 10: 1 liegt. Für den erfindungsgemäßen Nutzen ist es nicht nötig dass alle plättchenförmige Partikel eine ebenmäßig flache Form aufweisen. Durch die geringe Dicke der Partikel können diese eine kurvenförmige oder gebogene Form oder andere Defomitäten aufweisen. Die Dicke der Partikel kann mit Standardmethoden wie z.B. Transmissionselektronemikroskopie bestimmt werden.
Der Graphit kann einzelne Graphitteilchen oder Aggregate oder Agglomerationen von Graphitteilchen enthalten. Bevorzugt weisen die Teilchen, Aggregate oder Agglomerationen eine mittlere Teilchengröße (d90%) von 1-160 μιη auf, stärker bevorzugt 5-100 und weiter bevorzugt 10 - 60 μιη auf. In einer anderen Ausführungsform weist der Graphit einen Veraschungsrückstand von kleiner als 0,5% auf, bevorzugt kleiner als 0,1 gew.-%, gemessen nach ASTM D 1506. In einer weiteren Ausführungsform weist der Graphit eine Feuchte von kleiner als 0,5%> auf, gemessen nach ASTM D 1509-95. Bevorzugt weist der Graphit eine BET Oberfläche von mindestens 5 m2/g, insbesondere bevorzugt mindestens 8 m2/g auf. Die BET-Oberfläche wird bestimmt nach ASTM D3037.
Der Graphit wird mittels eines allgemein bekannten Graphitierungsprozesses hergestellt. Dabei sind die Ausgangssubstanzen zum Beispiel Braunkohle, Erdöle und Peche, aber auch Kunststoffe. Bei der Graphitierung erfolgt durch Erhitzen unter Luftabschluss auf etwa 3.000°C noch eine Umwandlung vom amorphen Kohlenstoff zum polykristallinen Graphit.
Der Graphit wird als Feststoff eingesetzt. Handelsüblicher Graphit für Druckanwendungen kann verwendet werden, wie er beispielsweise bei der Firma TIMCAL AG, CH-6743 Bodio, Schweiz, vorzugsweise unter der Bezeichnung TIMREX KS44 oder TIMREX KS150, KS 75, KS 5-75TT, KS 5-44, KS 6 insbesondere bevorzugt KS 44, erhältlich ist. Werden Glaskugeln eingesetzt werden diese bevorzugt in Form von Glaskugeln bzw.
Glaskügelchen (auch runde Glassphären oder Mikrosphären genannt) mit einem Durchmesser von 4 μιη bis 120 μιη eingesetzt. Die zum Einsatz gelangenden Glaskugeln sind handelsüblich erhältlich - wie z.B. Produkte der Fa. Potters Europe) und werden beispielsweise als Spheriglas, Typ 5000, mit einem Durchmesser von 4 μιη bis 25 μιη Spheriglas, Typ 3000, mit einem Durchmesser von 12 μιη bis 48 μιη und Spheriglas, Typ 2429, mit einem Durchmesser von 53 μιη bis 106 μιη gehandelt. Je kleiner die Glaskugeln sind, umso größer ist ihre Anzahl und Oberfläche pro Gewichtseinheit. Die Korngestalt ist dabei näherungsweise sphärisch. Bevorzugt handelt es sich um Vollglaskugeln, keine Hohlglaskugeln.
Es eignen sich jedoch auch andere ähnliche Materialien wie z.B. Porzellankugeln. Dabei ist zu beachten, dass sich für den erfindungsgemäßen Zweck insbesondere bevorzugt Glaskugeln aus Borosilikatglas (E-Glas) zum Einsatz kommen. A Glas (Kalk-Natron Glas) ist für die vorliegende Erfindung wegen der hohen thermischen Anforderungen ungeeignet.
In einer weiteren Ausführungsform kommen bevorzugt anorganische Füllstoffe, die zu über 97 Gew.% auf der Basis von Quarz (Si02) aufgebaut sind, zum Einsatz. Die Korngestalt ist dabei näherungsweise sphärisch.
In bevorzugter Ausführungsform handelt es sich dabei um feinteilige Quarzmehle, die durch eisenfreie Mahlung mit nachfolgender Windsichtung aus aufbereitetem Quarzsand hergestellt wurden.
Insbesondere bevorzugt sind Quarzpartikel mit einem Partikelgröße von D50% 0,1 μιη - ΙΟΟμιη bevorzugt Ιμιη - 50μιη und ganz besonders bevorzugt von Ιμιη bis 5μιη und einem D98% Wert von Ιμιη - ΙΟΟμιη bevorzugt 5μιη - 50μιη. Bevorzugt weisen die Quarzpartikel eine spezifische BET-Oberfläche, bestimmt durch Stickstoffadsorption gemäß ISO 9277 von 0,5 - 10 m2/g auf. Die Partikel können ggf. beschichtet sein wobei bevorzugt Epoxysilan-, Methylsilo xan-, und Methacrylsilan- Schlichten zum Einsatz kommen.
Geegnete handelsübliche Produkte sind z.B Sikron SF 500 und Sikron SF 800 der Firma Quarzwerke GmbH (50226 Frechen, Deutschland). Es können auch Mischungen aus verschiedenen Füllstoffen verwendet werden.
Völlig überraschend war die Tatsache, dass sich vergleichbare sphärische oder plättchenförmige Füllstoffe auf Basis anderer Zusammensetzungen als erfindungsgemäß genannt, nicht für das beschriebene Substratmaterial eignen. So konnte gezeigt werden, dass Schichtsilikate wie Tone, Talke oder Kaolin ungeeignet im Sinne der Erfindung sind. Auch Glasfasern, welche für die Verringerung des Wärmeausdehnungskoeffizienten in Frage kommen, sind ungeeignet. Damit ist nur ein sehr kleiner Teil der theoretisch für die Verringerung des thermischen Ausdehnungskoeffizeinenten möglichen Einsatzstoffe im Sinne der Erfindung geeignet. Welche Füllstoffe dies sind, war zuvor unbekannt und konnte auch vom Fachmann aus dem Stand der Technik nicht abgeleitet werden.
Bevorzugt wird diese Schicht in einem Spritzgussverfahren oder Thermo- Umformungsverfahren mit Werkzeugtemperaturen von ähnlich oder oberhalb der Vicat- Erweichungstemperatur des eingesetzten Substratmaterials hergestellt.
In einer weiteren Ausführungsform wird dem Copolycarbonat der Substratschicht a) weitere Polymere basierend auf Polsulfon, Polyethersulfon oder Polyetherimid beigemischt. Dabei beträgt der Polycarbonatgehalt in der Mischung bezogen auf die Summe eingesetzter Thermoplaste bevorzugt mehr als 50 Gew.-%, besonders bevorzugt mehr als 60 Gew.-% und insbesondere bevorzugt mehr als 70 Gew.-%. Bevorzugt sind z.B. sogenannten Polyethersulfone (CAS: 25608-63-3) welche z.B. unter dem Handelsnamen Ultrason® E 2010 bei der BASF SE (67056 Ludwigshafen, Deutschland) erhältlich sind. Weiterhin bevorzugt sind sogenannte Polyphenylsulfone (CAS 25608-64-4) - diese sind unter dem Handelsnamen Rädel® R (z.B. Rädel® R 5900) bei Solvay Advanced Polymers oder Ultrason® P bei BASF SE (67056 Ludwigshafen, Deutschland) erhältlich. Polyetherimide sind z.B. unter Handelsnamen Ultem® (CAS 61128-46-9) (Sabic Innovative Plastics) bekannt.
Auch Mischungen der oben genannten Polymere sind möglich. In einer bevorzugten Ausführungsform trägt die Schicht b) eine Schutzschicht c) bestehend aus plasmapolymerisierten Siloxanen der Dicke 5 nm - 200 nm, bevorzugt 15 nm - 150 nm ganz besonders bevorzugt 20 nm - 100 nm.
In einer weiteren speziellen Ausführungsform kann weiterhin eine Schicht d) enthalten sein, die eine Kondensatbildung auf der Oberfläche verhindert. Die erfindungsgemässen Mehrschichtkörper weisen signifikant verbesserte thermische Eigenschaften (Vicat-Erweichungstemperatur) in Verbindung mit einer guten Metallisierbarkeit auf. Die Oberflächenqualität bei auch bei hoher Temperaturbelastung erhalten. Dabei bleiben die mechanischen, thermischen und Theologischen Eigenschaften gegenüber den Standard-Copolycarbonaten (wie z.B. Apec) unverändert. Ferner weisen sie die geforderten niedrigen linearen Wärmeausdehnungskoeffizienten auf. Zudem weist das Substratmaterial eine hohe Schmelzestabilität auf. Die Polymerzusammensetzung des Substratmaterials kann niedermolekulare Additive enthalten. Allerdings ist es bevorzugt mit möglichst geringen Mengen an Additiven zu arbeiten. In einer besonderen Ausführungsform enthält die Polymerzusammensetzung keine niedermolekularen Additive - Füllstoffe sind hierbei ausdrücklich ausgenommen. Als Thermostabilisator eignen sich bevorzugt Tris-(2,4-di-tert-butylphenyl)phosphit (Irgafos 168), Tetrakis(2,4-di-tert.-butylphenyl)[l,l biphenyl]-4,4'-diylbisphosphonit, Trisoctyl- phosphat, Octadecyl-3-(3,5-di-tert butyl-4-hydroxyphenyl)propionat (Irganox 1076), Bis(2,4- dicumylphenyl)pentaerythritoldiphosphit (Doverphos S-9228), Bis(2,6-di-tert.butyl-4- methylphenyl)pentaerythritoldiphosphit (ADK STAB PEP-36). Sie werden allein oder im Gemisch (z. B. Irganox B900 oder Doverphos S-92228 mit Irganox B900 bzw. Irganox 1076) eingesetzt. In einer besonders bevorzugten Ausführungsform wird kein Thermostabilisator eingesetzt.
Als Entformungsmitttel eignen sich bevorzugt Pentaerythrittetrastearat, Glycerinmonostearat, Stearylstearat oder Propoandiolmono- bzw. distearat. Sie werden allein oder im Gemisch eingesetzt. In einer besonderen Ausführungsform wird kein Entformungsmittel eingesetzt. Als UV-Stabilisatoren eignen sich bevorzugt 2-(2'-Hydroxyphenyl)benzotriazole, 2- Hydroxybenzophenone, Ester von substituierten und unsubstituierten Benzoesäuren, Acrylate, sterisch gehinderte Amine, Oxamide, 2-(2-Hydroxyphenyl)-l,3,5-triazine, besonders bevorzugt sind substituierte Benztriazole wie beispielsweise Tinuvin 360, Tinuvin 350, Tinuvin 234, Tinuvin 329 oder UV CGX 006 (Ciba). In einer besonderen Ausführungsform wird kein UV- Absorber eingesetzt.
Des Weiteren können Farbmittel, wie organische Farbstoffe oder Pigmente oder anorganische Pigmente, IR-Absorber, einzeln, im Gemisch oder auch in Kombination mit Prozesshilfsmitteln eingesetzt werden. Dabei ist die erfindungsgemäße Zusammensetzung bevorzugt frei von Titandioxid.
Die Zusammensetzung kann weitere handelsübliche Polymeradditive wie Flammschutzmittel, Flammschutzsynergisten, Antidrippingmittel (beispielsweise Verbindungen der Substanzklassen der fluorierten Polyolefme und der Silikone), Nukleiermittel, Antistatika wie Polyalkylenether, Alkylsulfonate oder Polyamid-haltige Polymere) in solchen Mengen enthalten, die die mechanischen Eigenschaften der Zusammensetzung nicht insoweit schädigen, dass das Zieleigenschaftsprofil nicht mehr erfüllt wird. Geeignete Additive sind beispielsweise, jedoch nicht limitierend, beschrieben in "Additives for Plastics Handbook, John Murphy, Elsevier, Oxford 1999", im "Plastics Additives Handbook, Hans Zweifel, Hanser, München 2001" oder in WO 99/55772 , S. 15-25.
Die Herstellung der für das Substratmaterial des erfindungsgemäßen Mehrschichtkörpers benötigten thermoplastischen Formmassen erfolgt, indem man die jeweiligen Bestandteile in bekannter Weise vermischt und bei Temperaturen von 200 °C bis 380 °C, bevorzugt bei 240 bis 350 °C, in üblichen Aggregaten wie Innenknetem, Extrudern und Doppelwellenschnecken schmelzecompoundiert und schmelzextrudiert (Mischung in der Schmelze).
Die Polymerzusammensetzungen werden insbesondere zur Herstellung von Bauteilen verwendet, bei denen optische, thermische und mechanische Eigenschaften genutzt werden, wie beispielsweise bei Gehäusen, Gegenständen im E/E-Bereich, Platten, Lampen- halterungen, -abdeckungen, im Automobilbereich wie Lampenfassungen und -abdeckungen, Lichtsammeisystemen und -reflektoren - insbesondere im Bereich der Photovoltaik, Kollimatoren, Leuchtdioden, bedampfte Displays und Scheiben; Linsenhalterungen, Lichtleiterlemente, bei LED-Anwendungen (Sockel, Reflektoren, heat sinks); Automobilteile wie Scheinwerfer, Bezels, Blinker, Reflektoren und andere Anwendungen.
Die Extrudate und Formkörper bzw. Formteile aus den erfindungsgemässen Polymeren sind ebenfalls Gegenstand der vorliegenden Anmeldung.
Die Copolycarbonate, zur Herstellung der Schicht a) werden nach einem kontinuierlichen Phasengrenzflächenverfahren hergestellt. Die Herstellung der erfindungsgemäss zu verwendenden Copolycarbonate erfolgt prinzipiell in bekannter Weise aus Diphenolen, Kohlensäurederivaten und gegebenenfalls Verzweigern.
Allgemein ist das Verfahren zur Polycarbonatsynthese bekannt und in zahlreichen Publikationen beschrieben. EP 517 044 AI, WO 2006/072344 AI, EP 1 609 818 AI und WO 2006/072344 AI und dort zitierte Dokumente beschreiben beispielsweise das Phasengrenzflächen und das Schmelzeverfahren zur Herstellung von Polycarbonat.
Die verwendeten Diphenole, wie auch alle anderen der Synthese zugesetzten Chemikalien und Hilfsstoffe können mit den aus ihrer eigenen Synthese, Handhabung und Lagerung stammenden Verunreinigungen kontaminiert sein. Es ist jedoch wünschenswert, mit möglichst reinen Rohstoffen zu arbeiten.
Die Durchführung der Copolycarbonatsynthese erfolgt kontinuierlich. Die Reaktion kann in daher in Umpumpreaktoren, Rohrreaktoren, oder Rührkesselkaskaden oder deren Kombinationen erfolgen, wobei durch Verwendung der bereits erwähnten Mischorgane sicherzustellen ist, dass wässrige und organische Phase sich möglichst erst dann entmischen, wenn das Synthesegemisch ausreagiert hat, d. h. kein verseifbares Chlor von Phosgen oder Chlorkohlensäureestern mehr enthält. Die Menge an einzusetzenden Kettenabrecher beträgt 0,5 Mol-% bis 10 Mol-%, bevorzugt 1 Mol-% bis 8 Mol-%, besonders bevorzugt 2 Mol-% bis 6 Mol-%> bezogen auf Mole an jeweils eingesetzten Diphenolen. Die Zugabe der Kettenabbrecher kann vor, während oder nach der Phosgenierung erfolgen, bevorzugt als Lösung in einem Lösungsmittelgemisch aus Methylenchlorid und Chlorbenzol (8-15 Gew.%>-ig). Die Herstellung des Formteils aus dem Substratmaterial zur Herstellung des erfindungsgemäßen Mehrschichtkörpers erfolgt bevorzugt im Spritzgussverfahren wobei die Werkzeugtemperatur in einer ähnlichen Größenordnung wie die Vicat-Erweichungs- temperatur des verwendeten Substratmaterials eingestellt ist - siehe unten. Der Prozess der sogenannten dynamischen Werkzeugtemperierung ist dadurch gekennzeichnet, dass die Werkzeugwand vor dem Einspritzen der Schmelze zügig aufgeheizt wird. Durch die erhöhte Werkzeugtemperatur, die im Idealfall nahe bei der Vicattemperatur oder größer als die Vicattemperatur des verwendeten Substratmaterials liegt wird das frühzeitige Erstarren der Schmelze verhindert, sodass unter anderem eine höhere Abformgenauigkeit der Werkzeugoberfläche möglich ist und sich die Qualität der Bauteiloberfläche verbessert. Damit wird überraschenderweise auch erreicht, dass sich die im Substratmaterial enthaltenen Füllkörper derart orientieren, dass ein hoher Oberflächenglanz erreicht wird. Die Temperatur der Werkzeugwand sollte im Bereich der Vicattemperatur +/- 20°C (bedeutet mit einer Abweichung von 20°C nach oben oder nach untern), bevorzugt im Bereich +/- 10°C, besonders bevorzugt im Bereich + 3 °C bis +7 °C oberhalb der Vicattemperatur liegen. Des Weiteren ist die dynamische Werkzeugtemperierung dadurch gekennzeichnet, dass die Temperatur der Werkzeugwand nach dem Einspritzvorgang möglichst schnell wieder auf die ursprüngliche Temperatur heruntergekühlt wird und das Bauteil wie üblich bis zur Entformungstemperatur im Werkzeug abkühlt. Für die Fertigung der genannten Bauteile eignet sich besonders gut die dynamische Werkzeugtemperierung mithilfe einer Induktionsheizung.
Die Metallisierung der Schicht a) erfolgt bevorzugt in einem DC Sputterverfahren.
Überraschenderweise wurde gefunden, dass ein bestimmtes Verfahren mit bestimmten Verfahrensparametern zu stabilen Metallschichten führt. So konnte gezeigt werden, dass die Kombination mit bestimmten Drücken und bestimmten Leistungen während der Vorbehandlung zu besseren Ergebnissen führen. Niedrigere Energien führen überraschenderweise dazu, dass die anschließende Metallschicht bei Wärmebehandlung Fehler ausbildet. Dies war unerwartet. Im Vergleich dazu kann die generelle d Metallhaftung auch mit niedrigen Vorbehandlungsenergien erreicht werden. Die Metallhaftung kann z.B. mit einem Peeltest (Klebebandabzugstest) getestet werden. Die Blisterbildung (Ausbildung blasenartiger Fehlstellen) nach Wärmebehandlung kann jedoch nur durch das erfindungsgemäße Verfahren verhindert werden. Die Herstellung des erfindungsgemäßen Mehrschichtkörpers erfolgt dabei bevorzugt in folgenden Schritten:
A) Herstellung der Basisschicht a) nach oben beschriebenen Verfahren.
B) Vorbehandlung des erhaltenen Formteils (Basisschicht) enthaltend ein Substratmaterial aus einem Copolycarbonat bevorzugt einem Copolycarbonat mit einem Gewichtsanteil an 1,1- Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan von 15 Gew.-% bis 95 Gew.-% insbesondere bevorzugt 25 Gew.-% bis 90 Gew.-% bezogen auf die Summe der Bisphenolkomponentenin einer Diodenanordnung mit Mittelfrequenzanregung mit einem Luft- oder Argon-basierten Plasma, bevorzugt Argon, bei einer Frequenz von 0 Hz - 10 Mhz bevorzugt von 0 Hz - 1 Mhz ganz besonders bevorzugt 0 Hz - 100 kHz einer Leistung von 0,4 W/cm2 bis 8,4 W/cm2 bevorzugt 0.5 W/cm2 bis 5,0 W/cm2 insbesondere bevorzugt von 0,8 W/cm2 bis 3,3 W/cm2 sowie einem Prozessgasdruck von 0,04 bis 0,2 mbar bevorzugt von 0,05 bis 0,16 mbar. Als Prozessgase werden Luft, N2, N20, Ar, He, O2, bevorzugt Luft oder Argon besonders bevorzugt Argon eingesetzt. Die Dauer der Behandlung beträgt 10 Sekunden bis 1000 Sekunden, bevorzugt 30 Sekunden bis 500 Sekunden und insbesondere bevorzugt 30 Sekunden - 180 Sekunden.
C) Metallisierung des Formteils in einem Sputterprozess in einem DC-Magnetron in einem Argon-Plasma bei einem Druck von 5x10~3 mbar aus Aluminium, Silber, Chrom, Titan, Palladium, bevorzugt aus Silber oder Aluminium, insbesondere bevorzugt Aluminium bei einer Prozesszeit von 10 Sekunden bis 1000 Sekunden.
Die Dicke der Metallschicht beträgt bevorzugt 10 nm - 1000 nm, bevorzugt 50 nm - 800 nm insbesondere bevorzugt 60 nm - 500 nm und ganz besonders bevorzugt 60 nm - 300 nm. D) Auftrag einer Schutzschicht (nachfolgend auch Top Coat genannt) mit der unter b) beschriebenen technischen Einrichtung. Dies geschieht bei einem Druck von 0,01 bis 0,30 mbar mit bevorzugt HMD SO (Hexamethyldisiloxan; CAS 107-46-0) als Beschichtungsmaterial bei einer Prozesszeit von 10 Sekunden - 1000 Sekunden bevorzugt 20 Sekunden bis 500 Sekunden. Die Schichtdicke des Top Coats beträgt 10 nm - 200 nm bevorzugt 20 nm - 100 nm. Die angelegte Leistung beträgt 100W - 5000W.
Beispiele
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben, wobei die hier beschriebenen Bestimmungsmethoden für alle korrespondierenden Größen in der vorliegenden Erfindung zur Anwendung kommen, sofern nichts Gegenteiliges beschrieben worden ist.
Die Bestimmung des Schmelzvolumenrate (MVR) erfolgt nach ISO 1133 unter den unten angegebenen Bedingungen.
Materialien:
Substratmaterial 1 (für Vergleichsbeispiel)
Copolycarbonat enthaltend 70 Gew.-% l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan und 30 Gew.-% Bisphenol A mit Phenol als Kettenabbrecher und einem MVR von 8 cm3/(10 min) (330 °C; 2,16 kg) gemäß ISO 1133. Das Material weist eine Vicat- Erweichungstemperatur von 208 °C auf (ISO 306; 50 N; 120 K/h).
Substratmaterial 2 (für erfindungsgemäßen Mehrschichtkörper)
Copolycarbonat enthaltend 70 Gew.-% l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan und 30 Gew.-% Bisphenol A mit Phenol als Kettenabbrecher und einem MVR von 8 cm3/(10 min) (330 °C; 2,16 kg) gemäß ISO 1133 wird mit 20 Gew.-% Graphit (Timrex KS 44 der Firma Timcal AG, CH-6743 Bodio, Schweiz ) unter unten beschriebenen Bedingungen compoundiert. Das resultierende Material hat eine Vicat-Erweichungstemperatur von 203 °C (ISO 306; 50 N; 120 K h).
Substratmaterial 3 (für Vergleichsbeispiel)
Copolycarbonat enthaltend 70 Gew.-% l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan und 30 Gew.-% Bisphenol A mit Phenol als Kettenabbrecher und einem MVR von 8 cm3/(10 min) (330 °C; 2,16 kg) gemäß ISO 1133 wird mit 20 Gew.-% Talkum (Finntalc M05SL-AW der Firma Mondo Minerals B.V. ; NL-1041 Amsterdam) unter unten beschriebenen Bedingungen compoundiert. Das resultierende Material weist eine Vicat- Erweichungstemperatur von 198 °C auf (ISO 306; 50 N; 120 K/h). Compoundierung
Die Compoundierung der Materialien erfolgte auf einem Zweiwellenextruder der Firma KraussMaffei Berstorff, TYP ZE25, bei einer Gehäusetemperatur von 320 °C bzw. einer Massetemperatur von ca. 340°C und einer Drehzahl von 100 Upm mit den in den Beispielen angegebenen Mengen an Komponenten.
Herstellung der Prüfkörper: Für die Herstellung von Formteilen (Rechteckmusterplatten mit Seitenanguss in optischer Qualität in 2 mm Dicke), welche in den Beispielen 1 und 2 zur Metallisierung verwendet wurden, wurde mit einer dynamischen Werkzeugtemperierung gearbeitet. Der Spritzguss erfolgte auf einer Battenfeld HM 210 bei einer Massetemperatur von ca. 350 °C und einer Werkzeugtemperatur von ca. 210 °C. Das Granulat wurde vor Verarbeitung für 5 Stunden im Vakuumtrockenschrank bei 120 °C getrocknet. Als Substratmaterial wurde Substratmaterial 2 verwendet.
Messung der Wärmeformbeständigkeit über die Vicat-Erweichungstemperatur: Die Vicat-Erweichungstemperatur nach DIN EN ISO 306 wird mit einer Nadel (mit kreisrunder Fläche von 1 mm2) gemessen. Diese ist mit einer Prüfkraft von 50 N (Prüfkraft B) belastet. Der oben genannte Probekörper wird einer definierten Heizrate von 120 K/h ausgesetzt. Die Vicattemperatur ist erreicht, wenn der Eindringkörper eine Eindringtiefe von 1 mm erreicht. Sie wird nach DIN ISO 306 gemessen.
Glanzmessung (Gloss):
Die Glanzmessung erfolgte an einem BYK Haze Gloss Gerät nach ASTM D 523 an metallisierten Musterplatten unter verschiedenen Einstrahlwinkeln. Messung der Wärmeausdehnung:
Die Längenausdehnungskoeffizienten werden mittels eines Mettler TMA 841 -Messgerätes unter Stickstoff ermittelt (Messbereich 23 - 55 °C). Als Norm kommt die ASTM E 831 zur Anwendung.
Die für die Messung benötigten Probekörper (Rechteckmusterplatte) werden nach Trockung des Granulates bei 130 °C über Nacht durch Spritzguss hergestellt. Gemessen wird jeweils quer und längs des Probekörpers.
S chmelzestabilität
Zur Evaluierung der Schmelzestabilität wird die Schmelzvolumenrate (MVR) nach verschiedenen Vorwärmzeiten gemessen.
Metallisierungsprozess : Alle Platten wurden vor der Beschichtung für 21 Tage bei 50 % Luftfeuchtigkeit und 23 °C gelagert.
Die Beschichtungsanlage bestand aus einer Vakuumkammer bei der die Proben auf einem rotierenden Probenhalter positioniert wurden. Der Probenhalter rotierte mit ca. 20 U/min. Die Prüfkörper wurden, bevor sie in die Vakuumkammer eingebracht wurden, mit ionisierter Luft abgeblasen, um sie von Staub zu befreien. Danach wurde die Vakuumkammer mit den Prüfkörper auf einen Druck p < 1 · 10"5 mbar evakuiert. Anschließend wurde Argon Gas bis zu einem bestimmten Druck, welcher in den Ausführungsbeispielen beschrieben ist (Prozessdruck 1) eingelassen und bei einer bestimmten Leistung, welche in den Ausführungsbeispielen beschrieben ist (Prozessleistung 1) für 2 min ein Plasma gezündet und die Proben diesem Plasma ausgesetzt (Plasmavorbehandlung). Als Plasmaquelle wurde eine Diodenanordung bestehend aus 2 parallelen Metallelektroden verwendet, die mit einer Wechselfrequenz von 40 kHz und einer Spannung größer 1000 V betrieben wurde. Danach wurden die Proben metallisiert. Dafür wurde Ar-Gas mit einem Druck von 5 · 10"3 mbar eingelassen. Mittels DC-Magnetron wurde eine Aluminium- Schicht von ca. 100 nm Dicke mit einer Leistungsdichte von 6,4 W/cm2 auf die Proben aufgebracht. Die Sputterzeit betrug 2,5 Minuten. Danach wurde mittels Plasmapolymerisation eine Korrosionsschutzschicht aus HMD SO (Hexamethyldisiloxan; CAS 107-46-0) aufgebracht. Dazu wurde HMD SO verdampft und der Dampf in die Vakuumkammer eingelassen bis sich ein Druck von ca. 0,04 mbar ergab. Danach wurde ein Plasma mit der oben beschriebenen Diodenanordnung bei 1500W gezündet während 1 Minute die Korrosionschutzschicht aufgebracht.
Test der Oberflächenqualität nach Wärmelagerung:
Der Test wird direkt nach der Metallisierung durchgeführt. Damit ist gemeint, dass die Platten nach Metallisierung innerhalb einer Stunde diesem Test unterworfen werden.
Die metallisierten Platten werden dabei in einer Klimakammer für 2 Stunden bei 45 °C und 100 % relativer Feuchte gelagert. Direkt nach der Klimalagerung werden die Platten für eine Stunde bei 170 bzw. 180 °C in einem Ofen gelagert.
Danach wird die Metalloberfläche abgemustert.
Visuelle Abmusterung: Die Oberfläche wird auf blasenförmige Aufwerfungen, Eintrübung der Metallschicht sowie auf Irisierung untersucht. Platten, die weder Irisierung noch Trübung, noch Blasen aufweisen, werden als„fehlerfrei" gekennzeichnet.
Beispiel 1 (Erfindungsgemäß) Es werden Spritzguss-Rechteckplatten von Komponente Substratmaterial 2 wie oben beschrieben angefertigt.
Danach werden die Probekörper wie oben beschrieben metallisiert. Der Prozessdruck 1 beträgt dabei 0,09 mbar und die Prozessleistung 1 beträgt dabei 1,67 W/cm2. Alle anderen Parameter zur Herstellung der Metallschicht bzw. Erzeugung des Topcoats werden wie oben beschrieben eingestellt.
Das Ergebnis der Prüfung (Wärmelagerung) ist in Tabelle 1 dargestellt.
Beispiel 2 (Vergleichsbeispiel)
Es werden Spritzguss-Rechteckplatten von Komponente Substratmaterial 2 wie oben beschrieben angefertigt. Danach werden die Probekörper wie oben beschrieben metallisiert. Der Prozessdruck 1 beträgt dabei 0,09 mbar und die Prozessleistung 1 beträgt dabei 0,17 W/cm2. Alle anderen Parameter zur Herstellung der Metallschicht bzw. Erzeugung des Topcoats werden wie oben beschrieben eingestellt. Das Ergebnis der Prüfung (Wärmelagerung) ist in Tabelle 1 dargestellt.
Tabelle 1
Figure imgf000026_0001
Das erfindungsgemäße Beispiel 1 zeigt, dass bei speziellen Drücken und speziellen Sputterenergien sehr gute Oberflächenqualitäten möglich sind. Demgegenüber gibt es Metallisierungsbedingungen die zu bei einem nachfolgenden Belastungstest zu Fehlern in der Oberfläche fuhren
Beispiel 3 (Vergleich)
Das Substratmaterial 2 wird unter herkömmlichen Bedingungen zu Musterplatten verarbeitet - dabei wird nicht mit einer dynamischen Werkzeugtemperierung gearbeitet, d.h. es werden Musterplatten mit Seitenanguss in optischer Qualität angefertigt. Die Massetemperatur betrug 300 - 330 °C und die Werkzeugtemperatur 100 °C. Das Granulat wurde vor Verarbeitung für 5 Stunden im Vakuumtrockenschrank bei 120 °C getrocknet.
Das Formteil wurde dann wie in Beispiel 1 beschrieben metallisiert.
Tabelle 2: Glanzmessung
Figure imgf000027_0001
Man erkennt, dass das Formteil, welches nicht unter den für eine dynamische Werkzeugtemperierung angegebenen Bedingungen erzeugt wurde, keine hohen Glanzgrade (Gloss) aufweist. Dagegen zeigt das Beispiel 1 bei welchem mit einer dynamischen Werkzeugtemperierung (Werkzeugtemperatur nahe der Vicat-Erweichungstemperatur) gearbeitet wurde den Reflektoren benötigte hohen Glanz grad (Gloss).
Tabelle 3 : Wärmeausdehnung
Figure imgf000027_0002
Man erkennt, dass das zur Herstellung der erfindungsgemäßen Mehrschichtkörper dienende Substratmaterial 2 eine deutlich geringere Wärmeausdehnung aufweist. Tabelle 4: Schmelzestabilität
Figure imgf000028_0001
Überraschenderweise zeigt das für die Erfindung geeignete Substratmaterial 2 einen deutlich höhere Schmelzestabilität im Vergleich zum Substratmaterial 3.
Insgesamt konnte gezeigt werden, dass nur das erfindungsgemäße Substratmaterial in Kombination mit der Abformung im Spritzgussoprozess mit dynamischer Werkzeugtemperierung und dem speziellen Beschichtungsverfahren zu den erfindungsgemäßen Mehrschichtkörpern führen.

Claims

Patentansprüche
Mehrschichtkörper enthaltend mindestens eine Substratschicht, eine hiermit unmittelbar verbundene Metallschicht und wenigstens eine auf der Metallschicht aufliegende Schutzschicht, dadurch gekennzeichnet, dass die Substratschicht ein Copolycarbonat enthält das eine Vicat-Erweichungstemperatur von mehr als 160 °C gemäß DIN ISO 306 aufweist, sowie einen oder mehrere anorganische Füllstoffe mit sphärischer oder Plättchengeometrie zu 5 bis 50 Gew.-%, bezogen auf die die Summe eingesetzter Thermoplaste, enthält.
Mehrschichtkörper nach Anspruch 1, dadurch gekennzeichnet, dass das Copolycarbonat der Substratschicht mindestens einen Bisphenolbaustein der Formel (2) enthält,
Figure imgf000029_0001
in der
R2 für Cl-C4-Alkyl, n für 0, 1, 2 oder 3, sowie als Endgruppe (Kettenabbrecher) eine Struktureinheit der Formel (1) enthält
Figure imgf000029_0002
in der
Rl für Wasserstoff oder Cl-C18-Alkyl , bevorzugt für Cl bis C18 Alkyl und besonders bevorzugt für tert.-butyl stehen. Mehrschichtkörper nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass 15 Gew.-% bis 95 Gew.-% insbesondere bevorzugt 25 Gew.-% bis 90 Gew.-% bezogen auf die Gesamtmenge der Bisphenol-blöcken, aus von l,l-Bis-(4-hydroxyphenyl)-3,3,5- trimethylcyclohexan abgeleiteten Bisphenolblöcken besteht.
Mehrschichtkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Substratschicht neben dem Copolycarbonat einen weiteren thermoplastischen Kunstsstoff ausgewählt aus der Gruppe bestehend aus Polysulfon, Polyethersulfon, Polyetherimid enthält.
Mehrschichtkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Füllstoff auf einem anorganischem Material ausgewählt ist und eine sphärische oder plättchenförmige Gestalt aufweist.
Mehrschichtkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Füllstoff ausgewählt ist aus der Gruppe bestehend aus Nitriden, Oxiden, Mischoxiden, Carbiden wie Wolframcarbid oder Borcarbid, gepulvertem Quarz wie Quarzmehl, SiC -Partikel, amorphes Si02, gemahlener Sand, Glaspartikel, Glasvollkugeln und synthetischer Graphit.
Mehrschichtkörper nach Anspruch 6, dadurch gekennzeichnet, dass plättchenförmiges Graphit mit einer kleinste Dimension (Dicke) geringer als 1 μιη ist, oder Glaskugeln mit einem Durchmesser von 4 μιη bis 120 μιη oder Quarzpartikel mit einem Partikelgröße von D50% 0,1 μιη - ΙΟΟμιη oder Mischungen daraus.
Mehrschichtkörper nach einem der Ansprüche 1 bis 7 wobei die Substratschicht eine Dicke von 0,1 mm bis 6,0 mm, die Metallschicht eine Dicke von 10 nm - 1000 nm sowie eine Schutzschicht mit einer Dicke im Bereich von 5nm bis 200nm aufweist.
Mehrschichtkörper nach einem der Ansprüche 1 bis 8, wobei die Metallschicht eine Aluminium oder Silberschicht ist.
Mehrschichtkörper nach einem der Ansprüche 1 bis 9 wobei der Mehrschichtkörper zusätzlich eine Schutzschicht bestehend aus Siloxanen einer Dicke von 5 nm - 200 nm enthält.
11. ) Mehrschichtkörper nach einem der Ansprüche 1 bis 10 zur Herstellung von
Lampenfassungen und -abdeckungen, Lichtsammeisystemen und -reflektoren, Kollimatoren, Leuchtdioden, bedampfte Displays und Scheiben, Linsenhalterungen, Lichtleiterlemente, LED-Applikationen (Sockel, LED-Reflektoren, heat sinks), Automobilteile wie Scheinwerfer, Bezels, Blinker, Reflektoren, und Solar-Reflektoren
12. ) Verfahren zur Herstellung eines Mehrschichtkörpers nach Anspruch 1 bis 11 dadurch gekennzeichnet, dass die Basisschicht durch Spritzgießen oder Extrusion gebildet wird und in einem darauffolgenden Schicht eine Metallschicht in einem Plasma- Verfahren aufgebracht wird.
13. ) Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die
Plasmavorbehandlung mit einer Mittelfrequenzanregung mit einem Luft- oder Argonbasierten Plasma bei einer Frequenz von 0 Hz - 10 Mhz bei einer Leistung von 0.8W/cm2 - 8.3 W/cm2 sowie einem Prozessgasdruck von 0,04 bis 0,15 mbar erfolgt.
14. ) Verfahren nach Anspruch 12 oder 13 dadurch gekennzeichnet, dass die
Substratschicht in einem Spritzgussprozess geformt wird, in welchem mit einer dynamischen Werkzeugtemperierung gearbeitet wird und die Werkzeugtemperatur beim Einspritzen +/- 20°C der Vicat-Erweichungstemperatur des verwendeten Substratmaterials beträgt
PCT/EP2012/073428 2011-11-30 2012-11-23 Metallisierter mehrschichtkörper aus speziellen polycarbonaten mit niedrigem wärmeausdehnungskoeffizient WO2013079398A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/360,990 US9823393B2 (en) 2011-11-30 2012-11-23 Metallized multilayer structure made of specific polycarbonates with low coefficient of thermal expansion
KR1020147017564A KR102013972B1 (ko) 2011-11-30 2012-11-23 낮은 열팽창 계수를 갖는 특정 폴리카르보네이트로 제조된 금속화 다층 구조물
EP12794690.3A EP2785764B1 (de) 2011-11-30 2012-11-23 Metallisierter mehrschichtkörper aus speziellen polycarbonaten mit niedrigem wärmeausdehnungskoeffizient
CN201280058729.3A CN103946268B (zh) 2011-11-30 2012-11-23 由特定聚碳酸酯制成的具有低的热膨胀系数的金属化多层制品
ES12794690.3T ES2603277T3 (es) 2011-11-30 2012-11-23 Cuerpo multicapa metalizado de policarbonatos especiales con reducido coeficiente de dilatación térmica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11191319.0 2011-11-30
EP11191319 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013079398A1 true WO2013079398A1 (de) 2013-06-06

Family

ID=47278278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/073428 WO2013079398A1 (de) 2011-11-30 2012-11-23 Metallisierter mehrschichtkörper aus speziellen polycarbonaten mit niedrigem wärmeausdehnungskoeffizient

Country Status (7)

Country Link
US (1) US9823393B2 (de)
EP (1) EP2785764B1 (de)
KR (1) KR102013972B1 (de)
CN (1) CN103946268B (de)
ES (1) ES2603277T3 (de)
TW (1) TWI568566B (de)
WO (1) WO2013079398A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502306A1 (de) * 2017-12-19 2019-06-26 Covestro Deutschland AG Mehrschichtkörper, umfassend eine substratschicht enthaltend polycarbonat, talk und wachs

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104553201B (zh) * 2015-01-17 2016-08-31 上海青品新材料科技有限公司 复合板材
DE102016115921B9 (de) * 2016-08-26 2024-02-15 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
DE102017111963A1 (de) 2017-05-31 2018-12-06 Automotive Lighting Reutlingen Gmbh Kunststoff-Reflektor eines Lichtmoduls und Verfahren zu dessen Herstellung
EP3498883A1 (de) * 2017-12-13 2019-06-19 HEC High End Coating GmbH Verfahren zur herstellung beschichteter substrate, beschichtete substrate und deren verwendung
EP3575089A1 (de) * 2018-05-30 2019-12-04 CL Schutzrechtsverwaltungs GmbH Stützstruktur zum stützen einer funktionalen komponente einer vorrichtung zur generativen fertigung eines dreidimensionalen objekts
US10544499B1 (en) * 2018-08-13 2020-01-28 Valeo North America, Inc. Reflector for vehicle lighting

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359953A1 (de) 1988-08-12 1990-03-28 Bayer Ag Dihydroxydiphenylcycloalkane, ihre Herstellung und ihre Verwendung zur Herstellung von hochmolekularen Polycarbonaten
DE3903103A1 (de) 1989-02-02 1990-08-09 Bayer Ag Polyester und polyestercarbonate auf basis von 1,1-bis-(4-hydroxyphenyl)-alkylcycloalkanen
EP0414083A2 (de) 1989-08-25 1991-02-27 Bayer Ag Stabilisierte Polycarbonate
EP0517044A2 (de) 1991-06-04 1992-12-09 Bayer Ag Kontinuierliche Herstellung von Polycarbonaten
EP0725101B1 (de) 1995-02-01 1998-04-01 Ems-Inventa Ag Transparente, farblose amorphe Polyamide und Formteile
WO1999055772A1 (en) 1998-04-24 1999-11-04 Ciba Specialty Chemicals Holding Inc. Increasing the molecular weight of polyesters
US6355723B1 (en) 2000-06-22 2002-03-12 General Electric Co. Dark colored thermoplastic compositions, articles molded therefrom, and article preparation methods
US20040063031A1 (en) * 2002-08-23 2004-04-01 Gallucci Robert R. Data storage medium and method for the preparation thereof
EP1609818A2 (de) 2004-06-24 2005-12-28 Bayer MaterialScience AG Thermostabilisierte Polycarbonat-Zusammensetzungen
WO2006072344A1 (de) 2004-12-22 2006-07-13 Bayer Materialscience Ag Polycarbonate mit guter benetzbarkeit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477608A (en) * 1982-08-20 1984-10-16 Ciba-Geigy Corporation Compositions containing graphite
DE19961304A1 (de) * 1999-12-18 2001-06-21 Merck Patent Gmbh Lasermarkierbare Kunststoffe
US7491788B1 (en) * 2006-05-19 2009-02-17 Sabic Innovative Plastics Ip B.V. High heat polycarbonate compositions, methods for the preparation thereof, and articles derived therefrom
CN104327288A (zh) * 2007-10-01 2015-02-04 帝斯曼知识产权资产管理有限公司 可热加工的导热性聚合物组合物
DE102009058099A1 (de) * 2009-12-12 2011-06-16 Bayer Materialscience Ag Polycarbonatblends mit hoher Wärmeformbeständigkeit und verbesserten Oberflächeneigenschaften
DE102009059074A1 (de) * 2009-12-18 2011-06-22 Bayer MaterialScience AG, 51373 Kratzfeste, schlagzähe Polycarbonat-Formmassen mit guten mechanischen Eigenschaften II
EP2597120B1 (de) * 2010-07-21 2020-12-09 Mitsubishi Engineering-Plastics Corporation Polycarbonatharzzusammensetzung von hoher wärmeleitfähigkeit und formartikel daraus
US20140093712A1 (en) * 2012-09-28 2014-04-03 Sabic Innovative Plastics Ip B.V. Polycarbonate ABS Composites with Improved Electromagnetic Shielding Effectiveness

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359953A1 (de) 1988-08-12 1990-03-28 Bayer Ag Dihydroxydiphenylcycloalkane, ihre Herstellung und ihre Verwendung zur Herstellung von hochmolekularen Polycarbonaten
DE3903103A1 (de) 1989-02-02 1990-08-09 Bayer Ag Polyester und polyestercarbonate auf basis von 1,1-bis-(4-hydroxyphenyl)-alkylcycloalkanen
EP0414083A2 (de) 1989-08-25 1991-02-27 Bayer Ag Stabilisierte Polycarbonate
EP0517044A2 (de) 1991-06-04 1992-12-09 Bayer Ag Kontinuierliche Herstellung von Polycarbonaten
EP0725101B1 (de) 1995-02-01 1998-04-01 Ems-Inventa Ag Transparente, farblose amorphe Polyamide und Formteile
WO1999055772A1 (en) 1998-04-24 1999-11-04 Ciba Specialty Chemicals Holding Inc. Increasing the molecular weight of polyesters
US6355723B1 (en) 2000-06-22 2002-03-12 General Electric Co. Dark colored thermoplastic compositions, articles molded therefrom, and article preparation methods
US20040063031A1 (en) * 2002-08-23 2004-04-01 Gallucci Robert R. Data storage medium and method for the preparation thereof
EP1609818A2 (de) 2004-06-24 2005-12-28 Bayer MaterialScience AG Thermostabilisierte Polycarbonat-Zusammensetzungen
WO2006072344A1 (de) 2004-12-22 2006-07-13 Bayer Materialscience Ag Polycarbonate mit guter benetzbarkeit

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Headlamp bezels and appliance parts for the Golf A5 in Apec(R)", XP002675318, Retrieved from the Internet <URL:http://plastics.bayer.com/plastics/emea/en/product/apec/application_areas/docId-72232/Headlamp_bezels_for_the_Golf_V.html> [retrieved on 20120502] *
D. G. LEGRAND; J. T. BENDLER: "Handbook of Polycarbonate Science and Technology", 2000, MARCEL DEKKER, pages: 72 FF
FRIEDRICH ET AL., METALLIZED PLASTICS 5&6: FUNDAMENTAL AND APPLIED ASPECTS
H. FREY: "Vakuumbeschichtung Bd. bis 5", 1995, VDI-VERLAG DÜSSELDORF
H. GRÜNWALD ET AL., SURFACE AND COATINGS TECHNOLOGY, vol. 111, 1999, pages 287 - 296
H. SCHNELL: "Chemistry and Physics of Polycarbonates", 1964, INTERSCIENCE PUBLISHERS, pages: 28FF,102
HANS ZWEIFEL: "Plastics Additives Handbook", 2001, HANSER
JOHN MURPHY: "Additives for Plastics Handbook", 1999, ELSEVIER
KLAUS HORN ET AL: "Polycarbonat (PC)", KUNSTSTOFFE, October 2005 (2005-10-01), pages 90 - 98, XP009158987 *
R.A. HAEFER: "Oberflächen-und Dünnschicht-Technologie", 1987, SPRINGER VERLAG

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502306A1 (de) * 2017-12-19 2019-06-26 Covestro Deutschland AG Mehrschichtkörper, umfassend eine substratschicht enthaltend polycarbonat, talk und wachs
WO2019121256A1 (de) * 2017-12-19 2019-06-27 Covestro Deutschland Ag Mehrschichtkörper, umfassend eine substratschicht enthaltend polycarbonat, talk und wachs
US20220135755A1 (en) * 2017-12-19 2022-05-05 Covestro Deutschland Ag Multilayer body, comprising a substrate layer containing polycarbonate, talc and wax

Also Published As

Publication number Publication date
TWI568566B (zh) 2017-02-01
CN103946268A (zh) 2014-07-23
EP2785764B1 (de) 2016-10-12
CN103946268B (zh) 2019-02-22
EP2785764A1 (de) 2014-10-08
KR102013972B1 (ko) 2019-10-21
US9823393B2 (en) 2017-11-21
KR20140105493A (ko) 2014-09-01
TW201336664A (zh) 2013-09-16
US20140329071A1 (en) 2014-11-06
ES2603277T3 (es) 2017-02-24

Similar Documents

Publication Publication Date Title
EP2785764B1 (de) Metallisierter mehrschichtkörper aus speziellen polycarbonaten mit niedrigem wärmeausdehnungskoeffizient
EP2338880B1 (de) Mehrschichtige Erzeugnisse enthaltend ein Polycarbonat mit verbesserten thermischen und mechanischen Eigenschaften sowie reduziertem thermischen Ausdehnungskoeffizienten
EP2817150B1 (de) Mehrschichtaufbau als reflektor
EP2652030B1 (de) Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und hoher stabilität gegen bewitterung
EP2652026B1 (de) Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und hoher stabilität gegen bewitterung
TWI649375B (zh) 具有平衡之加工性質的導熱性熱塑性組成物
EP2785794A1 (de) Formkörper mit hoher oberflächengüte
WO2022112405A1 (de) Zur verwendung als reflektor geeigneter multilagenaufbau
WO2010108626A1 (de) (co)polycarbonate mit verbesserten optischen eigenschaften
EP2763848B1 (de) Prozess zur herstellung metallisierter mehrschichtkörper aus speziellen polycarbonaten
EP2764050B1 (de) Polycarbonatzusammensetzungen mit guter metallisierbarkeit
EP3502306B1 (de) Mehrschichtkörper, umfassend eine substratschicht enthaltend polycarbonat, talk und wachs
KR101532071B1 (ko) 광 차단이 개선된 폴리카보네이트 수지 조성물 및 수지 성형품
KR101687397B1 (ko) 차광성이 부여된 폴리카보네이트 수지 조성물 및 그 성형품
CN114514402B (zh) 三件式前照灯组装件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12794690

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012794690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012794690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14360990

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147017564

Country of ref document: KR

Kind code of ref document: A