WO2013078810A1 - 自降温旋挖钻机动力头液压马达系统及旋挖钻机 - Google Patents

自降温旋挖钻机动力头液压马达系统及旋挖钻机 Download PDF

Info

Publication number
WO2013078810A1
WO2013078810A1 PCT/CN2012/073757 CN2012073757W WO2013078810A1 WO 2013078810 A1 WO2013078810 A1 WO 2013078810A1 CN 2012073757 W CN2012073757 W CN 2012073757W WO 2013078810 A1 WO2013078810 A1 WO 2013078810A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic motor
oil
rotary drilling
hydraulic
drilling rig
Prior art date
Application number
PCT/CN2012/073757
Other languages
English (en)
French (fr)
Inventor
许宏宇
张园成
于卓伟
Original Assignee
湖南三一智能控制设备有限公司
北京市三一重机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 北京市三一重机有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2013078810A1 publication Critical patent/WO2013078810A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B3/00Rotary drilling
    • E21B3/02Surface drives for rotary drilling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1485Special measures for cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • F15B21/0423Cooling

Definitions

  • the invention relates to a hydraulic motor system, in particular to a self-cooling rotary drilling rig power head hydraulic motor system and a rotary drilling rig.
  • the rotary drilling rig power head is the most important working part of the rotary drilling rig, which drives the drill pipe to provide torsion power for the drilling tool.
  • Rotary drilling rig power heads need to be in continuous working state for a long time, especially the hydraulic motor inside the power head. Due to long-term uninterrupted work, the internal oil temperature will rise to a high level, which will affect the working performance.
  • FIG. 1 is a schematic structural diagram of a conventional hydraulic system of a rotary drilling rig, which includes two hydraulic motors 10 , two motors 10 drive the gear box 20 , and the lower oil inlet and the oil outlet for the hydraulic motor.
  • the number of hydraulic motors can be adjusted according to actual needs.
  • the hydraulic motor needs to run for a long time, causing the motor temperature to be too high, affecting the working performance, and the motor overheating may cause the equipment.
  • the high temperature of the motor will be transmitted to the reducer of the power head, so that the temperature of the lubricating oil of the reducer will rise.
  • the oil can of the power reducer can be broken, causing damage to the equipment and causing a production accident.
  • the object of the present invention is to provide a self-cooling rotary drilling rig power head hydraulic motor system, which has the function of automatically reducing the temperature of the hydraulic motor, and avoids excessive temperature of the hydraulic motor due to continuous operation.
  • Another object of the present invention is to provide a rotary drilling rig having a self-cooling hydraulic motor system capable of automatically cooling the motor and solving the problems in the prior art.
  • the present invention also provides a self-cooling rotary drilling rig power head hydraulic motor system, comprising: one or more hydraulic motors; a cooling module, connected to the hydraulic motor, The low temperature hydraulic oil is input into the hydraulic motor housing through the hydraulic motor oil discharge port, and the inside of the hydraulic motor is cooled.
  • the above-mentioned self-cooling rotary drilling rig power head hydraulic motor system wherein the hydraulic motor is a two-way driving motor, the hydraulic motor has a first working port, a second working port and an unloading port, and the first working port is connected a second oil passage connected to the external second oil passage, the first oil passage and the second oil passage for supplying oil to the hydraulic motor or being returned by the hydraulic motor oil.
  • the above-mentioned self-cooling rotary drilling rig power head hydraulic motor system wherein the cooling module is connected to a first working port, a second working port and an unloading port of the hydraulic motor, and the cooling module receives the hydraulic motor output a lower temperature oil discharge, and a part of the oil is input into the hydraulic motor housing through the oil discharge port to cool the interior of the hydraulic motor, and the temperature reduction module is connected to the first Oil road and second oil road.
  • the cooling module comprises a hydraulically controlled reversing valve, which is a three-position three-way reversing valve, and the hydraulically controlled reversing valve comprises: a first oil inlet a second oil inlet connected to the second oil passage; a second oil inlet connected to the second oil passage; an oil outlet connected to the oil discharge port; wherein the first oil passage pressure is greater than the second oil passage a second oil inlet of the hydraulically controlled directional control valve is connected to the oil outlet; the second oil passage pressure is greater than the first oil passage, and the first oil inlet of the hydraulic directional control valve The mouth is connected to the oil outlet.
  • cooling module further comprises a speed regulating valve disposed between the oil outlet and the hydraulic motor oil discharge port.
  • the hydraulic motor drives a gear box of the power head.
  • the self-cooling rotary drilling boring machine power head hydraulic motor system wherein the cooling module comprises a hydraulic pump, an output end of the hydraulic pump is connected to the hydraulic motor oil discharge port, and the hydraulic pump can be driven to the hydraulic motor
  • the unloading port pumps low temperature hydraulic oil to cool the inside of the hydraulic motor.
  • the above self-cooling rotary drilling rig power head hydraulic motor system wherein the hydraulic motor is provided with an oil discharge line for discharging hydraulic oil inside the hydraulic motor.
  • the present invention also provides a rotary drilling rig having a power head provided thereon The self-cooling rotary drilling rig power head hydraulic motor system.
  • the self-cooling rotary drilling boring machine power head hydraulic motor system of the invention can realize the function of automatically reducing the hydraulic motor of the power head, avoiding the excessive temperature caused by the continuous operation of the hydraulic motor of the power head, thereby avoiding a series of equipments caused by excessive temperature. Problem or device failure.
  • the self-cooling rotary drilling boring machine power head hydraulic motor system and the rotary drilling rig of the invention can reduce the heat input to the power head reducer on the basis of automatically reducing the temperature of the hydraulic motor, thereby avoiding the lubricating oil pot of the reducer A broken accident.
  • the self-cooling rotary drilling boring machine power head hydraulic motor system and the rotary drilling rig of the invention can satisfy the simultaneous cooling of a plurality of power head hydraulic motors, and use the lower temperature oil inside the hydraulic system to cool the motor, and the cost is low.
  • the self-cooling rotary drilling rig power head hydraulic motor system and the rotary drilling rig structure cylinder of the invention are simple to implement and easy to popularize and use.
  • FIG. 1 is a schematic structural view of a conventional hydraulic system of a rotary drilling rig
  • FIG. 2 is a schematic view showing the structure of a hydraulic motor system for a self-cooling rotary drilling boring machine according to a first embodiment of the present invention
  • Fig. 3 is a schematic view showing the structure of a hydraulic motor system for a self-cooling rotary drilling boring machine according to a second embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a hydraulic motor system for a self-cooling rotary drilling boring machine according to a first embodiment of the present invention.
  • the hydraulic motor system of the self-cooling rotary drilling boring machine of the present invention mainly comprises: one or more hydraulic pressures.
  • the motor 10, the hydraulic motor 10 is connected to and drives the gear box 20;
  • the cooling module 1 is connected to the one or more hydraulic motors 10 described above, and the low-temperature hydraulic oil is input into the hydraulic motor housing through the oil discharge port of the hydraulic motor to cool the hydraulic motor.
  • the cooling module 1 in this embodiment is connected to the oil inlet, the oil outlet and the oil discharge port of the one or more hydraulic motors 10, receives the lower temperature oil output from the hydraulic motor, and partially discharges the oil.
  • the motor discharge port is input into the motor housing to cool the inside of the motor, and the temperature reduction module 1 is connected to the external first oil passage 30 and the second oil passage 40.
  • the hydraulic motor 10 of the rotary drilling machine power head is generally provided with a plurality of, and is a two-way driving motor.
  • two hydraulic motors 10 are disposed on the power head.
  • the two-way driving hydraulic motor 10 has a first working port, a second working port and an oil discharge port.
  • the first working port serves as an oil inlet and the second working port serves as an oil outlet; or, the first work The port serves as an oil outlet, the second working port serves as an oil inlet, the external first oil passage 30 communicates with the first working port of the hydraulic motor, and the second oil passage 40 communicates with the second working port of the hydraulic motor, the first oil
  • the road 30 supplies oil, the second oil circuit 40 returns oil to drive the hydraulic motor; or the second oil circuit 40 supplies oil, the first oil circuit 30 returns oil to drive the hydraulic motor in reverse, and the hydraulic motor 10 is driven in two directions.
  • the cooling module 1 includes a hydraulically controlled directional control valve 2, and the hydraulic directional control valve 2 is a three-position three-way directional control valve. As shown in FIG. 2, it has a first oil inlet port 21 and a second The oil inlet port 22 and the oil outlet port 23, wherein the first oil inlet port 21 communicates with the first oil passage 30, the second oil inlet port 22 communicates with the second oil passage 40, and the oil outlet port 23 connects the oil discharge of the hydraulic motor 10. mouth.
  • the working principle of the three-position three-way hydraulically controlled directional control valve 2 is: if the first oil passage 30 supplies oil and the second oil passage 40 returns oil, the first oil passage The pressure of 30 is greater than the second oil passage 40, and the control of the hydraulically controlled directional control valve 2 causes the second oil inlet port 22 to communicate with the oil outlet port 23, and when the first oil passage 30 returns oil, the second oil passage 40, oil supply, the pressure of the second oil passage 40 is greater than the first oil passage 30, at this time, the hydraulic control valve 2 is controlled by the pressure to make the first oil inlet 21 and the oil outlet 23 communicate.
  • the cooling module 1 further includes a speed regulating valve 3 disposed between the oil outlet 23 and the hydraulic motor unloading port for restricting the flow from the oil outlet 23 to the hydraulic motor housing through the hydraulic motor discharge port. The flow of low temperature hydraulic oil.
  • the working principle of the hydraulic motor system of the self-cooling rotary drilling boring machine of the first embodiment of the present invention will be described below with reference to FIG. 2.
  • the first oil passage 30 is supplied with oil
  • the second oil passage 40 is returned to the oil, and the hydraulic control is performed.
  • the reversing valve 2 is controlled by pressure, and the second inlet port 22 is in communication with the oil outlet port 23.
  • the oil supply in the first oil passage 30 is input from the first working port of the hydraulic motor 10 to drive the hydraulic motor 10, at which time the first working port of the hydraulic motor is used as its oil inlet and the second working port is used as its oil outlet.
  • the oil returning from the second working port of the hydraulic motor 10 will flow to the second oil passage 40.
  • the second oil inlet 22 of the hydraulically controlled directional control valve 2 Since the second oil inlet 22 of the hydraulically controlled directional control valve 2 is in communication with the second oil passage 40, there is a partial oil return. It will flow into the pilot-operated directional control valve 2, at this time, the second oil inlet port 22 of the pilot-operated directional control valve 2 communicates with the oil outlet port 23, so that part of the oil return will flow to the hydraulic motor 10 through the oil outlet port 23.
  • the oil discharge port is injected into the motor casing by the oil discharge port. Since the oil temperature of the oil returning itself is lower, and the oil returning can be dissipated during the circulating flow of the oil circuit, the oil temperature of the oil returning is higher. Low, after entering the motor housing through the oil discharge port, the inside of the motor can be cooled and cooled.
  • a speed regulating valve 3 is disposed between the oil outlet 23 and the hydraulic motor unloading port for limiting the flow of the low temperature hydraulic oil that is input into the hydraulic motor housing through the hydraulic motor unloading port through the oil outlet 23, avoiding the hydraulic motor There is too much internal oil.
  • the oil return in the second oil passage 40 is only one', and some of the oil is returned to the hydraulic motor housing through the hydraulic control valve 2, and the other portion still passes through the second oil passage 40. Return to oil.
  • the hydraulically controlled directional control valve 2 is under pressure control, and its first advance
  • the oil port 21 is in communication with the oil discharge port 23.
  • the oil supply in the second oil passage 40 is input from the second working port of the hydraulic motor 10 to drive the hydraulic motor 10, at which time the second working port of the hydraulic motor serves as its oil inlet port, and the first working port serves as its oil outlet port.
  • the oil returning from the first working port of the hydraulic motor 10 will flow to the first oil passage 30, at which time the first oil passage 30 serves as the return oil passage, due to the first oil inlet 21 of the hydraulically controlled directional control valve 2
  • the first oil inlet port 21 of the pilot valve 2 is in communication with the oil outlet 23, so part of the oil return will flow through the oil outlet 23 to the oil discharge port of the hydraulic motor 10, and is injected into the oil discharge port.
  • the inside of the hydraulic motor is cooled and cooled.
  • the unloading line of the hydraulic motor has been conventional and will not be described in detail.
  • FIG. 3 is a schematic structural view of a hydraulic motor system of a self-cooling rotary drilling rig power head according to a second embodiment of the present invention.
  • the hydraulic motor system of the present embodiment is different from the above-described first embodiment only in the following embodiments.
  • the cooling module 1 comprises a hydraulic pump 4 connectable to a low temperature hydraulic oil source, the output of which is connected to the oil discharge port of the hydraulic motor 10, and the hydraulic pump 4 can pump the low pressure hydraulic pressure to the hydraulic motor 10 unloading port. Oil to cool the inside of the hydraulic motor.
  • the intake and output of the hydraulic motor are conventionally performed through the first oil passage 30 and the second oil passage 40.
  • Other configurations and functions of the hydraulic motor system of the present embodiment are the same as those of the first embodiment described above, and the description thereof will not be repeated.
  • the present invention also provides a rotary drilling rig having a power head having the above-described self-cooling hydraulic motor system of the present invention, capable of automatically cooling the motor, and solving the problems in the prior art, wherein the self-cooling hydraulic motor system
  • the structure and function are exactly the same as those described above, and therefore will not be described again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Earth Drilling (AREA)
  • Drilling And Boring (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种自降温旋挖钻机动力头液压马达系统及旋挖钻机被提供,其中自降温旋挖钻机动力头液压马达系统包括:一个或多个液压马达;降温模块,连接所述液压马达,通过所述液压马达卸油口向所述液压马达壳体内输入低温液压油,对所述液压马达内部进行降温,该自降温旋挖钻机动力头液压马达系统及旋挖钻机能够实现马达系统的自动降温,避免液压马达因连续工作而导致温度过高。

Description

自降温旋挖钻机动力头液压马达系统及旋挖钻机 本申请要求于 2011 年 11 月 29 日提交中国专利局、 申请号为 201110387941.1、 发明名称为"自降温旋挖钻机动力头液压马达系统及旋挖 钻机"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种液压马达系统, 特别涉及一种自降温旋挖钻机动力头 液压马达系统及旋挖钻机。
背景技术
旋挖钻机动力头是旋挖钻机最重要的工作部件, 其带动钻杆, 为钻具 提供扭转动力。 旋挖钻机动力头需要长时间持续性处于工作状态, 特别是 动力头内部的液压马达, 由于长时间不间断的工作, 其内部的油液温度会 升至较高, 影响工作性能。
请参考图 1 , 为现有的一种旋挖钻机液压系统结构示意图, 其包括有 两个液压马达 10, 两马达 10驱动齿轮箱 20, 下方的进油口和出油口用于 液压马达的进油和出油, 液压马达的设置数量可根据实际需要进行调整, 当动力头持续工作时, 液压马达需要长时间不停的运转, 造成马达温度过 高, 影响工作性能, 马达过热可能引发设备故障; 另外, 马达的高温会传 递到动力头的减速机, 使减速机的润滑油温度上升, 严重时可沖破动力头 减速机油壶, 使设备损坏, 引发生产事故。
鉴于上述情况, 本设计人借其多年相关领域的技术经验以及丰富的专 业知识, 不断研发改进, 并经大量的实践验证, 提出了本发明的液压支架 尾梁装置及液压支架的技术方案。
发明内容
本发明的目的在于提供一种自降温旋挖钻机动力头液压马达系统, 具 有自动降低液压马达温度的功能, 避免液压马达因连续工作而导致温度过 高。
本发明的另一目的在于提供一种旋挖钻机, 其动力头具有自降温液压 马达系统, 能够实现马达自动降温, 解决了现有技术中的问题。
为了实现上述目的, 本发明还提供了一种自降温旋挖钻机动力头液压 马达系统, 包括: 一个或多个液压马达; 降温模块, 连接所述液压马达, 通过所述液压马达卸油口向所述液压马达壳体内输入低温液压油, 对所述 液压马达内部进行降温。
上述的自降温旋挖钻机动力头液压马达系统, 其中, 所述液压马达为 双向驱动马达, 所述液压马达具有第一工作口、 第二工作口和卸油口, 所 述第一工作口连接于外部的第一油路, 所述第二工作口连接于外部的第二 油路, 所述第一油路和第二油路用于向所述液压马达供油或由所述液压马 达回油。
上述的自降温旋挖钻机动力头液压马达系统, 其中, 所述降温模块连 接于所述液压马达的第一工作口、 第二工作口及卸油口, 所述降温模块接 收所述液压马达输出的温度较低的出油, 并将部分的所述出油通过所述卸 油口输入到所述液压马达壳体内, 以对所述液压马达内部降温, 所述降温 模块连接于所述第一油路和第二油路。
上述的自降温旋挖钻机动力头液压马达系统, 其中, 所述降温模块包 括一液控换向阀, 其为三位三通换向阀, 所述液控换向阀包括: 第一进油 口, 连通所述第一油路; 第二进油口, 连通所述第二油路; 出油口, 连通 所述卸油口; 其中, 所述第一油路压力大于所述第二油路, 所述液控换向 阀的第二进油口与所述出油口连通;所述第二油路压力大于所述第一油路, 所述液控换向阀的第一进油口与所述出油口连通。
上述的自降温旋挖钻机动力头液压马达系统, 其中, 所述降温模块还 包括一调速阀, 设置于所述出油口和所述液压马达卸油口之间。
上述的自降温旋挖钻机动力头液压马达系统, 其中, 所述液压马达设 有两个, 所述液压马达驱动动力头的齿轮箱。
上述的自降温旋挖钻机动力头液压马达系统, 其中, 所述降温模块包 括液压泵, 所述液压泵的输出端连接于所述液压马达卸油口, 所述液压泵 能够向所述液压马达卸油口泵入低温液压油, 以冷却所述液压马达内部。
上述的自降温旋挖钻机动力头液压马达系统, 其中, 所述液压泵连接 氐温液压油源。
上述的自降温旋挖钻机动力头液压马达系统, 其中, 所述液压马达设 有卸油管路, 用于排出所述液压马达内部的液压油。
为了实现上述目的, 本发明还提供了一种旋挖钻机, 其动力头设有上 述的自降温旋挖钻机动力头液压马达系统。
由上述可知, 本发明的自降温旋挖钻机动力头液压马达系统及旋挖钻 机具有下列优点及特点:
1、本发明的自降温旋挖钻机动力头液压马达系统能够实现自动降低动 力头液压马达的功能, 避免动力头液压马达持续工作导致温度过高, 进而 避免因温度过高而引发的一系列设备问题或设备故障。
2、本发明的自降温旋挖钻机动力头液压马达系统及旋挖钻机在自动降 低液压马达温度的基础上, 进而能够降低传入到动力头减速机的热量, 从 而能够避免减速机润滑油壶沖破的事故。
3、本发明的自降温旋挖钻机动力头液压马达系统及旋挖钻机可满足多 台动力头液压马达同时降温, 利用液压系统本身内部的较低温度的油液对 马达进行冷却, 成本低。
4、 本发明的自降温旋挖钻机动力头液压马达系统及旋挖钻机结构筒 单, 实施方便, 易于推广使用。
附图说明
图 1为现有的一种旋挖钻机液压系统结构示意图;
图 2为本发明第一实施例自降温旋挖钻机动力头液压马达系统结构示 意图;
图 3为本发明第二实施例自降温旋挖钻机动力头液压马达系统结构示 意图。
主要元件标号说明
10 液压马达
20 齿轮箱
30 第一油路
40 第二油路
1 降温模块
2 液控换向阀
21 第一进油口
22 第二进油口
23 出油口 3 调速阀
4 液压泵
具体实施方式
为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附 的实质范围。
第一实施例:
请参考图 2, 为本发明第一实施例自降温旋挖钻机动力头液压马达系 统结构示意图, 如图所示, 本发明自降温旋挖钻机动力头液压马达系统主 要包括: 一个或多个液压马达 10, 液压马达 10连接并驱动齿轮箱 20; 降 温模块 1, 连接上述的一个或多个液压马达 10, 通过液压马达的卸油口向 液压马达壳体内输入低温液压油, 以冷却液压马达。
本实施例中的降温模块 1连接于一个或多个液压马达 10的进油口、出 油口及卸油口, 接收液压马达输出的温度较低的出油, 并将部分的所述出 油通过马达卸油口输入到马达壳体内, 从而对马达内部进行降温, 降温模 块 1连接外部的第一油路 30和第二油路 40。
旋挖钻机动力头的液压马达 10—般设置有多个, 且为双向驱动马达, 本实施例中, 动力头上设置有两个液压马达 10。 双向驱动液压马达 10具 有第一工作口、 第二工作口和卸油口, 对于双向驱动马达而言, 第一工作 口作为进油口, 第二工作口作为出油口; 或者, 第一工作口作为出油口, 第二工作口作为进油口, 外部的第一油路 30连通于液压马达的第一工作 口, 第二油路 40连通于液压马达的第二工作口, 第一油路 30供油, 第二 油路 40 回油, 以驱动液压马达; 或者, 第二油路 40供油, 第一油路 30 回油, 以反向驱动液压马达, 关于双向驱动液压马达 10的具体结构及工作 原理已为常规技术, 不再详细说明。
本实施例中, 降温模块 1包括有一液控换向阀 2, 该液控换向阀 2为 三位三通换向阀, 如图 2所示, 其具有第一进油口 21、 第二进油口 22和 出油口 23 ,其中第一进油口 21连通于第一油路 30,第二进油口 22连通于 第二油路 40, 出油口 23连接液压马达 10的卸油口。 该三位三通液控换向 阀 2的工作原理为: 若第一油路 30供油, 第二油路 40回油, 则第一油路 30的压力大于第二油路 40,该液控换向阀 2受压力的控制会使第二进油口 22与出油口 23连通, 而当第一油路 30回油, 第二油路 40供油, 则第二 油路 40的压力大于第一油路 30, 这时, 液控换向阀 2受压力的控制会使 第一进油口 21与出油口 23连通。 优选的, 降温模块 1还包括有一调速阀 3 ,设置于出油口 23和液压马达卸油口之间,用于限流由出油口 23通过液 压马达卸油口输入到液压马达壳体内的低温液压油的流量。
下面结合图 2来说明本发明第一实施例自降温旋挖钻机动力头液压马 达系统的工作原理, 如图所示, 当第一油路 30供油, 第二油路 40回油, 液控换向阀 2受压力控制, 其第二进油口 22与出油口 23连通。 第一油路 30中的供油从液压马达 10的第一工作口输入, 驱动液压马达 10, 此时液 压马达的第一工作口是作为其进油口, 第二工作口作为其出油口, 而从液 压马达 10第二工作口输出的回油将流至第二油路 40, 由于液控换向阀 2 的第二进油口 22与第二油路 40连通, 则有部分回油将流入到液控换向阀 2之中, 此时, 液控换向阀 2的第二进油口 22与出油口 23连通, 所以部 分回油将通过出油口 23流至液压马达 10的卸油口, 并由卸油口注入到马 达壳体内, 由于回油本身的油温就较低, 再加上回油在油路的循环流动过 程中能够散热, 所以回油的油温较低, 其通过卸油口进入到马达壳体内之 后, 可对马达内部进行冷却和降温。
在出油口 23和液压马达卸油口之间设置调速阀 3 ,用于限流由出油口 23通过液压马达卸油口输入到液压马达壳体内的低温液压油的流量,避免 液压马达内部油液过多, 实际工作中,第二油路 40中的回油只有一'〗、部分 通过液控换向阀 2流回至液压马达壳体内, 另一部分仍然通过第二油路 40 正常回油。
当第一油路 30回油, 第二油路 40供油时, 原理与上述情况类似, 只 是液压油的流向有所区别, 此时, 液控换向阀 2受压力控制, 其第一进油 口 21与出油口 23连通。 第二油路 40中的供油从液压马达 10的第二工作 口输入, 驱动液压马达 10, 此时液压马达的第二工作口是作为其进油口, 第一工作口作为其出油口,而从液压马达 10第一工作口输出的回油将流至 第一油路 30, 此时第一油路 30作为回油油路, 由于液控换向阀 2的第一 进油口 21与第一油路 30连通,则有部分回油将流入到液控换向阀 2之中, 此时, 液控换向阀 2的第一进油口 21与出油口 23连通, 所以部分回油将 通过出油口 23流至液压马达 10的卸油口,并由卸油口注入到马达壳体内, 对液压马达内部进行冷却降温。
对液压马达内部降温完成之后, 该部分液压油将随液压马达卸油口排 出的卸油一起, 经马达卸油管路排出, 关于液压马达的卸油管路已为常规 技术, 不再详细说明。
第二实施例:
请参考图 3, 为本发明第二实施例自降温旋挖钻机动力头液压马达系 统结构示意图, 本实施例的液压马达系统与上述第一实施例的不同之处仅 在于: 本实施例中的降温模块 1包括液压泵 4, 其可连接于一低温液压油 源,该液压泵 4的输出端连接于液压马达 10的卸油口,液压泵 4能够向液 压马达 10卸油口泵入低温液压油, 以冷却液压马达内部。 液压马达的进、 出油通过第一油路 30和第二油路 40常规进行。 本实施例的液压马达系统 的其他结构及功能与上述第一实施例相同, 不再重复说明。
另外, 本发明还提出一种旋挖钻机, 其动力头具有上述的本发明的自 降温液压马达系统, 能够实现马达自动降温, 解决了现有技术中的问题, 其中的自降温液压马达系统的结构和功能与上述记载完全相同, 故不再赘 述。
以上所述仅为本发明示意性的具体实施方式, 并非用以限定本发明的 范围。 任何本领域的技术人员, 在不脱离本发明的构思和原则的前提下所 作出的等同变化与修改, 均应属于本发明保护的范围。

Claims

权 利 要 求
1、一种自降温旋挖钻机动力头液压马达系统, 其特征在于, 所述自降 温旋挖钻机动力头液压马达系统包括:
一个或多个液压马达;
降温模块, 连接所述液压马达, 通过所述液压马达卸油口向所述液压 马达壳体内输入低温液压油, 对所述液压马达内部进行降温。
2、根据权利要求 1所述的自降温旋挖钻机动力头液压马达系统,其特 征在于, 所述液压马达为双向驱动马达, 所述液压马达具有第一工作口、 第二工作口和卸油口, 所述第一工作口连接于外部的第一油路, 所述第二 工作口连接于外部的第二油路, 所述第一油路和第二油路用于向所述液压 马达供油或由所述液压马达回油。
3、根据权利要求 2所述的自降温旋挖钻机动力头液压马达系统,其特 征在于, 所述降温模块连接于所述液压马达的第一工作口、 第二工作口及 卸油口, 所述降温模块接收所述液压马达输出的温度较低的出油, 并将部 分的所述出油通过所述卸油口输入到所述液压马达壳体内, 以对所述液压 马达内部降温, 所述降温模块连接于所述第一油路和第二油路。
4、根据权利要求 3所述的自降温旋挖钻机动力头液压马达系统,其特 征在于, 所述降温模块包括一液控换向阀, 其为三位三通换向阀, 所述液 控换向阀包括:
第一进油口, 连通所述第一油路;
第二进油口, 连通所述第二油路;
出油口, 连通所述 油口;
其中, 所述第一油路压力大于所述第二油路, 所述液控换向阀的第二 进油口与所述出油口连通; 所述第二油路压力大于所述第一油路, 所述液 控换向阀的第一进油口与所述出油口连通。
5、根据权利要求 4所述的自降温旋挖钻机动力头液压马达系统,其特 征在于, 所述降温模块还包括一调速阀, 设置于所述出油口和所述液压马 达 卩油口之间。
6、根据权利要求 2所述的自降温旋挖钻机动力头液压马达系统,其特 征在于, 所述液压马达设有两个, 所述液压马达驱动动力头的齿轮箱。
7、根据权利要求 1所述的自降温旋挖钻机动力头液压马达系统,其特 征在于, 所述降温模块包括液压泵, 所述液压泵的输出端连接于所述液压 马达卸油口, 所述液压泵能够向所述液压马达卸油口泵入低温液压油, 以 冷却所述液压马达内部。
8、根据权利要求 7所述的自降温旋挖钻机动力头液压马达系统,其特 征在于, 所述液压泵连接低温液压油源。
9、根据权利要求 1至 8任一项所述的自降温旋挖钻机动力头液压马达 系统, 其特征在于, 所述液压马达设有卸油管路, 用于排出所述液压马达 内部的液压油。
10、 一种旋挖钻机, 其特征在于, 所述旋挖钻机的动力头设有权利要 求 1至 9任一项所述的自降温旋挖钻机动力头液压马达系统。
PCT/CN2012/073757 2011-11-29 2012-04-11 自降温旋挖钻机动力头液压马达系统及旋挖钻机 WO2013078810A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110387941.1 2011-11-29
CN201110387941.1A CN102418726B (zh) 2011-11-29 2011-11-29 自降温旋挖钻机动力头液压马达系统及旋挖钻机

Publications (1)

Publication Number Publication Date
WO2013078810A1 true WO2013078810A1 (zh) 2013-06-06

Family

ID=45943302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073757 WO2013078810A1 (zh) 2011-11-29 2012-04-11 自降温旋挖钻机动力头液压马达系统及旋挖钻机

Country Status (2)

Country Link
CN (1) CN102418726B (zh)
WO (1) WO2013078810A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106468166A (zh) * 2016-04-06 2017-03-01 徐工集团工程机械有限公司 旋挖钻机节能方法、系统和旋挖钻机
CN110306928A (zh) * 2019-08-01 2019-10-08 重庆渝交机电设备有限公司 一种多功能钻机及硬岩隧道非爆破施工方法
CN114016899A (zh) * 2021-11-08 2022-02-08 四川杰皓方机械设备有限公司 液压式方桩钻头
CN116146705A (zh) * 2022-12-28 2023-05-23 山东临工工程机械有限公司 具有散热功能的液压系统及工程机械车辆

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106678093B (zh) * 2017-03-13 2018-05-01 上海兰石重工机械有限公司 顶驱钻机用温控液压系统
CN107651588A (zh) * 2017-09-29 2018-02-02 江苏威和海洋工程设备有限公司 一种闭式传动系统的液压绞车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196761A (ja) * 1997-01-13 1998-07-31 Kanzaki Kokyukoki Mfg Co Ltd 油圧式無段変速装置の冷却構造
CN2594325Y (zh) * 2002-08-28 2003-12-24 中国人民解放军63983部队 高、低速混合式液压装置
CN101498328A (zh) * 2009-03-13 2009-08-05 南京高精船用设备有限公司 实现自动循环冷却的船用液压站
CN201786819U (zh) * 2010-07-16 2011-04-06 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 液压混合动力油温控制装置
CN201825568U (zh) * 2010-08-11 2011-05-11 沈阳朗全电力设备有限责任公司 斗轮机液压系统闭式回路冲洗冷却支路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494376A (en) * 1981-07-20 1985-01-22 Varco International, Inc. Fluid actuated jack mechanism
AU2003100831A4 (en) * 2003-10-02 2003-11-06 Normax Industries Pty Ltd A Cooling System
CN2883497Y (zh) * 2006-04-12 2007-03-28 中南大学 一种旋挖钻机自动抛土控制装置
US8257068B2 (en) * 2008-06-05 2012-09-04 White Drive Products, Inc. Cooling system for gerotor motor
CN201344294Y (zh) * 2008-12-18 2009-11-11 上海电气液压气动有限公司 一种可调冷却阀
CN201575002U (zh) * 2009-12-30 2010-09-08 宁波欧易液压有限公司 液压马达冲油装置
CN202370945U (zh) * 2011-11-29 2012-08-08 北京市三一重机有限公司 自降温旋挖钻机动力头液压马达系统及旋挖钻机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196761A (ja) * 1997-01-13 1998-07-31 Kanzaki Kokyukoki Mfg Co Ltd 油圧式無段変速装置の冷却構造
CN2594325Y (zh) * 2002-08-28 2003-12-24 中国人民解放军63983部队 高、低速混合式液压装置
CN101498328A (zh) * 2009-03-13 2009-08-05 南京高精船用设备有限公司 实现自动循环冷却的船用液压站
CN201786819U (zh) * 2010-07-16 2011-04-06 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 液压混合动力油温控制装置
CN201825568U (zh) * 2010-08-11 2011-05-11 沈阳朗全电力设备有限责任公司 斗轮机液压系统闭式回路冲洗冷却支路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106468166A (zh) * 2016-04-06 2017-03-01 徐工集团工程机械有限公司 旋挖钻机节能方法、系统和旋挖钻机
CN106468166B (zh) * 2016-04-06 2023-11-03 江苏徐工工程机械研究院有限公司 旋挖钻机节能方法、系统和旋挖钻机
CN110306928A (zh) * 2019-08-01 2019-10-08 重庆渝交机电设备有限公司 一种多功能钻机及硬岩隧道非爆破施工方法
CN114016899A (zh) * 2021-11-08 2022-02-08 四川杰皓方机械设备有限公司 液压式方桩钻头
CN114016899B (zh) * 2021-11-08 2024-06-07 四川杰皓方机械设备有限公司 液压式方桩钻头
CN116146705A (zh) * 2022-12-28 2023-05-23 山东临工工程机械有限公司 具有散热功能的液压系统及工程机械车辆
CN116146705B (zh) * 2022-12-28 2023-10-27 山东临工工程机械有限公司 具有散热功能的液压系统及工程机械车辆

Also Published As

Publication number Publication date
CN102418726B (zh) 2014-12-10
CN102418726A (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2013078810A1 (zh) 自降温旋挖钻机动力头液压马达系统及旋挖钻机
US20230366450A1 (en) Multi-Plunger Pumps and Associated Drive Systems
CN203770264U (zh) 一种驱动水泥泵的液压回路
CN103938672B (zh) 闭式回转回路控制系统
US9228599B2 (en) Hydraulic circuit for construction equipment
CN108825570B (zh) 多功能钻机及其双动力液压系统
CN104314461B (zh) 一种动力头岩心钻机的液压控制系统
CN204828091U (zh) 推焦杆应急系统
CN204920782U (zh) 一种新型高效便捷钻机
CN206988414U (zh) 铰接式自卸车变速箱油冷却节能独立驱动系统
CN204174622U (zh) 一种便携式液压动力旋紧机
CN204800467U (zh) 龙门磨床的液压驱动系统
CN103967735A (zh) 一种液压驱动式吸排泥浆装置
CN102109037A (zh) 一种液压挖掘机分动箱的冷却系统
CN107191582A (zh) 铰接式自卸车变速箱油冷却节能独立驱动系统
KR20130034686A (ko) 지하수 개발용 시추기의 시추로드 회전장치
CN201546612U (zh) 矿用联动全液压钻机
CN203835259U (zh) 一种车载式斜井钻机
CN203742894U (zh) 一种空心轴直驱式多级低速大扭矩液压马达
CN103671311A (zh) 一种开式液压系统马达节能系统
CN204098777U (zh) 煤层气井用小型动力水龙头
CN203847340U (zh) 液压驱动式吸排泥浆装置
CN204024461U (zh) 钻机动力头自动推进装置
CN210003785U (zh) 一种石油钻机传动机构
CN201588533U (zh) 液压式顶部驱动石油钻机电液成套装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854427

Country of ref document: EP

Kind code of ref document: A1