WO2013077345A1 - 有機電界発光素子、並びに該有機電界発光素子を用いた発光装置、表示装置及び照明装置 - Google Patents

有機電界発光素子、並びに該有機電界発光素子を用いた発光装置、表示装置及び照明装置 Download PDF

Info

Publication number
WO2013077345A1
WO2013077345A1 PCT/JP2012/080132 JP2012080132W WO2013077345A1 WO 2013077345 A1 WO2013077345 A1 WO 2013077345A1 JP 2012080132 W JP2012080132 W JP 2012080132W WO 2013077345 A1 WO2013077345 A1 WO 2013077345A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
group
substituent
light emitting
layer
Prior art date
Application number
PCT/JP2012/080132
Other languages
English (en)
French (fr)
Inventor
渡辺 康介
博昭 津山
雄一郎 板井
Original Assignee
ユー・ディー・シー アイルランド リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユー・ディー・シー アイルランド リミテッド filed Critical ユー・ディー・シー アイルランド リミテッド
Priority to US14/351,156 priority Critical patent/US10763440B2/en
Publication of WO2013077345A1 publication Critical patent/WO2013077345A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to an organic electroluminescent element.
  • the present invention also relates to a light emitting device, a display device or a lighting device using the organic electroluminescent element.
  • Organic electroluminescent elements (hereinafter also referred to as “elements” and “organic EL elements”) are actively researched and developed because they can emit light with high luminance when driven at a low voltage.
  • An organic electroluminescent element has an organic layer between a pair of electrodes, and electrons injected from the cathode and holes injected from the anode recombine in the organic layer, and the generated exciton energy is used for light emission.
  • Organic electroluminescence devices can be provided as devices having various emission wavelengths, and are expected to be applied to a wide range of applications because of their high response speed and relatively thin and light weight. Yes.
  • the development of organic electroluminescent elements that emit green phosphorescence have low driving voltage, high luminous efficiency, and high durability is important for applications such as full-color displays. Development research results have been reported.
  • Patent Document 1 describes an organic electroluminescent device using a platinum complex having a specific structure as a light emitting material of a light emitting layer, and describes that a light emitting device having good color purity and device durability can be provided. Has been. Although Patent Document 1 describes fused aromatic carbocyclic compounds and non-complex aromatic nitrogen-containing heterocyclic compounds as examples of the host material of the light emitting layer, only examples using carbazole compounds or beryllium complexes are disclosed. It is disclosed.
  • Patent Document 2 discloses an organic electric field in which a polycyclic condensed ring compound having five or more rings is used as a host material of a light emitting layer, and a platinum complex having a specific structure, which is a red light emitting material, is used as a light emitting material. A light emitting element is described. However, in Patent Document 2, the platinum complex is implemented only with a material having a structure exhibiting red light emission, and the performance of the organic electroluminescent device obtained when the platinum complex having a structure exhibiting green light emission is used is unknown. .
  • Patent Document 3 describes an organic electroluminescent element using a polycyclic condensed ring compound having five or more rings as a host material of a light emitting layer and using an iridium complex having a specific structure as a light emitting material. It is described that an element excellent in luminous efficiency and durability can be provided. However, Patent Document 3 does not describe an example using a platinum complex as a light emitting material. Patent Document 4 describes an organic electroluminescent element using a polycyclic fused ring compound having 5 or more rings as a host material of a light emitting layer and using an iridium complex having a specific structure as a light emitting material. In addition, it is described that an element excellent in luminous efficiency, pixel defect and lifetime can be provided. However, Patent Document 4 describes several types of platinum complexes as light-emitting materials, but does not describe examples using platinum complexes.
  • Patent Documents 1 to 4 As a result of investigations on the organic electroluminescent elements described in Patent Documents 1 to 4, the present inventors remain dissatisfied from the viewpoint of lowering the voltage and increasing the efficiency, and further increase in durability is required. all right.
  • Patent Documents 1 to 4 when a polycyclic fused ring compound having 5 or more rings is used as the host material of the light emitting layer, it is used in combination with a light emitting material of a platinum complex having a structure used for green light emission. The device characteristics when used were not mentioned, and there was no description suggesting them.
  • the present invention aims to solve the above problems. That is, the problem to be solved by the present invention is to provide an organic electroluminescence device having a low driving voltage, high luminous efficiency, and excellent durability.
  • the present inventors diligently studied to solve the above-described problems. As a result, a platinum complex having a specific structure is used as a light-emitting material, and a light-emitting layer using a polycyclic fused-ring compound having a specific structure as a host material. The present inventors have found that an organic electroluminescence device having a low driving voltage, high luminous efficiency, and excellent durability can be provided.
  • a substrate a pair of electrodes disposed on the substrate and including an anode and a cathode, and at least one organic layer including a light emitting layer disposed between the electrodes, wherein the light emitting layer is at least one kind.
  • An organic electroluminescent device comprising: a light emitting material represented by the following general formula (1); and at least one host material represented by the following general formula (H-1): General formula (1) (In the general formula (1), L represents O, NR C0 or CR C1 R C2 , R C0 to R C2 each independently represents a hydrogen atom or a substituent. R C3 to R C6 each independently represents a substituent.
  • N C3 and n C6 each independently represents an integer of 0 to 3, and n C4 and n C5 each independently represent an integer of 0 to 4.
  • n C3 to n C6 are 2 or more, a plurality of R C3 to R C6 may be the same or different and may be linked to each other to form a ring.
  • R H111 ⁇ R H118 each independently represent a hydrogen atom or a substituent
  • X represents O, S
  • one of NR H119, CR H120 R H121, SiR H122 R H123 R H119 to R H123 each independently represents a substituent
  • ring A represents a benzene ring
  • ring B represents a 5-membered or 6-membered ring.
  • the light emitting material represented by the general formula (1) is preferably a light emitting material represented by the following general formula (11).
  • R C1 and R C2 each independently represent a hydrogen atom or a substituent
  • R C3 to R C6 each independently represent a substituent.
  • N C3 and n C6 are integers of 0 to 3)
  • N C4 and n C5 represent an integer of 0 to 4.
  • n C3 to n C6 are 2 or more, a plurality of R C3 to R C6 may be the same or different and are connected to each other. To form a ring.
  • the host material represented by the general formula (H-1) is represented by the following general formula (H-2) or general formula (H-3).
  • General formula (H-2) In the general formula (H-2), R H211 to R H225 each independently represents a hydrogen atom or a substituent, and X H2 represents either O or S.
  • General formula (H-3) In the general formula (H-3), R H311 to R H325 each independently represents a hydrogen atom or a substituent, and X H3 represents either O or S.
  • General formula (H-4) In General Formula (H-4), R H411 to R H425 each independently represents a hydrogen atom or a substituent, and X H4 represents any of O, S, NR H426 , CR H427 R H428 , and SiR H429 R H430.
  • R H426 to R H430 each independently represents a hydrogen atom or a substituent.
  • General formula (H-5) (In the general formula (H-5), R H511 to R H525 each independently represents a hydrogen atom or a substituent, and X H5 represents any of O, S, NR H526 , CR H527 R H528 , and SiR H529 R H530. R H526 to R H530 each independently represents a hydrogen atom or a substituent.)
  • the host material represented by the general formula (H-1) is represented by the general formula (H-2) or the general formula (H-5). It is preferable.
  • the host material represented by the general formula (H-1) is preferably represented by the general formula (H-2).
  • H-2) the general formula (H-2).
  • the organic electroluminescent element of the present invention has a low driving voltage, high luminous efficiency, and excellent durability. Furthermore, the light emitting device, the display device, and the lighting device of the present invention have the advantageous effects of low power consumption and excellent durability.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • a hydrogen atom when used in the description of each general formula without being particularly distinguished, a hydrogen atom includes an isotope (deuterium atom, etc.), and further, an atom constituting a substituent includes the isotope. This means that
  • the organic electroluminescent device of the present invention comprises a substrate, a pair of electrodes disposed on the substrate and including an anode and a cathode, and at least one organic layer including a light emitting layer disposed between the electrodes,
  • the light emitting layer includes at least one kind of light emitting material represented by the general formula (1) and at least one kind of host material represented by the general formula (H-1).
  • the organic electroluminescent element of this invention contains the luminescent material represented by at least 1 type of following General formula (1) in a light emitting layer.
  • General formula (1) (In the general formula (1), L represents O, NR C0 or CR C1 R C2 , R C0 to R C2 each independently represents a hydrogen atom or a substituent. R C3 to R C6 each independently represents a substituent. N C3 and n C6 each independently represents an integer of 0 to 3, and n C4 and n C5 each independently represent an integer of 0 to 4. When n C3 to n C6 are 2 or more, a plurality of R C3 to R C6 may be the same or different and may be linked to each other to form a ring.)
  • L represents O, NR C0 or CR C1 R C2 , and R C0 to R C2 each independently represent a hydrogen atom or a substituent.
  • R C1 and R C2 include the following substituent group A
  • R C0 include the following substituent group A.
  • alkyl group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, isopropyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.
  • alkenyl groups preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl , Allyl, 2-butenyl, 3-pentenyl, etc.
  • alkynyl group preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms such as propargyl , 3-pentynyl, etc.
  • an aryl group preferably having 6 to 30 carbon atoms, more
  • pyridyloxy pyrazyloxy, pyrimidyloxy, quinolyloxy, etc.
  • an acyl group preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 12 carbon atoms.
  • Benzoyl, formyl, pivaloyl, etc. an alkoxycarbonyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms such as methoxycarbonyl, ethoxy Carbonyl, etc.), an aryloxycarbonyl group (preferably It has 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonyl.
  • an alkoxycarbonyl group preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms such as methoxycarbonyl, ethoxy Carbonyl, etc.
  • an aryloxycarbonyl group preferably It has 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonyl.
  • An acyloxy group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, particularly preferably 2-10 carbon atoms, and examples thereof include acetylamino, benzoylamino and the like, and alkoxycarbonylamino groups (preferably having 2-2 carbon atoms).
  • an aryloxycarbonylamino group preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl And sulfonylamino groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino and benzenesulfonylamino).
  • an aryloxycarbonylamino group preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl And sulfonylamino groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino and benzenesulfonylamino).
  • a sulfamoyl group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenyl Sulfamoyl, etc.), carbamoyl groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl, methylcarbamoyl, diethylcarbamoyl, Phenylcarbamoyl etc.), alkylthio group ( Preferably, it has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, ethylthio, etc.), an arylthio group (preferably 6 to 30 carbon atoms).
  • Rufinyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfinyl and benzenesulfinyl. ), A ureido group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), phosphoric acid An amide group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as diethyl phosphoric acid amide and phenyl phosphoric acid amide), a hydroxy group , Mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carb
  • Is for example, a nitrogen atom, oxygen atom, sulfur atom, phosphorus atom, silicon atom, selenium atom, tellurium atom, specifically pyridyl, pyrazinyl, pyrimidyl, pyridazinyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, oxazolyl, thiazolyl, And isoxazolyl, isothiazolyl, quinolyl, furyl, thienyl, selenenyl, tellurenyl, piperidyl, piperidino, morpholino, pyrrolidyl, pyrrolidino, benzoxazolyl, benzoimidazolyl, benzothiazolyl, carbazolyl, azepinyl, silolyl, and the like.
  • An oxy group preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, such as trimethylsilyloxy, triphenylsilyloxy, etc.
  • phosphoryl group for example, A diphenylphosphoryl group, a dimethylphosphoryl group, etc.
  • alkyl group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, isopropyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.
  • alkenyl groups preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl , Allyl, 2-butenyl, 3-pentenyl, etc.
  • alkynyl group preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms such as propargyl , 3-pentynyl, etc.
  • an aryl group preferably having 6 to 30 carbon atoms, more
  • the “carbon number” of a substituent such as an alkyl group includes a case where a substituent such as an alkyl group may be substituted by another substituent, and also includes the carbon number of the other substituent. Used to mean
  • R C0 is preferably a hydrogen atom or the substituent group B among the substituent group B, more preferably an alkyl group or an aryl group, particularly preferably an aryl group, and a phenyl group. Is more particularly preferred.
  • R C0 may further have a substituent, and examples of the further substituent include the substituent represented by the substituent group A, and among them, an alkyl group and an aryl group are preferable.
  • R C1 and R C2 are preferably a hydrogen atom or Substituent Group A among Substituent Group A, more preferably each independently an alkyl group or an aryl group, and further preferably an alkyl group. preferable.
  • R C1 and R C2 may further have a substituent, and examples of the further substituent include a substituent represented by the substituent group A, and among them, an alkyl group is preferable.
  • R C1 and R C2 may be bonded to each other to form a ring.
  • L is preferably NR C0 or CR C1 R C2 from the viewpoint of the stability of the complex and the emission quantum yield, and more preferably CR C1 R C2 . That is, the compound represented by the general formula (1) is more preferably represented by the following general formula (11).
  • Formula (11) is more preferably represented by the following general formula (11).
  • R C1 and R C2 each independently represent a hydrogen atom or a substituent
  • R C3 to R C6 each independently represent a substituent
  • n C3 and n C6 represent an integer of 0 to 3
  • n C4 and n C5 represent an integer of 0 to 4.
  • the plurality of R C3 to R C6 may be the same or different, and may be connected to each other to form a ring.
  • Preferred scope of the general formula R C1 in (11) ⁇ R C6 and n C3 ⁇ n C6 are respectively the same as the preferred ranges of R C1 ⁇ R C6 and n C3 ⁇ n C6 in the formula (1).
  • R C1 and R C2 are more preferably a methyl group, an ethyl group, a propyl group, an isobutyl group, a benzyl group, or a phenyl group, among alkyl groups or aryl groups.
  • L is a dimethylmethylene group, a diethylmethylene group, a diisobutylmethylene group, a dibenzylmethylene group, an ethylmethylmethylene group, a methylpropylmethylene group, an isobutylmethylmethylene group, a diphenylmethylene group, a methylphenylmethylene group, It is more preferably a cyclohexanediyl group, a cyclopentanediyl group, a fluorenediyl group, or a fluoromethylmethylene group, and particularly preferably a dimethylmethylene group or a diphenylmethylene group (the phenyl groups are bonded to each other to form a fluorene ring). It is also preferable).
  • R C3 to R C6 each independently represent a substituent.
  • substituent group A preferably an alkyl group (more preferably an alkyl group having 1 to 3 carbon atoms, and particularly preferably a methyl group or a t-butyl group).
  • Alkenyl group, aryl group phenyl group, 2-methylphenyl group, 2,6-dimethylxylyl group, 3,5-dimethylxylyl group are more preferred
  • amino group alkoxy group, aryloxy group, halogen atom (A fluorine atom is more preferred), a halogenated alkyl group (a trifluoromethyl group or a perfluoroalkyl group is preferred) or a cyano group, more preferably an alkyl group, an aryl group or a cyano group, particularly preferably an aryl group. It is.
  • R C3 to R C6 may further have a substituent, and examples of the further substituent include the substituent represented by the substituent group A, and among these, further substitution on the alkyl group or aryl group
  • the group is preferably an alkyl group, an aryl group, a fluorine atom, a cyano group, an arylthio group or an aryloxy group (the additional substituents may be bonded to each other to form a condensed ring, for example, R C3 to R C6
  • As a further substituent on the amino group an alkyl group or an aryl group is preferable.
  • n C3 to n C6 are 2 or more, the plurality of R C3 to R C6 may be the same or different.
  • a plurality of R C3 to R C6 may be bonded to each other to form a ring, and preferably form a benzene ring or a pyrrole ring, a thiophene ring, a furan ring, a cyclopentadiene ring, or a silole ring.
  • a pyrrole ring, a thiophene ring, a furan ring, a cyclopentadiene ring, or a silole ring is formed, it is preferably further condensed with a benzene ring.
  • n C3 and n C6 represent an integer of 0 to 3, preferably 0 to 2, and more preferably 0.
  • n C4 and n C5 represent an integer of 0 to 4, and preferably 0 to 2.
  • the general formula (11) can be represented by the following general formula (12).
  • a preferable range of the general formula (11) will be described based on the following general formula (12).
  • R C1 and R C2 are the same meaning as R C1 and R C2 in formula (1)
  • R 11 ⁇ R 13 each independently (3-n C3) hydrogen atoms or n C3 represents R C3
  • R 14 to R 17 each independently represent (4-n C4 ) hydrogen atoms or n C4 R C4
  • R 18 to R 21 each independently represent (4- n C5 ) hydrogen atoms or n C5 R C5
  • R 22 to R 24 each independently represent (3-n C6 ) hydrogen atoms or n C6 R C6 .
  • R 11 to R 24 are preferably each independently a hydrogen atom, an alkyl group, an aryl group, a halogen atom, a halogenated alkyl group, or a cyano group.
  • the preferred range of each substituent represented by R 11 to R 24 in the general formula (12) is the same as the preferred range of each substituent represented by R C3 to R C6 in the general formula (11).
  • the compound represented by the general formula (1) is particularly preferably represented by the following general formula (13).
  • R C1 and R C2 are the same meaning as R C1 and R C2 in formula (1)
  • R 22, R 25, R 26, R 29, R 30 and R 33 are each independently Represents a hydrogen atom or a substituent.
  • the preferred ranges of R 22 and R 33 are the same as the preferred ranges of R 12 and R 23 in the general formula (12), respectively, and more preferably a hydrogen atom.
  • the preferred ranges of R 25 and R 30 are the same as the preferred ranges of R 15 and R 20 in the general formula (12), respectively, more preferably a hydrogen atom or a phenyl group.
  • the preferred ranges of R 26 and R 29 are the same as the preferred ranges of R 16 and R 19 in the general formula (12), respectively, and more preferably a hydrogen atom.
  • the compound represented by the general formula (1) is, for example, Journal of Organic Chemistry 53,786, (1988), G.M. R. Newkome et al. ), Page 789, method described in left column 53 to right column 7, line 790, method described in left column 18 to 38, method 790, method described in right column 19 to 30 and The combination, Chemische Berichte 113, 2749 (1980), H.C. Lexy et al.), Page 2752, lines 26 to 35, and the like.
  • a ligand or a dissociated product thereof and a metal compound are mixed with a solvent (for example, a halogen solvent, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, a nitrile solvent, an amide solvent, a sulfone solvent,
  • a solvent for example, a halogen solvent, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, a nitrile solvent, an amide solvent, a sulfone solvent
  • a base inorganic and organic bases such as sodium methoxide, t-butoxypotassium, triethylamine, potassium carbonate, etc.
  • a base inorganic and organic bases such as sodium methoxide, t-butoxypotassium, triethylamine, potassium carbonate, etc.
  • the content of the compound represented by the general formula (1) in the light emitting layer of the organic electroluminescent device of the present invention is preferably 1 to 30% by mass in the light emitting layer, and more preferably 3 to 25% by mass. Preferably, the content is 5 to 20% by mass.
  • the organic electroluminescent element of the present invention contains at least one host material represented by the following general formula (H-1) in the light emitting layer.
  • R H111 ⁇ R H118 each independently represent a hydrogen atom or a substituent
  • X represents O, S
  • one of NR H119, CR H120 R H121, SiR H122 R H123 R H119 to R H123 each independently represents a substituent
  • ring A represents a benzene ring
  • ring B represents a 5-membered or 6-membered ring.
  • R H111 ⁇ R H118 each independently represent a hydrogen atom, an alkyl group, an aryl group, a silyl group, a fluorine atom, preferably a cyano group, or a trifluoromethyl group, further having a carbon number of 1 if these groups are possible It may be substituted with at least one of ⁇ 6 alkyl groups and phenyl groups. More preferably R H111 ⁇ R H118 is hydrogen atom or an aryl group, and particularly preferably a hydrogen atom.
  • X represents any one of O, S, NR H119 , CR H120 R H121 , and SiR H122 R H123 , and R H119 to R H123 each independently represent a substituent.
  • R H119 include the substituents of the substituent group B in the description of the general formula (1), and among them, a benzene ring, a pyridine ring, a triazine ring, or a pyrimidine ring group.
  • These rings are preferably at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom, or a triazine ring or a pyrimidine ring. It may be substituted by a group.
  • the substituent represented by R H119 is more preferably a benzene ring group (meaning a substituted or unsubstituted phenyl group).
  • R H120 to R H123 examples include the substituents of the substituent group A in the description of the general formula (1), and among them, for example, an alkyl group and an aryl group are preferable.
  • X is more preferably NR H119 .
  • ring B represents a 5-membered or 6-membered ring, and represents a 5-membered or 6-membered ring that can be condensed with an adjacent ring.
  • the 5-membered or 6-membered ring represented by ring B is not particularly limited, but is preferably a 5-membered ring, and is a 5-membered ring that is a hydrocarbon ring or a 5-membered ring containing one heteroatom (the heterocycle).
  • the atom an oxygen atom, a sulfur atom, a nitrogen atom, or a silicon atom is preferable.
  • ring A represents a benzene ring and may further have a substituent.
  • substituents of the substituent group A in the description of the general formula (1) and among them, for example, an alkyl group and an aryl group include preferable.
  • Ring A is preferably an unsubstituted benzene ring.
  • connection mode of ring A and ring B is not particularly limited except that a condensed ring is formed.
  • the host material represented by general formula (H-1) is as follows: It is preferably represented by any one of general formula (H-2), general formula (H-3), general formula (H-4), and general formula (H-5).
  • R H211 to R H225 each independently represents a hydrogen atom or a substituent
  • X H2 represents either O or S.
  • a preferred range of R H211 ⁇ R H214 and R H222 ⁇ R H225 are the same as the preferred ranges of R H111 ⁇ R H118 in the general formula (H-1).
  • a preferred range for R H220 and R H221 is a hydrogen atom or a range of substituents that the ring A in the general formula (H-1) may have, more preferably a hydrogen atom.
  • R H215 ⁇ R H219 represents a substituent
  • the general formula (H-1) in the can be exemplified substituent which may have the R H119, a phenyl group among them, triazine ring Or a pyrimidine ring group is preferable, a phenyl group or a pyrimidine ring group is more preferable, and a phenyl group is particularly preferable.
  • R H215 to R H219 may have a further substituent, and as the substituent, an aryl group (which may further have a substituent) is preferable, and a phenyl group, a biphenyl group, a p-terphenyl group M-terphenyl group is more preferable, phenyl group or p-terphenyl group is particularly preferable, and p-terphenyl group is particularly preferable.
  • the substituent is preferably linked at the meta position to the benzene ring having R H215 to R H219 .
  • the number of substituents is preferably 1 to 2, and more preferably 1.
  • R H215 to R H219 R H218 or R H217 is preferably a substituent, and R H218 is more preferably a substituent.
  • R H311 to R H325 each independently represent a hydrogen atom or a substituent, and X H3 represents either O or S.
  • a preferred range of R H311 ⁇ R H314 and R H322 ⁇ R H325 are the same as the preferred ranges of R H111 ⁇ R H118 in the general formula (H-1).
  • a preferred range for R H320 and R H321 is a hydrogen atom or a range of substituents that the ring A in the general formula (H-1) may have, more preferably a hydrogen atom.
  • R H315 ⁇ R H319 represents a substituent
  • the general formula (H-1) in the can be exemplified substituent which may have the R H119, a phenyl group among them, triazine ring
  • a pyrimidine ring group is preferable
  • a phenyl group or a triazine ring group is more preferable
  • a phenyl group is particularly preferable.
  • R H315 to R H319 may have a further substituent, and the substituent is preferably an aryl group (which may further have a substituent), and includes a phenyl group, a biphenyl group, and a p-terphenyl group.
  • M-terphenyl group is more preferable, phenyl group or p-terphenyl group is particularly preferable, and p-terphenyl group is particularly preferable.
  • R H315 to R H319 have a further substituent, the substituent is preferably linked at the meta position to the benzene ring having R H315 to R H319 .
  • the number of substituents is preferably 1 to 2, more preferably 1.
  • R H315 to R H319 R H318 or R H317 is preferably a substituent, and R H318 is more preferably a substituent.
  • R H411 to R H425 each independently represent a hydrogen atom or a substituent
  • X H4 represents any of O, S, NR H426 , CR H427 R H428 , and SiR H429 R H430.
  • R H426 to R H430 each independently represents a hydrogen atom or a substituent.
  • a preferred range of R H411 ⁇ R H414 and R H422 ⁇ R H425 are the same as the preferred ranges of R H111 ⁇ R H118 in the general formula (H-1).
  • a preferred range for R H420 and R H421 is a hydrogen atom or a range of substituents that the ring A in the general formula (H-1) may have, more preferably a hydrogen atom.
  • the substituent in the case where R H415 ⁇ R H419 represents a substituent the general formula (H-1) in the can be exemplified substituent which may have the R H119, a phenyl group among them, triazine ring Or a pyrimidine ring group is preferable, a phenyl group or a pyrimidine ring group is more preferable, and a phenyl group is particularly preferable.
  • R H415 to R H419 may have a further substituent, and as the substituent, an aryl group (which may further have a substituent) is preferable, and a biphenyl group, a p-terphenyl group, m- A terphenyl group is more preferred, a phenyl group or a p-terphenyl group is particularly preferred, and a p-terphenyl group is more particularly preferred.
  • the substituent is preferably linked at the meta position to the benzene ring having R H415 to R H419 .
  • the number of substituents is preferably 0 to 2, and more preferably 0. Note that when R H415 to R H419 have a substituent, the alkyl group and the aryl group are preferably substituents.
  • X H4 represents any of O, S, NR H426 , CR H427 R H428 , and SiR H429 R H430 , and R H426 to R H430 each independently represent a hydrogen atom or a substituent.
  • R H426 to R H430 each independently represents a hydrogen atom or a substituent, and preferably represents a substituent.
  • Examples of the substituent represented by R H426 include the substituents of the substituent group B in the description of the general formula (1), and among them, a benzene ring, a pyridine ring, a triazine ring, or a pyrimidine ring group.
  • These rings are preferably at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom, or a triazine ring and a pyrimidine ring.
  • it may be substituted with a carbazole ring (which may have a further substituent).
  • the substituent represented by R H426 is more preferably a benzene ring group (meaning a substituted or unsubstituted phenyl group) or a triazine ring group, and particularly preferably a benzene ring group.
  • the benzene ring group represented by R H426 may have a further substituent, and the preferred range of the type and number of the substituent is represented by R H215 to R H219 in the description of the general formula (H-2). This is the same as the preferred range of the type and number of substituents.
  • the triazine ring group represented by R H426 may have a further substituent, and the triazine ring group may have an aryl group or a carbazole ring (the carbazole ring may have a further substituent).
  • a carbazole ring group having a phenyl group or a substituent (the dibenzylamino group is preferable as the substituent, and it is more preferable that the dibenzylamino group is bonded to the carbazole ring to form a condensed ring). More preferred.
  • the number of further substituents of the triazine ring group is preferably 1 or 2, and more preferably 2, with respect to the triazine ring group.
  • the preferred range of the substituent represented by R H427 to R H430 is the same as the preferred range of the substituent represented by R H120 to R H123 in the description of the general formula (H-1).
  • R H511 to R H525 each independently represent a hydrogen atom or a substituent
  • X H5 represents any of O, S, NR H526 , CR H527 R H528 , and SiR H529 R H530.
  • R H526 to R H530 each independently represents a hydrogen atom or a substituent.
  • a preferred range of R H511 ⁇ R H514 and R H522 ⁇ R H525 are the same as the preferred ranges of R H111 ⁇ R H118 in the general formula (H-1).
  • a preferred range for R H520 and R H521 is a hydrogen atom or a range of substituents that ring A in formula (H-1) may have, more preferably a hydrogen atom.
  • the substituent in the case where R H515 ⁇ R H519 represents a substituent the general formula (H-1) in the can be exemplified substituent which may have the R H119, a phenyl group among them, triazine ring Or a pyrimidine ring group is preferable, a phenyl group or a pyrimidine ring group is more preferable, and a phenyl group is particularly preferable.
  • R H515 ⁇ R H519 may have an additional substituent, an aryl group (which may have a substituent) is preferred as the substituent, a biphenyl group, p- terphenyl group, m- A terphenyl group is more preferred, a phenyl group or a p-terphenyl group is particularly preferred, and a p-terphenyl group is more particularly preferred.
  • R H515 ⁇ R H519 have further substituents, the substituent is preferably linked in the meta position with respect to the benzene ring having R H515 ⁇ R H519.
  • the number of substituents is 0 to 2, more preferably zero.
  • R H515 ⁇ R H519 has a substituent, it is preferable alkyl group, an aryl group that is a substituent.
  • X H5 represents any one of O, S, NR H526 , CR H527 R H528 , and SiR H529 R H530 and is preferably NR H526 .
  • R H526 to R H530 each independently represents a hydrogen atom or a substituent, and preferably represents a substituent.
  • Examples of the substituent represented by R H526 include the substituents of the substituent group B in the description of the general formula (1), and among them, a benzene ring, a pyridine ring, a triazine ring, or a pyrimidine ring group.
  • These rings are preferably at least one group selected from a methyl group, an isobutyl group, a t-butyl group, a neopentyl group, a phenyl group, a naphthyl group, a cyano group, and a fluorine atom, or a triazine ring and a pyrimidine ring.
  • it may be substituted with a carbazole ring (which may have a further substituent).
  • the substituent represented by R H526 is more preferably a benzene ring group (meaning a substituted or unsubstituted phenyl group) or a triazine ring group, and particularly preferably a benzene ring group.
  • the benzene ring group represented by R H526 may have a further substituent, and the preferred range of the type and number of the substituent is represented by R H215 to R H219 in the description of the general formula (H-2). This is the same as the preferred range of the type and number of substituents.
  • the triazine ring group represented by R H526 may have a further substituent, and the triazine ring group may have an aryl group or a carbazole ring (the carbazole ring may have a further substituent).
  • a carbazole ring group having a phenyl group or a substituent (the dibenzylamino group is preferable as the substituent, and it is more preferable that the dibenzylamino group is bonded to the carbazole ring to form a condensed ring). More preferred.
  • the number of further substituents of the triazine ring group is preferably 1 or 2, and more preferably 2, with respect to the triazine ring group.
  • the preferred range of the substituent represented by R H527 to R H530 is the same as the preferred range of the substituent represented by R H120 to R H123 in the description of the general formula (H-1).
  • the ease of synthesis is that the host material represented by the general formula (H-1) is represented by the general formula (H-2) or the general formula (H-5). In view of the above, it is more preferably represented by the general formula (H-2).
  • the host material represented by the general formula (H-1) is represented by the general formula (H-2), the general formula (H-3), or the general formula (H-4). In view of luminous efficiency and durability, it is more preferably represented by general formula (H-2) and general formula (H-4).
  • Examples of the compound represented by the general formula (H-1) include compounds described in [0279] to [0303] of JP2011-91355A, compounds described in WO2011 / 057701, and WO2009 / The compound described in 148062, the compound described in WO2011 / 010844, the compound described in WO2010 / 131855, and the like can also be used.
  • the compound represented by the general formula (H-1) can be easily produced by a known method. For example, referring to synthesis examples shown in Tetrahedron, 47, 7739-7750 (1991), Synlett, 42-48 (2005), synthesis examples described in WO2010 / 131855 and JP2011-91355A, etc. Can be manufactured.
  • the compound represented by the general formula (H-1) is preferably contained in an amount of 10 to 99% by mass, more preferably 30 to 97% by mass, and more preferably 50 to 95% by mass with respect to the total mass of the light emitting layer. It is more preferably contained, and particularly preferably 60 to 95% by mass. Note that, when the purity of the compound represented by the general formula (H-1) is low, impurities work as a charge transport trap or promote deterioration of the device. Therefore, in the general formula (H-1), The higher the purity of the represented compound, the better.
  • the purity can be measured, for example, by high performance liquid chromatography (HPLC), and the area ratio of the compound represented by the general formula (H-1) when detected with a light absorption intensity of 254 nm is preferably 95.0% or more. More preferably, it is 97.0% or more, particularly preferably 99.0% or more, and most preferably 99.9% or more.
  • HPLC high performance liquid chromatography
  • Examples of a method for increasing the purity of the compound represented by the general formula (H-1) include sublimation purification.
  • the organic electroluminescent element of the present invention comprises a substrate, a pair of electrodes disposed on the substrate and including an anode and a cathode, and at least one organic layer including a light emitting layer disposed between the electrodes,
  • the light emitting layer includes at least one kind of light emitting material represented by the general formula (1) and at least one kind of host material represented by the general formula (H-1).
  • the structure of the organic electroluminescent element of the present invention is not particularly limited. In FIG. 1, an example of a structure of the organic electroluminescent element of this invention is shown. 1 has an organic layer on a substrate 2 between a pair of electrodes (anode 3 and cathode 9).
  • the element configuration of the organic electroluminescent element, the substrate, the cathode and the anode are described in detail in, for example, Japanese Patent Application Laid-Open No. 2008-270736, and the matters described therein can be applied to the present invention.
  • the preferable aspect of the organic electroluminescent element of this invention is demonstrated in detail in order of a board
  • the organic electroluminescent element of the present invention has a substrate.
  • the substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic layer.
  • the organic electroluminescent element of the present invention is disposed on the substrate and has a pair of electrodes including an anode and a cathode.
  • a pair of electrodes including an anode and a cathode.
  • at least one of the pair of electrodes, the anode and the cathode is preferably transparent or translucent.
  • the anode usually has a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light emitting element, It can select suitably from well-known electrode materials.
  • the anode is usually provided as a transparent anode.
  • the cathode usually has a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., and it is known depending on the use and purpose of the light-emitting element.
  • the electrode material can be selected as appropriate.
  • the organic electroluminescent element of the present invention has at least one organic layer disposed between the electrodes and including a light emitting layer, and the light emitting layer is at least one kind of the light emitting material represented by the general formula (1) and It contains at least one kind of host material represented by the general formula (H-1).
  • the organic layer is formed on the entire surface or one surface of the transparent electrode or the semitransparent electrode.
  • the organic layer includes a light emitting layer. Furthermore, it is preferable that the organic layer includes a charge transport layer.
  • the charge transport layer refers to a layer in which charge transfer occurs when a voltage is applied to the organic electroluminescent element. Specific examples include a hole injection layer, a hole transport layer, an electron block layer, a light emitting layer, a hole block layer, an electron transport layer, and an electron injection layer. If the charge transport layer is a hole injection layer, a hole transport layer, an electron block layer, or a light emitting layer, it is possible to manufacture an organic electroluminescent element with low cost and high efficiency.
  • the compound represented by the general formula (1) and the compound represented by the general formula (H-1) are disposed between the electrodes in the organic layer disposed between the electrodes of the organic electroluminescent element. It is contained in the light emitting layer in the organic layer.
  • the compound represented by the general formula (1) and the compound represented by the general formula (H-1) may be contained in other organic layers of the organic electroluminescence device of the present invention.
  • a hole injection layer, a hole transport layer, An electron transport layer, an electron injection layer, an exciton block layer, a charge block layer (a hole block layer, an electron block layer, etc.) can be mentioned, preferably an exciton block layer, a charge block layer, an electron transport layer, One of the electron injection layers, more preferably an exciton block layer, a charge block layer, or an electron transport layer.
  • each organic layer is formed by a dry film forming method such as a vapor deposition method or a sputtering method, a wet film forming method such as a transfer method, a printing method, a spin coating method, or a bar coating method (solution coating method). Any of these can be suitably formed.
  • the light emitting layer disposed between the pair of electrodes is preferably formed by a vacuum deposition process or a wet process, and the light emitting layer includes at least one layer of the light emitting layer. More preferably, it is formed by vapor deposition of a composition containing the compound represented by the general formula (1).
  • the light emitting layer receives holes from the anode, hole injection layer or hole transport layer and receives electrons from the cathode, electron injection layer or electron transport layer when an electric field is applied, and provides a field for recombination of holes and electrons. And a layer having a function of emitting light.
  • the light emitting layer in the present invention is not necessarily limited to light emission by such a mechanism.
  • the light emitting layer in the organic electroluminescent device of the present invention has a configuration in which a mixed layer of a host material and a light emitting material is used.
  • the kind of the light emitting material may be one kind or two kinds or more. Among them, in the organic electroluminescent element of the present invention, it is preferable that the light emitting layer contains only the light emitting material represented by the general formula (1) as the light emitting material.
  • the host material is preferably a charge transport material.
  • the host material may be one kind or two or more kinds, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed.
  • the light emitting layer contains only a host material represented by the general formula (H-1) as a host material. Furthermore, the light emitting layer may include a material that does not have charge transporting properties and does not emit light.
  • the light emitting layer may be a single layer or a multilayer of two or more layers, and each layer may contain the same light emitting material or host material, or each layer may contain a different material. When there are a plurality of light emitting layers, each of the light emitting layers may emit light with different emission colors.
  • the thickness of the light emitting layer is not particularly limited, but is usually preferably 2 nm to 500 nm, and more preferably 3 nm to 200 nm, and more preferably 5 nm to 100 nm from the viewpoint of external quantum efficiency. More preferably.
  • the compound represented by the general formula (1) is a light emitting material, but even in that case, the light emitting material different from the compound represented by the general formula (1) is used. Can be used in combination.
  • Another light-emitting material that can be used in the present invention may be a phosphorescent light-emitting material, a fluorescent light-emitting material, or the like.
  • the light emitting layer in the present invention can contain two or more kinds of light emitting materials in order to improve color purity or broaden the light emission wavelength region.
  • Examples of the fluorescent light-emitting material and the phosphorescent light-emitting material that can be used in the organic electroluminescent element of the present invention include, for example, paragraphs [0100] to [0164] of JP-A-2008-270736 and JP-A-2007-266458. Paragraph numbers [0088] to [0090] are described in detail, and the matters described in these publications can be applied to the present invention.
  • Examples of phosphorescent materials that can be used in the present invention include US Pat. No. 6,303,238, US Pat. No. 6,097,147, WO 00/57676, WO 00/70655, WO 01/08230, WO 01/39234.
  • more preferable light-emitting materials include Ir complex, Pt complex, Cu complex, Re complex, W complex, Rh complex, Ru complex, Pd complex, Os complex, Eu complex, Tb complex, Gd complex, Examples thereof include phosphorescent metal complex compounds such as Dy complexes and Ce complexes.
  • Ir complex, Pt complex, or a Re complex among which an Ir complex or a Pt complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond. Or Re complexes are preferred.
  • an Ir complex and a Pt complex are particularly preferable, and a Pt complex is most preferable.
  • the type of fluorescent light-emitting material that can be used in the present invention is not particularly limited. , Perinone, oxadiazole, aldazine, pyralidine, cyclopentadiene, bisstyrylanthracene, quinacridone, pyrrolopyridine, thiadiazolopyridine, cyclopentadiene, styrylamine, condensed polycyclic aromatic compounds (anthracene, phenanthroline, pyrene, perylene, rubrene) , Or pentacene), metal complexes of 8-quinolinol, various metal complexes represented by pyromethene complexes and rare earth complexes, polythiophene, polyphenylene, polyphenylene Polymeric compounds such as vinylene, organic silane, and may be derivatives of these.
  • a compound described in [0082] of JP 2010-111620 A can also be used as a light emitting material.
  • the light emitting layer in the organic electroluminescent element of the present invention has a configuration in which a mixed layer of a host material and a light emitting material is used.
  • the host material represented by the general formula (H-1) that can be used in the light emitting layer in the organic electroluminescence device of the present invention is a hole transporting host material or an electron transporting host material.
  • the host material is preferably a charge transport material.
  • the host material may be one kind or two or more kinds, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed.
  • the light emitting layer may contain a material that does not have charge transporting properties and does not emit light. Further, the light emitting layer may be a single layer or a multilayer of two or more layers, and each layer may contain the same light emitting material or host material, or each layer may contain a different material. When there are a plurality of light emitting layers, each of the light emitting layers may emit light with different emission colors.
  • the host material is a compound mainly responsible for charge injection and transport in the light emitting layer, and itself is a compound that does not substantially emit light.
  • substantially does not emit light means that the amount of light emitted from the compound that does not substantially emit light is preferably 5% or less, more preferably 3% or less of the total amount of light emitted from the entire device. It means that it is preferably 1% or less.
  • the organic electroluminescent element of the present invention contains a host material represented by the general formula (H-1). However, another host material may be included.
  • Examples of another host material that can be used in the present invention include the following compounds. Pyrrole, indole, carbazole, azaindole, azacarbazole, triazole, oxazole, oxadiazole, pyrazole, imidazole, thiophene, benzothiophene, dibenzothiophene, furan, benzofuran, dibenzofuran, polyarylalkane, pyrazoline, pyrazolone, phenylenediamine, aryl Amines, amino-substituted chalcones, styrylanthracenes, fluorenones, hydrazones, stilbenes, silazanes, aromatic tertiary amine compounds, styrylamine compounds, porphyrin compounds, condensed aromatic hydrocarbon compounds (fluor
  • the T 1 energy in the film state of the compound represented by the general formula (H-1) is preferably 1.77 eV (40 kcal / mol) or more and 3.51 eV (81 kcal / mol) or less, and 2.39 eV. It is more preferable that it is (55 kcal / mol) or more and 3.25 eV (75 kcal / mol) or less.
  • the triplet lowest excitation energy (T 1 energy) in the film state of the host material represented by the general formula (H-1) is T 1 of the light emitting material represented by the general formula (1). Higher than energy is preferable in terms of color purity, luminous efficiency, and driving durability.
  • T 1 of the host material is 0.1 eV or more larger than S 1 of the light emitting material, more preferably 0.2 eV or more, and further preferably 0.3 eV or more.
  • the host material for T 1 of the a film state of the host material will be quench emission and T 1 is smaller than the light emitting material large T 1 is obtained from the luminescent material. Even if the T 1 of the host material is larger than the light emitting material, if the difference in T 1 between the two is small, the reverse energy transfer from the light emitting material to the host material occurs in part, resulting in a decrease in efficiency, color purity, and durability. Cause deterioration of sex.
  • the T 1 energy is 2.39 eV (55 kcal / mol) or more and 2.82 eV (65 kcal / mol) from the viewpoint of emission efficiency. mol) or less.
  • the T 1 energy can be obtained from the short wavelength end of a phosphorescence emission spectrum of a thin film of material.
  • a material is deposited on a cleaned quartz glass substrate to a thickness of about 50 nm by vacuum deposition, and the phosphorescence emission spectrum of the thin film is measured at F-7000 Hitachi Spectrofluorimeter (Hitachi High Technologies) under liquid nitrogen temperature. Use to measure.
  • the T 1 energy can be obtained by converting the rising wavelength on the short wavelength side of the obtained emission spectrum into energy units.
  • the organic electroluminescent element of the present invention may have other layers other than the light emitting layer.
  • Other organic layers other than the light emitting layer that the organic layer may have include a hole injection layer (hereinafter also referred to as a charge generation layer), a hole transport layer, a block layer (a hole block layer, an exciton). A block layer), an electron transport layer, and the like. Examples of the specific layer configuration include the following, but the present invention is not limited to these configurations.
  • the organic electroluminescent element of the present invention preferably includes (A) at least one organic layer preferably disposed between the anode and the light emitting layer.
  • Examples of the organic layer (A) preferably disposed between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer from the anode side.
  • the organic electroluminescent element of the present invention preferably includes (B) at least one organic layer preferably disposed between the cathode and the light emitting layer.
  • Examples of the organic layer (B) preferably disposed between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer from the cathode side.
  • an example of a preferred embodiment of the organic electroluminescent device of the present invention is the embodiment described in FIG. 1, and as the organic layer, a hole injection layer 4, a hole transport layer 5, from the anode 3 side, In this embodiment, the light emitting layer 6, the hole blocking layer 7, and the electron transport layer 8 are laminated in this order.
  • the organic layer a hole injection layer 4, a hole transport layer 5, from the anode 3 side
  • the light emitting layer 6, the hole blocking layer 7, and the electron transport layer 8 are laminated in this order.
  • other layers other than the light emitting layer which may be included in the organic electroluminescent element of the present invention will be described.
  • A-1 Hole injection layer, hole transport layer
  • the hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side.
  • the hole transport material used for the hole transport layer is preferably a triarylamine compound represented by the following general formula (HT-1).
  • HT-1 a triarylamine compound represented by the following general formula (HT-1).
  • R A1 to R A15 each independently represents a hydrogen atom or a substituent.
  • Examples of the substituent represented by R A1 to R A15 include the substituents exemplified in Substituent Group A. Adjacent substituents may be bonded to each other via a single bond or a linking group to form a ring. From the viewpoint of heat resistance and durability, at least one of R A1 to R A5 and at least one of R A6 to R A10 are preferably aryl groups. Specific examples of the compound represented by the general formula (HT-1) are shown below, but the present invention is not limited thereto.
  • the hole injection layer preferably contains an electron accepting dopant.
  • an electron-accepting dopant may be any organic material or inorganic material as long as it can extract electrons from the doped material and generate radical cations.
  • TCNQ compounds such as TCNQ
  • F 4 -TCNQ tetracyanoquinodimethane
  • hexaazatriphenylene compounds such as hexacyanohexaazatriphenylene (HAT-CN)
  • molybdenum oxide molybdenum oxide.
  • the electron-accepting dopant in the hole injection layer is preferably contained in an amount of 0.01 to 50% by mass, preferably 0.1 to 40% by mass with respect to the total mass of the compound forming the hole injection layer.
  • the content is more preferably 0.2 to 30% by mass.
  • the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side.
  • an electron blocking layer can be provided as an organic layer adjacent to the light emitting layer on the anode side.
  • the organic compound constituting the electron blocking layer for example, those mentioned as the hole transport material described above can be applied.
  • the thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 3 nm to 100 nm, and even more preferably 5 nm to 50 nm.
  • the electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • Materials used for the electron blocking layer is a color purity higher S 1 energy than that of the light emitting material, light emission efficiency, in view of driving durability. It is preferable S 1 is greater than 0.1eV than S 1 of the light-emitting material in the film state of the material used for the electron blocking layer, it is more preferably at least 0.2eV higher, and further preferably more than 0.3eV large.
  • the electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
  • the electron injection material and the electron transport material used for these layers may be a low molecular compound or a high molecular compound.
  • Electron transport materials include pyridine derivatives, quinoline derivatives, pyrimidine derivatives, pyrazine derivatives, phthalazine derivatives, phenanthroline derivatives, triazine derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, benzimidazole derivatives, imidazopyridine derivatives, fluorenone.
  • anthraquinodimethane derivatives anthrone derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, aromatic ring tetracarboxylic anhydrides such as naphthalene and perylene, phthalocyanine derivatives , 8-quinolinol derivative metal complexes, metal phthalocyanines, benzoxazole and benzothiazole ligands It is preferable to select from various metal complexes typified by organic compounds, organosilane derivatives typified by siloles, condensed ring hydrocarbon compounds such as naphthalene, anthracene, phenanthrene, triphenylene, pyrene, etc., pyridine derivatives, benzimidazole derivatives, imidazo It is more preferably any of a pyridine
  • the thicknesses of the electron injection layer and the electron transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage.
  • the thickness of the electron transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm.
  • the thickness of the electron injection layer is preferably from 0.1 nm to 200 nm, more preferably from 0.2 nm to 100 nm, and even more preferably from 0.5 nm to 50 nm.
  • the electron injection layer and the electron transport layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the electron injection layer preferably contains an electron donating dopant.
  • an electron donating dopant may be any organic material or inorganic material as long as it can give electrons to the doped material and generate radical anions.
  • TTF tetrathiafulvalene
  • TTT Dithiaimidazole compounds
  • TTT tetrathianaphthacene
  • bis- [1,3-diethyl-2-methyl-1,2-dihydrobenzimidazolyl] lithium, cesium and the like.
  • the electron donating dopant in the electron injection layer is preferably contained in an amount of 0.01% by mass to 50% by mass, and 0.1% by mass to 40% by mass with respect to the total mass of the compound forming the electron injection layer. More preferably, the content is 0.5 to 30% by mass.
  • the hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side.
  • a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
  • the S 1 energy in the film state of the organic compound constituting the hole blocking layer is higher than the S 1 energy of the light emitting material in order to prevent energy transfer of excitons generated in the light emitting layer and not to reduce the light emission efficiency It is preferable.
  • organic compounds constituting the hole blocking layer include aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (Aluminum (III) bis (2-methyl-8-quinolinato) 4- aluminum complexes such as phenylphenolate (abbreviated as Balq)), triazole derivatives, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-dimethyl-4,7-diphenyl-1,10-) phenanthroline derivatives such as phenanthroline (abbreviated as BCP)) and the like.
  • BCP phenanthroline
  • the thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 3 nm to 100 nm, and even more preferably 5 nm to 50 nm.
  • the hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • Materials used in the hole blocking layer is a color purity higher S 1 energy than that of the light emitting material, light emission efficiency, in view of driving durability. It is preferable S 1 is greater than 0.1eV than S 1 of the light-emitting material in the film state of the material used in the hole blocking layer, it is more preferably at least 0.2eV higher, and further preferably more than 0.3eV large.
  • the organic electroluminescent device of the present invention preferably includes at least one (B) organic layer preferably disposed between the cathode and the light emitting layer between the light emitting layer and the cathode. From the viewpoint of device efficiency and driving voltage, it is preferable to contain a compound represented by the following general formula (O-1). The general formula (O-1) will be described below.
  • R O1 represents an alkyl group, an aryl group, or each independently .A O1 ⁇ A O4 representing the heteroaryl group, the C-R A or .R A representing the nitrogen atom Represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, and a plurality of R A may be the same or different, and L O1 represents a divalent to hexavalent linking group comprising an aryl ring or a heteroaryl ring.
  • N O1 represents an integer of 2 to 6.
  • R O1 represents an alkyl group (preferably having 1 to 8 carbon atoms), an aryl group (preferably having 6 to 30 carbon atoms), or a heteroaryl group (preferably having 4 to 12 carbon atoms). It may have a substituent selected from group A.
  • R O1 is preferably an aryl group or a heteroaryl group, more preferably an aryl group.
  • an alkyl group, an aryl group or a cyano group can be mentioned, an alkyl group or an aryl group is more preferable, and an aryl group is still more preferable.
  • the aryl group of R O1 When the aryl group of R O1 has a plurality of substituents, the plurality of substituents may be bonded to each other to form a 5- or 6-membered ring.
  • the aryl group of R O1 is preferably a phenyl group which may have a substituent selected from substituent group A, more preferably a phenyl group which may be substituted with an alkyl group or an aryl group, More preferred is an unsubstituted phenyl group or 2-phenylphenyl group.
  • a O1 to A O4 each independently represent C—R A or a nitrogen atom.
  • 0 to 2 are preferably nitrogen atoms, and 0 or 1 is more preferably a nitrogen atom.
  • all of A O1 ⁇ A O4 is C-R A, or A O1 be a nitrogen atom, is preferably A O2 ⁇ A O4 is C-R A, A O1 be a nitrogen atom, A O2 ⁇ More preferably, A O4 is C—R A , more preferably A O1 is a nitrogen atom, A O2 to A O4 are C—R A , and R A is all a hydrogen atom.
  • R A represents a hydrogen atom, an alkyl group (preferably having a carbon number of 1 to 8), an aryl group (preferably having a carbon number of 6 to 30), or a heteroaryl group (preferably having a carbon number of 4 to 12). It may have a substituent selected from the substituent group A.
  • the plurality of RA may be the same or different.
  • R A is preferably a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
  • L O1 represents a divalent to hexavalent linking group consisting of an aryl ring (preferably having 6 to 30 carbon atoms) or a heteroaryl ring (preferably having 4 to 12 carbon atoms).
  • L O1 is preferably an arylene group, heteroarylene group, aryltriyl group, or heteroaryltriyl group, more preferably a phenylene group, a biphenylene group, or a benzenetriyl group, still more preferably a biphenylene group, Or it is a benzenetriyl group.
  • L O1 may have a substituent selected from the aforementioned substituent group A, and the alkyl group, aryl group, or cyano group is preferred as the substituent when it has a substituent. Specific examples of L O1 include the following.
  • n O1 represents an integer of 2 to 6, preferably an integer of 2 to 4, more preferably 2 or 3. n O1 is most preferably 3 from the viewpoint of device efficiency, and most preferably 2 from the viewpoint of device durability.
  • the compound represented by the general formula (O-1) is more preferably a compound represented by the following general formula (O-2).
  • R O1 represents an alkyl group, an aryl group, or a heteroaryl group.
  • R O2 to R O4 each independently represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group.
  • a O1 to A O4 each independently represents C—R A or a nitrogen atom, R A represents a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, and a plurality of R A may be the same or different. May be.
  • R O1 and A O1 ⁇ A O4 the general formula (O1) in the same meaning as R O1 and A O1 ⁇ A O4 of, also the same preferable ranges thereof.
  • R 02 to R 04 are each independently a hydrogen atom, an alkyl group (preferably 1 to 8 carbon atoms), an aryl group (preferably 6 to 30 carbon atoms), or a heteroaryl group (preferably 4 to 12 carbon atoms). These may have a substituent selected from the aforementioned substituent group A.
  • R 02 to R 04 are preferably a hydrogen atom, an alkyl group, or an aryl group, more preferably a hydrogen atom or an aryl group, and most preferably a hydrogen atom.
  • the compound represented by the general formula (O-1) has a glass transition temperature (Tg) of 100 ° C. from the viewpoint of stable operation at high temperature storage, stable operation against high temperature driving, and heat generation during driving. It is preferably from ⁇ 300 ° C., more preferably from 120 ° C. to 300 ° C., further preferably from 120 ° C. to 300 ° C., and still more preferably from 140 ° C. to 300 ° C.
  • the compound represented by the general formula (O-1) can be synthesized by the method described in JP-A No. 2001-335776. After synthesis, purification by column chromatography, recrystallization, reprecipitation, etc., followed by purification by sublimation is preferred. Not only can organic impurities be separated by sublimation purification, but inorganic salts, residual solvents, moisture, and the like can be effectively removed.
  • the compound represented by the general formula (O-1) is contained in the organic layer between the light emitting layer and the cathode, but is contained in the cathode side layer adjacent to the light emitting layer. Is preferred.
  • the compound represented by the general formula (O-1) is preferably contained in an amount of 70 to 100% by mass, and more preferably 85 to 100% by mass with respect to the total mass of the organic layer to be added.
  • other preferable materials used for the electron injection layer and the electron transport layer include, for example, silole compounds described in JP-A-9-194487 and phosphine oxide described in JP-A-2006-73581 Compounds, nitrogen-containing aromatic hetero 6-membered ring compounds described in JP-A-2005-276801, JP-A-2006-225320, WO 2005/085387, etc., nitrogen-containing aromatic hetero 6-membered structures described in WO 2003/080760, WO 2005/085387, etc.
  • aromatic hydrocarbon compounds naphthalene compounds, anthracene compounds, triphenylene compounds, phenanthrene compounds, pyrenes described in US2009 / 0009065, WO2010 / 134350, JP2010-535806, etc.
  • Compounds, fluoranthene compounds, etc. Compounds, fluoranthene compounds, etc.), and the like.
  • the entire organic electric field element may be protected by a protective layer.
  • the protective layer the matters described in JP-A-2008-270736, paragraphs [0169] to [0170] can be applied to the present invention.
  • the material of the protective layer may be an inorganic material or an organic material.
  • the organic electroluminescent element of the present invention may be sealed entirely using a sealing container.
  • the sealing container the matters described in paragraph [0171] of JP-A-2008-270736 can be applied to the present invention.
  • the organic electroluminescent element of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode.
  • a direct current which may include an alternating current component as necessary
  • the driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-29080, JP-A-7-134558, JP-A-8-234585, and JP-A-8-2441047.
  • the driving methods described in each publication, Japanese Patent No. 2,784,615, US Pat. Nos. 5,828,429 and 6,023,308 can be applied.
  • the external quantum efficiency of the organic electroluminescent element of the present invention is preferably 5% or more, more preferably 6% or more, and further preferably 7% or more.
  • the value of the external quantum efficiency should be the maximum value of the external quantum efficiency when the device is driven at 20 ° C., or the value of the external quantum efficiency around 300 to 400 cd / m 2 when the device is driven at 20 ° C. Can do.
  • the internal quantum efficiency of the organic electroluminescence device of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 70% or more.
  • the internal quantum efficiency of the device is calculated by dividing the external quantum efficiency by the light extraction efficiency. In a normal organic EL element, the light extraction efficiency is about 20%.
  • the organic electroluminescent element of the present invention is not limited in its emission wavelength, but is preferably used for green light emission. Among them, in the organic electroluminescent element of the present invention, it is preferable to emit light using the compound represented by the general formula (1) as a phosphorescent material, and it is particularly preferable to emit phosphorescence in green.
  • the maximum emission wavelength of the organic electroluminescence device of the present invention is preferably 495 nm or more and less than 560 nm, more preferably 500 nm or more and less than 550 nm, and particularly preferably 505 nm or more and less than 540 nm.
  • the organic electroluminescent element of the present invention can be suitably used for a display element, a display, a backlight, an electrophotography, an illumination light source, a recording light source, an exposure light source, a reading light source, a sign, a signboard, an interior, or optical communication.
  • a device that is driven in a region where light emission luminance is high such as a light emitting device, a lighting device, and a display device.
  • the light emitting device of the present invention includes the organic electroluminescent element of the present invention. Next, the light emitting device of the present invention will be described with reference to FIG.
  • the light emitting device of the present invention uses the organic electroluminescent element.
  • FIG. 2 is a cross-sectional view schematically showing an example of the light emitting device of the present invention.
  • the light emitting device 20 in FIG. 2 includes a transparent substrate (supporting substrate) 2, an organic electroluminescent element 10, a sealing container 16, and the like.
  • the use of the light-emitting device of the present invention is not particularly limited, and for example, it can be a display device such as a television, a personal computer, a mobile phone, and electronic paper in addition to a lighting device.
  • FIG. 3 is a cross-sectional view schematically showing an example of the illumination device of the present invention.
  • the illumination device 40 of the present invention includes the organic EL element 10 and the light scattering member 30 described above. More specifically, the lighting device 40 is configured such that the substrate 2 of the organic EL element 10 and the light scattering member 30 are in contact with each other.
  • the light scattering member 30 is not particularly limited as long as it can scatter light.
  • the light scattering member 30 is a member in which fine particles 32 are dispersed on a transparent substrate 31.
  • a glass substrate can be preferably cited.
  • the fine particles 32 transparent resin fine particles can be preferably exemplified.
  • the glass substrate and the transparent resin fine particles known ones can be used. In such an illuminating device 40, when light emitted from the organic electroluminescent element 10 is incident on the light incident surface 30A of the scattering member 30, the incident light is scattered by the light scattering member 30, and the scattered light is emitted from the light emitting surface 30B. It is emitted as illumination light.
  • the display device of the present invention includes the organic electroluminescent element of the present invention.
  • Examples of the display device of the present invention include a display device such as a television, a personal computer, a mobile phone, and electronic paper.
  • Example 1 ⁇ Production and evaluation of organic electroluminescence device> All materials used for the production of the organic electroluminescence device were subjected to sublimation purification, and it was confirmed by high performance liquid chromatography (Tosoh TSKgel ODS-100Z) that the purity (absorption intensity area ratio at 254 nm) was 99.9% or more. .
  • a glass substrate having a thickness of 0.5 mm and a 2.5 cm square ITO film (manufactured by Geomat Co., Ltd., surface resistance 10 ⁇ / ⁇ ( ⁇ / sq.)) was placed in a cleaning container and subjected to ultrasonic cleaning in 2-propanol. UV-ozone treatment was performed for 30 minutes. The following organic layers were sequentially deposited on the transparent anode (ITO film) by vacuum deposition.
  • First layer Compound (A): Film thickness 10 nm
  • Second layer hole transport layer: HTL-1: film thickness 30 nm
  • Third layer light emitting layer: EH-1 (host compound) and light emitting material Pt-1 (mass ratio of host compound: light emitting material 85:15): film thickness 40 nm
  • Fourth layer electrotransport layer: ETL-1: film thickness 40 nm
  • Examples 2 to 17, Comparative Examples 1 to 7 In the production of the organic electroluminescent device of Example 1, Examples 2 to 17 and Comparative Example 1 were performed in the same manner as Example 1 except that the third layer of the light emitting material Pt-1 was replaced with the compounds shown in Table 1 below. Organic electroluminescent devices of ⁇ 7 were prepared.
  • the organic electroluminescent elements of each Example and Comparative Example were made to emit light by applying a DC voltage so that the luminance was 3500 cd / m 2 .
  • the applied voltage at this time was used as an index for driving voltage evaluation.
  • Table 1 below shows the case where the driving voltage is less than 6V, the case where the driving voltage is 6V or more and less than 8V, and the case where the driving voltage is 8V or more.
  • represents 10 times or more, ⁇ represents 5 times or more and less than 10 times, ⁇ represents 3 times or more and less than 5 times, and x represents 1 time.
  • the above represents less than 3 times, and xx represents from 0.1 times to less than 1 time.
  • the light-emitting element of the present invention is designed to increase the light emission efficiency in such a case. Therefore, it can be used advantageously.
  • the element of the present invention is excellent in durability and is suitable for a light emitting device, a display device, and a lighting device.

Abstract

 発光層に一般式(1)で表される発光材料および一般式(H-1)で表されるホスト材料を含む有機電界発光素子は、駆動電圧が低く、発光効率が高く、耐久性が優れる(LはO、NRC0又はCRC1C2を表し、;RC0~RC2は水素原子又は置換基;RC3~RC6は置換基;nC3およびnC6は0~3の整数;nC4及びnC5は0~4の整数;RH111~RH118は水素原子又は置換基;XはO、S、NRH119、CRH120H121、SiRH122H123のいずれかを表し、RH119~RH123は置換基;環Aはベンゼン環;環Bは5員環または6員環を表す)。

Description

有機電界発光素子、並びに該有機電界発光素子を用いた発光装置、表示装置及び照明装置
 本発明は、有機電界発光素子に関する。また本発明は、前記有機電界発光素子を用いた発光装置、表示装置または照明装置にも関する。
 有機電界発光素子(以下、「素子」、「有機EL素子」ともいう)は、低電圧駆動で高輝度の発光が得られることから活発に研究開発が行われている。有機電界発光素子は、一対の電極間に有機層を有し、陰極から注入された電子と陽極から注入された正孔とが有機層において再結合し、生成した励起子のエネルギーを発光に利用するものである。有機電界発光素子は、様々な発光波長を有する素子として提供することが可能であり、応答速度が速くて、比較的薄くて軽量であることから、広汎な用途へ応用されることが期待されている。なかでも、緑色りん光発光であり、駆動電圧が低くて、発光効率が高く、耐久性の高い有機電界発光素子の開発は、フルカラーディスプレイへの応用等において重要であり、これまでにも種々の開発研究成果が報告されている。
 特許文献1には、特定の構造の白金錯体などを発光層の発光材料として用いた有機電界発光素子が記載されており、色純度および素子耐久性が良好なりん光発光素子を提供できることが記載されている。特許文献1には発光層のホスト材料の例として縮合芳香族炭素環化合物や非錯体芳香族含窒素ヘテロ環化合物などが記載されているものの、カルバゾール系化合物またはベリリウム錯体を用いた実施例のみが開示されている。
 一方、特許文献2には、発光層のホスト材料として5環以上の多環縮環化合物を用い、発光材料として赤色発光材料である特定構造の白金錯体を発光層の発光材料として用いた有機電界発光素子が記載されている。しかしながら、特許文献2では、白金錯体は赤色発光を示す構造の材料のみ実施しており、緑色発光を示す構造の白金錯体を用いた場合に得られる有機電界発光素子の性能については不明であった。
 特許文献3には、発光層のホスト材料として5環以上の多環縮環化合物を用い、発光材料として特定構造のイリジウム錯体を発光層の発光材料として用いた有機電界発光素子が記載されており、発光効率および耐久性に優れる素子を提供できることが記載されている。しかしながら、特許文献3には発光材料として白金錯体を用いた実施例は記載されていなかった。
 特許文献4には、発光層のホスト材料として5環以上の多環縮環化合物を用い、発光材料として特定構造のイリジウム錯体を発光層の発光材料として用いた有機電界発光素子が記載されており、発光効率、画素欠陥および寿命に優れる素子を提供できることが記載されている。しかしながら、特許文献4には発光材料として白金錯体が数種記載されているものの、白金錯体を用いた実施例は記載されていなかった。
特開2005-310733号公報 WO2011/057701号公報 特開2011-091355号公報 WO2009/148062号公報
 本発明者らが特許文献1~4に記載の有機電界発光素子について検討したところ、低電圧化および高効率化の観点からは不満が残るものであり、更なる高耐久化も求められることがわかった。また、特許文献1~4では、発光層のホスト材料として5環以上の多環縮環化合物を用いた場合に、緑色発光に用いられる構造の白金錯体の発光材料と組み合わせて用いることや組み合わせて用いた場合の素子特性について言及されておらず、それらを示唆する記載もなかった。
 本発明は上記問題を解決することを目的とするものである。すなわち、本発明が解決しようとする課題は、駆動電圧が低く、発光効率が高く、耐久性が優れる有機電界発光素子を提供することにある。
 本発明者らが上記課題を解決するために鋭意検討したところ、発光材料として特定の構造の白金錯体を用い、ホスト材料として特定の構造の多環縮環化合物を用いた発光層とすることで、駆動電圧が低く、発光効率が高く、耐久性が優れる有機電界発光素子を提供できることを見出した。
 上記課題を解決するための具体的な手段である本発明は以下のとおりである。
[1] 基板と、該基板上に配置され、陽極及び陰極を含む一対の電極と、該電極間に配置され、発光層を含む少なくとも一層の有機層を有し、該発光層が、少なくとも一種の下記一般式(1)で表される発光材料および少なくとも一種の下記一般式(H-1)で表されるホスト材料を含むことを特徴とする有機電界発光素子。
一般式(1)
Figure JPOXMLDOC01-appb-C000008
(一般式(1)中、LはO、NRC0またはCRC1C2を表し、RC0~RC2はそれぞれ独立に水素原子または置換基を表す。RC3~RC6はそれぞれ独立に置換基を表す。nC3およびnC6はそれぞれ独立に0~3の整数を表し、nC4およびnC5はそれぞれ独立に0~4の整数を表す。nC3~nC6が2以上である場合、複数個のRC3~RC6はそれぞれ同じであっても異なってもよく、互いに連結して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000009
(一般式(H-1)中、RH111~RH118はそれぞれ独立に水素原子または置換基を表し、XはO、S、NRH119、CRH120H121、SiRH122H123のいずれかを表し、RH119~RH123はそれぞれ独立に置換基を表す。環Aはベンゼン環を表し、環Bは5員環または6員環を表す。)
[2] [1]に記載の有機電界発光素子は、前記一般式(1)で表される発光材料が、下記一般式(11)で表される発光材料であることが好ましい。
一般式(11)
Figure JPOXMLDOC01-appb-C000010
(一般式(11)中、RC1およびRC2はそれぞれ独立に水素原子または置換基を表し、RC3~RC6はそれぞれ独立に置換基を表す。nC3およびnC6は0~3の整数を表し、nC4およびnC5は0~4の整数を表す。nC3~nC6が2以上である場合、複数個のRC3~RC6は同じであっても異なってもよく、互いに連結して環を形成してもよい。)
[3] [1]または[2]に記載の有機電界発光素子は、前記一般式(H-1)で表されるホスト材料が、下記一般式(H-2)、一般式(H-3)、一般式(H-4)および一般式(H-5)のいずれかで表されることが好ましい。
一般式(H-2)
Figure JPOXMLDOC01-appb-C000011
(一般式(H-2)中、RH211~RH225はそれぞれ独立に水素原子または置換基を表し、XH2はO、Sのいずれかを表す。)
一般式(H-3)
Figure JPOXMLDOC01-appb-C000012
(一般式(H-3)中、RH311~RH325はそれぞれ独立に水素原子または置換基を表し、XH3はO、Sのいずれかを表す。)
一般式(H-4)
Figure JPOXMLDOC01-appb-C000013
(一般式(H-4)中、RH411~RH425はそれぞれ独立に水素原子または置換基を表し、XH4はO、S、NRH426、CRH427H428、SiRH429H430のいずれかを表し、RH426~RH430はそれぞれ独立に水素原子または置換基を表す。)
一般式(H-5)
Figure JPOXMLDOC01-appb-C000014
(一般式(H-5)中、RH511~RH525はそれぞれ独立に水素原子または置換基を表し、XH5はO、S、NRH526、CRH527H528、SiRH529H530のいずれかを表し、RH526~RH530はそれぞれ独立に水素原子または置換基を表す。)
[4] [3]に記載の有機電界発光素子は、前記一般式(H-1)で表されるホスト材料が、前記一般式(H-2)または一般式(H-5)で表されることが好ましい。
[5] [3]または[4]に記載の有機電界発光素子は、前記一般式(H-1)で表されるホスト材料が、前記一般式(H-2)で表されることが好ましい。
[6] [1]~[5]のいずれか一項に記載の有機電界発光素子を用いた発光装置。
[7] [1]~[5]のいずれか一項に記載の有機電界発光素子を用いた表示装置。
[8] [1]~[5]のいずれか一項に記載の有機電界発光素子を用いた照明装置。
 本発明の有機電界発光素子は、駆動電圧が低く、発光効率が高く、耐久性が優れる。さらに、本発明の発光装置、表示装置及び照明装置は、消費電力が小さく、耐久性が優れるという有利な効果を有する。
本発明に係る有機電界発光素子の構成の一例を示す概略図である。 本発明に係る発光装置の一例を示す概略図である。 本発明に係る照明装置の一例を示す概略図である。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明において、各一般式の説明において特に区別されずに用いられている場合における水素原子は同位体(重水素原子等)も含み、またさらに置換基を構成する原子は、その同位体も含んでいることを表す。
[有機電界発光素子]
 本発明の有機電界発光素子は、基板と、該基板上に配置され、陽極及び陰極を含む一対の電極と、該電極間に配置され、発光層を含む少なくとも一層の有機層を有し、該発光層が、少なくとも一種の前記一般式(1)で表される発光材料および少なくとも一種の前記一般式(H-1)で表されるホスト材料を含むことを特徴とする。
 以下において、一般式(1)で表される発光材料(以下、一般式(1)で表される化合物とも言う)の構造と、一般式(H-1)で表されるホスト材料(以下、一般式(H-1)で表される化合物とも言う)の構造と、本発明の有機電界発光素子のその他の構成について詳細に説明する。
<一般式(1)で表される発光材料>
 本発明の有機電界発光素子は、発光層中に、少なくとも一種の下記一般式(1)で表される発光材料を含む。
一般式(1)
Figure JPOXMLDOC01-appb-C000015
(一般式(1)中、LはO、NRC0またはCRC1C2を表し、RC0~RC2はそれぞれ独立に水素原子または置換基を表す。RC3~RC6はそれぞれ独立に置換基を表す。nC3およびnC6はそれぞれ独立に0~3の整数を表し、nC4およびnC5はそれぞれ独立に0~4の整数を表す。nC3~nC6が2以上である場合、複数個のRC3~RC6はそれぞれ同じであっても異なってもよく、互いに連結して環を形成してもよい。)

 前記一般式(1)中、LはO、NRC0またはCRC1C2を表し、RC0~RC2はそれぞれ独立に水素原子または置換基を表す。RC1およびRC2で表される置換基としては下記置換基群Aを挙げることができ、RC0で表される置換基としては下記置換基群Aを挙げることができる。
(置換基群A)
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメチル、エチル、イソプロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニル、p-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(芳香族ヘテロ環基も包含し、好ましくは炭素数1~30、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、テルル原子であり、具体的にはピリジル、ピラジニル、ピリミジル、ピリダジニル、ピロリル、ピラゾリル、トリアゾリル、イミダゾリル、オキサゾリル、チアゾリル、イソキサゾリル、イソチアゾリル、キノリル、フリル、チエニル、セレニエニル、テルリエニル、ピペリジル、ピペリジノ、モルホリノ、ピロリジル、ピロリジノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル基、アゼピニル基、シロリル基などが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、ホスホリル基(例えばジフェニルホスホリル基、ジメチルホスホリル基などが挙げられる。)が挙げられる。
(置換基群B)
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメチル、エチル、イソプロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニル、p-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、シアノ基、ヘテロ環基(芳香族ヘテロ環基も包含し、好ましくは炭素数1~30、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、テルル原子であり、具体的にはピリジル、ピラジニル、ピリミジル、ピリダジニル、ピロリル、ピラゾリル、トリアゾリル、イミダゾリル、オキサゾリル、チアゾリル、イソキサゾリル、イソチアゾリル、キノリル、フリル、チエニル、セレニエニル、テルリエニル、ピペリジル、ピペリジノ、モルホリノ、ピロリジル、ピロリジノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル基、アゼピニル基、シロリル基などが挙げられる。)が挙げられる。
 本発明において、上記アルキル基等の置換基の「炭素数」とは、アルキル基等の置換基が他の置換基によって置換されてもよい場合も含み、当該他の置換基の炭素数も包含する意味で用いる。
 RC0としては水素原子または前記置換基群Bの中でも置換基群Bであることが好ましく、アルキル基またはアリール基であることがより好ましく、アリール基であることが特に好ましく、フェニル基であることがより特に好ましい。
 RC0は、更に置換基を有していてもよく、さらなる置換基としては前記置換基群Aで表される置換基を挙げることができ、その中でもアルキル基、アリール基が好ましい。
 RC1及びRC2としては水素原子または前記置換基群Aの中でも置換基群Aであることが好ましく、各々独立してアルキル基またはアリール基であることがより好ましく、アルキル基であることがさらに好ましい。
 RC1及びRC2は、更に置換基を有していてもよく、さらなる置換基としては前記置換基群Aで表される置換基を挙げることができ、その中でもアルキル基が好ましい。
 また、RC1及びRC2は互いに結合して環を形成してもよい。
 LはNRC0またはCRC1C2であることが錯体の安定性及び発光量子収率の観点から好ましく、より好ましくはCRC1C2である。すなわち、前記一般式(1)で表される化合物は、下記一般式(11)で表されることがより好ましい。
一般式(11)
Figure JPOXMLDOC01-appb-C000016
 一般式(11)中、RC1およびRC2はそれぞれ独立に水素原子または置換基を表し、RC3~RC6はそれぞれ独立に置換基を表す。nC3およびnC6は0~3の整数を表し、nC4およびnC5は0~4の整数を表す。nC3~nC6が2以上である場合、複数個のRC3~RC6は同じであっても異なってもよく、互いに連結して環を形成してもよい。
 一般式(11)におけるRC1~RC6およびnC3~nC6の好ましい範囲は、前記一般式(1)におけるRC1~RC6およびnC3~nC6の好ましい範囲とそれぞれ同様である。
 一般式(1)中、RC1およびRC2は、アルキル基またはアリール基の中でも、メチル基、エチル基、プロピル基、イソブチル基、ベンジル基、フェニル基であることがより好ましい。
 一般式(1)中、Lはジメチルメチレン基、ジエチルメチレン基、ジイソブチルメチレン基、ジベンジルメチレン基、エチルメチルメチレン基、メチルプロピルメチレン基、イソブチルメチルメチレン基、ジフェニルメチレン基、メチルフェニルメチレン基、シクロヘキサンジイル基、シクロペンタンジイル基、フルオレンジイル基、フルオロメチルメチレン基であることがより好ましく、特に好ましくはジメチルメチレン基またはジフェニルメチレン基(フェニル基どうしが互いに結合してフルオレン環を形成していることも好ましい)である。
 一般式(1)中、RC3~RC6はそれぞれ独立に置換基を表す。RC3~RC6が表す置換基としては前記置換基群Aを挙げることができ、好ましくはアルキル基(炭素数1~3のアルキル基がより好ましく、メチル基、t-ブチル基が特に好ましい)、アルケニル基、アリール基(フェニル基、2-メチルフェニル基、2,6-ジメチルキシリル基、3,5-ジメチルキシリル基がより好ましい)、アミノ基、アルコキシ基、アリールオキシ基、ハロゲン原子(フッ素原子がより好ましい)、ハロゲン化アルキル基(トリフルオロメチル基、パーフルオロアルキル基が好ましい)またはシアノ基であり、より好ましくはアルキル基、アリール基またはシアノ基であり、特に好ましくはアリール基である。
 RC3~RC6は更に置換基を有していてもよく、さらなる置換基としては前記置換基群Aで表される置換基を挙げることができ、その中でもアルキル基またはアリール基上のさらなる置換基としてはアルキル基、アリール基、フッ素原子、シアノ基、アリールチオ基、アリールオキシ基が好ましく(該さらなる置換基同士が結合して縮環を形成していてもよく、例えばRC3~RC6全体としてジベンゾチオフェニル基、ジベンゾフラニル基を構成していることも好ましい)、アミノ基上のさらなる置換基としてはアルキル基またはアリール基が好ましい。
 nC3~nC6が2以上である場合、複数個のRC3~RC6は同じであっても異なってもよい。この場合、複数個のRC3~RC6は互いに結合して環を形成してもよく、ベンゼン環またはピロール環、チオフェン環、フラン環、シクロペンタジエン環、シロール環を形成することが好ましい。ピロール環、チオフェン環、フラン環、シクロペンタジエン環、シロール環を形成する場合、さらにベンゼン環により縮環されることが好ましい。
 nC3およびnC6は0~3の整数を表し、0~2であることが好ましく、0であることがより好ましい。
 nC4およびnC5は0~4の整数を表し、0~2であることが好ましい。
 ここで、前記一般式(11)は、下記一般式(12)で表すことができる。以下、下記一般式(12)に基づいて、前記一般式(11)の好ましい範囲を説明する。
一般式(12)
Figure JPOXMLDOC01-appb-C000017
 一般式(12)中、RC1およびRC2は前記一般式(1)におけるRC1およびRC2と同義であり、R11~R13はそれぞれ独立に(3-nC3)個の水素原子またはnC3個のRC3を表し、R14~R17はそれぞれ独立に(4-nC4)個の水素原子またはnC4個のRC4を表し、R18~R21はそれぞれ独立に(4-nC5)個の水素原子またはnC5個のRC5を表し、R22~R24はそれぞれ独立に(3-nC6)個の水素原子またはnC6個のRC6を表す。
 一般式(12)中、R11~R24はそれぞれ独立に水素原子、アルキル基、アリール基、ハロゲン原子、ハロゲン化アルキル基、シアノ基であることが好ましい。
 なお、一般式(12)におけるR11~R24の表す各置換基の好ましい範囲は、一般式(11)におけるRC3~RC6の表す各置換基の好ましい範囲と同じである。
 前記一般式(1)で表される化合物は、下記一般式(13)で表されることが特に好ましい。
一般式(13)
Figure JPOXMLDOC01-appb-C000018
 一般式(13)中、RC1およびRC2は前記一般式(1)におけるRC1およびRC2と同義であり、R22、R25、R26、R29、R30およびR33はそれぞれ独立に水素原子または置換基を表す。
 R22およびR33の好ましい範囲は前記一般式(12)におけるR12およびR23の好ましい範囲とそれぞれ同じであり、より好ましくは水素原子である。
 R25およびR30の好ましい範囲は前記一般式(12)におけるR15およびR20の好ましい範囲とそれぞれ同じであり、より好ましくは水素原子またはフェニル基である。
 R26およびR29の好ましい範囲は前記一般式(12)におけるR16およびR19の好ましい範囲とそれぞれ同じであり、より好ましくは水素原子である。
 前記一般式(1)で表される化合物の具体例を以下に示すが、本発明で用いることができる一般式(1)で表される化合物は、これらの具体例により限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 一般式(1)で表される化合物は、例えば、Journal of Organic Chemistry 53,786,(1988)、G.R.Newkome et al.)の、789頁、左段53行~右段7行に記載の方法、790頁、左段18行~38行に記載の方法、790頁、右段19行~30行に記載の方法及びその組み合わせ、Chemische Berichte 113,2749(1980)、H.Lexyほか)の、2752頁、26行~35行に記載の方法等、種々の手法で合成できる。
 例えば、配位子、又はその解離体と金属化合物を溶媒(例えば、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ニトリル系溶媒、アミド系溶媒、スルホン系溶媒、スルホキサイド系溶媒、水などが挙げられる)の存在下、若しくは、溶媒非存在下、塩基の存在下(無機、有機の種々の塩基、例えば、ナトリウムメトキシド、t-ブトキシカリウム、トリエチルアミン、炭酸カリウムなどが挙げられる)、若しくは、塩基非存在下、室温以下、若しくは加熱し(通常の加熱以外にもマイクロウェーブで加熱する手法も有効である)得ることができる。
 本発明の有機電界発光素子の発光層における一般式(1)で表される化合物の含有量は、発光層中1~30質量%であることが好ましく、3~25質量%であることがより好ましく、5~20質量%であることが更に好ましい。
<一般式(H-1)で表されるホスト材料>
 本発明の有機電界発光素子は、発光層中に、少なくとも一種の下記一般式(H-1)で表されるホスト材料を含む。
Figure JPOXMLDOC01-appb-C000022
(一般式(H-1)中、RH111~RH118はそれぞれ独立に水素原子または置換基を表し、XはO、S、NRH119、CRH120H121、SiRH122H123のいずれかを表し、RH119~RH123はそれぞれ独立に置換基を表す。環Aはベンゼン環を表し、環Bは5員環または6員環を表す。)
 一般式(H-1)中、RH111~RH118はそれぞれ独立に水素原子または置換基を表す。
 RH111~RH118は各々独立に水素原子、アルキル基、アリール基、シリル基、フッ素原子、シアノ基、又はトリフルオロメチル基であることが好ましく、これらの基は可能であれば更に炭素数1~6のアルキル基、及びフェニル基の少なくともいずれか1種によって置換されていてもよい。RH111~RH118は水素原子またはアリール基であることがより好ましく、水素原子であることが特に好ましい。
 一般式(H-1)中、XはO、S、NRH119、CRH120H121、SiRH122H123のいずれかを表し、RH119~RH123はそれぞれ独立に置換基を表す。
 RH119が表す置換基としては、前記一般式(1)の説明中における前記置換基群Bの置換基を挙げることができ、その中でもベンゼン環、ピリジン環、トリアジン環又はピリミジン環基であることが好ましく、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基、あるいは、トリアジン環又はピリミジン環基により置換されていてもよい。RH119が表す置換基は、ベンゼン環基(置換または無置換のフェニル基を意味する)であることがより好ましい。
 RH120~RH123が表す置換基としては、それぞれ独立に前記一般式(1)の説明中における前記置換基群Aの置換基を挙げることができ、その中でも例えばアルキル基、アリール基が好ましい。
 一般式(H-1)中、XはNRH119であることがより好ましい。
 一般式(H-1)中、環Bは5員環または6員環を表し、隣接する環と縮合することが可能な5員環または6員環を表す。環Bが表す5員環または6員環としては、特に制限はないが、5員環であることが好ましく、炭化水素環である5員環またはヘテロ原子1つを含む5員環(該ヘテロ原子としては、酸素原子、硫黄原子、窒素原子、ケイ素原子が好ましい)であることがより好ましい。
 一般式(H-1)中、環Aはベンゼン環を表し、さらに置換基を有していてもよい。環Aが有していてもよい置換基としては、それぞれ独立に前記一般式(1)の説明中における前記置換基群Aの置換基を挙げることができ、その中でも例えばアルキル基、アリール基が好ましい。
 環Aは無置換のベンゼン環であることが好ましい。
 一般式(H-1)中、環Aと環Bの連結態様については縮合環を形成すること以外は特に制限はないが、前記一般式(H-1)で表されるホスト材料は、下記一般式(H-2)、一般式(H-3)、一般式(H-4)、一般式(H-5)のいずれかで表されることが好ましい。
一般式(H-2)
Figure JPOXMLDOC01-appb-C000023
 一般式(H-2)中、RH211~RH225はそれぞれ独立に水素原子または置換基を表し、XH2はO、Sのいずれかを表す。
 RH211~RH214およびRH222~RH225の好ましい範囲は、前記一般式(H-1)におけるRH111~RH118の好ましい範囲と同様である。
 RH220およびRH221の好ましい範囲は、水素原子または前記一般式(H-1)における環Aの有していてもよい置換基の範囲であり、水素原子であることがより好ましい。
 RH215~RH219が置換基を表す場合における置換基としては、前記一般式(H-1)におけるRH119の有していてもよい置換基を挙げることができ、その中でもフェニル基、トリアジン環又はピリミジン環基が好ましく、フェニル基またはピリミジン環基がより好ましく、フェニル基が特に好ましい。
 RH215~RH219はさらなる置換基を有していてもよく、該置換基としてはアリール基(さらに置換基を有していてもよい)が好ましく、フェニル基、ビフェニル基、p-ターフェニル基、m-ターフェニル基がより好ましく、フェニル基またはp-ターフェニル基が特に好ましく、p-ターフェニル基がより特に好ましい。
 RH215~RH219がさらなる置換基を有する場合、該置換基はRH215~RH219を有するベンゼン環に対してメタ位で連結していることが好ましい。
 RH215~RH219のうち、置換基の数は1~2個であることが好ましく、1個であることがより好ましい。また、RH215~RH219のうち、RH218またはRH217が置換基であることが好ましく、RH218が置換基であることがより好ましい。
一般式(H-3)
Figure JPOXMLDOC01-appb-C000024
 一般式(H-3)中、RH311~RH325はそれぞれ独立に水素原子または置換基を表し、XH3はO、Sのいずれかを表す。
 RH311~RH314およびRH322~RH325の好ましい範囲は、前記一般式(H-1)におけるRH111~RH118の好ましい範囲と同様である。
 RH320およびRH321の好ましい範囲は、水素原子または前記一般式(H-1)における環Aの有していてもよい置換基の範囲であり、水素原子であることがより好ましい。
 RH315~RH319が置換基を表す場合における置換基としては、前記一般式(H-1)におけるRH119の有していてもよい置換基を挙げることができ、その中でもフェニル基、トリアジン環又はピリミジン環基が好ましく、フェニル基またはトリアジン環基がより好ましく、フェニル基が特に好ましい。
 RH315~RH319はさらなる置換基を有していてもよく、該置換基としてはアリール基(さらに置換基を有していてもよい)が好ましく、フェニル基、ビフェニル基、p-ターフェニル基、m-ターフェニル基がより好ましく、フェニル基またはp-ターフェニル基が特に好ましく、p-ターフェニル基がより特に好ましい。
 RH315~RH319がさらなる置換基を有する場合、該置換基はRH315~RH319を有するベンゼン環に対してメタ位で連結していることが好ましい。
 RH315~RH319のうち、置換基の数は1~2個であることが好ましく、1個であることがより好ましい。また、RH315~RH319のうち、RH318またはRH317が置換基であることが好ましく、RH318が置換基であることがより好ましい。
一般式(H-4)
Figure JPOXMLDOC01-appb-C000025
 一般式(H-4)中、RH411~RH425はそれぞれ独立に水素原子または置換基を表し、XH4はO、S、NRH426、CRH427H428、SiRH429H430のいずれかを表し、RH426~RH430はそれぞれ独立に水素原子または置換基を表す。
 RH411~RH414およびRH422~RH425の好ましい範囲は、前記一般式(H-1)におけるRH111~RH118の好ましい範囲と同様である。
 RH420およびRH421の好ましい範囲は、水素原子または前記一般式(H-1)における環Aの有していてもよい置換基の範囲であり、水素原子であることがより好ましい。
 RH415~RH419が置換基を表す場合における置換基としては、前記一般式(H-1)におけるRH119の有していてもよい置換基を挙げることができ、その中でもフェニル基、トリアジン環又はピリミジン環基が好ましく、フェニル基またはピリミジン環基がより好ましく、フェニル基が特に好ましい。
 RH415~RH419はさらなる置換基を有していてもよく、該置換基としてはアリール基(さらに置換基を有していてもよい)が好ましく、ビフェニル基、p-ターフェニル基、m-ターフェニル基がより好ましく、フェニル基またはp-ターフェニル基が特に好ましく、p-ターフェニル基がより特に好ましい。
 RH415~RH419がさらなる置換基を有する場合、該置換基はRH415~RH419を有するベンゼン環に対してメタ位で連結していることが好ましい。
 RH415~RH419のうち、置換基の数は0~2個であることが好ましく、0個であることがより好ましい。なお、RH415~RH419が置換基を有する場合、アルキル基、アリール基が置換基であることが好ましい。
 XH4はO、S、NRH426、CRH427H428、SiRH429H430のいずれかを表し、RH426~RH430はそれぞれ独立に水素原子または置換基を表す。
 RH426~RH430はそれぞれ独立に水素原子または置換基を表し、置換基を表すことが好ましい。
 RH426が表す置換基としては、前記一般式(1)の説明中における前記置換基群Bの置換基を挙げることができ、その中でもベンゼン環、ピリジン環、トリアジン環又はピリミジン環基であることが好ましく、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基、あるいは、トリアジン環、ピリミジン環又はカルバゾール環(該カルバゾール環はさらなる置換基を有していてもよい)基により置換されていてもよい。RH426が表す置換基は、ベンゼン環基(置換または無置換のフェニル基を意味する)またはトリアジン環基であることがより好ましく、ベンゼン環基であることが特に好ましい。
 RH426が表すベンゼン環基は、さらなる置換基を有していてもよく、該置換基の種類および個数の好ましい範囲は、前記一般式(H-2)の説明におけるRH215~RH219の表す置換基の種類および個数の好ましい範囲と同様である。
 RH426が表すトリアジン環基は、さらなる置換基を有していてもよく、該トリアジン環基が有するさらなる置換基としてはアリール基またはカルバゾール環(カルバゾール環はさらなる置換基を有していてもよい)基が好ましく、フェニル基または置換基を有するカルバゾール環基(該置換基としてはジベンジルアミノ基が好ましく、ジベンジルアミノ基がカルバゾール環と結合して縮合環を形成することがより好ましい)がより好ましい。該トリアジン環基が有するさらなる置換基は、該トリアジン環基に対して1または2個であることが好ましく、2個であることがより好ましい。
 RH427~RH430が表す置換基の好ましい範囲は、前記一般式(H-1)の説明中におけるRH120~RH123が表す置換基の好ましい範囲と同様である。
一般式(H-5)
Figure JPOXMLDOC01-appb-C000026
 一般式(H-5)中、RH511~RH525はそれぞれ独立に水素原子または置換基を表し、XH5はO、S、NRH526、CRH527H528、SiRH529H530のいずれかを表し、RH526~RH530はそれぞれ独立に水素原子または置換基を表す。
 RH511~RH514およびRH522~RH525の好ましい範囲は、前記一般式(H-1)におけるRH111~RH118の好ましい範囲と同様である。
 RH520およびRH521の好ましい範囲は、水素原子または前記一般式(H-1)における環Aの有していてもよい置換基の範囲であり、水素原子であることがより好ましい。
 RH515~RH519が置換基を表す場合における置換基としては、前記一般式(H-1)におけるRH119の有していてもよい置換基を挙げることができ、その中でもフェニル基、トリアジン環又はピリミジン環基が好ましく、フェニル基またはピリミジン環基がより好ましく、フェニル基が特に好ましい。
 RH515~RH519はさらなる置換基を有していてもよく、該置換基としてはアリール基(さらに置換基を有していてもよい)が好ましく、ビフェニル基、p-ターフェニル基、m-ターフェニル基がより好ましく、フェニル基またはp-ターフェニル基が特に好ましく、p-ターフェニル基がより特に好ましい。
 RH515~RH519がさらなる置換基を有する場合、該置換基はRH515~RH519を有するベンゼン環に対してメタ位で連結していることが好ましい。
 RH515~RH519のうち、置換基の数は0~2個であることが好ましく、0個であることがより好ましい。なお、RH515~RH519が置換基を有する場合、アルキル基、アリール基が置換基であることが好ましい。
 XH5はO、S、NRH526、CRH527H528、SiRH529H530のいずれかを表し、NRH526であることが好ましい。
 RH526~RH530はそれぞれ独立に水素原子または置換基を表し、置換基を表すことが好ましい。
 RH526が表す置換基としては、前記一般式(1)の説明中における前記置換基群Bの置換基を挙げることができ、その中でもベンゼン環、ピリジン環、トリアジン環又はピリミジン環基であることが好ましく、これらの環は更にメチル基、イソブチル基、t-ブチル基、ネオペンチル基、フェニル基、ナフチル基、シアノ基、及びフッ素原子から選ばれる少なくとも1種の基、あるいは、トリアジン環、ピリミジン環又はカルバゾール環(該カルバゾール環はさらなる置換基を有していてもよい)基により置換されていてもよい。RH526が表す置換基は、ベンゼン環基(置換または無置換のフェニル基を意味する)またはトリアジン環基であることがより好ましく、ベンゼン環基であることが特に好ましい。
 RH526が表すベンゼン環基は、さらなる置換基を有していてもよく、該置換基の種類および個数の好ましい範囲は、前記一般式(H-2)の説明におけるRH215~RH219の表す置換基の種類および個数の好ましい範囲と同様である。
 RH526が表すトリアジン環基は、さらなる置換基を有していてもよく、該トリアジン環基が有するさらなる置換基としてはアリール基またはカルバゾール環(カルバゾール環はさらなる置換基を有していてもよい)基が好ましく、フェニル基または置換基を有するカルバゾール環基(該置換基としてはジベンジルアミノ基が好ましく、ジベンジルアミノ基がカルバゾール環と結合して縮合環を形成することがより好ましい)がより好ましい。該トリアジン環基が有するさらなる置換基は、該トリアジン環基に対して1または2個であることが好ましく、2個であることがより好ましい。
 RH527~RH530が表す置換基の好ましい範囲は、前記一般式(H-1)の説明中におけるRH120~RH123が表す置換基の好ましい範囲と同様である。
 本発明の有機電界発光素子は、前記一般式(H-1)で表されるホスト材料が前記一般式(H-2)または一般式(H-5)で表されることが合成の容易性の観点から好ましく、前記一般式(H-2)で表されることがより好ましい。
 一方、本発明の有機電界発光素子は、前記一般式(H-1)で表されるホスト材料が一般式(H-2)、一般式(H-3)、一般式(H-4)で表されることが発光効率、耐久性
の観点からより好ましく、一般式(H-2)、一般式(H-4)で表されることが更に好ましい。
 前記一般式(H-1)で表される化合物の具体例を以下に示すが、本発明で用いることができる一般式(H-1)で表される化合物は、これらの具体例により限定的に解釈されるべきものではない。
 また、前記一般式(H-1)で表される化合物としては、特開2011-91355号公報の[0279]~[0303]に記載の化合物、WO2011/057701号公報に記載の化合物、WO2009/148062号公報に記載の化合物、WO2011/010844号公報に記載の化合物、WO2010/131855号公報に記載の化合物なども用いることができる。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 前記一般式(H-1)で表される化合物は公知の方法で容易に製造することができる。例えば、Tetrahedron,47,7739-7750(1991),Synlett,42-48(2005)に示される合成例、WO2010/131855号公報や特開2011-91355号公報に記載の合成例などを参考にして製造することができる。
 前記一般式(H-1)で表される化合物は発光層の全質量に対して10~99質量%含まれることが好ましく、30~97質量%含まれることがより好ましく、50~95質量%含まれることがより好ましく、60~95質量%含まれることがより特に好ましい。
 なお、前記一般式(H-1)で表される化合物の純度が低いと、不純物が電荷輸送のトラップとして働いたり、素子の劣化を促進させたりするため、前記一般式(H-1)で表される化合物の純度は高いほど好ましい。純度は例えば高速液体クロマトグラフィー(HPLC)により測定でき、254nmの光吸収強度で検出したときの一般式(H-1)で表される化合物の面積比は、好ましくは95.0%以上であり、より好ましくは97.0%以上であり、特に好ましくは99.0%以上であり、最も好ましくは99.9%以上である。このような前記一般式(H-1)で表される化合物の純度を高める方法としては、例えば、昇華精製などを挙げることができる。
[有機電界発光素子の構成]
 本発明の有機電界発光素子は、基板と、該基板上に配置され、陽極及び陰極を含む一対の電極と、該電極間に配置され、発光層を含む少なくとも一層の有機層とを有し、該発光層が、少なくとも一種の前記一般式(1)で表される発光材料および少なくとも一種の前記一般式(H-1)で表されるホスト材料を含むことを特徴とする。
 本発明の有機電界発光素子の構成は、特に制限されることはない。図1に、本発明の有機電界発光素子の構成の一例を示す。図1の有機電界発光素子10は、基板2上に、一対の電極(陽極3と陰極9)の間に有機層を有する。
 有機電界発光素子の素子構成、基板、陰極及び陽極については、例えば、特開2008-270736号公報に詳述されており、該公報に記載の事項を本発明に適用することができる。
 以下、本発明の有機電界発光素子の好ましい態様について、基板、電極、有機層、保護層、封止容器、駆動方法、発光波長、用途の順で詳細に説明する。
<基板>
 本発明の有機電界発光素子は、基板を有する。
 本発明で使用する基板としては、有機層から発せられる光を散乱又は減衰させない基板であることが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
<電極>
 本発明の有機電界発光素子は、前記基板上に配置され、陽極及び陰極を含む一対の電極を有する。
 発光素子の性質上、一対の電極である陽極及び陰極のうち少なくとも一方の電極は、透明若しくは半透明であることが好ましい。
(陽極)
 陽極は、通常、有機層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
(陰極)
 陰極は、通常、有機層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
<有機層>
 本発明の有機電界発光素子は、前記電極間に配置され、発光層を含む少なくとも一層の有機層を有し、該発光層が、少なくとも一種の前記一般式(1)で表される発光材料および少なくとも一種の前記一般式(H-1)で表されるホスト材料を含むことを特徴とする。
 前記有機層は、特に制限はなく、有機電界発光素子の用途、目的に応じて適宜選択することができるが、前記透明電極上に又は前記半透明電極上に形成されるのが好ましい。この場合、有機層は、前記透明電極又は前記半透明電極上の全面又は一面に形成される。
 有機層の形状、大きさ、及び厚み等については、特に制限はなく、目的に応じて適宜選択することができる。
 以下、本発明の有機電界発光素子における、有機層の構成、有機層の形成方法、有機層を構成する各層の好ましい態様および各層に使用される材料について順に説明する。
(有機層の構成)
 本発明の有機電界発光素子では、前記有機層が発光層を含む。
 さらに前記有機層が、電荷輸送層を含むことが好ましい。前記電荷輸送層とは、有機電界発光素子に電圧を印加した際に電荷移動が起こる層をいう。具体的には正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層又は電子注入層が挙げられる。前記電荷輸送層が正孔注入層、正孔輸送層、電子ブロック層又は発光層であれば、低コストかつ高効率な有機電界発光素子の製造が可能となる。
 前記一般式(1)で表される化合物と前記一般式(H-1)で表される化合物は、有機電界発光素子の前記電極間に配置される有機層のうち、前記電極間に配置される有機層中の発光層に含有される。
 前記一般式(1)で表される化合物と前記一般式(H-1)で表される化合物は本発明の有機電界発光素子のその他の有機層に含有されていてもよい。前記一般式(1)で表される化合物と前記一般式(H-1)で表される化合物を含有してもよい発光層以外の有機層としては、正孔注入層、正孔輸送層、電子輸送層、電子注入層、励起子ブロック層、電荷ブロック層(正孔ブロック層、電子ブロック層など)などを挙げることができ、好ましくは、励起子ブロック層、電荷ブロック層、電子輸送層、電子注入層のいずれかであり、より好ましくは励起子ブロック層、電荷ブロック層、又は電子輸送層である。
(有機層の形成方法)
 本発明の有機電界発光素子において、各有機層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、スピンコート法、バーコート法等の湿式製膜法(溶液塗布法)のいずれによっても好適に形成することができる。
 本発明の有機電界発光素子は、前記一対の電極間に配置された発光層が、前記発光層が真空蒸着プロセスまたは湿式プロセスにて形成されてなることが好ましく、前記発光層が少なくとも一層の前記一般式(1)で表される化合物を含む組成物の蒸着により形成されていることがより好ましい。
(発光層)
 発光層は、電界印加時に、陽極、正孔注入層又は正孔輸送層から正孔を受け取り、陰極、電子注入層又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。但し、本発明における前記発光層は、このようなメカニズムによる発光に必ずしも限定されるものではない。
 本発明の有機電界発光素子における前記発光層は、ホスト材料と発光材料の混合層とした構成である。前記発光材料の種類は一種であっても二種以上であってもよい。その中でも、本発明の有機電界発光素子は、前記発光層が前記一般式(1)で表される発光材料のみを発光材料として含むことが好ましい。前記ホスト材料は電荷輸送材料であることが好ましい。前記ホスト材料は一種であっても二種以上であってもよく、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。その中でも、本発明の有機電界発光素子は、前記発光層が前記一般式(H-1)で表されるホスト材料のみをホスト材料として含むことが好ましい。
 更に、前記発光層は、電荷輸送性を有さず、発光しない材料を含んでいてもよい。
 また、発光層は一層であっても二層以上の多層であってもよく、それぞれの層に同じ発光材料やホスト材料を含んでもよいし、層毎に異なる材料を含んでもよい。発光層が複数の場合、それぞれの発光層が異なる発光色で発光してもよい。
 発光層の厚さは、特に限定されるものではないが、通常、2nm~500nmであるのが好ましく、中でも、外部量子効率の観点で、3nm~200nmであるのがより好ましく、5nm~100nmであるのが更に好ましい。
(発光材料)
 本発明の有機電界発光素子では、前記一般式(1)で表される化合物を発光材料とするが、その場合であっても前記一般式(1)で表される化合物とは別の発光材料を組み合わせて用いることが可能である。
 本発明において用いることができる別の発光材料は、燐光発光材料、蛍光発光材料等のいずれであってもよい。また、本発明における発光層は、色純度を向上させたり、発光波長領域を広げたりするために、2種類以上の発光材料を含有することができる。
 本発明の有機電界発光素子に用いることができる蛍光発光材料や燐光発光材料については、例えば、特開2008-270736号公報の段落番号[0100]~[0164]、特開2007-266458号公報の段落番号[0088]~[0090]に詳述されており、これら公報の記載の事項を本発明に適用することができる。
 本発明に使用できる燐光発光材料としては、例えば、米国特許第6303238号明細書、米国特許第6097147号明細書、WO00/57676号公報、WO00/70655号公報、WO01/08230号公報、WO01/39234号公報、WO01/41512号公報、WO02/02714号公報、WO02/15645号公報、WO02/44189号公報、WO05/19373号公報、特開2001-247859号公報、特開2002-302671号公報、特開2002-117978号公報、特開2003-133074号公報、特開2002-235076号公報、特開2003-123982号公報、特開2002-170684号公報、欧州特許公開第1211257号公報、特開2002-226495号公報、特開2002-234894号公報、特開2001-247859号公報、特開2001-298470号公報、特開2002-173674号公報、特開2002-203678号公報、特開2002-203679号公報、特開2004-357791号公報、特開2006-256999号公報、特開2007-19462号公報、特開2007-84635号公報、特開2007-96259号公報等の特許文献に記載の燐光発光化合物などが挙げられ、中でも、更に好ましい発光材料としては、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、及びCe錯体等の燐光発光性金属錯体化合物が挙げられる。特に好ましくは、Ir錯体、Pt錯体、又はRe錯体であり、中でも金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、又はRe錯体が好ましい。更に、発光効率、駆動耐久性、色度等の観点で、Ir錯体、Pt錯体が特に好ましく、Pt錯体が最も好ましい。
 本発明に使用できる蛍光発光材料の種類は特に限定されるものではないが、例えば、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、縮合多環芳香族化合物(アントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、又はペンタセンなど)、8-キノリノールの金属錯体、ピロメテン錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、及びこれらの誘導体などを挙げることができる。
 その他に、特開2010-111620号公報の[0082]に記載される化合物を発光材料として用いることもできる。
 本発明の有機電界発光素子における発光層は、ホスト材料と発光材料の混合層とした構成である。
 本発明の有機電界発光素子における発光層において用いることができる前記一般式(H-1)で表されるホスト材料としては、正孔輸送性ホスト材料であっても、電子輸送性ホスト材料であってもよいが、ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は一種であっても二種以上であってもよく、例えば、電子輸送性のホスト材料と正孔輸送性のホスト材料を混合した構成が挙げられる。更に、発光層中に電荷輸送性を有さず、発光しない材料を含んでいてもよい。
 また、発光層は一層であっても二層以上の多層であってもよく、それぞれの層に同じ発光材料やホスト材料を含んでもよいし、層毎に異なる材料を含んでもよい。発光層が複数の場合、それぞれの発光層が異なる発光色で発光してもよい。
(ホスト材料)
 ホスト材料とは、発光層において主に電荷の注入、輸送を担う化合物であり、また、それ自体は実質的に発光しない化合物のことである。ここで「実質的に発光しない」とは、該実質的に発光しない化合物からの発光量が好ましくは素子全体での全発光量の5%以下であり、より好ましくは3%以下であり、更に好ましくは1%以下であることを言う。
 本発明の有機電界発光素子は、前記一般式(H-1)で表されるホスト材料を含む。但し、別のホスト材料を含んでいてもよい。本発明に用いることのできる別のホスト材料としては、例えば、以下の化合物を挙げることができる。
 ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ベンゾチオフェン、ジベンゾチオフェン、フラン、ベンゾフラン、ジベンゾフラン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、ポルフィリン系化合物、縮環芳香族炭化水素化合物(フルオレン、ナフタレン、フェナントレン、トリフェニレン等)、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ-ル、オキサゾ-ル、オキサジアゾ-ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、8-キノリノ-ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ-ルやベンゾチアゾ-ルを配位子とする金属錯体に代表される各種金属錯体及びそれらの誘導体(置換基や縮環を有していてもよい)等を挙げることができる。その他に、特開2010-111620の[0081]や[0083]に記載される化合物を用いることもできる。
 前記一般式(H-1)で表される化合物の膜状態でのTエネルギーは、1.77eV(40kcal/mol)以上3.51eV(81kcal/mol)以下であることが好ましく、2.39eV(55kcal/mol)以上3.25eV(75kcal/mol)以下であることがより好ましい。
 発光層において、前記一般式(H-1)で表されるホスト材料の膜状態での三重項最低励起エネルギー(Tエネルギー)が、前記一般式(1)で表される発光材料のTエネルギーより高いことが色純度、発光効率、駆動耐久性の点で好ましい。ホスト材料のTが発光材料のSより0.1eV以上大きいことが好ましく、0.2eV以上大きいことがより好ましく、0.3eV以上大きいことが更に好ましい。
 ホスト材料の膜状態でのTが発光材料のTより小さいと発光を消光してしまうためホスト材料には発光材料より大きなTが求められる。また、ホスト材料のTが発光材料より大きい場合でも、両者のT差が小さい場合には一部、発光材料からホスト材料への逆エネルギー移動が起こるため、効率低下や色純度低下、耐久性低下の原因となる。従って、Tが十分に大きく、化学的安定性及びキャリア注入・輸送性の高いホスト材料が求められる。
 特に有機電界発光素子からの発光色が緑色(発光ピーク波長が490~580nm)である場合は発光効率の観点から、Tエネルギーは、2.39eV(55kcal/mol)以上2.82eV(65kcal/mol)以下であることが更に好ましい。
 Tエネルギーは、材料の薄膜の燐光発光スペクトルを測定し、その短波長端から求めることができる。例えば、洗浄した石英ガラス基板上に、材料を真空蒸着法により約50nmの膜厚に成膜し、薄膜の燐光発光スペクトルを液体窒素温度下でF-7000日立分光蛍光光度計(日立ハイテクノロジーズ)を用いて測定する。得られた発光スペクトルの短波長側の立ち上がり波長をエネルギー単位に換算することによりTエネルギーを求めることができる。
(その他の層)
 本発明の有機電界発光素子は、前記発光層以外のその他の層を有していてもよい。
 前記有機層が有していてもよい前記発光層以外のその他の有機層として、正孔注入層(以下、電荷発生層とも言う)、正孔輸送層、ブロック層(正孔ブロック層、励起子ブロック層など)、電子輸送層などが挙げられる。前記具体的な層構成として、下記が挙げられるが本発明はこれらの構成に限定されるものではない。
 ・陽極/正孔輸送層/発光層/電子輸送層/陰極、
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/陰極、
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極、
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/陰極、
 ・陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極、
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極、
 ・陽極/正孔注入層/正孔輸送層/ブロック層/発光層/ブロック層/電子輸送層/電子注入層/陰極。
 本発明の有機電界発光素子は、(A)前記陽極と前記発光層との間に好ましく配置される有機層を少なくとも一層含むことが好ましい。前記(A)前記陽極と前記発光層との間に好ましく配置される有機層としては、陽極側から正孔注入層、正孔輸送層、電子ブロック層を挙げることができる。
 本発明の有機電界発光素子は、(B)前記陰極と前記発光層との間に好ましく配置される有機層少なくとも一層含むことが好ましい。前記(B)前記陰極と前記発光層との間に好ましく配置される有機層としては、陰極側から電子注入層、電子輸送層、正孔ブロック層を挙げることができる。
 具体的には、本発明の有機電界発光素子の好ましい態様の一例は、図1に記載される態様であり、前記有機層として、陽極3側から正孔注入層4、正孔輸送層5、発光層6、正孔ブロック層7及び電子輸送層8がこの順に積層されている態様である。
 以下、これら本発明の有機電界発光素子が有していてもよい前記発光層以外のその他の層について、説明する。
(A)陽極と前記発光層との間に好ましく配置される有機層
 まず、(A)前記陽極と前記発光層との間に好ましく配置される有機層について説明する。
(A-1)正孔注入層、正孔輸送層
 正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
 本発明では、前記正孔輸送層に用いられる正孔輸送材料としては、下記一般式(HT-1)で表されるトリアリールアミン化合物が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000032
(一般式(HT-1)中、RA1~RA15はそれぞれ独立に水素原子または置換基を表す。)
 RA1~RA15が表す置換基としては前記置換基群Aで挙げた置換基が挙げられ、隣り合う置換基同士が単結合または連結基を介して結合し環を形成してもよい。耐熱性および耐久性の観点から、RA1~RA5の少なくとも一つとRA6~RA10の少なくとも一つがアリール基であることが好ましい。
 一般式(HT-1)で表される化合物の具体例を以下に示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 その他、正孔注入層および正孔輸送層については、特開2008-270736号公報の段落番号〔0165〕~〔0167〕に記載の事項を本発明に適用することもできる。また、特開2011-71452号公報の〔0250〕~〔0339〕に記載の事項を本発明の正孔注入層および正孔輸送層について適用することもできる。
 前記正孔注入層には電子受容性ドーパントを含有することが好ましい。正孔注入層に電子受容性ドーパントを含有することにより、正孔注入性が向上し、駆動電圧が低下する、効率が向上するなどの効果がある。電子受容性ドーパントとは、ドープされる材料から電子を引き抜き、ラジカルカチオンを発生させることが可能な材料であれば有機材料、無機材料のうちいかなるものでもよいが、例えば、テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(F-TCNQ)などのTCNQ化合物、ヘキサシアノヘキサアザトリフェニレン(HAT-CN)などのヘキサアザトリフェニレン化合物、酸化モリブデンなどが挙げられる。
 前記正孔注入層中の電子受容性ドーパントは、正孔注入層を形成する全化合物質量に対して、0.01~50質量%含有されることが好ましく、0.1~40質量%含有されることがより好ましく、0.2~30質量%含有されることがより好ましい。
(A-2)電子ブロック層
 電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機層として、電子ブロック層を設けることができる。
 電子ブロック層を構成する有機化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
 電子ブロック層の厚さとしては、1nm~500nmであるのが好ましく、3nm~100nmであるのがより好ましく、5nm~50nmであるのが更に好ましい。
 電子ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。

 電子ブロック層に用いる材料は、前記発光材料のSエネルギーより高いことが色純度、発光効率、駆動耐久性の点で好ましい。電子ブロック層に用いる材料の膜状態でのSが発光材料のSより0.1eV以上大きいことが好ましく、0.2eV以上大きいことがより好ましく、0.3eV以上大きいことが更に好ましい。
(B)陰極と前記発光層との間に好ましく配置される有機層
 次に、前記(B)陰極と前記発光層との間に好ましく配置される有機層について説明する。
(B-1)電子注入層、電子輸送層
 電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
 電子輸送材料としては、ピリジン誘導体、キノリン誘導体、ピリミジン誘導体、ピラジン誘導体、フタラジン誘導体、フェナントロリン誘導体、トリアジン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ベンゾイミダゾール誘導体、イミダゾピリジン誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、シロールに代表される有機シラン誘導体、ナフタレン、アントラセン、フェナントレン、トリフェニレン、ピレン等の縮環炭化水素化合物等をから選ばれることが好ましく、ピリジン誘導体、ベンゾイミダゾール誘導体、イミダゾピリジン誘導体、金属錯体、縮環炭化水素化合物のいずれかであることがより好ましい。
 電子注入層、電子輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
 電子輸送層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。また、電子注入層の厚さとしては、0.1nm~200nmであるのが好ましく、0.2nm~100nmであるのがより好ましく、0.5nm~50nmであるのが更に好ましい。
 電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
 電子注入層には電子供与性ドーパントを含有することが好ましい。電子注入層に電子供与性ドーパントを含有させることにより、電子注入性が向上し、駆動電圧が低下する、効率が向上するなどの効果がある。電子供与性ドーパントとは、ドープされる材料に電子を与え、ラジカルアニオンを発生させることが可能な材料であれば有機材料、無機材料のうちいかなるものでもよいが、例えば、テトラチアフルバレン(TTF)、テトラチアナフタセン(TTT)、ビス-[1,3-ジエチル-2-メチル-1,2-ジヒドロベンズイミダゾリル]などのジヒドロイミダゾール化合物、リチウム、セシウムなどが挙げられる。
 電子注入層中の電子供与性ドーパントは、電子注入層を形成する全化合物質量に対して、0.01質量%~50質量%含有されることが好ましく、0.1質量%~40質量%含有されることがより好ましく、0.5質量%~30質量%含有されることがより好ましい。
(B-2)正孔ブロック層
 正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機層として、正孔ブロック層を設けることができる。
 正孔ブロック層を構成する有機化合物の膜状態でのSエネルギーは、発光層で生成する励起子のエネルギー移動を防止し、発光効率を低下させないために、発光材料のSエネルギーよりも高いことが好ましい。
 正孔ブロック層を構成する有機化合物の例としては、アルミニウム(III)ビス(2-メチル-8-キノリナト)4-フェニルフェノレート(Aluminum (III)bis(2-methyl-8-quinolinato)4-phenylphenolate(Balqと略記する))等のアルミニウム錯体、トリアゾール誘導体、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCPと略記する))等のフェナントロリン誘導体、等が挙げられる。
 正孔ブロック層の厚さとしては、1nm~500nmであるのが好ましく、3nm~100nmであるのがより好ましく、5nm~50nmであるのが更に好ましい。
 正孔ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
 正孔ブロック層に用いる材料は、前記発光材料のSエネルギーより高いことが色純度、発光効率、駆動耐久性の点で好ましい。正孔ブロック層に用いる材料の膜状態でのSが発光材料のSより0.1eV以上大きいことが好ましく、0.2eV以上大きいことがより好ましく、0.3eV以上大きいことが更に好ましい。
(B-3)陰極と前記発光層との間に好ましく配置される有機層に特に好ましく用いられる材料

 本発明の有機電界発光素子は、発光層と陰極との間に少なくとも一層の前記(B)陰極と前記発光層との間に好ましく配置される有機層を含むことが好ましく、該有機層に少なくとも一種の下記一般式(O-1)で表される化合物を含有することが素子の効率や駆動電圧の観点から好ましい。以下に、一般式(O-1)について説明する。
Figure JPOXMLDOC01-appb-C000035
 (一般式(O-1)中、RO1は、アルキル基、アリール基、又はヘテロアリール基を表す。AO1~AO4はそれぞれ独立に、C-R又は窒素原子を表す。Rは水素原子、アルキル基、アリール基、又はヘテロアリール基を表し、複数のRは同じでも異なっていてもよい。LO1は、アリール環又はヘテロアリール環からなる二価~六価の連結基を表す。nO1は2~6の整数を表す。)
 RO1は、アルキル基(好ましくは炭素数1~8)、アリール基(好ましくは炭素数6~30)、又はヘテロアリール基(好ましくは炭素数4~12)を表し、これらは前述の置換基群Aから選ばれる置換基を有していてもよい。RO1として好ましくはアリール基、又はヘテロアリール基であり、より好ましくはアリール基である。RO1のアリール基が置換基を有する場合の好ましい置換基としては、アルキル基、アリール基又はシアノ基が挙げられ、アルキル基又はアリール基がより好ましく、アリール基が更に好ましい。RO1のアリール基が複数の置換基を有する場合、該複数の置換基は互いに結合して5又は6員環を形成していてもよい。RO1のアリール基は、好ましくは置換基群Aから選ばれる置換基を有していてもよいフェニル基であり、より好ましくはアルキル基又はアリール基が置換していてもよいフェニル基であり、更に好ましくは無置換のフェニル基又は2-フェニルフェニル基である。
 AO1~AO4はそれぞれ独立に、C-R又は窒素原子を表す。AO1~AO4のうち、0~2つが窒素原子であるのが好ましく、0又は1つが窒素原子であるのがより好ましい。AO1~AO4の全てがC-Rであるか、又はAO1が窒素原子で、AO2~AO4がC-Rであるのが好ましく、AO1が窒素原子で、AO2~AO4がC-Rであるのがより好ましく、AO1が窒素原子で、AO2~AO4がC-Rであり、Rが全て水素原子であるのが更に好ましい。
 Rは水素原子、アルキル基(好ましくは炭素数1~8)、アリール基(好ましくは炭素数6~30)、又はヘテロアリール基(好ましくは炭素数4~12)を表し、これらは前述の置換基群Aから選ばれる置換基を有していてもよい。また複数のRは同じでも異なっていてもよい。Rとして好ましくは水素原子又はアルキル基であり、より好ましくは水素原子である。
 LO1は、アリール環(好ましくは炭素数6~30)又はヘテロアリール環(好ましくは炭素数4~12)からなる二価~六価の連結基を表す。LO1として好ましくは、アリーレン基、ヘテロアリーレン基、アリールトリイル基、又はヘテロアリールトリイル基であり、より好ましくはフェニレン基、ビフェニレン基、又はベンゼントリイル基であり、更に好ましくはビフェニレン基、又はベンゼントリイル基である。LO1は前述の置換基群Aから選ばれる置換基を有していてもよく、置換基を有する場合の置換基としてはアルキル基、アリール基、又はシアノ基が好ましい。LO1の具体例としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000036
 nO1は2~6の整数を表し、好ましくは2~4の整数であり、より好ましくは2又は3である。nO1は、素子効率の観点では最も好ましくは3であり、素子の耐久性の観点では最も好ましくは2である。
 一般式(O-1)で表される化合物は、より好ましくは下記一般式(O-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000037
 (一般式(O-2)中、RO1はアルキル基、アリール基、又はヘテロアリール基を表す。RO2~RO4はそれぞれ独立に、水素原子、アルキル基、アリール基、又はヘテロアリール基を表す。AO1~AO4はそれぞれ独立に、C-R又は窒素原子を表す。Rは水素原子、アルキル基、アリール基、又はヘテロアリール基を表し、複数のRは同じでも異なっていてもよい。)
 RO1及びAO1~AO4は、前記一般式(O-1)中のRO1及びAO1~AO4と同義であり、またそれらの好ましい範囲も同様である。
 R02~R04はそれぞれ独立に、水素原子、アルキル基(好ましくは炭素数1~8)、アリール基(好ましくは炭素数6~30)、又はヘテロアリール基(好ましくは炭素数4~12)を表し、これらは前述の置換基群Aから選ばれる置換基を有していてもよい。R02~R04として好ましくは水素原子、アルキル基、又はアリール基であり、より好ましくは水素原子、又はアリール基であり、最も好ましくは水素原子である。
 前記一般式(O-1)で表される化合物は、高温保存時の安定性、高温駆動時、駆動時の発熱に対して安定して動作させる観点から、ガラス転移温度(Tg)は100℃~300℃であることが好ましく、120℃~300℃であることがより好ましく、120℃~300℃であることが更に好ましく、140℃~300℃であることが更により好ましい。
 一般式(O-1)で表される化合物の具体例を以下に示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 前記一般式(O-1)で表される化合物は、特開2001-335776号に記載の方法で合成可能である。合成後、カラムクロマトグラフィー、再結晶、再沈殿などによる精製を行った後、昇華精製により精製することが好ましい。昇華精製により有機不純物を分離できるだけではなく、無機塩や残留溶媒、水分等を効果的に取り除くことが可能である。
 本発明の発光素子において、一般式(O-1)で表される化合物は発光層と陰極との間の有機層に含有されるが、発光層に隣接する陰極側の層に含有されることが好ましい。
 一般式(O-1)で表される化合物は、添加する有機層の全質量に対して70~100質量%含まれることが好ましく、85~100質量%含まれることがより好ましい。
 本発明の有機電界発光素子において、電子注入層、電子輸送層に用いられるその他の好ましい材料としては、例えば特開平9-194487等に記載のシロール化合物、特開2006-73581等に記載のホスフィンオキサイド化合物、特開2005-276801、特開2006-225320、WO2005/085387等に記載の含窒素芳香族ヘテロ六員環化合物、WO2003/080760、WO2005/085387等に記載の含窒素芳香族ヘテロ六員構造とカルバゾール構造を有するもの、US2009/0009065、WO2010/134350、特表2010-535806等に記載の芳香族炭化水素化合物(ナフタレン化合物、アントラセン化合物、トリフェニレン化合物、フェナントレン化合物、ピレン化合物、フルオランテン化合物、等)、等を挙げることができる。
<保護層>
 本発明において、有機電界素子全体は、保護層によって保護されていてもよい。
 保護層については、特開2008-270736号公報の段落番号〔0169〕~〔0170〕に記載の事項を本発明に適用することができる。なお、保護層の材料は無機物であっても、有機物であってもよい。
<封止容器>
 本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
 封止容器については、特開2008-270736号公報の段落番号〔0171〕に記載の事項を本発明に適用することができる。
<駆動方法>
 本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト~15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
 本発明の有機電界発光素子の駆動方法については、特開平2-148687号、同6-301355号、同5-29080号、同7-134558号、同8-234685号、同8-241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書等に記載の駆動方法を適用することができる。
 本発明の有機電界発光素子の外部量子効率としては、5%以上が好ましく、6%以上がより好ましく、7%以上が更に好ましい。外部量子効率の数値は20℃で素子を駆動したときの外部量子効率の最大値、若しくは、20℃で素子を駆動したときの300~400cd/m付近での外部量子効率の値を用いることができる。
 本発明の有機電界発光素子の内部量子効率は、30%以上であることが好ましく、50%以上が更に好ましく、70%以上が更に好ましい。素子の内部量子効率は、外部量子効率を光取り出し効率で除して算出される。通常の有機EL素子では光取り出し効率は約20%であるが、基板の形状、電極の形状、有機層の膜厚、無機層の膜厚、有機層の屈折率、無機層の屈折率等を工夫することにより、光取り出し効率を20%以上にすることが可能である。
<発光波長>
 本発明の有機電界発光素子は、その発光波長に制限はないが、緑色の発光に用いるのが好ましい。その中でも、本発明の有機電界発光素子では、前記一般式(1)で表される化合物をりん光発光材料として用いて発光させることが好ましく、その中でも特に緑色でりん光発光させることが好ましい。
 本発明の有機電界発光素子の極大発光波長は好ましくは495nm以上560nm未満であり、より好ましくは500nm以上550nm未満であり、特に好ましくは505nm以上540nm未満である。
<本発明の有機電界発光素子の用途>
 本発明の有機電界発光素子は、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、又は光通信等に好適に利用できる。特に、発光装置、照明装置、表示装置等の発光輝度が高い領域で駆動されるデバイスに好ましく用いられる。
[発光装置]
 本発明の発光装置は、本発明の有機電界発光素子を含むことを特徴とする。
 次に、図2を参照して本発明の発光装置について説明する。
 本発明の発光装置は、前記有機電界発光素子を用いてなる。
 図2は、本発明の発光装置の一例を概略的に示した断面図である。図2の発光装置20は、透明基板(支持基板)2、有機電界発光素子10、封止容器16等により構成されている。
 有機電界発光素子10は、基板2上に、陽極(第一電極)3、有機層11、陰極(第二電極)9が順次積層されて構成されている。また、陰極9上には、保護層12が積層されており、更に、保護層12上には接着層14を介して封止容器16が設けられている。なお、各電極3、9の一部、隔壁、絶縁層等は省略されている。
 ここで、接着層14としては、エポキシ樹脂等の光硬化型接着剤や熱硬化型接着剤を用いることができ、例えば熱硬化性の接着シートを用いることもできる。
 本発明の発光装置の用途は特に制限されるものではなく、例えば、照明装置のほか、テレビ、パーソナルコンピュータ、携帯電話、電子ペーパ等の表示装置とすることができる。
[照明装置]
 本発明の照明装置は、本発明の有機電界発光素子を含むことを特徴とする。
 次に、図3を参照して本発明の照明装置について説明する。
 図3は、本発明の照明装置の一例を概略的に示した断面図である。本発明の照明装置40は、図3に示すように、前述した有機EL素子10と、光散乱部材30とを備えている。より具体的には、照明装置40は、有機EL素子10の基板2と光散乱部材30とが接触するように構成されている。
 光散乱部材30は、光を散乱できるものであれば特に制限されないが、図3においては、透明基板31に微粒子32が分散した部材とされている。透明基板31としては、例えば、ガラス基板を好適に挙げることができる。微粒子32としては、透明樹脂微粒子を好適に挙げることができる。ガラス基板及び透明樹脂微粒子としては、いずれも、公知のものを使用できる。このような照明装置40は、有機電界発光素子10からの発光が散乱部材30の光入射面30Aに入射されると、入射光を光散乱部材30により散乱させ、散乱光を光出射面30Bから照明光として出射するものである。
[表示装置]
 本発明の表示装置は、本発明の有機電界発光素子を含むことを特徴とする。
 本発明の表示装置としては、例えば、テレビ、パーソナルコンピュータ、携帯電話、電子ペーパ等の表示装置とすることなどを挙げることができる。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<材料の調製>
(発光材料の合成)
 前記一般式(1)で表される化合物である下記発光材料(Pt-1)~(Pt-8)を、特開2005-310773号公報の実施例にしたがって合成した。
Figure JPOXMLDOC01-appb-C000040
(ホスト材料の合成)
 前記一般式(H-1)で表される化合物である下記ホスト材料(EH-1)~(EH-7)を、特開2011-91355号公報、WO2008-056746号公報、WO2007-063754号公報、WO2010/131855号公報等にしたがって合成した。
Figure JPOXMLDOC01-appb-C000041
[実施例1]
<有機電界発光素子作製と評価>
 有機電界発光素子の作製に用いた材料は全て昇華精製を行い、高速液体クロマトグラフィー(東ソーTSKgel ODS-100Z)により純度(254nmの吸収強度面積比)が99.9%以上であることを確認した。
 各実施例および比較例で有機電界発光素子の作製に用いた発光材料以外の材料の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 厚み0.5mm、2.5cm角のITO膜を有するガラス基板(ジオマテック社製、表面抵抗10Ω/□(Ω/sq.))を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。この透明陽極(ITO膜)上に真空蒸着法にて以下の有機層を順次蒸着した。
 第1層(電荷発生層):化合物(A):膜厚10nm
 第2層(正孔輸送層):HTL-1:膜厚30nm
 第3層(発光層):EH-1(ホスト化合物)及び発光材料Pt-1(ホスト化合物:発光材料の質量比85:15):膜厚40nm
 第4層(電子輸送層):ETL-1:膜厚40nm
 この上に、フッ化リチウム1nm及び金属アルミニウム100nmをこの順に蒸着し陰極とした。
 この積層体を、大気に触れさせることなく、窒素ガスで置換したグローブボックス内に入れ、ガラス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止し、実施例1の有機電界発光素子を得た。
[実施例2~17、比較例1~7]
 実施例1の有機電界発光素子の作製において、第3層の発光材料Pt-1を、下記表1に示す化合物に置き換える以外は実施例1と同様にして、実施例2~17及び比較例1~7の有機電界発光素子を作製した。
[評価]
 これらの各実施例および比較例の有機電界発光素子を以下の方法で、効率、耐久性、駆動電圧の観点で評価した。得られた結果を下記表1に示す。
 (駆動電圧)
 各実施例および比較例の有機電界発光素子を輝度が3500cd/mになるように直流電圧を印加して発光させた。この時の印加電圧を駆動電圧評価の指標とした。駆動電圧が6V未満である場合を○、6V以上8V未満である場合を△、8V以上である場合を×として、下記表1に示した。
 (外部量子効率)
 東陽テクニカ製ソースメジャーユニット2400を用いて、直流電圧を各実施例および比較例の有機電界発光素子に印加し発光させ、その輝度をトプコン社製輝度計BM-8を用いて測定した。発光スペクトルと発光ピーク波長は浜松ホトニクス製スペクトルアナライザーPMA-11を用いて測定した。これらを元に輝度が3500cd/m付近の外部量子効率を輝度換算法により算出した。
 外部量子効率が15%以上である場合を◎、10%以上15%未満である場合を○、5%以上10%未満である場合を△、5%未満である場合を×として、下記表1に示した。
 (耐久性)
 各実施例および比較例の有機電界発光素子を、室温(20℃)で輝度が3500cd/mになるように直流電圧を印加して発光させ続け、輝度が3395cd/mになるまでに要した時間を耐久性の指標とした。3395cd/mになるまでの耐久時間が、比較化合物(RH-1)をホスト材料として用いた比較例1の有機電界発光素子の耐久時間に対して何倍になっているか算出し、下記表1に示した。
 比較例1の有機電界発光素子の耐久時間に対して、◎は10倍以上を表し、○○は5倍以上10倍未満を表し、○は3倍以上5倍未満を表し、×は1倍以上3倍未満を表し、××は0.1倍以上1倍未満を表す。
Figure JPOXMLDOC01-appb-T000046
 上記表1より、前記一般式(1)で表される化合物を発光材料として用い、かつ、ホスト材料として前記一般式(H-1)で表される化合物を用いることで、低駆動電圧で発光効率に優れ、かつ、耐久性に優れた有機電界発光素子が得られることが分かった。
 発光装置、表示装置、照明装置の場合、各画素部で高い電流密度を通じて瞬間的に高輝度発光させる必要があり、本発明の発光素子はそのような場合に発光効率が高くなるように設計されているため、有利に利用することができる。
 また、本発明の素子は耐久性にも優れ、発光装置、表示装置、照明装置に好適である。
2・・・基板
3・・・陽極
4・・・正孔注入層
5・・・正孔輸送層
6・・・発光層
7・・・正孔ブロック層
8・・・電子輸送層
9・・・陰極
10・・・有機電界発光素子(有機EL素子)
11・・・有機層
12・・・保護層
14・・・接着層
16・・・封止容器
20・・・発光装置
30・・・光散乱部材
30A・・・光入射面
30B・・・光出射面
31・・・透明基板
32・・・微粒子
40・・・照明装置

Claims (8)

  1.  基板と、
     該基板上に配置され、陽極及び陰極を含む一対の電極と、
     該電極間に配置され、発光層を含む少なくとも一層の有機層を有し、
     該発光層が、少なくとも一種の下記一般式(1)で表される発光材料および少なくとも一種の下記一般式(H-1)で表されるホスト材料を含むことを特徴とする有機電界発光素子。
    一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、LはO、NRC0またはCRC1C2を表し、RC0~RC2はそれぞれ独立に水素原子または置換基を表す。RC3~RC6はそれぞれ独立に置換基を表す。nC3およびnC6はそれぞれ独立に0~3の整数を表し、nC4およびnC5はそれぞれ独立に0~4の整数を表す。nC3~nC6が2以上である場合、複数個のRC3~RC6はそれぞれ同じであっても異なってもよく、互いに連結して環を形成してもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(H-1)中、RH111~RH118はそれぞれ独立に水素原子または置換基を表し、XはO、S、NRH119、CRH120H121、SiRH122H123のいずれかを表し、RH119~RH123はそれぞれ独立に置換基を表す。環Aはベンゼン環を表し、環Bは5員環または6員環を表す。)
  2.  前記一般式(1)で表される発光材料が、下記一般式(11)で表される発光材料であることを特徴とする請求項1に記載の有機電界発光素子。
    一般式(11)
    Figure JPOXMLDOC01-appb-C000003
    (一般式(11)中、RC1およびRC2はそれぞれ独立に水素原子または置換基を表し、RC3~RC6はそれぞれ独立に置換基を表す。nC3およびnC6は0~3の整数を表し、nC4およびnC5は0~4の整数を表す。nC3~nC6が2以上である場合、複数個のRC3~RC6は同じであっても異なってもよく、互いに連結して環を形成してもよい。)
  3.  前記一般式(H-1)で表されるホスト材料が、下記一般式(H-2)、一般式(H-3)、一般式(H-4)および一般式(H-5)のいずれかで表されることを特徴とする請求項1または2に記載の有機電界発光素子。
    一般式(H-2)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(H-2)中、RH211~RH225はそれぞれ独立に水素原子または置換基を表し、XH2はO、Sのいずれかを表す。)
    一般式(H-3)
    Figure JPOXMLDOC01-appb-C000005
    (一般式(H-3)中、RH311~RH325はそれぞれ独立に水素原子または置換基を表し、XH3はO、Sのいずれかを表す。)
    一般式(H-4)
    Figure JPOXMLDOC01-appb-C000006
    (一般式(H-4)中、RH411~RH425はそれぞれ独立に水素原子または置換基を表し、XH4はO、S、NRH426、CRH427H428、SiRH429H430のいずれかを表し、RH426~RH430はそれぞれ独立に水素原子または置換基を表す。)
    一般式(H-5)
    Figure JPOXMLDOC01-appb-C000007
    (一般式(H-5)中、RH511~RH525はそれぞれ独立に水素原子または置換基を表し、XH5はO、S、NRH526、CRH527H528、SiRH529H530のいずれかを表し、RH526~RH530はそれぞれ独立に水素原子または置換基を表す。)
  4.  前記一般式(H-1)で表されるホスト材料が、前記一般式(H-2)または一般式(H-5)で表されることを特徴とする請求項3に記載の有機電界発光素子。
  5.  前記一般式(H-1)で表されるホスト材料が、前記一般式(H-2)で表されることを特徴とする請求項3または4に記載の有機電界発光素子。
  6.  請求項1~5のいずれか一項に記載の有機電界発光素子を用いた発光装置。
  7.  請求項1~5のいずれか一項に記載の有機電界発光素子を用いた表示装置。
  8.  請求項1~5のいずれか一項に記載の有機電界発光素子を用いた照明装置。
PCT/JP2012/080132 2011-11-24 2012-11-21 有機電界発光素子、並びに該有機電界発光素子を用いた発光装置、表示装置及び照明装置 WO2013077345A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/351,156 US10763440B2 (en) 2011-11-24 2012-11-21 Organic electroluminescent element, and light emitting device, display device and lighting device each using organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-255990 2011-11-24
JP2011255990A JP2014225484A (ja) 2011-11-24 2011-11-24 有機電界発光素子、並びに該有機電界発光素子を用いた発光装置、表示装置及び照明装置

Publications (1)

Publication Number Publication Date
WO2013077345A1 true WO2013077345A1 (ja) 2013-05-30

Family

ID=48469787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080132 WO2013077345A1 (ja) 2011-11-24 2012-11-21 有機電界発光素子、並びに該有機電界発光素子を用いた発光装置、表示装置及び照明装置

Country Status (4)

Country Link
US (1) US10763440B2 (ja)
JP (1) JP2014225484A (ja)
TW (2) TWI642759B (ja)
WO (1) WO2013077345A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010380A1 (en) 2014-07-17 2016-01-21 Rohm And Haas Electronic Materials Korea Ltd. Electron transport material and organic electroluminescent device comprising the same
US20170222159A1 (en) * 2014-07-29 2017-08-03 Rohm And Haas Electronic Materials Korea Ltd. Electron buffering material and organic electroluminescent device
JP2017522732A (ja) * 2014-07-17 2017-08-10 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 電子輸送物質およびそれを含む有機エレクトロルミネセント素子
US20170365789A1 (en) * 2015-01-13 2017-12-21 Guangzhou Chinaray Optoelectronic Materials Ltd. Compound, mixture comprising the same, composition and organic electronic device
US11542252B2 (en) 2018-12-28 2023-01-03 Samsung Electronics Co., Ltd. Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459228B2 (ja) * 2014-06-02 2019-01-30 セイコーエプソン株式会社 発光装置、電子機器および検査方法
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
JP7138466B2 (ja) * 2018-04-09 2022-09-16 日本放送協会 有機エレクトロルミネッセンス素子、表示装置、照明装置
CN114075203B (zh) * 2021-06-17 2023-06-13 陕西莱特迈思光电材料有限公司 一种有机化合物以及使用其的有机电致发光器件和电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310733A (ja) * 2003-06-02 2005-11-04 Fuji Photo Film Co Ltd 有機電界発光素子及び錯体化合物
WO2009148015A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 ハロゲン化合物、多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2009148062A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2010131855A2 (ko) * 2009-05-13 2010-11-18 덕산하이메탈(주) 오원자 헤테로고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011057701A1 (de) * 2009-11-10 2011-05-19 Merck Patent Gmbh Organische verbindungen für elektroluminiszenz vorrichtungen
WO2012136295A1 (de) * 2011-04-05 2012-10-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2012163471A1 (de) * 2011-06-03 2012-12-06 Merck Patent Gmbh Metallkomplexe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2924094B1 (en) * 2003-06-02 2017-04-05 UDC Ireland Limited Organic electroluminescent devices and metal complex compounds
CN100551994C (zh) * 2003-06-02 2009-10-21 富士胶片株式会社 有机电致发光装置和金属络合化合物
US8049411B2 (en) * 2008-06-05 2011-11-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310733A (ja) * 2003-06-02 2005-11-04 Fuji Photo Film Co Ltd 有機電界発光素子及び錯体化合物
WO2009148015A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 ハロゲン化合物、多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2009148062A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2010131855A2 (ko) * 2009-05-13 2010-11-18 덕산하이메탈(주) 오원자 헤테로고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011057701A1 (de) * 2009-11-10 2011-05-19 Merck Patent Gmbh Organische verbindungen für elektroluminiszenz vorrichtungen
WO2012136295A1 (de) * 2011-04-05 2012-10-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2012163471A1 (de) * 2011-06-03 2012-12-06 Merck Patent Gmbh Metallkomplexe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010380A1 (en) 2014-07-17 2016-01-21 Rohm And Haas Electronic Materials Korea Ltd. Electron transport material and organic electroluminescent device comprising the same
JP2017522732A (ja) * 2014-07-17 2017-08-10 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 電子輸送物質およびそれを含む有機エレクトロルミネセント素子
US20170222159A1 (en) * 2014-07-29 2017-08-03 Rohm And Haas Electronic Materials Korea Ltd. Electron buffering material and organic electroluminescent device
US20170365789A1 (en) * 2015-01-13 2017-12-21 Guangzhou Chinaray Optoelectronic Materials Ltd. Compound, mixture comprising the same, composition and organic electronic device
US11542252B2 (en) 2018-12-28 2023-01-03 Samsung Electronics Co., Ltd. Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound

Also Published As

Publication number Publication date
TW201738360A (zh) 2017-11-01
US20140306206A1 (en) 2014-10-16
US10763440B2 (en) 2020-09-01
JP2014225484A (ja) 2014-12-04
TWI630258B (zh) 2018-07-21
TW201329198A (zh) 2013-07-16
TWI642759B (zh) 2018-12-01

Similar Documents

Publication Publication Date Title
JP6100476B2 (ja) 有機電界発光素子、有機電界発光素子用材料並びに該有機電界発光素子を用いた発光装置、表示装置及び照明装置
JP5875468B2 (ja) 有機電界発光素子用材料、有機電界発光素子並びに該素子を用いた発光装置、表示装置及び照明装置
JP5753027B2 (ja) 有機電界発光素子、化合物、並びに該素子を用いた発光装置、表示装置及び照明装置
WO2013077345A1 (ja) 有機電界発光素子、並びに該有機電界発光素子を用いた発光装置、表示装置及び照明装置
JP5975611B2 (ja) 有機電界発光素子、並びに該素子を用いた発光装置、表示装置及び照明装置
JP6009817B2 (ja) 電荷輸送材料、有機電界発光素子、発光装置、表示装置および照明装置
WO2012141197A1 (ja) 有機電界発光素子
JP5946317B2 (ja) 有機電界発光素子とそれに用いることができる化合物および有機電界発光素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
JP5840417B2 (ja) 有機電界発光素子、有機電界発光素子用の発光材料、並びに該素子を用いた発光装置、表示装置及び照明装置
US11844229B2 (en) Electroluminescent element, and light emitting device, display device and lighting device each using organic electroluminescent element
JP6347909B2 (ja) 有機電界発光素子、該素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
JP6118034B2 (ja) 有機電界発光素子とそれに用いることができる化合物および有機電界発光素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
JP6046884B2 (ja) 有機電界発光素子、該素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
JP2013093541A (ja) 有機電界発光素子とそれに用いることができる化合物および有機電界発光素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
JP5890980B2 (ja) 有機電界発光素子、有機電界発光素子用の化合物、並びに該素子を用いた発光装置、表示装置及び照明装置
WO2013024729A1 (ja) 有機電界発光素子、該素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
WO2013024730A1 (ja) 有機電界発光素子、有機電界発光素子用の化合物、並びに該素子を用いた発光装置、表示装置及び照明装置
WO2012141249A1 (ja) 有機電界発光素子
JP6012148B2 (ja) 有機電界発光素子、化合物、並びに該素子を用いた発光装置、表示装置及び照明装置
JP6224028B2 (ja) 有機電界発光素子、化合物、並びに該素子を用いた発光装置、表示装置及び照明装置
JP2013084732A (ja) 有機電界発光素子及び該素子用発光材料並びに発光装置、表示装置及び照明装置
JP6371320B2 (ja) 有機電界発光素子、該素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14351156

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/09/2014)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 12852098

Country of ref document: EP

Kind code of ref document: A1