WO2013077298A1 - 疲労強度に優れる窒化用熱延鋼板、窒化用冷延鋼板及びそれらの製造方法、並びにそれらを用いた疲労強度に優れた自動車部品 - Google Patents

疲労強度に優れる窒化用熱延鋼板、窒化用冷延鋼板及びそれらの製造方法、並びにそれらを用いた疲労強度に優れた自動車部品 Download PDF

Info

Publication number
WO2013077298A1
WO2013077298A1 PCT/JP2012/079991 JP2012079991W WO2013077298A1 WO 2013077298 A1 WO2013077298 A1 WO 2013077298A1 JP 2012079991 W JP2012079991 W JP 2012079991W WO 2013077298 A1 WO2013077298 A1 WO 2013077298A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
nitriding
rolled steel
rolling
Prior art date
Application number
PCT/JP2012/079991
Other languages
English (en)
French (fr)
Inventor
栄作 桜田
俊二 樋渡
邦夫 林
鈴木 眞一
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to BR112014011809-4A priority Critical patent/BR112014011809B1/pt
Priority to JP2013545918A priority patent/JP5664797B2/ja
Priority to MX2014005863A priority patent/MX363871B/es
Priority to CN201280056850.2A priority patent/CN103958713B/zh
Priority to KR1020147013175A priority patent/KR101626227B1/ko
Priority to US14/358,775 priority patent/US9777353B2/en
Publication of WO2013077298A1 publication Critical patent/WO2013077298A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0269Cleaning
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding

Definitions

  • the present invention is a nitriding steel sheet having excellent fatigue strength that secures workability and is capable of obtaining a hard nitrided layer by nitriding treatment such as gas nitriding, gas soft nitriding, salt bath soft nitriding, etc.
  • the present invention relates to an automotive part having a hard nitrided layer and excellent fatigue characteristics.
  • the surface hardening treatment is performed for the purpose of improving wear resistance and fatigue strength, and typical surface hardening treatment methods include carburizing, nitriding, induction hardening, and the like.
  • typical surface hardening treatment methods include carburizing, nitriding, induction hardening, and the like.
  • nitriding such as gas nitriding, gas soft nitriding, and salt bath soft nitriding is performed below the transformation point to austenite, so that several hours of processing time is required, but heat treatment strain can be reduced. It has the advantage of being able to.
  • nitriding is a surface hardening treatment that is suitable for parts that have been subjected to precision machining, such as crankshafts and transmission gears, or members that require product shape accuracy after hardening of the damper disk and damper plate.
  • nitriding treatments there are gas soft nitriding, salt bath soft nitriding, etc., but gas nitriding performed in an ammonia atmosphere can provide high surface hardness, but nitrogen diffusion is slow and generally treatment for 20 hours or more. I need time.
  • a soft nitriding treatment such as gas soft nitriding or salt bath soft nitriding, which is performed in a bath or atmosphere containing carbon together with nitrogen, can increase the diffusion rate of nitrogen.
  • gas soft nitriding or salt bath soft nitriding which is performed in a bath or atmosphere containing carbon together with nitrogen, can increase the diffusion rate of nitrogen.
  • a nitriding treatment it is possible to obtain a component having an increased surface hardened layer depth in a few hours.
  • Such a nitriding treatment forms a surface hardened layer having a high surface hardening depth, suppresses the occurrence of fatigue cracks on the surface of the component, and improves fatigue durability.
  • Patent Document 1 steel containing a nitride-forming alloy has been proposed, and is disclosed in Patent Document 1, for example.
  • gas soft-nitrided steel sheets with improved workability during press forming before nitriding and surface hardness characteristics of the parts after nitriding have been proposed.
  • Patent Documents 2 and 3 elements such as Al, Cr, and V, which are nitride forming elements, are effective for improving the surface hardness by gas soft nitriding treatment, and are contained as alloy elements of the steel sheet for gas soft nitriding. .
  • Fatigue characteristics after gas soft nitriding treatment need to increase surface hardness and depth by Al, Cr, V nitride.
  • V enhances the depth of the hardened layer by promoting the diffusion of N, and Cr and Al are effective for increasing the surface hardness.
  • Al and V cause fine nitrides to precipitate linearly at the austenite grain boundaries. , Significantly reduce the burring formability and stretch flangeability.
  • V increases the strength by precipitation of VC and lowers the workability. In order to avoid such VC precipitation strengthening, it is effective to set the cooling stop temperature after hot rolling to 500 ° C.
  • the present invention relates to a hot rolled steel sheet for nitriding, a cold rolled steel sheet for nitriding excellent in fatigue strength capable of deepening the surface hardened layer for improving workability before gas soft nitriding and improving fatigue strength after processing. These manufacturing methods make it possible to provide automobile parts with excellent fatigue strength with increased hardness of the nitrided surface layer.
  • the present inventors have studied a steel sheet alloy composition and manufacturing method capable of obtaining a surface hardening depth without impairing the formability of automobile parts by nitriding treatment such as gas soft nitriding and salt bath soft nitriding, and also the hardness of parts. did.
  • a steel containing an appropriate amount of Cr and V contains an appropriate amount of B, further defines a skin pass reduction ratio range in the manufacturing process, and a line load F obtained by dividing the rolling mill load under the skin pass pressure by the steel plate width.
  • F / T which is a ratio of (kg / mm) and the load applied in the longitudinal direction of the steel sheet and the load T (kg / mm 2 ) per unit area on the rolling exit side, to a predetermined range
  • the present invention (1) By mass%, C is 0.0002% to 0.07%, Si is 0.0010% to 0.50%, Mn is 0.10% to 1.33%, P Is 0.003% or more, 0.02% or less, S is 0.001% or more, 0.02% or less, Cr is more than 0.80%, 1.20% or less, Al is 0.10% or more, 0 .50% or less, V is 0.05% or more, 0.10% or less, Ti is 0.005% or more, 0.10% or less, B is 0.0001% or more, 0.0015% or less, The balance is Fe and inevitable impurities, and the dislocation density within 50 ⁇ m in the thickness direction from the surface of the steel sheet is 2.0 times or more and 10.0 times or less compared to the dislocation density at the 1/4 position in the thickness direction.
  • the composition further comprises one or both of Mo 0.001% or more and 0.20% or less and Nb 0.001% or more and 0.050% or less in terms of mass%.
  • Mo 0.001% or more and 0.20% or less and Nb 0.001% or more and 0.050% or less in terms of mass%.
  • C is 0.0002% to 0.07%
  • Si is 0.0010% to 0.50%
  • Mn is 0.10% to 1.33%
  • S is 0.001% or more, 0.02% or less
  • Cr is more than 0.80%, 1.20% or less
  • Al is 0.10% or more, 0 .50% or less
  • V is 0.05% or more, 0.10% or less
  • Ti is 0.005% or more, 0.10% or less
  • B is 0.0001% or more, 0.0015% or less
  • C is 0.0002% or more and 0.07% or less
  • Si is 0.0010% or more and 0.50% or less
  • Mn is 0.10% or more and 1.33% or less
  • S is 0.001% or more, 0.02% or less
  • Cr is more than 0.80%, 1.20% or less
  • Al is 0.10% or more, 0 .50% or less
  • V is 0.05% or more, 0.10% or less
  • Ti is 0.005% or more, 0.10% or less
  • B is 0.0001% or more, 0.0015% or less
  • the rolling mill load is steel plate the ratio of plate width divided by linear load F (kg / mm) and per unit area is loaded in the longitudinal direction of the steel sheet load T (kg / mm 2), F / T Method for producing a good cold-rolled
  • C is 0.0002% or more and 0.07% or less
  • Si is 0.0010% or more and 0.50% or less
  • Mn is 0.10% or more and 1.33% or less
  • S is 0.001% or more, 0.02% or less
  • Cr is more than 0.80%, 1.20% or less
  • Al is 0.10% or more, 0 .50% or less
  • V is 0.05% or more, 0.10% or less
  • Ti is 0.005% or more, 0.10% or less
  • B is 0.0001% or more, 0.0015% or less
  • the balance is Fe and inevitable impurities, and the dislocation density within 50 ⁇ m in the thickness direction from the surface of the steel sheet is 2.0 times or more and 10.0 times or less compared to the dislocation density at the 1/4 position in the thickness direction.
  • the present invention it is possible to provide a steel sheet that has excellent press formability before nitriding treatment and from which a deep surface hardened layer can be obtained by nitriding treatment, and further an automotive part having a deep surface hardened layer. Become. As a result, the industrial contribution is extremely remarkable, such as a nitriding part with low heat treatment strain and high fatigue strength.
  • F / T which is the ratio of the line load F (kg / mm) obtained by dividing the skin pass rolling mill load by the steel plate width and the load T (kg / mm 2 ) per unit area loaded in the longitudinal direction of the steel plate, and the steel plate
  • F / T which is the ratio of the line load F (kg / mm) obtained by dividing the skin pass rolling mill load by the steel plate width and the load T (kg / mm 2 ) per unit area loaded in the longitudinal direction of the steel plate, and the steel plate
  • F / T which is the ratio of the line load F (kg / mm) obtained by dividing the skin pass rolling mill load by the steel plate width and the load T (kg / mm 2 ) per unit area loaded in the longitudinal direction of the steel plate, and the steel plate
  • F / T which is the ratio of the line load F (kg / mm) obtained by dividing the skin pass rolling mill load by the steel plate width and the load T (kg / mm 2 ) per unit area loaded in
  • the hot-rolled steel sheet for nitriding and the cold-rolled steel sheet for nitriding are steel plates used as materials for nitriding parts.
  • the said steel plate is manufactured with the below-mentioned manufacturing method.
  • the automobile part is an automobile part made of the hot-rolled steel sheet for nitriding and the cold-rolled steel sheet for nitriding of the present invention and subjected to nitriding after forming.
  • nitriding treatment means a treatment of diffusing nitrogen in the surface layer of steel and hardening the surface layer, and among these, a treatment of diffusing nitrogen and carbon in the surface layer of steel and hardening the surface layer is “ This is called “soft nitriding”.
  • gas nitriding, gas soft nitriding, salt bath soft nitriding, and the like can be given.
  • gas soft nitriding and salt bath soft nitriding are soft nitriding treatments.
  • the product is a nitriding component as a result of nitriding that the steel sheet surface is hardened compared to before nitriding, and that the nitrogen concentration of the steel sheet surface layer is increased.
  • the present invention is applicable to any of the hot-rolled steel sheet for nitriding and the cold-rolled steel sheet for nitriding and the automobile parts using them.
  • C is an element effective for improving the strength by precipitating carbides of other carbide forming elements, and further contributing to precipitation strengthening by precipitating alloy carbides during nitriding and increasing the surface hardness after nitriding. It is. When C exceeds 0.07%, the precipitation density of cementite is increased and the burring formability is impaired. On the other hand, if it is less than 0.0002%, the grain boundary strength is lowered, so that the secondary work brittleness is lowered and the decarburization cost in steel making becomes too large. Therefore, the C content is set to be 0.0002% or more and 0.07% or less.
  • Si is an element useful as a deoxidizing agent, but does not contribute to the improvement of surface hardness in the nitriding treatment, and reduces the surface hardening depth. Therefore, it is preferable to limit the Si content to 0.50% or less. On the other hand, in order to significantly reduce Si, the production cost increases, so the Si content is preferably 0.001% or more. Therefore, the Si content is 0.001 or more and 0.50% or less. In order to obtain a deeper surface hardening depth, the more preferable upper limit of the Si content is 0.1% or less.
  • Mn is an element useful for delaying pearlite transformation in a temperature range of Ac1 or lower. If Mn is less than 0.10%, the effect cannot be obtained. On the other hand, when Mn exceeds 1.33%, the MnS band structure is formed remarkably, and the roughness of the shearing end face is increased, resulting in an extreme decrease in shear end face fatigue characteristics. Therefore, the Mn content is set to 0.10% or more and 1.33% or less.
  • the S content is set to be 0.001% or more and 0.02% or less.
  • Cr is an extremely effective element that improves the surface hardness by forming carbonitrides with N intruding during nitriding and C in steel. If the Cr content is 0.8% or less, sufficient surface hardness cannot be obtained. On the other hand, when the Cr content exceeds 1.20%, the effect is saturated. Therefore, the Cr content is more than 0.8% and not more than 1.20%.
  • Al is an element effective for forming a nitride with N that penetrates during nitriding and increasing the surface hardness. However, if Al is contained excessively, the effective hardening depth may become shallow. When Al is less than 0.10%, sufficient surface hardness is not exhibited. When the content exceeds 0.50%, the affinity with N is high, and the surface hardening depth is reduced by suppressing diffusion of nitrogen in the depth direction. Therefore, the Al content is set to 0.10% or more and 0.50% or less. In addition, since surface hardness increases notably by containing Al 0.3% or more, Al content is preferably 0.30% or more.
  • V is an element that contributes to the strength of the steel by generating carbonitride in the hot rolling process.
  • Cr and Al and a composite carbonitride are formed, which is extremely effective for hardening the nitride layer.
  • V contains 0.05% or more, the surface hardness and the surface hardening depth are remarkably improved.
  • the content of V exceeds 0.10%, the structure strengthening due to the improvement in hardenability and the steel sheet strength due to precipitation strengthening are markedly increased, and the formability is deteriorated due to the decrease in elongation.
  • V content is 0.05% or more and 0.10% or less.
  • a more preferable range of the content is 0.07% or more.
  • the range of Ti is determined by the balance with Al.
  • Al is an extremely effective element that increases the surface hardness by forming a nitride after nitriding.
  • Al precipitates in a point arrangement at the grain boundaries in the ⁇ region. Therefore, if Al nitride is precipitated before nitriding, the end surface roughness during shearing is increased and the shear end surface fatigue characteristics are reduced.
  • Ti has an affinity for nitrogen higher than that of Al, and Ti nitride is preferentially formed over Al. Therefore, by containing Ti, it is possible to suppress the deterioration of the shear end face fatigue characteristics due to the above-described Al nitride.
  • the roughness of the shear end face is the surface roughness of the end face at the time of shearing processing, which means the average roughness, and by increasing this roughness, excessive stress concentration on the shear end face during fatigue deformation And fatigue properties tend to be reduced.
  • the said roughness uses the measured value of the thickness direction of a shearing fracture surface.
  • B dissolves in the crystal grain boundary, thereby suppressing grain boundary segregation of P which is a grain boundary embrittlement element and improving secondary work brittleness. Moreover, the roughness of the end face at the time of shearing is reduced, and the shear end face fatigue characteristics are improved. If the B content is less than 0.0001%, the effect is not exhibited. Moreover, when it contains exceeding 0.0015%, in order to delay a ferrite transformation, the elongation of a steel plate will be reduced. Therefore, the B content is set to be 0.0001% or more and 0.0015% or less.
  • Mo and Nb form a composite carbonitride with Cr and Al and are extremely effective for hardening the nitride layer. If the contents of Mo and Nb are less than 0.001%, the effect is not exhibited. If the Mo content exceeds 0.20%, the effect of improving the surface hardness due to the formation of Mo carbonitride is reduced, and the ductility is reduced. Therefore, the Mo content is set to 0.001% to 0.20%. On the other hand, if Nb is contained in an amount exceeding 0.050%, ⁇ recrystallization during hot rolling of the steel sheet is delayed, so that extremely high anisotropy is produced, thereby reducing the burring formability. Therefore, the Nb content is set to be 0.001% or more and 0.05% or less.
  • Dislocations promote diffusion in steel. During the nitriding treatment, the diffusion of nitrogen is promoted and the surface hardening depth is increased. It is found for the first time in the present invention that when the dislocation density within 50 ⁇ m in the thickness direction from the surface of the steel sheet is 2.0 times or more compared to the dislocation density at a position of 1/4 in the thickness direction, the effect is exhibited. It was. On the other hand, when the dislocation density within 50 ⁇ m from the surface in the plate thickness direction is more than 10.0 times the dislocation density at the 1/4 position in the plate thickness direction, the ductility is significantly reduced due to dislocation strengthening. The inventors have found that the plate thickness of the steel plate is 1.6 to 5.0 mm, and that the effect is particularly remarkable when the plate thickness is 2.3 mm or more.
  • the measurement of the dislocation density is preferably obtained from the half width by X-ray diffraction typified by the Williamson-Hall method. This is because a measurement range is limited in the measurement by direct observation with a TEM, and a distortion is introduced in the preparation of the observation sample, which may cause a decrease in measurement accuracy.
  • the method for obtaining the half-value width by X-ray diffraction is described in, for example, “Evaluation method of dislocation density using X-ray diffraction” (Nakajima et al., CAMP-ISIJ Vol. 17 (2004) p. 396). .
  • the size of the measurement sample is preferably 10 mm square or more.
  • the surface of the sample for measurement is preferably reduced by 50 ⁇ m or more by electropolishing. Therefore, when it is desired to measure the position of a predetermined plate thickness, it is necessary to perform mechanical grinding in consideration of the thickness reduction due to electropolishing. It should be noted that an accurate dislocation density is not required due to processing strain on the surface that has been mechanically ground.
  • the desirable microstructure of the steel sheet of the present invention will be described.
  • the total area ratio of ferrite and bainite is a metal structure composed of 90% or more.
  • the total area ratio of other metal structures exceeds 10%, it becomes difficult to achieve both ductility and burring formability.
  • other metal structures indicate austenite, martensite, and pearlite.
  • the metal structure of steel can be identified from an optical microscope by nital corrosion and a crystal structure by X-ray or diffraction pattern. Further, discrimination using a corrosive liquid other than nital may be used.
  • Nital corrosion after mirror polishing, etching was performed with a Nital solution, the optical microscope 5 field of view was observed at 500 times, a photograph was taken, a portion was determined by visual observation, and it was obtained by image analysis.
  • the manufacturing method of the steel plate of this invention is demonstrated.
  • a manufacturing method from hot rolling to pickling when the steel sheet of the present invention is a hot-rolled steel sheet will be described.
  • the heating temperature before rolling the slab which is a steel slab of the above-described steel component, is 1200 ° C. or higher in a heating furnace. This is to sufficiently dissolve the contained precipitated elements.
  • the heating temperature exceeds 1300 ° C., the austenite grain boundary becomes coarse, and therefore the heating temperature is preferably 1300 ° C. or less.
  • the hot rolling temperature is preferably 900 ° C. or higher.
  • the coiling temperature is preferably 450 ° C. or higher after hot rolling. If the coiling temperature is 600 ° C. or higher, Ti and V carbide precipitation is promoted, and therefore the coiling temperature is more preferably between 550 ° C. and 600 ° C.
  • the cooling rate may be in a range that causes ferrite transformation and bainite transformation during cooling, and the upper limit is preferably 10 ° C./s or less.
  • the manufacturing method from hot rolling to pickling when the steel sheet of the present invention is a cold-rolled steel sheet will be described. After pickling the hot-rolled steel sheet and cold rolling to a predetermined thickness, the maximum heating temperature is heated to -50 ° C or higher from the Ar3 point, and the cooling stop temperature is 550 ° C or lower from the maximum heating temperature. It is preferable to perform an annealing treatment that cools to a low temperature.
  • the ratio of the load T (kg / mm 2 ) per unit area loaded in the longitudinal direction of the steel sheet, skin pass rolling is performed under the condition that F / T is 8000 or more.
  • the purpose of the above-described skin pass rolling is to suppress yield elongation by introducing movable dislocations, but not only to set the rolling reduction to a predetermined value, but also to the above-mentioned condition that F / T is 8000 or more. Then, the dislocation density on the steel sheet surface can be increased, and the dislocation density within 50 ⁇ m in the sheet thickness direction from the steel sheet surface is 2.0 times or more and 10.0 times the dislocation density at the 1/4 position in the sheet thickness direction. It has been found that it is possible to produce hot-rolled steel sheets or cold-rolled steel sheets that are twice or less.
  • (dislocation density within 50 ⁇ m in the sheet thickness direction from the surface of the steel sheet) / (dislocation density at 1/4 position in the sheet thickness direction) is referred to as “dislocation density ratio”.
  • FIG. 1 shows the results of investigating the relationship between the skin pass condition F / T and the dislocation density ratio for hot-rolled steel sheets and cold-rolled steel sheets having the components shown in Table 1.
  • the skin pass condition F / T was less than 8000, the dislocation density ratio was less than 2.0. Further, when F / T was 8000 or more and 14000 or less, the dislocation density ratio was 2.0 or more and 10.0 or less.
  • F / T exceeds 14,000, a dislocation density ratio exceeding 10.0 appears.
  • FIG. 2 shows the effect of F / T on the dislocation density at the position where the plate thickness is 1/4. When F / T exceeded 14,000, the dislocation density at the position where the plate thickness was 1/4 increased.
  • F / T is less than 8000, the tensile strength in the longitudinal direction of the steel sheet is strong, and dislocations are introduced to the entire surface of the cross section in the thickness direction of the steel sheet due to uniaxial tensile stress, which is not desirable as the method for producing the steel sheet of the present invention.
  • F / T is 14000 or less as conditions for introducing dislocations only on the steel sheet surface. Note that when the rolling reduction exceeds 5%, the dislocation is introduced to the center in the sheet thickness direction, thereby reducing ductility.
  • the range of the rolling reduction is set to 0.5 to 5%.
  • an annealing step for recovering the dislocation may be performed, and then cold rolling at a reduction ratio of 0.5% to 5% may be performed.
  • the dislocation does not recover when the annealing temperature is 200 ° C. or lower, 200 ° C. or higher is preferable.
  • nitrided steel sheet with this deep surface hardening depth has improved crack initiation life and resistance to fatigue microcrack propagation, not only fatigue strength but also stress that breaks at a predetermined number of repetitions, that is, time strength Bring about improvement.
  • FIG. 3 shows the relationship between the dislocation density ratio of the present invention and the surface hardening depth.
  • the surface hardening depth is significantly reduced.
  • a deep surface hardening depth was stably expressed, and the depth was 425 ⁇ m or more within the range of implementation. Further, it was about 50 ⁇ m deep on average when the dislocation density ratio was 2.0 or less. From this result, the surface hardening depth is preferably 425 ⁇ m or more.
  • the surface hardening depth was defined as the distance from the surface to the position where HV began to increase with reference to JIS-G-0557.
  • the hot-rolled steel sheet or the cold-rolled steel sheet of the present invention can be formed into a desired automobile part shape without impairing formability by introducing dislocation.
  • molding refers to press molding or bending molding after shearing.
  • the automobile part is a drive system part or a structural part formed from a steel plate.
  • nitriding treatment examples include gas nitriding, plasma nitriding, gas soft nitriding, and salt bath soft nitriding.
  • gas nitriding for example, it is held in an ammonia atmosphere at 540 ° C. for 20 hours or more.
  • nitriding treatment for example, a general gas soft nitriding treatment using a mixed gas of N 2 + NH 3 + CO 2 at 570 ° C., the above-described nitride layer can be obtained in a treatment time of about 5 hours or more.
  • Steel types 1 to 12 are the component ranges of the present invention, and steel types 13 to 28 are comparative components deviating from the components of the present invention. Moreover, since about C02 melt
  • a steel sheet having a thickness of 2.3 mm was manufactured by winding the sheet into a shape, the scale on the surface was removed with a 7% hydrochloric acid aqueous solution, and rolling was performed under the skin pass conditions shown in Table 2 to obtain a hot rolled steel sheet for nitriding.
  • the hot rolled steel sheet before skin pass rolling is cold rolled at a cold rolling rate of 60%, held at a heating rate of 10 (° C / sec) for a maximum heating temperature holding time of 30 (sec), and cooled down to 550 ° C. Annealing treatment was performed, and rolling was performed under the skin pass conditions shown in Table 2 to produce a cold-rolled steel sheet for nitriding.
  • Test numbers 1 to 12 in Table 2 are within the ranges for both steel plate components and production conditions, test numbers 13 to 28 are out of range for any of the steel plate components, and test numbers 29 to 33 are outside the range for skin pass rolling conditions. .
  • the half width of X-ray diffraction was measured for the steel plates of all test numbers, and the dislocation density was measured by the Williamson-Hall method. Note that diffraction peaks of (110), (112), and (220) were used for the half width of X-rays.
  • a sample having a size of 25 mm length ⁇ 15 mm width was cut out from each steel type and the thickness was reduced to a predetermined measurement position by electrolytic polishing. did.
  • the dislocation density ratio at the position of 50 ⁇ m from the surface and the position of the thickness 1 ⁇ 4 is 2.0 or more, 10 0.0 or less.
  • the dislocation density ratio was less than 2.0 because F / T was 8000 or less.
  • the skin pass reduction ratio was 5% or more and the tension was remarkably increased.
  • the dislocation density not only at the position of 50 ⁇ m from the surface but also at the position of 1/4 of the plate thickness increased significantly. Less than 2.0.
  • the dislocation density ratio exceeded 10.0 as a result of further increasing the line load during skin pass rolling.
  • the dislocation density at the position of the plate thickness 1 ⁇ 4 was significantly increased.
  • gas nitriding treatment was performed on all steel types under the following conditions.
  • No. 5 test piece described in JIS-Z2201 was prepared and evaluated according to the test method described in JIS-Z2241.
  • the burring formability ⁇ before nitriding was evaluated according to the test method described in JIS-Z2256.
  • the roughness of the shear end face before nitriding was measured using a contact-type roughness measuring instrument after punching shearing using a 10 mm ⁇ cylindrical punch and a 15% clearance die. In addition, the roughness of the shear end face was measured in the direction of the thickness of the fracture surface, and the average roughness was adopted.
  • the steel sheets of all test numbers were processed into the flat test piece shown in FIG. 5, and in order to investigate the fatigue characteristics of the shear end face, the above punching conditions were used.
  • Table 3 shows the material characteristics before nitriding.
  • the surface hardening depth was significantly reduced in Test No. 18 in which the Si content exceeded 0.5%.
  • the surface hardening depth was slightly increased compared to Test 2, but this was not a remarkable effect.
  • test numbers 2, 20 and 21 having different Mn contents a significant increase in the roughness of the shear end face was confirmed in test number 20 exceeding 1.33%. From the comparison of the surface hardness of Test Nos. 2, 4, 14 and 15 in which the Cr content is different, the hardness after nitriding can be secured stably in the component range of the present invention, and the Cr amount is 2.0%. Hardness did not change even when exceeding.
  • the steel according to the present invention has a proper range in which a significant increase in the roughness of the shear end face is suppressed by containing B, and does not become excessively contained.
  • Test Nos. 2, 22, and 26 having different Ti contents
  • Test No. 22 in which the Ti content exceeded 0.1% confirmed a significant increase in shear end face roughness.
  • Test No. 26 where the Ti content was less than 0.005%, a significant increase in the shear end face roughness was confirmed.
  • Test Nos. 2, 23 and 24 having different B contents a remarkable increase in the shear end face roughness was confirmed in Test No. 23 containing no B.
  • the skin pass reduction ratio was in an appropriate range, but the F / T was less than 8000, so the dislocation density ratio was less than 2.0. Therefore, the surface hardening depth after nitriding of test number 32 is extremely lower than that of test number 2.
  • Test No. 33 the F / T and dislocation density ratios were satisfied. However, because the skin pass reduction ratio was 0.4%, upper yield / lower yield occurred, and yield elongation was not suppressed. confirmed.
  • the surface hardening depth after nitriding is deepened without deteriorating the formability before nitriding, and extremely high after nitriding. It has been found that excellent fatigue characteristics can be exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

特に適量のCr、V、Bを含有する鋼であって、表面から板厚方向に50μm以内の転位密度が、板厚方向の1/4の位置の転位密度に比べ、2.0倍以上、10.0倍以下である疲労強度に優れる窒化用熱延鋼板あるいは窒化用冷延鋼板で、その製法は前記の成分を有する熱延鋼板あるいは冷延鋼板を酸洗後、圧下率にて0.5~5.0%であり、圧延機荷重を鋼板板幅で除した線荷重F(kg/mm)と鋼板の長手方向に負荷される単位面積あたりの荷重T(kg/mm)の比、F/Tが8000以上の条件でスキンパス圧延を施すことを特徴とし、さらにはそれら熱延鋼板もしくは冷延鋼板を成形し窒化処理した自動車部品とする。

Description

疲労強度に優れる窒化用熱延鋼板、窒化用冷延鋼板及びそれらの製造方法、並びにそれらを用いた疲労強度に優れた自動車部品
 本発明は加工性を確保し、かつガス窒化、ガス軟窒化、塩浴軟窒化などの窒化処理によって硬質の窒化層が得られる疲労強度に優れる窒化用鋼板及びそれらの製造方法であり、表面に硬質の窒化層を有する疲労特性に優れた自動車部品に関するものである。
 本願は、2011年11月21日に日本に出願された特願2011-253677号に基づき優先権を主張し、その内容をここに援用する。
 自動車や各機械部品には、表面硬化処理を施した部品が数多く使用されている。表面硬化処理は耐摩耗性や疲労強度改善を目的として施されるものであり、代表的な表面硬化処理方法として、浸炭、窒化、高周波焼入れ等が挙げられる。ガス窒化、ガス軟窒化、塩浴軟窒化などの窒化処理は、他の方法と異なりオーステナイトへの変態点以下で処理されるため、数時間の処理時間を要するものの、熱処理歪みを小さくすることができるという利点を有する。
 したがって、窒化は動車部材においてはクランクシャフト、トランスミッションギアといった精密加工を施した部品、あるいはプレスにより成形されるダンパディスク、ダンパプレートの硬化処理後の製品形状精度を要する部材に適した表面硬化処理である。窒化処理のうち、ガス軟窒化、塩浴軟窒化などがあげられるが、アンモニア雰囲気で行われるガス窒化は、高い表面硬度が得られるが、窒素の拡散が遅く、一般的に20時間以上の処理時間が必要である。一方、ガス軟窒化、塩浴軟窒化など、窒素と共に炭素を含む浴又は雰囲気にて処理される軟窒化処理は、窒素の拡散速度を増すことができる。その結果、軟窒化処理では数時間で表面硬化層深さを高めた部品を得ることができる。このような窒化処理により表面硬化深さの高い表面硬化層が形成され、部品の表面の疲労亀裂発生を抑制し、疲労耐久性の改善が可能となる。
 表面硬化層深さおよび表面硬度を高めるためには窒化物形成合金を含有した鋼が提案されており、例えば特許文献1にて開示されている。また、熱延鋼板あるいは冷延鋼板によりプレス成形された部品においては窒化処理前のプレス成形時の加工性と窒化処理後の部品表面硬度特性を向上させたガス軟窒化処理鋼板が提案されており、例えば、特許文献2、3に開示されている。前記した公知文献ではいずれもガス軟窒化処理による表面硬度の向上には窒化物形成元素であるAl、Cr、V等の元素が有効であり、ガス軟窒化用鋼板の合金元素として含有されている。
特開2007-162138号 特開2005-264205号 特開平9-25544号
 例えば熱延鋼板あるいは冷延鋼板をプレスにより成形されたガス軟窒化部品である場合、ガス軟窒化処理前の加工性と処理後の疲労特性を両立させる鋼板の合金成分設計が必要となる。
 ガス軟窒化処理後の疲労特性はAl、Cr、Vの窒化物により、表面硬度と深さを高める必要がある。特にVはNの拡散を助長させることで硬化層深さを高め、CrおよびAlは表面硬度を高めるために有効であるが、AlおよびVはオーステナイト粒界に微細な窒化物が線状析出し、バーリング成形性や伸びフランジ性を著しく低下させる。さらにVは熱間仕上げ圧延工程後の冷却行程および熱間圧延板の巻取り工程においてVCの析出による高強度化が促進され加工性が低下する。このようなVC析出強化を避けるためには熱間圧延後の冷却停止温度を500℃以下とすることが有効であるが、下部ベイナイトあるいはマルテンサイト変態が促進し、延性は著しく低下する。したがって、極力V量を低減させることでガス軟窒化用鋼板強度上昇を抑制する必要があるが、Vを低めた場合にガス軟窒化処理後の表面硬度深さを高めることが困難となる問題がある。
 本発明は、ガス軟窒化処理前の優れた加工性と処理後の疲労強度改善のために表面硬化層を深くすることが可能な疲労強度に優れる窒化用熱延鋼板、窒化用冷延鋼板およびそれらの製造方法であり、表層の窒化層の硬さを高めた疲労強度に優れた自動車部品の提供を可能とする。
 本発明者らはガス軟窒化、塩浴軟窒化などの窒化処理によって、自動車部品の成形性を損なうことなく、表面硬化深さが得られる鋼板合金組成と製造方法、さらに部品の硬さを検討した。
 その結果、適量のCr、Vを含有する鋼がBを適量含有し、さらに製造工程でスキンパス圧下率範囲を規定し、かつ、そのスキンパス圧下の圧延機荷重を鋼板板幅で除した線荷重F(kg/mm)と鋼板の長手方向に負荷される荷重であって圧延出側における単位面積あたりの荷重T(kg/mm)の比であるF/Tを所定の範囲とすることで鋼板の板厚方向の転位密度を規定して窒化後の硬度深さを深めることで、強度を適度に抑制しつつ、転位導入による延性の低下を抑制し、かつ、せん断加工端面の破断面の粗度を低減させ、窒化後に十分な表面硬度深さを確保できることが判明し、本発明に至った。
 即ち、本発明は、
(1)質量%で、Cが0.0002%以上、0.07%以下、Siが0.0010%以上、0.50%以下、Mnが0.10%以上、1.33%以下、Pが0.003%以上、0.02%以下、Sが0.001%以上、0.02%以下、Crが0.80%超、1.20%以下、Alが0.10%以上、0.50%以下、Vが0.05%以上、0.10%以下、Tiが0.005%以上、0.10%以下、Bが0.0001%以上、0.0015%以下を含有し、残部がFe及び不可避不純物からなり、鋼板表面から板厚方向に50μm以内の転位密度が、板厚方向の1/4の位置の転位密度に比べ、2.0倍以上、10.0倍以下であることを特徴とする疲労強度に優れる窒化用鋼板。
(2)さらに質量%で、Mo0.001%以上、0.20%以下、Nbが0.001%以上、0.050%以下の1種または両方を含有することを特徴とする(1)に記載の疲労強度に優れる窒化用鋼板。
(3)質量%で、Cが0.0002%以上、0.07%以下、Siが0.0010%以上、0.50%以下、Mnが0.10%以上、1.33%以下、Pが0.003%以上、0.02%以下、Sが0.001%以上、0.02%以下、Crが0.80%超、1.20%以下、Alが0.10%以上、0.50%以下、Vが0.05%以上、0.10%以下、Tiが0.005%以上、0.10%以下、Bが0.0001%以上、0.0015%以下を含有し、残部がFe及び不可避不純物からなる鋼片を熱間圧延し、酸洗を施した後、圧下率にて0.5~5.0%であり、かつ圧延機荷重を鋼板板幅で除した線荷重F(kg/mm)と鋼板の長手方向に負荷される単位面積あたりの荷重T(kg/mm)の比、F/Tが8000以上の条件でスキンパス圧延を施すことを特徴とした疲労強度に優れる窒化用熱延鋼板の製造方法。
(4)質量%で、Cが0.0002%以上、0.07%以下、Siが0.0010%以上、0.50%以下、Mnが0.10%以上、1.33%以下、Pが0.003%以上、0.02%以下、Sが0.001%以上、0.02%以下、Crが0.80%超、1.20%以下、Alが0.10%以上、0.50%以下、Vが0.05%以上、0.10%以下、Tiが0.005%以上、0.10%以下、Bが0.0001%以上、0.0015%以下を含有し、残部がFe及び不可避不純物からなる鋼片を熱間圧延し、酸洗、冷間圧延、焼鈍を施した後、圧下率にて0.5~5.0%であり、かつ圧延機荷重を鋼板板幅で除した線荷重F(kg/mm)と鋼板の長手方向に負荷される単位面積あたりの荷重T(kg/mm)の比、F/T(mm)が8000以上の条件でスキンパス圧延を施すことを特徴とした疲労強度に優れた窒化用冷延鋼板の製造方法。
(5)質量%で、Cが0.0002%以上、0.07%以下、Siが0.0010%以上、0.50%以下、Mnが0.10%以上、1.33%以下、Pが0.003%以上、0.02%以下、Sが0.001%以上、0.02%以下、Crが0.80%超、1.20%以下、Alが0.10%以上、0.50%以下、Vが0.05%以上、0.10%以下、Tiが0.005%以上、0.10%以下、Bが0.0001%以上、0.0015%以下を含有し、残部がFe及び不可避不純物からなり、鋼板表面から板厚方向に50μm以内の転位密度が、板厚方向の1/4の位置の転位密度に比べ、2.0倍以上、10.0倍以下である鋼板を成形した後に窒化処理した疲労強度に優れた自動車部品。
 本発明によれば、窒化処理前には優れたプレス成形性を有し、窒化処理によって、深い表面硬化層が得られる鋼板、更に、深い表面硬化層を有する自動車部品を提供することが可能になる。その結果、熱処理歪みが小さく、高疲労強度の窒化処理部品が得られるなど、産業上の貢献が極めて顕著である。
スキンパス圧延機荷重を鋼板板幅で除した線荷重F(kg/mm)と鋼板の長手方向に負荷される単位面積あたりの荷重T(kg/mm)の比であるF/Tと、鋼板表面と表面から50μmの転位密度比の関係を表すグラフである。 前記F/Tと鋼板板厚1/4の位置の転位密度の関係を表すグラフである。 表面から50μmの位置と板厚1/4の転位密度比と表面硬化深さの関係を表すグラフである。 表面硬化深さと鋼板表面の10回時間強度の関係を表すグラフである。 窒化後の鋼板表面の10回時間強度を評価するための平面曲げ疲労試験片形状である。 窒化後のせん断加工端面の10回時間強度を評価するための平面曲げ疲労試験片形状である。
 本発明において、窒化用熱延鋼板、窒化用冷延鋼板とは、窒化処理部品の素材として用いられる鋼板である。なお、当該鋼板は、後述の製法にて製造される。自動車部品は、本発明の窒化用熱延鋼板、窒化用冷延鋼板を素材とし、成形後に窒化処理を施された自動車部品である。本発明の窒化用熱延鋼板または窒化用冷延鋼板を冷間にてプレス成形し、必要に応じて切削加工あるいはせん断、打抜き加工などを行って最終製品形状とし、その後窒化処理を行うことにより疲労強度に優れた自動車部品となる。
 本発明において、「窒化処理」とは、鉄鋼の表層に窒素を拡散させ、表層を硬化する処理を意味し、このうち、鉄鋼の表層に窒素と炭素を拡散させ、表層を硬化する処理を「軟窒化処理」という。代表的には、ガス窒化、ガス軟窒化、塩浴軟窒化等が挙げられ、このうちガス軟窒化、塩浴軟窒化は軟窒化処理である。また、製品が窒化処理部品であることは、窒化処理によって鋼板表面が窒化処理前に比べ硬化していることと、鋼板表層の窒素濃度が上昇していることとして確認することができる。
 まず、本発明において、鋼材の化学成分を限定した理由について説明する。化学成分限定に関しては、本発明の窒化用熱延鋼板、窒化用冷延鋼板とそれらを用いた自動車部品のいずれにも適用される。
 Cは他の炭化物形成元素の炭化物を析出することで強度の向上に有効な元素であり、さらに窒化処理中に合金炭化物を析出させ、窒化処理後の表面硬度を高める析出強化にも寄与する元素である。Cが0.07%を超えるとセメンタイトの析出密度が高まることでバーリング成形性を損なう。また、0.0002%未満では粒界強度が低下することで、二次加工脆性が低下する上に製鋼での脱炭コストが大きくなり過ぎるため好ましくない。したがって、Cの含有量は、0.0002%以上、0.07%以下とする。
 Siは、脱酸剤として有用な元素であるが、窒化処理において表面硬さの向上に寄与せず、表面硬化深さを浅くする。そのため、Siの含有量を0.50%以下に制限することが好ましい。一方、Siを著しく低減するには製造時にコスト高になるため、Siの含有量は0.001%以上が好ましい。したがって、Siの含有量は0.001以上、0.50%以下とする。さらに深い表面硬化深さを得るために、より好ましいSiの含有量の上限は0.1%以下である。
 MnはAc1以下の温度域においてパーライト変態を遅延させるために有用な元素である。Mnが0.10%未満ではその効果が得られない。また、Mnが1.33%を超えると、MnSバンド組織が顕著に形成することで、せん断加工端面の粗さが増すことにより、せん断端面疲労特性の極端な低下を示す。したがって、Mnの含有量は0.10%以上、1.33%以下とする。
 Pは0.02%を超えると粒界偏析による靭性の顕著な低下を示す。0.003%未満では製鋼脱リンコストに見合った効果が得られない。したがって、Pの含有量は0.003%以上、0.02%以下とした。
 Sは0.02%を超えると赤熱脆性を示す他、MnS介在物密度が高まることで成形性を低下させる。0.001%未満では製鋼脱硫コストに見合った効果が得られない。したがって、Sの含有量は0.001%以上、0.02%以下とした。
 Crは、窒化処理時に浸入するN及び鋼中のCと炭窒化物を形成することで表面硬度を向上させる極めて有効な元素である。Cr量が0.8%以下では十分な表面硬度を得ることができない。一方、Cr量が1.20%を超えると効果が飽和する。したがって、Crの含有量は、0.8%超、1.20%以下とする。
 Alは、窒化時に浸入するNと窒化物を形成し、表面硬度を高めるのに有効な元素である。しかしながら、Alを過剰に含有すると有効硬化深さが浅くなることがある。Alが0.10%未満であると十分な表面硬さを発現しない。0.50%を超えて含有するとNとの親和力が高く、窒素の深さ方向への拡散を抑制することで表面硬化深さを低下させる。したがって、Alの含有量は、0.10%以上、0.50%以下とする。なお、Alを0.3%以上含有することで表面硬度が顕著に増加するため、Alの含有量は0.30%以上が好ましい。
 Vは、熱延工程で炭窒化物を生成することで鋼の強度に寄与する元素である。また、本発明では、Mo、Nbと同様、CrやAlと複合炭窒化物を形成し、窒化層の硬化に極めて有効である。Vは、0.05%以上含有すると、表面硬さ及び表面硬化深さが顕著に向上する。一方、Vの含有量が0.10%超では、焼入れ性向上による組織強化と析出強化による鋼板強度の著しい増加を示し、伸びの低下による成形性の劣化を示す。また、Vの過度な含有は熱延工程での窒化物形成による、靭性やせん断端面疲労特性の顕著な低下を示す。したがって、Vの含有量は0.05%以上、0.10%以下とする。含有量のより好ましい範囲は、0.07%以上である。
 Tiの範囲はAlとのバランスでその範囲が決定される。前記したようにAlは窒化処理後に窒化物形成することで、表面硬度を上げる極めて有効な元素である。一方、Alはγ域での結晶粒界に点状配列し析出する。そのため、Al窒化物が窒化処理前に析出するとせん断加工時の端面粗度を高め、せん断端面疲労特性を低下させる。Tiは窒素との親和力がAlよりも高く、Alよりも優先的にTiの窒化物が形成する。そのため、Tiを含有することで前記したAlの窒化物によるせん断端面疲労特性の低下を抑制できる。しかしながら、Tiが0.005%未満ではTiの窒化物形成によるAl窒化物形成抑制効果が発現しない。一方、Tiが0.10%を超えると鋳造スラブの靭性低下により、空冷でのスラブ割れを生ずる。したがって、Tiの含有量は0.005%以上、0.10%以下とする。前記せん断端面の粗度とはせん断加工時の端面の表面粗さのことであり、平均粗さのことをさし、この粗度が高くなることで疲労変形中のせん断端面に過度の応力集中を生じ、疲労特性が低下する傾向にある。なお、前記粗度はせん断加工破断面の板厚方向の測定値を用いる。
 Bは結晶粒界に固溶することで、粒界脆化元素であるPの粒界偏析を抑制し、2次加工脆性を向上させる。また、せん断加工時の端面の粗度を低下させ、せん断端面疲労特性を向上させる。Bの含有量が0.0001%未満ではその効果が発現しない。また、0.0015%を超えて含有すると、フェライト変態を遅延させるため、鋼板の伸びを低下させる。したがって、Bの含有量は0.0001%以上、0.0015%以下とした。
 MoおよびNbはCrやAlと複合炭窒化物を形成し、窒化層の硬化に極めて有効である。MoおよびNbの含有量が0.001%未満では、その効果を発現しない。Mo含有量が0.20%を超えるとMoの炭窒化物形成による表面硬度の向上効果が低下し、かつ、延性が低下する。そのため、Moの含有量は0.001%~0.20%とした。
 また、Nbは0.050%を超えて含有されると、鋼板の熱延中のγ再結晶を遅延させるため、極めて高い異方性を生ずることでバーリング成形性が低下する。そのため、Nbの含有量は0.001%以上、0.05%以下とした。
 次に、本発明の特徴とする鋼板の転位密度について説明する。
 転位は鋼中の拡散を助長する。窒化処理中においては窒素の拡散を助長し、表面硬化深さを深くする。鋼板の表面から板厚方向に50μm以内の転位密度が、板厚方向の1/4の位置の転位密度に比べ、2.0倍以上の場合、その効果を発現することを本発明ではじめて見出した。一方、表面から板厚方向に50μm以内の転位密度が、板厚方向の1/4の位置の転位密度が10.0倍を超えると転位強化による延性の顕著な低下を示す。なお、鋼板の板厚は1.6~5.0mmであり、特に板厚が2.3mm以上の場合に顕著な効果があることを発明者らは見出した。
 この転位密度の測定は、Williamson-Hall法に代表されるX線回折による半価幅から求めることが好ましい。TEMでの直接観察での測定では測定範囲が限定され、かつ、観察試料作製においてひずみが導入されることで、測定精度の低下が懸念されるためである。なお、X線回折による半価幅から求める方法は、例えば、「X線回折を利用した転位密度の評価法」(中島ら CAMP-ISIJ Vol.17(2004)p.396)に記載されている。
 測定用サンプルのサイズは10mm角以上のサイズとすることが好ましい。測定用のサンプル表面は電解研磨にて50μm以上減厚する事が好ましい。したがって、所定の板厚の位置を測定したい場合、電解研磨による減厚量を考慮し、機械研削する必要がある。なお、機械研削ままの表面では、加工ひずみにより正確な転位密度が求められない。また、X線の半価幅には(110)、(112)および(220)の回折ピークを用いることが好ましい。例えば、(200)、(311)の回折ピークを含めた場合、半価幅を過度に高く見積もり正確な測定が困難となる。
 次に、本発明の鋼板の望ましいミクロ組織について説明する。
 本発明ではフェライトおよびベイナイトの合計の面積率が90%以上で構成される金属組織であることが好ましい。その他の金属組織の合計の面積率が10%を超えた場合、延性とバーリング成形性の両立が困難となる。ここで、その他の金属組織はオーステナイト、マルテンサイト、パーライトを示す。
 鋼の金属組織の同定はナイタール腐食による光学顕微鏡およびX線あるいはディフラクションパターンによる結晶構造から行うことが可能である。また、ナイタール以外の腐食液を用いた判別でもよい。ナイタール腐食による場合は、鏡面研磨後、ナイタール液でエッチングを行い、光学顕微鏡5視野を500倍で観察して写真を撮影し、目視にて部分を決定し、それを画像解析して求めた。
 次に、本発明の鋼板の製造方法について説明する。
 本発明の鋼板が熱延鋼板である場合の熱間圧延から酸洗までの製造方法について説明する。前述の鋼成分の鋼片であるスラブを加熱炉にて圧延前加熱温度を1200℃以上にすることが好ましい。これは含有される析出元素を十分に溶体化させるためであり、加熱温度が1300℃を超えるとオーステナイト粒界が粗大化するため、加熱温度は1300℃以下が好ましい。熱間圧延温度は900℃以上が好ましい。900℃未満では変形抵抗が大きくなる他、圧延集合組織の形成による異方性により成形性が低下する。さらに、マルテンサイトの分率の低下を防止するためには熱間圧延後、巻取り温度は450℃以上が好ましい。巻取り温度が600℃以上であれば、Ti、Vの炭化物析出が促進されるため、巻取り温度は550℃~600℃の間がより好ましい。冷却速度は、冷却中にフェライト変態、ベイナイト変態を生じる範囲であればよく、上限値を10℃/s以下にすることが好ましい。フェライト変態、ベイナイト変態を生じない冷却速度にて冷却を停止した場合、例えば、コイル状に巻取りを行った後に変態が促進し、鋼板コイルが変形するためである。なお、巻取り温度に至るまでに中間空冷を行ってもよい。熱間圧延終了後は常法により酸洗を行い、鋼板表面のスケールを除去する。
 本発明の鋼板が冷延鋼板である場合の、熱間圧延から酸洗までの製造方法について説明する。前記熱延鋼板を酸洗後、所定の板厚まで冷間圧延を施した後、最高加熱温度をAr3点より-50℃以上に加熱し、前記した最高加熱温度から550℃以下の冷却停止温度まで冷却する焼鈍処理を施すことが好ましい。
 次にスキンパス圧延について説明する。前記の酸洗済みの熱延鋼板あるいは冷延鋼板を、圧下率にて0.5%以上5%以下であり、かつ圧延機荷重を鋼板板幅で除した線荷重F(kg/mm)と鋼板の長手方向に負荷される単位面積あたりの荷重T(kg/mm)の比、F/Tが8000以上条件でスキンパス圧延を施すことを特徴としている。
 前記したスキンパス圧延の目的は、可動転位を導入することで降伏伸びを抑制させることであるが、ただ単に圧下率を所定の値とするだけでなく、前記したF/Tが8000以上の条件にすれば、鋼板表面の転位密度を増加でき、鋼板表面から板厚方向に50μm以内の転位密度が、板厚方向の1/4の位置の転位密度に比べ、2.0倍以上、10.0倍以下である熱延鋼板あるいは冷延鋼板の製造が可能であることを見出した。以下、(鋼板表面から板厚方向に50μm以内の転位密度)/(板厚方向の1/4の位置の転位密度)を「転位密度比」とする。
 図1には表1に示す成分の熱延鋼板および冷延鋼板に関して、スキンパス条件F/Tと転位密度比の関係を調査した結果を示した。スキンパス条件F/Tが8000未満の場合、転位密度比は2.0未満であった。また、F/Tが8000以上14000以下では転位密度比は2.0以上10.0以下であった。F/Tが14000超では転位密度比が10.0を超えるものが現れる。図2には板厚1/4の位置の転位密度に及ぼすF/Tの影響を示した。F/Tが14000を超えると板厚1/4の位置の転位密度が増加していた。
 F/Tが8000未満では鋼板長手方向の張力が強く、単軸引張応力により、鋼板板厚方向断面の全面に転位が導入されるため、本発明の鋼板の製造方法として望ましくない。なお、鋼板表面のみの転位の導入させる条件として、F/Tが14000以下であることが好ましい。尚、圧下率については、5%を超えると転位が板厚方向中心まで導入することで延性が低下する。一方、圧下率が0.5%未満では降伏伸びが抑制できないばかりか、前記F/Tが安定的に8000以上を確保することが困難となることを見出した。したがって、圧下率の範囲は0.5~5%とした。尚、5%を超える圧下が加えられた場合、転位を回復ための焼鈍工程を施し、その後、圧下率にて0.5%以上5%以下の冷間圧延を施せばよい。この場合、焼鈍温度は200℃以下では転位が回復しないため、200℃以上が好ましい。
 スキンパス圧下率およびF/Tを満足し、転位密度比を満足した鋼板を窒化処理した場合、表面に転位が導入されたことにより、窒化処理中の窒素の拡散を助長させ、窒化後の表面硬化深さが深くなる。この深い表面硬化深さをもつ窒化処理鋼板では、き裂発生寿命の向上と、疲労微視き裂の伝播抵抗に優れ、疲労強度ばかりでなく、所定の繰返し数で破断する応力、すなわち時間強度の向上をもたらす。
 図3に本発明の転位密度比と表面硬化深さの関係を示す。転位密度比が2.0以下では、表面硬化深さが顕著に低下する。一方、本発明範囲では安定的に深い表面硬化深さが発現しており、実施の範囲内においては425μm以上の深さであった。また、転位密度比が2.0以下の場合に対して、平均的に約50μm程度深かった。この結果から、表面硬化深さは425μm以上であることが好ましい。尚、表面硬化深さは、JIS-G-0557を参考に、表面からHVが増加し始める位置までの距離とした。
 疲労特性の評価のひとつとして、図4に窒化後の表面硬化深さと鋼板表面の10回時間強度の関係を示す。なお、比較鋼は転位密度比が本発明の範囲内のものと範囲外のものに分けてプロットした。鋼板表面の10回時間強度と表面硬化深さの関係は正の相関関係をもっており、特に表面硬化深さが425μm以上では、表面硬化深さに対して鋼板表面の10回時間強度が顕著に増加している。本発明により表面硬化深さが425μm以上となる場合は、表面硬化深さによる鋼板表面の10回時間強度が大きく向上していることがわかる。さらに、本発明の鋼板においては、適正な成分選択と範囲とすることで、いずれも鋼板表面の10回時間強度が400MPa以上となる。尚、疲労試験にはシェンク式疲労試験を採用し、10回にて破断する応力、すなわち10回時間強度を調査した。疲労試験の周波数は25Hz一定として、変位制御の試験条件で疲労試験を行った。合否は、表面硬化深さが425μm以上となる場合は鋼板表面の10回時間強度が顕著に増加し、400σ/MPa以上となるので、これを閾値とした。
 次に本発明の熱延鋼板あるいは冷延鋼板を窒化処理した自動車部品の特徴について説明する。本発明の熱延鋼板あるいは冷延鋼板は前記した通り、転位導入により成形性を損なうことはなく、目的の自動車部品形状へ成形することが可能である。ここで成形とはせん断加工を施した後のプレス成形あるいは曲げ成形のことである。また、自動車部品とは鋼板から成形される駆動系部品あるいは構造部品である。成形後に窒化処理を施すことで、表面に深い表面硬化深さの窒化層を形成することで優れた疲労特性を発現する。また、せん断加工時の端面粗度を低減させているためせん断端面疲労特性も優れる。窒化処理として、ガス窒化、プラズマ窒化、ガス軟窒化、塩浴軟窒化を挙げることができる。ガス窒化を行う場合は、例えば、540℃のアンモニア雰囲気で、20時間以上保持する。特に、窒化処理として、例えば、570℃のN2+NH3+CO2混合ガスによる一般的なガス軟窒化処理であれば、5時間程度以上の処理時間で前述の窒化層を得ることができる。
 以下に本発明の実施例を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に示す化学成分を有する28種の鋼を溶製した。なお、鋼種1~12が本発明の成分範囲であり、鋼種13~28は本発明の成分からはずれた比較成分である。また、Cについては0.0002%未満の成分を溶製するため、極めて高いコストを要するため、実施から除外した。これらの鋼の一部を熱間圧延して25mmの粗圧延材試作した。粗圧延材は1200~1250℃に加熱し、仕上げ圧延温度950℃にて仕上げ圧延を行った後、冷却帯の平均冷却速度5℃/sで冷却し、巻取り温度550℃にて鋼板をコイル状に巻取ることで板厚さ2.3mmの鋼板を製造し、7%塩酸水溶液にて表面のスケールを除去し、表2のスキンパス条件で圧延して窒化用熱延鋼板とした。
 また、スキンパス圧延前の熱延鋼板を、冷延率60%で冷間圧延を施し、加熱速度10(℃/sec)で最高加熱温度保持時間30(sec)で保定し、550℃まで冷却停止する焼鈍処理を施し、表2のスキンパス条件で圧延し窒化用冷延鋼板を製造した。表2中の試験番号1~12は鋼板成分、製造条件共に範囲内であり、試験番号13~28は鋼板成分の何れかが範囲外、試験番号29~33はスキンパス圧延条件が範囲外である。
 全試験番号の鋼板についてX線回折の半価幅を測定し、Williamson-Hall法にて転位密度を測定した。なお、X線の半価幅には(110)、(112)および(220)の回折ピークを用いた。なお、表面から50μmの位置および板厚1/4の位置の転位密度を測定するために、各鋼種から25mm長さ×15mm幅のサイズのサンプルを切り出し、電解研磨により所定の測定位置まで減厚した。
 測定結果は表2に示した通りであり、本発明の製造範囲となる試験番号1~28では、表面から50μmの位置と板厚1/4の位置の転位密度比が2.0以上、10.0以下であった。スキンパス圧下率が0.5%を下回る試験番号29においては、F/Tが8000以下のため転位密度比が2.0を下回った。また試験番号30は、スキンパス圧下率が5%以上であり張力を著しく高めた結果、表面から50μmの位置ばかりでなく、板厚1/4の位置の転位密度が著しく増加し、転位密度比は2.0を下回った。また試験番号31においては、よりスキンパス圧延時の線荷重を高めた結果、転位密度比は10.0を超えた。なお、試験番号2と比較し、板厚1/4の位置の転位密度も顕著に高まっていた。
 次に、全鋼種について以下の条件でガス窒化処理を実施した。ガス窒化処理の条件は、雰囲気を体積分率でNH3:N2:CO2=50:45:5の混合ガス、温度を570℃、保持時間を5時間とした。 窒化処理前の引張強さTS、延性Elについては、JIS-Z2201に記載の5号試験片を作製し、JIS-Z2241に記載の試験方法に従って評価した。また、窒化前のバーリング成形性λはJIS-Z2256に記載の試験方法に従って評価した。窒化前のせん断端面の粗度は、10mmφの円柱ポンチとクリアランス15%のダイスを用いて、打抜きせん断加工を施した後、接触式粗度測定器を用いて測定した。なお、せん断端面の粗度は、破断面板厚方向に測定し、平均粗さを採用した。全試験番号の鋼板について、窒化後の鋼板表面疲労特性を調査するため図5に示した平面試験片へと加工し、また、せん断端面の疲労特性を調査するため、前記打抜き条件にて図6に示した試験片へと加工し、前記窒化処理条件で窒化処理を施した窒化疲労試験片を作成し、前述の疲労試験を行った。窒化処理後の硬さは、JIS-Z-2244に従って測定した。測定箇所は、その試験片のL断面が現れるように切断、研磨し、直径の1/4から表面まで10μm間隔にて、HV0.3(2.9N)を測定した。
 窒化処理前の材質特性を表3に示す。
 Si含有量が異なる、試験番号2、18および24の比較では、Si含有量が0.5%を超えた試験番号18では表面硬化深さが顕著に低下した。また、Si含有量が0.001%未満である試験番号24では試験2に対して、表面硬化深さがわずかに増加したものの、顕著な効果ではなかった。Mn含有量が異なる試験番号2、20および21の比較では1.33%を超えた試験番号20ではせん断端面粗度の顕著な増加が確認された。Crの含有量が異なる、試験番号2、4、14および15の表面硬度の比較から、本発明の成分範囲では安定的に窒化後の硬度が確保できており、Cr量が2.0%を超えても硬度はほとんど変わらなかった。
 Alの含有量が異なる、試験番号2、6、7、16および25の比較では、Al含有量が0.10%以上で顕著な表面硬化を確認できた。また、0.5%を超えた含有では表面硬度の増加は認められるが、表面硬化深さの顕著な低下が確認された。Vの含有量が異なる、試験番号2、3、13および17の比較から、Vが0.1%を超えると延性の指標であるEl(%)が顕著に低下していた。窒化後の表面硬化深さについてはVの含有量が0.05%以上で表面硬化深さが顕著に増加するが、0.10%を超えると飽和傾向にあり、試験番号13においてはむしろ低下した。また、本発明鋼は、Bの含有によりせん断端面粗度の著しい増加が抑制し、過度な含有とならない適正な範囲であることが分った。Tiの含有量が異なる試験番号2、22、および26の比較において、Ti含有量が0.1%超えた試験番号22はせん断端面粗度の顕著な増加が確認された。また、Ti含有量が0.005%未満である試験番号26においてもせん断端面粗度の顕著な増加が確認された。Bの含有量が異なる試験番号2、23および24の比較において、Bを含有していない試験番号23ではせん断端面粗度の顕著な増加が確認された。また、0.0015%を超えてBを含有した試験番号24では、試験番号2の結果以上のせん断端面粗度の低下の効果は認められなかった。Mo、Nbを含有した試験番号1および5では表面硬度の向上が認められた。しかしながら、Mo量が0.20%を超えた試験番号27では表面硬度の向上が認められず、Nb量が0.05%を超えた試験番号28ではバーリング成形性λの顕著な低下が認められた。
 スキンパス圧下範囲が0.4%の試験番号29では転位密度比が2.0を下回っており、同一鋼板番号である試験2の結果に比べ、表面硬化深さの向上硬化が認められなかった。また、試験番号30においては圧下率が5.1%かつ、転位密度比が2.0を下回っており、同一鋼板番号である試験番号2の結果に比べ、延性の顕著な低下が確認された。さらに、転位密度比が10.0を超えた試験番号31においては、より顕著な延性の低下が確認された。さらに試験番号29~31では表面硬化深さの低下も確認された。試験番号32はスキンパス圧下率は適正範囲であるが、前記F/Tが8000未満であるため、転位密度比は2.0未満であった。そのため、試験番号32の窒化後の表面硬化深さは試験番号2に比べ極めて低い。また、試験番号33では前記F/Tおよび転位密度比を満足するが、スキンパス圧下率が0.4%であったため、上降伏・下降伏が発生し、降伏伸び抑制が出来ていなかったことが確認された。
 最後に本発明の鋼板の疲労特性結果について表3に示す。本発明の鋼板はいずれも鋼板表面の10回時間強度が400MPa以上であった。尚、試験番号15においてはCrが2.0%を超えて含有されており、含有量が適正範囲の試験番号4と比較してむしろ前記時間強度は低下し、表面硬度が向上したものの表面硬化深さが低下し、鋼板表面の10回時間強度が400MPa以下であった。Al含有量が0.50%を超えた試験番号16およびV含有量が0.10%を超えた試験番号13においても同様で、表面硬化深さが低下し、鋼板表面の10回時間強度が400MPa以下であった。また、Bが0.0015%を超えて含有した試験番号23については、せん断端面の10回時間強度の顕著な低下を抑制できたが、過剰な含有のため、鋼板表面の10回時間強度は400MPa以下であった。これはBの過剰な含有による原子空孔の拡散の遅れによるものと考察される。本発明に範囲においては適正な成分範囲とすることでせん断端面の10回時間強度と鋼板表面の10回時間強度の両立がされていることが分かった。
 以上から、適正な成分範囲と適正な製造方法に製造した本発明の鋼板を用いることで、窒化前の成形性を劣化させることなく、窒化後の表面硬化深さを深くし、窒化後には極めて優れた疲労特性を発現させることが可能であることが分った。

Claims (5)

  1.  質量%で、
     C :0.0002%以上、0.07%以下、
     Si:0.0010%以上、0.50%以下、
     Mn:0.10%以上、1.33%以下、
     P:0.003%以上、0.02%以下、
     S:0.001%以上、0.02%以下、
     Cr:0.80%超、1.20%以下、
     Al:0.10%以上、0.50%以下、
     V :0.05%以上、0.10%以下、
     Ti:0.005%以上、0.10%以下、
     B :0.0001%以上、0.0015%以下、
    を含有し、残部がFe及び不可避不純物からなり、
    鋼板表面から板厚方向に50μm以内の転位密度が、板厚方向の1/4の位置の転位密度に比べ、2.0倍以上、10.0倍以下であることを特徴とする疲労強度に優れる窒化用鋼板。
  2.  さらに質量%で、
     Mo:0.001以上、0.20%以下、
     Nb:0.001以上、0.050%以下、
    の1種または両方を含有することを特徴とする請求項1に記載の疲労強度に優れる窒化用鋼板。
  3.  質量%で、Cが0.0002%以上、0.07%以下、Siが0.0010%以上、0.50%以下、Mnが0.10%以上、1.33%以下、Pが0.003%以上、0.02%以下、Sが0.001%以上、0.02%以下、Crが0.80%超、1.20%以下、Alが0.10%以上、0.50%以下、Vが0.05%以上、0.10%以下、Tiが0.005%以上、0.10%以下、Bが0.0001%以上、0.0015%以下を含有し、残部がFe及び不可避不純物からなる鋼片を熱間圧延し、酸洗を施した後、圧下率にて0.5~5.0%であり、かつ圧延機荷重を鋼板板幅で除した線荷重F(kg/mm)と鋼板の長手方向に負荷される単位面積あたりの荷重T(kg/mm)の比、F/T(mm)が8000以上の条件でスキンパス圧延を施すことを特徴とした疲労強度に優れる窒化用熱延鋼板の製造方法。
  4.  質量%で、Cが0.0002%以上、0.07%以下、Siが0.0010%以上、0.50%以下、Mnが0.10%以上、1.33%以下、Pが0.003%以上、0.02%以下、Sが0.001%以上、0.02%以下、Crが0.80%超、1.20%以下、Alが0.10%以上、0.50%以下、Vが0.05%以上、0.10%以下、Tiが0.005%以上、0.10%以下、Bが0.0001%以上、0.0015%以下を含有し、残部がFe及び不可避不純物からなる鋼片を熱間圧延し、酸洗、冷間圧延、焼鈍を施した後、圧下率にて0.5~5.0%であり、かつ圧延機荷重を鋼板板幅で除した線荷重F(kg/mm)と鋼板の長手方向に負荷される単位面積あたりの荷重T(kg/mm)の比、F/T(mm)が8000以上の条件でスキンパス圧延を施すことを特徴とした疲労強度に優れた窒化用冷延鋼板の製造方法。
  5.  質量%で、Cが0.0002%以上、0.07%以下、Siが0.0010%以上、0.50%以下、Mnが0.10%以上、1.33%以下、Pが0.003%以上、0.02%以下、Sが0.001%以上、0.02%以下、Crが0.80%超、1.20%以下、Alが0.10%以上、0.50%以下、Vが0.05%以上、0.10%以下、Tiが0.005%以上、0.10%以下、Bが0.0001%以上、0.0015%以下を含有し、残部がFe及び不可避不純物からなり、鋼板表面から板厚方向に50μm以内の転位密度が、板厚方向の1/4の位置の転位密度に比べ、2.0倍以上、10.0倍以下である鋼板を成形した後に窒化処理したことを特徴とした疲労強度に優れた自動車部品。
PCT/JP2012/079991 2011-11-21 2012-11-19 疲労強度に優れる窒化用熱延鋼板、窒化用冷延鋼板及びそれらの製造方法、並びにそれらを用いた疲労強度に優れた自動車部品 WO2013077298A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112014011809-4A BR112014011809B1 (pt) 2011-11-21 2012-11-19 Folha de aço para a nitretação, método para a sua fabricação, e peça automotiva excelente na resistência à fadiga com o uso das mesmas
JP2013545918A JP5664797B2 (ja) 2011-11-21 2012-11-19 疲労強度に優れる窒化用熱延鋼板、窒化用冷延鋼板及びそれらの製造方法、並びにそれらを用いた疲労強度に優れた自動車部品
MX2014005863A MX363871B (es) 2011-11-21 2012-11-19 Lamina de acero laminada en caliente para nitruracion, lamina de acero laminada en frio para nitruracion, excelente en resistencia a la fatiga, metodo de fabricacion de la misma, y parte de automovil excelente en resistencia a la fatiga utilizando la misma.
CN201280056850.2A CN103958713B (zh) 2011-11-21 2012-11-19 氮化用热轧钢板、氮化用冷轧钢板及它们的制造方法、以及使用它们的汽车部件
KR1020147013175A KR101626227B1 (ko) 2011-11-21 2012-11-19 피로 강도가 우수한 질화용 열연 강판, 질화용 냉연 강판 및 그들의 제조 방법 및 그들을 사용한 피로 강도가 우수한 자동차 부품
US14/358,775 US9777353B2 (en) 2011-11-21 2012-11-19 Hot-rolled steel sheet for nitriding, cold-rolled steel sheet for nitriding excellent in fatigue strength, manufacturing method thereof, and automobile part excellent in fatigue strength using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011253677 2011-11-21
JP2011-253677 2011-11-21

Publications (1)

Publication Number Publication Date
WO2013077298A1 true WO2013077298A1 (ja) 2013-05-30

Family

ID=48469742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079991 WO2013077298A1 (ja) 2011-11-21 2012-11-19 疲労強度に優れる窒化用熱延鋼板、窒化用冷延鋼板及びそれらの製造方法、並びにそれらを用いた疲労強度に優れた自動車部品

Country Status (8)

Country Link
US (1) US9777353B2 (ja)
JP (1) JP5664797B2 (ja)
KR (1) KR101626227B1 (ja)
CN (1) CN103958713B (ja)
BR (1) BR112014011809B1 (ja)
MX (1) MX363871B (ja)
TW (1) TWI493056B (ja)
WO (1) WO2013077298A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147958A (ja) * 2014-02-05 2015-08-20 Jfeスチール株式会社 比例限の高い高強度冷延薄鋼板およびその製造方法
JP2015147959A (ja) * 2014-02-05 2015-08-20 Jfeスチール株式会社 比例限が高く、曲げ加工性に優れた高強度冷延薄鋼板およびその製造方法
WO2015190618A1 (ja) * 2014-06-13 2015-12-17 新日鐵住金株式会社 軟窒化処理用鋼板およびその製造方法と軟窒化処理鋼
WO2017094876A1 (ja) 2015-12-04 2017-06-08 新日鐵住金株式会社 窒化プレート部品およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203313A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Method for the manufacture of a recovered steel sheet having an austenitic matrix
MX2021010462A (es) * 2019-03-22 2021-09-21 Nippon Steel Corp Lamina de acero de alta resistencia y metodo para fabricar la misma.
CN113172980B (zh) * 2021-05-12 2023-01-03 北京科技大学 一种不锈钢/碳钢复合薄板带材的制备方法
CN113927247B (zh) * 2021-08-30 2022-05-20 浙江威罗德汽配股份有限公司 一种汽车排气管的隔热隔板及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925544A (ja) * 1995-07-12 1997-01-28 Nippon Steel Corp 深絞り性に優れた窒化用鋼板およびそのプレス成形体
JP2005146354A (ja) * 2003-11-17 2005-06-09 Nippon Steel Corp 高速曲げ変形時のエネルギ吸収量の高い衝突補強部品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2199032A1 (en) * 1995-07-12 1997-01-30 Kenji Shimoda Nitriding steel excellent in formability and susceptibility to nitriding and press formed article thereof
JP3764411B2 (ja) * 2002-08-20 2006-04-05 株式会社神戸製鋼所 焼付硬化性に優れた複合組織鋼板
KR101019791B1 (ko) * 2002-12-24 2011-03-04 신닛뽄세이테쯔 카부시키카이샤 용접 열영향부의 내연화성과 버링성이 우수한 고강도 강판
JP4325245B2 (ja) * 2003-03-27 2009-09-02 Jfeスチール株式会社 耐久疲労特性に優れた窒化処理部材およびその製造方法
WO2005056841A1 (en) * 2003-12-09 2005-06-23 Nippon Steel Corporation Steel sheet for containers, and manufacturing method therefor
JP4561136B2 (ja) 2004-03-17 2010-10-13 Jfeスチール株式会社 窒化処理用鋼板
US20070068605A1 (en) * 2005-09-23 2007-03-29 U.I.T., Llc Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact
CN101096738A (zh) * 2006-06-26 2008-01-02 舞阳钢铁有限责任公司 低焊接裂纹敏感性钢板及其生产方法
JP4462264B2 (ja) 2006-12-28 2010-05-12 Jfeスチール株式会社 窒化処理用冷延鋼板の製造方法
JP4992589B2 (ja) 2007-07-19 2012-08-08 コニカミノルタビジネステクノロジーズ株式会社 トナー供給ローラおよび画像形成装置
US8715432B2 (en) * 2008-03-31 2014-05-06 Nippon Steel & Sumitomo Metal Corporation Fire-resistant steel superior in weld joint reheat embrittlement resistance and toughness and method of production of same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925544A (ja) * 1995-07-12 1997-01-28 Nippon Steel Corp 深絞り性に優れた窒化用鋼板およびそのプレス成形体
JP2005146354A (ja) * 2003-11-17 2005-06-09 Nippon Steel Corp 高速曲げ変形時のエネルギ吸収量の高い衝突補強部品

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147958A (ja) * 2014-02-05 2015-08-20 Jfeスチール株式会社 比例限の高い高強度冷延薄鋼板およびその製造方法
JP2015147959A (ja) * 2014-02-05 2015-08-20 Jfeスチール株式会社 比例限が高く、曲げ加工性に優れた高強度冷延薄鋼板およびその製造方法
WO2015190618A1 (ja) * 2014-06-13 2015-12-17 新日鐵住金株式会社 軟窒化処理用鋼板およびその製造方法と軟窒化処理鋼
CN106460121A (zh) * 2014-06-13 2017-02-22 新日铁住金株式会社 软氮化处理用钢板及其制造方法和软氮化处理钢
JPWO2015190618A1 (ja) * 2014-06-13 2017-04-20 新日鐵住金株式会社 軟窒化処理用鋼板およびその製造方法と軟窒化処理鋼
KR101899739B1 (ko) 2014-06-13 2018-09-17 신닛테츠스미킨 카부시키카이샤 연질화 처리용 강판 및 그 제조 방법과 연질화 처리 강
US10344371B2 (en) 2014-06-13 2019-07-09 Nippon Steel & Sumitomo Metal Corporation Steel sheet for soft-nitriding treatment, method of manufacturing same, and soft-nitrided steel
WO2017094876A1 (ja) 2015-12-04 2017-06-08 新日鐵住金株式会社 窒化プレート部品およびその製造方法
KR20180086486A (ko) 2015-12-04 2018-07-31 신닛테츠스미킨 카부시키카이샤 질화 플레이트 부품 및 그 제조 방법
US10808311B2 (en) 2015-12-04 2020-10-20 Nippon Steel Corporation Nitrided plate part and method for producing the same

Also Published As

Publication number Publication date
CN103958713B (zh) 2016-02-17
CN103958713A (zh) 2014-07-30
BR112014011809B1 (pt) 2019-03-26
TW201333221A (zh) 2013-08-16
US20140334966A1 (en) 2014-11-13
JP5664797B2 (ja) 2015-02-04
BR112014011809A2 (pt) 2017-05-02
TWI493056B (zh) 2015-07-21
US9777353B2 (en) 2017-10-03
MX2014005863A (es) 2014-06-23
JPWO2013077298A1 (ja) 2015-04-27
MX363871B (es) 2019-04-05
KR20140077212A (ko) 2014-06-23
KR101626227B1 (ko) 2016-05-31

Similar Documents

Publication Publication Date Title
JP5664797B2 (ja) 疲労強度に優れる窒化用熱延鋼板、窒化用冷延鋼板及びそれらの製造方法、並びにそれらを用いた疲労強度に優れた自動車部品
US11041225B2 (en) Heat-treated steel sheet member and method for producing the same
JP4692259B2 (ja) 成形性および形状凍結性に優れる高強度鋼板
EP2325346A1 (en) High-strength steel plate and manufacturing method thereof
EP2468911A1 (en) Hot pressed member, steel sheet for hot pressed member, and method for producing hot pressed member
EP3530769A1 (en) Martensitic stainless steel sheet
JP4901623B2 (ja) 打ち抜き穴広げ性に優れた高強度薄鋼板およびその製造方法
JPWO2020162556A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
KR101733513B1 (ko) 질화 처리용 강판 및 그의 제조 방법
US10077485B2 (en) Steel sheet for soft-nitriding and method for manufacturing the same
EP2868764B1 (en) Steel sheet for soft nitriding and method for manufacturing the same
JP5614330B2 (ja) 軟窒化処理用鋼板およびその製造方法
JP2007162138A (ja) 窒化処理用鋼板およびその製造方法
JP6323554B2 (ja) 軟窒化処理用鋼板およびその製造方法と軟窒化処理鋼
KR102517499B1 (ko) 페라이트계 스테인리스 강판 및 그 제조 방법
JP2003277887A (ja) 窒化処理用薄鋼板
WO2022176984A1 (ja) ガス軟窒化用鋼板
EP4074855B1 (en) Hot-rolled steel sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280056850.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545918

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/005863

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20147013175

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14358775

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014011809

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12851461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014011809

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140516