WO2013077259A1 - スクリーンおよびプロジェクションシステム - Google Patents

スクリーンおよびプロジェクションシステム Download PDF

Info

Publication number
WO2013077259A1
WO2013077259A1 PCT/JP2012/079748 JP2012079748W WO2013077259A1 WO 2013077259 A1 WO2013077259 A1 WO 2013077259A1 JP 2012079748 W JP2012079748 W JP 2012079748W WO 2013077259 A1 WO2013077259 A1 WO 2013077259A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
layer
screen
screen according
Prior art date
Application number
PCT/JP2012/079748
Other languages
English (en)
French (fr)
Inventor
康 浅岡
誠二 大橋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013077259A1 publication Critical patent/WO2013077259A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/04Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with cameras or projectors providing touching or overlapping fields of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/001Axicons, waxicons, reflaxicons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/122Reflex reflectors cube corner, trihedral or triple reflector type
    • G02B5/124Reflex reflectors cube corner, trihedral or triple reflector type plural reflecting elements forming part of a unitary plate or sheet
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • the present invention relates to a screen including a retroreflective layer and a projection system including the screen.
  • the projection system displays a large screen image on a screen using a small projector (projector). For this reason, the projection system is widely used for movie viewing in movie theaters and home theaters and for presentations such as conferences.
  • the projector emits high-intensity projection light during bright display, and emits low-intensity projection light during dark display.
  • a screen that diffusely reflects incident light is generally used in a front type projection system that is easily used in a narrow space as compared with the rear type.
  • a screen that diffusely reflects incident light is generally used. Many viewers can observe an image because the screen reflects the projection light from the projector diffusely.
  • a screen that performs diffuse reflection also reflects ambient light diffusely in addition to the projection light. Therefore, when the periphery of the screen is bright, the screen appears bright regardless of the projector display.
  • a screen that performs such diffuse reflection can be used only in a dark environment, and it has been difficult to display a visible image in a bright environment.
  • This screen reflects most of the projection light from the projector in the vicinity of the projector, reflects ambient light in the incident direction, and does not reflect in the observer direction. For this reason, when the projector is disposed near the observer, the screen efficiently reflects the projection light from the projector toward the observer, and has a bright feature in bright display. In addition, since this screen reflects ambient light in a direction other than the viewer, it is darker in the case of dark display than a general diffusing screen. There is a feature that can be improved. For this reason, the contrast ratio can be improved by a screen that recursively reflects incident light.
  • FIG. 20 shows a conventional example of a front projection screen.
  • a transparent prism sheet 103 having a prism layer 102 is laminated on the front side of the light absorbing sheet 100 via a gap portion 101.
  • a screen 106 is formed by laminating a light diffusion layer 105 on the front side.
  • the prism sheet 103 has a structure in which a plurality of triangular prisms 108 are integrally formed on the back side of a transparent sheet-like base material 107 (see Patent Document 1).
  • the screen 106 shown in FIG. 20 reflects the incident light I incident through the light diffusing layer 105 from the P position to the Q position of the prism 108, and passes through the light diffusing layer 105 again to make the retroreflected light 109.
  • Is used and is known as a screen that can provide a wide viewing angle and high luminance by providing the light diffusion layer 105.
  • the conventional screen 106 shown in FIG. 20 is provided as a screen capable of obtaining a wide viewing angle and high luminance.
  • the prism layer The screen 102 is known as a screen that can absorb light that has not been retroreflected and can reduce extra reflected light other than retroreflected light.
  • the light absorption sheet 100 provided on the back side of the prism layer 102 can absorb the light emitted from the prism layer 102 and reaching the light absorption sheet 100, a specific prism 108 of the prism layer 102.
  • the present invention adopts a structure in which a screen including a retroreflective layer provided with a prism absorbs the return light that partially enters the back side of the prism and then reenters another adjacent prism and returns to the front side. Accordingly, an object of the present invention is to provide a screen having a retroreflective structure in which unnecessary return light is eliminated and display quality can be improved.
  • a screen according to an aspect of the present invention includes a retroreflective layer having a front surface and a back surface, the retroreflective layer including a prism layer having a plurality of prisms on the back surface side, and forming the prism layer.
  • Light absorption that absorbs at least part of the light that passes through the back side of the prism layer formed between a part of the prisms and the other prisms adjacent to the prism, partly through a low refractive index layer A structure is provided.
  • the said screen WHEREIN The structure which consists of a some convex-shaped light-shielding body standing in the front side of the said backplate and inserting in the recessed part of the said prism layer may be sufficient as the said screen.
  • the tip of the convex light blocking body may be disposed with a gap on the bottom edge side of the concave portion in a state of being inserted into the concave portion of the prism layer.
  • the tip of the convex light blocking body may be inserted into the concave portion of the prism layer by a depth of 40% or more.
  • a low refractive index layer may be provided on the back side of the prism layer so as to follow the contour shape of the prism, and the light absorbing structure may be provided on the back side of the low refractive index layer.
  • the said screen WHEREIN The structure which consists of a three-dimensional structure in which the said light absorption structure was standingly installed in the space of this recessed part integrally from the recessed part bottom edge of the said prism may be sufficient.
  • the prism may have a triangular cross section defined by a V-shaped groove and may be arranged in a stripe shape.
  • the prism may be configured by a corner cube array.
  • the prism may be a plurality of triangular pyramidal protrusions.
  • the said screen WHEREIN The structure which arranged a part of corner cube in the array form may be sufficient as the said prism.
  • a projection system according to another aspect of the present invention includes the above-described screen and a projector having a light emitting unit that emits light to the screen.
  • the other prisms which are emitted from the side surface of the prism provided on the back surface side of the retroreflective layer and are adjacent to each other Can absorb light that may be incident on the light and become return light. For this reason, since the return light emitted in a different direction via a plurality of prisms can be suppressed separately from the retroreflective light, there is no unnecessary return light on the viewer side as a retroreflective screen, and the display quality is improved. Can provide.
  • the projection light from the projector is reflected as recursion light in the projector installation direction, and the light incident from a direction different from the direction of the projection light from the projector is partially prismatic. Since a screen that absorbs light and does not return light is provided, a projection system with a high contrast ratio and good display quality can be provided.
  • FIG. 1A is a perspective view showing the entire screen of a first embodiment according to the present invention.
  • FIG. 1B is a sectional view of the screen.
  • FIG. 2 is a partially enlarged sectional view of the screen.
  • FIG. 3 is a partially enlarged sectional view showing an example of an incident light reflection path inside the screen.
  • FIG. 4 is a partially enlarged cross-sectional view showing an example of an incident light reflection path inside a conventional screen.
  • FIG. 5 is a partially enlarged sectional view showing a screen according to a second embodiment of the present invention.
  • FIG. 6 is a partially enlarged sectional view showing a screen according to a third embodiment of the present invention.
  • FIG. 7 is a partially enlarged sectional view showing a screen according to a fourth embodiment of the present invention.
  • FIG. 1A is a perspective view showing the entire screen of a first embodiment according to the present invention.
  • FIG. 1B is a sectional view of the screen.
  • FIG. 2 is a partially
  • FIG. 8 is a partially enlarged sectional view showing a screen according to a fifth embodiment of the present invention.
  • FIG. 9 is a plan view showing a second example of a structure applicable to the prism of the present invention.
  • FIG. 10 is a plan view showing a third example of a structure applicable to the prism of the present invention.
  • FIG. 11 is a perspective view showing a first example of a projection system according to the present invention.
  • FIG. 12 is a perspective view showing a second example of the projection system according to the present invention.
  • FIG. 13 is an explanatory diagram showing conditions for measuring the reflectance of the screen produced in the example.
  • FIG. 14 is an explanatory view showing a state of a screen produced as a comparative example.
  • FIG. 15 is a graph showing a comparison of the results of measuring the reflectance at each light receiving angle for the screen of the example and the screen of the comparative example.
  • FIG. 16 is a perspective view showing the main part of the screen produced in the second embodiment.
  • FIG. 17 is an explanatory diagram for illustrating conditions for measuring the reflectance of the screen produced in the second embodiment.
  • FIG. 18A is a cross-sectional view showing an example in which the insertion rate, which is the ratio of inserting the light absorption structure into the recesses between the prisms, is low.
  • FIG. 18B is a cross-sectional view showing an example of a medium insertion rate.
  • FIG. 18C is a cross-sectional view showing an example with a high insertion rate.
  • FIG. 19 is a graph showing the relationship between the insertion rate of the light absorbing structure and the light blocking rate of reflected light.
  • FIG. 20 is a cross-sectional view showing an example of a screen having a conventional retroreflective structure.
  • FIGS. 1A and 1B are diagrams showing a retroreflective screen according to a first embodiment of the present invention.
  • the screen 1 of the first embodiment is mainly composed of a back substrate 2 and a retroreflective layer 5 and a scattering layer 6 disposed on the front surface side of the back substrate 2 via a low refractive index layer 3.
  • a frame-like fixing member made of a tape or the like for holding these layers in a laminated state may be provided on the peripheral side of the screen 1.
  • the retroreflective layer 5 of the present embodiment has a flat front surface 5a, a plurality of triangular cross-sectional prisms 5b arranged in parallel in a line on the back surface side, and concave portions (V A prism layer 5d provided with a mold groove 5c.
  • the retroreflective layer 5 is made of a transparent material that does not absorb or scatter light, such as an acrylic resin, and has a refractive index of, for example, about 1.40 to 1.59.
  • the thickness of the retroreflective layer 5 is 140 ⁇ m as an example.
  • the pitch of the prisms 5b is preferably smaller than the pixel size of an image projected by a projector or the like, and is preferably 24 to 100 ⁇ m as an example.
  • the height of the prism 5c can be set to 12 to 50 ⁇ m as an example.
  • the retroreflective layer 5 having the above-described configuration can be produced, for example, by transferring the prism layer 5d with an acrylic resin onto a PET (polyethylene terephthalate) film or the like using a V-groove mold produced by cutting. More specifically, an acrylic resin is formed by forming an ultraviolet curable acrylic material layer on the main surface of a base substrate made of a PET material, pressing a V-groove mold, and curing by irradiation with ultraviolet rays from this state.
  • the retroreflective layer can be obtained by forming the prism.
  • curable acrylic material MP107 manufactured by Mitsubishi Rayon Co., Ltd. can be used as the photosensitive material.
  • the low refractive index layer 3 is disposed between the retroreflective layer 5 and the back substrate 2, and the low refractive index layer 3 is made of a material having a lower refractive index than the retroreflective layer 5.
  • the low refractive index layer 3 of the present embodiment is an air layer having a refractive index of 1.0, for example.
  • the back substrate 2 is made of a material having a low light reflectivity, and enters the retroreflective layer 5 from the front side of the retroreflective layer 5 and emits the light emitted from the prism layer 5d on the back to the low refractive index layer 3. It is provided to absorb at least a portion.
  • the back substrate 2 can be formed from, for example, a black resin plate.
  • a plurality of thin plate-like light blocking bodies 2A are formed to protrude intermittently at an equal pitch with the recess 5c of the prism layer 5d.
  • the light shielding bodies 2A are abbreviated for each predetermined number, and the adhesive layer 7 is provided on the abbreviated portion of the light shielding bodies 2A.
  • the light shields 2A are omitted for each predetermined number, but the light shields 2A do not need to be omitted for each predetermined number, and may be omitted for each arbitrary number or random number.
  • the light shielding body 2A may be provided without being omitted, and the light shielding body 2A and the prism layer 5d may be in contact with each other through an adhesive layer.
  • These adhesive layers 7 are erected integrally with the back substrate 2 in the form of a partition plate in parallel with the adjacent light shield 2A at the position where the front surface of the back substrate 2 and the light shield 2A are omitted. 7a is bonded to the front surface of the back substrate 2, and the back substrate 2 and the retroreflective layer 5 are bonded so that the front end portion 7b is filled in the triangular groove-shaped recess 5c of the prism layer 5d.
  • the adhesive layer 7 is preferably black or transparent so as not to cause excessive light reflection.
  • the light shielding body 2A uses a part of a material substrate for constituting the back substrate 2, forms a black resist layer on the main surface of the material substrate, and etches the black resist layer into a target shape by a photolithography method. Can be produced.
  • the formation pitch of the light shields 2A is the same as the formation pitch of the recesses 5c in the prism layer 5d.
  • black resist layer used here black resist CFPR-BK5000 series, 8300 series, 8400 series, and 8800 series from Tokyo Ohka Kogyo Co., Ltd., and alkali development type black resist ink NSBK series from Nippon Steel Chemical Co., Ltd. And V-259BK and V-259BKIS series, and Color Mosaic (registered trademark) CK series manufactured by FUJIFILM Electronics Materials Corporation.
  • the screen 1 of the present embodiment is manufactured, for example, by pasting and integrating the retroreflective layer 5 including the prism layer 5d on the surface side of the back plate 2 on which a plurality of light blocking bodies 2A are formed. Since the formation pitch of the concave portions 5c adjacent to the prism layer 5d and the formation pitch of the light shielding body 2A are the same, the adhesive layer 7 applied to the portion where the light shielding body 2A is not formed while aligning the concave portions 5c and the light shielding body 2A. Then, the back plate 2 and the retroreflective layer 5 are bonded together to produce the screen 1 shown in FIG. 1A. In addition, in FIG. 1A, the formation position of the contact bonding layer 7 was shown with the chain line.
  • the adhesive layer 7 is arranged in a lattice shape, in addition to forming the adhesive layer 7 in accordance with the position where the light shield 2A is omitted, the adhesive layer is also intermittently applied in a direction perpendicular to the light shield 2A.
  • the adhesive layer 7 is arranged in a lattice shape, a part of the prism at the position where the adhesive layer 7 is provided may be omitted, and the adhesive layer may be arranged along the position where the prism is omitted.
  • the light shielding body 2A is not limited to a structure in which the light shielding body 2A is provided intermittently, the light shielding body 2A is not partially omitted, and an adhesive layer 7 is provided so as to be in contact with the light shielding body 2A and adhered to the retroreflective layer 5. Also good.
  • the projector (not shown in FIGS. 1A and 1B) that projects an image on the screen 1 of this embodiment is a front projection type projector that projects light from the front side (observer side) of the screen 1.
  • the light emitted from the projector travels in and around the optical axis direction of the projector.
  • the projector When viewed from the screen 1, the projector is arranged in substantially the same direction as the observer. For example, the projector is mounted in the vicinity of the observer or the observer himself.
  • incident light N1 When incident light N1 is incident on the screen 1 of the present embodiment in a substantially perpendicular direction as indicated by an arrow in FIG. 3, the incident light N1 is reflected at points P and Q of the prism 5b and parallel to the incident light N1. Therefore, good retroreflected light can be obtained.
  • the incident light N3 that is slightly inclined with respect to the incident light N1 is incident near the incident position of the incident light N1, the incident light N3 is transmitted through the retroreflective layer 5 as transmitted light N4, and is transmitted through the prism 5b.
  • the light is reflected on the side surface near the point P, and is transmitted as transmitted light N5 from the position near the point Q on the other side surface of the prism 5b to the low refractive index layer 3 side as transmitted light N6.
  • the transmitted light N6 can be blocked by the light blocking body 2A.
  • the incident light N3 is emitted from the vicinity of the Q point of the prism 5b to the low refractive index layer 3 side.
  • the light enters the prism 5b from one side surface of the other adjacent prism 5b as intrusion light N7, is reflected by the other side surface of the prism 5b to become reflected light N8, and is emitted as leakage light N9 to the outside of the screen.
  • This leaked light N9 is bent and reflected along the side surface of the prism 5b, and as a result, the leaked light N9 is split into iridescent colors.
  • the transmitted light N6 can be blocked by the light blocking body 3, so that the reflected light split into the above-mentioned rainbow colors can be suppressed.
  • the incident light N10 having a larger inclination angle than the incident light N3 reaches the prism 5b as transmitted light N11 from the incident position, and is emitted from the vicinity of the top of the prism 5b to the rear substrate 4 as transmitted light N12. Since it is blocked by the substrate 4, it does not become return light.
  • the screen 1 of this embodiment is transmitted from one prism 5b to another adjacent prism 5b, and the light that becomes the return light N9 is shared by the light shielding body 2A from the other adjacent prism 5b. Since part or all of the light can be absorbed, unnecessary return light generated by the prism 5c can be suppressed. For this reason, since the screen 1 of this embodiment can suppress the return light which reflects between adjacent prisms and returns to the surface side, the visibility of the retroreflected light which should be originally obtained can be improved.
  • the light shield 2A and the prism 5b are not optically bonded, the light totally reflected by the prism 5b is not absorbed by the light absorbing light shield 2A. For this reason, the reflectance reduction of retroreflection light can be suppressed.
  • the light blocking body 2A does not reach its bottom end 2a to the bottom edge of the recess 5c, a gap d is formed between the recess 5c and the tip 2a. By providing this gap d, the tip 2a of the light shield 2A and the prism 5b are optically bonded at only two points where they come into contact with each other. Therefore, leakage light is generated in an area where the prism 5b is originally reflected. Absent.
  • the screen 1 of the present embodiment is provided with the scattering layer 6 on the outermost surface, the return light N2 is somewhat scattered and a wide viewing angle can be realized.
  • the scattering layer 6 also has an action of reducing diffraction reflection caused by the pitch of the prisms 5b.
  • FIG. 5 shows a screen 10 according to a second embodiment of the present invention.
  • the screen 10 according to this embodiment includes a rear substrate 2, a light absorption structure 13 and a low refractive index layer on the front side of the rear substrate 2.
  • the retroreflective layer 5 and the scattering layer 6 arranged via 15 are mainly used.
  • the back substrate 2, the retroreflective layer 5, and the scattering layer 6 have the same structure as that used in the structure of the first embodiment.
  • the present embodiment differs from the first embodiment in that a low refractive index layer 15 having a thickness for covering the prism 5b of the retroreflective layer 5 so as to follow its outline is provided, and low refraction is low.
  • the light-absorbing structure 13 that fills all the gaps between the rate layer 15 and the flat plate-like back substrate 2 is provided.
  • the low refractive index layer 15 needs to follow the shape of the prism 5b, and the thickness of the recess 5c between the prisms cannot be achieved. Therefore, the low refractive index layer 15 is preferably formed to a thickness of about 0.4 ⁇ m to 21 ⁇ m.
  • the low refractive index layer 15 for example, a product name TU2276 manufactured by JSR Corporation or a CaF 2 layer can be used. Note that the low refractive index layer is preferably formed of a material having low light absorption and scattering properties.
  • the prism 5b is preferably formed of a resin having a high refractive index so that the difference in refractive index between the prism 5b and the low refractive index layer 15 is as large as possible.
  • the light absorbing structure 13 is preferably composed of the same material as the light shielding body 2A described above in order to absorb light.
  • a thermosetting material in which a pigment such as a black ink layer or carbon black is dispersed is used. It can be formed from a resin or an adhesive.
  • FIG. 6 shows a screen 20 of a third embodiment according to the present invention.
  • the screen 20 of this embodiment includes a rear substrate 2 and a light absorption structure (light-shielding body) 23 on the front side of the rear substrate 2.
  • the retroreflective layer 5 and the scattering layer 6 arranged with the low refractive index layer 3 interposed therebetween are mainly configured.
  • the back substrate 2, the low refractive index layer 3, the retroreflective layer 5, and the scattering layer 6 have the same structure as that used in the structure of the first embodiment.
  • the difference from the first embodiment is that the light shielding body has a wall shape from the bottom edge 5e of the triangular recess 5c between the plurality of prisms 5b of the retroreflective layer 5 to the outside of the recess 5c.
  • Reference numeral 23 denotes a point formed to extend.
  • the light-shielding body 23 has a thickness that is about one-fifth of the width of the concave portion 5c, and its base end portion 23a is integrated with the bottom edge 5e of the concave portion 5c, and its distal end portion 23b is slightly separated from the rear substrate 2. It is provided to extend.
  • the light shielding body 23 has a gradient in thickness so that the base end portion 23a side is slightly thicker than the distal end portion 23b side.
  • the light shield 23 is preferably made of the same material as the light shield 2A described above in order to absorb light.
  • the light shield 23 in this form can be obtained by coating and forming a black resist layer on the back side of the prism 5b and etching it as a thin wall-shaped light shield 23 only on the recess 5c by photolithography.
  • the screen 20 can be obtained by pasting the retroreflective layer 5 provided with the light shield 23 to the back substrate 2.
  • the light shielding body 23 is integrated with the retroreflective layer 5, so that alignment is not necessary, and the bonding operation of the retroreflective layer 5 and the back substrate 2 can be facilitated.
  • emit to the other prism 5b adjacent from the specific prism 5b is the light-shielding body located in the recessed part 5c similarly to the structure of 1st Embodiment demonstrated previously. 23. For this reason, since this light does not return to the front side of the screen 20, unnecessary return light can be eliminated.
  • the area of the base end portion 23a of the light shield 23 is large, the retroreflective component is reduced and the display of the image becomes dark. Therefore, the area of the base end portion 23a is as small as possible. It is preferable to do.
  • FIG. 7 shows a screen 30 of a fourth embodiment according to the present invention.
  • the screen 30 of this embodiment is composed of a back substrate 2, a light absorption structure 33 and a low refractive index layer on the front side of the back substrate 2.
  • 3 is composed mainly of a retroreflective layer 5 and a scattering layer 6 arranged via 3.
  • the back substrate 2, the low reflective layer 3, the retroreflective layer 5, and the scattering layer 6 have the same structure as that used in the structure of the first embodiment.
  • the difference from the first embodiment is that the light absorbing structure is made of a light absorbing fiber through the air layer as the low refractive index layer 3 in the concave portion 5c formed by the prism 5b of the retroreflective layer 5.
  • the body 33 is provided.
  • the light absorbing structure 33 is preferably composed of fibers, black fibers, or the like of the same material as the light shielding body 2A described above in order to absorb light.
  • emit to the other prism 5b which adjoins from the specific prism 5b is the fibrous form located in the recessed part 5c similarly to the structure of 1st Embodiment demonstrated previously.
  • the light absorbing structure 33 is blocked. For this reason, since this light does not return to the front side of the screen 30, unnecessary return light can be eliminated.
  • the area where the fiber constituting the light absorption structure 33 and the prism 5b are in contact can be reduced, the area to be optically bonded can be reduced. As a result, the reflectance of light reflected at the interface of the prism 5b can be reduced. It becomes.
  • the screen 30 can be produced simply by sandwiching the fibers constituting the light absorption structure 33 between the prism 5b and the back plate 2, no special alignment or photolithography is required and the production is simple. It is easy to realize.
  • FIG. 8 shows a screen 40 according to a fifth embodiment of the present invention.
  • the screen 40 according to this embodiment includes a rear substrate 2, a light absorption structure 43 and a low refractive index layer on the front side of the rear substrate 2.
  • 3 is composed mainly of a retroreflective layer 5 and a scattering layer 6 arranged via 3.
  • the back substrate 2, the low reflective layer 3, the retroreflective layer 5, and the scattering layer 6 have the same structure as that used in the structure of the first embodiment.
  • the first embodiment is different from the first embodiment in that a mesh-like material made of a light-absorbing substance is formed in the recess 5c formed by the prism 5b of the retroreflective layer 5 through an air layer as the low refractive index layer 3.
  • the light absorbing structure 43 is provided. About the light absorption structure 43, it is preferable that it is a mesh comprised from the thin structure wall, black fiber, etc. of the material equivalent to 2 A of light-shielding bodies demonstrated previously in order to absorb light.
  • the light absorbing structure 43 of this embodiment is a structure in which the thin structural walls 43a in rows and the thin structural walls 43b in rows are made into a mesh structure, and each thin structural wall has light absorption.
  • the light absorbing structure 43 is accommodated so as to be fitted into the recess 5c of the prism layer 5d, and one side edge 43c is accommodated with a gap 5f between the bottom edge 5e of the recess 5c and the other side edge 43d is accommodated with the recess 5c. It is located between the back substrate 2 and is interposed between the prism layer 5 d and the back substrate 2.
  • the light to be emitted from the specific prism 5b to the other adjacent prism 5b is in a mesh shape located in the recess 5c. Is blocked by the light absorption structure 43. For this reason, since this light does not return to the front side of the screen 40, unnecessary return light can be eliminated.
  • FIG. 9 is a plan view showing a second example of a prism that can be applied as a prism of a retroreflective layer.
  • the prism in this example has a structure in which a plurality of triangular prisms 55 are arranged so as to form a concave portion 56 therebetween.
  • the prisms 55 arranged in a triangular lattice pattern have ridges 57 and are closely arranged.
  • a retroreflective layer including the prism 55 shown in FIG. 9 may be applied to the retroreflective layer of the present invention instead of the prism 5b having the triangular cross section shown above.
  • FIG. 10 is a plan view showing a third example of a prism that can be applied as a prism of a retroreflective layer.
  • the prism 65 is formed so that the grooves 66 and 67 having a triangular cross section are gradually deepened toward the center line 68.
  • a plurality of composite recesses 69 etched from the left and right of the center line 68 are arranged along the center line 68, and a plurality of the recesses 69 are arranged in parallel at a predetermined pitch.
  • An example of the concave prism 65 shown in FIG. 10 is a diamond grade TMD ultra-high brightness reflective sheet manufactured by Sumitomo 3M Limited.
  • any shape of prism that can be used for retroreflection may be used in addition to the shapes described above.
  • the screen of each embodiment according to the present invention can be used not only for retroreflection but also as a reflection screen for normal projection.
  • FIG. 11 shows an example of a projection system to which the screen 1 according to the present invention is applied, and the projection system 80 of this example is composed of the screen 1 according to the present invention and a projector 81.
  • the light emitting part 81 a of the projector 81 is an example mounted on the front side of the headphone 82 of the observer, and is disposed in the vicinity of the head of the observer 85.
  • the image can be viewed using the retroreflected light effectively by wearing it on the observer himself or wearing it near the observer and irradiating the screen 1 with projection light.
  • the projector 81 may be mounted on headphones as shown in FIG.
  • the present invention can be applied to any installation place such as a neck-hanging structure and a chair backrest.
  • the projection system As another example of the projection system to which the screen 1 according to the present invention is applied, it is possible to adopt a structure in which a plurality of projectors each having a projection unit that projects an image on the screen 1 are provided. Can be applied to a projection system in which the distance from the screen 1 is different from each other.
  • the projection system includes the screen 1 according to the present invention, and a plurality of image projecting means for projecting an image onto the screen 1 from substantially the same direction as the line of sight of a plurality of observers with respect to the screen 1.
  • the above-mentioned image projection means can mention the example with which it mounts
  • the screen 1 according to the present invention and an observer group in which a plurality of observers with respect to the screen 1 are grouped together are formed on the screen 1 from substantially the same direction as each line-of-sight direction with respect to the screen 1 of the plurality of observer groups.
  • the present invention can be widely applied to general projection systems including an image projecting means for projecting an image onto the screen.
  • a group in which a small number of observers are lined up along the same table is regarded as one observer group, and a projector is provided for each observer group, and projection light is separately projected from the projectors of each observer group.
  • the screen 1 of the present invention can be applied to a projection system that can be illuminated and viewed.
  • the projection system S shown in FIG. 12 includes a screen 90 having a circular arc shape in plan view, and light sources 91, 92, 93 such as projectors arranged in an arc shape so as to oppose the concave curved inner surface 90a of the screen 90.
  • the observer groups 95A, 95B, and 95C are arranged in the vicinity of the light sources 91, 92, and 93. Further, the light sources 91, 92, 93 are accommodated in a table 96 having a semicircular arc shape in plan view disposed between the screen 90 and the observer groups 95A, 95B, 95C so that a necessary image can be projected onto the screen 90. Is arranged.
  • the observer group 95A is aligned on one end side of the table 96
  • the observer group 95B is aligned on the center side of the table 96
  • the observer group 95C is aligned on the other end side of the table 96.
  • One observer group is constituted by the name observers 95. There is no particular limitation on the number of personnel constituting the observer group.
  • the screen 90 may have any of the configurations of the screens 1, 10, 20, 30, and 40 described in the previous embodiments, and the scattering layer 6 provided on the surface side of the screen 90 may be used as an observer. It arrange
  • the light sources 91, 92, and 93 are installed on the table 96 with their light emitting portions facing the screen 90.
  • the light source 91 is arranged so that an image can be projected onto a part 90A of the screen 90 on the front side of the line of sight of the group of observers 95A arranged in a plan view arc shape, and the light source 92 is observed in a plan view arc shape.
  • a part of the screen 90 on the front side of the line of sight of the observer group 95C is arranged so that an image can be projected onto a part 90B of the screen 90 on the front side of the line of sight of the group of people 95B. It is arranged so that an image can be projected onto 90C.
  • the light source 91 can project the projection light emitted from the light emitting portion in a divergent shape onto a part 90A of the screen 90 via the range of chain lines indicated by 91A and 91B in FIG.
  • the light source 92 can project the projection light emitted from the light emitting portion in a divergent shape onto a part 90B of the screen 90 through the range of chain lines indicated by 92A and 92B in FIG.
  • the light source 93 can project the projection light emitted from the light emitting portion in a divergent shape onto a part 90C of the screen 90 through a range of chain lines indicated by 93A and 93B in FIG.
  • the image projected onto the part 90A of the screen 90 by the light source 91 is an observer within the range of return light ranges 91C and 91D where the return light from the screen 90 strongly returns.
  • the observer 95 of the group 95A can appreciate the image as a bright display.
  • an image projected onto a part 90B of the screen 90 by the light source 92 can be viewed as a bright display by the observer 95 of the observer group 95B within the return light ranges 92C and 92D.
  • the image projected by the light source 93 onto the part 90C of the screen 90 can be viewed as a bright display by the observer 95 of the observer group 95C within the return light ranges 93C and 93D.
  • the projection system S shown in FIG. 12 is an embodiment of the present invention, and there are no particular restrictions on the number of light sources, the number of observers, the shape of the screen, and the like. (Example)
  • the prism sheet 50 is stacked on a back sheet 61 made of a black resin plate with the prism facing upward, and a BEFII film (prism sheet 60) with the prism facing downward is stacked on the back sheet 61 with a gap of 5 ⁇ m. 62 was constructed.
  • the gap corresponds to a low refractive index layer (air layer) having a refractive index of 1.0.
  • the visibility correction light Y value at the time of the angle theta 2 is changed by 30 ° to 40 ° range was measured.
  • An LCD 5220 manufactured by Otsuka Electronics Co., Ltd. was used as the measuring device having the basic configuration described above.
  • a screen 66 having a structure in which a prism sheet 60 is placed downward on a black back sheet 61 as shown in FIG. 14 is prepared, and the reflectance of this screen 66 is also measured under the same conditions.
  • an incident angle of the light source was 35 °
  • a light receiving angle of the reflection intensity was 35 °
  • an aluminum vapor-deposited mirror was used.
  • the reflectivity in% relative to the reflectance value obtained with the aluminum vapor-deposited mirror was obtained.
  • the measurement results when the screen 62 is used and when the screen 66 is used are also shown in FIG. From the results shown in FIG. 15, in the case of the screen 61 provided with the three-dimensional absorber (black light shielding layer), a high reflectance can be obtained in a narrow range with a light receiving angle of 35 ° as the center. In the region of 30 ° to 33 ° and the light receiving angle of 37 ° to 40 °, the reflectance decreases. In the case of the screen 62, strong reflected light can be obtained in a narrow range around the regular reflection direction (light receiving angle of 35 °) with an incident angle of 35 ° of the measurement light. This means that the reflected light spreads. It was also confirmed visually that the reflected light generated in these wide areas was colored rainbow.
  • a prism sheet (manufactured by Edmund Optics Japan Co., Ltd.) 71 in which a number of corner cube type prisms 70 shown in FIG. 16 are arranged in place of the prism sheet having a triangular cross section is used.
  • the pitch Lc of the corner cube type prism is 4 mm.
  • a prism sheet 71 is horizontally arranged with the corner cube facing downward, and an equivalent corner cube type prism sheet 73 in which a black ink light-shielding layer 72 is applied to the corner cube type prism surface is provided below.
  • Table 1 shows that the chromaticity of the white copy paper is white, but the numerical value of the chromaticity of the comparative test screen without the light-shielding layer is deviated, but since the reflected reflected light is generated, the color is It shows that it is off white.
  • the spectrally reflected internal reflection light is absorbed by the light shielding layer, so that the chromaticity value is almost the same as the chromaticity of the white copy paper, and the extraneous leakage light that is dispersed is generated. It shows very little.
  • the reflection luminance when the incident angle of incident light is 30 ° and the reception angle of reflected light is 34 ° can be reduced to 1 ⁇ 2 or less by providing a light shielding layer. In this way, by receiving the reflected light having an incident angle different from the light receiving angle by 4 °, it is possible to grasp the intensity of the leakage light that is not in the normal reflection direction.
  • FIG. 19 shows the correlation between the insertion rate (%) and the light shielding rate (%).
  • the present invention can be widely applied to the field of projection-type image display systems.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Projection Apparatus (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 本発明の一態様に係るスクリーンは、前面(5a)と背面とを有する再帰反射層(5)であって、前記背面側に複数のプリズム(5b)を有するプリズム層(5d)が設けられている再帰反射層を備え、前記プリズム層を形成する一部のプリズムと、そのプリズムに隣接する他のプリズムとの間に、一部に低屈折率層(3)を介して形成された、プリズム層の背面側に抜ける光の少なくとも一部を吸収する光吸収構造体を備える。

Description

スクリーンおよびプロジェクションシステム
 本発明は、再帰反射層を備えたスクリーンとそのスクリーンを備えたプロジェクションシステムに関する。
 本願は、2011年11月25日に、日本に出願された特願2011-258015号に基づき優先権を主張し、その内容をここに援用する。
 プロジェクションシステムは、サイズの小さいプロジェクタ(映写機)を用いてスクリーンに大画面の画像を表示する。このため、プロジェクションシステムは、映画館やホームシアターでの映画視聴や、会議などのプレゼンテーションに広く利用されている。
 プロジェクタは、明表示時に高強度の投射光を出射し、暗表示時に低強度の投射光を出射する。リア型と比較して狭い空間において簡便に用いられるフロント型プロジェクションシステムにおいて、一般的には、入射光を拡散的に反射するスクリーンが用いられている。スクリーンがプロジェクタからの投射光を拡散的に反射することにより、多くの視聴者が画像を観察できる。しかしながら、拡散反射を行なうスクリーンは、投射光以外に周囲光も拡散的に反射するため、スクリーンの周囲が明るい場合、スクリーンはプロジェクタの表示とは無関係に明るく見えてしまう。このような拡散反射を行なうスクリーンは、暗環境下においてのみ使用可能であり、明環境下においては視認可能な画像を表示することが難しかった。
 そこで、入射光を再帰的に反射するスクリーンが研究開発されている。このスクリーンは、プロジェクタからの投射光の大部分をプロジェクタの近傍に反射するとともに、周囲光をその入射方向に反射し、観測者方向には反射しない。このため、プロジェクタを観察者の近くに配置した場合、スクリーンは、プロジェクタからの投射光を効率的に観察者方向に反射し、明表示に明るい特徴がある。また、このスクリーンは、周囲光を観察者以外の方向に反射するため、一般的な拡散スクリーンに比較して暗表示の際に暗いので、プロジェクタからの低強度の投射光であっても表示が良好にできる特徴がある。このため、入射光を再帰的に反射するスクリーンにより、コントラスト比の向上を図ることができる。
 図20は、フロントプロジェクション用スクリーンの一従来例を示すもので、光吸収シート100の前面側に隙間部分101を介しプリズム層102を備えた透明なプリズムシート103を積層し、このプリズムシート103の前面側に光拡散層105を積層してスクリーン106が形成されている。前記プリズムシート103は透明なシート状基材107の裏面側に複数の三角型のプリズム108を複数一体形成した構造とされている(特許文献1参照)。
 図20に示すスクリーン106は、光拡散層105を介し入射された入射光Iをプリズム108のP位置からQ位置に反射し、再び光拡散層105を通過させて再帰光109とする再帰反射構造が採用され、光拡散層105を設けることで広い視野角と高い輝度が得られるスクリーンとして知られている。
特開平11-038509号公報
 ところで、図20に示す従来のスクリーン106は、広い視野角と、高い輝度が得られるスクリーンとして提供されているが、プリズム層102の背面側に光吸収シート100が配置されているので、プリズム層102が再帰反射しなかった光を吸収することが可能であり、再帰反射光以外の余分な反射光を低減できるスクリーンとして知られている。
 しかしながら、プリズム層102の背面側に設けられている光吸収シート100は、プリズム層102から出射して光吸収シート100に到達した光を吸収することはできるものの、プリズム層102の特定のプリズム108の側面から空間に出射して隣接する他のプリズム108に到達し、更にプリズム層102の内部を通過して光拡散層105側に戻る光を吸収することができない。
 この隣接するプリズム108を伝わってスクリーン106の前面側に戻る戻り光が観察者に到達すると、観察者に不要な反射光として認識され、表示不良を引き起こすおそれがあった。特に、隣接するプリズム108を伝わってスクリーン106の前面から観察者側に戻る光は、プリズム108の表面を通過する際、通過角度によっては分光されて虹色に着色されるので、観察者側に虹色の戻り光が認識されることがあり、プロジェクタからスクリーン106に本来投影するべき画像の表示品質を乱すおそれがあった。
 本発明は、プリズムを設けた再帰反射層を備えたスクリーンにおいて、プリズムの背面側に一端抜けてから他の隣接するプリズムに再入射して前面側に戻る戻り光を途中で吸収する構造を採用することで不要な戻り光を無くして表示品質の向上をなしえた再帰反射構造のスクリーンを提供することを目的の一つとする。
 本発明の一態様に係るスクリーンは、前面と背面とを有する再帰反射層であって、前記背面側に複数のプリズムを有するプリズム層が設けられている再帰反射層を備え、前記プリズム層を形成する一部のプリズムと、そのプリズムに隣接する他のプリズムとの間に、一部に低屈折率層を介して形成されたプリズム層の背面側に抜ける光の少なくとも一部を吸収する光吸収構造体を備える。
 上記スクリーンにおいて、前記光吸収構造体が、前記背面板の前面側に立設されて前記プリズム層の凹部内に挿入する複数の凸型の遮光体からなる構成でもよい。
 上記スクリーンにおいて、前記凸型の遮光体の先端部が、前記プリズム層の凹部への挿入状態で該凹部の底縁側に間隙をあけて配置されていてもよい。
 上記スクリーンにおいて、前記凸型の遮光体の先端部が、前記プリズム層の凹部に深さ40%以上挿入されていてもよい。
 上記スクリーンにおいて、前記プリズム層の背面側に前記プリズムの輪郭形状を倣ったまま覆う低屈折率層が設けられ、該低屈折率層の背面側に前記光吸収構造体が設けられていてもよい。
 上記スクリーンにおいて、前記光吸収構造体が、前記プリズムの凹部底縁から一体的に該凹部の空間内に立設された、立体構造物からなる構成でもよい。
 上記スクリーンにおいて、前記光吸収構造体が、前記プリズム層の凹凸部の凹部内に収容された光吸収繊維の集合体からなる構成でもよい。
 上記スクリーンにおいて、前記プリズムがV型溝で区画される横断面三角型でありストライプ状に配列された構成でも良い。
 上記スクリーンにおいて、前記プリズムがコーナーキューブアレイからなる構成でも良い。
 上記スクリーンにおいて、前記プリズムが、三角錘型の複数の突部である構成でも良い。
 上記スクリーンにおいて、前記プリズムがコーナーキューブの一部をアレイ状に並べた構成でも良い。
 本発明の他の一態様に係るプロジェクションシステムは、上述のスクリーンと、前記スクリーンに対し光を出射する光出射部を有するプロジェクタとを備える。
 本発明の態様によれば、再帰反射層のプリズム層の凹部内に光吸収構造体を設けたので、再帰反射層の裏面側に設けられているプリズムの側面から出射して隣接する他のプリズムに入射し、戻り光となる可能性のある光を吸収できる。このため、再帰反射光とは別に複数のプリズムを介し別の方向へ出射する戻り光を抑制できるので、再帰反射構造のスクリーンとして観察者側に不要な戻り光の無い、表示品質を高めたスクリーンを提供できる。
 また、本発明の一態様に係るプロジェクションシステムによれば、プロジェクタからの投射光はプロジェクタの設置方向に再帰光として反射し、プロジェクタからの投射光の方向と異なる方向から入射する光を一部プリズム間で吸収して戻り光としないスクリーンを備えたので、コントラスト比の高い、表示品質の良好なプロジェクションシステムを提供できる。
図1Aは本発明に係る第1実施形態のスクリーンの全体を示す斜視図。 図1Bは同スクリーンの断面図。 図2は同スクリーンの部分拡大断面図。 図3は同スクリーン内部における入射光反射経路の一例を示す部分拡大断面図。 図4は従来のスクリーン内部における入射光反射経路の一例を示す部分拡大断面図。 図5は本発明に係る第2実施形態のスクリーンを示す部分拡大断面図。 図6は本発明に係る第3実施形態のスクリーンを示す部分拡大断面図。 図7は本発明に係る第4実施形態のスクリーンを示す部分拡大断面図。 図8は本発明に係る第5実施形態のスクリーンを示す部分拡大断面図。 図9は本発明のプリズムに適用可能な構造の第2の例を示す平面図。 図10は本発明のプリズムに適用可能な構造の第3例を示す平面図。 図11は本発明に係るプロジェクションシステムの第1の例を示す斜視図。 図12は本発明に係るプロジェクションシステムの第2の例を示す斜視図。 図13は実施例で作製したスクリーンの反射率を測定する条件を示す説明図。 図14は比較例として作製したスクリーンの状態を示す説明図。 図15は実施例のスクリーンと比較例のスクリーンについて受光角度毎の反射率を測定した結果を比較して示すグラフ。 図16は第2の実施例において作製したスクリーンの要部を示す斜視図。 図17は第2の実施例で作製したスクリーンの反射率を測定する条件を示すための説明図。 図18Aはプリズム間の凹部に光吸収構造体を挿入する割合である挿入率が低い例を示す断面図。 図18Bは挿入率が中程度の例を示す断面図。 図18Cは挿入率が大きい例を示す断面図。 図19は光吸収構造体の挿入率と反射光の遮光率の関係を示すグラフ。 図20は従来の再帰反射構造を備えたスクリーンの一例を示す断面図。
 図1Aおよび図1Bは、本発明の第1実施形態に係る再帰反射型スクリーンを示す図である。なお、図1A以降の各図においては、各部材を図面上で認識可能な程度の大きさとするため、各部材毎に縮尺を異ならせて示している。
 第1実施形態のスクリーン1は、背面基板2と、この背面基板2の前面側に低屈折率層3を介し配置された再帰反射層5と散乱層6を主体として構成されている。なお、図1Aおよび図1Bでは略しているがスクリーン1の周囲側にはこれらの層を積層状態で保持するためのテープなどからなる枠状の固定部材が設けられていても良い。
 本実施形態の再帰反射層5は、平坦な前面5aを有し、背面側に複数の横断面三角形状のプリズム5bを一列に平行に多数ストライプ状に配置し、隣接するプリズム間に凹部(V型溝)5cを備えたプリズム層5dを有している。再帰反射層5は、光の吸収、散乱の無い透明な材料、例えば、アクリル樹脂などから形成されており、その屈折率は例えば、約1.40~1.59である。再帰反射層5の厚さは一例として140μmである。プリズム5bのピッチはプロジェクタ等で投影する映像の画素サイズより小さいことが望ましく、一例として24~100μmとすることが望ましい。また、プリズム5cの高さは、一例として12~50μmとすることができる。
 上述の構成の再帰反射層5は、例えば、切削加工により作製したV溝金型を用いて、PET(ポリエチレンテレフタレート)フィルム等にアクリル樹脂でプリズム層5dを転写することで作製することができる。より具体的には、PET素材からなるベース基板の主面上に紫外線硬化型アクリル材料層を形成し、V溝金型を押し当て、この状態から紫外線を照射して硬化することにより、アクリル樹脂のプリズムを形成して再帰反射層を得ることができる。感光性材料は例えば、三菱レイヨン社製硬化型アクリル材料MP107を用いることができる。なお、ここでは再帰反射層をフォトポリマー法で形成する例について説明したが、キャスト法、ホットプレス法、射出成型法で再帰反射層を形成しても良いのは勿論である。
 低屈折率層3は、再帰反射層5と背面基板2との間に配置されており、低屈折率層3は再帰反射層5よりも低い屈折率の材料から形成されている。本実施形態の低屈折率層3は例えば屈折率1.0の空気層とされている。
 背面基板2は、光反射率の低い材料から構成されており、再帰反射層5の前面側から再帰反射層5に入射して背面のプリズム層5dから低屈折率層3に出射される光の少なくとも一部を吸収するために設けられている。背面基板2は例えば黒色の樹脂板から形成できる。
 前記背面基板2の前面側に、前記プリズム層5dの凹部5cに先端部2aを挿入した薄板状の複数の遮光体2Aが前記プリズム層5dの凹部5cと等ピッチで間欠的に突出形成されている。
 また、遮光体2Aは所定数毎に略されていて、遮光体2Aの略された部分に接着層7が設けられている。なお、本実施形態において遮光体2Aは所定数毎に略されているが、遮光体2Aは所定数毎に略されている必要はなく、任意数、あるいは、ランダム数毎に略しても良く、また、略することなく遮光体2Aを設けて遮光体2Aとプリズム層5dとが接着層を介し接していても良い。
 これらの接着層7は、背面基板2の前面と遮光体2Aが略された位置において、隣接する遮光体2Aと平行に仕切板状に背面基板2と一体に立設されていて、その下端部7aを背面基板2の前面に接着し、その先端部7bをプリズム層5dの三角溝型の凹部5cを埋めるように背面基板2と再帰反射層5とを接着している。接着層7は余分な光反射を起こさないように黒色もしくは透明のものが好ましい。
 前記遮光体2Aは一例として背面基板2を構成するための素材基板の一部を用い、素材基板主面に黒色レジスト層を形成し、該黒色レジスト層をフォトリソグラフィ法により目的の形状に蝕刻することで作製することができる。遮光体2Aの形成ピッチはプリズム層5dにおける凹部5cの形成ピッチと同一ピッチとされている。ここで用いる黒色レジスト層の一例として、東京応化工業株式会社のブラックレジストCFPR-BK5000シリーズや同8300シリーズ、同8400シリーズ、同8800シリーズ、新日鐵化学株式会社のアルカリ現像型ブラックレジストインキNSBKシリーズやV-259BKおよびV-259BKISシリーズ、富士フイルムエレクトロニクスマテリアルズ株式会社製のカラーモザイク(登録商標)CKシリーズなどが挙げられる。
 本実施形態のスクリーン1は、例えば、遮光体2Aを複数形成した背面板2の表面側にプリズム層5dを備えた再帰反射層5を貼り合わせて一体化することで作製される。プリズム層5dの隣接する凹部5cの形成ピッチと遮光体2Aの形成ピッチは同じなので、凹部5cと遮光体2Aの位置合わせを行ないつつ、遮光体2Aを形成していない部分に塗布した接着層7で背面板2と再帰反射層5を貼り合わせることで図1Aに示すスクリーン1を作製できる。
 なお、図1Aでは接着層7の形成位置を鎖線で示した。この例では接着層7を格子状に配置するので、遮光体2Aを略した位置に合わせて接着層7を形成する他に、遮光体2Aと直交する方向にも接着層を間欠的に塗布することで図1Aに示すように格子状に接着層7を配置した構造とすることができる。接着層7を格子状に配置する場合、接着層7を設ける位置のプリズムを一部略してプリズムを略した位置に沿って接着層を配置する構成とすることができる。なお、遮光体2Aを間欠的に設ける構造には限らないので、遮光体2Aを一部略することなく設け、遮光体2Aに接するように接着層7を設けて再帰反射層5と接着しても良い。
 この実施形態のスクリーン1に画像を投影するプロジェクタ(図1Aおよび図1Bには図示せず)は、スクリーン1の前面側(観察者側)から光を投影する前面投射型のプロジェクタである。プロジェクタから出射される光は、プロジェクタの光軸方向およびその近傍に進行する。スクリーン1から見て、プロジェクタは観察者とほぼ同じ方向に配置されている。例えば、プロジェクタは観察者の近傍あるいは観察者自身に装着されている。
 本実施形態のスクリーン1に図3の矢印に示すようにほぼ直角方向に入射光N1が入射された場合、この入射光N1はプリズム5bのP点、Q点で反射されて入射光N1と平行な戻り光N2となるため、良好な再帰反射光を得ることができる。
 これに対し、入射光N1より若干傾斜した入射光N3が入射光N1の入射位置近くに入射されると、この入射光N3は再帰反射層5の内部を透過光N4として透過し、プリズム5bのP点近くの側面で反射され、透過光N5としてプリズム5bの他の側面のQ点に近い位置から低屈折率層3側に透過光N6として出射する。そして、この透過光N6を遮光体2Aで遮ることができる。
 これに対し、図4に示すように遮光体2Aを設けていない背面基板4を設けている構造の場合、入射光N3はプリズム5bのQ点近くから低屈折率層3側に出射し、そのまま隣接する他のプリズム5bの一側の側面からプリズム5bの内部に侵入光N7として侵入し、このプリズム5bの他側の側面で反射されて反射光N8となり、スクリーンの外部に漏れ光N9として出射する。この漏れ光N9は、プリズム5bの側面に沿って屈曲されて反射される結果、虹色に分光されるので、再帰反射光以外に観察者に目立つ虹色の漏れ光N9となって認識される。
 この点、図3に示す本実施形態の構造では、遮光体3で透過光N6を遮ることができるので、上述の虹色に分光される反射光を抑制できる。
 次に、入射光N3よりも更に傾斜角度の大きい入射光N10は、入射位置からプリズム5bに透過光N11として至り、プリズム5bの頂部近くから透過光N12として背面基板4側に出射するが、背面基板4に遮られるので、戻り光とはならない。
 図3に示すように、本実施形態のスクリーン1は、1つのプリズム5bから隣接する他のプリズム5bに伝わって、この隣接する他のプリズム5bから戻り光N9となる光を遮光体2Aで一部または全部を吸収できるので、プリズム5cで生じる不要な戻り光を抑制できる。このため、本実施形態のスクリーン1は、隣接するプリズム間で反射して表面側に戻る戻り光を抑制できるので、本来得るべき再帰反射光の視認性を向上できる。
 また、遮光体2Aとプリズム5bは光学的接着がなされていないため、プリズム5bで全反射する光は光吸収用の遮光体2Aにより吸収されない。このため、再帰反射光の反射率低減を抑制できる。
 なお、遮光体2Aはその先端部2aを凹部5cの底縁まで到達させていないので、凹部5cと先端部2aとの間に間隙dが形成されている。この間隙dを設けることで、遮光体2Aの先端部2aとプリズム5bとが光学的に接着する箇所はこれらが接触する2点のみであるので、プリズム5bが本来反射する領域で漏れ光は生じない。
 また、本実施形態のスクリーン1はその最表面に散乱層6を設けているので、戻り光N2は多少散乱し、広い視野角を実現できる。また、散乱層6はプリズム5bのピッチに起因する回折反射を低減する作用も有している。
 図5は本発明に係る第2実施形態のスクリーン10を示すもので、この実施形態のスクリーン10は、背面基板2と、この背面基板2の前面側に光吸収構造体13と低屈折率層15を介し配置された再帰反射層5と散乱層6を主体として構成されている。
 背面基板2と再帰反射層5と散乱層6は先の第1実施形態の構造で用いたものと同等構造とされる。本実施形態において、先の第1実施形態と異なるのは、再帰反射層5のプリズム5bをその輪郭を倣うように被覆する厚さの低屈折率層15が設けられている点と、低屈折率層15と平板状の背面基板2との間の間隙をすべて埋める光吸収構造体13が設けられている点である。
 低屈折率層15は、プリズム5bの形状を倣う必要があり、プリズム間の凹部5cを埋める厚さでは目的を達成できないので、0.4μm~21μm程度の厚さに形成することが好ましい。
 低屈折率層15として例えば、JSR株式会社製商品名TU2276、もしくは、CaF層で構成できる。なお、低屈折率層は光吸収や散乱性の少ない材質で形成されることが好ましい。プリズム5bと低屈折率層15の屈折率差ができるだけ大きくなるような屈折率の高い樹脂でプリズム5bを形成することが好ましい。
 光吸収構造体13については、光を吸収するために先に説明した遮光体2Aと同等の材料から構成することが好ましいが、例えば、黒色インク層、カーボンブラックなどの顔料を分散した熱硬化性樹脂や接着剤から形成することができる。
 図5に示す構造であるならば、先に説明した第1実施形態の構造と同様、特定のプリズム5bから隣接する他のプリズム5bに出射しようとする光は凹部5cを埋めている光吸収構造体13に遮られる。このため、この光はスクリーン1の前面側には戻らないので、不要な戻り光を無くすることができる。
 図6は本発明に係る第3実施形態のスクリーン20を示すもので、この実施形態のスクリーン20は、背面基板2と、この背面基板2の前面側に光吸収構造体(遮光体)23と低屈折率層3を介し配置された再帰反射層5と散乱層6を主体として構成されている。
 背面基板2と低屈折率層3と再帰反射層5と散乱層6は先の第1実施形態の構造で用いたものと同等構造とされる。本実施形態において、先の第1実施形態と異なるのは、再帰反射層5の複数のプリズム5b間の三角型の凹部5cの底縁5eからこれら凹部5cの外方にまで壁状の遮光体23が延出形成されている点である。遮光体23は凹部5cの幅の数分の一程度の厚さであり、その基端部23aを凹部5cの底縁5eに一体化し、その先端部23bを背面基板2と若干離れた位置まで延出させて設けられている。また、遮光体23は基端部23a側が先端部23b側よりも若干肉厚になるようにその厚さに勾配が形成されている。
 遮光体23については、光を吸収するために先に説明した遮光体2Aと同等の材料からなることが好ましい。この形態の遮光体23はプリズム5bの背面側に黒色レジスト層を塗布形成し、フォトリソグラフィにより凹部5cのみに薄肉の壁状の遮光体23として蝕刻形成することで得ることができる。この遮光体23を備えた再帰反射層5を背面基板2と貼り合わせることでスクリーン20を得ることができる。この貼り合わせの際、遮光体23は再帰反射層5に一体化してしるので、位置合わせが不要であり、再帰反射層5と背面基板2との貼り合わせ作業を容易にできる。
 図6に示す構造であるならば、先に説明した第1実施形態の構造と同様、特定のプリズム5bから隣接する他のプリズム5bに出射しようとする光は凹部5cに位置している遮光体23に遮られる。このため、この光はスクリーン20の前面側には戻らないので、不要な戻り光を無くすることができる。
 なお、図6に示す構造の場合、遮光体23の基端部23aの部分の面積が多いと、再帰光成分が少なくなり、映像の表示が暗くなるので、できるだけ基端部23aの面積は小さくすることが好ましい。
 図7は本発明に係る第4実施形態のスクリーン30を示すもので、この実施形態のスクリーン30は、背面基板2と、この背面基板2の前面側に光吸収構造体33と低屈折率層3を介し配置された再帰反射層5と散乱層6を主体として構成されている。
 背面基板2と低反射層3と再帰反射層5と散乱層6は先の第1実施形態の構造で用いたものと同等構造とされる。本実施形態において、先の第1実施形態と異なるのは、再帰反射層5のプリズム5bが形成する凹部5cに低屈折率層3としての空気層を介し光吸収性の繊維からなる光吸収構造体33が設けられている点である。
 光吸収構造体33については、光を吸収するために先に説明した遮光体2Aと同等の材料の繊維、黒色繊維などから構成することが好ましい。
 図7に示す構造であるならば、先に説明した第1実施形態の構造と同様、特定のプリズム5bから隣接する他のプリズム5bに出射しようとする光は凹部5cに位置している繊維状の光吸収構造体33に遮られる。このため、この光はスクリーン30の前面側には戻らないので、不要な戻り光を無くすることができる。
 この例の構造では光吸収構造体33を構成する繊維とプリズム5bとが接する面積を小さくできるので、光学接着する面積を小さくできる結果、プリズム5bの界面で反射する光の反射率の低減が可能となる。
 この例の構造では光吸収構造体33を構成する繊維をプリズム5bと背面板2との間に挟むのみでスクリーン30を作製できるので、特別な位置合わせや、フォトリソグラフィは不要であり作製が簡便で実現容易な特徴がある。
 図8は本発明に係る第5実施形態のスクリーン40を示すもので、この実施形態のスクリーン40は、背面基板2と、この背面基板2の前面側に光吸収構造体43と低屈折率層3を介し配置された再帰反射層5と散乱層6を主体として構成されている。
 背面基板2と低反射層3と再帰反射層5と散乱層6は先の第1実施形態の構造で用いたものと同等構造とされる。本実施形態において、先の第1実施形態と異なるのは、再帰反射層5のプリズム5bが形成する凹部5cに低屈折率層3としての空気層を介し光吸収性の物質からなるメッシュ状の光吸収構造体43が設けられている点である。
 光吸収構造体43については、光を吸収するために先に説明した遮光体2Aと同等の材料の細い構造壁、黒色繊維などから構成されたメッシュであることが好ましい。この実施形態の光吸収構造体43は、横列の細い構造壁43aと縦列の細い構造壁43bとを網目構造としたものであり、各細い構造壁が光吸収性を有する。この光吸収構造体43はプリズム層5dの凹部5cに嵌め込むように収容され、その一側縁43cを凹部5cの底縁5eと間隙5fをあけて収容され、その他側縁43dを凹部5cと背面基板2との間に位置させてプリズム層5dと背面基板2との間に介挿されている。
 図8に示す構造であるならば、先に説明した第1実施形態の構造と同様、特定のプリズム5bから隣接する他のプリズム5bに出射しようとする光は凹部5cに位置しているメッシュ状の光吸収構造体43に遮られる。このため、この光はスクリーン40の前面側には戻らないので、不要な戻り光を無くすることができる。
 図9は再帰反射層のプリズムとして適用できるプリズムの第2の例を示す平面図で、この例のプリズムは三角錘型のプリズム55をそれらの間に凹部56を形成するように複数配列した構造を有し、三角格子状配置のプリズム55は稜線57を有し、密に配列した構造とされている。
 先に示す横断面三角形状のプリズム5bに代えて図9に示すプリズム55を備えた再帰反射層を本発明の再帰反射層に適用しても良い。図9に示す三角錘型のプリズム55の一例は、住友スリーエム株式会社製ハイ・インテンシティグレードHIP高輝度反射シートである。
 図10は再帰反射層のプリズムとして適用できるプリズムの第3の例を示す平面図で、この例のプリズム65、は横断面三角型の凹溝66、67を中心線68に向かって徐々に深くなるように中心線68の左右から蝕刻した複合型の凹部69を多数中心線68に沿って整列した形状をなし、この凹部69を複数平行に所定のピッチで配列した構造とされている。
 図10に示す凹部型のプリズム65の一例は、住友スリーエム株式会社製ダイヤモンドグレードTMD超高輝度反射シートである。
 本発明に適用するプリズムは種々形状のプリズムを適用できるので、これまで説明した形状の他、再帰反射用として適用できるいずれの形状のプリズムを用いても良い。また、本発明に係る各形態のスクリーンは再帰反射用に限定使用するのみではなく、通常投射用の反射スクリーンとして使用できるのは勿論である。
 図11は本発明に係るスクリーン1を適用したプロジェクションシステムの一例を示すもので、この例のプロジェクションシステム80は、本発明に係るスクリーン1とプロジェクタ81とから構成されている。
 この例でプロジェクタ81の光出射部81aは観察者のヘッドフォン82の前面側に搭載させた例であり、観察者85の頭部近傍に配置されている。
 この例のように観察者自身に装着するか、観察者の近傍に装着してスクリーン1に投影光を照射して使用すると、再帰反射光を有効に利用して映像を鑑賞できる。
 プロジェクタ81は図11に示すようにヘッドフォンに搭載されていても良く、観察者のメガネの眉間部辺りに搭載されていても良く、観察者の手持ち構造でも良く、観察者の近傍の床や机、台の上に設置されていても良い。また、首掛け構造、椅子の背もたれ部分などいずれの設置場所であっても適用できる。
 本発明に係るスクリーン1を適用するプロジェクションシステムの他の例として、スクリーン1に対し、これに映像を投射する投射部を備えたプロジェクタを複数台備えた構造を採用することができ、それらのプロジェクタをスクリーン1との距離が互いに異なるように配置したプロジェクションシステムに適用できる。
 また、本発明に係るスクリーン1と、該スクリーン1に対する複数の観察者の視線方向とそれぞれ略同一方向から前記スクリーン1上に画像を投影するための複数の画像投影手段とを備えたプロジェクションシステム一般に広く適用できるのは勿論である。上述の画像投影手段は、観察者の頭部にヘッドセットにより装着されている例を挙げることができる。
 また、本発明に係るスクリーン1と、該スクリーン1に対する複数の観察者がまとまった観察者群を構成し、複数の観察者群のスクリーン1に対する各視線方向とそれぞれ略同一方向から前記スクリーン1上に画像を投影するための画像投影手段を備えたプロジェクションシステム一般に広く適用できるのは勿論である。一例として少人数の観察者が同一テーブルに沿って並んでいる群を1つの観察者群と見立て、これらの観察者群毎に投影機を設け、各観察者群の投影機から別々に投影光を照射して鑑賞できるプロジェクションシステムに本発明のスクリーン1を適用できる。
 上述のプロジェクションシステムの一例を図12に示す。
 図12に示すプロジェクションシステムSは、平面視円弧状のスクリーン90と、このスクリーン90の凹曲面状の内面90aに対抗するように円弧状に配置されたプロジェクターなどの光源91、92、93とを備えて構成され、これらの光源91、92、93の近傍に観察者群95A、95B、95Cが配置されている。また、光源91、92、93はスクリーン90と観察者群95A、95B、95Cとの間に配置されている平面視半円弧状のテーブル96に収容され、スクリーン90に必要な画像を投影できるように配置されている。観察者群95Aはテーブル96の一端側に整列され、観察者群95Bはテーブル96の中央側に整列され、観察者群95Cはテーブル96の他端側に整列され、図12の例ではそれぞれ3名の観察者95により1つの観察者群が構成されている。観察者群を構成する人員の数には特に制限はない。
 より具体的には、スクリーン90は先の実施形態において説明されているスクリーン1、10、20、30、40のいずれの構成でもよく、それらの表面側に設けられている散乱層6を観察者側に向けて平面視円弧状に配置されている。
 光源91、92、93は、それぞれの光出射部をスクリーン90に向けてテーブル96に設置されている。光源91は平面視円弧状に配列されている観察者群95Aの視線正面側のスクリーン90の一部90Aに画像を投影できるように配置され、光源92は平面視円弧状に配列されている観察者群95Bの視線正面側のスクリーン90の一部90Bに画像を投影できるように配置され、光源93は平面視円弧状に配列されている観察者群95Cの視線正面側のスクリーン90の一部90Cに画像を投影できるように配置されている。換言すると、光源91は光出射部から末広がり状に出射させた投影光を図12の91A、91Bで示す鎖線の範囲を介してスクリーン90の一部90Aに投影することができる。光源92は光出射部から末広がり状に出射させた投影光を図12の92A、92Bで示す鎖線の範囲を介してスクリーン90の一部90Bに投影することができる。光源93は光出射部から末広がり状に出射させた投影光を図12の93A、93Bで示す鎖線の範囲を介してスクリーン90の一部90Cに投影することができる。
 図12に示す構成のプロジェクションシステムSによれば、光源91によりスクリーン90の一部90Aに投影された画像は、スクリーン90からの戻り光が強く戻る戻り光範囲91C、91Dの範囲内において観察者群95Aの観察者95が明るい表示として画像を鑑賞できる。また、同様に光源92によりスクリーン90の一部90Bに投影した画像は、戻り光範囲92C、92Dの範囲内において、観察者群95Bの観察者95が明るい表示として画像を鑑賞できる。また、光源93がスクリーン90の一部90Cに投影した画像は戻り光範囲93C、93Dの範囲内において、観察者群95Cの観察者95が明るい表示として画像を鑑賞できる。
 なお、図12に示すプロジェクションシステムSは本発明の一形態であり、光源の数や観察者数、スクリーンの形状等に特に制限はない。
(実施例)
 以下、実施例に基づき本発明を更に詳述するが、本発明は以下の実施例の構造に制限されるものではない。
(試験例1)
 図13に示す横断面三角形状のプリズムを50μmピッチで形成した住友スリーエム株式会社製BEFIIフィルム(プリズムシート)を2枚用意し、一方のプリズムシート50に黒色インクを塗布して厚さ0.5μmの黒色遮光層(立体吸収体)を形成した。このプリズムシート50をプリズムを上向きにして黒色樹脂板からなる背面シート61の上に積み重ね、更にその上にプリズムを下向きとしたBEFIIフィルム(プリズムシート60)を隙間5μmあけて重ねて試験用のスクリーン62を構成した。前記隙間が屈折率1.0の低屈折率層(空気層)に相当する。
 このスクリーン62に対し、スクリーン62の上面の法線Hに対し入射角度θ=35゜の方向から光源63を用いて白色の測定光を入射し、正反射方向に設置した受光器65によって受光角度θを30゜~40゜の範囲で変化させた際の視感度補正された光のY値を測定した。以上説明の基本構成の測定装置として、大塚電子製LCD5220を用いた。
 また、比較のために、図14に示すように黒色の背面シート61の上にプリズムシート60を下向きに設置した構造のスクリーン66を用意し、このスクリーン66についても同様の条件で反射率の測定を行なった。リファレンスサンプルは、光源の入射角度35゜、反射強度の受光角度35゜、アルミ蒸着ミラーを用い、アルミ蒸着ミラーで得られた反射率の値に対する%表示の反射率を求めた。
 スクリーン62を用いた場合とスクリーン66を用いた場合の測定結果を図15に併せて示す。図15に示す結果から、立体吸収体(黒色遮光層)を設けたスクリーン61の場合、受光角度35゜を中心として狭い範囲で高い反射率を得ることができるが、スクリーン62の場合、受光角度を30゜~33゜の領域、受光角度37゜~40゜の領域において、反射率が低下している。これは、スクリーン62の場合、測定光の入射角度35゜の正反射方向(受光角度35゜)を中心として、狭い範囲に強い反射光を得ることができるが、スクリーン66の場合、広い範囲まで反射光が広がってしまうことを意味する。また、これらの広い範囲に生じた反射光が虹色に着色されていることも目視確認できた。
 この試験結果から、スクリーン62の構造では不要な反射光を生じることが少なく、スクリーン66に対し不要な反射光を受光角度30゜~32゜の範囲において1/5程度まで低減でき、38゜~40゜の範囲において1/2程度に低減できることが判明した。
(試験例2)
 次に、スクリーンの他の構造例として、横断面三角形状のプリズムシートに代えて図16に示すコーナーキューブタイプのプリズム70を多数配置したプリズムシート(エドモンドオプティクスジャパン株式会社製)71を用いて同様の試験を行なった。コーナーキューブタイプのプリズムのピッチLcは4mmの大きさである。
 図17に示すように、コーナーキューブを下向きとしてプリズムシート71を水平に配置し、その下にコーナーキューブタイプのプリズム表面に黒色インクの遮光層72を塗布した同等のコーナーキューブタイプのプリズムシート73を水平に配置して積層し、その下に黒色の背面シート75を配した構造の試験用スクリーン76を作製し、先の図13を元に説明した測定条件と同等条件の試験に供した。ただし、反射光の強度は、トプコン製の輝度測定計SR-UL2を用いた。また、図14に示す構造と同様、背面基板とコーナーキューブタイプのプリズムシートのみを積層した構造の比較試験用スクリーンについても同様に測定した。
 この試験において、図17に示す光源77から出射させた測定光の入射角度を30゜、正反射方向と若干ずれた角度に配置した受光器78の受光角度を34゜に設定し、受光器78の受光角度を1゜として反射輝度と色度(x、y)を測定した。その結果を以下の表1に示す。
 「表1」
 試料        反射輝度       色度(x、y)
 コピー用紙(白色) 76.9cd/m  (0.333、0.353)
 遮光層なし     19.3cd/m  (0.363、0.385)
 遮光層あり      8.5cd/m  (0.334、0.355)
 表1において、白色のコピー用紙の色度が白色であることを示すが、遮光層のない比較試験用のスクリーンの色度は数値がずれているが、分光した反射光を生じたため、色が白色からずれていることを示している。また、遮光層を設けたスクリーンにおいては、分光した内部反射光を遮光層が吸収しているため、色度の値が白色コピー用紙の色度とほぼ同等であり、分光した余分な漏れ光が極めて少ないことを示している。また、反射輝度の面では、遮光層を設けたことにより、入射光の入射角度30゜、反射光の受光角度を34゜した場合の反射輝度を1/2以下に低減できることが判明した。
 このように入射角度と受光角度が4゜異なる角度の反射光を受光することで、正規の反射方向ではない漏れ光の強弱を把握できる。
 (試験例3)
 図1Aおよび図1Bに示す構造のスクリーン1について、薄板状の遮光体2Aをプリズム5b、5b間の凹部5cに挿入する割合と反射光の遮光率の相関関係について光学設計手法により計算した。この試験は、幾何光学(スネルの法則)を用い、出射角度を計算により算出することができる。プリズムの屈折率は1.59、プリズムの稜線と谷線の角度は90゜として計算している。
 屈折率1.59のアクリル樹脂製プリズムシートであって、プリズムピッチ50μm、プリズム高さ25μmのプリズムシートを用い、このプリズムシートの凹部に対し黒色樹脂製の厚さ1μmの遮光体2A1を図18Aに示すように浅く挿入した場合、図18Bに示すように同等厚の遮光体2A2を中程度まで挿入した場合、図18Cに示すように同等厚の遮光体2A3を凹部の底縁まで挿入した場合のように条件を変えて試験した。挿入率(%)と遮光率(%)の相関関係を図19に示す。
 図19に示す結果から、凹部深さ(プリズム高さ)hの40%以上まで遮光体を挿入すると、入射角度35゜で入射した光の不要な光をほぼ100%光を吸収できることが判明した。また、光の入射角を31゜として計算すると、凹部深さ(プリズム高さ)hの50%以上で不要な光のほぼ100%を吸収できることも判明した。このことから、凹部深さ(プリズム高さ)hの50%程度挿入することにより、不要な光のほぼ100%を吸収できると推定できる。従って、遮光体を凹部深さに対し40%以上、望ましくは50%以上挿入して遮光することが重要であると推定できる。
 本発明は投写型の映像表示システムの分野に広く適用することができる。
 1  スクリーン
 2  背面基板
 2A  遮光体
 2a  先端部
 3  低屈折率層(空気層)
 5  再帰反射層
 5a  前面
 5b  プリズム
 5c  凹部(V型溝)
 6  散乱層
 7  接着層
 10、20、30、40  スクリーン
 13  光吸収構造体
 15  低屈折率層
 23  遮光体
 33  光吸収構造体
 43  光吸収構造体
 50  プリズム
 62  スクリーン
 65  プリズム
 66、67  凹溝
 68  中心線
 69  凹部
 76  スクリーン
 80  プロジェクションシステム
 81  プロジェクタ
 81a  光出射部
 82  ヘッドフォン

Claims (12)

  1.  前面と背面とを有する再帰反射層であって、前記背面側に複数のプリズムを有するプリズム層が設けられている再帰反射層を備え、前記プリズム層を形成する一部のプリズムと、そのプリズムに隣接する他のプリズムとの間に、一部に低屈折率層を介して形成されたプリズム層の背面側に抜ける光の少なくとも一部を吸収する光吸収構造体を備えたスクリーン。
  2.  前記光吸収構造体が、前記背面板の前面側に立設されて前記プリズム層の凹部内に挿入する複数の凸型の遮光体からなる請求項1に記載のスクリーン。
  3.  前記凸型の遮光体の先端部が、前記プリズム層の凹部への挿入状態で該凹部の底縁側に間隙をあけて配置された請求項2に記載のスクリーン。
  4.  前記凸型の遮光体の先端部が、前記プリズム層の凹部に深さ40%以上挿入された請求項2または3に記載のスクリーン。
  5.  前記プリズム層の背面側に前記プリズムの輪郭形状を倣ったまま覆う低屈折率層が設けられ、該低屈折率層の背面側に前記光吸収構造体が設けられた請求項1に記載のスクリーン。
  6.  前記光吸収構造体が、前記プリズムの凹部底縁から一体的に該凹部の空間内に立設された、立体構造物からなる請求項1に記載のスクリーン。
  7.  前記光吸収構造体が、前記プリズム層の凹凸部の凹部内に収容された光吸収繊維の集合体からなる請求項1に記載のスクリーン。
  8.  前記プリズムがV型溝で区画される横断面三角型でありストライプ状に配列されてなる請求項1~7のいずれか一項に記載のスクリーン。
  9.  前記プリズムがコーナーキューブアレイからなる請求項1~8のいずれか一項に記載のスクリーン。
  10.  前記プリズムが、三角錘型の複数の突部である請求項1~8のいずれか一項に記載のスクリーン。
  11.  前記プリズムが、コーナーキューブの一部をアレイ状に並べた請求項1~8のいずれか一項に記載のスクリーン。
  12.  請求項1~11のいずれか一項に記載のスクリーンと、前記スクリーンに対し光を出射する光出射部を有するプロジェクタとを備えたプロジェクションシステム。
PCT/JP2012/079748 2011-11-25 2012-11-16 スクリーンおよびプロジェクションシステム WO2013077259A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011258015A JP2015028502A (ja) 2011-11-25 2011-11-25 スクリーンおよびプロジェクションシステム
JP2011-258015 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013077259A1 true WO2013077259A1 (ja) 2013-05-30

Family

ID=48469704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079748 WO2013077259A1 (ja) 2011-11-25 2012-11-16 スクリーンおよびプロジェクションシステム

Country Status (2)

Country Link
JP (1) JP2015028502A (ja)
WO (1) WO2013077259A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214547A (ja) * 1990-03-13 1992-08-05 Dainippon Printing Co Ltd 反射形スクリーンとその製造方法
JPH1138509A (ja) * 1997-05-19 1999-02-12 Dainippon Printing Co Ltd 反射型スクリーン
JP2003287818A (ja) * 2002-01-28 2003-10-10 Sony Corp 反射型スクリーン、前面投射型表示装置、照明装置及び表示システム
JP2006145881A (ja) * 2004-11-19 2006-06-08 Olympus Corp 反射型投影スクリーン
JP2008003172A (ja) * 2006-06-20 2008-01-10 Dainippon Printing Co Ltd 反射型立体表示スクリーン、反射型立体表示システム
WO2009040975A1 (ja) * 2007-09-25 2009-04-02 Sharp Kabushiki Kaisha スクリーン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214547A (ja) * 1990-03-13 1992-08-05 Dainippon Printing Co Ltd 反射形スクリーンとその製造方法
JPH1138509A (ja) * 1997-05-19 1999-02-12 Dainippon Printing Co Ltd 反射型スクリーン
JP2003287818A (ja) * 2002-01-28 2003-10-10 Sony Corp 反射型スクリーン、前面投射型表示装置、照明装置及び表示システム
JP2006145881A (ja) * 2004-11-19 2006-06-08 Olympus Corp 反射型投影スクリーン
JP2008003172A (ja) * 2006-06-20 2008-01-10 Dainippon Printing Co Ltd 反射型立体表示スクリーン、反射型立体表示システム
WO2009040975A1 (ja) * 2007-09-25 2009-04-02 Sharp Kabushiki Kaisha スクリーン

Also Published As

Publication number Publication date
JP2015028502A (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP7067809B2 (ja) 表示装置
US7356211B2 (en) Lighting system
KR102255145B1 (ko) 반투과형 반사 시트, 도광판 및 표시 장치
WO2015046439A1 (ja) プリズムシート、面光源装置、映像源ユニット、及び液晶表示装置
JP6893991B2 (ja) 反射支持構造を有するマルチビューディスプレイ
US8251565B2 (en) Illumination device and display device
JP5872206B2 (ja) プロジェクション・システム
US10129533B2 (en) High quality and moire-free 3D stereoscopic image rendering system using a lenticular lens
JP2014029356A (ja) 光源デバイスおよび表示装置、ならびに電子機器
WO2013069406A1 (ja) 表示装置および電子機器
JP7428230B2 (ja) 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置
JP2017167224A (ja) 空間浮遊映像表示装置
JP2021536588A (ja) ユーザ追跡を使用したマルチビューディスプレイ、システム、および方法
JP2019032404A (ja) 空中映像表示装置
JP2008309914A (ja) 表示装置及び電子機器
WO2012099123A1 (ja) 導光板、面光源装置及び透過型画像表示装置
WO2013077259A1 (ja) スクリーンおよびプロジェクションシステム
JP2014139596A (ja) 指向性反射スクリーン、画層表示装置
JP5782867B2 (ja) 面光源装置、透過型表示装置
KR100693330B1 (ko) 후면 투사 스크린
KR100693326B1 (ko) 후면 투사 스크린
JP2015064497A (ja) リニアフレネルレンズシート及び透過型表示装置
JP2013020932A (ja) 光学モジュールおよび表示装置
CN216210461U (zh) 复合型反射式投影屏幕
JP5803242B2 (ja) 面光源装置及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP