WO2013077250A1 - 単相電力変換器、三相二相電力変換器および三相電力変換器 - Google Patents

単相電力変換器、三相二相電力変換器および三相電力変換器 Download PDF

Info

Publication number
WO2013077250A1
WO2013077250A1 PCT/JP2012/079668 JP2012079668W WO2013077250A1 WO 2013077250 A1 WO2013077250 A1 WO 2013077250A1 JP 2012079668 W JP2012079668 W JP 2012079668W WO 2013077250 A1 WO2013077250 A1 WO 2013077250A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
arm
power converter
phase
phase power
Prior art date
Application number
PCT/JP2012/079668
Other languages
English (en)
French (fr)
Inventor
泰文 赤木
誠 萩原
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to EP12850833.0A priority Critical patent/EP2784927B1/en
Priority to US14/360,251 priority patent/US9496805B2/en
Priority to JP2013545892A priority patent/JP6195274B2/ja
Publication of WO2013077250A1 publication Critical patent/WO2013077250A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/497Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode sinusoidal output voltages being obtained by combination of several voltages being out of phase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current

Definitions

  • the present invention relates to a single-phase power converter and a three-phase power converter that convert direct current and alternating current bidirectionally, and a three-phase two-phase power converter that converts three-phase alternating current and two-phase alternating current,
  • the present invention relates to a modular multilevel single-phase power converter, a three-phase two-phase power converter, and a three-phase power converter.
  • FIG. 24 is a diagram illustrating a general configuration of the battery power storage device.
  • the battery power storage device 1000 includes a battery 100 such as a NAS battery or a lithium ion battery, a grid converter 200 that converts a DC voltage of the battery 100 into an AC voltage, a grid converter 200, and a power system 400. And an interconnecting transformer 300.
  • the DC voltage of the battery 100 is relatively low with respect to the effective voltage value of the power system 400, so that the interconnection converter 200 is required to have a high step-up ratio.
  • MMC modular multilevel converter
  • the modular multi-level converter is characterized in that an arm in which a plurality of bidirectional chopper cells or full-bridge converter cells are connected in series is configured as a module. Excluding problems such as insulation, it is possible to increase the AC output voltage and suppress voltage and current ripple without increasing the breakdown voltage of the semiconductor switch by increasing the number of series cells. It is also expected as a large capacity power converter.
  • the modular multi-level converter is easy to mount, rich in redundancy, and can be reduced in size and weight, so that it can be applied to a grid-connected power converter, a motor drive device for an induction motor, and the like.
  • MMCC Modular Multilevel Cascade Converter
  • Makoto Sugawara and Yasufumi Akagi “PWM Control Method and Operational Verification of Modular Multilevel Converter (MMC)”, IEEJ Transactions D, Vol. 128, No. 7, pp 957-965, July 2008 Kazutoshi Nishimura, Makoto Sugawara, Yasufumi Akagi, “Application to High Voltage Motor Drive System Using Modular Multilevel PWM Inverter -Experimental Verification Using 400V, 15kW Mini Model-”, IEEJ Semiconductor Power Conversion Study Group, SPC -09-24, pp19-24, January 2009 Yasufumi Akagi and Makoto Sugawara, “Classification and Name of Modular Multilevel Cascade Converter (MMCC)”, IEEJ National Convention, no.
  • MMC Modular Multilevel Converter
  • the transformer for the converter can be removed, but from the standpoint of voltage matching and electrical insulation, an interconnected transformer should be used. There is a problem that it cannot be removed.
  • an object of the present invention is to convert a direct current and an alternating current in both directions, a simple structure, small size, low cost and high efficiency modular multi-level single-phase power converter and three-phase power converter, Another object of the present invention is to provide a three-phase two-phase power converter that converts a three-phase alternating current and a two-phase alternating current bidirectionally, has a simple structure, is small, and is low in cost and high in efficiency.
  • the single-phase power converter includes: Two semiconductor switches connected in series, a DC capacitor connected in parallel to the two semiconductor switches, and an input / output terminal of a current discharged from the DC capacitor or charged to the DC capacitor according to the switching operation of the semiconductor switch, A unit cell having 1st and 2nd arm which consists of one unit cell or a plurality of unit cells cascade-connected via input / output terminals, and the 1st and 2nd arm has the same number of unit cells A first and second arm; Arm coupling having a first terminal to which one end of the first arm is connected, a second terminal to which one end of the second arm is connected, and a third terminal to which one end of the DC power supply is connected And A transformer having an AC input / output terminal on the primary side and an intermediate terminal on the secondary side winding, and two terminal terminals of the secondary side winding are connected to the first arm of the first arm coupling portion.
  • a transformer to which the terminal on the side to which the third terminal is not connected is connected; Is provided.
  • the arm coupling portion is located on the winding between the first terminal, the second terminal, and the first terminal and the second terminal.
  • a third terminal coupling reactor having the third terminal as an intermediate tap.
  • the arm coupling portion is two reactors connected in series with each other, and is connected in series with the first terminal which is one terminal of the two reactors connected in series. It consists of two reactors which have the said 2nd terminal which is the other terminal of two reactors made, and the said 3rd terminal which is a series connection point of two reactors connected in series.
  • each of the first arm and the second arm includes a reactor connected at an arbitrary position between the unit cells cascade-connected to each other, and the arm coupling portion includes the first arm The first terminal, the second terminal, and the third terminal are connected to each other.
  • the single-phase power converter comprises: Two semiconductor switches connected in series, a DC capacitor connected in parallel to the two semiconductor switches, and an input / output terminal of a current discharged from the DC capacitor or charged to the DC capacitor according to the switching operation of the semiconductor switch, A unit cell having 1st and 2nd arm which consists of one unit cell or a plurality of unit cells cascade-connected via input / output terminals, and the 1st and 2nd arm has the same number of unit cells A first and second arm; A first terminal to which a DC power source is connected between one end of the first arm, a second terminal to which another DC power source is connected between one end of the second arm, An arm coupling portion having a terminal and a third terminal connected to the second terminal; A transformer having an AC input / output terminal on the primary side and a three-terminal coupling reactor on the secondary winding, and the DC power supply of the first arm is connected to the two terminal terminals of the secondary winding The intermediate terminal located on the winding between the two terminals of the three-
  • the single-phase power converter comprises: Two semiconductor switches connected in series, a DC capacitor connected in parallel to the two semiconductor switches, and an input / output terminal of a current discharged from the DC capacitor or charged to the DC capacitor according to the switching operation of the semiconductor switch, A unit cell having 1st and 2nd arm which consists of one unit cell or a plurality of unit cells cascade-connected via input / output terminals, and the 1st and 2nd arm has the same number of unit cells A first and second arm; A first capacitor connected to a terminal on the side of the first arm to which the DC power supply is connected; A second capacitor connected to a terminal of the second arm on the side to which the DC power supply is connected; A first terminal to which a terminal on the side of the first capacitor not connected to the first arm is connected, and a second terminal to which a terminal on the side of the front capacitor not connected to the second arm is connected; An arm coupling portion having a first terminal and a third terminal connected to the second terminal; A transformer having an AC input / output terminal on
  • the single-phase power converter has a circulating current command value based on the voltage value of the DC capacitor in the first arm and the voltage value of the DC capacitor in the second arm. And a control means for controlling the circulating current command value so that the circulating current that is half the sum of the current flowing through the first arm and the current flowing through the second arm follows the circulating current command value.
  • the command value generation means uses the values obtained by averaging the voltage values of all the DC capacitors in the first arm and the second arm, in the first arm and in the second arm. You may make it produce
  • the command value generating means is obtained by averaging the value obtained by averaging the voltage values of all the DC capacitors in the first arm and the voltage value of all the DC capacitors in the second arm.
  • a fundamental wave component generating means for generating a fundamental wave component in phase with the terminal voltage between the AC input and output terminals of the circulating current command value using the difference between the first and second arms. The value obtained by averaging the voltage values of all the DC capacitors in the first arm and the second arm using the value obtained by averaging the voltage values of all the DC capacitors of DC component generating means for generating a DC component of the circulating current command value for controlling to follow the DC voltage command value, and adding the fundamental wave component and the DC component to generate the circulating current command value You may do it.
  • the fundamental wave component is obtained by averaging the value obtained by averaging the voltage values of all the DC capacitors in the first arm and the voltage value of all the DC capacitors in the second arm. This is a value for controlling the difference between the obtained value and zero.
  • the control means controls the voltage value of each DC capacitor in the first arm to follow the value obtained by averaging the voltage values of all the DC capacitors in the first arm, and Further, the control for causing the voltage value of each DC capacitor in the second arm to follow the value obtained by averaging the voltage values of all the DC capacitors in the second arm may be further executed. Good.
  • the control means includes switching command means for switching the semiconductor switch in response to the control to be followed.
  • Each semiconductor switch has a semiconductor switching element that passes a current in one direction when it is turned on, and a feedback diode connected in antiparallel to the semiconductor switching element.
  • a three-phase power converter may be configured by providing three single-phase power converters according to the first to fifth aspects.
  • the transformer in each single-phase power converter is connected to the primary side.
  • Each phase in a three-phase transformer having a star connection and having an open star connection on the secondary side is configured, and a common DC power source is connected to each single-phase power converter.
  • a three-phase two-phase power converter may be configured by providing two single-phase power converters according to the first to fifth aspects.
  • the secondary side of the transformer in each single-phase power converter The windings constitute respective phase windings on the secondary side of the Scott transformer, and a common DC power source is connected to each single-phase power converter.
  • a modular multi-level single-phase power converter, a three-phase two-phase power converter, and a three-phase power conversion that convert DC and AC bidirectionally are simple in structure, small in size, low in cost, and highly efficient. Can be realized.
  • the battery power storage device can be connected to the power system without a transformer for converter, and the device can be reduced in size and The weight can be reduced.
  • the conventional modular multilevel converter has a problem that the interconnection transformer cannot be removed from the viewpoint of voltage matching and electrical insulation.
  • a low-voltage, large-current DC power supply is used as a power system. Since they can be connected, it is easier to take measures for insulation on the DC side than when a conventional modular multilevel converter is used.
  • the three-phase power converter according to the present invention can be connected to the grid with half the DC voltage compared to the conventional three-phase cascade modular multilevel converter described in Patent Document 1 and Non-Patent Documents 1 to 4. Since the insulation measures on the DC side are easy, it is most suitable for a battery power storage device in which the DC side has a low voltage and a large current.
  • the grid connection is possible with half the DC voltage, and there are the following advantages.
  • the system can be interconnected with a half direct current voltage, so that the reliability is improved.
  • the three-phase power converter according to the present invention also has a function of an interconnecting transformer, it can be used as a power converter that is smaller and less expensive than the conventional case in applications that are connected to the grid. .
  • FIG. 6 is a circuit diagram showing a chopper cell which is a unit cell in the single-phase power converter according to the first to fifth embodiments.
  • FIG. 6 is a circuit diagram showing a bridge cell which is a unit cell in a single-phase power converter according to first to fifth embodiments.
  • It is a circuit diagram which shows the single phase power converter by a 2nd Example.
  • It is a circuit diagram which shows the circuit structure of the arm coupling
  • control block diagram (the 2) about the direct-current capacitor control of the three phase power converter by a 6th example. It is a control block diagram (the 3) about direct-current capacitor control of the three phase power converter by a 6th example. It is a control block diagram (the 4) about direct-current capacitor control of the three phase power converter by a 6th example. It is a block diagram which shows the direct-current capacitor
  • FIG. 1 It is a circuit diagram explaining the comparison with a push bull inverter and a full bridge inverter, Comprising: It is a figure which shows a full bridge inverter. It is a circuit diagram which shows the conventional three-phase cascade type modular multilevel converter. It is a figure which shows the simulation waveform about the steady-state characteristic when carrying out the inverter operation
  • FIG. 21 is an instantaneous voltage vector diagram (part 1) of the Scott transformer shown in FIG. 20.
  • FIG. 21 is an instantaneous voltage vector diagram (part 1) of the Scott transformer shown in FIG. 20.
  • It is a circuit diagram which shows the three-phase two-phase power converter by an 8th Example. It is a figure which shows the simulation waveform about a stationary characteristic when carrying out inverter operation
  • FIG. 1 is a circuit diagram showing a single-phase power converter according to the first embodiment.
  • components having the same reference numerals in different drawings mean components having the same functions.
  • the DC capacitor in the unit cell is described outside the unit cell for easy understanding.
  • FIG. 2a is a circuit diagram showing a chopper cell which is a unit cell in the single-phase power converter according to the first to fifth embodiments.
  • FIG. 2b is a circuit diagram showing a bridge cell which is a unit cell in the single-phase power converter according to the first to fifth embodiments.
  • the single-phase power converter according to the first embodiment includes unit cells 11-1 to 11-M (where M is a natural number), a first arm 12-P and a second arm 12-N, and arm coupling.
  • the unit 13 and the transformer 14 are provided.
  • the unit cells 11-1 to 11-M include two semiconductor switches connected in series, a DC capacitor connected in parallel to the two semiconductor switches, and from a DC capacitor to a discharge or DC capacitor according to the switching operation of the semiconductor switch. And an input / output terminal for a current to be charged.
  • the unit cells 11-1 to 11-M may be either chopper cells shown in FIG. 2a or bridge cells shown in FIG. 2b.
  • the chopper cell shown in FIG. 2a includes two semiconductor switches SW connected in series, a DC capacitor C connected in parallel to the two semiconductor switches SW, and a discharge or DC capacitor from the DC capacitor C according to the switching operation of the semiconductor switch SW.
  • This is a bidirectional chopper cell having input / output terminals T1 and T2 for current charged to C.
  • the two terminals of one of the two semiconductor switches SW are the input / output terminals T1 and T2 of the chopper cell (unit cell).
  • the bridge cell shown in FIG. 2b is configured by connecting two sets of two semiconductor switches SW connected in series in parallel and connecting a DC capacitor C in parallel thereto.
  • the series connection point of each set of two semiconductor switches SW connected in series is defined as input / output terminals T1 and T2 for current discharged from the DC capacitor C or charged to the DC capacitor C.
  • each semiconductor switch SW includes a semiconductor switching element S that passes a current in one direction when turned on, and a feedback diode D connected in antiparallel to the semiconductor switching element, Have A voltage output from one unit cell appears between the input / output terminals T1 and T2 of the unit cell.
  • the first arm 12-P and the second arm 12-N include a plurality of units cascade-connected to each other via one unit cell 11-1 or input / output terminals T1 and T2.
  • the cells 11-1 to 11-M (where M is a natural number) have the same number.
  • the arm coupling portion 13 includes a first terminal a to which the lower terminal of the first arm 12-P is connected, a second terminal b to which the lower terminal of the second arm 12-N is connected, And a third terminal c to which a negative terminal of the DC power source V dc is connected.
  • the arm coupling portion 13 includes a first terminal a, a second terminal b, and between the first terminal a and the second terminal b, as shown in FIG. And a third terminal c that is an intermediate tap located on the winding.
  • the polarity of the three-terminal coupling reactor is represented by a black circle (•).
  • the polarity of the winding between the first terminal a and the third terminal c and the polarity of the winding between the third terminal c and the second terminal b are opposite to each other (in the example shown in FIG. To face the direction you want to).
  • the transformer 14 has AC input / output terminals T1-1 and T1-2 on the primary side, and the secondary side is centered on the secondary winding between the two terminal terminals T2-1 and T2-2. It has an intermediate terminal T2-3 which is a tap.
  • the AC output voltage of the single-phase power converter 1 appears between the AC input / output terminals T1-1 and T1-2 input / output terminals T1 and T2 on the primary side of the transformer 14.
  • the number of turns of the primary winding of the transformer 14 and N 1, the number of turns of the secondary winding and N 2. Therefore, on the secondary side, the number of turns of the winding between the end terminal T2-1 and the intermediate terminal T2-3 and the number of turns of the winding between the intermediate terminal T2-3 and the end terminal T2-2 are , both the N 2/2.
  • the polarities of the primary side winding and the secondary side winding of the transformer 14 are represented by black circles ( ⁇ ).
  • the polarity of the winding between the end terminal T2-1 and the intermediate terminal T2-3 and the polarity of the winding between the intermediate terminal T2-3 and the end terminal T2-2 are: The same direction (aligned to the left in the illustrated example).
  • the polarity direction of the primary winding does not necessarily have to be the same as the polarity direction of the secondary winding.
  • the terminal T2-1 of the secondary winding of the transformer 14 is a terminal on the side of the first arm 12-P to which the first terminal a of the arm coupling portion 13 is not connected, that is, the first arm 12- The upper terminal of P is connected, and the terminal T2-2 of the secondary winding of the transformer 14 is on the side of the second arm 12-N where the second terminal b of the arm coupling portion 13 is not connected.
  • the terminal, that is, the upper terminal of the second arm 12-N is connected.
  • the intermediate terminal T2-3 of the transformer 14, the DC power source V dc, the positive terminal is connected to a third side of the terminal c is not connected terminal or a DC power source V dc of the arm coupling portion 13.
  • the AC voltage v ac single-phase power converter 1 appears.
  • ac be the ac current.
  • the arm current flowing through the first arm 12-P is i P
  • the arm current flowing through the second arm 12-N is i N.
  • second arm 12-N each unit cell 11-j in (where, j 1 ⁇ M) when the (T1 and T2 of FIG. 2a and FIG. 2b) voltage appearing between the input and output terminals, and a v Nj
  • output voltage sum v N of the first arm 12-P of the output voltage sum v P and the second arm 12-N is represented by the respective formulas (1) and (2).
  • the modulation degree is m (0 ⁇ m ⁇ 1) and the angular frequency is ⁇
  • the total output voltage v P of the first arm 12- P and the total output voltage v N of the second arm 12- N are They are represented by Formula 3 and Formula 4, respectively.
  • Equation 5 the circulating current is defined as shown in Equation 5.
  • Equation 8 and Equation 9 are obtained from Equation 3, Equation 4, Equation 6, and Equation 7.
  • Equation 10 is obtained from the relationship of the magnetomotive force of the transformer.
  • I ac represents the amplitude of the alternating current i ac
  • phi represents the phase difference between the AC voltage v ac with alternating current i ac. From Equation 8 and Equation 16, the relationship of Equation 17 holds for the average power on the DC side and AC side of the transformer 14.
  • I dc represents a direct current amount.
  • Instantaneous active power flowing into and out of the first arm 12-P and the second arm 12-N can be expressed by Equation 18 and Equation 19, respectively.
  • Equation 16 I dc .
  • FIG. 3 is a circuit diagram showing a single-phase power converter according to the second embodiment.
  • the single-phase power converter 1 according to the second embodiment is configured so that the arm coupling portion 13 in the first embodiment described with reference to FIGS. 1, 2a, and 2b is not a three-terminal coupled reactor but a normal reactor. That is, it is constituted by a non-bonded reactor.
  • the arm coupling portion 13 is composed of two reactors L1 and L2 connected in series with each other.
  • the first terminal a which is one terminal of the reactor L1, and the reactor It has the 2nd terminal b which is one terminal of L2, and the 3rd terminal c which is a series connection point of the two reactors L1 and L2 connected in series.
  • FIGS. 4a to 4c are circuit diagrams showing a circuit configuration of an arm coupling portion in the single-phase power converter according to the third embodiment.
  • the single-phase power converter 1 according to the third embodiment is obtained by changing the position of the reactor L constituting the arm coupling portion 13 in the second embodiment described with reference to FIG. 4a to 4c show only the first or second arm including the reactor L and the unit cells 11-1 to 11-M constituting the arm coupling unit 13 in the single-phase power converter.
  • the arm coupling portion 13 is connected between the unit cells 11-1 to 11-M cascade-connected to each other in each of the first arm and the second arm.
  • the first terminal a, the second terminal b, and the third terminal c of the arm coupling portion 13 shown in FIG. 3 are connected to each other. Change to Other circuit components are the same as those in the second embodiment. In addition, you may substitute a reactor for the leakage inductance of a transformer.
  • FIG. 5 is a circuit diagram showing a single-phase power converter according to the fourth embodiment.
  • the single-phase power converter 1 according to the fourth embodiment is obtained by changing the arm coupling portion 13 and the transformer 14 in the first embodiment described with reference to FIGS. 1, 2a, and 2b.
  • the unit cells 11-1 to 11-M, the first arm 12-P, and the second arm 12-N are the same as those in the first embodiment described with reference to FIGS. 1, 2a, and 2b. Therefore, detailed description is omitted.
  • the unit cells 11-1 to 11-M include two semiconductor switches connected in series, a DC capacitor connected in parallel to the two semiconductor switches, and a switching operation of the semiconductor switch. It may be either a chopper cell shown in FIG. 2a or a bridge cell shown in FIG. 2b.
  • the first arm 12-P and the second arm 12-N include a plurality of units connected in cascade via one unit cell 11-1 or input / output terminals T1 and T2. The number of unit cells 11-1 to 11-M (where M is a natural number) is the same.
  • the arm coupling portion 13 is further separated between the lower terminal of the first arm 12-P, the first terminal a to which the DC power source V dc is connected, and the lower terminal of the second arm 12-N.
  • a second terminal b to which the DC power source V dc is connected, a terminal of the DC power source V dc opposite to the first terminal a, and a second terminal b of the further DC power source V dc Has a third terminal c connected to the terminal on the opposite side.
  • the transformer 14 ′ in the fourth embodiment is located at the intermediate terminal of the transformer 14 in the single-phase power converter 1 according to the first embodiment described with reference to FIG. 1. Further, a three-terminal coupling reactor 15 is provided. That is, the three-terminal coupling reactor 15 is provided on the secondary winding of the transformer 14 ′.
  • the AC output voltage of the single-phase power converter 1 appears between the AC input / output terminals T1-1 and T1-2 input / output terminals T1 and T2 on the primary side of the transformer 14 ′.
  • the number of turns of the primary side winding of the transformer 14 ′ is N 1
  • the number of turns of the secondary side winding is N 2 . Therefore, on the secondary side, the number of windings between the terminal terminal T2-1 and the three-terminal coupling reactor 15 and the number of windings between the three-terminal coupling reactor 15 and the terminal T2-2 are: , both the N 2/2.
  • the terminal T2-1 of the secondary winding of the transformer 14 ′ has a terminal on the side of the first arm 12-P to which the DC power source V dc is not connected, that is, an upper terminal of the first arm 12-P.
  • the terminal on the side of the second arm 12-N to which the further DC power supply Vdc is not connected that is, the second arm 12-N upper terminals are connected to each other.
  • the third terminal c of the arm coupling portion 13 is connected to the intermediate terminal T2-3 located on the winding between the both terminals of the three-terminal coupling reactor 15.
  • the polarity of the primary side winding and the secondary side winding of the transformer 14 ′ is represented by black circles (•).
  • the polarity of the winding between the end terminal T2-1 and the intermediate terminal T2-3 and the polarity of the winding between the intermediate terminal T2-3 and the end terminal T2-2 are: The directions are opposite (facing each other in the illustrated example).
  • the polarity direction of the primary winding does not necessarily have to be the same as the polarity direction of the secondary winding.
  • the two windings between the two terminals of the three-terminal coupling reactor 15 and the intermediate terminal T2-3 have the same polarity direction (leftward in the example shown). Be prepared).
  • the direction of the polarity of the three-terminal coupling reactor can be aligned on the right side in the illustrated example.
  • FIG. 6 is a circuit diagram showing a single-phase power converter according to the fifth embodiment.
  • the single-phase power converter 1 according to the fifth embodiment changes the arm coupling portion 13 and the connection relationship between the arm coupling portion 13 and the DC power source in the fourth embodiment described with reference to FIG. Is provided with a capacitor.
  • each of the unit cells 11-1 to 11-M is similar to the first embodiment in that two semiconductor switches connected in series, a DC capacitor connected in parallel to the two semiconductor switches, and a switching operation of the semiconductor switch. And a current input / output terminal for discharging from the DC capacitor or charging the DC capacitor accordingly.
  • Either the chopper cell shown in FIG. 2a or the bridge cell shown in FIG. 2b may be used.
  • the first arm 12-P and the second arm 12-N include a plurality of units connected in cascade via one unit cell 11-1 or input / output terminals T1 and T2.
  • the number of unit cells 11-1 to 11-M (where M is a natural number) is the same.
  • the DC power source V dc is connected between the lower terminal of the first arm 12-P and the lower terminal of the second arm 12-N.
  • the first capacitor C dc1 is connected to the terminal of the first arm 12-P to which the DC power source V dc is connected (ie, the lower terminal of the first arm 12-P).
  • the second capacitor C dc1 is connected to a terminal of the second arm 12-N to which the DC power source V dc is connected (that is, a lower terminal of the second arm 12-N).
  • a first capacitor C dc1 and the second capacitor C dc2 connected in series, a first capacitor C dc1 and a second capacitor C dc2, which is the series connection is connected in parallel to the DC power source V dc.
  • the polarity directions of the first capacitor C dc1 and the second capacitor C dc2 are matched to the polarity direction of the DC power supply V dc .
  • the arm coupling unit 13 includes a first terminal a to which a terminal on the side to which the first arm 12-P is connected of the first capacitor C dc1 and a second terminal of the second capacitor C dc2 are connected.
  • a second terminal b to which a terminal to which the arm 12-N is connected is connected; a terminal of the first capacitor C dc1 opposite to the first terminal a; and a second capacitor C dc2 And a third terminal c connected to a terminal opposite to the second terminal b.
  • the transformer 14 'in the fifth embodiment has an intermediate terminal of the transformer 14 in the single-phase power converter 1 according to the first embodiment described with reference to FIG.
  • a three-terminal coupling reactor 15 is provided at the same position. That is, the three-terminal coupling reactor 15 is provided on the secondary winding of the transformer 14 ′.
  • the AC output voltage of the single-phase power converter 1 appears between the AC input / output terminals T1-1 and T1-2 input / output terminals T1 and T2 on the primary side of the transformer 14 ′.
  • the number of turns of the primary side winding of the transformer 14 ′ is N 1
  • the number of turns of the secondary side winding is N 2 . Therefore, on the secondary side, the number of windings between the terminal terminal T2-1 and the three-terminal coupling reactor 15 and the number of windings between the three-terminal coupling reactor 15 and the terminal T2-2 are: , both the N 2/2.
  • the terminal T2-1 of the secondary winding of the transformer 14 ′ has a terminal on the side of the first arm 12-P to which the DC power source V dc is not connected, that is, an upper terminal of the first arm 12-P.
  • the terminal of the second arm 12-N to which the DC power source Vdc is not connected that is, the second arm 12-N Are connected to the upper terminals.
  • the third terminal c of the arm coupling portion 13 is connected to the intermediate terminal T2-3 located on the winding between the both terminals of the three-terminal coupling reactor 15.
  • the polarities of the primary side winding and the secondary side winding of the transformer 14 ′ are represented by black circles (•).
  • the polarity of the winding between the end terminal T2-1 and the intermediate terminal T2-3 and the polarity of the winding between the intermediate terminal T2-3 and the end terminal T2-2 are: The directions are opposite (in the illustrated example, they face each other).
  • the polarity direction of the primary winding is not necessarily the same as the polarity direction of the secondary winding.
  • the two windings between the two terminals of the three-terminal coupling reactor 15 and the intermediate terminal T2-3 have the same polarity (in the illustrated example, to the left). Be prepared).
  • the direction of the polarity of the three-terminal coupling reactor can be aligned on the right side in the illustrated example.
  • a three-phase power converter may be configured by using the single-phase power converter 1 according to the first to fifth embodiments described above for three phases, and the single-phase power according to the first to fifth embodiments.
  • a three-phase two-phase power converter may be configured by using the converter 1 for two phases.
  • a three-phase power converter will be described as a sixth embodiment and a seventh embodiment.
  • a three-phase two-phase power converter will be described later as an eighth embodiment.
  • FIG. 7 is a circuit diagram showing a three-phase power converter according to the sixth embodiment.
  • 8a and 8b are circuit diagrams showing a transformer in the three-phase power converter shown in FIG.
  • a case where a three-phase power converter is configured by using the single-phase power converter according to the first embodiment will be described as an example, but the single-phase power conversion according to the second to fifth embodiments is described.
  • a similar configuration can be achieved using a container.
  • a case where a three-phase power converter is configured using the single-phase power converter according to the fifth embodiment will be described as a seventh embodiment described later.
  • single-phase power converters provided for the u-phase, v-phase, and w-phase, respectively are denoted by reference numerals 1u, 1v, and 1w, and the three-phase power configured by these single-phase power converters 1u, 1v, and 1w.
  • the converter is denoted by reference numeral 2.
  • the single-phase power converters 1v and 1w have the same circuit configuration as that of the single-phase power converter 1u, and therefore a detailed description of the circuit configuration is omitted.
  • the u phase will be mainly described, but the same applies to the v phase and the w phase.
  • the number of unit cells is 4 per arm as an example, 8 per phase, and thus 24 in the three-phase power converter 2.
  • this numerical value is merely an example, It is not limited to this.
  • the primary phase is obtained by using the transformers 14 in the single-phase power converters 1u, 1v, and 1w provided in the u-phase, v-phase, and w-phase.
  • Each phase in the three-phase transformer 24 having a star connection on the side and an open star connection on the secondary side is configured.
  • the turns ratio N 1 : N 2 of the primary winding and the secondary winding is 1: 1.
  • FIG. 8 a shows the star connection on the primary side of the three-phase transformer 24, and
  • FIG. 8 b shows the open star connection on the secondary side of the three-phase transformer 24. As shown in FIG.
  • the number of terminals of the secondary side winding that is an open star connection is originally nine, but in the sixth embodiment, as shown in FIG.
  • the intermediate terminal in the three-terminal coupling reactor of the arm coupling portion 13 is configured as one common terminal, the number of necessary terminals can be reduced to seven.
  • the negative terminal of the DC power source V dc is connected to the third terminal c of the arm coupling portion 13, and the intermediate terminal of the transformer 14.
  • T2-3 is connected to the positive terminal of the DC power source Vdc .
  • the DC power supply V dc connected to the single-phase power converter 1 in FIG. 1 as described above is used in each phase of u, v, and w as shown in FIG. Common.
  • FIG. 9a to 9d are control block diagrams for direct current capacitor control of the three-phase power converter according to the sixth embodiment.
  • FIG. 10 is a block diagram showing a DC capacitor control device for a three-phase power converter according to a sixth embodiment.
  • the three-phase power converter according to the sixth embodiment includes the single-phase power converter according to the first embodiment for three phases. Note that the block diagrams shown in FIGS. 9a to 9d and FIG.
  • the DC capacitor control in the u-phase single-phase power converter that is, the single-phase power converter according to the first embodiment
  • the present invention can also be applied to the v-phase and w-phase single-phase power converters 1v and 1w, and the three-phase power converter can be configured by the single-phase power converters according to the second to fifth embodiments. It is the same.
  • the DC capacitor control of the three-phase power converter described below can be applied as it is as the DC capacitor control of the single-phase power converter according to the first to fifth embodiments.
  • the DC capacitor control of the three-phase power converter is roughly divided into the following four controls.
  • control in which the voltage value of each DC capacitor follows the value obtained by averaging the voltage values of all DC capacitors in each arm shown in FIG. 9A (hereinafter referred to as “average value control”). 2)
  • the control is performed so that the average value of the voltages of all the DC capacitors in the first arm shown in FIG.
  • the above four controls are executed by a DC capacitor control device 50 of a three-phase power converter as shown in FIG.
  • the DC capacitor control device 50 creates a circulating current command value i Z * based on the voltage value of the DC capacitor in the first arm 1-P and the voltage value of the DC capacitor in the second arm 12-N.
  • the command value preparing means 51, the circulating current command value, the arm current i P and circulating current is half the sum of the arm current i N flowing through the second arm 12-N through the first arm 12-P control means 52 for controlling i Z to follow.
  • the command value creating unit 51 includes a DC component creating unit 61 and a fundamental wave component creating unit 62, but may include only the DC component creating unit 61.
  • the control means 52 has a switching command means 63 for switching the semiconductor switch in response to the control to be followed. Each of these means is realized using an arithmetic processing device such as a DSP or FPGA.
  • FIG. 9a is a block diagram showing average value control in which the voltage value of each DC capacitor follows the value obtained by averaging the voltage values of all the DC capacitors in each arm.
  • the average value control shown in FIG. 9a is performed by creating the DC component i Z0 * of the circulating current command value by the DC component creation means 61 in the command value creation means 51 in the DC capacitor control device 50 shown in FIG.
  • a feedback loop is formed in which the value v aveC obtained by averaging the voltage values of all the DC capacitors in the arm 12-P and the second arm 12-N follows the predetermined DC voltage command value V C *. To do. That is, as shown in FIG.
  • the DC component creating means 61 in the command value creating means 51 averages the voltage values of all the DC capacitors in the first arm 12-P and the second arm 12-N. using the value v aveC obtained by, first arm 12-P in and the second arm 12-N all values v aveC obtained by averaging the voltage of the DC capacitor in the predetermined generating a direct current component i Z0 * of the circulating current command value for controlling so as to follow the DC voltage command value V C *.
  • the first arm 12-P in all of the DC capacitor voltage value v value obtained by averaging the CPj v aveCP, and the average voltage value v CNj of all of the DC capacitor of the second arm in a 12-N The value v aveCN obtained in this way can be expressed by Equation 21 and Equation 22.
  • j is 1 to M, where M is the number of unit cells in the arm.
  • a value v aveC obtained by averaging the voltage values of all the DC capacitors in the first arm 12-P and the second arm 12-N is obtained from Equation 21 and Equation 22 as shown in Equation 23.
  • the direct current component creating means 61 in the command value creating means 51 shown in FIG. 10 has the first arm 12-P and the second arm 12-
  • the DC component of the circulating current command value for causing the DC component (v aveC ) dc of the value obtained by averaging the voltage values of all DC capacitors in N to follow the predetermined DC voltage command value V C * create.
  • FIG. 9b shows the arm balance control that makes the average value of the voltages of all the DC capacitors in the first arm equal to the average value of the voltages of all the DC capacitors in the second arm. It is a block diagram.
  • the fundamental wave component i Z1 * of the circulating current command value is created by the fundamental wave component creating means 62 in the command value creating means 51 in the DC capacitor controller 50 shown in FIG.
  • the value v aveCP obtained by averaging the voltage values of all the DC capacitors in the first arm 12-P and all the values in the second arm 12-N Control is performed so as to suppress the difference from the value v aveCN obtained by averaging the voltage values of the DC capacitors to zero.
  • the fundamental wave component i.e. AC input and output of the circulating current i Z is half the sum of the arm current i P passing through the first arm 12-P arm current i N flowing through the second arm 12-N when the terminal voltage v ac and phase
  • the fundamental wave component i Z1 of the circulating current i Z is the terminal voltage v ac phase with between AC input and output terminals
  • power may first arm 12
  • the fundamental wave component i Z1 of the circulating current i Z is opposite in phase to the terminal voltage vac between the AC input / output terminals, the power is transferred from the second arm 12-N. Move to the first arm 12-P.
  • the fundamental wave component creating means 62 in the command value creating means 51 shown in FIG. 10 obtains the value v obtained by averaging the voltage values of all the DC capacitors in the first arm 12-P.
  • the difference between aveCP and the value v aveCN obtained by averaging the voltage values of all DC capacitors in the second arm 12-N between the AC input / output terminals of the circulating current command value i Z *
  • a fundamental wave component i Z1 * in phase with the terminal voltage v ac is generated.
  • the phase of the terminal voltage between the AC input / output terminals is expressed as sin ⁇ t, and therefore the value obtained by averaging the voltage values of all the DC capacitors in the first arm 12-P.
  • v to aveCP DC component and the DC component of the second arm 12-N all average of obtained values v AveCN the voltage value of the DC capacitor in the multiplies sin ⁇ t including phase parameters, appropriate gain K3 Is used to create a circulating current command value fundamental wave component i Z1 * .
  • the value v aveCP obtained by averaging the voltage values of all the DC capacitors in the first arm 12-P becomes all the DC voltages in the second arm 12-N. If it is greater than the value v aveCN obtained by averaging the voltage values of the capacitors, the power is transferred from the first arm 12-P to the second arm 12-N. As a result, v aveCP decreases and v aveCN increases. On the contrary, the value v aveCP obtained by averaging the voltage values of all the DC capacitors in the first arm 12-P is the voltage value of all the DC capacitors in the second arm 12-N. Is smaller than the value v aveCN obtained by averaging, the power is transferred from the second arm 12-N to the first arm 12-P. As a result, v aveCP increases and v aveCN decreases.
  • FIG. 9c shows that the circulating current that is half the sum of the current flowing through the first arm and the current flowing through the second arm follows the circulating current command value created in the average value control and the arm balance control.
  • It is a block diagram which shows circulating current control made to do.
  • the first arm 12-P is added to the circulating current command value i z * created by adding the fundamental wave component i Z1 * of the circulating current command value created by the fundamental wave component creating means 62 in 52.
  • the control means 52 controls the circulating current i Z that is half the sum of the flowing arm current i P and the arm current i N flowing through the second arm 12-N to follow.
  • the control means 52 creates a voltage command value v A * for forming a feedback loop that causes the circulating current i Z to follow the circulating current command value i z * .
  • the command value creating means 51 includes the DC component creating means 61 and the fundamental wave component creating means 62, but it may include only the DC component creating means 61.
  • the DC component i Z0 * of the circulating current command value created by the DC component generating unit 61 is used as it is as the circulating current command value i z * by the control unit 52.
  • FIG. 9d is a block diagram showing individual balance control in which the voltage value of each DC capacitor in the arm follows the value obtained by averaging the voltage values of all DC capacitors in the same arm. .
  • the individual balance control is executed for each arm, and in FIG. 9d, the individual balance control for the first arm 12-P is mainly described, but the individual balance control for the second arm 12-N is described. It is written in parentheses "()".
  • the control means 52 adds the voltage value v CPj of each DC capacitor in the first arm 12-P to the value v aveCP obtained by averaging the voltage values of all DC capacitors in the first arm 12-P.
  • v aveCN obtained by averaging the voltage values of all the DC capacitors in the second arm 12-N, and the voltage of each DC capacitor in the second arm 12-N. Control is performed to follow each value v CNj .
  • a voltage command value for this purpose is created for each unit cell 11-j in each of the arms 12-P and 12-N.
  • v BPj * and the second arm 12-N Is represented by v BNj * .
  • j is 1 to M, where M is the number of unit cells in the arm.
  • a voltage command value for controlling the DC capacitor in the unit cell 11-j in each arm 12-P and 12-N is created, and this is equivalent to one phase of the three-phase power converter 2 (ie, The final output voltage command for each unit cell 11-j in each arm 12-P and 12-N is combined with the voltage command value v ac * for the AC voltage to be output by the single-phase power converter 1). Values are created as in Equation 24 and Equation 25.
  • the DC voltage V dc is used as a feedforward term in order to stabilize the control.
  • the control means 52 has the switching command means 63 for switching the semiconductor switch SW.
  • the output voltage command values v Pj * and v Nj * generated for the arms 12-P and 12-N are normalized by the voltages v CPj and V CNj of the DC capacitors, respectively, and then a triangular wave with a carrier frequency f c
  • the PWM signal is compared with the carrier signal (maximum value: 1, minimum value: 0), and a PWM switching signal is generated.
  • the generated switching signal is used by the switching control means 52 for switching control of the semiconductor switch SW in the corresponding unit cell 11-j.
  • the switching control means 52 for switching control of the semiconductor switch SW in the corresponding unit cell 11-j.
  • PSCAD / EMTDC was used for the simulation.
  • an analog control system with zero control delay is assumed, and an ideal switch with zero dead time is used.
  • four unit cells are provided in each of the arms 12-P and 12-N in one phase of the three-phase power converter 2 (ie, the single-phase power converter 1).
  • the three-phase power converter 2 as a whole is provided with 24 unit cells.
  • a common DC power source V dc (2.8 kV) is connected to the DC link portions of the converters 1 u, 1 v and 1 w of the respective phases u, v and w.
  • the AC side of the three-phase power converter 2 is connected to a three-phase AC power source of 6.6 kV, 1 MVA, and 50 Hz via an interconnection reactor L s .
  • the three-phase transformer 24 has a star connection on the primary side and an open star connection on the secondary side shown in FIGS. 8a and 8b.
  • FIG. 11 is a block diagram showing instantaneous active power control and instantaneous reactive power control in the simulation of the three-phase power converter according to the sixth embodiment.
  • the instantaneous active power command value is represented by p *
  • the instantaneous reactive power command value is represented by q * .
  • Phase voltage command value of three-phase power converter 2 according to the sixth embodiment is v u *, v v * and v w * is determined by the decoupling control of each phase of the supply current i u, i v and i w Is done.
  • the power supply currents i u , i v and i w of each phase are the arm currents i u P , i v P and i w P flowing through the first arm 12 -P and the second arm 12.
  • the calculation can be performed using Expression 26, Expression 27, and Expression 28.
  • FIG. 12 is a diagram showing simulation waveforms for steady-state characteristics when the three-phase power converter according to the sixth embodiment is operated as an inverter.
  • the uppermost graph of FIG. 12 shows the line voltage v between the uv phases of a 6.6 kV, 1 MVA, 50 Hz three-phase AC power source connected to the AC side of the three-phase power converter 2 via the interconnection reactor L s.
  • the waveform of S uv is shown.
  • the uv-phase voltage v uv on the AC side of the three-phase power converter 2 (second graph from the top in FIG.
  • the power supply current i u (third graph from the top in FIG. 12) is the phase with respect to the u-phase voltage v u S of the three-phase AC power source connected to the three-phase power converter 2 via the interconnection reactor L s . Is inverted 180 degrees, and it can be seen that inverter operation can be realized.
  • Formula 29 is established from the relationship of the average power on the DC side of the three-phase power converter 2.
  • C1 u p and V C1 u N it can be seen that can be controlled to 1.4kV for its DC component.
  • the DC component I dc of the DC current i dc is 360A. This agrees with the simulation result shown in the sixth graph from the top in FIG.
  • FIG. 13 is a diagram illustrating simulation waveforms for steady-state characteristics when the three-phase power converter according to the sixth embodiment is operated as a rectifier.
  • the uppermost graph in FIG. 13 shows the line voltage v between the uv phases of a 6.6 kV, 1 MVA, 50 Hz three-phase AC power source connected to the AC side of the three-phase power converter 2 via the interconnection reactor L s.
  • the waveform of Suv is shown.
  • the u-phase voltage v u S of the three-phase AC power source connected to the three-phase power converter 2 via the interconnection reactor L s
  • the power source current i u (third graph from the top in FIG.
  • FIG. 14 is a circuit diagram showing a conventional single-phase cascade modular multilevel converter.
  • 15 is a circuit diagram for explaining a comparison between a push-bull inverter and a full-bridge inverter, in which FIG. 15a shows a push-bull inverter and FIG. 15b shows a full-bridge inverter.
  • the switch element SW in the full-bridge inverter shown in FIG. 15b is replaced with the unit cells 11-1 to 11-M described with reference to FIGS. 2a and 2b.
  • the single-phase power converter 1 shown in FIG. 1 uses the switch element SW in the pushable inverter shown in FIG. 15a as the unit cell 11 ⁇ described with reference to FIGS. 2a and 2b.
  • a three-terminal coupling reactor is used as the arm coupling portion 13 as described with reference to FIG.
  • the conventional single-phase cascade-type modular multilevel converter includes arms 112-P and 112-N in which unit cells 11-j are cascade-connected, and a three-terminal coupled reactor 113.
  • FIG. 16 is a circuit diagram showing a conventional three-phase cascade modular multilevel converter. Three phases of the single-phase cascade modular multilevel converter shown in FIG. 14 are prepared and connected to each secondary phase of the interconnection transformer to constitute a three-phase cascade modular multilevel converter.
  • the operations of the three-phase power converter according to the sixth embodiment shown in FIG. 7 and the conventional three-phase cascade modular multilevel converter shown in FIG. 16 are compared by simulation as follows.
  • the same parameters as those of the three-phase power converter according to the sixth embodiment described with reference to FIGS. 11 to 13 and Table 1 are used. It was.
  • Equations 32 and 33 the arm currents of the conventional three-phase cascade modular multilevel converters are expressed by Equations 32 and 33. It can be expressed as follows.
  • the arm currents of the three-phase power converter according to the sixth embodiment shown in FIG. 7 and the conventional three-phase cascade modular multilevel converter shown in FIG. In order to obtain the DC voltage V dc from Equation 30 to Equation 33, the three-phase power converter according to the sixth embodiment shown in FIG.
  • the cascade type modular multilevel converter is set to 5.6 kV which is twice as much as that.
  • the cascade modular multilevel converter is set to 2: 1.
  • the parameters used for the simulation of the conventional three-phase cascade modular multilevel converter are that the DC power supply V dc is set to 5.6 kV and the winding ratio N 1 : N 2 of the three-phase transformer is 2 Except for the point set to 1, it is the same as Table 1.
  • FIG. 17 is a diagram showing simulation waveforms for steady-state characteristics when the conventional three-phase cascade modular multilevel converter shown in FIG. 16 is operated as an inverter.
  • the uppermost graph in FIG. 17 shows the uv of a 6.6 kV, 1 MVA, 50 Hz three-phase AC power source connected to the AC side of a conventional three-phase cascade modular multilevel converter via a connected reactor L s.
  • the waveform of the line voltage v Suv between phases is shown.
  • the effective value i dc of the power source current i dc shown in the sixth graph from the top in FIG. 17 is 180 A (1 MW / 5.6 kV), and the three-phase according to the sixth embodiment shown in the sixth graph from the top in FIG. It is half that of a power converter. From comparison between FIG. 12 and FIG. 17, it is considered that the three-phase power converter according to the sixth embodiment and the conventional three-phase cascade modular multilevel converter have the same performance, but the power supply Regarding the current i dc , the three-phase power converter according to the sixth embodiment is half of the conventional three-phase cascade modular multilevel converter.
  • the three-phase power converter according to the sixth embodiment can be connected to the grid with half the DC voltage as compared with the conventional three-phase cascade type modular multilevel converter. That is, it is advantageous in that it is suitable for a battery power storage device in which the direct current side has a low voltage and a large current, and that the insulation measures on the direct current side are easy. More specifically, the grid connection is possible with half the DC voltage, and the following advantages are obtained.
  • the system can be interconnected with a half direct current voltage, so that the reliability is improved.
  • FIG. 18 is a circuit diagram showing a three-phase power converter according to the seventh embodiment.
  • a three-phase power converter is configured by using the single-phase power converter according to the fifth embodiment described with reference to FIG.
  • single-phase power converters provided in the u-phase, v-phase, and w-phase, respectively are denoted by reference numerals 1u, 1v, and 1w, and the three-phase power configured by these single-phase power converters 1u, 1v, and 1w.
  • the converter is denoted by reference numeral 2.
  • the single-phase power converters 1v and 1w have the same circuit configuration as that of the single-phase power converter 1u, and therefore a detailed description of the circuit configuration is omitted.
  • the u phase will be mainly described, but the same applies to the v phase and the w phase.
  • the number of unit cells is 4 per arm as an example, 8 per phase, and thus 24 in the three-phase power converter 2.
  • this numerical value is merely an example, It is not limited to this.
  • the transformer 14 ′ in the fifth embodiment has an intermediate terminal of the transformer 14 in the single-phase power converter 1 according to the first embodiment described with reference to FIG. 1.
  • a three-terminal coupling reactor 15 is provided at the position. That is, the three-terminal coupling reactor 15 is provided on the secondary winding of the transformer 14 '.
  • each phase in the three-phase transformer 24 is configured by using this transformer 14 '.
  • the DC power source V dc in the fifth embodiment is connected between the lower terminal of the first arm 12-P and the lower terminal of the second arm 12-N. Is done.
  • the DC power supply V dc connected as described above to the single-phase power converter 1 in FIG. 6 is common to the phases u, v, and w as shown in FIG.
  • the voltage value is twice that of the fifth embodiment shown in FIG. .
  • the intermediate terminal (center tap) of the three-terminal coupling reactor 15 with Y, the voltage dividing capacitor that existed in the fifth embodiment shown in FIG. 6 can be removed.
  • FIG. 19 is a diagram showing simulation waveforms for steady-state characteristics when the three-phase power converter according to the seventh embodiment shown in FIG. 18 is operated as an inverter.
  • the circuit parameters shown in “PSCAD / EMTDC” and Table 1 are used. used.
  • As the simulation circuit an analog control system with zero control delay is assumed, and an ideal switch with zero dead time is used.
  • the AC side of the three-phase power converter 2 shown in FIG. 18 is connected to a three-phase AC power source of 6.6 kV, 1 MVA, and 50 Hz via an interconnection reactor L s .
  • FIG. 19 shows the line voltage v between the uv phases of a 6.6 kV, 1 MVA, 50 Hz three-phase AC power source connected to the AC side of the three-phase power converter 2 via the interconnection reactor L s.
  • the waveform of Suv is shown.
  • the waveforms shown in the second to sixth graphs from the top of FIG. 19 of the three-phase power converter 2 according to the seventh embodiment are as shown in FIG. It can be seen that the waveforms of the conventional three-phase cascade type modular multilevel converter shown in FIG. That is, since the three-phase power converter 2 according to the seventh embodiment can obtain the same effect as the conventional three-phase cascade modular multilevel converter shown in FIG.
  • the conventional three-phase cascade type It can be said that this is an alternative circuit for the modular multilevel converter.
  • the effective value I dc of the direct current i dc in the three-phase power converter according to the seventh embodiment (the sixth from the top in FIG. 19).
  • a three-phase two-phase power converter is configured by providing two phases of the single-phase power converter 1 according to the first to fifth embodiments.
  • a Scott transformer is used to provide two-phase single-phase power converters 1 according to the first to fifth embodiments and connect them to the system side.
  • FIG. 20 is a circuit diagram showing a Scott transformer used in the present invention.
  • the Scott transformer 25 is composed of two single-phase transformers, an M seat transformer Tm and a T seat transformer Tt.
  • N 1 be the number of turns of the primary winding of the M-seat transformer Tm
  • N 2 be the number of turns of the secondary winding.
  • the intermediate terminal (center tap) of the primary side winding of the M seat transformer Tm is connected to the primary side winding of the T seat transformer Tt.
  • the number of turns of the primary winding of the T-seat transformer Tt is ⁇ 3N 1/2 .
  • 21a and 21b are instantaneous voltage vector diagrams of the Scott transformer shown in FIG.
  • FIG. 22 is a circuit diagram showing a three-phase two-phase power converter according to the eighth embodiment.
  • a case where a three-phase two-phase power converter is configured using the single-phase power converter according to the first embodiment will be described as an example.
  • the same configuration can be achieved using a single-phase power converter according to the example.
  • single-phase power converters provided in the ⁇ phase and the ⁇ phase are denoted by reference numerals 1 ⁇ and 1 ⁇ , respectively, and a three-phase two-phase power converter configured by the single-phase power converters 1 ⁇ and 1 ⁇ is denoted by the reference numerals. This is represented by 3.
  • FIG. 1 single-phase power converters provided in the ⁇ phase and the ⁇ phase
  • the circuit configuration of the single-phase power converter 1 ⁇ is the same as that of the single-phase power converter 1 ⁇ , and therefore a specific description of the circuit configuration is omitted.
  • the ⁇ phase will be mainly described, but the same applies to the ⁇ phase.
  • the number of unit cells is 4 per arm as an example, 8 per 1 phase, and therefore 16 in the three-phase power converter 2.
  • this value is merely an example.
  • the present invention is not limited to this.
  • the Scott transformer 25 uses the transformers 14 in the single-phase power converters 1 ⁇ and 1 ⁇ provided in the ⁇ -phase and ⁇ -phase. Each phase is configured separately.
  • the turn ratio N 1 : N 2 between the primary winding and the secondary winding is ⁇ 3: 1.
  • the Scott transformer 25 described with reference to FIG. 20 has an intermediate on the secondary winding of the M seat transformer Tm. A terminal (center tap) ⁇ 1 is provided.
  • an intermediate terminal (center tap) is placed on the secondary winding of the T-seat transformer Tt of the Scott transformer 25 described with reference to FIG. ) ⁇ 1 is provided.
  • the negative terminal of the DC power source V dc is connected to the third terminal c of the arm coupling portion 13, and the intermediate terminal of the transformer 14.
  • the positive terminal of the DC power source V dc is connected to T2-3.
  • these intermediate terminals ⁇ 1 and ⁇ 1 are connected to the positive terminal of the DC power source V dc , so that FIG. 22, the ⁇ phase and the ⁇ phase are common.
  • both terminals ⁇ 0 and ⁇ 1 of the secondary side winding of the M seat transformer Tm of the Scott transformer 25 are connected to the first arm 12-P. And the upper terminal of 12-N are connected.
  • a three-terminal coupling reactor that is an arm coupling portion 13 is connected to the lower terminals of the first arms 12-P and 12-N.
  • the negative terminal of the DC power source Vdc is connected to the intermediate terminal of the three-terminal coupling reactor.
  • the secondary side ⁇ phase of the three-phase to two-phase power converter 3 has the same configuration as the ⁇ phase.
  • the power supply current of each primary side of the three-phase two-phase power converter 3 is i u , i v and i w and the power supply voltages v u S , v v S and v w S , and the three-phase two-phase power converter 3 Arm currents flowing through the first arm 12-P of the secondary side ⁇ -phase and ⁇ -phase of the first arm 12-P, i ⁇ P and i ⁇ P , respectively, and arm currents i ⁇ N and i ⁇ N flowing through the second arm 12-N, respectively To do.
  • the ⁇ -phase arm currents i ⁇ P and i ⁇ N of the three-phase two-phase power converter 3 according to the eighth embodiment include a DC component and an AC component of 50 Hz.
  • the DC component of the arm currents i ⁇ P and i ⁇ N can be expressed by i dc / 4.
  • Equation 36 is obtained from the relationship of magnetomotive force of the M-seat transformer.
  • Equation 37 is obtained.
  • Equation 38 is obtained from the relationship of magnetomotive force of the T-seater transformer.
  • the power supply currents i u , i v, and i w of the primary side of the three-phase two-phase power converter 3 are expressed by Expressions 43 to 45 from Expressions 39 to 42.
  • FIG. 23 is a diagram showing simulation waveforms for steady-state characteristics when the three-phase two-phase power converter according to the eighth embodiment is operated as an inverter.
  • PSCAD / EMTDC was used for the simulation.
  • As the simulation circuit an analog control system with zero control delay is assumed, and an ideal switch with zero dead time is used.
  • the uppermost graph in FIG. 23 shows a u-phase voltage v S of a 6.6 kV, 1 MVA, 50 Hz three-phase AC power source connected to the AC side of the three-phase two-phase power converter 3 via the interconnection reactor L s.
  • the waveform of u is shown.
  • the voltage of the secondary side alpha phase of the three-phase two-phase power converter 3 v alpha is the phase with respect to the voltage v beta of secondary beta phase it can be seen that advanced 90 degrees. Since eight unit cells are provided in each phase, a 9-level multi-level waveform is obtained and there are few harmonic components.
  • the ⁇ -phase arm currents i ⁇ P and i ⁇ N of the three-phase two-phase power converter 3 include a DC component and an AC component of 50 Hz as described above, but from the equations 39 to 42, the arm current i ⁇ P and The amplitude of i ⁇ N is ⁇ 3N 1 / 2N 2 times the amplitude of the power supply currents i u , i v and i w .
  • N 1 / N 2 ⁇ 3 is substituted, it becomes 1.5 times, which is consistent with the simulation results shown in the third and fourth graphs from the top of FIG.
  • the DC component is 90 A, which is 1/4 times the DC current i dc .
  • the DC capacitor voltages v ⁇ CP1 and v ⁇ CN1 include a DC component and an AC component, but it can be seen that the DC component can be controlled to 1.4 kV.
  • the present invention can be applied to a single-phase power converter, a three-phase two-phase power converter, and a three-phase power converter that convert DC and AC bidirectionally. If the single-phase power converter, the three-phase two-phase power converter or the three-phase power converter according to the present invention is used, the battery power storage device can be connected to the power system without the transformer for the converter, and the size of the device can be reduced. And weight reduction can be achieved. Since the present invention is capable of system interconnection with a half direct current voltage compared to a conventional cascaded modular multilevel converter and can easily take measures for insulation on the direct current side, battery power with a low voltage and large current on the direct current side is provided. Ideal for storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 電力変換器1は、半導体スイッチと直流コンデンサCと充放電電流用の入出力端子とを有する単位セル11-Mと、互いにカスケード接続された複数の単位セル11-Mからなる第1のアーム12-Pおよび第2のアーム12-Nと、第1のアーム12-Pが接続される第1の端子、第2のアーム12-Nが接続される第2の端子および直流電源が接続される第3の端子を有するアーム結合部13と、1次側に交流入出力端子、2次側巻線上に中間端子を有する変圧器14であって、2次側巻線の2つの末端端子には第1のアーム12-Pの端子および第2のアーム12-Nの端子がそれぞれ接続され、中間端子には直流電源Vdcが接続される変圧器14と、を備える。

Description

単相電力変換器、三相二相電力変換器および三相電力変換器
 本発明は、直流と交流とを双方向に変換する単相電力変換器および三相電力変換器ならびに三相交流と二相交流とを双方向に変換する三相二相電力変換器に関し、特にモジュラーマルチレベル型の単相電力変換器、三相二相電力変換器および三相電力変換器に関する。
 風力発電や太陽光発電の導入機会の増大に伴い、電池電力貯蔵装置の重要性が増している。図24は、電池電力貯蔵装置の一般的な構成を示す図である。電池電力貯蔵装置1000は、NAS電池やリチウムイオン電池などのバッテリ100と、バッテリ100の直流電圧を交流電圧に変換する連系変換器200と、連系変換器200と電力系統400とを連系する連系変圧器300と、を備える。電池電力貯蔵装置1000においては、バッテリ100の直流電圧は、電力系統400の電圧実効値に対して相対的に低いため、連系変換器200には高い昇圧比が求められる。このため、従来より、数Mワット級の連系変換器において変換器用変圧器を使用することで高圧化および大容量化を実現してきた。しかしながら、このような変換器用変圧器の使用は、装置の大型化および高重量化をもたらす要因となる。
 このような問題を解決するために、実装が容易で大容量・高圧用途に適した次世代トランスレス電力変換器として、モジュラーマルチレベル変換器(Modular Multilevel Converter:MMC)が提案されている。
 モジュラーマルチレベル変換器は、複数の双方向チョッパセルもしくはフルブリッジ変換器セルを直列接続したアームをモジュールで構成する点に特徴がある。絶縁等の問題を除けば、直列セル数を増やすことにより、半導体スイッチを高耐圧化することなく、交流出力電圧の増大を図るとともに電圧および電流のリプルを抑制することが可能であり、高電圧かつ大容量の電力変換器として期待されている。モジュラーマルチレベル変換器は、実装が容易で、冗長性に富み、装置の小型軽量化を実現できることから、系統連系用電力変換器や、誘導電動機のためのモータドライブ装置などに適用できる。
 モジュラーマルチレベル変換器として、例えばカスケード型のモジュラーマルチレベル変換器(Modular Multilevel Cascade Converter:MMCC)が提案されている(例えば、特許文献1および非特許文献1~4参照。)。
特開2011-182517号公報
萩原誠、赤木泰文著、「モジュラー・マルチレベル変換器(MMC)のPWM制御法と動作検証」、電気学会論文誌D、第128巻、第7号、pp957~965、2008年7月 西村和敏、萩原誠、赤木泰文著、「モジュラー・マルチレベルPWMインバータを用いた高圧モータドライブシステムへの応用-400V,15kWミニモデルによる実験的検証-」、電気学会半導体電力変換研究会、SPC-09-24、pp19~24、2009年1月 赤木泰文、萩原誠著、「モジュラー・マルチレベル・カスケード変換器(MMCC)の分類と名称」、電気学会全国大会、no.4-043、pp71~72、2010年3月 萩原誠、前田亮、赤木泰文著、「モジュラー・マルチレベル・カスケード変換器(MMCC-DSCC)の理論解析と制御法」、電気学会全国大会、no.4-044、pp73~74、2010年3月
 電池電力貯蔵装置の直流電圧を交流電圧に変換する連系変換器の高昇圧比を変換器用変圧器で実現すると、装置の大型化および高重量化をもたらす。
 実装が容易で大容量・高圧用途に適したモジュラーマルチレベル変換器を用いた場合であっても、変換器用変圧器は除去できるが、電圧整合性および電気絶縁性の観点から連系変圧器を除去できないという問題がある。
 また、今後は風力発電や太陽光発電が産業界のみならず一般家庭にも普及していくことが考えられ、電池電力貯蔵装置のより一層の小型化、低価格化および高効率化がさらに要求される。
 また、特許文献1および非特許文献1~4に記載されたカスケード型のモジュラーマルチレベル変換器(MMCC)よりもさらに小型、低価格で高効率の電力変換器が求められる。
 従って本発明の目的は、上記問題に鑑み、直流と交流とを双方向に変換する、構造容易、小型、低価格で高効率のモジュラーマルチレベルの単相電力変換器および三相電力変換器、ならびに、三相交流と二相交流とを双方向に変換する、構造容易、小型、低価格で高効率の三相二相電力変換器を提供することにある。
 上記目的を実現するために、第1~第3の態様においては、単相電力変換器は、
 直列接続された2つの半導体スイッチと、2つの半導体スイッチに並列接続された直流コンデンサと、半導体スイッチのスイッチング動作に応じて直流コンデンサから放電若しくは直流コンデンサへ充電される電流の入出力端子と、を有する単位セルと、
 1つの単位セル、または入出力端子を介して互いにカスケード接続された複数の単位セル、からなる第1および第2のアームであって、第1および第2のアームは同数の単位セルを有する第1および第2のアームと、
 第1のアームの一端が接続される第1の端子と、第2のアームの一端が接続される第2の端子と、直流電源の一端が接続される第3の端子と、を有するアーム結合部と、
 1次側に交流入出力端子、2次側巻線上に中間端子を有する変圧器であって、2次側巻線の2つの末端端子には、第1のアームの、アーム結合部の第1の端子が接続されない側の端子と、第2のアームの、アーム結合部の第2の端子が接続されない側の端子と、がそれぞれ接続され、中間端子には、直流電源の、アーム結合部の第3の端子が接続されない側の端子が接続される変圧器と、
を備える。
 ここで、第1の態様によれば、上記アーム結合部は、上記第1の端子と、上記第2の端子と、上記第1の端子と上記第2の端子との間の巻線上に位置する中間タップである上記第3の端子と、を有する3端子結合リアクトルからなる。
 また、第2の態様によれば、上記アーム結合部は、互いに直列接続される2つのリアクトルであって、直列接続された2つのリアクトルの一方の端子である上記第1の端子と、直列接続された2つのリアクトルの他方の端子である上記第2の端子と、直列接続された2つのリアクトルの直列接続点である上記第3の端子と、を有する2つのリアクトルからなる。
 また、第3の態様によれば、第1のアームおよび第2のアームそれぞれにおいて、互いにカスケード接続された単位セル間の任意の位置に接続されるリアクトルを備え、上記アーム結合部において、上記第1の端子と、上記第2の端子と、上記第3の端子とは互いに接続される。
 第4の態様においては、単相電力変換器は、
 直列接続された2つの半導体スイッチと、2つの半導体スイッチに並列接続された直流コンデンサと、半導体スイッチのスイッチング動作に応じて直流コンデンサから放電若しくは直流コンデンサへ充電される電流の入出力端子と、を有する単位セルと、
 1つの単位セル、または入出力端子を介して互いにカスケード接続された複数の単位セル、からなる第1および第2のアームであって、第1および第2のアームは同数の単位セルを有する第1および第2のアームと、
 第1のアームの一端との間で直流電源が接続される第1の端子と、第2のアームの一端との間でさらに別の直流電源が接続される第2の端子と、第1の端子および第2の端子に接続される第3の端子と、を有するアーム結合部と、
 1次側に交流入出力端子、2次側巻線上に3端子結合リアクトルを有する変圧器であって、2次側巻線の2つの末端端子には、第1のアームの、直流電源が接続されない側の端子と、第2のアームの、上記さらに別の直流電源が接続されない側の端子と、がそれぞれ接続され、3端子結合リアクトルの両端端子間の巻線上に位置する中間端子には、第3の端子が接続される変圧器と、
を備える。
 第5の態様においては、単相電力変換器は、
 直列接続された2つの半導体スイッチと、2つの半導体スイッチに並列接続された直流コンデンサと、半導体スイッチのスイッチング動作に応じて直流コンデンサから放電若しくは直流コンデンサへ充電される電流の入出力端子と、を有する単位セルと、
 1つの単位セル、または入出力端子を介して互いにカスケード接続された複数の単位セル、からなる第1および第2のアームであって、第1および第2のアームは同数の単位セルを有する第1および第2のアームと、
 第1のアームの、直流電源が接続される側の端子に接続される第1のコンデンサと、
 第2のアームの、直流電源が接続される側の端子に接続される第2のコンデンサと、
 第1のコンデンサの、第1のアームが接続されない側の端子が接続される第1の端子と、前2のコンデンサの、第2のアームが接続されない側の端子が接続される第2の端子と、第1の端子および第2の端子に接続される第3の端子と、を有するアーム結合部と、
 1次側に交流入出力端子、2次側巻線上に3端子結合リアクトルを有する変圧器であって、2次側巻線の2つの末端端子には、第1のアームの、第1のコンデンサが接続されない側の端子と、第2のアームの、第2のコンデンサが接続されない側の端子と、がそれぞれ接続され、3端子結合リアクトルの両端端子間の巻線上に位置する中間端子には、第3の端子が接続される変圧器と、
を備える。
 また、第1~第5の態様において、単相電力変換器は、第1のアーム内の直流コンデンサの電圧値と第2のアーム内の直流コンデンサの電圧値とに基づいて、循環電流指令値を作成する指令値作成手段と、循環電流指令値に、第1のアームを流れる電流と第2のアームを流れる電流との和の半分である循環電流が追従するよう制御する制御手段と、を備える。
 ここで、上記指令値生成手段は、第1のアーム内および第2のアーム内の全ての直流コンデンサの電圧値を平均して得られた値を用いて、第1のアーム内および第2のアーム内の全ての直流コンデンサの電圧値を平均して得られた値が所定の直流電圧指令値に追従するよう制御するための循環電流指令値を生成するようにしてもよい。
 あるいは、上記指令値生成手段は、第1のアーム内の全ての直流コンデンサの電圧値を平均して得られた値と第2のアーム内の全ての直流コンデンサの電圧値を平均して得られた値との差を用いて、循環電流指令値の、交流入出力端子間の端子電圧と同相の基本波成分を生成する基本波成分生成手段と、第1のアーム内および第2のアーム内の全ての直流コンデンサの電圧値を平均して得られた値を用いて、第1のアーム内および第2のアーム内の全ての直流コンデンサの電圧値を平均して得られた値が所定の直流電圧指令値に追従するよう制御するための循環電流指令値の直流成分を生成する直流成分生成手段と、を有し、基本波成分と直流成分とを加算して循環電流指令値を生成するようにしてもよい。ここで、上記基本波成分は、第1のアーム内の全ての直流コンデンサの電圧値を平均して得られた値と、第2のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値と、の差をゼロにするよう制御するための値である。
 また、上記制御手段は、第1のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値に、第1のアーム内の各直流コンデンサの電圧値をそれぞれ追従させる制御、および、第2のアーム内の全ての直流コンデンサの電圧値を平均して得られた値に、第2のアーム内の各直流コンデンサの電圧値をそれぞれ追従させる制御、をさらに実行するようにしてもよい。
 また、上記制御手段は、上記追従させる制御に対応して半導体スイッチをスイッチング動作させるスイッチング指令手段を有する。
 また、各半導体スイッチは、オン時に一方向に電流を通す半導体スイッチング素子と、この半導体スイッチング素子に逆並列に接続された帰還ダイオードと、を有する。
 第1~第5の態様による単相電力変換器を3相分備えて三相電力変換器を構成してもよく、この場合、各単相電力変換器内の変圧器は、1次側にスター結線を有し2次側にオープンスター結線を有する三相変圧器における各相をそれぞれ構成し、各単相電力変換器には共通の直流電源が接続される。
 第1~第5の態様による単相電力変換器を2相分備えて三相二相電力変換器を構成してもよく、この場合、各単相電力変換器内の変圧器の2次側巻線は、スコット変圧器の2次側における各相の巻線をそれぞれ構成し、各単相電力変換器には共通の直流電源が接続される。
 本発明によれば、直流と交流とを双方向に変換する、構造容易、小型、低価格で高効率のモジュラーマルチレベルの単相電力変換器、三相二相電力変換器および三相電力変換器を実現することができる。
 この単相電力変換器、三相二相電力変換器もしくは三相電力変換器を用いれば、電池電力貯蔵装置を変換器用変圧器無しに電力系統に連系することができ、装置の小型化および低重量化を図ることができる。
 また、従来のモジュラーマルチレベル変換器では電圧整合性および電気絶縁性の観点から連系変圧器を除去できないという問題があったが、本発明によれば低圧で大電流の直流電源を電力系統に連系することができるので、直流側の絶縁対策が、従来のモジュラーマルチレベル変換器を用いた場合よりも容易となる。
 本発明による三相電力変換器は、特許文献1および非特許文献1~4に記載された従来の三相のカスケード型モジュラーマルチレベル変換器に比べて、半分の直流電圧で系統連系が可能であり、直流側の絶縁対策が容易であるので、直流側が低圧大電流である電池電力貯蔵装置に最適である。
 このように、半分の直流電圧で系統連系が可能となることにより、次のような利点がある。まず第1に、一般に組電池の特性として電圧が低ければ低いほど信頼性が高くなるが、本発明によれば、半分の直流電圧で系統連系できるので信頼性が向上するという利点がある。また第2に、直流電圧が低いほど、既存技術の適用の可能性が高くなるという利点がある。すなわち、本発明の適用により直流電圧レベルを例えば1500Vから750Vに下げることができると、より多くの既存技術が存在する低電圧領域に近づくことから、実績のある既存技術の適用の可能性が高くなり、信頼性が向上し、保護や絶縁が容易となるという利点がある。例えば2000V以上の高電圧領域では応用分野が少ないため、信頼性が低下し、保護や絶縁が困難となり、電圧センサやコンデンサなどの部品が高価になるといった問題があることから、本発明の適用により半分の直流電圧で系統連系が可能となることは、これら多くの問題を回避することができる。
 また、本発明による三相電力変換器は、連系変圧器の機能も有するので、系統に連系する用途において、従来の場合に比べて小型で低コストの電力変換器として利用することができる。
第1の実施例による単相電力変換器を示す回路図である。 第1~第5の実施例による単相電力変換器内の単位セルであるチョッパセルを示す回路図である。 第1~第5の実施例による単相電力変換器内の単位セルであるブリッジセルを示す回路図である。 第2の実施例による単相電力変換器を示す回路図である。 第3の実施例による単相電力変換器におけるアーム結合部の回路構成を示す回路図である。 第3の実施例による単相電力変換器におけるアーム結合部の回路構成を示す回路図である。 第3の実施例による単相電力変換器におけるアーム結合部の回路構成を示す回路図である。 第4の実施例による単相電力変換器を示す回路図である。 第5の実施例による単相電力変換器を示す回路図である。 第6の実施例による三相電力変換器を示す回路図である。 図7に示す三相電力変換器における変圧器を示す回路図である。 図7に示す三相電力変換器における変圧器を示す回路図である。 第6の実施例による三相電力変換器の直流コンデンサ制御についての制御ブロック図(その1)である。 第6の実施例による三相電力変換器の直流コンデンサ制御についての制御ブロック図(その2)である。 第6の実施例による三相電力変換器の直流コンデンサ制御についての制御ブロック図(その3)である。 第6の実施例による三相電力変換器の直流コンデンサ制御についての制御ブロック図(その4)である。 第6の実施例による三相電力変換器の直流コンデンサ制御装置を示すブロック図である。 第6の実施例による三相電力変換器のシミュレーションにおける瞬時有効電力制御および瞬時無効電力制御を示すブロック図である。 第6の実施例による三相電力変換器を、インバータ動作させたときの定常特性についてのシミュレーション波形を示す図である。 第6の実施例による三相電力変換器を、整流器動作させたときの定常特性についてのシミュレーション波形を示す図である。 従来の単相のカスケード型モジュラーマルチレベル変換器を示す回路図である。 プッシュブルインバータとフルブリッジインバータとの比較を説明する回路図であって、プッシュブルインバータを示す図である。(b)はフルブリッジインバータを示す図である。 プッシュブルインバータとフルブリッジインバータとの比較を説明する回路図であって、フルブリッジインバータを示す図である。 従来の三相のカスケード型モジュラーマルチレベル変換器を示す回路図である。 図16に示す従来の三相のカスケード型モジュラーマルチレベル変換器を、インバータ動作させたときの定常特性についてのシミュレーション波形を示す図である。 第7の実施例による三相電力変換器を示す回路図である。 第7の実施例による三相電力変換器を、インバータ動作させたときの定常特性についてのシミュレーション波形を示す図である。 本発明で使用するスコット変圧器を示す回路図である。 図20に示すスコット変圧器の瞬時電圧ベクトル図(その1)である。 図20に示すスコット変圧器の瞬時電圧ベクトル図(その1)である。 第8の実施例による三相二相電力変換器を示す回路図である。 第8の実施例による三相二相電力変換器を、インバータ動作させたときの定常特性についてのシミュレーション波形を示す図である。 電池電力貯蔵装置の一般的な構成を示す図である。
 図1は、第1の実施例による単相電力変換器を示す回路図である。以降、異なる図面において同じ参照符号が付されたものは同じ機能を有する構成要素であることを意味するものとする。なお、これ以降、単位セル内の直流コンデンサについては、理解を容易にするために、当該単位セルの外側に記載している。図2aは、第1~第5の実施例による単相電力変換器内の単位セルであるチョッパセルを示す回路図である。図2bは、第1~第5の実施例による単相電力変換器内の単位セルであるブリッジセルを示す回路図である。
 第1の実施例による単相電力変換器は、単位セル11-1~11-M(ただし、Mは自然数)と、第1のアーム12-Pおよび第2のアーム12-Nと、アーム結合部13と、変圧器14とを備える。
 単位セル11-1~11-Mは、直列接続された2つの半導体スイッチと、2つの半導体スイッチに並列接続された直流コンデンサと、半導体スイッチのスイッチング動作に応じて直流コンデンサから放電若しくは直流コンデンサへ充電される電流の入出力端子と、を有する。単位セル11-1~11-Mは、図2aに示すチョッパセルもしくは図2bに示すブリッジセルのいずれでもよい。
 図2aに示すチョッパセルは、直列接続された2つの半導体スイッチSWと、2つの半導体スイッチSWに並列接続された直流コンデンサCと、半導体スイッチSWのスイッチング動作に応じて直流コンデンサCから放電若しくは直流コンデンサCへ充電される電流の入出力端子T1およびT2と、を有する双方向のチョッパセルである。2つの半導体スイッチSWのうちの一方の半導体スイッチの両端端子を、チョッパセル(単位セル)の入出力端子T1およびT2とする。
 図2bに示すブリッジセルは、直列接続された2つの半導体スイッチSWを2組並列接続し、これに直流コンデンサCを並列接続して構成されるものである。直列接続された2つの半導体スイッチSWの各組の、直列接続点を、直流コンデンサCから放電若しくは直流コンデンサCへ充電される電流の入出力端子T1およびT2とする。
 図2aおよび図2bに示すいずれの単位セルにおいても、各半導体スイッチSWは、オン時に一方向に電流を通す半導体スイッチング素子Sと、この半導体スイッチング素子に逆並列に接続された帰還ダイオードDと、を有する。単位セルの入出力端子T1およびT2間に、1つの単位セルが出力する電圧が現れる。
 図1に示すように、第1のアーム12-Pおよび第2のアーム12-Nは、1つの単位セル11-1、または入出力端子T1およびT2を介して互いにカスケード接続された複数の単位セル11-1~11-M(ただし、Mは自然数)を同数有するようにする。
 アーム結合部13は、第1のアーム12-Pの下側端子が接続される第1の端子aと、第2のアーム12-Nの下側端子が接続される第2の端子bと、直流電源Vdcの負極側端子が接続される第3の端子cと、を有する。
 上記アーム結合部13は、第1の実施例では、図1に示すように、第1の端子aと、第2の端子bと、第1の端子aと第2の端子bとの間の巻線上に位置する中間タップである第3の端子cと、を有する3端子結合リアクトルからなる。図1においては3端子結合リアクトルの極性を黒丸(・)で表わしている。第1の端子aと第3の端子cとの間の巻線の極性と、第3の端子cと第2の端子bとの間の巻線の極性とが逆向き(図示の例では相反する向きに向いている)となるようにする。
 変圧器14は、1次側に交流入出力端子T1-1およびT1-2を有し、2次側には2つの末端端子T2-1およびT2-2の間の2次側巻線上にセンタータップである中間端子T2-3を有する。変圧器14の1次側の交流入出力端子T1-1およびT1-2入出力端子T1およびT2間に、単相電力変換器1の交流出力電圧が現れる。ここで、変圧器14の1次側巻線の巻き数をN1とし、2次側巻線の巻き数をN2とする。したがって、2次側においては、末端端子T2-1と中間端子T2-3との間の巻線の巻き数および中間端子T2-3と末端端子T2-2との間の巻線の巻き数は、ともにN2/2となる。
 また、図1においては変圧器14の1次側巻線および2次側巻線の極性を黒丸(・)で表わしている。2次側巻線においては、末端端子T2-1と中間端子T2-3との間の巻線の極性と、中間端子T2-3と末端端子T2-2との間の巻線の極性とが同じ向き(図示の例では左向に揃っている)となるようにする。一方、1次側巻線の極性の向きについては、2次側巻線の極性の向きと必ずしも同じとならなくてもよい。
 変圧器14の2次側巻線の末端端子T2-1には、第1のアーム12-Pの、アーム結合部13の第1の端子aが接続されない側の端子すなわち第1のアーム12-Pの上側端子が接続され、変圧器14の2次側巻線の末端端子T2-2には、第2のアーム12-Nの、アーム結合部13の第2の端子bが接続されない側の端子すなわち第2のアーム12-Nの上側端子が接続される。また、変圧器14の中間端子T2-3には、直流電源Vdcの、アーム結合部13の第3の端子cが接続されない側の端子すなわち直流電源Vdcの正極側端子が接続される。
 第1の実施例による単相電力変換器1の動作を数式を用いて解析すると次の通りである。
 変圧器14の1次側の交流入出力端子T1-1およびT1-2入出力端子T1およびT2間に、単相電力変換器1の交流電圧vacが現れる。交流電流をiacとする。また、第1のアーム12-Pに流れるアーム電流をiPとし、第2のアーム12-Nに流れるアーム電流をiNとする。第1のアーム12-P内の各単位セル11-j(ただし、j=1~M)の入出力端子(図2aおよび図2bのT1およびT2)間に表れる電圧を、vPjとし、第2のアーム12-N内の各単位セル11-j(ただし、j=1~M)の入出力端子(図2aおよび図2bのT1およびT2)間に表れる電圧を、vNjとしたとき、第1のアーム12-Pの出力電圧総和vPおよび第2のアーム12-Nの出力電圧総和vNはそれぞれ式1および式2で表わされる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 一方、変調度をm(0≦m≦1)、角周波数をωとしたとき、第1のアーム12-Pの出力電圧総和vPおよび第2のアーム12-Nの出力電圧総和vNはそれぞれ式3および式4で表わされる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここで、循環電流を式5のように定義する。
Figure JPOXMLDOC01-appb-M000005
 アーム結合部13における3端子結合リアクトルは循環電流iZに対してのみLのインダクタンスを有するので、式6および式7に示す電圧方程式が成り立つ。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 式3、式4、式6および式7より式8および式9が得られる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 式9からわかるように、循環電流iZは直流量となる。すなわち、第1のアーム12-Pに流れるアーム電流iPおよび第2のアーム12-Nに流れるアーム電流iNはともに直流分を含むということである。変圧器においては直流電流による磁束は互いに打ち消し合うため、直流磁束は発生しない。なお、上述の式9の導出には、vP+vN=2Vdcの関係を用いている。しかしながら実際は、高調波電圧やデッドタイムなどの影響によりvP+vN≠2Vdcとなるので、高調波電流が循環電流iZに重畳する。したがって、第1の実施例においては、アーム結合部13の3端子結合リアクトルは、このような高調波電流を低減するために必要不可欠である。
 一方、第1のアーム12-Pに流れるアーム電流iPおよび第2のアーム12-Nに流れるアーム電流iNに含まれる交流分をそれぞれ(iPacおよび(iNacとすると、変圧器の起磁力の関係から式10が得られる。
Figure JPOXMLDOC01-appb-M000010
 式10において、(iPac=-(iNacの関係が成立すると仮定すると式11および式12が得られる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 一方、直流電源Vdcの直流電流idcと循環電流iZとの間には、式5およびキルヒホッフの電流側より式13が成り立つ。
Figure JPOXMLDOC01-appb-M000013
 最終的に、第1のアーム12-Pに流れるアーム電流iPおよび第2のアーム12-Nに流れるアーム電流iNはそれぞれ式14および式15のように表わせる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 また、図1の交流電流iacを式16で与える。
Figure JPOXMLDOC01-appb-M000016
 ここで、Iacは交流電流iacの振幅を表わし、φは交流電流iacと交流電圧vacとの位相差を表す。式8および式16より、変圧器14の直流側と交流側の平均電力には式17の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000017
 ここで、Idcは直流量を表す。第1のアーム12-Pおよび第2のアーム12-Nに流出入する瞬時有効電力はそれぞれ式18および式19で表わせる。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 上記各瞬時有効電力に含まれる直流分(平均値)をそれぞれ(vP・iPdcおよび(vN・iNdcで表わしたとき、式16および式17を式18および式19に代入すると式20が得られる。ここで、idc=Idcとした。
Figure JPOXMLDOC01-appb-M000020
 式20より、単相電力変換器1においては第1のアーム12-Pと第2のアーム12-Nとの間で定常的な電力授受は発生しないことがわかる。
 図3は、第2の実施例による単相電力変換器を示す回路図である。第2の実施例による単相電力変換器1は、図1、図2aおよび図2bを参照して説明した第1の実施例におけるアーム結合部13を、3端子結合リアクトルではなく、通常のリアクトルすなわち非結合リアクトルで構成したものである。なお、これ以外の回路構成要素については、図1に示す単位セル11-1~11-M、第1のアーム12-P、第2のアーム12-Nおよび変圧器14、ならびに図2aおよび図2bに示す単位セルと同様であるので、同一の回路構成要素には同一符号を付して当該回路構成要素についての詳細な説明は省略する。
 第2の実施例では、図3に示すように、アーム結合部13は、互いに直列接続された2つのリアクトルL1およびL2からなり、リアクトルL1の一方の端子である第1の端子aと、リアクトルL2の一方の端子である第2の端子bと、直列接続された2つのリアクトルL1およびL2の直列接続点である第3の端子cと、を有する。なお、リアクトルは、変圧器の漏れインダクタンスで代用してもよい。
 図4a~図4cは、第3の実施例による単相電力変換器におけるアーム結合部の回路構成を示す回路図である。第3の実施例による単相電力変換器1は、図3を参照して説明した第2の実施例におけるアーム結合部13を構成するリアクトルLの位置を変更したものである。図4a~図4cでは、単相電力変換器におけるアーム結合部13を構成するリアクトルLおよび単位セル11-1~11-Mを含む第1もしくは第2のアームのみを表している。第3の実施例では、図4a~図4cに示すように、アーム結合部13は、第1のアームおよび第2のアームそれぞれにおいて、互いにカスケード接続された単位セル11-1~11-M間の任意の位置に接続されるリアクトルLを備えるので、図3に示したアーム結合部13の第1の端子aと、第2の端子bと、第3の端子cとは互いに接続されるように変更する。これ以外の回路構成要素については、第2の実施例と同様である。なお、リアクトルは変圧器の漏れインダクタンスで代用してもよい。
 図5は、第4の実施例による単相電力変換器を示す回路図である。第4の実施例による単相電力変換器1は、図1、図2aおよび図2bを参照して説明した第1の実施例におけるアーム結合部13および変圧器14を変更したものである。
 単位セル11-1~11-Mならびに第1のアーム12-Pおよび第2のアーム12-Nは、図1、図2aおよび図2bを参照して説明した第1の実施例と同様であるので詳細な説明については省略する。単位セル11-1~11-Mは、第1の実施例と同様、直列接続された2つの半導体スイッチと、2つの半導体スイッチに並列接続された直流コンデンサと、半導体スイッチのスイッチング動作に応じて直流コンデンサから放電若しくは直流コンデンサへ充電される電流の入出力端子と、を有し、図2aに示すチョッパセルもしくは図2bに示すブリッジセルのいずれでもよい。第1のアーム12-Pおよび第2のアーム12-Nは、第1の実施例と同様、1つの単位セル11-1、または入出力端子T1およびT2を介して互いにカスケード接続された複数の単位セル11-1~11-M(ただし、Mは自然数)を同数有するようにする。
 アーム結合部13は、第1のアーム12-Pの下側端子と直流電源Vdcが接続される第1の端子aと、第2のアーム12-Nの下側端子との間でさらに別の直流電源Vdcが接続される第2の端子bと、直流電源Vdcの、第1の端子aとは反対側の端子と上記さらに別の直流電源Vdcの、第2の端子bとは反対側の端子とに接続される第3の端子cと、を有する。
 図5に示すように、第4の実施例における変圧器14’は、図1を参照して説明した第1の実施例による単相電力変換器1における変圧器14の中間端子があった位置に、3端子結合リアクトル15を設けたものである。すなわち、変圧器14’の2次側巻線上に3端子結合リアクトル15を有する。変圧器14’の1次側の交流入出力端子T1-1およびT1-2入出力端子T1およびT2間に、単相電力変換器1の交流出力電圧が現れる。ここで、変圧器14’の1次側巻線の巻き数をN1とし、2次側巻線の巻き数をN2とする。したがって、2次側においては、末端端子T2-1と3端子結合リアクトル15との間の巻線の巻き数および3端子結合リアクトル15と末端端子T2-2との間の巻線の巻き数は、ともにN2/2となる。
 変圧器14’の2次側巻線の末端端子T2-1には、第1のアーム12-Pの、直流電源Vdcが接続されない側の端子すなわち第1のアーム12-Pの上側端子が接続され、変圧器14’の2次側巻線の末端端子T2-2には、第2のアーム12-Nの、上記さらに別の直流電源Vdcが接続されない側の端子すなわち第2のアーム12-Nの上側端子と、がそれぞれ接続される。また、3端子結合リアクトル15の両端端子間の巻線上に位置する中間端子T2-3には、アーム結合部13の第3の端子cが接続される。
 また、図5においては変圧器14’の1次側巻線および2次側巻線の極性を黒丸(・)で表している。2次側巻線においては、末端端子T2-1と中間端子T2-3との間の巻線の極性と、中間端子T2-3と末端端子T2-2との間の巻線の極性とが逆向き(図示の例では互いに向き合う)となるようにする。一方、1次側巻線の極性の向きについては、2次側巻線の極性の向きと必ずしも同じとならなくてもよい。また、3端子結合リアクトルの極性の向きについては、3端子結合リアクトル15の両端端子と中間端子T2-3との間の2つの巻線の極性の向きが同じ向き(図示の例では左向に揃っている)となるようにする。3端子結合リアクトルの極性の向きは、図示の例で右側に揃わせることもできる。
 図6は、第5の実施例による単相電力変換器を示す回路図である。第5の実施例による単相電力変換器1は、図5を参照して説明した第4の実施例におけるアーム結合部13およびこれと直流電源との接続関係を変更し、この変更に伴い新たにコンデンサを設けたものである。
 単位セル11-1~11-Mならびに第1のアーム12-Pおよび第2のアーム12-Nは、図1、図2aおよび図2bを参照して説明した第1の実施例と同様である。すなわち、単位セル11-1~11-Mは、第1の実施例と同様、直列接続された2つの半導体スイッチと、2つの半導体スイッチに並列接続された直流コンデンサと、半導体スイッチのスイッチング動作に応じて直流コンデンサから放電若しくは直流コンデンサへ充電される電流の入出力端子と、を有する。図2aに示すチョッパセルもしくは図2bに示すブリッジセルのいずれでもよい。第1のアーム12-Pおよび第2のアーム12-Nは、第1の実施例と同様、1つの単位セル11-1、または入出力端子T1およびT2を介して互いにカスケード接続された複数の単位セル11-1~11-M(ただし、Mは自然数)を同数有するようにする。直流電源Vdcは、第1のアーム12-Pの下側端子と第2のアーム12-Nの下側端子との間に接続される。
 第1のコンデンサCdc1は、第1のアーム12-Pの、直流電源Vdcが接続される側の端子(すなわち第1のアーム12-Pの下側端子)に接続される。第2のコンデンサCdc1は、第2のアーム12-Nの、直流電源Vdcが接続される側の端子(すなわち第2のアーム12-Nの下側端子)に接続される。第1のコンデンサCdc1と第2のコンデンサCdc2とは互いに直列接続され、この直列接続された第1のコンデンサCdc1および第2のコンデンサCdc2は、直流電源Vdcに並列接続される。このとき、第1のコンデンサCdc1および第2のコンデンサCdc2の極性の向きは、直流電源Vdcの極性の向きに合わせる。
 アーム結合部13は、第1のコンデンサCdc1の、第1のアーム12-Pが接続される側の端子が接続される第1の端子aと、第2のコンデンサCdc2の、第2のアーム12-Nが接続される側の端子が接続される第2の端子bと、第1のコンデンサCdc1の、第1の端子aとは反対側の端子と第2のコンデンサCdc2の、第2の端子bとは反対側の端子とに接続される第3の端子cと、を有する。
 第5の実施例における変圧器14’は、第4の実施例の場合同様、図1を参照して説明した第1の実施例による単相電力変換器1における変圧器14の中間端子があった位置に、3端子結合リアクトル15を設けたものである。すなわち、変圧器14’の2次側巻線上に3端子結合リアクトル15を有する。変圧器14’の1次側の交流入出力端子T1-1およびT1-2入出力端子T1およびT2間に、単相電力変換器1の交流出力電圧が現れる。ここで、変圧器14’の1次側巻線の巻き数をN1とし、2次側巻線の巻き数をN2とする。したがって、2次側においては、末端端子T2-1と3端子結合リアクトル15との間の巻線の巻き数および3端子結合リアクトル15と末端端子T2-2との間の巻線の巻き数は、ともにN2/2となる。
 変圧器14’の2次側巻線の末端端子T2-1には、第1のアーム12-Pの、直流電源Vdcが接続されない側の端子すなわち第1のアーム12-Pの上側端子が接続され、変圧器14’の2次側巻線の末端端子T2-2には、第2のアーム12-Nの、上記直流電源Vdcが接続されない側の端子すなわち第2のアーム12-Nの上側端子と、がそれぞれ接続される。また、3端子結合リアクトル15の両端端子間の巻線上に位置する中間端子T2-3には、アーム結合部13の第3の端子cが接続される。
 また、図6においても変圧器14’の1次側巻線および2次側巻線の極性を黒丸(・)で表している。2次側巻線においては、末端端子T2-1と中間端子T2-3との間の巻線の極性と、中間端子T2-3と末端端子T2-2との間の巻線の極性とが逆向き(図示の例では互いに向かい合う向きに向いている)となるようにする。一方、1次側巻線の極性の向きについては、2次側巻線の極性の向きと必ずしも同じとしなくてもよい。また、3端子結合リアクトルの極性の極性については、3端子結合リアクトル15の両端端子と中間端子T2-3との間の2つの巻線の極性の向きが同じ向き(図示の例では左向に揃っている)となるようにする。3端子結合リアクトルの極性の向きは、図示の例で右側に揃わせることもできる。
 以上説明した第1~第5の実施例による単相電力変換器1を3相分用いて三相電力変換器を構成してもよく、また、第1~第5の実施例による単相電力変換器1を2相分用いて三相二相電力変換器を構成してもよい。次に、三相電力変換器を第6の実施例および第7の実施例として説明する。なお、三相二相電力変換器については第8の実施例として後述する。
 図7は、第6の実施例による三相電力変換器を示す回路図である。図8aおよび図8bは、図7に示す三相電力変換器における変圧器を示す回路図である。第6の実施例では、一例として第1の実施例による単相電力変換器を用いて三相電力変換器を構成する場合について説明するが、第2~第5の実施例による単相電力変換器を用いても同様に構成することができる。第5の実施例による単相電力変換器を用いて三相電力変換器を構成する場合については後述の第7の実施例として説明する。
 図7において、u相、v相およびw相にそれぞれ設けられる単相電力変換器を参照符号1u、1vおよび1wで示し、これら単相電力変換器1u、1vおよび1wで構成される三相電力変換器を参照符号2で表す。なお、図7において、単相電力変換器1vおよび1wについては、単相電力変換器1uと回路構成が同じであるので、具体的な回路構成の記載は省略する。以下、主としてu相に関して説明するが、v相およびw相についても同様に適用できる。また、本実施例では、単位セルの個数を、一例として1アームあたり4個、1相当たり8個、したがって三相電力変換器2内に24個としたが、この数値はあくまでも一例であり、これに限定されるものではない。
 第6の態様による三相電力変換器2においては、u相、v相およびw相の各相に設けられる各単相電力変換器1u、1vおよび1w内の変圧器14を用いて、1次側にスター結線を有し2次側にオープンスター結線を有する三相変圧器24における各相をそれぞれ構成する。一例として、1次側巻線と2次側巻線の巻き数比N1:N2は1:1とする。図8aは三相変圧器24の1次側のスター結線を示し、図8bは三相変圧器24の2次側のオープンスター結線を示す。図8bに示すようにオープンスター結線である2次側巻線の端子数は本来9個であるが、第6の実施例においては、図7に示すようにu、vおよびwの各相のアーム結合部13の3端子結合リアクトル内の中間端子を1つの共通端子として構成することで、必要端子数を7個に抑えることができる。
 図1を参照して説明したように、単相電力変換器1においては、アーム結合部13の第3の端子cには直流電源Vdcの負極側端子が接続され、変圧器14の中間端子T2-3には直流電源Vdcの正極側端子が接続される。これに対し、第6の実施例では、図1において単相電力変換器1に上記のように接続されていた直流電源Vdcを、図7に示すようにu、vおよびwの各相で共通ものとする。
 次に、第6の実施例による三相電力変換器の各単位セル内の直流コンデンサの制御について図9a~図9d、図10および図11を参照して以下に説明する。図9a~図9dは、第6の実施例による三相電力変換器の直流コンデンサ制御についての制御ブロック図である。図10は、第6の実施例による三相電力変換器の直流コンデンサ制御装置を示すブロック図である。上述のように、第6の実施例による三相電力変換器は、第1の実施例による単相電力変換器を3相分備えて構成したものである。なお、図9a~図9dおよび図10に示すブロック図は、三相電力変換器のうちのu相の単相電力変換器(すなわち第1の実施例による単相電力変換器)における直流コンデンサ制御を示すが、v相およびw相の単相電力変換器1vおよび1wにも適用可能であり、第2~第5の実施例による単相電力変換器で三相電力変換器を構成しても同様である。また、同様の理由で、第1~第5の実施例による単相電力変換器単独の直流コンデンサ制御として、以下に説明する三相電力変換器の直流コンデンサ制御をそのまま適用可能である。
 第6の実施例によれば、図9a~図9dに示すように、三相電力変換器の直流コンデンサ制御は大きく分けて次の4つの制御に分かれる。第1に、図9aに示す各アーム内の全ての直流コンデンサの電圧値を平均して得られた値に各直流コンデンサの電圧値をそれぞれ追従させる制御(以下、「平均値制御」と称する。)、第2に、図9bに示す第1のアーム内の全ての直流コンデンサの電圧の平均値と第2のアーム内の全ての直流コンデンサの電圧の平均値とが等しくなるようにする制御(以下、「アームバランス制御」と称する。)、第3に、図9cに示す平均値制御およびアームバランス制御において作成される循環電流指令値に、第1のアームを流れる電流と第2のアームを流れる電流との和の半分である循環電流が追従するようにする制御(以下、「循環電流制御」と称する。)、そして第4に、図9dに示す同一アーム内の全ての直流コンデンサの電圧値を平均して得られた値に当該アーム内の各直流コンデンサの電圧値をそれぞれ追従させる制御であって、各アームごとに実行される制御(以下、「個別バランス制御」と称する。)である。
 上記4つの制御は、図10に示すような三相電力変換器の直流コンデンサ制御装置50により実行される。直流コンデンサ制御装置50は、第1のアーム1-P内の直流コンデンサの電圧値と第2のアーム12-N内の直流コンデンサの電圧値とに基づいて、循環電流指令値iZ *を作成する指令値作成手段51と、循環電流指令値に、第1のアーム12-Pを流れるアーム電流iPと第2のアーム12-Nを流れるアーム電流iNとの和の半分である循環電流iZが追従するよう制御する制御手段52と、を備える。指令値作成手段51は、直流成分作成手段61および基本波成分作成手段62を備えるが、直流成分生成手段61のみを備えるものであってもよい。また、制御手段52は、上記追従させる制御に対応して半導体スイッチをスイッチング動作させるスイッチング指令手段63を有する。これら各手段は、例えばDSPやFPGAなどの演算処理装置を用いて実現される。
 以下、図9a~図9dに示す上記4つの制御それぞれについて、図10と対応させながら説明する。
 図9aは、各アーム内の全ての前記直流コンデンサの電圧値を平均して得られた値に各直流コンデンサの電圧値をそれぞれ追従させる平均値制御を示すブロック図である。図9aに示す平均値制御は、図10に示す直流コンデンサ制御装置50における指令値作成手段51内の直流成分作成手段61によって循環電流指令値の直流成分iZ0 *を作成することで、第1のアーム12-P内および第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値vaveCを所定の直流電圧指令値VC *に追従させるフィードバックループを構成する。すなわち、図10に示すように、指令値作成手段51内の直流成分作成手段61は、第1のアーム12-P内および第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値vaveCを用いて、第1のアーム12-P内および第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値vaveCが所定の直流電圧指令値VC *に追従するよう制御するための循環電流指令値の直流成分iZ0 *を生成する。数式を用いてより詳細に説明すると次の通りである。
 第1のアーム12-P内の全ての直流コンデンサの電圧値vCPjを平均して得られた値vaveCP、および第2のアーム12-N内の全ての直流コンデンサの電圧値vCNjを平均して得られた値vaveCNは式21および式22で表わせる。ここで、Mをアーム内の単位セルの個数としたとき、j=1~Mとする。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 式21および式22から第1のアーム12-P内および第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値vaveCが式23のように得られる。
Figure JPOXMLDOC01-appb-M000023
 このように、図10に示す指令値作成手段51内の直流成分作成手段61は、図9aに示すように、式23で得られた第1のアーム12-P内および第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値の直流分(vaveCdcを、所定の直流電圧指令値VC *に追従させるための循環電流指令値の直流成分を作成する。
 続いて、図9bは、第1のアーム内の全ての直流コンデンサの電圧の平均値と第2のアーム内の全ての直流コンデンサの電圧の平均値とが等しくなるようにするアームバランス制御を示すブロック図である。図9bに示すアームバランス制御は、図10に示す直流コンデンサ制御装置50における指令値作成手段51内の基本波成分作成手段62によって循環電流指令値の基本波成分iZ1 *を作成してこれを循環電流指令値の一部として用いることで、第1のアーム12-P内の全ての直流コンデンサの電圧値を平均して得られた値vaveCPと、第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値vaveCNと、の差をゼロに抑制するよう制御するものである。
 ここで、第1のアーム12-Pを流れるアーム電流iPと第2のアーム12-Nを流れるアーム電流iNとの和の半分である循環電流iZの基本波成分(すなわち交流入出力端子間の端子電圧vacと同相)をiZ1とすると、循環電流iZの基本波成分iZ1が交流入出力端子間の端子電圧vacと同相の場合、電力は第1のアーム12-Pから第2のアーム12-Nに移動し、循環電流iZの基本波成分iZ1が交流入出力端子間の端子電圧vacと逆相の場合、電力は第2のアーム12-Nから第1のアーム12-Pに移動する。この特性を利用し、図10に示す指令値作成手段51内の基本波成分作成手段62は、第1のアーム12-P内の全ての直流コンデンサの電圧値を平均して得られた値vaveCPと第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値vaveCNとの差を用いて、循環電流指令値iZ *のうち交流入出力端子間の端子電圧vacと同相の基本波成分iZ1 *を生成する。図9bに示す例では、交流入出力端子間の端子電圧の位相をsinωtとして表わしており、したがって、第1のアーム12-P内の全ての直流コンデンサの電圧値を平均して得られた値vaveCPの直流分と第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値vaveCNの直流分に、位相パラメータを含むsinωtを乗算し、適当なゲインK3を乗算することで、循環電流指令値基本波成分iZ1 *を作成している。
 このようなアームバランス制御を実行すると、第1のアーム12-P内の全ての直流コンデンサの電圧値を平均して得られた値vaveCPが、第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値vaveCNよりも大きい場合、電力は第1のアーム12-Pから第2のアーム12-Nに移動する。その結果、vaveCPは減少しvaveCNは上昇する。これとは逆に、第1のアーム12-P内の全ての直流コンデンサの電圧値を平均して得られた値vaveCPが、第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値vaveCNよりも小さい場合、電力は第2のアーム12-Nから第1のアーム12-Pに移動する。その結果、vaveCPは上昇しvaveCNは減少する。
 続いて、図9cは、平均値制御およびアームバランス制御において作成される循環電流指令値に、第1のアームを流れる電流と第2のアームを流れる電流との和の半分である循環電流が追従するようにする循環電流制御を示すブロック図である。図9cに示す循環電流制御は、図10に示す直流コンデンサ制御装置50における指令値作成手段52内の直流成分作成手段61によって作成された循環電流指令値の直流成分iZ0 *と指令値作成手段52内の基本波成分作成手段62によって作成された循環電流指令値の基本波成分iZ1 *とを加算することで作成された循環電流指令値iz *に、第1のアーム12-Pを流れるアーム電流iPと第2のアーム12-Nを流れるアーム電流iNとの和の半分である循環電流iZが追従するよう、制御手段52により制御するものである。制御手段52は、循環電流iZを循環電流指令値iz *に追従させるフィードバックループを構成するための電圧指令値vA *を作成する。
 なお、上述したように、指令値作成手段51は、直流成分作成手段61および基本波成分作成手段62を備えるが、直流成分生成手段61のみを備えるものであってもよい。この場合、直流成分生成手段61により作成された循環電流指令値の直流成分iZ0 *が、そのまま循環電流指令値iz *として制御手段52に利用されることになる。
 続いて、図9dは、同一アーム内の全ての直流コンデンサの電圧値を平均して得られた値に当該アーム内の各直流コンデンサの電圧値をそれぞれ追従させる個別バランス制御を示すブロック図である。個別バランス制御は、各アームごとに実行され、図9dでは、第1のアーム12-Pについての個別バランス制御を主として表記しているが、第2のアーム12-Nについての個別バランス制御についてはカッコ「()」内に表記している。制御手段52は、第1のアーム12-P内の全ての直流コンデンサの電圧値を平均して得られた値vaveCPに、第1のアーム12-P内の各直流コンデンサの電圧値vCPjをそれぞれ追従させる制御、および、第2のアーム12-N内の全ての直流コンデンサの電圧値を平均して得られた値vaveCNに、第2のアーム12-N内の各直流コンデンサの電圧値vCNjをそれぞれ追従させる制御を実行する。このための電圧指令値が、各アーム12-Pおよび12-N内の各単位セル11-jごとに作成され、第1のアーム12-PについてはvBPj *、第2のアーム12-NについてはvBNj *で表す。ここで、Mをアーム内の単位セルの個数としたとき、j=1~Mとする。
 上記4つの制御により各アーム12-Pおよび12-N内の単位セル11-j内の直流コンデンサ制御のための電圧指令値が作成され、これと三相電力変換器2の1相分(すなわち単相電力変換器1)が出力すべき交流電圧についての電圧指令値vac *と組み合わせることで、各アーム12-Pおよび12-N内の単位セル11-jごとの最終的な出力電圧指令値が式24および式25のように作成される。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
 ここで、制御の安定化を図るため直流電圧Vdcをフィードフォワード項として利用する。
 上述の式24および式25に示される出力電圧指令値vPj *およびvNj *を用いて、三相電力変換器2内の各単位セル11-j内の半導体スイッチSWのスイッチング動作が制御される。上述のように、制御手段52は、半導体スイッチSWをスイッチング動作させるスイッチング指令手段63を有する。各アーム12-Pおよび12-Nについて生成された出力電圧指令値vPj *およびvNj *は、各直流コンデンサの電圧vCPjおよびVCNjでそれぞれ規格化された後、キャリア周波数fcの三角波キャリア信号(最大値:1、最小値:0)と比較され、PWMのスイッチング信号が生成される。生成されたスイッチング信号は、スイッチング制御手段52により、対応する単位セル11-j内の半導体スイッチSWのスイッチング制御に用いられる。第6の実施例による三相電力変換器2は、1相あたり8個(各アームに4個ずつ)の単位セルを用いると、相電圧が9レベル、線間電圧が17レベルのPWM波形となる。このスイッチング信号の生成は、例えばDSPやFPGAなどの演算処理装置を用いて実現される。
 次に、第6の実施例による三相電圧変換器2のシミュレーションによる瞬時有効電力制御および瞬時無効電力制御についての応答結果について説明する。各シミュレーションには、表1に示す回路パラメータを用いた。
Figure JPOXMLDOC01-appb-T000026
 シミュレーションには「PSCAD/EMTDC」を使用した。シミュレーション回路としては、制御遅延がゼロであるアナログ制御系を仮定し、デッドタイムがゼロである理想スイッチを使用した。図7に示すように、三相電力変換器2の1相分(すなわち単相電力変換器1)内には各アーム12-Pおよび12-Nそれぞれに4個の単位セルが設けられるので、三相電力変換器2全体としては、24個の単位セルが設けられる。u、vおよびwの各相の変換器1u、1vおよび1wの直流リンク部には共通の直流電源Vdc(2.8kV)を接続する。三相電力変換器2の交流側には6.6kV、1MVA、50Hzの三相交流電源に連系リアクトルLsを介して接続する。三相変圧器24は、図8aおよび図8bに示した1次側にスター結線、2次側にオープンスター結線を有するものである。
 図11は、第6の実施例による三相電力変換器のシミュレーションにおける瞬時有効電力制御および瞬時無効電力制御を示すブロック図である。瞬時有効電力指令値をp*、瞬時無効電力指令値をq*、で表す。第6の実施例による三相電力変換器2の相電圧指令値はvu*、vv*およびvw*は、各相の電源電流iu、ivおよびiwの非干渉制御により決定される。式14および式15より、各相の電源電流iu、ivおよびiwは、第1のアーム12-Pを流れるアーム電流iu P、iv Pおよびiw Pならびに第2のアーム12-Nを流れるアーム電流iu N、iv Nおよびiw Nを用いて式26、式27および式28で算出できる。
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
 図12は、第6の実施例による三相電力変換器を、インバータ動作させたときの定常特性についてのシミュレーション波形を示す図である。図12の最上段のグラフは、三相電力変換器2の交流側に連系リアクトルLsを介して接続された6.6kV、1MVA、50Hzの三相交流電源のuv相間の線間電圧vS uvの波形を示す。三相電力変換器2をインバータ動作(cosφ=-1)した場合、三相電力変換器2の交流側のuv相電圧vuv(図12の上から2番目のグラフ)は、17レベルのマルチレベル波形となり、高調波電圧の影響は少ないことがわかる。三相電力変換器2に連系リアクトルLsを介して接続された三相交流電源のu相電圧vu Sに対して、電源電流iu(図12の上から3番目のグラフ)は位相が180度反転しており、インバータ動作を実現できていることがわかる。
 u相についての第1のアーム12-Pを流れるアーム電流iu Pおよび第2のアーム12-Nを流れるアーム電流iu N(図12の上から4番目のグラフ)には、50Hzの基本波成分のほかに、直流分および8kHz(=2kHz×4)のスイッチングリプル成分を含む。式14および15より、基本波成分の振幅は、電源電流の振幅と等しい。一方、三相電力変換器2の直流側の平均電力の関係から、式29が成り立つ。
Figure JPOXMLDOC01-appb-M000030
 式14および式15に式29を代入すると式30および式31が得られる。
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
 式30および式31にP=1MW、Vdc=2.8kVを代入すると直流電流idcは60Aとなる。これは図12の上から4番目のグラフに示すシミュレーション結果と一致する。
 また、図12の上から5番目のグラフに示すように、u相の第1のアーム12-Pおよび第2のアーム12-Nそれぞれについての単位セル11-1内の直流コンデンサの電圧値VC1 u pおよびVC1 u Nは、その直流分については1.4kVに制御できていることがわかる。また、直流電流idcの直流分Idcは360Aとなる。これは図12の上から6番目のグラフに示すシミュレーション結果と一致する。
 図13は、第6の実施例による三相電力変換器を、整流器動作させたときの定常特性についてのシミュレーション波形を示す図である。図13の最上段のグラフは、三相電力変換器2の交流側に連系リアクトルLsを介して接続された6.6kV、1MVA、50Hzの三相交流電源のuv相間の線間電圧vSuvの波形を示す。三相電力変換器2を整流器動作(cosφ=1)した場合、三相電力変換器2に連系リアクトルLsを介して接続された三相交流電源のu相電圧vu Sに対して、電源電流iu(図13の上から3番目のグラフ)は同相になっており、整流器動作を実現できていることがわかる。図13の上から4~6番目のグラフに示す各部波形は、図12の上から5~7番目のグラフに示すインバータ動作の場合と類似した傾向となっていることがわかる。また、図13の上から6番目に示すように直流電流idcの直流分Idcは-360Aとなっている。
 次に、第1の実施例による単相電力変換器および第6の実施例による三相電力変換器と特許文献1および非特許文献1~4に記載されたカスケード型のモジュラーマルチレベル変換器(MMCC)との比較について説明する。
 図14は、従来の単相のカスケード型モジュラーマルチレベル変換器を示す回路図である。また、図15は、プッシュブルインバータとフルブリッジインバータとの比較を説明する回路図であって、図15aはプッシュブルインバータを示し、図15bはフルブリッジインバータを示す。図14に示す従来のカスケード型モジュラーマルチレベル変換器は、いわば図15bに示すフルブリッジインバータにおけるスイッチ素子SWを、図2aおよび図2bを参照して説明した単位セル11-1~11-Mに置き換えたものに相当する。これに対し、第1の実施例による図1に示す単相電力変換器1は、図15aに示すプッシュブルインバータにおけるスイッチ素子SWを、図2aおよび図2bを参照して説明した単位セル11-1~11-Mに置き換えただけではなく、図1を参照して説明したようにアーム結合部13として3端子結合リアクトルを用いている。
 従来の単相のカスケード型モジュラーマルチレベル変換器は、図14に示すように、単位セル11-jがカスケード接続されたアーム112-Pおよび112-Nと、3端子結合リアクトル113とで構成される。なお、図14における単位セル11-1~11-M内の直流コンデンサCについても、他の図面同様、理解を容易にするために、当該チョッパセル11-1~11-Mの外側に記載している。
 図16は、従来の三相のカスケード型モジュラーマルチレベル変換器を示す回路図である。図14の単相のカスケード型モジュラーマルチレベル変換器の3相分用意してそれぞれを連系変圧器の2次側各相に接続して三相のカスケード型モジュラーマルチレベル変換器を構成する。
 図7に示す第6の実施例による三相電力変換器と、図16に示す従来の三相のカスケード型モジュラーマルチレベル変換器との動作をシミュレーションにより比較すると次の通りである。図16に示す従来の三相のカスケード型モジュラーマルチレベル変換器のシミュレーションには、図11~13および表1を参照して説明した第6の実施例による三相電力変換器と同じパラメータを用いた。また、シミュレーション比較に際しては、第6の実施例による三相電力変換器および図16に示す従来の三相のカスケード型モジュラーマルチレベル変換器の単位セル内の直流コンデンサ電圧は等しく(Vc=1.4kV)、各変換器内の単位セルの総数は等しく(24個)、各単位セルの電圧および定格電流は等しいものとした。各変換器の単位セル内の直流コンデンサ電圧は等しくする場合、半導体スイッチング素子の電圧定格は等しくなる。電流定格を等しくするためには、各変換器のアーム電流を一致させる必要があるが、図16において、従来の三相のカスケード型モジュラーマルチレベル変換器の各アーム電流は式32および式33のように表せる。
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
 比較に際し電流定格を等しくするため、図7に示す第6の実施例による三相電力変換器と、図16に示す従来の三相のカスケード型モジュラーマルチレベル変換器とのアーム電流が一致するようにするには、式30~式33より、直流電圧Vdcについては、図7に示す第6の実施例による三相電力変換器の2.8kVに対して図16に示す従来の三相のカスケード型モジュラーマルチレベル変換器はその2倍の5.6kVとする。また、第2に、変圧器の巻き数比N1:N2については、図7に示す第6の実施例による三相電力変換器の1:1に対して図16に示す従来の三相のカスケード型モジュラーマルチレベル変換器は2:1に設定する。したがって、従来の三相のカスケード型モジュラーマルチレベル変換器のシミュレーションに用いたパラメータは、直流電源Vdcを5.6kVに設定した点および三相変圧器の巻き数比N1:N2を2:1に設定した点以外は、表1と同じである。
 図17は、図16に示す従来の三相のカスケード型モジュラーマルチレベル変換器を、インバータ動作させたときの定常特性についてのシミュレーション波形を示す図である。図17の最上段のグラフは、従来の三相のカスケード型モジュラーマルチレベル変換器の交流側に連系リアクトルLsを介して接続された6.6kV、1MVA、50Hzの三相交流電源のuv相間の線間電圧vSuvの波形を示す。カスケード型モジュラーマルチレベル変換器をインバータ動作(cosφ=-1)した場合、電源電流idcを除き、図12と一致する。図17の上から6番目のグラフに示す電源電流idcの実効値idcは180A(1MW/5.6kV)となり、図12の上から6番目のグラフに示す第6の実施例による三相電力変換器の場合の半分となる。図12と図17との比較から、第6の実施例による三相電力変換器と従来の三相のカスケード型モジュラーマルチレベル変換器とは同程度の性能を有すると考えられるが、一方で電源電流idcについては第6の実施例による三相電力変換器は従来の三相のカスケード型モジュラーマルチレベル変換器の半分で済む。
 以上のシミュレーションによる比較結果から、第6の実施例による三相電力変換器は、従来の三相のカスケード型モジュラーマルチレベル変換器に比べて、半分の直流電圧で系統連系が可能であるといえ、したがって直流側が低圧大電流である電池電力貯蔵装置に適している点、直流側の絶縁対策が容易となる点で有利である。より具体的に言えば、半分の直流電圧で系統連系が可能となることにより、次のような利点がある。まず第1に、一般に組電池の特性として電圧が低ければ低いほど信頼性が高くなるが、本発明によれば、半分の直流電圧で系統連系できるので信頼性が向上するという利点がある。また第2に、直流電圧が低いほど、既存技術の適用の可能性が高くなるという利点がある。すなわち、本発明の適用により直流電圧レベルを例えば1500Vから750Vに下げることができると、より多くの既存技術が存在する低電圧領域に近づくことから、実績のある既存技術の適用の可能性が高くなり、信頼性が向上し、保護や絶縁が容易となるという利点がある。例えば2000V以上の高電圧領域では応用分野が少ないため、信頼性が低下し、保護や絶縁が困難となり、電圧センサやコンデンサなどの部品が高価になるといった問題があることから、本発明の適用により半分の直流電圧で系統連系が可能となることは、これら多くの問題を回避することができる。
 図18は、第7の実施例による三相電力変換器を示す回路図である。第7の実施例は、図6を参照して説明した第5の実施例による単相電力変換器を用いて三相電力変換器を構成したものである。図18において、u相、v相およびw相にそれぞれ設けられる単相電力変換器を参照符号1u、1vおよび1wで示し、これら単相電力変換器1u、1vおよび1wで構成される三相電力変換器を参照符号2で表す。なお、図18において、単相電力変換器1vおよび1wについては、単相電力変換器1uと回路構成が同じであるので、具体的な回路構成の記載は省略する。以下、主としてu相に関して説明するが、v相およびw相についても同様に適用できる。また、本実施例では、単位セルの個数を、一例として1アームあたり4個、1相当たり8個、したがって三相電力変換器2内に24個としたが、この数値はあくまでも一例であり、これに限定されるものではない。
 図6を参照して説明したように第5の実施例における変圧器14’は、図1を参照して説明した第1の実施例による単相電力変換器1における変圧器14の中間端子があった位置に、3端子結合リアクトル15を設けたものである。すなわち、変圧器14’の2次側巻線上に3端子結合リアクトル15を有する。第7の実施例による三相電力変換器2においては、この変圧器14’を用いて三相変圧器24における各相をそれぞれ構成する。
 図6を参照して説明したように第5の実施例における直流電源Vdcは、第1のアーム12-Pの下側端子と第2のアーム12-Nの下側端子との間に接続される。第7の実施例では、図6において単相電力変換器1に上記のように接続されていた直流電源Vdcを、図18に示すようにu、vおよびwの各相で共通ものとするが、図6に示す第5の実施例の場合の2倍の電圧値とする。。ここで、3端子結合リアクトル15の中間端子(センタータップ)をY接続することで、図6に示す第5の実施例においては存在していた分圧コンデンサを除去することができる。
 図19は、図18に示す第7の実施例による三相電力変換器を、インバータ動作させたときの定常特性についてのシミュレーション波形を示す図である。シミュレーションには、第6の実施例による三相電力変換器および図16に示す従来の三相のカスケード型モジュラーマルチレベル変換器の各シミュレーション同様、「PSCAD/EMTDC」および表1に示す回路パラメータを使用した。シミュレーション回路としては、制御遅延がゼロであるアナログ制御系を仮定し、デッドタイムがゼロである理想スイッチを使用した。図18に示す三相電力変換器2の交流側には6.6kV、1MVA、50Hzの三相交流電源に連系リアクトルLsを介して接続する。図19の最上段のグラフは、三相電力変換器2の交流側に連系リアクトルLsを介して接続された6.6kV、1MVA、50Hzの三相交流電源のuv相間の線間電圧vSuvの波形を示す。三相電力変換器2をインバータ動作(cosφ=-1)した場合、第7の実施例による三相電力変換器2の図19の上から2~6番目のグラフに示す各波形は、図16に示す従来の三相のカスケード型モジュラーマルチレベル変換器の図17の上から2~6番目に示す各波形と完全に一致していることがわかる。つまり、第7の実施例による三相電力変換器2は、図16に示す従来の三相のカスケード型モジュラーマルチレベル変換器と同様の効果を得ることができることから、従来の三相のカスケード型モジュラーマルチレベル変換器の代替回路ということができる。また、第6の実施例による三相電力変換器のシミュレーション結果と比較すると、第7の実施例による三相電力変換器における直流電流idcの実効値Idc(図19の上から6番目のグラフ)は、第6の実施例による三相電力変換器における直流電流idcの実効値Idc(図12の上から6番目のグラフ)の半分の180A(=1MW/5.6kV)となっていることがわかる。
 第8の実施例は、第1~第5の実施例による単相電力変換器1を2相分備えて三相二相電力変換器を構成したものである。第1~第5の実施例による単相電力変換器1を2相分設けて系統側に連系するには、スコット変圧器を用いる。
 図20は、本発明で使用するスコット変圧器を示す回路図である。スコット変圧器25は、M座変圧器TmおよびT座変圧器Ttの2台の単相変圧器より構成する。M座変圧器Tmの1次側巻線の巻き数をN1、2次巻線の巻き数をN2とする。このとき、M座変圧器Tmの1次側巻線の中間端子(センタータップ)をT座変圧器Ttの1次側巻線と接続する。なお、T座変圧器Ttの1次側巻線の巻き数は√3N1/2となる。また、図21aおよび図21bは、図20に示すスコット変圧器の瞬時電圧ベクトル図である。図21aに示すようにスコット変圧器の1次側巻線に三相平衡正弦波電圧vu、vvおよびvwを印加すると、2次側巻線には位相差90度の二相正弦波電圧vαおよびvβが現れる。
 図22は、第8の実施例による三相二相電力変換器を示す回路図である。図22に示す第8の実施例では、一例として第1の実施例による単相電力変換器を用いて三相二相電力変換器を構成する場合について説明するが、第2~第5の実施例による単相電力変換器を用いても同様に構成することができる。図22において、α相およびβ相にそれぞれ設けられる単相電力変換器を参照符号1αおよび1βで示し、これら単相電力変換器1αおよび1βで構成される三相二相電力変換器を参照符号3で表す。なお、図22において、単相電力変換器1βについては、単相電力変換器1βと回路構成が同じであるので、具体的な回路構成の記載は省略する。以下、主としてα相に関して説明するが、β相についても同様に適用できる。また、本実施例では、単位セルの個数を、一例として1アームあたり4個、1相当たり8個、したがって三相電力変換器2内に16個、としたが、この数値はあくまでも一例であり、これに限定されるものではない。
 第7の態様による三相二相電力変換器3においては、α相およびβ相の各相に設けられる各単相電力変換器1αおよび1β内の変圧器14を用いて、スコット変圧器25における各相をそれぞれ構成する。一例として、1次側巻線と2次側巻線の巻き数比N1:N2は√3:1とする。第8の実施例による三相二相電力変換器3の2次側α相においては、図20を参照して説明したスコット変圧器25の、M座変圧器Tmの2次側巻線上に中間端子(センタータップ)α1を設ける。また、三相二相電力変換器3の2次側β相においては、図20を参照して説明したスコット変圧器25の、T座変圧器Ttの2次側巻線上に中間端子(センタータップ)β1を設ける。図1を参照して説明したように、単相電力変換器1においては、アーム結合部13の第3の端子cには直流電源Vdcの負極側端子が接続され、変圧器14の中間端子T2-3には直流電源Vdcの正極側端子が接続されるが、第6の実施例では、これら中間端子α1およびβ1を直流電源Vdcの正極側端子に接続することで、図22に示すようにα相およびβ相で共通ものとする。
 また、三相二相電力変換器3の2次側α相においては、スコット変圧器25のM座変圧器Tmの2次側巻線の両端端子α0およびα1には第1のアーム12-Pおよび12-Nの上側端子を接続する。第1のアーム12-Pおよび12-Nの下側端子には、アーム結合部13である3端子結合リアクトルを接続する。3端子結合リアクトルの中間端子には、直流電源Vdcの負極側端子を接続する。三相二相電力変換器3の2次側β相についてもα相と同様の構成とする。
 次に、第8の実施例による三相二相電圧変換器3のシミュレーションによる瞬時有効電力制御および瞬時無効電力制御についての応答結果について説明する。各シミュレーションには、表1に示す回路パラメータを用いた。図22に示す三相二相電力変換器3の交流側には6.6kV、1MVA、50Hzの三相交流電源に連系リアクトルLsを介して接続する。三相二相電力変換器3の1次側各相の電源電流をiu、ivおよびiw、電源電圧vu S、vv Sおよびvw Sとし、三相二相電力変換器3の2次側α相およびβ相の第1のアーム12-Pを流れるアーム電流をそれぞれiα Pおよびiβ P、第2のアーム12-Nを流れるアーム電流iα Nおよびiβ Nとする。また、各単位セルの直流コンデンサ電圧をvα CPjおよびvα CNjとし(ただし、j=1~4)、直流電流をidcとする。
 図20、図21aおよび図21bより、式34および式35に示す電圧方程式が成り立つ。
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
 第8の実施例による三相二相電力変換器3のα相のアーム電流iα Pおよびiα Nは、直流分と50Hzの交流分を含む。このうちアーム電流iα Pおよびiα Nの直流分についてはidc/4で表せる。一方、アーム電流iα Pおよびiα Nの交流分を(iα Pacおよび(iα Nacとすると、M座変圧器の起磁力の関係から式36が得られる。
Figure JPOXMLDOC01-appb-M000037
 式36において(iα Pac=-(iα Nacが成り立つと仮定すると式37が得られる。
Figure JPOXMLDOC01-appb-M000038
 同様に、β相についてはT座変圧器の起磁力の関係から式38が得られる。
Figure JPOXMLDOC01-appb-M000039
 したがって、最終的には三相二相電力変換器3の各相のアーム電流は式39~式42のように表される。
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000043
 一方、式39~式42より、三相二相電力変換器3の1次側各相の電源電流iu、ivおよびiwについては式43~式45のように表される。ここで、iu+iv+iw=0の関係式を用いている。
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000046
 図23は、第8の実施例による三相二相電力変換器を、インバータ動作させたときの定常特性についてのシミュレーション波形を示す図である。シミュレーションには「PSCAD/EMTDC」を使用した。シミュレーション回路としては、制御遅延がゼロであるアナログ制御系を仮定し、デッドタイムがゼロである理想スイッチを使用した。
 図23の最上段のグラフは、三相二相電力変換器3の交流側に連系リアクトルLsを介して接続された6.6kV、1MVA、50Hzの三相交流電源のu相電圧vS uの波形を示す。三相二相電力変換器3をインバータ動作(cosφ=-1)した場合、図23の上から2番目のグラフに示すように、高調波電圧および連系リアクトルの影響を無視すると、三相二相電力変換器3の2次側α相の電圧vαは、電源電圧vu Sに対して位相が30度進んでいることがわかる。一方、三相二相電力変換器3の2次側α相の電圧vαは、2次側β相の電圧vβに対して位相が90度進んでいることがわかる。各相には8個の単位セルが設けられているので9レベルのマルチレベル波形となり、高調波成分は少ない。
 三相二相電力変換器3のα相のアーム電流iα Pおよびiα Nは、上述のように直流分と50Hzの交流分を含むが、式39~42より、アーム電流iα Pおよびiα Nの振幅は、電源電流iu、ivおよびiwの振幅の√3N1/2N2倍となる。ここで、N1/N2=√3を代入すると1.5倍となり、これは図23の上から3番目および4番目のグラフに示すシミュレーション結果と一致する。一方、直流分は90Aとなり、直流電流idcの1/4倍となる。直流コンデンサ電圧vα CP1およびvα CN1は、直流分と交流分を含むが、直流分は1.4kVに制御できていることがわかる。直流電流idcの直流分Idcは、Idc=P/Vdcより算出できるが、P=1MW、Vdc=2.8kVを代入すると、Idc=360Aとなり、図23の上から6番目のグラフに示すシミュレーション結果と一致する。
 本発明は、直流と交流とを双方向に変換する単相電力変換器、三相二相電力変換器および三相電力変換器に適用することができる。本発明による単相電力変換器、三相二相電力変換器もしくは三相電力変換器を用いれば、電池電力貯蔵装置を変換器用変圧器無しに電力系統に連系することができ、装置の小型化および低重量化を図ることができる。本発明は、従来のカスケード型モジュラーマルチレベル変換器に比べて、半分の直流電圧で系統連系が可能であり、直流側の絶縁対策が容易であるので、直流側が低圧大電流である電池電力貯蔵装置に最適である。
 1、1u、1v、1w  単相電力変換器
 2  三相電力変換器
 3  三相二相電力変換器
 11-1、・・・、11-M  単位セル
 12-P  第1のアーム
 12-N  第2のアーム
 13  アーム結合部
 14、14’  変圧器
 15  3端子結合リアクトル
 24  三相変圧器
 25  スコット変圧器
 50  直流コンデンサ制御装置
 51  指令値作成手段
 52  制御手段
 61  直流成分作成手段
 62  基本波成分作成手段
 63  スイッチング制御手段
 a  第1の端子
 b  第2の端子
 c  第3の端子
 D  還流ダイオード
 S  半導体スイッチング素子
 SW  半導体スイッチ
 T1-1、T1-2  交流入出力端子
 T2-1、T2-2  2次側巻線の末端端子
 T2-3  中間端子
 Vdc  直流電源

Claims (15)

  1.  直列接続された2つの半導体スイッチと、前記2つの半導体スイッチに並列接続された直流コンデンサと、前記半導体スイッチのスイッチング動作に応じて前記直流コンデンサから放電若しくは前記直流コンデンサへ充電される電流の入出力端子と、を有する単位セルと、
     1つの前記単位セル、または前記入出力端子を介して互いにカスケード接続された複数の前記単位セル、からなる第1および第2のアームであって、前記第1および第2のアームは同数の前記単位セルを有する第1および第2のアームと、
     前記第1のアームの一端が接続される第1の端子と、前記第2のアームの一端が接続される第2の端子と、直流電源の一端が接続される第3の端子と、を有するアーム結合部と、
     1次側に交流入出力端子、2次側巻線上に中間端子を有する変圧器であって、前記2次側巻線の2つの末端端子には、前記第1のアームの、前記第1の端子が接続されない側の端子と、前記第2のアームの、前記第2の端子が接続されない側の端子と、がそれぞれ接続され、前記中間端子には、前記直流電源の、前記第3の端子が接続されない側の端子が接続される変圧器と、
    を備えることを特徴とする単相電力変換器。
  2.  前記アーム結合部は、前記第1の端子と、前記第2の端子と、前記第1の端子と前記第2の端子との間の巻線上に位置する中間タップである前記第3の端子と、を有する3端子結合リアクトル、からなる請求項1に記載の単相電力変換器。
  3.  前記アーム結合部は、互いに直列接続された2つのリアクトルであって、前記直列接続された2つのリアクトルの一方の端子である前記第1の端子と、前記直列接続された2つのリアクトルの他方の端子である前記第2の端子と、前記直列接続された2つのリアクトルの直列接続点である前記第3の端子と、を有する2つのリアクトル、からなる請求項1に記載の単相電力変換器。
  4.  前記第1のアームおよび前記第2のアームそれぞれにおいて、互いにカスケード接続された前記単位セル間の任意の位置に接続されるリアクトルを備え、
     前記アーム結合部において、前記第1の端子と、前記第2の端子と、前記第3の端子とは互いに接続される請求項1に記載の単相電力変換器。
  5.  直列接続された2つの半導体スイッチと、前記2つの半導体スイッチに並列接続された直流コンデンサと、前記半導体スイッチのスイッチング動作に応じて前記直流コンデンサから放電若しくは前記直流コンデンサへ充電される電流の入出力端子と、を有する単位セルと、
     1つの前記単位セル、または前記入出力端子を介して互いにカスケード接続された複数の前記単位セル、からなる第1および第2のアームであって、前記第1および第2のアームは同数の前記単位セルを有する第1および第2のアームと、
     前記第1のアームの一端との間で直流電源が接続される第1の端子と、前記第2のアームの一端との間でさらに別の直流電源が接続される第2の端子と、前記第1の端子および前記第2の端子に接続される第3の端子と、を有するアーム結合部と、
     1次側に交流入出力端子、2次側巻線上に3端子結合リアクトルを有する変圧器であって、前記2次側巻線の2つの末端端子には、前記第1のアームの、前記直流電源が接続されない側の端子と、前記第2のアームの、前記さらに別の直流電源が接続されない側の端子と、がそれぞれ接続され、前記3端子結合リアクトルの両端端子間の巻線上に位置する中間端子には、前記第3の端子が接続される変圧器と、
    を備えることを特徴とする単相電力変換器。
  6.  直列接続された2つの半導体スイッチと、前記2つの半導体スイッチに並列接続された直流コンデンサと、前記半導体スイッチのスイッチング動作に応じて前記直流コンデンサから放電若しくは前記直流コンデンサへ充電される電流の入出力端子と、を有する単位セルと、
     1つの前記単位セル、または前記入出力端子を介して互いにカスケード接続された複数の前記単位セル、からなる第1および第2のアームであって、前記第1および第2のアームは同数の前記単位セルを有し、前記第1のアームの一端と前記第2のアームとの間に直流電源が接続される第1および第2のアームと、
     前記第1のアームの、前記直流電源が接続される側の端子に接続される第1のコンデンサと、
     前記第2のアームの、前記直流電源が接続される側の端子に接続される第2のコンデンサと、
     前記第1のコンデンサの、前記第1のアームが接続されない側の端子が接続される第1の端子と、前記第2のコンデンサの、前記第2のアームが接続されない側の端子が接続される第2の端子と、前記第1の端子および前記第2の端子に接続される第3の端子と、を有するアーム結合部と、
     1次側に交流入出力端子、2次側巻線上に3端子結合リアクトルを有する変圧器であって、前記2次側巻線の2つの末端端子には、前記第1のアームの、前記第1のコンデンサが接続されない側の端子と、前記第2のアームの、前記第2のコンデンサが接続されない側の端子と、がそれぞれ接続され、前記3端子結合リアクトルの両端端子間の巻線上に位置する中間端子には、前記第3の端子が接続される変圧器と、
    を備えることを特徴とする単相電力変換器。
  7.  前記第1のアーム内の前記直流コンデンサの電圧値と前記第2のアーム内の前記直流コンデンサの電圧値とに基づいて、循環電流指令値を作成する指令値作成手段と、
     前記循環電流指令値に、前記第1のアームを流れる電流と前記第2のアームを流れる電流との和の半分である循環電流が追従するよう制御する制御手段と、
    を備える請求項1~6のいずれか一項に記載の単相電力変換器。
  8.  前記指令値生成手段は、前記第1のアーム内および前記第2のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値を用いて、前記第1のアーム内および前記第2のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値が所定の直流電圧指令値に追従するよう制御するための前記循環電流指令値を生成する請求項7に記載の単相電力変換器。
  9.  前記指令値生成手段は、
     前記第1のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値と前記第2のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値との差を用いて、前記循環電流指令値の、前記交流入出力端子間の端子電圧と同相の基本波成分を生成する基本波成分生成手段と、
     前記第1のアーム内および前記第2のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値を用いて、前記第1のアーム内および前記第2のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値が所定の直流電圧指令値に追従するよう制御するための前記循環電流指令値の直流成分を生成する直流成分生成手段と、
    を有し、
     前記基本波成分と前記直流成分とを加算して前記循環電流指令値を生成する請求項7に記載の単相電力変換器。
  10.  前記基本波成分は、前記第1のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値と、前記第2のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値と、の差をゼロにするよう制御するための値である請求項9に記載の単相電力変換器。
  11.  前記制御手段は、前記第1のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値に、前記第1のアーム内の各前記直流コンデンサの電圧値をそれぞれ追従させる制御、および、前記第2のアーム内の全ての前記直流コンデンサの電圧値を平均して得られた値に、前記第2のアーム内の各前記直流コンデンサの電圧値をそれぞれ追従させる制御、をさらに実行する請求項7~10のいずれか一項に記載の単相電力変換器。
  12.  前記制御手段は、前記追従させる制御に対応して前記半導体スイッチをスイッチング動作させるスイッチング指令手段を有する請求項11に記載の単相電力変換器。
  13.  各前記半導体スイッチは、
     オン時に一方向に電流を通す半導体スイッチング素子と、
     該半導体スイッチング素子に逆並列に接続された帰還ダイオードと、
    を有する請求項1~12のいずれか一項に記載の単相電力変換器。
  14.  請求項1~13のいずれか一項に記載の単相電力変換器を3相分備える三相電力変換器であって、
     各前記単相電力変換器内の前記変圧器は、1次側にスター結線を有し2次側にオープンスター結線を有する三相変圧器における各相をそれぞれ構成し、
     各前記単相電力変換器には共通の前記直流電源が接続される、
    ことを特徴とする三相電力変換器。
  15.  請求項1~13のいずれか一項に記載の単相電力変換器を2相分備える三相二相電力変換器であって、
     各前記単相電力変換器内の前記変圧器の2次側巻線は、スコット変圧器の2次側における各相の巻線をそれぞれ構成し、
     各前記単相電力変換器には共通の前記直流電源が接続される、
    ことを特徴とする三相二相電力変換器。
PCT/JP2012/079668 2011-11-25 2012-11-15 単相電力変換器、三相二相電力変換器および三相電力変換器 WO2013077250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12850833.0A EP2784927B1 (en) 2011-11-25 2012-11-15 Single-phase power converter, three-phase two-phase power converter, and three-phase power converter
US14/360,251 US9496805B2 (en) 2011-11-25 2012-11-15 Single-phase power converter, three-phase two-phase power converter, and three-phase power converter
JP2013545892A JP6195274B2 (ja) 2011-11-25 2012-11-15 単相電力変換器、三相二相電力変換器および三相電力変換器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011257866 2011-11-25
JP2011-257866 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013077250A1 true WO2013077250A1 (ja) 2013-05-30

Family

ID=48469696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079668 WO2013077250A1 (ja) 2011-11-25 2012-11-15 単相電力変換器、三相二相電力変換器および三相電力変換器

Country Status (4)

Country Link
US (1) US9496805B2 (ja)
EP (1) EP2784927B1 (ja)
JP (1) JP6195274B2 (ja)
WO (1) WO2013077250A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091210A (ja) * 2013-11-07 2015-05-11 株式会社日立製作所 電力変換装置
WO2015141681A1 (ja) * 2014-03-19 2015-09-24 国立大学法人東京工業大学 マルチレベル電力変換器及びマルチレベル電力変換器の制御方法
JP2016086641A (ja) * 2016-02-15 2016-05-19 株式会社日立製作所 電力変換装置
JPWO2016147935A1 (ja) * 2015-03-17 2017-06-29 三菱電機株式会社 電力変換装置
EP3202023A2 (en) * 2014-09-29 2017-08-09 Koninklijke Philips N.V. Multi-level inverter and method for providing multi-level output voltage by utilizing the multi-level inverter
JP2017153355A (ja) * 2017-03-29 2017-08-31 株式会社日立製作所 電力変換装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2887524B1 (en) 2012-08-20 2021-08-11 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power converter
US9276493B2 (en) * 2012-11-27 2016-03-01 Abb Technology Ltd Multilevel converter with cells being selected based on phase arm current
EP2762347A1 (de) * 2013-01-31 2014-08-06 Siemens Aktiengesellschaft Modularer Hochfrequenz-Umrichter und Verfahren zum Betrieb desselben
JP6389752B2 (ja) * 2014-12-10 2018-09-12 株式会社日立製作所 回路シミュレーション装置
WO2017038122A1 (ja) * 2015-09-02 2017-03-09 国立大学法人東京工業大学 双方向チョッパ回路
CN105553780B (zh) * 2016-01-08 2018-10-26 同济大学 一种城市场景中有基础设施的车联网连通性模型推演方法
CN105450035B (zh) * 2016-01-15 2017-11-14 湖南大学 一种mmc式铁路牵引功率调节器的单相模型预测控制方法
KR101809868B1 (ko) * 2017-01-26 2018-01-18 엘에스산전 주식회사 무효전력보상장치 및 그 제어 방법
WO2019147144A1 (en) * 2018-01-25 2019-08-01 Riar Baljit Singh A multi-level modular converter
SE542175C2 (en) * 2018-07-06 2020-03-10 Abb Schweiz Ag Improved modular multilevel converter
WO2020011339A1 (de) * 2018-07-10 2020-01-16 Siemens Aktiengesellschaft Anlage und verfahren zum energieversorgen einer hochleis-tungslast
EP3888218B1 (en) * 2018-11-27 2022-11-09 Hitachi Energy Switzerland AG Statcom arrangement without phase reactors
CN111900886B (zh) * 2020-07-07 2021-08-17 哈尔滨工业大学 一种柔性直流输电换流器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511876A (ja) * 2006-12-08 2010-04-15 シーメンス アクチエンゲゼルシヤフト キャパシタンス測定による変換器のコンデンサの経年劣化の監視
JP2011024392A (ja) * 2009-07-21 2011-02-03 Hitachi Ltd 電力変換装置
JP2011078213A (ja) * 2009-09-30 2011-04-14 Tokyo Institute Of Technology モータ始動方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450305A (en) * 1991-08-12 1995-09-12 Auckland Uniservices Limited Resonant power supplies
JPH08241136A (ja) * 1995-03-06 1996-09-17 Nissin Electric Co Ltd 自励式無効電力補償装置
JP2001177997A (ja) * 1999-12-14 2001-06-29 Fuji Electric Co Ltd 電力変換装置の並列運転回路
DE102004052454B4 (de) * 2004-10-28 2010-08-12 Siemens Ag Hochspannungsumrichter in Halbbrückenschaltung
EP2368316B1 (en) * 2008-12-19 2020-11-25 General Electric Technology GmbH Current source element
CN102334274B (zh) * 2009-02-09 2014-12-03 阿尔斯通技术有限公司 转换器
JP5268739B2 (ja) * 2009-03-30 2013-08-21 株式会社日立製作所 電力変換装置
US8792261B2 (en) * 2009-03-30 2014-07-29 Hitachi, Ltd. Power conversion device
KR101419993B1 (ko) * 2009-06-16 2014-07-15 에이비비 테크놀로지 아게 스위칭 셀을 테스팅하기 위한 장치
US8861231B2 (en) * 2010-02-09 2014-10-14 Alstom Technology Ltd Converter
JP5455055B2 (ja) 2010-02-26 2014-03-26 国立大学法人東京工業大学 電力変換器
EP2636140A4 (en) * 2010-11-04 2016-05-11 Benshaw Inc A M2LC SYSTEM COUPLED TO A POWER SUPPLY SYSTEM
US8614525B2 (en) * 2010-12-21 2013-12-24 General Electric Company Methods and systems for operating a power generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511876A (ja) * 2006-12-08 2010-04-15 シーメンス アクチエンゲゼルシヤフト キャパシタンス測定による変換器のコンデンサの経年劣化の監視
JP2011024392A (ja) * 2009-07-21 2011-02-03 Hitachi Ltd 電力変換装置
JP2011078213A (ja) * 2009-09-30 2011-04-14 Tokyo Institute Of Technology モータ始動方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKAGI HIROFUMI; HAGIWARA MAKOTO: "Classification and Terminology of the Modular Multilevel Cascade Converter (MMCC", ANNUAL MEETING OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, March 2010 (2010-03-01), pages 71 - 72, XP008184456
HAGIWARA MAKOTO; AKAGI HIROFUMI: "PWM Control and Experiment of Modular Multilevel Converters (MMC", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN. D, PUBLICATION OF INDUSTRY APPLICATIONS SOCIETY, vol. 128, no. 7, July 2008 (2008-07-01), pages 957 - 965, XP055185989, DOI: doi:10.1541/ieejias.128.957
HAGIWARA MAKOTO; MAEDA RYO; AKAGI HIROFUMI: "Theoretical Analysis and Control of the Modular Multilevel Cascade Converter (MMCC-DSCC", ANNUAL MEETING OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, March 2010 (2010-03-01), pages 73 - 74
NISHIMURA KAZUTOSHI; HAGIWARA MAKOTO; AKAGI HIROFUMI: "Application to a Medium-Voltage Motor Drive with a Modular Multilevel PWM Inverter: Experimental Verification by a 400-V, 15-kW Downscaled Model", THE PAPERS OF TECHNICAL MEETING ON SEMICONDUCTOR POWER CONVERTER, IEE JAPAN, SPC-09-24, January 2009 (2009-01-01), pages 19 - 24

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091210A (ja) * 2013-11-07 2015-05-11 株式会社日立製作所 電力変換装置
EP2871764B1 (en) * 2013-11-07 2018-06-27 Hitachi, Ltd. Power conversion device
WO2015141681A1 (ja) * 2014-03-19 2015-09-24 国立大学法人東京工業大学 マルチレベル電力変換器及びマルチレベル電力変換器の制御方法
JPWO2015141681A1 (ja) * 2014-03-19 2017-04-13 国立大学法人東京工業大学 マルチレベル電力変換器及びマルチレベル電力変換器の制御方法
EP3202023A2 (en) * 2014-09-29 2017-08-09 Koninklijke Philips N.V. Multi-level inverter and method for providing multi-level output voltage by utilizing the multi-level inverter
EP3905496A1 (en) 2014-09-29 2021-11-03 Koninklijke Philips N.V. Multi-level inverter and method for providing multi-level output voltage by utilizing the multi-level inverter
JPWO2016147935A1 (ja) * 2015-03-17 2017-06-29 三菱電機株式会社 電力変換装置
JP2016086641A (ja) * 2016-02-15 2016-05-19 株式会社日立製作所 電力変換装置
JP2017153355A (ja) * 2017-03-29 2017-08-31 株式会社日立製作所 電力変換装置

Also Published As

Publication number Publication date
EP2784927B1 (en) 2019-05-08
EP2784927A1 (en) 2014-10-01
US20140355321A1 (en) 2014-12-04
JPWO2013077250A1 (ja) 2015-04-27
JP6195274B2 (ja) 2017-09-13
US9496805B2 (en) 2016-11-15
EP2784927A4 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP6195274B2 (ja) 単相電力変換器、三相二相電力変換器および三相電力変換器
Priya et al. Modular‐multilevel converter topologies and applications–a review
Siwakoti et al. A novel seven-level active neutral-point-clamped converter with reduced active switching devices and DC-link voltage
Dekka et al. A space-vector PWM-based voltage-balancing approach with reduced current sensors for modular multilevel converter
US9800167B2 (en) Multi-phase AC/AC step-down converter for distribution systems
JP5721096B2 (ja) 電力変換器
Wang et al. Topologies and control strategies of cascaded bridgeless multilevel rectifiers
Krishnamoorthy et al. Isolated AC–DC converter using medium frequency transformer for off-shore wind turbine DC collection grid
JP6415539B2 (ja) 電力変換器
CN104685771A (zh) 电力变换装置
Hosseini et al. New configuration of stacked multicell converter with reduced number of dc voltage sources
Nilkar et al. A new single-phase cascade multilevel inverter topology using four-level cells
Ajami et al. Advanced cascade multilevel converter with reduction in number of components
Krishnamoorthy et al. A new medium-voltage energy storage converter topology with medium-frequency transformer isolation
Cheng et al. A novel unidirectional three-phase multilevel rectifier composed of star-connected three single-phase topology based on five-level flying capacitor DC–DC converter
Ezhilarasan et al. An empirical survey of topologies, evolution, and current developments in multilevel inverters
Alaei et al. A bidirectional ac/ac multilevel converter
Lu et al. A new power circuit topology for energy router
JP6462664B2 (ja) マルチレベル電力変換器及びマルチレベル電力変換器の制御方法
Islam et al. Power converter topologies for grid-integrated medium-voltage applications
Rahman et al. A zero crossing PWM controller of a full bridge single phase synchronous inverter for microgrid systems
Nami et al. Multilevel converters in renewable energy systems
Gu et al. Medium-voltage (MV) matrix converter topology for wind power conversion using medium-frequency transformer (MFT) isolation
Alsokhiry et al. Multi-port converter for medium and high voltage applications
Lian DC/DC converter for offshore DC collection network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545892

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012850833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14360251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE