WO2013076780A1 - 光送受信器および光伝送システム - Google Patents
光送受信器および光伝送システム Download PDFInfo
- Publication number
- WO2013076780A1 WO2013076780A1 PCT/JP2011/006573 JP2011006573W WO2013076780A1 WO 2013076780 A1 WO2013076780 A1 WO 2013076780A1 JP 2011006573 W JP2011006573 W JP 2011006573W WO 2013076780 A1 WO2013076780 A1 WO 2013076780A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- onu
- olt
- input power
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07955—Monitoring or measuring power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
- H04B10/272—Star-type networks or tree-type networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/564—Power control
Definitions
- the present invention relates to a GE-PON system (Gigabit Ethernet Passive Optical Network System) in an optical transmission system, an optical signal transmission apparatus (OLT: Optical Line Terminal) and a subscriber optical signal transmission apparatus (ONU: Optical).
- the present invention relates to an optical transceiver and an optical transmission system built in (Network Unit) having a function of converting an electrical signal into an optical signal and transmitting the optical signal and receiving and converting the optical signal into an electrical signal.
- a signal is always emitted with a constant optical output power at the transmission unit regardless of the distance from the opposite ONU that is emitting the upstream signal. Therefore, the transmission unit always consumes a certain amount of power and consumes more power than necessary.
- a signal is always emitted at a constant optical output power at a transmission unit regardless of the distance from the opposing OLT that emits a downstream signal. Therefore, the transmission unit always consumes a certain amount of power and consumes more power than necessary.
- the optical output power of the transmitter is controlled according to the distance of the opposite device (ONU for OLT, OLT for ONU), thereby reducing the optical output power and reducing the power consumption.
- the opposite device ONU for OLT, OLT for ONU
- Patent Document 1 it is impossible to achieve low power consumption with a single optical transceiver, and only control of the entire system by an information processing circuit built in the OLT and ONU can be performed. For this reason, there is a problem that the structure is large and complicated, and the cost is high. Further, a PON system in which a plurality of communication speeds coexist requires a more complicated and expensive circuit configuration.
- the optical input power of the upstream signal received by the OLT is different for each ONU, and the optical transceiver built in the conventional OLT can make the optical input power uniform regardless of the magnitude of the difference. Is required. Therefore, there is a problem that an inexpensive TIA that can be made uniform only when the difference is small cannot be applied.
- the present invention has been made to solve the above-described problems, and can reduce power consumption by controlling the optical output power of the transmission unit according to the distance from the opposite device with a simple configuration.
- the object is to provide an optical transceiver.
- An optical transceiver includes an optical input power monitoring unit that detects an optical input power of an optical signal received by a receiving unit, and an opposite device based on the optical input power detected by the optical input power monitoring unit.
- Power control means for controlling the optical output power at the transmission unit in accordance with the distance.
- the present invention since it is configured as described above, it is possible to reduce the power consumption by controlling the optical output power of the transmission unit according to the distance from the opposite device with a simple configuration, with a simple configuration. it can.
- Embodiment 1 FIG.
- a 10 Gbps optical transmission system is used as an optical transmission system and a reduction in power consumption of a 10 Gbps ONU transmission unit and a reduction in cost of a 10 Gbps OLT reception unit will be described.
- this optical transmission system includes an OLT (10G-OLT) 101 and a plurality (three in FIG. 1) of ONUs (10G-ONU # 1 to # 3) 102a to 102c. .
- OLT 10G-OLT
- ONUs 10G-ONU # 1 to # 3
- suffixes (such as a to c) of symbols are omitted unless it is particularly necessary to distinguish them.
- the OLT 101 and each ONU 102 are connected via an optical coupler 104.
- the ONU 102a is located at a short distance from the OLT 101
- the ONU 102b is located at a medium distance from the OLT 101
- the ONU 102c is located at a long distance from the OLT 101.
- the OLT 101 includes an optical transceiver (TRX) 105.
- the optical transceiver 105 includes wavelength division multiplexing means 107, a receiving unit (Rx) 108, and a transmitting unit (Tx) 109.
- the wavelength division multiplexing means 107 is connected to the optical fiber 110a between the optical couplers 104, the optical fiber 110b between the reception units 108, and the optical fiber 110c between the transmission units 109, and multiplexes / divides a plurality of optical signals having different wavelengths. Are transmitted.
- the receiving unit 108 receives an optical signal from the ONU 102 via the wavelength division multiplexing means 107 and converts the optical signal into an electric signal.
- the receiving unit 108 has a TIA 111.
- the TIA 111 equalizes different optical input power for each ONU 102. Note that the TIA 111 is an inexpensive TIA in which the homogenization process becomes more difficult as the difference in optical input power between the ONUs 102 increases.
- the transmission unit 109 converts a predetermined electrical signal into an optical signal and transmits the optical signal to the ONU 102 via the wavelength division multiplexing means 107.
- the ONU 102a has a built-in optical transceiver (TRX # 1) 112a.
- the optical transceiver 112a includes a wavelength division multiplexing means 113a, a receiving unit (Rx) 114a, and a transmitting unit (Tx) 115a.
- the wavelength division multiplexing unit 113a is connected to the optical fiber 110d between the optical couplers 104, the optical fiber 110e between the reception units 114a, and the optical fiber 110f between the transmission units 115a, and multiplexes / divides a plurality of optical signals having different wavelengths. Are transmitted.
- the receiver 114a receives an optical signal from the OLT 101 via the wavelength division multiplexing means 113a and converts the optical signal into an electric signal.
- the receiving unit 114a has an optical input power monitor circuit 116a.
- the optical input power monitor circuit (optical input power monitor means) 116a detects the optical input power by monitoring a fraction of the optical input power of the optical signal from the OLT 101.
- the transmission unit 115a converts a predetermined electrical signal into an optical signal, and transmits the optical signal to the OLT 101 via the wavelength division multiplexing unit 113a.
- the transmission unit 115a has a power control point 117a and a power control circuit 118a.
- the power control point 117a is a register that holds the optical output power, the extinction ratio, and the cross point in the transmission unit 115a.
- the power control circuit (power control means) 118a controls the set value held at the power control point 117a based on the monitoring result by the optical input power monitor circuit 116a.
- the optical signal output from the optical transceiver 105 of the OLT 101 is transmitted to a short transmission path (optical fibers 110a and 110d) and input to the optical transceiver 112a of the ONU 102a. Then, the optical input power monitor circuit 116a of the optical transceiver 112a detects the optical input power of this optical signal.
- the shorter the transmission path the smaller the power loss of the optical signal, so that a high-level optical signal is input to the optical transceiver 112a. Therefore, the optical input power monitor circuit 116a detects high level optical input power and transmits the power value to the power control circuit 118a.
- the power control circuit 118a reduces the optical output power at the transmitter 115a so that the budget (optical output power ⁇ optical input power) becomes constant based on the power value from the optical input power monitor circuit 116a.
- the set value held at the power control point 117a is controlled.
- the optical transceiver 112a of the ONU 102a can be set to a low level optical output power.
- a stepwise optical output power is patterned in advance, and a value obtained by optimizing the extinction ratio and the cross point at that time is stored in a register in the power control circuit 118. This has the effect of eliminating the above concerns.
- the budget value is designed to have a margin of several dB, it is possible to cope with transmission line troubles such as optical fiber degradation without problems.
- an optical transceiver (10G-OLT-TRX) 105 of the OLT 101 an optical transceiver (10G-ONU-TRX # 1) 112a of the ONU 102a, an optical transceiver (10G-ONU-TRX # 2) 112b of the ONU 102b, and Consider a case where the optical transceiver (10G-ONU-TRX # 3) 112c of the ONU 102c is opposed to the ONU 102c.
- the optical signal output from the optical transceiver 105 of the OLT 101 is transmitted to each transmission path and input to the optical transceiver 112 of each ONU 102.
- the optical input power at the optical transceiver 112 of each ONU 102 depends on the transmission path length between the OLT 101 and each ONU 102. That is, the optical input power at the optical transceiver 112a of the ONU 102a located at a short distance is high, the optical input power at the optical transceiver 112b of the ONU 102b located at a medium distance is medium, and the ONU 102c located at a long distance.
- the optical input power at the optical transceiver 112c is low.
- each optical transceiver 112 detects the optical input power, and the power control circuit 118 ensures a certain budget based on this power value. That is, the optical transceiver 112a of the ONU 102a has a low level of optical output power, the optical transceiver 112b of the ONU 102b has a medium level of optical output power, and the optical transceiver 112c of the ONU 102c has a high level of optical output power. As a result, each optical transceiver 112 can emit an optical signal with an optimum optical output power without waste according to the facing distance from the optical transceiver 105, and low power consumption can be realized for each ONU 102.
- each optical transceiver 112 by optimizing the optical output power of each optical transceiver 112, light is input to the receiving unit 108 of the optical transceiver 105 with substantially the same level of power due to the relationship between the transmission path and the power loss. . That is, the optical transceiver 112a is short-distance transmission with low level optical output power and small power loss, the optical transceiver 112b is medium-distance transmission with medium level optical output power and medium level power loss, and the optical transceiver 112c. Is a long distance transmission with high optical output power and large power loss.
- the TIA 111 of the receiving unit 108 hardly needs to consider the difference in optical input power (level difference between bursts) for each ONU 102, and does not need to have an advanced AGC (Auto Gain Control) function. Therefore, an inexpensive TIA element can be employed.
- the ONU 102 detects the optical input power of the optical signal received by the receiving unit 114, and the optical input power monitor circuit 116 that detects the optical input power. Since the optical transceiver 112 including the power control circuit 118 that adjusts the optical output power at the transmission unit 115 according to the distance from the OLT 101 based on the optical input power is applied, the power consumption of the transmission unit 115 of the ONU 102 is reduced. Electricity becomes possible. In addition, since the inexpensive TIA 111 is applicable, the cost of the receiving unit 108 of the OLT 101 can be reduced.
- Embodiment 2 a case where a 1 Gbps optical transmission system is used as the optical transmission system and a reduction in power consumption of a transmission unit of 1 Gbps OLT is realized will be described.
- FIG. 2 is a diagram showing the configuration of the optical transmission system according to Embodiment 2 of the present invention.
- this optical transmission system includes an OLT (1G-OLT) 201 and a plurality of (three in FIG. 2) ONUs (1G-ONU # 1 to # 3) 203a to 203c. .
- the OLT 201 and each ONU 203 are connected via an optical coupler 204.
- the ONU 203a is located at a short distance from the OLT 201
- the ONU 203b is located at a medium distance from the OLT 201
- the ONU 203c is located at a long distance from the OLT 201.
- the ONU 203 (end user side) may be an already installed one (for example, an existing 1 Gbps system).
- the OLT 201 incorporates an optical transceiver (TRX) 206.
- the optical transceiver 206 includes a wavelength division multiplexing means 219, a receiving unit (Rx) 220, and a transmitting unit (Tx) 221.
- the wavelength division multiplexing means 219 is connected to the optical fiber 210a between the optical couplers 204, the optical fiber 210b between the receivers 220, and the optical fiber 210c between the transmitters 221, and multiplexes / divides a plurality of optical signals having different wavelengths. Are transmitted.
- the receiving unit 220 receives an optical signal from the ONU 203 via the wavelength division multiplexing means 219 and converts the optical signal into an electric signal.
- the receiving unit 220 includes an optical input power monitor circuit 222.
- the optical input power monitoring circuit (optical input power monitoring means) 222 detects the optical input power by monitoring a fraction of the optical input power of the optical signal from the ONU 203.
- the transmission unit 221 converts a predetermined electrical signal into an optical signal, and transmits the optical signal to the ONU 203 via the wavelength division multiplexing unit 219.
- the transmission unit 221 includes a power control point 223 and a power control circuit 224.
- the power control point 223 is a register that holds the optical output power, the extinction ratio, and the cross point in the transmission unit 221.
- the power control circuit (power control means) 224 controls the set value held at the power control point 223 based on the monitoring result by the optical input power monitor circuit 222.
- the optical signal output from the ONU 203a is transmitted to a short transmission path (optical fibers 210d and 210a) and input to the optical transceiver 206 of the OLT 201.
- the optical input power monitor circuit 222 detects the optical input power, and based on this power value, the power control circuit 224 ensures a budget.
- the optical transceiver 206 of the OLT 201 can be set to a low level optical output power.
- the optical transceiver (1G-OLT-TRX) 206 of the OLT 201 faces the ONU (1G-ONU # 1) 203a, the ONU (1G-ONU # 2) 203b, and the ONU (1G-ONU # 3) 203c. Let's consider the case.
- the transmission unit 221 has a low level of optical output power, thereby reducing power consumption.
- a high level optical signal is input from the ONU 203a and the medium level from the ONU 203b due to the relationship between the transmission path and the power loss. A correct optical signal is input.
- the optical transceiver 206 of the OLT 201 needs to output a sufficient optical signal corresponding to the farthest ONU 203, and therefore outputs an intermediate level optical signal in accordance with the ONU 203b. Therefore, the transmission unit 221 has low power consumption.
- the optical transceiver 206 of the OLT 201 needs to constantly monitor which ONU 203 is outputting an optical signal, a discovery interval is provided at regular intervals, and the farthest ONU 203 is detected at that time.
- the budget value is set to a value having a margin of several dB, so that it is possible to cope with transmission line troubles such as optical fiber degradation without problems.
- the OLT 201 detects the optical input power of the optical signal received by the receiving unit 220, and the optical input power monitor circuit 222 that detects the optical input power. Since the optical transceiver 206 including the power control circuit 224 that adjusts the optical output power of the transmission unit 221 according to the distance from the ONU 203 based on the optical input power is applied, the power consumption of the transmission unit 221 of the OLT 201 is reduced. Electricity becomes possible.
- the optical transceiver 112 of the present invention is applied to the ONU 102 to reduce the power consumption of the transmission unit 115 of the ONU 102.
- 1 Gbps In the optical transmission system the case where the optical transceiver 206 of the present invention is applied to the OLT 201 to reduce the power consumption of the transmission unit 221 of the OLT 201 has been shown.
- the optical transceiver of the present invention may be applied to the OLT 101 to reduce the power consumption of the transmission unit of the OLT 101.
- the ONU 203 The optical transceiver of the present invention may be applied to reduce the power consumption of the transmission unit of the ONU 203.
- Embodiment 3 FIG.
- a coexistence type optical transmission system of 10 Gbps and 1 Gbps is used as an optical transmission system, and a reduction in power consumption of a transmission unit of 10 Gbps ONU and a transmission unit of 1 Gbps OLT and a reduction in cost of a reception unit of 10 Gbps OLT are realized. Show. That is, a configuration combining Embodiments 1 and 2 will be described.
- FIG. 3 is a diagram showing the configuration of the optical transmission system according to Embodiment 3 of the present invention.
- this optical transmission system includes a coexistence type OLT (10G / 1G-OLT) 301 of 10 Gbps and 1 Gbps, a plurality of (two in FIG. 3) 10 Gbps ONUs (10G-ONU # 1, # 3) It is composed of 302a and 302b and a plurality of (two in FIG. 3) 1 Gbps ONUs (1G-ONU # 2 and # 4) 303a and 303b.
- the OLT 301 and the ONUs 302 and 303 are connected via an optical coupler 304.
- the ONUs 302 a and 303 a are located at a short distance from the OLT 301, and the ONUs 302 b and 303 b are located at a long distance from the OLT 301.
- the ONU 303 (end user side) may be an already installed one (for example, an existing 1 Gbps system).
- the OLT 301 includes a 10 Gbps optical transceiver (10G-TRX) 305 and a 1 Gbps optical transceiver (1G-TRX) 306.
- a wavelength division multiplexing unit 325 is provided in the preceding stage of the OLT 301.
- the wavelength division multiplexing means 325 is connected to the optical fiber 310 a between the optical couplers 304, the optical fiber 310 b between the optical transceivers 305, and the optical fiber 310 c between the optical transceivers 306, and multiplexes / multiplexes optical signals of a plurality of different wavelengths. Divided and transmitted.
- the optical transceiver 305 includes a wavelength division multiplexing unit 307, a reception unit (Rx) 308, and a transmission unit (Tx) 309.
- the wavelength division multiplexing unit 307 is connected to the optical fiber 310b between the wavelength division multiplexing units 325, the optical fiber 310d between the reception units 308, and the optical fiber 310e between the transmission units 309, and multiplexes / multiplexes optical signals of a plurality of different wavelengths. Divided and transmitted.
- the receiving unit 308 receives an optical signal from the ONU 302 via the wavelength division multiplexing means 325 and 307 and converts the optical signal into an electric signal.
- the receiving unit 308 has a TIA 311.
- the TIA 311 equalizes different optical input power for each ONU 302. Note that the TIA 311 is an inexpensive TIA that becomes more difficult to equalize as the difference in optical input power between the ONUs 302 increases.
- the transmission unit 309 converts a predetermined electrical signal into an optical signal and transmits the optical signal to the ONU 302 via the wavelength division multiplexing units 307 and 325.
- the optical transceiver 306 includes wavelength division multiplexing means 319, a reception unit (Rx) 320 and a transmission unit (Tx) 321.
- the wavelength division multiplexing unit 319 is connected to the optical fiber 310c between the wavelength division multiplexing units 325, the optical fiber 310f between the reception units 320, and the optical fiber 310g between the transmission units 321, and multiplexes / multiplexes optical signals of a plurality of different wavelengths. Divided and transmitted.
- the receiving unit 320 receives an optical signal from the ONU 303 via the wavelength division multiplexing means 325 and 319 and converts the optical signal into an electric signal.
- the receiving unit 320 has an optical input power monitor circuit 322.
- the optical input power monitor circuit (optical input power monitor means) 322 detects the optical input power by monitoring a fraction of the optical input power of the optical signal from the ONU 303.
- the transmission unit 321 converts a predetermined electric signal into an optical signal and transmits the optical signal to the ONU 303 via the wavelength division multiplexing means 319 and 325.
- the transmission unit 321 includes a power control point 323 and a power control circuit 324.
- the power control point 323 is a register that holds the optical output power, the extinction ratio, and the cross point in the transmission unit 321.
- the power control circuit (power control means) 324 controls the set value held at the power control point 323 based on the monitoring result by the optical input power monitor circuit 322.
- the ONU 302a has a built-in optical transceiver (10G-TRX # 1) 312a.
- the optical transceiver 312a includes wavelength division multiplexing means 313a, a receiver (Rx) 314a, and a transmitter (Tx) 315a.
- the wavelength division multiplexing means 313a is connected to the optical fiber 310h between the optical couplers 304, the optical fiber 310i between the receivers 314a, and the optical fiber 310j between the transmitters 315a, and multiplexes / divides optical signals of different wavelengths. Are transmitted.
- the receiving unit 314a receives an optical signal from the OLT 301 via the wavelength division multiplexing means 325 and 313a and converts the optical signal into an electric signal.
- the receiving unit 314a has an optical input power monitor circuit 316a.
- the optical input power monitor circuit (optical input power monitor means) 316a detects the optical input power by monitoring a fraction of the optical input power of the optical signal from the OLT 301.
- the transmission unit 315a converts a predetermined electrical signal into an optical signal, and transmits the optical signal to the OLT 301 via the wavelength division multiplexing units 313a and 325.
- the transmission unit 315a includes a power control point 317a and a power control circuit 318a.
- the power control point 317a is a register that holds the optical output power, the extinction ratio, and the cross point in the transmission unit 315a.
- the power control circuit (power control means) 318a controls the set value held at the power control point 317a based on the monitoring result by the optical input power monitor circuit 316a.
- the ONU 302a optical transceiver (10G-ONU-TRX # 1) 312a located at a short distance has low optical output power and is located at a long distance.
- the optical transceiver (10G-ONU-TRX # 3) 312b of the ONU 302b the optical output power is as high as conventional. Thereby, the power consumption of the transmission unit 315a of the optical transceiver 312a is reduced.
- the optical transceiver (1G-OLT-TRX) 306 of the OLT 301 is used. A high-level optical signal is input. Therefore, the optical transceiver 306 has a low level of optical output power. Thereby, the transmission part 321 is reduced in power consumption. Further, when optical signals are output from the ONU (1G-ONU # 2) 303a and the ONU (1G-ONU # 4) 303b, the optical output power is adjusted to the furthest ONU 303b. Therefore, power consumption as before occurs.
- the optical transceivers 306 and 312 of the present invention are applied to the OLT 301 and the ONU 302 in the coexistence optical transmission system of 10 Gbps and 1 Gbps, the transmission unit 321 and the ONU 302 of the OLT 301 are used.
- the power consumption of the transmitter 315 can be reduced.
- the inexpensive TIA 311 can be applied, the cost of the receiving unit 308 of the OLT 301 can be reduced.
- Embodiment 4 FIG. In the fourth embodiment, a case will be described in which low power consumption of a transmission unit of 1 Gbps OLT is realized in a transition period from an old system (for example, 1 Gbps transmission system) to a new system (for example, 10 Gbps transmission system).
- an old system for example, 1 Gbps transmission system
- a new system for example, 10 Gbps transmission system
- this optical transmission system includes an OLT (1G-OLT) 401 and a plurality (three in FIG. 4) of ONUs 403a, 403b, and 426.
- the ONU 426 is a 1 Gbps ONU that is replaced with a 10 Gbps ONU during the service transition period.
- the OLT 401 and the ONUs 403 and 426 are connected via an optical coupler 404.
- the ONU 403a is located at a short distance from the OLT 401
- the ONU 403b is located at a medium distance from the OLT 401
- the ONU 426 is located at a long distance from the OLT 401.
- the OLT 401 has a built-in optical transceiver (TRX) 406.
- the optical transceiver 406 includes a wavelength division multiplexing unit 419, a receiving unit (Rx) 420, and a transmitting unit (Tx) 421.
- the wavelength division multiplexing unit 419 is connected to the optical fiber 410a between the optical couplers 404, the optical fiber 410b between the reception units 420, and the optical fiber 410c between the transmission units 421, and multiplexes / divides a plurality of optical signals having different wavelengths. Are transmitted.
- the receiving unit 420 receives an optical signal from the ONU 403 via the wavelength division multiplexing means 419 and converts the optical signal into an electric signal.
- the receiving unit 420 includes an optical input power monitor circuit 422.
- the optical input power monitor circuit (optical input power monitoring means) 422 detects the optical input power by monitoring a fraction of the optical input power of the optical signal from the ONU 403.
- the transmission unit 421 converts a predetermined electrical signal into an optical signal, and transmits the optical signal to the ONU 403 via the wavelength division multiplexing unit 419.
- the transmission unit 421 includes a power control point 423 and a power control circuit 424.
- the power control point 423 is a register that holds the optical output power, the extinction ratio, and the cross point in the transmission unit 421.
- the power control circuit (power control means) 424 controls the set value held at the power control point 423 based on the monitoring result by the optical input power monitor circuit 422.
- the technical contents for reducing power consumption are the same as those in the second embodiment, and will be omitted.
- the ONU (1G-ONU) 426 farthest from the OLT (1G-OLT) 400 changes the service from the 1 Gbps transmission system to the 10 Gbps transmission system, the ONU 426 is removed.
- the distance between the optical transceiver (1G-OLT-TRX) 401 of the OLT 401 and the farthest ONU becomes short (in FIG. 4, the ONU 403b becomes the farthest ONU), so that the optical transceiver 406 has low power consumption. Is done.
- the OLT 401 is based on the optical input power monitor circuit 422 that detects the optical input power of the optical signal received by the receiving unit 420 and the detected optical input power. Since the optical transceiver 406 including the power control circuit 424 that adjusts the optical output power in the transmission unit 421 according to the distance from the ONUs 403 and 426 is applied, the transition from the 1 Gbps transmission system to the 10 Gbps transmission system is applied. When the ONU 426 arranged at the farthest position is removed, the power consumption of the transmission unit 421 of the OLT 401 can be reduced.
- the optical transceiver according to the present invention can achieve low power consumption by controlling the optical output power of the transmission unit according to the distance from the opposite device with a simple configuration and with a simple configuration. It is suitable for use in an optical transceiver built in an OLT and an ONU constituting a GE-PON system in a transmission system.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Optical Communication System (AREA)
Abstract
受信部114により受信された光信号の光入力パワーを検出する光入力パワーモニタ手段116と、光入力パワーモニタ手段116により検出された光入力パワーに基づいて、対向機との距離に合わせて送信部115での光出力パワーを制御するパワー制御手段118とを備えた。
Description
この発明は、光伝送システムにおけるGE-PONシステム(Gigabit Eathernet Passive Optical Network System)を構成する、局舎側光信号伝送装置(OLT:Optical Line Terminal)および加入者側光信号伝送装置(ONU:Optical Network Unit)に内蔵された、電気信号を光信号に変換して送信し、光信号を受信して電気信号に変換する機能を持つ光送受信器、および光伝送システムに関するものである。
従来のOLTに内蔵された光送受信器では、上り信号を発している対向ONUとの距離に関わらず、送信部にて常に一定の光出力パワーで信号を発していた。そのため、送信部では、常に一定の電力を消費し、必要以上に電力を消費していた。同様に、従来のONUに内蔵された光送受信器においても、下り信号を発している対向OLTとの距離に関わらず、送信部にて常に一定の光出力パワーで信号を発していた。そのため、送信部では、常に一定の電力を消費し、必要以上に電力を消費していた。
そこで、従来のGE-PONシステムでは、対向機(OLTにとってのONU、ONUにとってのOLT)の距離に合わせて送信部の光出力パワーを制御することで、光出力パワーを低減し低電力化を実現していた(例えば特許文献1参照)。
しかしながら、特許文献1に開示された手法では、光送受信器単体で低消費電力化を実現することはできず、OLTおよびONUに内蔵された情報処理回路によるシステム全体での制御しか行えなかった。そのため、大掛かりかつ複雑な構成となり、高コストとなるという課題があった。また、複数の通信速度が共存するPONシステムにおいては、さらに複雑かつ高コストな回路構成を必要とする。
また、OLTで受信した上り信号の光入力パワーはONUごとに異なり、従来のOLTに内蔵された光送受信器では、それらの差の大小に関わらず光入力パワーを均一化できるTIA(Transimpedance Amplifier)が必要となる。そのため、差が小さい場合のみ均一化できる安価なTIAは適用できないという課題があった。
この発明は、上記のような課題を解決するためになされたもので、簡易な構成で、対向機との距離に合わせて送信部の光出力パワーを制御して消費電力を低減させることができる光送受信器を提供することを目的としている。
この発明に係る光送受信器は、受信部により受信された光信号の光入力パワーを検出する光入力パワーモニタ手段と、光入力パワーモニタ手段により検出された光入力パワーに基づいて、対向機との距離に合わせて送信部での光出力パワーを制御するパワー制御手段とを備えたものである。
この発明によれば、上記のように構成したので、簡易な構成で、光送受信器単体で、対向機との距離に合わせて送信部の光出力パワーを制御して消費電力を低減させることができる。
以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
実施の形態1では、光伝送システムとして10Gbps光伝送システムを用い、10GbpsONUの送信部の低消費電力化および10GbpsOLTの受信部の低コスト化を実現する場合について示す。
実施の形態1.
実施の形態1では、光伝送システムとして10Gbps光伝送システムを用い、10GbpsONUの送信部の低消費電力化および10GbpsOLTの受信部の低コスト化を実現する場合について示す。
図1はこの発明の実施の形態1に係る光伝送システムの構成を示す図である。
この光伝送システムは、図1に示すように、OLT(10G-OLT)101および複数台(図1では3台)のONU(10G-ONU♯1~♯3)102a~102cから構成されている。なお以下では、特に区別する必要がない場合には符号の接尾記号(a~c等)を省略する。
このOLT101と各ONU102とは、光カプラ104を介して接続されている。また、ONU102aはOLT101から近距離に位置し、ONU102bはOLT101から中距離に位置し、ONU102cはOLT101から遠距離に位置している。
この光伝送システムは、図1に示すように、OLT(10G-OLT)101および複数台(図1では3台)のONU(10G-ONU♯1~♯3)102a~102cから構成されている。なお以下では、特に区別する必要がない場合には符号の接尾記号(a~c等)を省略する。
このOLT101と各ONU102とは、光カプラ104を介して接続されている。また、ONU102aはOLT101から近距離に位置し、ONU102bはOLT101から中距離に位置し、ONU102cはOLT101から遠距離に位置している。
まず、OLT101の構成について説明する。
OLT101は、光送受信器(TRX)105を内蔵している。この光送受信器105は、波長分割多重手段107、受信部(Rx)108および送信部(Tx)109から構成されている。
波長分割多重手段107は、光カプラ104間の光ファイバ110a、受信部108間の光ファイバ110b、送信部109間の光ファイバ110cとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
OLT101は、光送受信器(TRX)105を内蔵している。この光送受信器105は、波長分割多重手段107、受信部(Rx)108および送信部(Tx)109から構成されている。
波長分割多重手段107は、光カプラ104間の光ファイバ110a、受信部108間の光ファイバ110b、送信部109間の光ファイバ110cとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
受信部108は、ONU102から波長分割多重手段107を介して光信号を受信し、当該光信号を電気信号に変換するものである。この受信部108は、TIA111を有している。
TIA111は、ONU102ごとの異なる光入力パワーを均一化するものである。なお、このTIA111は、ONU102ごとの光入力パワーの差が大きいほど均一化処理が困難になる安価なTIAである。
送信部109は、所定の電気信号を光信号に変換し、当該光信号を波長分割多重手段107を介してONU102に送信するものである。
TIA111は、ONU102ごとの異なる光入力パワーを均一化するものである。なお、このTIA111は、ONU102ごとの光入力パワーの差が大きいほど均一化処理が困難になる安価なTIAである。
送信部109は、所定の電気信号を光信号に変換し、当該光信号を波長分割多重手段107を介してONU102に送信するものである。
次に、ONU102の構成について説明する。なお以下では、ONU102aの構成について説明するが、その他のONU102b,102cの構成についても同様である。
ONU102aは、光送受信器(TRX♯1)112aを内蔵している。この光送受信器112aは、波長分割多重手段113a、受信部(Rx)114aおよび送信部(Tx)115aから構成されている。
波長分割多重手段113aは、光カプラ104間の光ファイバ110d、受信部114a間の光ファイバ110e、送信部115a間の光ファイバ110fとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
ONU102aは、光送受信器(TRX♯1)112aを内蔵している。この光送受信器112aは、波長分割多重手段113a、受信部(Rx)114aおよび送信部(Tx)115aから構成されている。
波長分割多重手段113aは、光カプラ104間の光ファイバ110d、受信部114a間の光ファイバ110e、送信部115a間の光ファイバ110fとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
受信部114aは、OLT101から波長分割多重手段113aを介して光信号を受信し、当該光信号を電気信号に変換するものである。この受信部114aは、光入力パワーモニタ回路116aを有している。
光入力パワーモニタ回路(光入力パワーモニタ手段)116aは、OLT101からの光信号の光入力パワーの数分の一倍をモニタすることで、当該光入力パワーを検出するものである。
光入力パワーモニタ回路(光入力パワーモニタ手段)116aは、OLT101からの光信号の光入力パワーの数分の一倍をモニタすることで、当該光入力パワーを検出するものである。
送信部115aは、所定の電気信号を光信号に変換し、当該光信号を波長分割多重手段113aを介してOLT101に送信するものである。この送信部115aは、パワー制御ポイント117aおよびパワー制御回路118aを有している。
パワー制御ポイント117aは、送信部115aでの光出力パワー、消光比やクロスポイントを保持するレジスタである。
パワー制御回路(パワー制御手段)118aは、光入力パワーモニタ回路116aによるモニタ結果に基づいて、パワー制御ポイント117aに保持されている設定値を制御するものである。
パワー制御ポイント117aは、送信部115aでの光出力パワー、消光比やクロスポイントを保持するレジスタである。
パワー制御回路(パワー制御手段)118aは、光入力パワーモニタ回路116aによるモニタ結果に基づいて、パワー制御ポイント117aに保持されている設定値を制御するものである。
次に、上記のように構成された光伝送システムの動作について説明する。まず、OLT101の光送受信器(10G-OLT-TRX)105と、ONU102aの光送受信器(10G-ONU-TRX#1)112aとを対向させた場合を考える。
OLT101の光送受信器105から出力された光信号は、短い伝送路(光ファイバ110a,110d)を伝達して、ONU102aの光送受信器112aに入力される。そして、光送受信器112aの光入力パワーモニタ回路116aは、この光信号の光入力パワーを検出する。
ここで、伝送路が短ければ短いほど光信号のパワーロスは小さくなるため、光送受信器112aには高レベルな光信号が入力されることになる。そのため、光入力パワーモニタ回路116aは、高レベルな光入力パワーを検知し、そのパワー値をパワー制御回路118aに伝達する。
ここで、伝送路が短ければ短いほど光信号のパワーロスは小さくなるため、光送受信器112aには高レベルな光信号が入力されることになる。そのため、光入力パワーモニタ回路116aは、高レベルな光入力パワーを検知し、そのパワー値をパワー制御回路118aに伝達する。
次いで、パワー制御回路118aは、光入力パワーモニタ回路116aからのパワー値に基づいて、バジェット(光出力パワー-光入力パワー)が一定になるように、すなわち送信部115aでの光出力パワーを下げるように、パワー制御ポイント117aに保持されている設定値を制御する。これにより、ONU102aの光送受信器112aを低レベルな光出力パワーとすることができる。
なお、バジェットを常に完全に一致させようとした場合、送信部115での光出力パワー以外の特性(消光比やクロスポイント)が劣化してしまう恐れがある。そして、これらの特性も全て制御しようとした場合、構成の複雑化や高コスト化の要因となってしまうことが懸念される。
そこで、予め、段階的な光出力パワーをパターン化し、その際の消光比およびクロスポイントを最適化した値をパワー制御回路118内のレジスタに記憶させておく。これにより、上記懸念点を解消できる効果がある。また、バジェット値として数dBマージンを持った値に設計にしておけば、光ファイバの劣化などの伝送路トラブルに問題なく対応することができる。
そこで、予め、段階的な光出力パワーをパターン化し、その際の消光比およびクロスポイントを最適化した値をパワー制御回路118内のレジスタに記憶させておく。これにより、上記懸念点を解消できる効果がある。また、バジェット値として数dBマージンを持った値に設計にしておけば、光ファイバの劣化などの伝送路トラブルに問題なく対応することができる。
次に、OLT101の光送受信器(10G-OLT-TRX)105と、ONU102aの光送受信器(10G-ONU-TRX#1)112a、ONU102bの光送受信器(10G-ONU-TRX#2)112bおよびONU102cの光送受信器(10G-ONU-TRX#3)112cとを対向させた場合を考える。
OLT101の光送受信器105から出力された光信号は、各伝送路を伝達して、各ONU102の光送受信器112に入力される。この場合、OLT101の光送受信器105から出力された光パワーは一定であるため、各ONU102の光送受信器112での光入力パワーは、OLT101-各ONU102間の伝送路長さに依存する。すなわち、近距離に位置するONU102aの光送受信器112aでの光入力パワーは高レベルとなり、中距離に位置するONU102bの光送受信器112bでの光入力パワーは中レベルとなり、遠距離に位置するONU102cの光送受信器112cでの光入力パワーは低レベルとなる。
そして、上記と同様に、各光送受信器112の光入力パワーモニタ回路116にて光入力パワーを検知し、このパワー値に基づいて各パワー制御回路118にてバジェットを一定に確保する。すなわち、ONU102aの光送受信器112aでは低レベルな光出力パワーとなり、ONU102bの光送受信器112bでは中レベルな光出力パワーとなり、ONU102cの光送受信器112cでは高レベルな光出力パワーとなる。これにより、各光送受信器112は、光送受信器105との対向距離にあわせた無駄のない最適な光出力パワーで光信号を発することができ、ONU102ごとに低消費電力化を実現できる。
さらに、各光送受信器112の光出力パワーが最適化されることで、伝送路とパワーロスの関係から、光送受信器105の受信部108にはほぼ同レベルのパワーで光入力されることになる。すなわち、光送受信器112aは低レベルな光出力パワーでパワーロスの小さい短距離伝送であり、光送受信器112bは中レベルな光出力パワーでパワーロスが中レベルの中距離伝送であり、光送受信器112cは高レベルな光出力パワーでパワーロスの大きい遠距離伝送である。
これにより、受信部108のTIA111では、ONU102ごとの光入力パワーの差(バースト間レベル差)をほとんど考慮する必要がなく、高度なAGC(Auto Gain Control)機能を有する必要がない。よって、安価なTIA素子を採用することができる。
これにより、受信部108のTIA111では、ONU102ごとの光入力パワーの差(バースト間レベル差)をほとんど考慮する必要がなく、高度なAGC(Auto Gain Control)機能を有する必要がない。よって、安価なTIA素子を採用することができる。
以上のように、この実施の形態1によれば、10Gbps光伝送システムにおいて、ONU102に、受信部114により受信された光信号の光入力パワーを検出する光入力パワーモニタ回路116と、検出された光入力パワーに基づいて、OLT101との距離に合わせて送信部115での光出力パワーを調整するパワー制御回路118とを備えた光送受信器112を適用したので、ONU102の送信部115の低消費電力化が可能となる。また、安価なTIA111が適用可能であるため、OLT101の受信部108の低コスト化が可能となる。
実施の形態2.
実施の形態2では、光伝送システムとして1Gbps光伝送システムを用い、1GbpsOLTの送信部の低消費電力化を実現する場合について示す。
実施の形態2では、光伝送システムとして1Gbps光伝送システムを用い、1GbpsOLTの送信部の低消費電力化を実現する場合について示す。
図2はこの発明の実施の形態2に係る光伝送システムの構成を示す図である。
この光伝送システムは、図2に示すように、OLT(1G-OLT)201および複数台(図2では3台)のONU(1G-ONU♯1~♯3)203a~203cから構成されている。
このOLT201と各ONU203とは、光カプラ204を介して接続されている。また、ONU203aはOLT201から近距離に位置し、ONU203bはOLT201から中距離に位置し、ONU203cはOLT201から遠距離に位置している。なお、ONU203(エンドユーザ側)は、既に設置されているもの(例えば既存の1Gbpsシステム)であってもよい。
この光伝送システムは、図2に示すように、OLT(1G-OLT)201および複数台(図2では3台)のONU(1G-ONU♯1~♯3)203a~203cから構成されている。
このOLT201と各ONU203とは、光カプラ204を介して接続されている。また、ONU203aはOLT201から近距離に位置し、ONU203bはOLT201から中距離に位置し、ONU203cはOLT201から遠距離に位置している。なお、ONU203(エンドユーザ側)は、既に設置されているもの(例えば既存の1Gbpsシステム)であってもよい。
次に、OLT201の構成について説明する。
OLT201は、光送受信器(TRX)206を内蔵している。この光送受信器206は、波長分割多重手段219、受信部(Rx)220および送信部(Tx)221から構成されている。
波長分割多重手段219は、光カプラ204間の光ファイバ210a、受信部220間の光ファイバ210b、送信部221間の光ファイバ210cとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
OLT201は、光送受信器(TRX)206を内蔵している。この光送受信器206は、波長分割多重手段219、受信部(Rx)220および送信部(Tx)221から構成されている。
波長分割多重手段219は、光カプラ204間の光ファイバ210a、受信部220間の光ファイバ210b、送信部221間の光ファイバ210cとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
受信部220は、ONU203から波長分割多重手段219を介して光信号を受信し、当該光信号を電気信号に変換するものである。この受信部220は、光入力パワーモニタ回路222を有している。
光入力パワーモニタ回路(光入力パワーモニタ手段)222は、ONU203からの光信号の光入力パワーの数分の一倍をモニタすることで、当該光入力パワーを検出するものである。
光入力パワーモニタ回路(光入力パワーモニタ手段)222は、ONU203からの光信号の光入力パワーの数分の一倍をモニタすることで、当該光入力パワーを検出するものである。
送信部221は、所定の電気信号を光信号に変換し、当該光信号を波長分割多重手段219を介してONU203に送信するものである。この送信部221は、パワー制御ポイント223およびパワー制御回路224を有している。
パワー制御ポイント223は、送信部221での光出力パワー、消光比やクロスポイントを保持するレジスタである。
パワー制御回路(パワー制御手段)224は、光入力パワーモニタ回路222によるモニタ結果に基づいて、パワー制御ポイント223に保持されている設定値を制御するものである。
パワー制御ポイント223は、送信部221での光出力パワー、消光比やクロスポイントを保持するレジスタである。
パワー制御回路(パワー制御手段)224は、光入力パワーモニタ回路222によるモニタ結果に基づいて、パワー制御ポイント223に保持されている設定値を制御するものである。
次に、上記のように構成された光伝送システムの動作について説明する。まず、OLT201の光送受信器(1G-OLT-TRX)206と、ONU(1G-ONU#1)203aとを対向させた場合を考える。
ONU203aから出力された光信号は、短い伝送路(光ファイバ210d,210a)を伝達して、OLT201の光送受信器206に入力される。そして、実施の形態1と同様に、光入力パワーモニタ回路222にて光入力パワーを検知し、このパワー値に基づいてパワー制御回路224にてバジェットを一定に確保する。これにより、OLT201の光送受信器206を低レベルな光出力パワーとすることができる。
次に、OLT201の光送受信器(1G-OLT-TRX)206と、ONU(1G-ONU#1)203a、ONU(1G-ONU#2)203bおよびONU(1G-ONU#3)203cとを対向させた場合を考える。
まず、近距離に位置するONU203aからのみ光信号が出力される場合には、上記と同様に、OLT201の光送受信器206から高レベルな光信号が入力される。そのため、送信部221は低レベルな光出力パワーとなり、低消費電力化される。
次に、近距離に位置するONU203aおよび中距離に位置するONU203bから光信号が出力される場合には、伝送路とパワーロスの関係から、ONU203aから高レベルな光信号が入力され、ONU203bから中レベルな光信号が入力される。一方、OLT201の光送受信器206は、最も遠いONU203に対応して十分な光信号を出力する必要があるので、ONU203bに合わせて中レベルな光信号を出力する。そのため、送信部221は低消費電力化される。
次に、近距離に位置するONU203aおよび中距離に位置するONU203bから光信号が出力される場合には、伝送路とパワーロスの関係から、ONU203aから高レベルな光信号が入力され、ONU203bから中レベルな光信号が入力される。一方、OLT201の光送受信器206は、最も遠いONU203に対応して十分な光信号を出力する必要があるので、ONU203bに合わせて中レベルな光信号を出力する。そのため、送信部221は低消費電力化される。
最後に、近距離に位置するONU203a、中距離に位置するONU203bおよび遠距離に位置するONU203cから光信号が出力される場合を考える。この場合、OLT201の光送受信器206から最も遠いONU203cからの光入力パワーが低レベルなため、従来技術と同様に高レベルな光信号が出力され、従来技術と同等の消費電力が発生する。つまり、光信号を出力している対向機のうち最も遠い距離にある対向機に合わせて、光送受信器206の送信部221が低消費電力化される。ただし、OLT201の光送受信器206は、どのONU203が光信号を出力しているかを常に監視する必要があるため、一定の間隔でディスカバリ区間を設けて、その際に最も遠いONU203を検知する。また、本実施の形態は実施の形態1と同様にバジェット値として数dBマージンを持った値とすることで、光ファイバの劣化などの伝送路トラブルにも問題なく対応することができる。
以上のように、この実施の形態2によれば、1Gbps光伝送システムにおいて、OLT201に、受信部220により受信された光信号の光入力パワーを検出する光入力パワーモニタ回路222と、検出された光入力パワーに基づいて、ONU203との距離に合わせて送信部221での光出力パワーを調整するパワー制御回路224とを備えた光送受信器206を適用したので、OLT201の送信部221の低消費電力化が可能となる。
なお、実施の形態1では、10Gbps光伝送システムにおいて、ONU102に本発明の光送受信器112を適用し、ONU102の送信部115の低消費電力化を図る場合について示し、実施の形態2では、1Gbps光伝送システムにおいて、OLT201に本発明の光送受信器206を適用し、OLT201の送信部221の低消費電力化を図る場合について示した。それに対して、反対に、10Gbps光伝送システムにおいて、OLT101に本発明の光送受信器を適用し、OLT101の送信部の低消費電力化を図るようにしてもよいし、1Gbps光伝送システムにおいて、ONU203に本発明の光送受信器を適用し、ONU203の送信部の低消費電力化を図るようにしてもよい。
実施の形態3.
実施の形態3では、光伝送システムとして10Gbpsおよび1Gbpsの共存型光伝送システムを用い、10GbpsONUの送信部および1GbpsOLTの送信部の低消費電力化および10GbpsOLTの受信部の低コスト化を実現する場合について示す。すなわち、実施の形態1,2を組み合わせた構成について説明する。
実施の形態3では、光伝送システムとして10Gbpsおよび1Gbpsの共存型光伝送システムを用い、10GbpsONUの送信部および1GbpsOLTの送信部の低消費電力化および10GbpsOLTの受信部の低コスト化を実現する場合について示す。すなわち、実施の形態1,2を組み合わせた構成について説明する。
図3はこの発明の実施の形態3に係る光伝送システムの構成を示す図である。
この光伝送システムは、図3に示すように、10Gbpsおよび1Gbpsの共存型OLT(10G/1G-OLT)301、複数台(図3では2台)の10GbpsのONU(10G-ONU♯1,♯3)302a,302bおよび複数台(図3では2台)の1GbpsのONU(1G-ONU♯2,♯4)303a,303bから構成されている。
このOLT301と各ONU302,303とは、光カプラ304を介して接続されている。また、ONU302a,303aはOLT301から近距離に位置し、ONU302b,303bはOLT301から遠距離に位置している。なお、ONU303(エンドユーザ側)は、既に設置されているもの(例えば既存の1Gbpsシステム)であってもよい。
この光伝送システムは、図3に示すように、10Gbpsおよび1Gbpsの共存型OLT(10G/1G-OLT)301、複数台(図3では2台)の10GbpsのONU(10G-ONU♯1,♯3)302a,302bおよび複数台(図3では2台)の1GbpsのONU(1G-ONU♯2,♯4)303a,303bから構成されている。
このOLT301と各ONU302,303とは、光カプラ304を介して接続されている。また、ONU302a,303aはOLT301から近距離に位置し、ONU302b,303bはOLT301から遠距離に位置している。なお、ONU303(エンドユーザ側)は、既に設置されているもの(例えば既存の1Gbpsシステム)であってもよい。
まず、OLT301の構成について説明する。
OLT301は、10Gbpsの光送受信器(10G-TRX)305および1Gbpsの光送受信器(1G-TRX)306を内蔵している。なお、OLT301の前段には波長分割多重手段325が設けられている。
波長分割多重手段325は、光カプラ304間の光ファイバ310a、光送受信器305間の光ファイバ310b、光送受信器306間の光ファイバ310cとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
OLT301は、10Gbpsの光送受信器(10G-TRX)305および1Gbpsの光送受信器(1G-TRX)306を内蔵している。なお、OLT301の前段には波長分割多重手段325が設けられている。
波長分割多重手段325は、光カプラ304間の光ファイバ310a、光送受信器305間の光ファイバ310b、光送受信器306間の光ファイバ310cとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
光送受信器305は、波長分割多重手段307、受信部(Rx)308および送信部(Tx)309から構成されている。
波長分割多重手段307は、波長分割多重手段325間の光ファイバ310b、受信部308間の光ファイバ310d、送信部309間の光ファイバ310eとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
波長分割多重手段307は、波長分割多重手段325間の光ファイバ310b、受信部308間の光ファイバ310d、送信部309間の光ファイバ310eとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
受信部308は、ONU302から波長分割多重手段325,307を介して光信号を受信し、当該光信号を電気信号に変換するものである。この受信部308は、TIA311を有している。
TIA311は、ONU302ごとの異なる光入力パワーを均一化するものである。なお、このTIA311は、ONU302ごとの光入力パワーの差が大きいほど均一化処理が困難になる安価なTIAである。
送信部309は、所定の電気信号を光信号に変換し、当該光信号を波長分割多重手段307,325を介してONU302に送信するものである。
TIA311は、ONU302ごとの異なる光入力パワーを均一化するものである。なお、このTIA311は、ONU302ごとの光入力パワーの差が大きいほど均一化処理が困難になる安価なTIAである。
送信部309は、所定の電気信号を光信号に変換し、当該光信号を波長分割多重手段307,325を介してONU302に送信するものである。
一方、光送受信器306は、波長分割多重手段319、受信部(Rx)320および送信部(Tx)321から構成されている。
波長分割多重手段319は、波長分割多重手段325間の光ファイバ310c、受信部320間の光ファイバ310f、送信部321間の光ファイバ310gとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
波長分割多重手段319は、波長分割多重手段325間の光ファイバ310c、受信部320間の光ファイバ310f、送信部321間の光ファイバ310gとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
受信部320は、ONU303から波長分割多重手段325,319を介して光信号を受信し、当該光信号を電気信号に変換するものである。この受信部320は、光入力パワーモニタ回路322を有している。
光入力パワーモニタ回路(光入力パワーモニタ手段)322は、ONU303からの光信号の光入力パワーの数分の一倍をモニタすることで、当該光入力パワーを検出するのである。
光入力パワーモニタ回路(光入力パワーモニタ手段)322は、ONU303からの光信号の光入力パワーの数分の一倍をモニタすることで、当該光入力パワーを検出するのである。
送信部321は、所定の電気信号を光信号に変換し、当該光信号を波長分割多重手段319,325を介してONU303に送信するものである。この送信部321は、パワー制御ポイント323およびパワー制御回路324を有している。
パワー制御ポイント323は、送信部321での光出力パワー、消光比やクロスポイントを保持するレジスタである。
パワー制御回路(パワー制御手段)324は、光入力パワーモニタ回路322によるモニタ結果に基づいて、パワー制御ポイント323に保持されている設定値を制御するものである。
パワー制御ポイント323は、送信部321での光出力パワー、消光比やクロスポイントを保持するレジスタである。
パワー制御回路(パワー制御手段)324は、光入力パワーモニタ回路322によるモニタ結果に基づいて、パワー制御ポイント323に保持されている設定値を制御するものである。
次に、ONU302の構成について説明する。なお以下では、ONU302aの構成について説明するが、その他のONU302bの構成についても同様である。
ONU302aは、光送受信器(10G-TRX♯1)312aを内蔵している。この光送受信器312aは、波長分割多重手段313a、受信部(Rx)314aおよび送信部(Tx)315aから構成されている。
波長分割多重手段313aは、光カプラ304間の光ファイバ310h、受信部314a間の光ファイバ310i、送信部315a間の光ファイバ310jとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
ONU302aは、光送受信器(10G-TRX♯1)312aを内蔵している。この光送受信器312aは、波長分割多重手段313a、受信部(Rx)314aおよび送信部(Tx)315aから構成されている。
波長分割多重手段313aは、光カプラ304間の光ファイバ310h、受信部314a間の光ファイバ310i、送信部315a間の光ファイバ310jとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
受信部314aは、OLT301から波長分割多重手段325,313aを介して光信号を受信し、当該光信号を電気信号に変換するものである。この受信部314aは、光入力パワーモニタ回路316aを有している。
光入力パワーモニタ回路(光入力パワーモニタ手段)316aは、OLT301からの光信号の光入力パワーの数分の一倍をモニタすることで、当該光入力パワーを検出するものである。
光入力パワーモニタ回路(光入力パワーモニタ手段)316aは、OLT301からの光信号の光入力パワーの数分の一倍をモニタすることで、当該光入力パワーを検出するものである。
送信部315aは、所定の電気信号を光信号に変換し、当該光信号を波長分割多重手段313a,325を介してOLT301に送信するものである。この送信部315aは、パワー制御ポイント317aおよびパワー制御回路318aを有している。
パワー制御ポイント317aは、送信部315aでの光出力パワー、消光比やクロスポイントを保持するレジスタである。
パワー制御回路(パワー制御手段)318aは、光入力パワーモニタ回路316aによるモニタ結果に基づいて、パワー制御ポイント317aに保持されている設定値を制御するものである。
パワー制御ポイント317aは、送信部315aでの光出力パワー、消光比やクロスポイントを保持するレジスタである。
パワー制御回路(パワー制御手段)318aは、光入力パワーモニタ回路316aによるモニタ結果に基づいて、パワー制御ポイント317aに保持されている設定値を制御するものである。
次に、上記のように構成された光伝送システムの動作について説明する。まず、10Gbps光伝送に関しては、実施の形態1と同様に、近距離に位置するONU302aの光送受信器(10G-ONU-TRX#1)312aでは低レベルな光出力パワーとなり、遠距離に位置するONU302bの光送受信器(10G-ONU-TRX#3)312bでは従来どおりの高レベルな光出力パワーとなる。これにより、光送受信器312aの送信部315aは低消費電力化される。
また、OLT301の光送受信器(10G-OLT-TRX)305には各ONU302の光送受信器312からほぼ一定の低レベルな光信号が入力されるため高価なTIAは不要となる。これにより、光送受信器305の受信部308は低コスト化される。
また、OLT301の光送受信器(10G-OLT-TRX)305には各ONU302の光送受信器312からほぼ一定の低レベルな光信号が入力されるため高価なTIAは不要となる。これにより、光送受信器305の受信部308は低コスト化される。
一方、1Gbps光伝送に関しては、実施の形態2と同様に、ONU(1G-ONU#2)303aからのみ光信号が出力される場合は、OLT301の光送受信器(1G-OLT-TRX)306には高レベルな光信号が入力される。そのため、光送受信器306は、低レベルな光出力パワーとなる。これにより、送信部321は低消費電力化される。
また、ONU(1G-ONU#2)303aおよびONU(1G-ONU#4)303bから光信号が出力される場合は、最も遠いONU303bに合わせた光出力パワーとなる。よって従来どおりの消費電力が発生する。
また、ONU(1G-ONU#2)303aおよびONU(1G-ONU#4)303bから光信号が出力される場合は、最も遠いONU303bに合わせた光出力パワーとなる。よって従来どおりの消費電力が発生する。
以上のように、この実施の形態3によれば、10Gbpsおよび1Gbpsの共存型光伝送システムにおいて、OLT301およびONU302に本発明の光送受信器306,312を適用したので、OLT301の送信部321およびONU302の送信部315の低消費電力化が可能となる。また、安価なTIA311が適用可能であるため、OLT301の受信部308の低コスト化が可能となる。
実施の形態4.
実施の形態4では、旧システム(例えば1Gbps伝送システム)から新システム(例えば10Gbps伝送システム)への移行期に、1GbpsOLTの送信部の低消費電力化を実現する場合について示す。
実施の形態4では、旧システム(例えば1Gbps伝送システム)から新システム(例えば10Gbps伝送システム)への移行期に、1GbpsOLTの送信部の低消費電力化を実現する場合について示す。
図4はこの発明の実施の形態4に係る光伝送システムの構成を示す図である。
この光伝送システムは、図4に示すように、OLT(1G-OLT)401および複数台(図4では3台)のONU403a,403b,426から構成されている。なお、ONU426は、サービス移行期に10GbpsのONUに取替えられ、撤去される1GbpsのONUである。
このOLT401と各ONU403,426とは、光カプラ404を介して接続されている。また、ONU403aはOLT401から近距離に位置し、ONU403bはOLT401から中距離に位置し、ONU426はOLT401から遠距離に位置している。
この光伝送システムは、図4に示すように、OLT(1G-OLT)401および複数台(図4では3台)のONU403a,403b,426から構成されている。なお、ONU426は、サービス移行期に10GbpsのONUに取替えられ、撤去される1GbpsのONUである。
このOLT401と各ONU403,426とは、光カプラ404を介して接続されている。また、ONU403aはOLT401から近距離に位置し、ONU403bはOLT401から中距離に位置し、ONU426はOLT401から遠距離に位置している。
次に、OLT401の構成について説明する。
OLT401は、光送受信器(TRX)406を内蔵している。この光送受信器406は、波長分割多重手段419、受信部(Rx)420および送信部(Tx)421から構成されている。
波長分割多重手段419は、光カプラ404間の光ファイバ410a、受信部420間の光ファイバ410b、送信部421間の光ファイバ410cとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
OLT401は、光送受信器(TRX)406を内蔵している。この光送受信器406は、波長分割多重手段419、受信部(Rx)420および送信部(Tx)421から構成されている。
波長分割多重手段419は、光カプラ404間の光ファイバ410a、受信部420間の光ファイバ410b、送信部421間の光ファイバ410cとそれぞれ接続され、複数の異なる波長の光信号を多重/分割して伝送するものである。
受信部420は、ONU403から波長分割多重手段419を介して光信号を受信し、当該光信号を電気信号に変換するものである。この受信部420は、光入力パワーモニタ回路422を有している。
光入力パワーモニタ回路(光入力パワーモニタ手段)422は、ONU403からの光信号の光入力パワーの数分の一倍をモニタすることで、当該光入力パワーを検出するものである。
光入力パワーモニタ回路(光入力パワーモニタ手段)422は、ONU403からの光信号の光入力パワーの数分の一倍をモニタすることで、当該光入力パワーを検出するものである。
送信部421は、所定の電気信号を光信号に変換し、当該光信号を波長分割多重手段419を介してONU403に送信するものである。この送信部421は、パワー制御ポイント423およびパワー制御回路424を有している。
パワー制御ポイント423は、送信部421での光出力パワー、消光比やクロスポイントを保持するレジスタである。
パワー制御回路(パワー制御手段)424は、光入力パワーモニタ回路422によるモニタ結果に基づいて、パワー制御ポイント423に保持されている設定値を制御するものである。
パワー制御ポイント423は、送信部421での光出力パワー、消光比やクロスポイントを保持するレジスタである。
パワー制御回路(パワー制御手段)424は、光入力パワーモニタ回路422によるモニタ結果に基づいて、パワー制御ポイント423に保持されている設定値を制御するものである。
低消費電力化させる技術内容は、実施の形態2と同様なので省略する。一方、OLT(1G-OLT)400から最も遠いONU(1G-ONU)426が1Gbps伝送システムから10Gbps伝送システムへとサービスを変更した場合、このONU426は撤去される。それに伴い、OLT401の光送受信器(1G-OLT-TRX)401と最も遠いONUとの距離が近くなる(図4ではONU403bが最も遠いONUとなる)ことで、光送受信器406が低消費電力化される。
以上のように、この実施の形態4によれば、OLT401に、受信部420により受信された光信号の光入力パワーを検出する光入力パワーモニタ回路422と、検出された光入力パワーに基づいて、ONU403,426との距離に合わせて送信部421での光出力パワーを調整するパワー制御回路424とを備えた光送受信器406を適用したので、1Gbps伝送システムから10Gbps伝送システムへの移行期に最も遠い位置に配置されたONU426が撤去された場合に、OLT401の送信部421の低消費電力化が可能となる。
なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
この発明に係る光送受信器は、簡易な構成で、光送受信器単体で、対向機との距離に合わせて送信部の光出力パワーを制御して低消費電力化を実現することができ、光伝送システムにおけるGE-PONシステムを構成する、OLTおよびONUに内蔵された光送受信器等に用いるのに適している。
101,201,301,401 OLT、102a~102c,203a~203c,302a,302b,303a,303b,403a,403b,426 ONU、104,204,304,404 光カプラ、105,112,206,305,306,312,406 光送受信器、107,113,219,307,313,319,325,419 波長分割多重手段、108,114,220,308,314,320,420 受信部、109,115,221,309,315,321,421 送信部、110a~110l,210a~210f,310a~310o,410a~410f 光ファイバ、111,311 TIA、116,222,316,322,422 光入力パワーモニタ回路(光入力パワーモニタ手段)、117,223,317,323,423 パワー制御ポイント、118,224,318,324,424 パワー制御回路(パワー制御手段)。
Claims (6)
- 対向機からの光信号を受信して電気信号に変換する受信部と、電気信号を光信号に変換して前記対向機に送信する送信部とを有する光送受信器において、
前記受信部により受信された光信号の光入力パワーを検出する光入力パワーモニタ手段と、
前記光入力パワーモニタ手段により検出された光入力パワーに基づいて、前記対向機との距離に合わせて前記送信部での光出力パワーを制御するパワー制御手段と
を備えたことを特徴とする光送受信器。 - OLTと複数のONUとが伝送路を介して接続された光伝送システムにおいて、
前記OLTおよび前記ONUに備えられた対向する光送受信器のうち、一方を請求項1記載の光送受信器とした
ことを特徴とする光伝送システム。 - 前記ONUは、請求項1記載の光送受信器を備え、
前記OLTは、前記ONUごとの差が小さい光入力パワーを均一化可能なTIAを備えた
ことを特徴とする請求項2記載の光伝送システム。 - 前記OLTおよび前記ONUは、所定の単一の通信速度で通信を行う
ことを特徴とする請求項2記載の光伝送システム。 - 前記OLTは、所定の異なる複数の通信速度で通信可能であり、
前記ONUは、前記複数の通信速度のうちいずれかの通信速度で通信を行う
ことを特徴とする請求項2記載の光伝送システム。 - 前記OLTは、請求項1記載の光送受信器を備え、
前記光送受信器のパワー制御手段は、前記光入力パワーに基づいて、前記OLTから最も遠い前記ONUに合わせて前記送信部での光出力パワーを制御する
ことを特徴とする請求項2記載の光伝送システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/006573 WO2013076780A1 (ja) | 2011-11-25 | 2011-11-25 | 光送受信器および光伝送システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/006573 WO2013076780A1 (ja) | 2011-11-25 | 2011-11-25 | 光送受信器および光伝送システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013076780A1 true WO2013076780A1 (ja) | 2013-05-30 |
Family
ID=48469264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/006573 WO2013076780A1 (ja) | 2011-11-25 | 2011-11-25 | 光送受信器および光伝送システム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013076780A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113438028A (zh) * | 2020-03-23 | 2021-09-24 | 四零四科技股份有限公司 | 光纤通信系统及在其内进行动态功率优化的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07264131A (ja) * | 1994-03-17 | 1995-10-13 | Fujitsu Ltd | 光加入者伝送システム及びそのシステムに用いられる加入者ユニット |
JPH08274719A (ja) * | 1995-03-30 | 1996-10-18 | Nec Corp | 光通信システムにおける光出力制御回路 |
JPH10163960A (ja) * | 1996-11-28 | 1998-06-19 | Nec Eng Ltd | 光バースト送受信回路 |
JPH11136192A (ja) * | 1997-10-24 | 1999-05-21 | Nec Corp | Pds方式の光通信システム及びその通信方法 |
JP2005318629A (ja) * | 2004-04-30 | 2005-11-10 | Samsung Electronics Co Ltd | 受動型光加入者網における伝送距離による損失を補償するための光送受信機 |
JP2008054244A (ja) * | 2006-08-28 | 2008-03-06 | Nec Corp | 局側光網終端装置、加入者側光網終端装置、および光通信システム |
WO2008072347A1 (ja) * | 2006-12-15 | 2008-06-19 | Mitsubishi Electric Corporation | Ponシステムおよびpon接続方法 |
-
2011
- 2011-11-25 WO PCT/JP2011/006573 patent/WO2013076780A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07264131A (ja) * | 1994-03-17 | 1995-10-13 | Fujitsu Ltd | 光加入者伝送システム及びそのシステムに用いられる加入者ユニット |
JPH08274719A (ja) * | 1995-03-30 | 1996-10-18 | Nec Corp | 光通信システムにおける光出力制御回路 |
JPH10163960A (ja) * | 1996-11-28 | 1998-06-19 | Nec Eng Ltd | 光バースト送受信回路 |
JPH11136192A (ja) * | 1997-10-24 | 1999-05-21 | Nec Corp | Pds方式の光通信システム及びその通信方法 |
JP2005318629A (ja) * | 2004-04-30 | 2005-11-10 | Samsung Electronics Co Ltd | 受動型光加入者網における伝送距離による損失を補償するための光送受信機 |
JP2008054244A (ja) * | 2006-08-28 | 2008-03-06 | Nec Corp | 局側光網終端装置、加入者側光網終端装置、および光通信システム |
WO2008072347A1 (ja) * | 2006-12-15 | 2008-06-19 | Mitsubishi Electric Corporation | Ponシステムおよびpon接続方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113438028A (zh) * | 2020-03-23 | 2021-09-24 | 四零四科技股份有限公司 | 光纤通信系统及在其内进行动态功率优化的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7070599B2 (ja) | 光送受信器および光送受信方法 | |
US10038946B2 (en) | Optical network and method for processing data in an optical network | |
US8326157B2 (en) | High-speed optical transceiver, a bi-directional duplex optical fiber link, and a method for providing a bi-directional duplex optical fiber link | |
US20070036483A1 (en) | Wavelength-division-multiplexed light source and wavelength-division-multiplexed passive optical network using the same | |
WO2015154389A1 (zh) | 光收发模块及其工作参数的配置方法及装置 | |
IL124639A (en) | Optical communication method and system using wavelength division multiplexing | |
US20090317078A1 (en) | Optical transmission device and optical transmission method | |
US7409164B2 (en) | Optical transceiver for compensating for loss due to transmission distance in passive optical network | |
WO2022262799A1 (zh) | 光信号的接收装置、系统及方法、光线路终端、计算机可读存储介质 | |
JP2006304170A (ja) | Ponシステムおよびponシステムの分散補償方法 | |
WO2013076780A1 (ja) | 光送受信器および光伝送システム | |
JP2010166279A (ja) | 光通信システムおよび光集線装置 | |
JP5665958B1 (ja) | 波長多重光通信システム、光送信器、及び波長多重光通信方法 | |
US20130343765A1 (en) | Optical network system and method | |
KR20100133327A (ko) | 광 네트워크장치 | |
JP2011039117A (ja) | 双方向光通信モジュール | |
KR20090110565A (ko) | 파장분할다중화 수동형 광가입자망의 선로종단장치 파장안정화 방법 | |
US20110076012A1 (en) | Optical network terminal and method for detecting transmission error in optical network terminal | |
JP5188512B2 (ja) | 光伝送システムおよび中継装置 | |
EP3270529B1 (en) | Optical transmission assembly | |
KR20180057742A (ko) | 실리콘 마이크로 링 기반 동기식 광 수신기 및 이를 이용한 파장분할다중화 시스템 | |
EP2787659A1 (en) | Apparatus for suppressing noise in injection-locked light source and wdm-pon system provided with same | |
KR101459342B1 (ko) | 주입잠김된 광원의 잡음억제장치 및 이를 구비한 wdm-pon 시스템 | |
WO2012009854A1 (zh) | 一种光线路终端模块和上行传输模块 | |
US11606149B2 (en) | Optical transmitter based on optical time division multiplexing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11876327 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11876327 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |