WO2013075635A1 - 连接建立方法和用户设备 - Google Patents

连接建立方法和用户设备 Download PDF

Info

Publication number
WO2013075635A1
WO2013075635A1 PCT/CN2012/085016 CN2012085016W WO2013075635A1 WO 2013075635 A1 WO2013075635 A1 WO 2013075635A1 CN 2012085016 W CN2012085016 W CN 2012085016W WO 2013075635 A1 WO2013075635 A1 WO 2013075635A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
bearer
connection
request message
message
Prior art date
Application number
PCT/CN2012/085016
Other languages
English (en)
French (fr)
Inventor
柴丽
蔺波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18165914.5A priority Critical patent/EP3416451B1/en
Priority to EP12851534.3A priority patent/EP2773129B1/en
Publication of WO2013075635A1 publication Critical patent/WO2013075635A1/zh
Priority to US14/281,487 priority patent/US9084222B2/en
Priority to US14/736,112 priority patent/US20150282236A1/en
Priority to US15/457,664 priority patent/US10674481B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a connection establishment method and user equipment.
  • D2D communication technology can implement local ad hoc network (ad-hoc) network and short-distance communication services and data applications.
  • ad-hoc network local ad hoc network
  • D2D systems share the same resources as cellular systems.
  • the D2D terminal in the D2D system accesses the cellular system and follows the time and time slot of the cellular system.
  • D2D systems can support services such as information sharing, gaming, social services, and mobile advertising.
  • the D2D terminal in the D2D system utilizes its own sensing function to autonomously perform communication matching with other D2D terminals according to the perceived result, without Evolved Packet Core (EPC)/Evolution Universal The Evolved Universal Mobile Telecommunications System Terrestrial Radio Access Network (E-UTRAN) controls and distributes the network, and there is no authentication and authentication of the carrier network, which is not conducive to the rational allocation of resources and the network. Safe operation.
  • EPC Evolved Packet Core
  • E-UTRAN Evolution Universal The Evolved Universal Mobile Telecommunications System Terrestrial Radio Access Network
  • the present invention provides a connection establishment method and user equipment to implement communication between user equipments supporting D2D functions, and to realize controllability of resources to the network.
  • An aspect of the present invention provides a connection establishment method, including:
  • the second user device supporting the device to device D2D function obtains the first user supporting the D2D function Information of the first user equipment broadcast by the device;
  • the second user equipment After the second user equipment determines to establish a connection with the first user equipment according to the information of the first user equipment, the second user equipment initiates a connection establishment process with the network side device, and in the connection establishment process Sending information of the first user equipment to the network side device, so that the network side device establishes a connection with the first user equipment.
  • Another aspect of the present invention provides a user equipment, where the user equipment is a second user equipment that supports the device to device D2D function, and the user equipment includes:
  • an obtaining module configured to obtain information about the first user equipment that is broadcast by the first user equipment that supports the D2D function
  • a determining module configured to determine, according to the information about the first user equipment obtained by the obtaining module, establishing a connection with the first user equipment
  • An initiating module configured to initiate a connection establishment process with the network side device, and send information of the first user equipment to the network side device in the connection establishment process, so that the network side device and the first A user device establishes a connection.
  • the second user equipment after determining that the second user equipment establishes a connection with the first user equipment according to the information broadcast by the first user equipment, the second user equipment initiates a connection establishment process with the network side device, and is in the connection establishment process.
  • DPS device-to-device evolution grouping system
  • FIG. 1 is a flow chart of an embodiment of a connection establishment method according to the present invention.
  • FIG. 2 is a flowchart of another embodiment of a connection establishment method according to the present invention.
  • FIG. 3 is a flowchart of still another embodiment of a connection establishment method according to the present invention.
  • 4a to 4c are schematic diagrams showing an embodiment of a bearer mapping according to the present invention.
  • FIG. 5 is a flowchart of still another embodiment of a connection establishment method according to the present invention.
  • FIG. 6 is a flowchart of an embodiment of a dedicated bearer activation process of the present invention.
  • connection establishment method 7 is a flowchart of still another embodiment of a connection establishment method according to the present invention.
  • FIG. 8 is a schematic structural diagram of an embodiment of a user equipment according to the present invention.
  • FIG. 9 is a schematic structural diagram of another embodiment of a user equipment according to the present invention.
  • 10a-10b are schematic diagrams of a user plane protocol stack of the present invention.
  • FIG. 1 is a flowchart of an embodiment of a connection establishment method according to the present invention. As shown in FIG. 1, the connection establishment method may include:
  • Step 101 The second user equipment that supports the D2D function obtains information about the first user equipment of the first user equipment that supports the D2D function.
  • Step 102 After determining, by the second user equipment, that the second user equipment establishes a connection with the first user equipment, the second user equipment initiates a connection establishment process with the network side device, and is in the connection The information of the first user equipment is sent to the network side device, so that the network side device establishes a connection with the first user equipment.
  • the information of the first user equipment includes the service information of the first user equipment and the first user equipment identifier; or the information of the first user equipment includes a service code, where the service code is used to indicate the first user equipment. Service information and first user equipment identification.
  • the second user equipment After the DPS bearer is established, the second user equipment starts D2D communication with the first user equipment.
  • the second user equipment initiates a connection establishment process with the network side device, and sends the information of the first user equipment to the network side device in the connection establishment process, so that the network side device establishes a connection with the first user equipment.
  • the second user equipment sends a radio resource control connection setup request message to the serving base station of the cell where the second user equipment is currently located; after receiving the radio resource control connection setup response message sent by the serving base station, the second user equipment provides the service
  • the base station sends a radio resource control connection setup complete message, where the radio resource control connection setup complete message carries non-access stratum signaling of the second user equipment, for example: service request signaling.
  • the value of the establishment cause of the RRC connection establishment request message is a D2D connection; and/or the RRC connection establishment completion message carries the D2D capability information of the second user equipment, and the D2D of the second user equipment
  • the capability information is used to indicate that the second user equipment supports the D2D function; one or all of the foregoing RRC connection establishment request message and the RRC connection establishment complete message carry the non-access stratum identifier and the access stratum identifier of the first user equipment. And one or all of the foregoing RRC connection establishment request message and the RRC connection establishment completion message carry the service code of the first user equipment.
  • the serving base station encapsulates the non-access stratum signaling in the initial user equipment message and sends the information to the mobility management entity, where the initial user equipment message establishment cause the value of the cell is a D2D connection, and the initial user equipment message carries a non-access stratum identifier of the first user equipment; and/or when used first When the user equipment is in the connected state, the initial user equipment message carries the access layer identifier of the first user equipment. Then, the serving base station receives an initial context setup request message sent by the mobility management entity, where the initial context setup request message is a mobility management entity. After the second user equipment is authenticated and sent to the serving base station, the initial context setup request message carries a D2D connection indication.
  • the serving base station performs mapping of the DPS bearer of the second user equipment to the radio bearer, and completes the DPS bearer.
  • the serving base station sends an initial context setup response message to the mobility management entity, where the initial context setup response message carries the address of the serving base station, the accepted evolved packet system bearer list, the rejected evolved packet system bearer list, and The tunnel end identifier of the S1 port; wherein the D2D connection type indication is added to the evolved universal terrestrial radio access bearer identifier in the received evolved packet system bearer list, or the dedicated packet data is specified in the attaching process.
  • DPS for managing network connection bearer.
  • the network side device may establish a connection with the first user equipment, where the serving base station receives the first message sent by the mobility management entity, where the first message may be a paging message or a new message;
  • the message carries the D2D connection type indication and the identifier of the second user equipment, so that the first user equipment establishes a connection with the network side device.
  • the IP address allocation and quality of service management carried by the DPS are performed by an entity having an internal gateway function; the entity having the internal gateway function is an independent entity or integrated with the service base station.
  • Each dedicated DPS bearer corresponds to one service flow template
  • the second user equipment uses the sending service flow template of the second user equipment to filter the service flow of the second user equipment in the sending direction to the corresponding service flow template of the second user equipment.
  • the second user equipment obtains and saves the sending service flow template of the first user equipment, and uses the sending service flow template of the first user equipment as the receiving service flow template of the second user equipment, and according to the second user equipment Receiving a service flow template to determine the second The mapping relationship between the service flow received by the user equipment and the DPS bearer corresponding to the received service flow template of the second user equipment.
  • the second user equipment obtains the sending service flow template of the first user equipment, where the second user equipment obtains the sending service flow template of the first user equipment that is notified by the first user equipment in the DPS bearer setup process; or The second user equipment obtains a sending service flow template of the first user equipment that is notified by the first user equipment through the network.
  • the first user equipment also uses the sending service flow template of the first user equipment to filter the service flow in the sending direction of the first user equipment to the DPS bearer corresponding to the sending service flow template of the first user equipment;
  • the device obtains and saves the sending service flow template of the second user equipment, and uses the sending service flow template of the second user equipment as the receiving service flow template of the first user equipment, and determines the foregoing according to the received service flow template of the first user equipment.
  • the first user equipment obtains the sending service flow template of the second user equipment, where the first user equipment obtains the sending service flow template of the second user equipment that is notified by the second user equipment in the DPS bearer setup process; or The first user equipment obtains a sending service flow template of the second user equipment that is notified by the second user equipment through the network.
  • the second user equipment determines to establish a connection with the first user equipment according to the information of the first user equipment, if the DPS bearer is not established between the second user equipment and the serving base station in the attaching process, Then, the second user equipment initiates the request bearer resource modification process to trigger the establishment of the DPS bearer.
  • the second user equipment initiates the request bearer resource modification process to trigger the establishment of the DPS bearer: the second user equipment sends a bearer resource modification request message to the mobility management entity, so that the mobility management entity sends the bearer resource modification request message to the a gateway, where the bearer resource modification request message sent by the second user equipment carries a connection bearer identifier and an evolved packet system bearer identifier related to the DPS bearer, and a D2D connection type is added in the bearer resource modification request message sent by the second user equipment.
  • the indication, or the bearer resource modification request message sent by the second user equipment has a dedicated packet data network connection for management of the DPS bearer.
  • the packet data gateway receives the bearer resource modification request message sent by the gateway after receiving the bearer resource modification request message sent by the second user equipment, and the bearer resource modification request message sent by the gateway carries the evolved packet system related to the DPS bearer.
  • a bearer identifier and a connection bearer identifier are added, and a D2D connection type indication is added in the bearer resource modification request message sent by the gateway, or a dedicated packet data network connection in the bearer resource modification request message sent by the gateway is used for management of the DPS bearer.
  • the packet data gateway initiates a process of establishing a DPS bearer for the second user equipment.
  • the serving base station performs mapping of the DPS bearer of the second user equipment to the radio bearer; and initiates DPS for the first user equipment at the packet data gateway.
  • the serving base station performs mapping of the DPS bearer of the first user equipment to the radio bearer.
  • the establishing process of the DPS bearer initiated by the packet data gateway may be: the serving gateway receives the create dedicated bearer request message sent by the packet data gateway, and the create dedicated bearer request message sent by the packet data gateway is a packet data gateway application local service quality.
  • the policy assigns the quality of service carried by the evolved packet system to the service gateway, and the service gateway sends a create dedicated bearer request message to the mobility management entity, so that the mobility management entity constructs a session management request, and carries the session management request on the bearer.
  • the establishment request message is sent to the service base station; wherein the creation of a dedicated bearer request message sent by the service gateway carries a connection bearer identifier; the session management request includes an evolved packet system bearer identifier and a connection bearer identifier.
  • the connection bearer is A new D2D connection type indication is identified, or a dedicated packet data network connection is included in the connection bearer identifier for management of the DPS bearer.
  • the second user equipment may further receive the D2D link setup request message sent by the first user equipment, where the D2D link setup request message carries the first The identifier of the user equipment, the identifier of the second user equipment, the channel state information of the first user equipment, and the resource allocation situation; receiving the D2D link establishment request message
  • the second user equipment sends a D2D link setup response message to the first user equipment, where the D2D link setup response message carries the identifier of the second user equipment, the identifier of the first user equipment, and the second user.
  • the channel state information of the device and the response of the second user equipment to the acceptance or rejection of the resource allocation of the first user equipment.
  • the second user equipment receives the D2D link setup complete message sent by the first user equipment.
  • the protocol stack of the air interface between the first user equipment and the second user equipment includes a user plane protocol stack.
  • the user plane protocol stack may be a simplified protocol stack, and the user plane protocol stack is configured with an Internet Protocol (Internet Protocol; IP) and an enhanced media access control (Media Access Control). -d; hereinafter referred to as: MAC-d) and physical layer (Physical; hereinafter referred to as: PHY) one or a combination of information.
  • IP Internet Protocol
  • Media Access Control Media Access Control
  • MAC-d enhanced media access control
  • PHY physical layer
  • the user plane protocol stack may be configured with an IP, a Packet Data Convergence Protocol (hereinafter referred to as PDCP), and a Radio Link Control (hereinafter referred to as RLC). ), information of one or a combination of a media access control layer (Media Access Control; hereinafter referred to as MAC) and a physical layer (Physical; hereinafter referred to as PHY).
  • IP IP
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control layer
  • PHY Physical layer
  • the establishment of the DPS bearer between the second user equipment and the first user equipment, and the mapping of the DPS bearer to the radio bearer are controlled by the network side device.
  • the second user equipment after the second user equipment determines to establish a connection with the first user equipment according to the information broadcast by the first user equipment, the second user equipment initiates a connection establishment process with the network side device, and in the connection establishment process, The information of the first user equipment is sent to the network side device, so that the network side device establishes a connection with the first user equipment, so that a DPS bearer can be established between the user equipments supporting the D2D function, and the user equipment supporting the D2D function is implemented. Communication, in turn, can achieve network controllability of resources.
  • the DPS bearer is a D2D bearer, and the meaning of the two Same.
  • connection establishment method may include:
  • Step 201 The user equipment 1 (User Equipment 1; hereinafter referred to as UE1) that supports the D2D function obtains resources for broadcasting the information of the UE1, where the information of the UE1 includes the identifier of the UE1, the service information, the service code, and the application layer service information.
  • UE1 User Equipment 1; hereinafter referred to as UE1
  • the information of the UE1 includes the identifier of the UE1, the service information, the service code, and the application layer service information.
  • the identifier may be one or a combination of a physical identifier, a Non-Access Stratum Identifier (hereinafter referred to as NAS ID), and an Access Stratum Identifier (hereinafter referred to as AS ID);
  • the physical identifier may be: a specific code sequence such as an International Mobile Subscriber Identification (IMSI);
  • the NAS ID may be a Serving Temporary Mobile Subscriber Identifier (hereinafter referred to as: s-TMSI or Global Unique Temporary Identifier (hereinafter referred to as GUTI).
  • the connection state may be the current s-TMSI or the current GUTI;
  • the AS ID may be a Cell Radio Network Temporary Identifier (C-RNTI) or a D-RNTI (ie, a wireless network for D2D) Radio Network Temporary Identifier (hereinafter referred to as: RNTI) ;
  • the application layer service information includes service information that the user can interpret, and the service information that the user can interpret includes the service type and/or the service content.
  • the service content may be advertisement information, a video or game of a movie, or the like;
  • the foregoing service code may be a character, a string or a digital sequence, and may represent application layer service information; or the service code may indicate the identifier of the UE1, and one of the application layer service information and the foregoing service information;
  • the foregoing service information may be required for a connection establishment request message used by the user equipment to construct a service.
  • Non-Access Stratum (hereinafter referred to as NAS) layer information including Quality of Service (QoS) information.
  • QoS Quality of Service
  • the UE1 needs to obtain resources for broadcasting the information of the UE1.
  • the UE that supports the D2D function to obtain the information for broadcasting the information of the UE1 may be: the UE1 obtains the user equipment of the cell in which the UE1 is currently located, and allocates the user equipment supporting the D2D function in the cell in advance.
  • a resource for broadcasting the above information of the self the resource is broadcast by the serving base station by using a broadcast message; then, the UE1 selects a resource whose interference level is lower than a predetermined threshold by automatically searching or measuring resources pre-allocated among the service base stations.
  • the allocation manner of the serving base station is semi-static.
  • the resource that is used by the UE1 that supports the D2D function to obtain the information for broadcasting the UE1 may be: the interference level of the sub-resource broadcasted by the serving base station of the cell where the UE1 is currently located, and the foregoing sub-resource.
  • the location information is selected from the sub-resources broadcast by the serving base station to select a sub-resource whose interference level is lower than a predetermined threshold.
  • the sub-resource is allocated by the serving base station to the user equipment supporting the D2D function in the foregoing cell.
  • the resources obtained by broadcasting the above information of the self are divided.
  • the UE that supports the D2D function to obtain the information for broadcasting the information of the first user equipment may be: UE1 establishes a connection with the serving base station of the cell where the UE1 is currently located, and triggers the serving base station to be The UE 1 allocates resources for broadcasting the information of the UE 1, regardless of whether the real service of the UE 1 exists. After UE1 establishes a connection with the serving base station of UE1, UE1 can maintain a long discontinuous reception mode (hereinafter referred to as "long DRX mode") in a normal connection state or a connection state. When the UE1 exits the current cell, the UE1 notifies the serving base station to reclaim the resource allocated for the UE1 for broadcasting the information of the UE1.
  • long DRX mode long discontinuous reception mode
  • the connection between the UE1 and the serving base station of the cell in which the UE1 is currently located may be: UE1 sends an attach request (Attach Request) message to the serving base station, where
  • the Attach Request message carries the IMSI or old GUTI of UE1, and the last visited Tracking Area Identifier (hereinafter referred to as last visited TAI) (if any), the core network capability of the UE1 ( Core) Network Capability), the specific DRX parameters of the UE1, the Packet Data Network Type (hereinafter referred to as PDN Type), the Protocol Configuration Options, and the protocol selection forwarding flag ( Ciphered Options Transfer Flag), Attach Type, KSIASME (for identifying the root key KASME), Non-Access Stratum sequence number (hereinafter referred to as NAS sequence number), non-access stratum Media Access Control Address (N-Access Stratum Media Access Control; hereinafter referred to as NAS-MAC), additional GUTK additional GUTI), Packet
  • the serving base station encapsulates the Attach Request message sent by the UE1, generates an initial user equipment message (Initial UE Message), and sends it to the mobility management entity (Mobility Management Entity; hereinafter referred to as MME); next, the MME sends the message to the UE1.
  • the Attach Accept message is encapsulated in an S1-MME control message, for example, an Initial Context Setup Request message, and the initial context setup request message is sent to the serving base station, and finally the serving base station
  • the initial context setup request message is sent to the UE1, and the UE1 parses the initial context setup request message to obtain the foregoing Attach Accept message.
  • the above-mentioned Attach Accept message carries an Access Point Name (APN), a GUTL PDN Type, a Packet Data Network Address (PDN Address), a TAI List, and a TAI List.
  • Evolved Packet System Bearer Identity (hereinafter referred to as EPS Bearer) Information such as Identity Management, Session Management Request, Protocol Configuration Options, KSIASME, NAS sequence number, and NAS-MAC; and may also carry information about bearers for D2D connections in the profile of UE1, and Add D2D bearer type information after EPS Bearer Identity, or bind specific PDN and D2D connections.
  • the Attach Accept message may further include an Access Stratum security context (hereinafter referred to as AS security context) information, a Handover Restriction List, and an Evolved Packet System.
  • AS security context Access Stratum security context
  • AS security context an Access Stratum security context
  • AMBR Aggregate Maximum Bit Rate
  • EPS Bearer Identity an Evolved Packet System.
  • the EPS bearer includes bearers for D2D connections
  • the tunnel endpoint Identifier hereinafter referred to as TEID
  • TEID tunnel endpoint Identifier
  • UE1 After receiving the Attach Accept message, UE1 will set "GUTI" to the Temp Identity used in Next update (hereinafter referred to as TIN).
  • the newly added "D2D connection" type parameter may also be placed in the S1 Application Protocol (S1 Application Protocol; S1-AP) message for transmitting the NAS layer Attach Accept message, for example: Initial Context Setup
  • S1 Application Protocol S1 Application Protocol; S1-AP
  • the indication information of "support D2D function" may be added to the UE wireless capability cell of the Initial Context Setup Request message.
  • the format of the above-mentioned Attach Request message can be as shown in Table 1.
  • the format of the above-mentioned Initial UE Message can be as shown in Table 2.
  • the format of the above-mentioned Initial Context Setup Request message can be as shown in Table 3.
  • the format of the above Attach Accept message can be as shown in the table. 4 is shown.
  • Presence Presence
  • Format ( Length )
  • Security header type Security header type M V 1/2
  • Step 202 The UE1 broadcasts the information of the UE1 on the obtained resource.
  • the UE supporting the D2D function has discontinuous reception (hereinafter referred to as DRX) and discontinuous transmission (hereinafter referred to as DTX).
  • the manner in which the UE1 broadcasts the information of the UE1 may use the DTX mode to broadcast the information of the UE1 on the obtained resource by using a discontinuous transmission period (DTX-Cycle).
  • DTX-Cycle discontinuous transmission period
  • Step 203 The UE2 that supports the D2D function sends an RRC connection setup request message to the serving base station by using the sensing technology or the search and measurement of other UEs supporting the D2D function to learn that the UE1 that is likely to be paired exists.
  • UE2 before step 203, UE2 also obtains the resource for broadcasting the information of the UE2, and broadcasts the information of the UE2 on the obtained resource, in the same manner as described in step 201 and step 202. This will not be repeated here.
  • the service base station of the cell in which UE2 is currently located is the same as the serving base station of the cell in which UE1 is currently located, as an example.
  • the value of the establishment cause cell of the foregoing RRC connection setup request message is a D2D connection; further, the RRC connection setup request message may further carry the NAS ID of the UE1 (for example: old GUTI or s- And the AS ID; or, optionally, the foregoing RRC connection setup request message may further carry the service code of the UE1.
  • the serving base station can learn that the UE2 initiates a D2D connection establishment process, and can obtain the identity of the destination UE or the paired UE.
  • the destination UE or the paired UE is UE1.
  • the UE2 may use the DRX mode to search for the broadcast information of the UE supporting the D2D function other than the UE2 on the specific resources by using the discontinuous reception period (DRX-Cycle), and learn that the UE1 is likely to be paired. After being present, the UE2 receives the information of the UE1 broadcasted by the UE1. Alternatively, the UE2 may also receive the information of the UE1 broadcast by the UE1 in an event-triggered manner, for example: when the user has certain specific requirements, trigger through the human-machine interface. The receiving action; or the application layer triggers the receiving action according to the user's previously customized demand profile.
  • DRX-Cycle discontinuous reception period
  • the UE2 can also use the DRX and the event triggering in combination to receive the information of the UE1 broadcast by the UE1. Then, UE2 finds that the information of UE1 matches the requirement of UE2, and then UE2 initiates the establishment of a direct D2D connection with UE1. First, UE2 sends an RRC Connection Setup Request message to the serving base station.
  • Step 204 The UE2 receives an RRC connection setup response message sent by the serving base station.
  • Step 205 The UE2 sends an RRC Connection Setup Complete message to the serving base station.
  • the RRC connection setup complete message carries the D2D capability information of the UE2 and the service request (Service Request) signaling of the UE2.
  • the D2D capability information of the UE2 is used to indicate that the UE2 supports the D2D function.
  • the RRC connection setup complete message may further carry the NAS ID of the UE1 (for example, old GUTI or s-TMSI) and the AS ID.
  • the RRC connection setup complete message may further carry the service code of the UE1. In this way, the foregoing serving base station can learn that the UE2 initiates a D2D connection establishment process, and can learn the identity of the connection object (ie, UE1).
  • the RRC connection setup complete message carries the value of the D2D capability information of the UE2 and the establishment cause cell of the RRC connection setup request message.
  • the D2D connection may only occur one or both of them. That is, if the value of the establishment cause cell of the RRC connection setup request message is a D2D connection in step 203, the RRC connection setup complete message may carry the D2D capability information of the UE2, or may not be carried in step 205; If the value of the establishment cause cell of the RRC connection setup request message is not a D2D connection in step 203, the RRC connection setup complete message carries the D2D capability information of the UE2 in step 205.
  • one or all of the RRC connection setup complete message and the RRC connection setup request message carry the NAS ID (eg, old GUTI or s-TMSI) and the AS ID of the UE1; or the RRC connection setup complete message and the foregoing One or all of the RRC Connection Setup Request messages carry the service code of UE1.
  • NAS ID eg, old GUTI or s-TMSI
  • AS ID the AS ID of the UE1
  • One or all of the RRC Connection Setup Request messages carry the service code of UE1.
  • Step 206 The serving base station forwards the service request signaling to a mobility management entity (Mobility Management Entity; hereinafter referred to as MME).
  • MME Mobility Management Entity
  • the serving base station turns the service request (Service Request) signaling of the non-access stratum
  • the serving base station may perform admission decision control before sending to the MME.
  • the serving base station may send a measurement configuration of the link of the UE2 to the UE1 and/or the link of the UE2 to the serving base station to the UE2, and determine whether to establish according to the measurement result reported by the UE2 after being measured according to the measurement configuration. D2D type bearer and communication.
  • the serving base station encapsulates the service request signaling in an Initial UE Message of the S1-AP port.
  • a "D2D connection" type is added to the Initial UE Message message to simplify the subsequent paging process for D2D communication.
  • the Initial UE Message message may include the NAS ID of the UE1, for example: s-TMSI; if the UE1 is in the connected state, the serving base station may map the AS ID of the UE1 to the eNB T-UE SIAP ID, and carry the Initial UE Message.
  • the message is sent to the core network device, such as the MME.
  • the format of the above Initial UE Message message can be as shown in Table 5.
  • Presence Range Type Reference (Essentially) (Essentially Typed and Critical) )
  • Step 207 After receiving the service request signaling, the MME performs an authentication and authentication process. If the authentication is passed, the MME initiates a context establishment process, thereby triggering the bearer setup process.
  • the mapping of the DPS bearer to the radio bearer may be performed by a Packet Data Network Gateway (hereinafter referred to as PGW) according to the current LTE technology, for example, completing the Internet Protocol of the DPS bearer (Internet Protocol; Abbreviation: IP) address allocation and quality of service (hereinafter referred to as QoS) management and other bearer management functions
  • PGW Packet Data Network Gateway
  • IP Internet Protocol
  • QoS quality of service
  • Step 208 The MME sends an initial context setup request message to the serving base station to activate the radio bearers and S1 bearers of all EPS bearers.
  • the initial context setup request message includes a service gateway address, an uplink S1-TEID (Sl-TEID(s)), an EPS Bearer QoS(s), a security context (Security Context), and an MME signal connection identifier (MME). Signaling Connection ID) and Handover Restriction List.
  • DP D2D connection indication
  • the serving base station After receiving the above Initial Context Setup Request message, the serving base station saves the Security Context, MME Signaling Connection Id, EPS Bearer QoS(s) and Sl-TEID(s) in the radio access network context of the serving base station (Radio Access Network context) ; hereinafter referred to as: RAN context ).
  • Radio Access Network context Radio Access Network context
  • the format of the foregoing Initial Context Setup Request message may be as shown in Table 6.
  • the cell is in the message
  • Step 209 The serving base station performs mapping of the DPS bearer to the radio bearer.
  • a radio bearer is used to transmit a DPS-bearing data packet between two UEs. If a radio bearer exists, there is a mapping relationship between a DPS bearer and a radio bearer. Between two UEs, one DPS bearer uniquely identifies a service flow group with a common QoS feature.
  • the packet filter rule is associated with a unique packet filter identifier in each connection and is sent out in a signaling similar to the NAS process.
  • a DPS bearer is also a collection of all packet filtering rules in this bearer.
  • the service flow groups with the same QoS feature are mapped to the same DPS bearer.
  • the foregoing QoS features may include: a scheduling policy, a queuing management policy, a speed shaping policy, and a radio link control (hereinafter referred to as RLC). ) Management, etc.
  • Step 210 The serving base station sends an Initial Context Setup Complete/Response message to the MME.
  • the serving base station After completing the mapping of the DPS bearer to the radio bearer, the serving base station sends an RRC reconfiguration request message to the UE2, and receives an RRC reconfiguration complete message sent by the UE2. After receiving the RRC reconfiguration complete message sent by the UE2, the serving base station completes the mapping of the DPS bearer to the radio bearer. Then, the monthly service base station sends a reply message to the MME, for example, an initial context setup complete/response message, the initial context setup complete/response message carries the address of the monthly service base station, and the received EPS. Bearer list, rejected EPS bearer list and TEID(s) of S1 port (downstream). And in the "Accepted EPS Bearer List", "Evolved Universal Terrestrial Radio Access
  • E-RAB ID Identifier; hereinafter referred to as: E-RAB ID
  • the format of the initial context establishment completion/response message may be as shown in Table 7.
  • Step 212 The MME receives an Update Bearer Response (Update Bearer Response) message sent by the GW.
  • Update Bearer Response Update Bearer Response
  • Step 213 The MME sends a first message to the serving base station.
  • the first message is used to trigger the serving base station to send a message to the UE1, so that the UE1 and the network side device establish a connection.
  • the first message may be a paging message or a new message.
  • the first message carries a type of "D2D connection", and the identifier of the UE (in this embodiment, UE2) that triggers the D2D communication and the UE that needs to establish a connection ( In this embodiment, it is the identifier of UE1).
  • the MME receives the reply message of the serving base station, for example, after the initial context setup complete/response message, sends a first message to the serving base station, and triggers the serving base station to send a second message to the UE1, so that the UE1 and the network side
  • the device establishes a connection.
  • the "D2D connection" type and the identifier of the UE that triggers the current D2D communication are added in the paging message.
  • the UE that triggers the current D2D communication is the UE2, where the identifier of the UE that triggers the current D2D communication is an identifier that the serving base station can recognize.
  • the format of the paging message sent by the MME to the serving base station may be as shown in Table 8.
  • Step 214 the serving base station sends a second message to UE1.
  • the foregoing second message is used to trigger the UE1 to establish a connection with the network side device.
  • the second message may be a paging message or a newly designed message format, carrying the "D2D connection" type and the identifier of the UE (UE2 in this embodiment) that triggers the current D2D communication.
  • the present embodiment adds a "D2D connection" type indication and an identifier of the UE that triggers the current D2D communication on the basis of the paging message sent by the existing serving base station to the UE.
  • the UE that triggers the current D2D communication is the UE2, where the identifier of the UE that triggers the current D2D communication is an identifier that the serving base station can recognize.
  • the above "D2D Connection" type indication may be an explicit indication or an implicit indication of the newly added cell.
  • Step 215 The UE1 initiates a connection establishment process with the network side device.
  • the UE1 After the UE1 receives the second message sent by the serving base station, the UE establishes a connection establishment process with the network side device.
  • the establishment process of the DPS bearer of the UE1 is similar to the process of establishing the DPS bearer of the UE2.
  • UE1 performs admission control of the connection establishment process first.
  • a default bearer is established between the UE1 and the serving base station.
  • the serving base station may also directly send the scheduling information to the UE1. Subsequently, the scheduling information of the UE1 is updated according to the feedback of the measurement of the link of the D2D connection by the UE1.
  • the serving base station may pre-configure the resources of the UE1 from a longer time, for example, the semi-static resources used by the UE1 to send/receive, including configuring an offset of the semi-static resource, and configuring a period of the semi-static resource.
  • Step 216 UE1 initiates connection establishment with UE2.
  • UE1 initiates connection establishment with UE2.
  • UE1 initiates connection establishment with UE2.
  • the UE1 first sends a D2D link setup request message to the UE2, where the D2D link setup request message carries: the identifier of the UE1 (D-RNTI or the physical identifier of the UE1) and the identifier of the UE2 (the physical identifier of the D-RNTI or the UE2). And the channel state information (CSI) information of the UE1, for example, Modulation and Coding Scheme (hereinafter referred to as MCS), code rate, and/or precoding matrix Indicators (Precoding Matrix Indexes; hereinafter referred to as PMI); and resource allocation (if the serving base station does not deliver configuration information such as Time Division Duplexing (TDD) ratios.
  • MCS Modulation and Coding Scheme
  • PMI precoding Matrix Indexes
  • resource allocation if the serving base station does not deliver configuration information such as Time Division Duplexing (TDD) ratios.
  • TDD Time Division Duplexing
  • UE2 After receiving the D2D link setup request message, UE2 further performs access optionally. Control, if the connection is allowed to be established, the UE2 replies to the UE1 with a D2D link setup response message, the D2D link setup response message carrying the identifier of the UE2 (D-RNTI or the physical identifier of the UE2) and the identifier of the UE1 (D-RNTI or UE1) And the CSI information of the UE2, for example: MCS, code rate, and/or PMI, etc.; and resource allocation acceptance or rejection.
  • the resource allocation acceptance or rejection refers to the UE2 accepting or rejecting the resource allocation of the UE1, and optionally carrying the cause value or the recommended resource allocation manner.
  • UE1 After receiving the D2D link setup response message sent by UE2, UE1 sends a D2D link setup complete message to UE2.
  • Step 217 the DPS bearer setup between UE1 and UE2 is completed.
  • UE1 and UE2 start device-to-device (D2D) communication.
  • D2D device-to-device
  • the UE1 and the UE2 may perform scheduling negotiation or self-scheduling according to the measurement of the link of the D2D connection, and update the opposite end according to the measurement result.
  • the scheduling information of the UE may be performed by the UE1 and the UE2 to perform scheduling negotiation or self-scheduling according to the measurement of the link of the D2D connection, and update the opposite end according to the measurement result.
  • the serving base station may be an evolved NodeB (hereinafter referred to as an eNB).
  • eNB evolved NodeB
  • the embodiment of the present invention is not limited thereto.
  • the embodiment of the present invention does not limit the form of the base station.
  • the foregoing embodiment can implement the DPS bearer between the user equipments supporting the D2D function, and implement communication between the user equipments supporting the D2D function, thereby implementing controllability of resources on the network.
  • FIG. 3 is a flowchart of still another embodiment of a connection establishment method according to the present invention. As shown in FIG. 3, the connection establishment method may include:
  • Step 307 After receiving the foregoing service request signaling, the MME performs an authentication and authentication process. If the authentication is passed, the MME initiates a context establishment process, thereby triggering the bearer setup process.
  • Step 308 the MME sends a context setup request message to the serving base station to trigger bearer establishment.
  • Process and DPS bear the mapping process to the radio bearer.
  • bearer management functions such as IP address allocation and QoS management of the DPS bearer may be completed by an entity having an internal gateway function; the entity having the internal gateway function may be an independent entity or may be integrated with the foregoing service base station. Together.
  • one DPS bearer has the following characteristics:
  • Each dedicated DPS bearer is associated with a TFT.
  • TX TFT The TX Traffic Flow Template
  • the UE2 uses the sending service flow template to filter the service flow in the sending direction to the corresponding DPS bearer.
  • the UE1 also uses the sending service flow template to filter the service flow in the sending direction to the corresponding DPS bearer. Meanwhile, the two UEs save the sending of the other party.
  • RX TFT RX Traffic Flow Template
  • the UE1 and the UE2 that support the D2D function may notify each other during the establishment of the connection, or may notify the other party through the network.
  • UE1 and UE2 can determine the association between Bearer and Application by using TX TFT and RX TFT:
  • the data from Bearer determines which Application is based on TFT, which is Receive (RX);
  • the data coming from, according to the TFT determines which Bearer to map to, which is the transmission (TX).
  • a Radio Bearer is used to transmit a DPS-bearing data packet between two UEs. If a radio bearer exists, there is a mapping relationship between a DPS bearer and a radio bearer. Between two UEs, one DPS bearer uniquely identifies a service flow group with common QoS characteristics. The packet filter rule is associated with a unique packet filter identifier in each connection and is sent out in a signaling similar to the NAS process.
  • a DPS bearer is also a collection of all packet filtering rules in this bearer.
  • the service flow groups with the same QoS feature are mapped to the same DPS bearer.
  • the foregoing QoS features may include: a scheduling policy, a queuing management policy, a speed shaping policy, and an RLC management. Wait.
  • mapping between the radio bearer and the DPS bearer may be as shown in FIG. 4a to FIG. 4c, and FIG. 4a to FIG. 4c are schematic diagrams of an embodiment of the bearer mapping according to the present invention.
  • Step 309 The serving base station sends an initial context setup complete/response message to the MME.
  • the serving base station After completing the mapping of the DPS bearer to the radio bearer, the serving base station sends an RRC reconfiguration request message to the UE2, and receives an RRC reconfiguration complete message sent by the UE2. After receiving the RRC reconfiguration complete message sent by the UE2, the serving base station completes the mapping of the DPS bearer to the radio bearer. Then, the serving base station sends a reply message to the MME, for example: an initial context setup complete/response message, the initial context setup complete/response message carries the address of the serving base station, the accepted EPS bearer list, the rejected EPS bearer list, and the S1 port TEID(s) (downstream). A new "D2D Connection" type indication is added to the "E-RAB ID" information in the "Accepted EPS Bearer List", or a dedicated PDN connection is specified for the management of the DPS bearer during the Attach process.
  • the format of the initial context establishment completion/response message may be as shown in Table 7. Step 310 to step 314, the same steps 213 to 217.
  • the UE1 and the UE2 may perform scheduling negotiation or self-scheduling according to the measurement of the link of the D2D connection, and update the opposite end according to the measurement result.
  • the scheduling information of the UE may be performed by the UE1 and the UE2 to perform scheduling negotiation or self-scheduling according to the measurement of the link of the D2D connection, and update the opposite end according to the measurement result.
  • the serving base station may be an eNB.
  • the embodiment of the present invention is not limited thereto.
  • the embodiment of the present invention does not limit the form of the base station.
  • the foregoing embodiment can implement the DPS bearer between the user equipments supporting the D2D function, and implement communication between the user equipments supporting the D2D function, thereby implementing controllability of resources on the network.
  • FIG. 5 is a flowchart of still another embodiment of a connection establishment method according to the present invention.
  • the establishment of the DPS bearer uses the PGW in LTE to assume the management and resource allocation principles of the DPS bearer.
  • the initial states of UE1 and UE2 are idle (IDLE) states.
  • the connection establishment method may include: Step 501: The UE1 that supports the D2D function obtains a resource for broadcasting the information of the UE1, where the information of the UE1 includes one or a combination of the identifier of the UE1, the service information, the service code, and the application layer service information.
  • the manner in which the UE 1 obtains the resource for the information of the UE1 is the same as that described in the step 301 of the embodiment shown in FIG. 3 of the present invention, and details are not described herein again.
  • Step 502 The UE1 broadcasts the information of the UE1 on the obtained resource.
  • the manner in which the UE1 broadcasts the information of the UE1 is the same as that described in the step 302 of the embodiment shown in FIG. 3 of the present invention, and details are not described herein again.
  • Step 503 The UE2 that supports the D2D function sends an RRC connection setup request message to the serving base station of the current cell of the UE1 when the UE1 that is likely to be paired exists through the sensing technology or the search and measurement of the UE supporting the D2D function.
  • the UE 2 before step 503, the UE 2 also obtains the resource for broadcasting the information of the UE2, and broadcasts the information of the UE2 on the obtained resource, in the same manner as described in steps 501 and 502. This will not be repeated here.
  • the service base station of the cell in which UE2 is currently located is the same as the serving base station of the cell in which UE1 is currently located, as an example.
  • the value of the establishment cause cell of the RRC connection setup request message is a D2D connection; further, the RRC connection setup request message may further carry the NAS ID of the UE1 (for example: old GUTI or s-TMSI) and The RRC connection setup request message may also carry the service code of the UE1.
  • the serving base station can learn that the UE2 initiates a D2D connection establishment process, and can learn the identity of the destination UE or the paired UE.
  • the destination UE or the paired UE is UE1.
  • the UE2 may use the DRX mode to search for the broadcast information of the UE supporting the D2D function other than the UE2 on the specific resources by using the discontinuous reception period (DRX-Cycle), and learn that the UE1 is likely to be paired.
  • UE2 receives the information of the UE1 broadcasted by the UE1; or, the UE2 may also receive the information of the UE1 broadcast by the UE1 in an event-triggered manner, for example: When the user has certain specific requirements, the receiving action is triggered by the human-machine interface; or the application layer triggers the receiving action according to the user's previously customized demand profile.
  • the UE2 can also use the DRX and the event triggering in combination to receive the information of the UE1 broadcast by the UE1.
  • UE2 finds that the information of UE1 matches the requirement of the UE2, and then UE2 initiates the establishment of a direct D2D connection with UE1.
  • the UE 2 transmits an RRC Connection Setup Request message to the serving base station.
  • Step 504 The UE2 receives an RRC connection setup response message sent by the serving base station.
  • Step 505 The UE2 sends an RRC Connection Setup Complete message to the serving base station.
  • the D2D capability information and the service request (Service Request) signaling of the UE2 are carried in the RRC connection setup complete message.
  • the RRC connection setup request message may further carry the NAS ID of the UE1 (for example, old GUTI or s-TMSI) and the AS ID.
  • the RRC connection setup complete message may further carry the service code of the UE1. In this way, the foregoing serving base station can learn that the UE2 initiates a D2D connection establishment process, and can learn the identity of the connection object (ie, UE1).
  • the RRC connection setup complete message carries the value of the D2D capability information of the UE2 and the establishment cause cell of the RRC connection setup request message.
  • the D2D connection may only occur one or both of them. That is, if the value of the establishment cause cell of the RRC connection setup request message is a D2D connection in step 503, the RRC connection setup complete message may carry the D2D capability information of the UE2, or may not be carried in step 505; If the value of the establishment cause cell of the RRC connection setup request message is not a D2D connection in step 503, the RRC connection setup complete message carries the D2D capability information of the UE2 in step 505.
  • RRC connection setup complete message and the RRC connection setup request message carry the NAS ID (eg, old GUTI or s-TMSI) and the AS ID of the UE1; or the RRC connection setup complete message and the foregoing One or all of the RRC Connection Setup Request messages carry the service code of UE1.
  • Step 506 The serving base station forwards the service request signaling to the MME.
  • Step 507 After receiving the foregoing service request signaling, the MME performs an authentication and authentication process. If the authentication is passed, the MME initiates a context establishment process, thereby triggering the bearer setup process.
  • Step 508 The MME sends an initial context setup request message to the serving base station to activate all radio bearers and S1 bearers carried by the EPS.
  • the format of the foregoing initial context setup request message may refer to the description in step 208 of the embodiment shown in FIG. 2 of the present invention, and details are not described herein again.
  • Step 509 The serving base station performs mapping of the DPS bearer to the radio bearer.
  • the foregoing serving base station performs a radio bearer establishment process.
  • the security features of the user plane are established at this step.
  • the Service Request process is completed, and the DPS bearer is synchronized between the UE and the network side.
  • the configuration and management of the DPS bearer may be completed by the PGW or the MME in the EPC according to the existing LTE technology.
  • Step 510 The serving base station sends an Initial Context Setup Complete/Response message to the MME.
  • the serving base station After completing the mapping of the DPS bearer to the radio bearer, the serving base station sends an RRC reconfiguration request message to the UE2, and receives an RRC reconfiguration complete message sent by the UE2. After receiving the RRC reconfiguration complete message sent by the UE2, the serving base station completes mapping of the DPS bearer to the radio bearer. Then, the monthly service base station sends a reply message to the MME, for example, an initial context setup complete/response message, the initial context setup complete/response message carries the address of the monthly service base station, and the received EPS. Bearer list, rejected EPS bearer list and TEID(s) of S1 port (downstream).
  • a new "D2D connection” type indication is added to the "E-RAB ID" information in the "Accepted EPS Bearer List", or a dedicated PDN connection is specified for the management of the DPS bearer in the Attach process.
  • the format of the foregoing initial context establishment completion/response message may be as shown in Table 7, and details are not described herein again.
  • Step 511 The MME sends an update bearer request message to the GW.
  • Step 512 The MME receives an update bearer response message sent by the GW.
  • Step 513 The UE2 sends a bearer resource modification request (Bearer Resource Modification Request) message to the serving base station.
  • Bearer Resource Modification Request Bearer Resource Modification Request
  • the UE2 may initiate a request bearer resource modification process to trigger the establishment of the DPS bearer.
  • the UE2 may first send a Bearer Resource Modification Request message to the foregoing serving base station, where the bearer resource modification request message carries a Linked EPS Bear ID (hereinafter referred to as LBI) and a payload type indication ( Payload Type Indicator; hereinafter referred to as: PTI), EPS Bearer Identity, QoS, Traffic Aggregate Description (TAD) and Protocol Configuration Options; and the bearer resource modification request
  • LBI Linked EPS Bear ID
  • PTI Payload Type Indicator
  • PTI Payload Type Indicator
  • TAD Traffic Aggregate Description
  • Protocol Configuration Options Protocol Configuration Options
  • a "D2D connection" type indication is added to the message, or a dedicated packet data network (Packet Data Network; PDN) connection is used for management of the DPS bearer.
  • PDN Packet Data Network
  • the foregoing TAD is used to indicate that the bearer resource modification request message is added, and the packet filtering rule is modified or deleted.
  • the TAD includes a set of packet filtering rules, but there is no Packet Filter Identifier.
  • the UE for example, UE2 also transmits the QoS Class Identifier (QCI) information and the Guaranteed Bit Rate (GBR) of the service flow to be added. When this process is over, the TAD is released.
  • QCI QoS Class Identifier
  • GRR Guaranteed Bit Rate
  • the UE (for example: UE2) only sends an LBI to indicate which PDN connection is associated with the newly added bearer resource when requesting to add a bearer operation.
  • EPS Bearer Identity will only be sent when the bearer operation is modified and deleted.
  • the format of the bearer resource modification request message sent by the UE may be as shown in Table 9.
  • Step 514 The serving base station sends a bearer resource modification request message to the MME.
  • the bearer resource modification request message carries an IMSI, an LBI, a PTI, an EPS Bearer Identity, a QoS, a TAD, and a Protocol Configuration Options.
  • MME used LBI to fully verify this request.
  • the MME uses the same SGW address.
  • the bearer resource repair A new "D2D Connection" type indication is added to the request message, or there is a dedicated PDN connection for management of the DPS bearer.
  • Step 515 The MME sends a bearer resource modification request message to the selected serving gateway (Serving Gateway; hereinafter referred to as SGW), where the bearer resource modification request message carries IMSI, LBI, PTL EPS Bearer Identity, QoS, TAD, and Protocol Configuration Options.
  • SGW Serving Gateway
  • a new "D2D connection" type indication is added to the bearer resource modification request message, or a dedicated PDN connection is used for management of the DPS bearer.
  • Step 516 The SGW sends a bearer resource modification request message to the PGW, where the bearer resource modification request message carries IMSI, LBI, PTL EPS Bearer Identity, QoS, TAD, and Protocol Configuration Options.
  • the SGW sends the EPS bearer corresponding to the LBI to the same PDN.
  • a new "D2D connection" type indication is added to the bearer resource modification request message, or a dedicated PDN connection is used for management of the DPS bearer.
  • the PTI allocated by UE2 associates the Dedicated Bearer Activation procedure initiated by UE2 with the Bearer Resource Modification procedure initiated by UE2, which provides the necessary connections between the new traffic flow combination and the EPS bearer for the new traffic flow combination.
  • the PGW allocates a new Packet Filter Identifier unique to the TFT.
  • the PGW maintains the correspondence between the packet filtering identifier in the Service Data Flow (SDF) and the packet filtering identifier in the TFT.
  • SDF Service Data Flow
  • Step 517 to step 521 the same steps 213 to 217.
  • the serving base station may be an eNB.
  • the embodiment of the present invention is not limited thereto.
  • the embodiment of the present invention does not limit the form of the base station.
  • the foregoing embodiment can implement the DPS bearer between the user equipments supporting the D2D function, and implement communication between the user equipments supporting the D2D function, thereby implementing controllability of resources on the network.
  • FIG. 6 is a flowchart of an embodiment of the dedicated bearer activation process of the present invention.
  • Step 601 The PGW applies a local QoS policy.
  • Step 602 The PGW applies a local QoS policy to allocate an EPS bearer (EPS Bearer QoS). For example, the PGW allocates a QoS parameter of the EPS bearer.
  • the QoS parameters of the EPS bearer include: a QCI, an address resolution protocol (Address Resolution Protocol; The following is abbreviated as: ARP), GBR, and Maximum Bit Rate (MBR);
  • ARP Address Resolution Protocol
  • GBR GBR
  • MRR Maximum Bit Rate
  • the PGW sends a Create Dedicated Bearer Request message to the SGW.
  • the Create Dedicated Bearer Request message includes the IMSL PTL EPS Bearer QoS.
  • the S5/S8 Tunnel Endpoint Identifier (S5/S8 TEID), LBI, and Protocol Configuration Options S5/S8 Tunnel Endpoint Identifier (S5/S8 TEID), LBI, and Protocol Configuration Options.
  • Step 603 The SGW sends a Create Dedicated Bearer Request message to the MME, where the Create Dedicated Bearer Request message includes an IMSI, a PTL EPS Bearer QoS, a TFT, an S1-TEID, an LBI, and a Protocol configuration option.
  • the Create Dedicated Bearer Request message includes an IMSI, a PTL EPS Bearer QoS, a TFT, an S1-TEID, an LBI, and a Protocol configuration option.
  • LBI added "D2D connection" type indication or has a dedicated PDN connection for DPS bearer management.
  • Step 604 the MME selects an EPS Bearer ID, and constructs a Session Management Request, which includes PTI, TFT, EPS Bearer QoS parameters, Protocol Configuration Options. EPS Bearer Identity (optional, new) "D2D connection" type indication) and LBI. Then, the MME sends a bearer setup request (Bearer Setup Request) message to the eNB, where the bearer setup request message includes EPS Bearer Identity, EPS Bearer QoS, Session Management Request, and S1-TEID.
  • EPS Bearer Identity optional, new
  • S1-TEID S1-TEID
  • Step 605 The eNB maps the EPS Bearer QoS to the QoS of the radio bearer, and sends the RRC connection.
  • the configuration information is sent to the UE, and the RRC connection reconfiguration message includes a Radio Bearer QoS, a Session Management Request, and an EPS Bearer Identity.
  • the UE in this embodiment may be UE2 or UE1.
  • the UE NAS After receiving the above RRC connection reconfiguration message, the UE NAS will save the EPS Bearer Identity, the dedicated bearer (Dedicated Bearer) established by the LBI, and the default association.
  • the UE uses the Transmit Service Flow Template (UL TFT) to determine the mapping of traffic to radio bearers.
  • UL TFT Transmit Service Flow Template
  • Step 606 The UE responds to the Radio Bearer Activation by sending an RRC Connection Reconfiguration Complete message to the eNB.
  • Step 607 The eNB confirms the 7-load activation by sending a bearer setup response (Bearer Setup Response) message to the MME.
  • bearer setup response Bearer Setup Response
  • the bearer setup response message carries the EPS Bearer Identity and the S1-TEID.
  • Step 608 The UE NAS layer generates a session management response (Stage Management Response), and sends the session management response to the eNB by using a Direct Transfer message.
  • a session management response Stage Management Response
  • the above direct forwarding message includes EPS Bearer Identity.
  • Step 609 The eNB sends an Up NAS Transport message to the MME.
  • the uplink NAS transmission message carries a session management response (Session Management Response).
  • the format of the Uplink NAS Transport message may be as shown in Table 10.
  • the MME After receiving the bearer setup response message of step 607 and the session management response of step 609, the MME sends a Create Dedicated Bearer Response message to the SGW to confirm the bearer activation. ) Success.
  • the foregoing dedicated bearer response message carries the EPS Bearer Identity and the S1-TEID.
  • Step 611 The SGW sends a Create Dedicated Bearer Response message to the PGW.
  • FIG. 7 is a flowchart of still another embodiment of a connection establishment method according to the present invention.
  • the establishment of a DPS bearer follows the principle of using PGW in LTE to undertake management and resource allocation of DPS bearers.
  • the initial states of UE1 and UE2 are Active.
  • Step 701: The UE1 that supports the D2D function obtains a resource for broadcasting the information of the UE1, where the information of the UE1 includes one or a combination of the identifier of the UE1, the service information, the service code, and the application layer service information.
  • the manner in which the UE1 obtains the resource for the information of the UE1 is the same as that described in the step 201 of the embodiment shown in FIG. 2 of the present invention, and details are not described herein again.
  • Step 702 UE1 broadcasts information of the UE1 on the obtained resource.
  • the manner in which the UE1 broadcasts the information of the UE1 is the same as that described in the step 202 of the embodiment shown in FIG. 2 of the present invention, and details are not described herein again.
  • Step 703 The UE2 supporting the D2D function learns that the UE1 that is likely to be paired exists through the sensing technology or the searching and measurement of other UEs supporting the D2D function.
  • UE2 sends a proximity indication to the serving base station, carrying information of UE1.
  • UE2 before step 703, UE2 also obtains resources for broadcasting the information of the UE2, and broadcasts the information of the UE2 on the obtained resources.
  • the implementation manner is the same as that described in steps 701 and 702. This will not be repeated here.
  • the service base station of the cell in which UE2 is currently located is the same as the serving base station of the cell in which UE1 is currently located, as an example.
  • Step 704 The UE2 sends a bearer resource modification request (Bearer Resource Modification Request) message to the serving base station of the cell where the UE1 is currently located.
  • a bearer resource modification request (Bearer Resource Modification Request) message
  • the UE2 may initiate a request bearer resource modification process to trigger the establishment of the D2D bearer.
  • the UE2 may first send a Bearer Resource Modification Request message to the foregoing serving base station, where the bearer resource modification request message carries an LBI, a PTL EPS bearer identifier, an QoS, a TAD, and a Protocol Configuration Options. And a new "D2D connection" type indication is added to the bearer resource modification request message, or a dedicated PDN connection is used for management of the DPS bearer.
  • the LBI is related to the D2D bearer, and the EPS bearer identifier can also be used as the D2D bearer identifier.
  • the TAD is used to indicate whether the bearer resource modification request message is added, modified, or deleted.
  • the TAD When the traffic flow increases, the TAD includes a set of packet filtering rules, but there is no Packet Filter Identifier.
  • the UE (for example: UE2) also sends QCI information and GBR of the traffic flow to be added. When this process is over, the TAD is released.
  • the UE (e.g., UE2) sends an LBI to indicate which PDN connection is associated with the newly added bearer resource only when requesting an add bearer operation.
  • EPS Bearer Identity will only be sent when the bearer operation is modified and deleted.
  • the format of the bearer resource modification request message sent by the UE may be as shown in Table 9.
  • Step 705 The serving base station sends a bearer resource modification request message to the MME.
  • the bearer resource modification request message carries IMSI, LBI, PTI, EPS Bearer Identity, QoS, TAD, and Protocol Configuration Options.
  • MME used LBI to fully verify this request.
  • the MME uses the same SGW address.
  • a new "D2D connection" type indication is added to the bearer resource modification request message, or a dedicated PDN connection is used for management of the DPS bearer.
  • Step 706 The MME sends a bearer resource modification request message to the selected SGW, where the bearer resource modification request message carries the IMSI, the LBI, the PTL EPS Bearer Identity, the QoS, the TAD, and the Protocol Configuration Options.
  • the MME uses the LBI to verify the request.
  • Corresponding to the LBI The EPS bearer, the MME uses the same SGW address.
  • the bearer resource modification request message adds a "D2D connection" type indication, or has a dedicated PDN connection for DPS bearer management.
  • Step 707 The SGW sends a bearer resource modification request message to the PGW, where the bearer resource modification request message carries IMSI, LBI, PTL EPS Bearer Identity, QoS, TAD, and Protocol Configuration Options.
  • the SGW sends the EPS bearer corresponding to the LBI to the same PDN.
  • a new "D2D connection" type indication is added to the bearer resource modification request message, or a dedicated PDN connection is used for management of the DPS bearer.
  • the dedicated bearer for the DPS bearer management A Dedicated Bearer Activation process or a Dedicated Bearer Modification process will be initiated.
  • the PTI allocated by UE2 associates the Dedicated Bearer Activation procedure initiated by UE2 with the Bearer Resource Modification procedure initiated by UE2, which provides the necessary connections between the new traffic flow combination and the EPS bearer for the new traffic flow combination.
  • the PGW allocates a new Packet Filter Identifier unique to the TFT.
  • the PGW maintains the correspondence between the packet filtering identifier in the SDF and the packet filtering identifier in the TFT.
  • the dedicated bearer activation process may be as shown in FIG. 6, and details are not described herein again.
  • Step 708 The serving base station performs mapping of the DPS bearer to the radio bearer according to the information carried by the DPS.
  • the foregoing serving base station performs a radio bearer establishment process.
  • the security features of the user plane are established at this step.
  • the Service Request process is completed, and the DPS bearer is synchronized between the UE and the network side.
  • the configuration and management of the DPS bearer may be completed by the PGW or the MME in the EPC according to the existing LTE technology.
  • Step 709 The PGW initiates a process of establishing a D2D bearer of the target UE.
  • the target UE is UE1.
  • the PGW initiates a dedicated bearer activation procedure to UE1 according to the identity of UE1 obtained from the MME.
  • the dedicated bearer activation process may be as shown in FIG. 6, and details are not described herein again.
  • the foregoing serving base station performs mapping of the DPS bearer to the radio bearer.
  • the configuration and management of the DPS bearer may be completed by the PGW or the MME in the EPC according to the existing LTE technology.
  • Step 710 UE1 initiates connection establishment with UE2.
  • Step 711 The DPS bearer setup between the UE1 and the UE2 is completed.
  • UE1 and UE2 start device-to-device (D2D) communication.
  • D2D device-to-device
  • the foregoing embodiment can implement the DPS bearer between the user equipments supporting the D2D function, and implement communication between the user equipments supporting the D2D function, thereby implementing controllability of resources on the network.
  • the air interface between UE1 and UE2 that is, the protocol stack of the Ud interface, has only a user plane protocol stack, no control plane protocol stack or a simplified control plane protocol stack.
  • the user plane protocol stack of the Ud interface may be used in the current LTE protocol stack, as shown in FIG. 10a.
  • the user plane protocol stack may configure one or a combination of IP, PDCP, RLC, MAC, and PHY information;
  • the user plane protocol stack of the Ud port may be a simplified protocol stack, as shown in FIG. 10b.
  • the user plane protocol stack may configure information of one or a combination of IP, MAC-d, and PHY.
  • 10a-10b are schematic diagrams of a user plane protocol stack of the present invention.
  • the configuration of the Ud link is controlled by the network side, that is, the Ud interface is controlled and configured by the signaling of the Uu interface, including: establishment of a DPS bearer between UE1 and UE2.
  • the DPS carries a mapping to the radio bearer.
  • the user plane protocol stack of the Ud interface may also be configured with configuration information similar to TDD ratio (not limited to several ratios specified in current LTE), security information (encryption, integrity protection parameters, and Algorithm or one or combination of measurement configuration information.
  • the measurement configuration information may include one or a combination of Radio Resource Management (hereinafter referred to as RRM), Radio Link Management (hereinafter referred to as RLM), and CSI.
  • RRM Radio Resource Management
  • RLM Radio Link Management
  • CSI Channel CSI
  • the eNB may use a Sounding Reference Signal (SRS) or a new reference signal (New Reference Signal; The following is abbreviated as: NRS)
  • SRS Sounding Reference Signal
  • NRS new Reference Signal
  • the measurement configuration information is configured for the measurement object; if the downlink resources are shared, the eNB may configure the measurement configuration information for the measurement object by using a Cell-specific Reference Signals (CRS) or an NRS.
  • CRS Cell-specific Reference Signals
  • the eNB may send resource scheduling information, where the resource scheduling information includes: informing the UE1 and/or the UE2 to use the physical resources of the PHY layer, and the modulation and coding scheme (hereinafter referred to as MCS). , encoding rate (code rate) and precoding matrix indicator (Precoding Matrix Indexes; hereinafter referred to as: PMI) one or a combination.
  • MCS modulation and coding scheme
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 8 is a schematic structural diagram of an embodiment of a user equipment according to the present invention.
  • the user equipment in this embodiment is a second user equipment that supports the D2D function, and the process of the embodiment shown in FIG. 1 of the present invention can be implemented, as shown in FIG.
  • the user equipment may include: an obtaining module 81, a determining module 82, and an initiating module 83.
  • the obtaining module 81 is configured to obtain information about the first user equipment that is broadcast by the first user equipment that supports the D2D function.
  • the determining module 82 is configured to determine, according to the information about the first user equipment obtained by the obtaining module 81, establishing a connection with the first user equipment;
  • the initiating module 83 is configured to initiate a connection establishment process with the network side device, and send the information of the first user equipment to the network side device in the foregoing connection establishment process, so that the network side device establishes a connection with the first user equipment.
  • the user equipment can establish a DPS bearer between the user equipments supporting the D2D function, and implement communication between the user equipments supporting the D2D function, thereby implementing controllability of resources on the network.
  • FIG. 9 is a schematic structural diagram of another embodiment of the user equipment according to the present invention.
  • the initiating module 83 may include: a sending submodule 831. And receiving submodule 832;
  • the sending submodule 831 is configured to send a radio resource control connection setup request message to the serving base station of the cell where the second user equipment is currently located, and after the receiving submodule 832 receives the radio resource control connection setup response message sent by the serving base station, Sending a radio resource control connection establishment complete message to the foregoing serving base station, where the radio resource control connection setup complete message carries non-access stratum signaling of the second user equipment, for example, service request signaling;
  • the receiving submodule 832 is configured to receive a radio resource control connection setup response message sent by the serving base station;
  • the value of the establishment cause of the RRC connection establishment request message is a D2D connection; and/or the RRC connection establishment completion message carries the D2D capability information of the second user equipment, and the D2D of the second user equipment
  • the capability information is used to indicate that the second user equipment supports the D2D function.
  • One or all of the foregoing RRC connection establishment request message and the RRC connection establishment completion message carry the non-access stratum identifier and the access stratum identifier of the first user equipment;
  • One or all of the foregoing RRC connection establishment request message and the RRC connection establishment completion message carry the service code of the first user equipment.
  • the initiating module 83 may also initiate the requesting bearer resource modification process to trigger the establishment of the DPS bearer when the DPS bearer is not established between the second user equipment and the serving base station in the attaching process.
  • the initiating module 83 may send a bearer resource modification request message to the mobility management entity, so that the mobility management entity sends the bearer resource modification request message to the gateway;
  • the bearer resource modification request message carries the connection bearer identifier and the evolved packet system bearer identifier related to the DPS bearer, and the D2D connection type indication is added to the bearer resource modification request message, or the bearer resource modification request message has a dedicated Packet data network connections are used for management of DPS bearers.
  • the user equipment in this embodiment may further include: a message receiving module 84 and a message. Sending module 85;
  • the message receiving module 84 is configured to receive a D2D link setup request message sent by the first user equipment, where the D2D link setup request message carries the identifier of the first user equipment, the identifier of the second user equipment, and the first user equipment. a channel state information and a resource allocation situation; and receiving a D2D link setup complete message sent by the first user equipment after receiving the D2D link setup response message sent by the message sending module 85;
  • the message sending module 85 is configured to: after the message receiving module 84 receives the D2D link setup request message, if the connection is allowed to be established, send a D2D link setup response message to the first user equipment, where the D2D link setup response message carries the first The identifier of the second user equipment, the identifier of the first user equipment, and the channel state information of the second user equipment, and the response of the second user equipment to the acceptance or rejection of the resource allocation of the first user equipment.
  • the user equipment can establish a DPS bearer between the user equipments supporting the D2D function, and implement communication between the user equipments supporting the D2D function, thereby implementing controllability of resources on the network.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or the corresponding changes may be located in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种连接建立方法和用户设备,所述连接建立方法包括:支持设备到设备D2D功能的第二用户设备获得支持D2D功能的第一用户设备的所述第一用户设备的信息;所述第二用户设备根据所述第一用户设备的信息确定与所述第一用户设备建立连接之后,所述第二用户设备发起与网络侧设备的连接建立过程,并在所述连接建立过程中将所述第一用户设备的信息发送给所述网络侧设备,以便所述网络侧设备与所述第一用户设备建立连接。本发明可以实现在支持D2D功能的用户设备之间建立DPS承载,实现支持D2D功能的用户设备之间的通信,进而可以实现网络对资源的可控性。

Description

连接建立方法和用户设备
本申请要求于 2011 年 11 月 22 日提交中国专利局、 申请号为 201110374011.2、 发明名称为"连接建立方法和用户设备"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 尤其涉及一种连接建立方法和用户设备。
背景技术
设备到设备( Device to Device; 以下简称: D2D )通信技术可以实现本地 自组网 (ad-hoc ) 网络和短距离通信的服务和数据应用。
为提高频谱利用率, D2D系统与蜂窝系统共用相同的资源。 D2D系统中 的 D2D终端接入蜂窝系统, 要遵循蜂窝系统的时间和时隙。 D2D系统可以支 持信息共享、 游戏、 社交服务和移动广告等业务。
现有技术中, D2D系统中的 D2D终端利用自身的感知功能, 根据感知到 的结果自主地与其他 D2D终端进行通信匹配, 无须演进分组核心网 ( Evolved Packet Core; 以下简称: EPC ) /演进通用陆地无线接入网络(Evolved Universal Mobile Telecommunications System Terrestrial Radio Access Network; 以下简称: E-UTRAN ) 网络的控制和分配, 并且也没有运营商网络的鉴权和认证, 不利 于资源的合理分配和网络的安全运作。
发明内容
本发明提供一种连接建立方法和用户设备, 以实现支持 D2D功能的用户 设备之间的通信, 以及实现网络对资源的可控性。
本发明一方面提供一种连接建立方法, 包括:
支持设备到设备 D2D功能的第二用户设备获得支持 D2D功能的第一用户 设备广播的所述第一用户设备的信息;
所述第二用户设备根据所述第一用户设备的信息确定与所述第一用户设 备建立连接之后, 所述第二用户设备发起与网络侧设备的连接建立过程, 并在 所述连接建立过程中将所述第一用户设备的信息发送给所述网络侧设备,以便 所述网络侧设备与所述第一用户设备建立连接。
本发明另一方面提供一种用户设备,所述用户设备为支持设备到设备 D2D 功能的第二用户设备, 所述用户设备包括:
获得模块, 用于获得支持 D2D功能的第一用户设备广播的所述第一用户 设备的信息;
确定模块,用于根据所述获得模块获得的所述第一用户设备的信息确定与 所述第一用户设备建立连接;
发起模块, 用于发起与网络侧设备的连接建立过程, 并在所述连接建立过 程中将所述第一用户设备的信息发送给所述网络侧设备,以便所述网络侧设备 与所述第一用户设备建立连接。
通过本发明实施例,第二用户设备根据第一用户设备广播的信息确定与上 述第一用户设备建立连接之后,该第二用户设备发起与网络侧设备的连接建立 过程, 并在连接建立过程中将第一用户设备的信息发送给网络侧设备, 以便网 络侧设备与第一用户设备建立连接, 从而可以实现在支持 D2D功能的用户设 备之间建立设备到设备演进分组系统( D2D Evolved Packet System; 以下简称: DPS )承载, 实现支持 D2D功能的用户设备之间的通信, 进而可以实现网络 对资源的可控性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描 述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出 创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明连接建立方法一个实施例的流程图;
图 2为本发明连接建立方法另一个实施例的流程图;
图 3为本发明连接建立方法再一个实施例的流程图;
图 4a〜图 4c为本发明承载映射一个实施例的示意图;
图 5为本发明连接建立方法再一个实施例的流程图;
图 6为本发明专用承载激活流程一个实施例的流程图;
图 7为本发明连接建立方法再一个实施例的流程图;
图 8为本发明用户设备一个实施例的结构示意图;
图 9为本发明用户设备另一个实施例的结构示意图;
图 10a〜图 10b为本发明用户面协议栈的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例 ,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
图 1为本发明连接建立方法一个实施例的流程图, 如图 1所示, 该连接建 立方法可以包括:
步骤 101 , 支持 D2D功能的第二用户设备获得支持 D2D功能的第一用户 设备的该第一用户设备的信息。
步骤 102, 第二用户设备根据上述第一用户设备的信息确定与第一用户设 备建立连接之后, 第二用户设备发起与网络侧设备的连接建立过程, 并在该连 接建立过程中将第一用户设备的信息发送给网络侧设备,以便该网络侧设备与 第一用户设备建立连接。
本实施例中,上述第一用户设备的信息包括第一用户设备的服务信息和第 一用户设备标识; 或者, 上述第一用户设备的信息包括服务码, 该服务码用于 指示第一用户设备的服务信息和第一用户设备标识。
本实施例中,在第二用户设备发起与网络侧设备的连接建立过程, 以及网 络侧设备与第一用户设备建立连接之后,第二用户设备与第一用户设备之间的
DPS承载建立完成, 第二用户设备与第一用户设备开始 D2D通信。
具体地, 第二用户设备发起与网络侧设备的连接建立过程, 并在该连接建 立过程中将第一用户设备的信息发送给网络侧设备,以便该网络侧设备与第一 用户设备建立连接可以为:第二用户设备向该第二用户设备当前所在小区的服 务基站发送无线资源控制连接建立请求消息;接收到上述服务基站发送的无线 资源控制连接建立响应消息之后,第二用户设备向上述服务基站发送无线资源 控制连接建立完成消息,上述无线资源控制连接建立完成消息携带第二用户设 备的非接入层信令, 例如: 服务请求信令。
其中, 上述无线资源控制连接建立请求消息的建立原因信元的值为 D2D 连接; 和 /或, 上述无线资源控制连接建立完成消息携带第二用户设备的 D2D 能力信息, 该第二用户设备的 D2D能力信息用于指示第二用户设备支持 D2D 功能;上述无线资源控制连接建立请求消息和上述无线资源控制连接建立完成 消息之一或全部携带第一用户设备的非接入层标识和接入层标识;上述无线资 源控制连接建立请求消息和上述无线资源控制连接建立完成消息之一或全部 携带第一用户设备的服务码。
进一步地,上述服务基站将上述非接入层信令封装在初始用户设备消息中 发送给移动管理实体,该初始用户设备消息的建立原因信元的值为 D2D连接, 并且该初始用户设备消息携带第一用户设备的非接入层标识; 和 /或当第一用 户设备处于连接态时,上述初始用户设备消息还携带第一用户设备的接入层标 识; 然后, 服务基站接收移动管理实体发送的初始上下文建立请求消息, 该初 始上下文建立请求消息是移动管理实体对第二用户设备鉴权认证通过之后发 送给上述服务基站的, 该初始上下文建立请求消息携带 D2D 连接指示; 接下 来, 服务基站执行第二用户设备的 DPS承载到无线承载的映射, 完成 DPS承 载到无线承载的映射之后 ,上述服务基站向移动管理实体发送初始上下文建立 响应消息, 该初始上下文建立响应消息携带上述服务基站的地址、接受的演进 分组系统承载列表、 拒绝的演进分组系统承载列表和 S 1 口的隧道端点标识; 其中,上述接受的演进分组系统承载列表中的演进型通用陆地无线接入承载标 识中新增 D2D连接类型指示, 或在附着过程中就规定了专用的分组数据网络 连接用于 DPS承载的管理。
本实施例中, 网络侧设备与第一用户设备建立连接可以为: 服务基站接收 移动管理实体发送的第一消息, 该第一消息可以为寻呼消息或一条新的消息; 该第一消息携带 D2D连接类型指示、 第一用户设备的标识和第二用户设备的 标识; 然后, 服务基站向第一用户设备发送第二消息, 该第二消息包括寻呼消 息或一条新的消息; 该第二消息携带 D2D连接类型指示和第二用户设备的标 识, 以使第一用户设备与上述网络侧设备建立连接。
本实施例中, DPS承载的 IP地址分配和服务质量管理由具有内部网关功 能的实体完成;上述具有内部网关功能的实体为独立实体或与上述服务基站集 成在一起。
每个专用的 DPS承载对应一个业务流模板, 第二用户设备利用该第二用 户设备的发送业务流模板将第二用户设备发送方向的业务流过滤到该第二用 户设备的发送业务流模板对应的 DPS承载中; 第二用户设备获得并保存第一 用户设备的发送业务流模板,以第一用户设备的发送业务流模板作为第二用户 设备的接收业务流模板,并根据第二用户设备的接收业务流模板确定上述第二 用户设备接收的业务流与第二用户设备的接收业务流模板对应的 DPS承载的 映射关系。具体地,第二用户设备获得第一用户设备的发送业务流模板可以为: 第二用户设备获得第一用户设备在上述 DPS承载建立过程中通知的第一用户 设备的发送业务流模板; 或者, 第二用户设备获得第一用户设备通过网络告知 的该第一用户设备的发送业务流模板。
同样,第一用户设备也会利用该第一用户设备的发送业务流模板将第一用 户设备发送方向的业务流过滤到该第一用户设备的发送业务流模板对应的 DPS承载中; 第一用户设备获得并保存第二用户设备的发送业务流模板, 以该 第二用户设备的发送业务流模板作为第一用户设备的接收业务流模板,并根据 第一用户设备的接收业务流模板确定上述第一用户设备接收的业务流与第一 用户设备的接收业务流模板对应的 DPS承载的映射关系。 具体地, 第一用户 设备获得第二用户设备的发送业务流模板可以为:第一用户设备获得第二用户 设备在上述 DPS承载建立过程中通知的第二用户设备的发送业务流模板; 或 者,第一用户设备获得第二用户设备通过网络告知的该第二用户设备的发送业 务流模板。
本实施例中, 进一步地, 第二用户设备根据第一用户设备的信息确定与第 一用户设备建立连接之后,如果在附着过程中, 第二用户设备与上述服务基站 之间未建立 DPS承载, 则第二用户设备发起请求承载资源修改流程触发 DPS 承载的建立。 具体地, 第二用户设备发起请求承载资源修改流程触发 DPS承 载的建立可以为: 第二用户设备发送承载资源修改请求消息给移动管理实体, 以便上述移动管理实体将上述承载资源修改请求消息发送给网关; 其中, 上述 第二用户设备发送的承载资源修改请求消息携带与 DPS承载相关的连接承载 标识和演进分组系统承载标识 ,并且第二用户设备发送的承载资源修改请求消 息中新增 D2D连接类型指示, 或第二用户设备发送的承载资源修改请求消息 中有个专用的分组数据网络连接用于 DPS承载的管理。 接下来,分组数据网关接收上述网关在收到第二用户设备发送的承载资源 修改请求消息之后发送的承载资源修改请求消息;上述网关发送的承载资源修 改请求消息携带与 DPS承载相关的演进分组系统承载标识和连接承载标识, 并且上述网关发送的承载资源修改请求消息中新增 D2D连接类型指示, 或上 述网关发送的承载资源修改请求消息中有个专用的分组数据网络连接用于 DPS承载的管理;在上述网关发送的承载资源修改请求消息被接受之后,分组 数据网关发起对第二用户设备的 DPS承载的建立过程。
进一步地, 分组数据网关发起对第二用户设备的 DPS承载的建立过程之 后, 上述服务基站执行第二用户设备的 DPS承载到无线承载的映射; 以及在 分组数据网关发起对第一用户设备的 DPS承载的建立过程之后, 服务基站执 行第一用户设备的 DPS承载到无线承载的映射。
具体地, 分组数据网关发起的 DPS承载的建立过程可以为: 服务网关接 收上述分组数据网关发送的创建专用承载请求消息 ,上述分组数据网关发送的 创建专用承载请求消息是分组数据网关应用本地服务质量策略分配演进分组 系统承载的服务质量之后发送给上述服务网关的;上述服务网关发送创建专用 承载请求消息给移动管理实体, 以便上述移动管理实体构建会话管理请求, 并 将上述会话管理请求携带在承载建立请求消息中发送给上述服务基站; 其中, 上述服务网关发送的创建专用承载请求消息携带连接承载标识;上述会话管理 请求包括演进分组系统承载标识和连接承载标识; 本实施例中, 上述连接承载 标识新增 D2D连接类型指示, 或上述连接承载标识中有个专用的分组数据网 络连接用于 DPS承载的管理。
进一步地, 本实施例中, 网络侧设备与第一用户设备建立连接之后, 第二 用户设备还可以接收第一用户设备发送的 D2D链路建立请求消息, 上述 D2D 链路建立请求消息携带第一用户设备的标识、第二用户设备的标识、第一用户 设备的信道状态信息和资源分配情况; 接收到上述 D2D链路建立请求消息之 后, 如果允许建立连接, 则第二用户设备向第一用户设备发送 D2D链路建立 响应消息, 上述 D2D链路建立响应消息携带第二用户设备的标识、 第一用户 设备的标识和第二用户设备的信道状态信息,以及第二用户设备对第一用户设 备的资源分配情况的接受或拒绝的应答; 最后, 第二用户设备接收第一用户设 备发送的 D2D链路建立完成消息。
本实施例中,第一用户设备与第二用户设备之间空口的协议栈包括用户面 协议栈。
本实施例的一种实现方式中, 上述用户面协议栈可以为简化的协议栈, 该 用户面协议栈配置因特网协议( Internet Protocol; 以下简称: IP )、 增强的媒 体接入控制( Media Access Control-d; 以下简称: MAC-d )和物理层( Physical; 以下简称: PHY )之一或组合的信息。
本实施例的另一种实现方式中, 上述用户面协议栈可以配置 IP、 分组数 据汇聚协议 ( Packet Data Convergence Protocol; 以下简称: PDCP )、 无线链路 控制层( Radio Link Control; 以下简称: RLC )、媒体接入控制层( Media Access Control; 以下简称: MAC )和物理层( Physical; 以下简称: PHY )之一或组 合的信息。
本实施例中, 第二用户设备与第一用户设备之间 DPS承载的建立, 以及 该 DPS承载到无线承载的映射由网络侧设备控制。
上述实施例中,第二用户设备根据第一用户设备广播的信息确定与上述第 一用户设备建立连接之后, 该第二用户设备发起与网络侧设备的连接建立过 程, 并在连接建立过程中将第一用户设备的信息发送给网络侧设备, 以便网络 侧设备与第一用户设备建立连接, 从而可以实现在支持 D2D功能的用户设备 之间建立 DPS承载, 实现支持 D2D功能的用户设备之间的通信, 进而可以实 现网络对资源的可控性。
需要说明的是, 本发明实施例中, DPS承载即为 D2D承载, 二者含义相 同。
图 2为本发明连接建立方法另一个实施例的流程图,如图 2所示, 该连接 建立方法可以包括:
步骤 201 ,支持 D2D功能的用户设备 1 ( User Equipment 1 ; 以下简称: UE1 ) 获得用于广播该 UE1的信息的资源, 该 UE1的信息包括 UE1的标识、 业务信 息、 服务码和应用层服务信息之一或组合。
其中, 上述标识可以为: 物理标识、 非接入层标识(Non- Access Stratum Identifier; 以下简称: NAS ID )和接入层标识(Access Stratum Identifier; 以 下简称: AS ID )之一或组合; 举例来说, 物理标识可以为: 国际移动用户识 别码( International Mobile Subscriber Identification; 以下简称: IMSI )等特定 码序列; NAS ID 可以为月良务临时移动用户标识 (Serving Temporary Mobile Subscriber Identifier; 以下简称: s-TMSI )或全局唯一临时标识( Global Unique Temporary Identifier; 以下简称: GUTI ) , 如果 UE1处于空闲态, 可以用上次 保存的旧的 s-TMSI或旧的 GUTI ( old GUTI ); 如果 UE1处于连接态, 可以用 当前的 s-TMSI或当前的 GUTI; AS ID可以为小区无线网络临时标识(Cell Radio Network Temporary Identifier; 以下简称: C-RNTI )或 D-RNTI (即用于 D2D的无线网络临时标识( Radio Network Temporary Identifier; 以下简称: RNTI ) );
上述应用层服务信息包括用户可以解读的服务信息,该用户可以解读的服 务信息包括服务类型和 /或服务内容, 举例来说, 服务内容可以为广告信息、 某个电影的视频或游戏等;
上述服务码可以为字符、 字符串或数字序列, 可以代表应用层服务信息; 或者上述服务码可以指示 UE1 的标识, 以及上述应用层服务信息和上述业务 信息之一;
上述业务信息可以为用户设备用于构建业务的连接建立请求消息所需的 非接入层 (Non-Access Stratum; 以下简称: NAS )层的信息, 包括服务质量 ( Quality of Service; 以下简称: QoS )信息等。
具体地,支持 D2D功能的 UE1在一个小区开机或重选到一个新的小区时, 该 UE1需要获得用于广播该 UE1的信息的资源。
本实施例的一种实现方式中,支持 D2D功能的 UE1获得用于广播该 UE1 的信息的资源可以为: UE1获得上述 UE1 当前所在小区的服务基站预先为该 小区中支持 D2D功能的用户设备分配的, 用于广播自身的上述信息的资源, 该资源是服务基站通过广播消息广播的; 然后, UE1通过自动搜索或测量在上 述服务基站预先分配的资源中选择干扰级别低于预定阔值的资源。可选的, 该 服务基站的分配方式是半静态的。
本实施例的另一种实现方式中, 支持 D2D功能的 UE1 获得用于广播该 UE1的信息的资源可以为: UE1根据上述 UE1当前所在小区的服务基站广播 的子资源的干扰级别和上述子资源的位置信息,在服务基站广播的子资源中选 择干扰级别低于预定阔值的子资源;上述子资源是服务基站对该服务基站预先 为上述小区中支持 D2D功能的用户设备分配的, 用于广播自身的上述信息的 资源进行划分后获得的。
本实施例的再一种实现方式中, 支持 D2D功能的 UE1获得用于广播该第 一用户设备的信息的资源可以为: UE1与上述 UE1 当前所在小区的服务基站 建立连接, 触发该服务基站为 UE1分配用于广播该 UE1的信息的资源, 不管 UE1的真实的业务是否存在。 UE1与该 UE1的服务基站建立连接之后, UE1 可以维持普通连接态或连接态下长周期的不连续接收模式( long Discontinuous Receive mode; 以下简称: long DRX mode )。 当该 UEl退出当前所在小区时, 该 UE1通知上述服务基站收回为 UE1分配的用于广播该 UE1的信息的资源。
具体地, 本实现方式中, UE1与上述 UE1 当前所在小区的服务基站建立 连接可以为: UE1 向上述服务基站发送附着请求 (Attach Request ) 消息, 该 Attach Request消息携带 UEl的 IMSI或 old GUTI, 以及该 UEl最后访问的跟 踪区 i或标识( last visited Tracking Area Identifier;以下简称: last visited TAI ) (如 果存在的话) , 该 UEl的核心网能力 ( Core Network Capability ) , 该 UEl的 不连续接收参数 ( Specific DRX parameters ) , 分组数据网类型 (Packet Data Network Type; 以下简称: PDN Type ) , 协议配置选项( Protocol Configuration Options ),力口密选项转发标记( Ciphered Options Transfer Flag ),附着类型( Attach Type ) , KSIASME (用于标识根密钥 KASME ) ,非接入层序列号( Non- Access Stratum sequence number; 以下简称: NAS sequence number ) , 非接入层媒体 接入控制地址 ( Non- Access Stratum Media Access Control; 以下简称: NAS-MAC ),附加 GUTK additional GUTI ),分组临时移动用户标识签名( Packet Temporary Mobile Subscriber Identifier signature; 以下简称: P-TMSI signature ) 消息和无线资源控制 ( Radio Resource Control; 以下简称: RRC )参数, 并新 增 "D2D连接" 类型参数;
然后, 上述服务基站对上述 UE1发送的 Attach Request消息进行封装, 生 成初始用户设备消息 (Initial UE Message )发送给移动管理实体 (Mobility Management Entity; 以下简称: MME ) ; 接下来, MME将要发送给 UE1的 附着接受 (Attach Accept ) 消息封装在一条 S1—MME控制消息, 例如: 初始 上下文建立请求( Initial Context Setup Request )消息中, 并将该初始上下文建 立请求消息发送给上述服务基站,最后上述服务基站将该初始上下文建立请求 消息发送给 UEl , UE1 解析该该初始上下文建立请求消息获得上述 Attach Accept消息。
其中, 上述 Attach Accept消息携带接入点名称( Access Point Name; 以下 简称: APN ) 、 GUTL PDN Type, 分组数据网络地址( Packet Data Network Address; 以下简称: PDN Address ) 、 TAI列表 ( TAI List ) 、 演进分组系统 承载标识 ( Evolved Packet System Bearer Identity; 以下简称: EPS Bearer Identity )、会话管理请求 ( Session Management Request )、 Protocol Configuration Options, KSIASME、 NAS sequence number和 NAS-MAC等信息; 还可以携 带 UEl的档案( profile )中的用于 D2D连接的承载的相关信息,并在 EPS Bearer Identity后附加 D2D承载类型信息, 或者将特定的 PDN和 D2D连接相绑定。 进一步地,该 Attach Accept消息还可以包括接入层安全上下文( Access Stratum security context; 以下简称: AS security context )信息、 切换限制列表 ( the Handover Restriction List )、演进分组系统承载服务质量( Evolved Packet System Bearer Quality of Service; 以下简称: EPS Bearer QoS ) 、 UEl的最大汇聚比特 率( Aggregate Maximum Bit Rate;以下简称: AMBR )、 EPS Bearer Identity (可 选地, 该 EPS承载中包括用于 D2D连接的承载) 、 用于用户面的服务网关的 隧道端点标识( Tunnel Endpoint Identifier; 以下简称: TEID ) 和服务网关的 地址。
进一步地, 接收到 Attach Accept消息之后, UE1将把 "GUTI" 设置到下 次更新时用的临时标识 (Temp Identity used in Next update; 以下简称: TIN) 中。
可选地,上述新增的 "D2D连接"类型参数也可以放在传送 NAS层 Attach Accept消息的 S 1应用协议( S 1 Application Protocol; 以下简称: S 1 -AP )消息, 例如: Initial Context Setup Request消息中, 同时该 Initial Context Setup Request 消息的 UE无线能力信元中可添加 "支持 D2D功能" 的指示信息。
上述 Attach Request消息的格式可以如表 1所示, 上述 Initial UE Message 的格式可以如表 2所示, 上述 Initial Context Setup Request消息的格式可以如 表 3所示, 上述 Attach Accept消息的格式可以如表 4所示。
表 1
Figure imgf000014_0001
Figure imgf000015_0001
信元 存在位 范围 信元类型和 语义说明 ( Semantics 关键性 指派关键性
( Information ( Presence ) ( Range ) 参考(IE type description ) ( Criticality ) ( Assigned Element; 以下 and Criticality ) 简称: IE ) /组 reference )
名称 (Group
Name )
Message Type M 9.2.1.1 YES ignore eNB UE S1AP M 9.2.3.4 YES reject ID
NAS-PDU M 9.2.3.5 ATTACH YES reject
REQUEST message,
see below
TAI M 9.2.3.16 YES reject
E-UTRAN CGI M 9.2.1.38 YES ignore
RRC M 9.2.1.3a YES Ignore Establishment
cause
S-TMSI O 9.2.3.6 YES reject
GUMMEI O 9.2.3.9 YES reject
Cell Access o 9.2.1.74 YES reject Mode
GW Transport o Transport Indicating GW 在本发明图 3 ignore Layer Address Layer Transport Layer 所示实施例中
Address Address if the GW is 是需要的
9.2.2.1 collocated with eNB 信元 ( Information 存在位 范围 信元类型和 语义说明 关键性 指派关键性 Element; 以下简称: ( Presence ) ( Range ) 参考( IE type ( Semantics ( Criticality ) ( Assigned IE ) /组名称(Group and description ) Criticality ) Name ) reference )
Message Type M 9.2.1.1 YES reject
MME UE S1AP ID M 9.2.3.3 YES reject eNB UE SIAP ID M 9.2.3.4 YES reject eNB P-UE SIAP ID O 9.2.3.4 If target YES reject (new) (paired) UE in
connected
mode; This is
for service
request
procedure, not
attach accept
procedure.
UE Aggregate M 9.2.1.20 YES reject Maximum Bit Rate
E-RAB to Be Setup 1 YES reject List
>E-RAB to Be EACH reject Setup Item IEs
»E- AB ID M 9.2.1.2 -
» D2D-connection M 9.2.1.3a YES Ignore indication ( new )
»E-RAB Level QoS M 9.2.1.15 - Parameters
»Transport Layer M 9.2.2.1 - Address
»GTP-TEID M 9.2.2.2 -
»NAS-PDU O 9.2.3.5 ATTACH
ACCEPT, see
below table
»Correlation ID O 9.2.2.80 YES ignore 信元 ( Information 存在位 范围 信元类型和 语义说明 关键性 指派关键性 Element; 以下简称: ( Presence ) ( Range ) 参考( IE type ( Semantics ( Criticality ) ( Assigned IE ) /组名称(Group and description ) Criticality ) Name ) reference )
UE Security M 9.2.1.40 YES reject Capabilities
Security Key M 9.2.1.41 YES reject
Trace Activation O 9.2.1.4 YES ignore
Handover Restriction O 9.2.1.22 YES ignore List
UE Radio Capability o 9.2.1.27 可选的, 新增 YES ignore
D2D能力
Subscriber Profile ID o 9.2.1.39 YES ignore for RAT Frequency
priority
CS Fallback Indicator o 9.2.3.21 YES reject
SRVCC Operation o 9.2.1.58 YES ignore Possible
CSG Membership o 9.2.1.73 YES ignore Status
Registered LAI o 9.2.3.1 YES ignore
GUMMEI o 9.2.3.9 YES ignore
MME UE S1AP ID 2 o 9.2.3.3 YES ignore
IEI 信元 ( Information Element ) 类型( Type ) /参考( Reference ) 存在位 格式 长度
( Presence ) ( Format ) ( Length )
Protocol discriminator Protocol discriminator M V 1/2
9.2
Security header type Security header type M V 1/2
9.3.1
Attach accept message identity Message type M V 1
9.8
EPS attach result EPS attach result M V 1/2
9.9.3.10
Spare half octet Spare half octet M V 1/2
9.9.2.9
T3412 value GPRS timer M V 1
9.9.3.16
TAI list Tracking area identity list M LV 7-97
9.9.3.33
ESM message container ESM message container M LV-E 5-n
9.9.3.15
50 GUTI EPS mobile identity O TLV 13
9.9.3.12
13 Location area identification Location area identification O TV 6
9.9.2.2
23 MS identity Mobile identity o TLV 7-10
9.9.2.3
53 EMM cause EMM cause o TV 2
9.9.3.9
17 T3402 value GPRS timer o TV 2
9.9.3.16
59 T3423 value GPRS timer o TV 2
9.9.3.16
4A Equivalent PLMNs PLMN list o TLV 5-47
9.9.2.8
34 Emergency number list Emergency number list o TLV 5-50
9.9.3.37
64 EPS network feature support EPS network feature support o TLV 3
9.9.3.12A
F- Additional update result Additional update result o TV 1
9.9.3.0A
5E T3412 extended value GPRS timer 3 o TLV 3
9.9.3.16B 步骤 202, UEl在获得的资源上广播该 UEl的信息。 具体地, 支持 D2D功能的 UE具有不连续接收( Discontinuous Receive; 以下简称: DRX )和不连续发送( Discontinuous Transmission; 以下简称: DTX ) 特性。
因此, 本实施例中, UE1广播该 UE1的信息的方式可以釆用 DTX方式, 以不连续发送周期 (DTX-Cycle ), 在获得的资源上广播该 UE1的信息。
步骤 203 ,支持 D2D功能的 UE2通过感知技术或对其他支持 D2D功能的 UE的搜索和测量, 获知到有可能配对的 UE1存在时, UE2向上述服务基站发 送 RRC连接建立请求消息。
本实施例中, 在步骤 203之前, UE2同样会获得用于广播该 UE2的信息 的资源, 并在获得的资源上广播该 UE2的信息, 实现方式与步骤 201和步骤 202描述的方式相同,在此不再赘述。本实施例以 UE2当前所在小区的服务基 站与 UE1当前所在小区的服务基站相同为例进行说明。
本实施例中, 可选地, 上述 RRC连接建立请求消息的建立原因信元的值 为 D2D连接;进一步地,上述 RRC连接建立请求消息还可以携带 UE1的 NAS ID (例如: old GUTI或 s-TMSI )和 AS ID; 或者, 可选地, 上述 RRC连接建 立请求消息还可以携带 UE1的服务码。 这样, 上述服务基站可以获知 UE2发 起的是 D2D连接建立过程,并且可以获知目的 UE或配对 UE的标识。本实施 例中 , 上述目的 UE或配对 UE为 UE1。
具体地, UE2可以釆用 DRX方式, 以不连续接收周期 (DRX-Cycle ) , 在一些特定的资源上搜索除 UE2之外的支持 D2D功能的 UE广播的信息, 在 获知到有可能配对的 UE1存在之后, UE2接收 UE1广播的该 UE1的信息; 或 者, UE2也可以釆用事件触发的方式接收 UE1广播的该 UE1的信息, 例如: 当用户有某些特定的需求时,通过人机界面触发接收动作; 或者应用层根据用 户之前定制的需求档案 ( profile )触发接收动作。 当然 UE2也可以将 DRX和 事件触发这两种方式组合使用, 接收 UE1广播的该 UE1的信息。 然后, UE2发现 UE1的信息与该 UE2的需求匹配,于是 UE2发起与 UE1 的直接的 D2D连接的建立。首先, UE2向上述服务基站发送 RRC连接建立请 求消息。
步骤 204, UE2接收上述服务基站发送的 RRC连接建立响应消息。
步骤 205, UE2向上述服务基站发送 RRC连接建立完成消息。
本实施例, 在上述 RRC连接建立完成消息中携带 UE2的 D2D能力信息 和 UE2的服务请求( Service Request )信令; 上述 UE2的 D2D能力信息用于 指示 UE2支持 D2D功能。 进一步地, 上述 RRC连接建立完成消息还可以携 带 UE1的 NAS ID (例如: old GUTI或 s-TMSI )和 AS ID; 或者, 上述 RRC 连接建立完成消息还可以携带 UE1 的服务码。 这样, 上述服务基站可以获知 UE2发起的是 D2D连接建立过程, 并且可以获知连接对象(即 UE1 )的标识。
对于步骤 203〜步骤 205中, RRC连接建立完成消息携带 UE2的 D2D能 力信息和 RRC连接建立请求消息的建立原因信元的值为 D2D连接可以只出现 其中一项或同时出现。 也就是说, 如果步骤 203 中, RRC连接建立请求消息 的建立原因信元的值为 D2D连接, 则步骤 205中, RRC连接建立完成消息可 以携带 UE2的 D2D能力信息, 也可以不携带; 或者, 如果步骤 203中, RRC 连接建立请求消息的建立原因信元的值不是 D2D连接, 则步骤 205中, RRC 连接建立完成消息须携带 UE2的 D2D能力信息。
另夕卜,上述 RRC连接建立完成消息和上述 RRC连接建立请求消息之一或 全部携带 UE1的 NAS ID (例如: old GUTI或 s-TMSI )和 AS ID; 或者, 上 述 RRC连接建立完成消息和上述 RRC连接建立请求消息之一或全部携带 UE1 的服务码。
步骤 206, 服务基站将上述服务请求信令转发给移动管理实体(Mobility Management Entity; 以下简称: MME )。
本实施例中, 服务基站将非接入层的服务请求( Service Request )信令转 发给 MME之前, 可选地, 服务基站可以进行接纳判决控制。 进一步, 上述服 务基站可以向 UE2下发对 UE2到 UE1的链路和 /或 UE2到服务基站的链路的 测量配置, 并根据 UE2在根据上述测量配置进行测量后上报的测量结果, 决 定是否建立 D2D类型的承载和通信。
本实施例中, 上述服务基站将上述服务请求信令封装在 S1-AP口的 Initial UE Message 消息中。 并在该 Initial UE Message 消息新增 "D2D连接" 类型, 以便简化后续的为了 D2D通信而进行的寻呼过程。 进一步地, 该 Initial UE Message消息可以包括 UE1的 NAS ID,例如: s-TMSI;如果 UE1处于连接态, 服务基站可以将 UE1的 AS ID映射成 eNB T-UE SIAP ID,携带在该 Initial UE Message消息中发给核心网设备, 如 MME。
上述 Initial UE Message 消息的格式可以如表 5所示。
表 5
信元( IE ) / 存在位 范围 信元类型和 语义描述 ( Semantics 重要性 指派重要性 组名称 ( Presence ( Range ) 参考(IE type description ) ( Criticali ( Assigned ( Group ) and ty ) Criticality ) Name ) reference )
Message Type M 9.2.1.1 YES ignore eNB UE S1AP M 9.2.3.4 YES reject ID
eNB T-UE O 9.2.3.4 如果目的 (配对) UE处 YES reject S1AP ID 于连接态
NAS-PDU M 9.2.3.5 YES reject
TAI M 9.2.3.16 YES reject
E-UTRAN M 9.2.1.38 YES ignore CGI
RRC M 9.2.1.3a 增加 "D2D连接"类型 YES Ignore
Establishment
cause
S-TMSI O 9.2.3.6 YES reject
S-TMSI O 9.2.3.6 如果目的 (配对) UE处 YES reject 于连接态或空闲态
CSG Id o 9.2.1.62 YES reject
GUMMEI o 9.2.3.9 YES reject
Cell Access o 9.2.1.74 YES reject Mode
GW Transport o 9.2.2.1 YES ignore Layer Address
Relay Node o 9.2.1.79 Indicating a relay node YES reject Indicator 步骤 207 , MME接收到上述服务请求信令之后, 进行鉴权认证过程。 如果鉴权认证通过, 则 MME发起上下文建立过程, 从而触发承载建立过 程。
具体地, 可以按照目前的 LTE的技术, 由分组数据网网关 (Packet Data Network Gateway; 以下简称: PGW )来完成 DPS承载到无线承载的映射, 例 如, 完成 DPS承载的因特网协议( Internet Protocol; 以下简称: IP )地址的分 配和服务质量(Quality of Service; 以下简称: QoS )的管理等其他承载管理功
•6匕
匕。 步骤 208 , MME发送初始上下文建立请求消息给服务基站, 以激活所有 EPS承载的无线承载和 S1承载。
上述初始上下文建立请求( Initial Context Setup Request )消息包括服务网 关地址、上行 S1-TEID ( Sl-TEID(s) ), EPS Bearer QoS(s),安全上下文( Security Context ), MME信号连接标识( MME Signaling Connection ID )和切换区域列 表 ( Handover Restriction List )。 并且本实施例在上述 Initial Context Setup Request消息中新增 D2D连接指示 ( D2D connection indication )信元。
接收到上述 Initial Context Setup Request 消息之后, 上述服务基站保存 Security Context, MME Signaling Connection Id, EPS Bearer QoS(s)和 Sl-TEID(s) 在该服务基站的无线接入网上下文( Radio Access Network context; 以下简称: RAN context ) 中。
其中, 上述 Initial Context Setup Request消息的格式可以如表 6所示。
表 6
信元 ( IE ) /组 存在位 范围 信元类型和 语义描述 重要性 指派重要性 名称 (Group ( Presence ) ( Range ) 参考(IE type ( Semantics ( Criticality ) ( Assigned Name ) and description ) Criticality ) reference )
Message Type M 9.2.1.1 YES reject
MME UE M 9.2.3.3 YES reject SIAP ID
eNB UE SIAP M 9.2.3.4 YES reject ID
eNB T-UE O 9.2.3.4 如果目的 ( S对 ) YES reject SIAP ID UE处于连接态; 或
许该信元在该消息
中不是必须的
UE Aggregate M 9.2.1.20 YES reject Maximum Bit
Rate
E-RAB to Be 1 YES reject Setup List
>E-RAB to Be EACH reject Setup Item IEs
»E- AB ID M 9.2.1.2 -
» O 9.2.1.3a YES Ignore
D2D-connectio
n indication
»E-RAB M 9.2.1.15
Level QoS
Parameters
»Transpor M 9.2.2.1
t Layer
Address
»GTP-TE M 9.2.2.2 - ID
»NAS-PD O 9.2.3.5 -
U
»Correlati O 9.2.2.80 YES ignore on ID 信元 ( IE ) /组 存在位 范围 信元类型和 语义描述 重要性 指派重要性 名称 (Group ( Presence ) ( Range ) 参考(IE type ( Semantics ( Criticality ) ( Assigned Name ) and description ) Criticality ) reference )
UE Security M 9.2.1.40 YES reject Capabilities
Security Key M 9.2.1.41 YES reject
Trace O 9.2.1.4 YES ignore Activation
Handover O 9.2.1.22 YES ignore Restriction List
UE Radio o 9.2.1.27 YES ignore Capability
Subscriber o 9.2.1.39 YES ignore Profile ID for
RAT Frequenc
y priority
CS Fallback o 9.2.3.21 YES reject Indicator
S VCC o 9.2.1.58 YES ignore
Operation
Possible
CSG o 9.2.1.73 YES ignore
Membership
Status
Registered LAI o 9.2.3.1 YES ignore
GUMMEI o 9.2.3.9 YES ignore
MME UE o 9.2.3.3 YES ignore S1AP ID 2 步骤 209 , 服务基站执行 DPS承载到无线承载的映射。
一个无线承载( Radio Bearer )用来在两个 UE之间传输一个 DPS承载的 数据包。 如果一个无线承载存在, 则在一个 DPS承载和一个无线承载之间存 在——映射的关系。 在两个 UE之间, 一个 DPS承载是唯一标识一个具有共 同 QoS特征的业务流组。 包过滤规和每个连接中的一个唯一的包过滤标识相 关联, 并在类似 NAS过程的信令中发下来。 一个 DPS承载也就是这个承载里 的所有的包过滤规则的合集。 具有相同 QoS特征的业务流组映射到相同的 DPS承载中, 举例来说, 上 述 QoS特征可以包括: 调度策略、 排队管理策略、 速度整形策略和无线链路 控制 ( Radio Link Control; 以下简称: RLC )管理等。
步骤 210,服务基站向 MME发送初始上下文建立完成 /响应( Initial Context Setup Complete/Response ) 消息。
具体地,完成 DPS承载到无线承载的映射之后,服务基站向 UE2发送 RRC 重配请求消息, 并接收 UE2发送的 RRC重配完成消息。服务基站接收到 UE2 发送的 RRC重配完成消息之后, 完成 DPS承载到无线承载的映射。 然后, 月良 务基站向 MME发送回复消息,例如:初始上下文建立完成 /响应( Initial Context Setup Complete/Response )消息, 该初始上下文建立完成 /响应消息携带该月良务 基站的地址、 接受的 EPS承载列表、 拒绝的 EPS承载列表和 S1口的 TEID(s) (下行的)。 并在 "接受的 EPS承载列表" 中的 "演进型通用陆地无线接入承
Identifier; 以下简称: E-RAB ID )" 信息中新增 "D2D连接" 类型指示, 或在 Attach过程中就规定了专用的 PDN连接用于 DPS承载的管理。
本实施例中, 初始上下文建立完成 /响应消息的格式可以如表 7所示。
表 7
信元 ( Information 存在位 范围 信元类型和 语义描述 重要性 指派重要 Element; 以下简 ( Presence ) ( Range ) 参考 ( Semantics ( Criticality ) 性 称: IE ) /组名称 ( IE type description ) ( Assigned ( Group Name ) and Criticality ) reference )
Message Type M 9.2.1.1 YES reject
MME UE S1AP ID M 9.2.3.3 YES ignore eNB UE SlAP ID M 9.2.3.4 YES ignore
E-RAB Setup List 1 YES ignore
> E-RAB Setup 1 to EACH ignore Item Ies <maxnoofE- RABs>
»E- AB ID M 9.2.1.2 1: 在 attach过
程中, 已经和
D2D承载绑定;
2: 附带一个
D2D通信类型
» D2D-connection O 可选的
indication ( new )
»Transport Layer M 9.2.2.1 - Address
»GTP-TEID M 9.2.2.2 -
E-RAB Failed to O E-RAB List a value for YES ignore Setup List 9.2.1.36 E-RAB ID shall
only be present
once in E-RAB
Setup List IE +
E-RAB Failed
to Setup List IE
Criticality O 9.2.1.21 YES ignore Diagnostics 步骤 211 , MME向网关 ( Gateway; 以下简称: GW )发送更新承载请求 ( Update Bearer Request ) 消息。
步骤 212 , MME接收 GW发送的更新承载响应( Update Bearer Response ) 消息。
步骤 213 , MME向上述服务基站发送第一消息。 本实施例中,上述第一消息用于触发服务基站发送消息给 UE1 ,使得 UE1 和网络侧设备建立连接。 上述第一消息可以为寻呼消息或一条新的消息, 上述 第一消息携带 "D2D连接" 类型, 触发本次 D2D通信的 UE (本实施例中为 UE2 ) 的标识和需要建立连接的 UE (本实施例中为 UE1 ) 的标识。
本实施例中, MME接收到上述服务基站的回复消息, 例如: 初始上下文 建立完成 /响应消息之后, 向上述服务基站发送第一消息, 触发服务基站发送 第二消息给 UE1 , 使得 UE1和网络侧设备建立连接。
以上述第一消息为寻呼消息为例,本实施例在现有的 MME向服务基站发 送的寻呼消息中, 新增 "D2D连接"类型和触发本次 D2D通信的 UE的标识, 本实施例中 , 触发本次 D2D通信的 UE为 UE2, 这里的触发本次 D2D通信的 UE的标识是上述服务基站可以识别的标识。
本实施例中, MME向服务基站发送的寻呼消息的格式可以如表 8所示。
表 8
信元 ( Information 存在位 范围 信元类型和参考 语义描述 重要性 指派重要性 Element; 以下简 ( Presence ) ( Range ) ( IE type and ( Semantics ( Criticality ( Assigned 称: IE ) /组名称 reference ) description ) ) Criticality ) ( Group Name )
Message Type M 9.2.1.1 YES ignore
UE Identity Index M 9.2.3.10 YES ignore value
UE Paging Identity M 9.2.3.13 YES ignore
T-UE Paging O 9.2.3.13
Identity
D2D
Communication
indication
Paging DRX O 9.2.1.16 YES ignore
CN Domain M 9.2.3.22 YES ignore
List of TAIs 1 YES ignore
>TAI List Item 1 to < EACH ignore
maxnooiTAI
s >
»TAI M 9.2.3.16 -
CSG Id List 0..1 GLOBAL ignore
>CSG Id 1 to < 9.2.1.62
maxnoofCSGI
d >
Paging Priority O 9.2.1.78 YES ignore 步骤 214, 上述服务基站向 UE1发送第二消息。
本实施例中, 上述第二消息用于触发 UE1 与网络侧设备建立连接。 上述 第二消息可以是一条寻呼消息或新设计的消息格式, 携带 "D2D 连接" 类型 和触发本次 D2D通信的 UE (本实施例中为 UE2 ) 的标识。
以上述第二消息为寻呼消息为例,本实施例在现有的服务基站向 UE发送 的寻呼消息的基础上,新增 "D2D连接"类型指示和触发本次 D2D通信的 UE 的标识;本实施例中 ,触发本次 D2D通信的 UE为 UE2,这里的触发本次 D2D 通信的 UE的标识是上述服务基站可以识别的标识。 上述 "D2D连接"类型指 示可以为显式的指示或 4艮据新增的信元来隐式的指示。 步骤 215, UE1发起与网络侧设备的连接建立过程。
在 UE1接收到上述服务基站发送的第二消息之后, 发起与网络侧设备的 连接建立过程。 在这个过程中, 网络对该 UE1的 DPS承载的建立过程与网络 对 UE2的 DPS承载的建立过程类似,请参见步骤 207〜步骤 210的描述, 在此 不再赘述。 可选的, UE1先进行本次连接建立过程的接纳控制。
可选地, 在 UE1与服务基站之间建立默认承载。
可选地, 服务基站也可以直接发送调度信息给 UE1 ; 后续, 根据 UE1对 D2D连接的链路的测量的反馈, 更新对 UE1的调度信息。
可选地, 服务基站可以从一个较长的时间角度, 预配置 UE1 的资源, 例 如: UE1 发送 /接收所用的半静态资源, 包括配置该半静态资源的偏移、 配置 该半静态资源的周期、用于半静态调度的混合自动重传请求( Hybrid Automatic Repeat Request; 以下简称: HARQ )进程数目和 用 于发送肯 定应 答 ( Acknowledgement; 以下简称: ACK ) /否定应答 ( Negative- Acknowledgment; 以下简称: NACK ) 的资源;
步骤 216, UE1发起与 UE2的连接建立。 可选地, 在 UE1完成与服务基 站的连接建立之后, UE1发起与 UE2的连接建立。
具体地, UE1先向 UE2发送 D2D链路建立请求消息, 该 D2D链路建立 请求消息携带: UE1 的标识(D-RNTI或 UE1 的物理标识)和 UE2 的标识 ( D-RNTI或 UE2的物理标识); 以及该 UE1的信道状态信息 ( Channel State Information; 以下简称: CSI )信息,例如:调制编码方式( Modulation and Coding Scheme; 以下简称: MCS )、 编码速率 (code rate ) 和 /或预编码矩阵指示符 ( Precoding Matrix Indexes; 以下简称: PMI )等; 以及资源分配情况(如果 服务基站未下发类似时分双工 (Time Division Duplexing; 以下简称: TDD ) 配比的配置信息。
UE2接收到上述 D2D链路建立请求消息之后, 进一步, 可选地进行接入 控制, 如果允许建立连接, 则 UE2向 UE1回复 D2D链路建立响应消息, 该 D2D链路建立响应消息携带 UE2的标识( D-RNTI或 UE2的物理标识)和 UE1 的标识( D-RNTI或 UE1的物理标识); 以及该 UE2的 CSI信息,例如: MCS、 code rate和 /或 PMI等; 以及资源分配接受或拒绝。 其中, 资源分配接受或拒 绝是指 UE2接受或拒绝 UE1的资源分配情况, 可选的携带原因值或推荐的资 源分配方式。
最后, UE1接收到 UE2发送的 D2D链路建立响应消息之后, 向 UE2发 送 D2D链路建立完成消息。
步骤 217, UE1与 UE2之间的 DPS承载建立完成。 UE1与 UE2开始设备 到设备 ( D2D ) 的通信。
本实施例中, 如果服务基站未发送动态调度信息, 则 UE1和 UE2可以根 据自身对 D2D连接的链路的测量的情况, 进行调度协商或自行调度; 并在后 续根据测量结果, 更新对对端 UE的调度信息。
上述实施例中, 上述服务基站可以为演进基站(evolved NodeB; 以下简 称: eNB ), 当然本发明实施例并不仅限于此, 本发明实施例对基站的形式不 作限定。
上述实施例可以实现在支持 D2D功能的用户设备之间建立 DPS承载, 实 现支持 D2D功能的用户设备之间的通信,进而可以实现网络对资源的可控性。
图 3为本发明连接建立方法再一个实施例的流程图,如图 3所示, 该连接 建立方法可以包括:
步骤 301〜步骤 306, 同步骤 201〜步骤 206。
步骤 307, MME接收到上述服务请求信令之后, 进行鉴权认证过程。 如果鉴权认证通过, 则 MME发起上下文建立过程, 从而触发承载建立过 程。
步骤 308, MME发送上下文建立请求消息给服务基站, 以触发承载建立 过程和 DPS承载到无线承载的映射过程。
本实施例中, 可以由具有内部网关功能的实体完成 DPS承载的 IP地址的 分配和 QoS 的管理等其他承载管理功能; 上述具有内部网关功能的实体可以 是个独立实体, 也可以和上述服务基站集成在一起。
本实现方式中, 一个 DPS承载具有以下特征:
每一个专用的 DPS承载和一个 TFT相关联。
发送业务流模板 ( TX Traffic Flow Template; 以下简称: TX TFT )是一个 TFT中的发送包过滤规则的集合。 UE2利用发送业务流模板将发送方向的业务 流过滤到对应的 DPS承载中; UE1 同样利用发送业务流模板将发送方向的业 务流过滤到对应的 DPS承载中; 同时, 两个 UE保存对方的发送业务流模板, 作为接收业务流模板 ( RX Traffic Flow Template; 以下简称: RX TFT ) , 并根 据该接收业务流模板确定接收的业务流和对应的 DPS承载的映射关系; 接收 业务流模板的获取, 可以是支持 D2D功能的 UE1和 UE2在建立连接过程中, 互相通知 ,也可以通过网络告知对方。这样 , UE1和 UE2就可以用 TX TFT 和 RX TFT确定承载(Bearer )和应用 (Application ) 的关联: 从 Bearer来的数 据,根据 TFT确定是哪个 Application的,这就是接收( RX )了;从 Application 来的数据, 根据 TFT确定映射到哪个 Bearer, 这就是发送( TX ) 了。
一个无线承载( Radio Bearer )用来在两个 UE之间传输一个 DPS承载的 数据包。 如果一个无线承载存在, 则在一个 DPS承载和一个无线承载之间存 在——映射的关系。 在两个 UE之间, 一个 DPS承载是唯一标识一个具有共 同 QoS特征的业务流组。 包过滤规和每个连接中的一个唯一的包过滤标识相 关联, 并在类似 NAS过程的信令中发下来。 一个 DPS承载也就是这个承载里 的所有的包过滤规则的合集。
具有相同 QoS特征的业务流组映射到相同的 DPS承载中, 举例来说, 上 述 QoS特征可以包括: 调度策略、 排队管理策略、 速度整形策略和 RLC管理 等。
本实施例中, 无线承载与 DPS承载的映射图可以如图 4a〜图 4c所示, 图 4a〜图 4c为本发明承载映射一个实施例的示意图。
步骤 309, 服务基站向 MME发送初始上下文建立完成 /响应消息。
具体地,完成 DPS承载到无线承载的映射之后,服务基站向 UE2发送 RRC 重配请求消息, 并接收 UE2发送的 RRC重配完成消息。服务基站接收到 UE2 发送的 RRC重配完成消息之后, 完成 DPS承载到无线承载的映射。 然后, 服 务基站向 MME发送回复消息, 例如: 初始上下文建立完成 /响应消息, 该初 始上下文建立完成 /响应消息携带该服务基站的地址、 接受的 EPS承载列表、 拒绝的 EPS承载列表和 S1口的 TEID(s) (下行的)。 并在 "接受的 EPS承载列 表" 中的 "E-RAB ID" 信息中新增 "D2D连接" 类型指示, 或在 Attach过程 中就规定了专用的 PDN连接用于 DPS承载的管理。
本实施例中, 初始上下文建立完成 /响应消息的格式可以如表 7所示。 步骤 310〜步骤 314, 同步骤 213〜步骤 217。
本实施例中, 如果服务基站未发送动态调度信息, 则 UE1和 UE2可以根 据自身对 D2D连接的链路的测量的情况, 进行调度协商或自行调度; 并在后 续根据测量结果, 更新对对端 UE的调度信息。
上述实施例中,上述服务基站可以为 eNB, 当然本发明实施例并不仅限于 此, 本发明实施例对基站的形式不作限定。
上述实施例可以实现在支持 D2D功能的用户设备之间建立 DPS承载, 实 现支持 D2D功能的用户设备之间的通信,进而可以实现网络对资源的可控性。
图 5为本发明连接建立方法再一个实施例的流程图, 本实施例中 DPS承 载的建立沿用 LTE中用 PGW来承担 DPS承载的管理和资源分配的原则。 本 实施例中 UE1与 UE2的初始状态是空闲 (IDLE ) 态。
如图 5所示, 该连接建立方法可以包括: 步骤 501 , 支持 D2D功能的 UEl获得用于广播该 UEl的信息的资源, 该 UE1的信息包括 UE1的标识、 业务信息、 服务码和应用层服务信息之一或组 合。
具体地, UE1获得用于广播该 UE1的信息的资源的方式与本发明图 3所 示实施例步骤 301中描述的方式相同, 在此不再赘述。
步骤 502, UE1在获得的资源上广播该 UE1的信息。
具体地,UE1广播该 UEl的信息的方式与本发明图 3所示实施例步骤 302 中描述的方式相同, 在此不再赘述。
步骤 503 ,支持 D2D功能的 UE2通过感知技术或对其他支持 D2D功能的 UE的搜索和测量, 获知到有可能配对的 UE1存在时, UE2向 UE1 当前所在 小区的服务基站发送 RRC连接建立请求消息。
本实施例中, 在步骤 503之前, UE2同样会获得用于广播该 UE2的信息 的资源, 并在获得的资源上广播该 UE2的信息, 实现方式与步骤 501和步骤 502描述的方式相同,在此不再赘述。本实施例以 UE2当前所在小区的服务基 站与 UE1当前所在小区的服务基站相同为例进行说明。
本实施例中, 在上述 RRC连接建立请求消息的建立原因信元的值为 D2D 连接;进一步地,上述 RRC连接建立请求消息还可以携带 UE1的 NAS ID (例 如: old GUTI或 s-TMSI )和 AS ID; 或者, 上述 RRC连接建立请求消息还可 以携带 UE1的服务码。这样,上述服务基站可以获知 UE2发起的是 D2D连接 建立过程, 并且可以获知目的 UE或配对 UE的标识。 本实施例中, 上述目的 UE或配对 UE为 UE1。
具体地, UE2可以釆用 DRX方式, 以不连续接收周期 (DRX-Cycle ) , 在一些特定的资源上搜索除 UE2之外的支持 D2D功能的 UE广播的信息, 在 获知到有可能配对的 UE1存在之后, UE2接收 UE1广播的该 UE1的信息; 或 者, UE2也可以釆用事件触发的方式接收 UE1广播的该 UE1的信息, 例如: 当用户有某些特定的需求时,通过人机界面触发接收动作; 或者应用层根据用 户之前定制的需求档案 ( profile )触发接收动作。 当然 UE2也可以将 DRX和 事件触发这两种方式组合使用, 接收 UE1广播的该 UE1的信息。
然后, UE2发现 UE1的信息与该 UE2的需求匹配,于是 UE2发起与 UE1 的直接的 D2D连接的建立。首先, UE2向上述服务基站发送 RRC连接建立请 求消息。
步骤 504, UE2接收上述服务基站发送的 RRC连接建立响应消息。
步骤 505, UE2向上述服务基站发送 RRC连接建立完成消息。
本实施例, 在上述 RRC连接建立完成消息中携带 UE2的 D2D能力信息 和服务请求(Service Request )信令。 进一步地, 上述 RRC连接建立请求消息 还可以携带 UE1的 NAS ID (例如: old GUTI或 s-TMSI )和 AS ID; 或者, 上述 RRC连接建立完成消息还可以携带 UE1的服务码。 这样, 上述服务基站 可以获知 UE2发起的是 D2D连接建立过程,并且可以获知连接对象(即 UE1 ) 的标识。
对于步骤 503〜步骤 505中, RRC连接建立完成消息携带 UE2的 D2D能 力信息和 RRC连接建立请求消息的建立原因信元的值为 D2D连接可以只出现 其中一项或同时出现。 也就是说, 如果步骤 503 中, RRC连接建立请求消息 的建立原因信元的值为 D2D连接, 则步骤 505中, RRC连接建立完成消息可 以携带 UE2的 D2D能力信息, 也可以不携带; 或者, 如果步骤 503中, RRC 连接建立请求消息的建立原因信元的值不是 D2D连接, 则步骤 505中, RRC 连接建立完成消息须携带 UE2的 D2D能力信息。
另夕卜,上述 RRC连接建立完成消息和上述 RRC连接建立请求消息之一或 全部携带 UE1的 NAS ID (例如: old GUTI或 s-TMSI )和 AS ID; 或者, 上 述 RRC连接建立完成消息和上述 RRC连接建立请求消息之一或全部携带 UE1 的服务码。 步骤 506, 服务基站将上述服务请求信令转发给 MME。
步骤 507 , MME接收到上述服务请求信令之后, 进行鉴权认证过程。 如果鉴权认证通过, 则 MME发起上下文建立过程, 从而触发承载建立过 程。
步骤 508 , MME发送初始上下文建立请求消息给服务基站, 以激活所有 EPS承载的无线承载和 S1承载。
具体地,上述初始上下文建立请求消息的格式可以参照本发明图 2所示实 施例步骤 208中的描述, 在此不再赘述。
步骤 509, 服务基站执行 DPS承载到无线承载的映射。
具体地, 上述服务基站执行无线承载建立过程。用户面的安全功能在这步 建立。 在用户面承载建立完成之后, Service Request过程完成, 同时 DPS承载 在 UE和网络侧完成同步。
本实施例中 , 可以按照现有的 LTE技术, 由 EPC中的 PGW或 MME来 完成 DPS承载的配置和管理。
步骤 510,服务基站向 MME发送初始上下文建立完成 /响应( Initial Context Setup Complete/Response ) 消息。
具体地,完成 DPS承载到无线承载的映射之后,服务基站向 UE2发送 RRC 重配请求消息, 并接收 UE2发送的 RRC重配完成消息。服务基站接收到 UE2 发送的 RRC重配完成消息之后, 完成 DPS承载到无线承载的映射。 然后, 月良 务基站向 MME发送回复消息,例如:初始上下文建立完成 /响应( Initial Context Setup Complete/Response )消息, 该初始上下文建立完成 /响应消息携带该月良务 基站的地址、 接受的 EPS承载列表、 拒绝的 EPS承载列表和 S1口的 TEID(s) (下行的)。并在 "接受的 EPS承载列表"中的 "E-RAB ID"信息中新增 "D2D 连接"类型指示, 或在 Attach过程中就规定了专用的 PDN连接用于 DPS承载 的管理。 其中, 上述初始上下文建立完成 /响应消息的格式可以如表 7所示, 在此 不再赘述。
步骤 511 , MME向 GW发送更新承载请求消息。
步骤 512, MME接收 GW发送的更新承载响应消息。
步骤 513 , UE2向上述服务基站发送承载资源修改请求 ( Bearer Resource Modification Request ) 消息。
本实施例中, 如果在 Attach过程中, DPS承载没有建立, 则 UE2可以发 起请求承载资源修改过程来触发 DPS承载的建立。
具体地, UE2 可以先向上述服务基站发送承载资源修改请求 (Bearer Resource Modification Request ) 消息 , 该承载资源修改请求消息携带连接承载 标识(Linked EPS Bear ID; 以下简称: LBI )、 净荷类型指示 (Payload Type Indicator; 以下简称: PTI )、 EPS承载标识( EPS Bearer Identity )、 QoS、 业 务聚合描述( Traffic Aggregate Description; 以下简称: TAD )和协议配置选 项( Protocol Configuration Options );并且该承载资源修改请求消息中新增" D2D 连接" 类型指示, 或有个专用的分组数据网络(Packet Data Network; 以下简 称: PDN )连接用于 DPS承载的管理。 其中上述 LBI与 D2D承载相关, EPS 承载标识也可以作为 D2D承载标识。
其中, 上述 TAD用于指示该承载资源修改请求消息是新增, 修改还是删 除包过滤规则。 当业务流增加时, TAD 就包括一组包过滤规则, 但还没有包 过滤标识 (Packet Filter Identifier )。 UE (例如: UE2 )还会发送要增加的业 务流的 QoS类别标识(QoS Class Identifier; 以下简称: QCI )信息和保证比 特率(Guaranteed Bit Rate; 以下简称: GBR )。 当这个过程结束后, TAD被释 放。
UE (例如: UE2 ) 只有请求增加承载操作时, 发送 LBI来指示新增的承 载资源和哪个 PDN连接相联系。 EPS Bearer Identity只会在修改和删除承载操作时 , 才会发送。 其中 UE发送的承载资源修改请求消息的格式可以如表 9所示。
表 9
Figure imgf000038_0001
步骤 514, 上述服务基站向 MME发送承载资源修改请求消息。
其中, 上述承载资源修改请求消息携带 IMSI、 LBI、 PTI、 EPS Bearer Identity、 QoS、 TAD和 Protocol Configuration Options。 MME用 LBI来马全证这 个请求。 与 LBI对应的 EPS承载, MME用相同的 SGW地址。 该承载资源修 改请求消息中新增 "D2D连接" 类型指示, 或有个专用的 PDN连接用于 DPS 承载的管理。
步骤 515, MME发送承载资源修改请求消息给选择的服务网关 (Serving Gateway; 以下简称: SGW ), 该承载资源修改请求消息携带 IMSI、 LBI、 PTL EPS Bearer Identity、 QoS、 TAD和 Protocol Configuration Options。 MME用 LBI 来验证这个请求。 与 LBI对应的 EPS承载, MME用相同的 SGW地址。 该承 载资源修改请求消息中新增 "D2D连接" 类型指示, 或有个专用的 PDN连接 用于 DPS承载的管理。
步骤 516, SGW发送承载资源修改请求消息给 PGW, 该承载资源修改请 求消息携带 IMSI、 LBI、 PTL EPS Bearer Identity, QoS、 TAD 和 Protocol Configuration Options。 SGW把与 LBI对应的 EPS承载发送给相同的 PDN 。 该承载资源修改请求消息中新增 "D2D连接" 类型指示, 或有个专用的 PDN 连接用于 DPS承载的管理。
如果上述承载资源修改请求消息被接受, 用于该 DPS承载管理的专用承 载激活 ( Dedicated Bearer Activation ) 流程或专用承载修改 ( Dedicated Bearer Modification ) 流程将被发起。 由 UE2分配的 PTI将 UE2发起的 Dedicated Bearer Activation流程与 UE2发起的 Bearer Resource Modification流程相关联, PTI提供了在新的业务流组合和用于新的业务流组合的 EPS承载之间必要的连 接。 当一个新的包过滤规则加入一个 TFT中时, PGW会分配一个在这个 TFT 中唯一的新的包过滤标识 (Packet Filter Identifier )。 PGW 维持业务数据流 ( Service Data Flow; 以下简称: SDF ) 中的包过滤标识和 TFT中的包过滤标 识的对应关系。
步骤 517〜步骤 521 , 同步骤 213〜步骤 217。
上述实施例中,上述服务基站可以为 eNB, 当然本发明实施例并不仅限于 此, 本发明实施例对基站的形式不作限定。 上述实施例可以实现在支持 D2D功能的用户设备之间建立 DPS承载, 实 现支持 D2D功能的用户设备之间的通信,进而可以实现网络对资源的可控性。
本发明图 5所示实施例中, 步骤 515 中的专用承载激活流程可以如图 6 所示, 图 6为本发明专用承载激活流程一个实施例的流程图。
步骤 601 , PGW应用本地的 QoS策略。
步骤 602 , PGW应用本地 QoS策略来分配 EPS承载的服务质量( EPS Bearer QoS ), 例如: PGW分配该 EPS承载的 QoS 参数, 该 EPS承载的 QoS参数包 括: QCI、地址解析协议( Address Resolution Protocol; 以下简称: ARP )、 GBR 和最大比特率(Maximum Bit Rate; 以下简称: MBR ); PGW发送创建专用承 载请求( Create Dedicated Bearer Request )消息给 SGW, 该创建专用承载请求 消息包括 IMSL PTL EPS Bearer QoS、 TFT、 S5/S8隧道端点标识( S5/S8 Tunnel Endpoint Identifier; 以下简称: S5/S8 TEID )、 LBI和协议配置选项 (Protocol Configuration Options )。
步骤 603 , SGW发送创建专用承载请求消息给 MME, 该创建专用承载请 求消息包括 IMSI、 PTL EPS Bearer QoS、 TFT、 S1-TEID、 LBI和 Protocol 配置选项。
其中, LBI新增 "D2D连接"类型指示,或有个专用的 PDN连接用于 DPS 承载的管理。
步骤 604, MME选择一个 EPS Bearer ID, 同时构建一个会话管理请求 ( Session Management Request ), 该会话管理请求包括 PTI、 TFT、 EPS Bearer QoS参数、 Protocol Configuration Options. EPS Bearer Identity (可选的, 新增 "D2D连接"类型指示)和 LBI。 然后 MME发送承载建立请求( Bearer Setup Request )消息给 eNB,该承载建立请求消息包括 EPS Bearer Identity, EPS Bearer QoS、 Session Management Request和 S 1 -TEID。
步骤 605, eNB映射 EPS Bearer QoS到无线承载的 QoS, 并发送 RRC连 接重配置消息给 UE, 该 RRC连接重配置消息包括 Radio Bearer QoS、 Session Management Request和 EPS Bearer Identity。
本实施例中的 UE可以为 UE2或 UE1。
接收到上述 RRC 连接重配置消息之后, UE NAS 将保存 EPS Bearer Identity, 通过 LBI建立的专用 载(Dedicated Bearer )和默认 载的关联关 系。 UE利用发送业务流模版(UL TFT )来决定业务流到无线承载的映射。
步骤 606 , UE 通过发送 RRC 连接重配置完成 (RRC Connection Reconfiguration Complete ) 消息给 eNB , 来回应 无线^载激活 ( Radio Bearer Activation )。
步骤 607 , eNB 通过发送承载建立响应 ( Bearer Setup Response ) 消息给 MME来确认 7 载激活。
其中, 上述承载建立响应消息携带 EPS Bearer Identity和 S1-TEID。
步骤 608, UE NAS层生成会话管理响应( Session Management Response ), 并通过直接转发( Direct Transfer ) 消息将上述会话管理响应发送给 eNB。
其中, 上述直接转发消息包括 EPS Bearer Identity。
步骤 609, eNB发送上行 NAS传输( Uplink NAS Transport )消息给 MME。 其中, 上述上行 NAS传输消息携带会话管理响应 (Session Management Response )。
本实施例中, 上述 Uplink NAS Transport消息的格式可以如表 10所示。
表 10 信元 ( Information 存在位 范围 信元类型和参 语义描述 重要性 指派重要性 Element; 以下简 ( Presence ) ( Range ) 考 ( IE type and ( Semantics ( Criticality ) ( Assigned 称: IE ) /组名称 reference ) description ) Criticality ) ( Group Name )
Message Type M 9.2.1.1 YES ignore
MME UE S1AP ID M 9.2.3.3 YES reject
MME T-UE S1AP O 9.2.3.3 If target(paired) YES reject ID(new) UE in connected
mode
eNB UE SlAP ID M 9.2.3.4 YES reject eNB T-UE S1AP O 9.2.3.4 If target(paired) YES reject ID (new) UE in connected
mode
NAS-PDU M 9.2.3.5 Request Bearer YES reject
Resource
Modification
D2D-connection O 可选的
indication ( new )
E-UTRAN CGI M 9.2.1.38 YES ignore
TAI M 9.2.3.16 YES ignore
GW Transport O Transport Layer Indicating GW YES ignore Layer Address Address 9.2.2.1 Transport Layer
Address if the
GW is collocated
with eNB 步骤 610, 接收到步骤 607的承载建立响应消息和步骤 609的会话管理响 应 ( Session Management Response )之后, MME发送创建专用 载响应 ( Create Dedicated Bearer Response ) 消息给 SGW, 确认 载激活 ( Bearer Activation ) 成功。
其中, 上述创建专用承载响应消息携带 EPS Bearer Identity和 S1-TEID。 步骤 611 , SGW向 PGW发送创建专用承载响应消息。
图 7为本发明连接建立方法再一个实施例的流程图, 本实施例中 DPS承 载的建立沿用 LTE中用 PGW来承担 DPS承载的管理和资源分配的原则。 本 实施例中 UE1与 UE2的初始状态是 Active态。 步骤 701 , 支持 D2D功能的 UEl获得用于广播该 UEl的信息的资源, 该 UE1的信息包括 UE1的标识、 业务信息、 服务码和应用层服务信息之一或组 合。
具体地, UE1获得用于广播该 UE1的信息的资源的方式与本发明图 2所 示实施例步骤 201中描述的方式相同, 在此不再赘述。
步骤 702, UE1在获得的资源上广播该 UE1的信息。
具体地,UE1广播该 UE1的信息的方式与本发明图 2所示实施例步骤 202 中描述的方式相同, 在此不再赘述。
步骤 703 ,支持 D2D功能的 UE2通过感知技术或对其他支持 D2D功能的 UE的搜索和测量, 获知到有可能配对的 UE1存在。
可选地, UE2向服务基站发送靠近指示, 携带 UE1的信息。
本实施例中, 在步骤 703之前, UE2同样会获得用于广播该 UE2的信息 的资源, 并在获得的资源上广播该 UE2的信息, 实现方式与步骤 701和步骤 702描述的方式相同,在此不再赘述。本实施例以 UE2当前所在小区的服务基 站与 UE1当前所在小区的服务基站相同为例进行说明。
步骤 704 , UE2向 UE1 当前所在小区的服务基站发送承载资源修改请求 ( Bearer Resource Modification Request ) 消息。
本实施例中, 如果在 Attach过程中, D2D承载没有建立, 则 UE2可以发 起请求承载资源修改过程来触发 D2D承载的建立。
具体地, UE2 可以先向上述服务基站发送承载资源修改请求 (Bearer Resource Modification Request )消息,该承载资源修改请求消息携带 LBI、 PTL EPS 承载标识 (EPS Bearer Identity ), QoS、 TAD 和 Protocol Configuration Options; 并且该承载资源修改请求消息中新增 "D2D 连接" 类型指示, 或有 个专用的 PDN连接用于 DPS承载的管理。 其中上述 LBI与 D2D承载相关, EPS承载标识也可以作为 D2D承载标识。 其中, 上述 TAD用于指示该承载资源修改请求消息是新增, 修改还是删 除包过滤规则。 当业务流增加时, TAD 就包括一组包过滤规则, 但还没有包 过滤标识 (Packet Filter Identifier )。 UE (例如: UE2 )还会发送要增加的业 务流的 QCI信息和 GBR。 当这个过程结束后, TAD被释放。
UE (例如: UE2 ) 只有请求增加承载操作时, 发送 LBI来指示新增的承 载资源和哪个 PDN连接相联系。
EPS Bearer Identity只会在修改和删除承载操作时, 才会发送。
其中 UE发送的承载资源修改请求消息的格式可以如表 9所示。
步骤 705, 上述服务基站向 MME发送承载资源修改请求消息。
其中, 上述承载资源修改请求消息携带 IMSI、 LBI、 PTI、 EPS Bearer Identity、 QoS、 TAD和 Protocol Configuration Options。 MME用 LBI来马全证这 个请求。 与 LBI对应的 EPS承载, MME用相同的 SGW地址。 该承载资源修 改请求消息中新增 "D2D连接" 类型指示, 或有个专用的 PDN连接用于 DPS 承载的管理。
步骤 706, MME发送承载资源修改请求消息给选择的 SGW, 该承载资源 修改请求消息携带 IMSI、 LBI、 PTL EPS Bearer Identity, QoS、 TAD和 Protocol Configuration Options„ MME用 LBI来验证这个请求。与 LBI对应的 EPS承载, MME用相同的 SGW地址。 该承载资源修改请求消息中新增 "D2D连接" 类 型指示, 或有个专用的 PDN连接用于 DPS承载的管理。
步骤 707, SGW发送承载资源修改请求消息给 PGW, 该承载资源修改请 求消息携带 IMSI、 LBI、 PTL EPS Bearer Identity, QoS、 TAD 和 Protocol Configuration Options。 SGW把与 LBI对应的 EPS承载发送给相同的 PDN 。 该承载资源修改请求消息中新增 "D2D连接" 类型指示, 或有个专用的 PDN 连接用于 DPS承载的管理。
如果上述承载资源修改请求消息被接受, 用于该 DPS承载管理的专用承 载激活 ( Dedicated Bearer Activation ) 流程或专用承载修改 ( Dedicated Bearer Modification ) 流程将被发起。 由 UE2分配的 PTI将 UE2发起的 Dedicated Bearer Activation流程与 UE2发起的 Bearer Resource Modification流程相关联, PTI提供了在新的业务流组合和用于新的业务流组合的 EPS承载之间必要的连 接。 当一个新的包过滤规则加入一个 TFT中时, PGW会分配一个在这个 TFT 中唯一的新的包过滤标识( Packet Filter Identifier )。 PGW维持 SDF中的包过 滤标识和 TFT中的包过滤标识的对应关系。
其中, 上述专用承载激活流程可以如图 6所示, 在此不再赘述。
步骤 708, 服务基站根据 DPS承载的信息, 执行 DPS承载到无线承载的 映射。
具体地, 上述服务基站执行无线承载建立过程。用户面的安全功能在这步 建立。 在用户面承载建立完成之后, Service Request过程完成, 同时 DPS承载 在 UE和网络侧完成同步。
本实施例中 , 可以按照现有的 LTE技术, 由 EPC中的 PGW或 MME来 完成 DPS承载的配置和管理。
步骤 709, PGW发起对目标 UE的 D2D承载的建立过程。
本实施例中, 上述目标 UE为 UE1。
首先, PGW根据从 MME获得的 UE1的标识, 向 UE1发起专用承载激活 流程。 其中, 上述专用承载激活流程可以如图 6所示, 在此不再赘述。
然后, 上述服务基站执行 DPS承载到无线承载的映射。
本实施例中 , 可以按照现有的 LTE技术, 由 EPC中的 PGW或 MME来 完成 DPS承载的配置和管理。
步骤 710, UE1发起与 UE2的连接建立。
本步骤为可选步骤。 具体地, UE1发起与 UE2的连接建立的过程可以参 见本发明图 2所示实施例步骤 216的描述, 在此不再赘述。 步骤 711 , UE1与 UE2之间的 DPS承载建立完成。 UE1与 UE2开始设备 到设备 ( D2D ) 的通信。
上述实施例可以实现在支持 D2D功能的用户设备之间建立 DPS承载, 实 现支持 D2D功能的用户设备之间的通信,进而可以实现网络对资源的可控性。
本发明图 2〜图 7所示实施例中, UE1与 UE2之间的空口, 即 Ud口的协 议栈只有用户面协议栈, 没有控制面协议栈或者简化的控制面协议栈。
其中, 上述 Ud口的用户面协议栈可以沿用目前 LTE的协议栈, 如图 10a 所示, 这时, 上述用户面协议栈可以配置 IP、 PDCP、 RLC、 MAC和 PHY之 一或组合的信息; 或者上述 Ud口的用户面协议栈可以为简化的协议栈, 如图 10b所示, 这时, 上述用户面协议栈可以配置 IP、 MAC-d和 PHY之一或组合 的信息。 图 10a〜图 10b为本发明用户面协议栈的示意图。
本发明图 2〜图 7所示实施例中, Ud链路的配置由网络侧来控制, 即通过 Uu口的信令来控制和配置 Ud口, 包括: UE1与 UE2之间 DPS承载的建立和 该 DPS承载到无线承载的映射。
可选地, 如果资源共享, 上述 Ud 口的用户面协议栈还可配置类似 TDD 配比的配置信息(不限于目前 LTE中规定的几种配比)、 安全信息(加密、 完 整性保护参数和算法)和测量配置信息之一或组合。 其中, 该测量配置信息可 以包括无线资源管理( Radio Resource Management; 以下简称: RRM )、 无线 链路管理(Radio Link Management; 以下简称: RLM )和 CSI之一或组合。 根据参考信令的不同, 上述测量配置信息的配置不同, 举例来说, 如果上行资 源共享, eNB可以以探测参考信号( Sounding Reference Signal;以下简称: SRS ) 或新的参考信号(New Reference Signal; 以下简称: NRS )为测量对象配置上 述测量配置信息;如果下行资源共享, eNB可以通过小区参考信号( Cell-specific Reference Signals; 以下简称: CRS )或 NRS为测量对象配置上述测量配置信 息。 根据上述 Ud口的用户面协议栈, eNB可以发送资源调度信息, 该资源调 度信息包括: 告知 UE1 和 /或 UE2使用 PHY层的物理资源、 调制编码方式 ( Modulation and Coding Scheme; 以下简称: MCS )、 编码速率( code rate ) 和预编码矩阵指示符(Precoding Matrix Indexes; 以下简称: PMI )之一或组 合等。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
图 8为本发明用户设备一个实施例的结构示意图,本实施例中的用户设备 为支持 D2D功能的第二用户设备, 可以实现本发明图 1所示实施例的流程, 如图 8所示,该用户设备可以包括:获得模块 81、确定模块 82和发起模块 83; 其中, 获得模块 81 , 用于获得支持 D2D功能的第一用户设备广播的该第 一用户设备的信息;
确定模块 82, 用于根据获得模块 81获得的第一用户设备的信息确定与上 述第一用户设备建立连接;
发起模块 83 , 用于发起与网络侧设备的连接建立过程, 并在上述连接建 立过程中将第一用户设备的信息发送给网络侧设备,以便网络侧设备与第一用 户设备建立连接。
上述用户设备,可以实现在支持 D2D功能的用户设备之间建立 DPS承载, 实现支持 D2D功能的用户设备之间的通信, 进而可以实现网络对资源的可控 性。
图 9为本发明用户设备另一个实施例的结构示意图,与图 8所示的用户设 备相比, 不同之处在于, 图 9所示的用户设备中, 发起模块 83可以包括: 发 送子模块 831和接收子模块 832; 其中, 发送子模块 831 , 用于向第二用户设备当前所在小区的服务基站发 送无线资源控制连接建立请求消息,以及在接收子模块 832接收到上述服务基 站发送的无线资源控制连接建立响应消息之后 ,向上述服务基站发送无线资源 控制连接建立完成消息,上述无线资源控制连接建立完成消息携带第二用户设 备的非接入层信令, 例如服务请求信令;
接收子模块 832, 用于接收上述服务基站发送的无线资源控制连接建立响 应消息;
其中, 上述无线资源控制连接建立请求消息的建立原因信元的值为 D2D 连接; 和 /或, 上述无线资源控制连接建立完成消息携带第二用户设备的 D2D 能力信息, 上述第二用户设备的 D2D 能力信息用于指示第二用户设备支持 D2D功能;
上述无线资源控制连接建立请求消息和上述无线资源控制连接建立完成 消息之一或全部携带第一用户设备的非接入层标识和接入层标识;
上述无线资源控制连接建立请求消息和上述无线资源控制连接建立完成 消息之一或全部携带第一用户设备的服务码。
进一步地, 本实施例中, 发起模块 83还可以在附着过程中, 第二用户设 备与服务基站之间未建立 DPS承载时, 发起请求承载资源修改流程触发上述 DPS承载的建立。
具体地, 发起模块 83可以发送承载资源修改请求消息给移动管理实体, 以便移动管理实体将承载资源修改请求消息发送给网关;
上述承载资源修改请求消息携带与上述 DPS承载相关的连接承载标识和 演进分组系统承载标识, 并且上述承载资源修改请求消息中新增 D2D连接类 型指示, 或上述承载资源修改请求消息中有个专用的分组数据网络连接用于 DPS承载的管理。
进一步地, 本实施例中的用户设备还可以包括: 消息接收模块 84和消息 发送模块 85;
其中, 消息接收模块 84 , 用于接收第一用户设备发送的 D2D链路建立请 求消息, 该 D2D链路建立请求消息携带第一用户设备的标识、 第二用户设备 的标识、第一用户设备的信道状态信息和资源分配情况; 以及接收第一用户设 备在接收到消息发送模块 85发送的 D2D链路建立响应消息之后发送的 D2D 链路建立完成消息;
消息发送模块 85, 用于在消息接收模块 84接收到 D2D链路建立请求消 息之后, 如果允许建立连接, 则向第一用户设备发送 D2D链路建立响应消息, 该 D2D链路建立响应消息携带第二用户设备的标识、 第一用户设备的标识和 第二用户设备的信道状态信息,以及第二用户设备对第一用户设备的资源分配 情况的接受或拒绝的应答。
上述用户设备,可以实现在支持 D2D功能的用户设备之间建立 DPS承载, 实现支持 D2D功能的用户设备之间的通信, 进而可以实现网络对资源的可控 性。
本领域技术人员可以理解附图只是一个优选实施例的示意图,附图中的模 块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述 进行分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个 或多个装置中。上述实施例的模块可以合并为一个模块, 也可以进一步拆分成 多个子模块。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求
1、 一种连接建立方法, 其特征在于, 包括:
支持设备到设备 D2D功能的第二用户设备获得支持 D2D功能的第一用户 设备的所述第一用户设备的信息;
所述第二用户设备根据所述第一用户设备的信息确定与所述第一用户设 备建立连接之后, 所述第二用户设备发起与网络侧设备的连接建立过程, 并在 所述连接建立过程中将所述第一用户设备的信息发送给所述网络侧设备,以便 所述网络侧设备与所述第一用户设备建立连接。
2、 根据权利要求 1所述的方法, 其特征在于,
所述第一用户设备的信息包括所述第一用户设备的服务信息和第一用户 设备标识; 或者, 所述第一用户设备的信息包括服务码, 所述服务码用于指示 所述第一用户设备的服务信息和所述第一用户设备标识。
3、 根据权利要求 1所述的方法, 其特征在于,
在所述第二用户设备发起与网络侧设备的连接建立过程,以及所述网络侧 设备与所述第一用户设备建立连接之后,所述第二用户设备与所述第一用户设 备之间的设备到设备演进分组系统 DPS承载建立完成, 所述第二用户设备与 所述第一用户设备开始 D2D通信。
4、 根据权利要求 3所述的方法, 其特征在于, 所述第二用户设备发起与 网络侧设备的连接建立过程,并在所述连接建立过程中将所述第一用户设备的 信息发送给所述网络侧设备包括:
所述第二用户设备向所述第二用户设备当前所在小区的服务基站发送无 线资源控制连接建立请求消息;
接收到所述服务基站发送的无线资源控制连接建立响应消息之后,所述第 二用户设备向所述服务基站发送无线资源控制连接建立完成消息 ,所述无线资 源控制连接建立完成消息携带第二用户设备的非接入层信令; 其中, 所述无线资源控制连接建立请求消息的建立原因信元的值为 D2D 连接; 和 /或, 所述无线资源控制连接建立完成消息携带所述第二用户设备的 D2D能力信息, 所述第二用户设备的 D2D能力信息用于指示所述第二用户设 备支持 D2D功能;
所述无线资源控制连接建立请求消息和所述无线资源控制连接建立完成 消息之一或全部携带所述第一用户设备的非接入层标识和接入层标识;
所述无线资源控制连接建立请求消息和所述无线资源控制连接建立完成 消息之一或全部携带所述第一用户设备的服务码。
5、 根据权利要求 4所述的方法, 其特征在于, 还包括:
所述服务基站将所述非接入层信令封装在初始用户设备消息中发送给移 动管理实体, 所述初始用户设备消息的建立原因信元的值为 D2D连接, 并且 所述初始用户设备消息携带所述第一用户设备的非接入层标识; 和 /或当所述 第一用户设备处于连接态时 ,所述初始用户设备消息还携带所述第一用户设备 的接入层标识;
所述服务基站接收所述移动管理实体发送的初始上下文建立请求消息,所 述初始上下文建立请求消息是所述移动管理实体对所述第二用户设备鉴权认 证通过之后发送给所述服务基站的, 所述初始上下文建立请求消息携带 D2D 连接指示;
所述服务基站执行所述第二用户设备的 DPS承载到无线承载的映射; 完成所述 DPS承载到所述无线承载的映射之后, 所述服务基站向所述移 动管理实体发送初始上下文建立响应消息,所述初始上下文建立响应消息携带 所述服务基站的地址、接受的演进分组系统承载列表、拒绝的演进分组系统承 载列表和 S1 口的隧道端点标识; 其中, 所述接受的演进分组系统承载列表中 的演进型通用陆地无线接入承载标识中新增 D2D连接类型指示, 或在附着过 程中就规定了专用的分组数据网络连接用于 DPS承载的管理。
6、 根据权利要求 5所述的方法, 其特征在于, 所述网络侧设备与所述第 一用户设备建立连接包括:
所述服务基站接收所述移动管理实体发送的第一消息,所述第一消息包括 寻呼消息或一条新的消息; 所述第一消息携带 D2D连接类型指示、 所述第一 用户设备的标识和所述第二用户设备的标识;
所述服务基站向所述第一用户设备发送第二消息,所述第二消息包括寻呼 消息或一条新的消息; 所述第二消息携带 D2D连接类型指示和所述第二用户 设备的标识, 以使所述第一用户设备与所述网络侧设备建立连接。
7、 根据权利要求 3所述的方法, 其特征在于,
所述 DPS承载的 IP地址分配和服务质量管理由具有内部网关功能的实体 完成;
所述具有内部网关功能的实体为独立实体或与所述服务基站集成在一起。
8、 根据权利要求 3所述的方法, 其特征在于,
每个专用的 DPS承载对应一个业务流模板, 所述第二用户设备利用所述 第二用户设备的发送业务流模板将所述第二用户设备发送方向的业务流过滤 到所述第二用户设备的发送业务流模板对应的 DPS承载中;
所述第二用户设备获得并保存所述第一用户设备的发送业务流模板,以所 述第一用户设备的发送业务流模板作为所述第二用户设备的接收业务流模板, 并根据所述第二用户设备的接收业务流模板确定所述第二用户设备接收的业 务流与所述第二用户设备的接收业务流模板对应的 DPS承载的映射关系。
9、 根据权利要求 8所述的方法, 其特征在于, 所述第二用户设备获得所 述第一用户设备的发送业务流模板包括:
所述第二用户设备获得所述第一用户设备在所述 DPS承载建立过程中通 知的所述第一用户设备的发送业务流模板; 或者,
所述第二用户设备获得所述第一用户设备通过网络告知的所述第一用户 设备的发送业务流模板。
10、 根据权利要求 1-9任意一项所述的方法, 其特征在于, 所述第二用户 设备根据所述第一用户设备的信息确定与所述第一用户设备建立连接之后,还 包括:
如果在附着过程中, 所述第二用户设备与所述服务基站之间未建立 DPS 承载, 则所述第二用户设备发起请求承载资源修改流程触发所述 DPS承载的 建立。
11、 根据权利要求 10所述的方法, 其特征在于, 所述第二用户设备发起 请求承载资源修改流程触发 DPS承载的建立包括:
所述第二用户设备发送承载资源修改请求消息给所述移动管理实体,以便 所述移动管理实体将所述承载资源修改请求消息发送给网关;
所述第二用户设备发送的承载资源修改请求消息携带与所述 DPS承载相 关的连接承载标识和演进分组系统承载标识,并且所述第二用户设备发送的承 载资源修改请求消息中新增 D2D连接类型指示, 或所述第二用户设备发送的 承载资源修改请求消息中有个专用的分组数据网络连接用于 DPS承载的管理。
12、 根据权利要求 11所述的方法, 其特征在于, 还包括:
分组数据网关接收所述网关在收到所述第二用户设备发送的承载资源修 改请求消息之后发送的承载资源修改请求消息;所述网关发送的承载资源修改 请求消息携带与所述 DPS承载相关的演进分组系统承载标识和连接承载标识 , 并且所述网关发送的承载资源修改请求消息中新增 D2D连接类型指示, 或所 述网关发送的承载资源修改请求消息中有个专用的分组数据网络连接用于 DPS承载的管理;
在所述网关发送的承载资源修改请求消息被接受之后,所述分组数据网关 发起对所述第二用户设备的 DPS承载的建立过程。
13、 根据权利要求 12所述的方法, 其特征在于, 所述分组数据网关发起 对所述第二用户设备的 DPS承载的建立过程之后, 还包括:
所述服务基站执行所述第二用户设备的 DPS承载到无线承载的映射; 以 及在所述分组数据网关发起对所述第一用户设备的 DPS承载的建立过程之后 , 所述服务基站执行所述第一用户设备的 DPS承载到无线承载的映射。
14、 根据权利要求 12或 13所述的方法, 其特征在于, 所述分组数据网关 发起的 DPS承载的建立过程包括:
服务网关接收所述分组数据网关发送的创建专用承载请求消息 ,所述分组 数据网关发送的创建专用承载请求消息是所述分组数据网关应用本地服务质 量策略分配演进分组系统承载的服务质量之后发送给所述服务网关的;
所述服务网关发送创建专用承载请求消息给所述移动管理实体,以便所述 移动管理实体构建会话管理请求,并将所述会话管理请求携带在承载建立请求 消息中发送给所述服务基站;
所述服务网关发送的创建专用承载请求消息携带连接承载标识;所述会话 管理请求包括演进分组系统承载标识和连接承载标识;
所述连接承载标识新增 D2D连接类型指示, 或所述连接承载标识中有个 专用的分组数据网络连接用于 DPS承载的管理。
15、 根据权利要求 1所述的方法, 其特征在于, 所述网络侧设备与所述第 一用户设备建立连接之后, 还包括:
所述第二用户设备接收所述第一用户设备发送的 D2D 链路建立请求消 息, 所述 D2D链路建立请求消息携带所述第一用户设备的标识、 所述第二用 户设备的标识、 所述第一用户设备的信道状态信息和资源分配情况;
接收到所述 D2D链路建立请求消息之后, 如果允许建立连接, 则所述第 二用户设备向所述第一用户设备发送 D2D链路建立响应消息,所述 D2D链路 建立响应消息携带所述第二用户设备的标识、所述第一用户设备的标识和所述 第二用户设备的信道状态信息,以及所述第二用户设备对所述第一用户设备的 资源分配情况的接受或拒绝的应答;
所述第二用户设备接收所述第一用户设备发送的 D2D 链路建立完成消 息。
16、 根据权利要求 1所述的方法, 其特征在于, 所述第一用户设备与所述 第二用户设备之间空口的协议栈包括用户面协议栈。
17、 根据权利要求 16所述的方法, 其特征在于, 所述用户面协议栈为简 化的协议栈, 所述用户面协议栈配置因特网协议、增强的媒体接入控制和物理 层之一或组合的信息。
18、 根据权利要求 16所述的方法, 其特征在于, 所述用户面协议栈配置 因特网协议、 分组数据汇聚协议、 无线链路控制层、媒体接入控制层和物理层 之一或组合的信息。
19、 根据权利要求 16所述的方法, 其特征在于, 所述第二用户设备与所 述第一用户设备之间 DPS承载的建立, 以及所述 DPS承载到无线承载的映射 由所述网络侧设备控制。
20、 一种用户设备, 其特征在于, 所述用户设备为支持设备到设备 D2D 功能的第二用户设备, 所述用户设备包括:
获得模块, 用于获得支持 D2D功能的第一用户设备广播的所述第一用户 设备的信息;
确定模块,用于根据所述获得模块获得的所述第一用户设备的信息确定与 所述第一用户设备建立连接;
发起模块, 用于发起与网络侧设备的连接建立过程, 并在所述连接建立过 程中将所述第一用户设备的信息发送给所述网络侧设备,以便所述网络侧设备 与所述第一用户设备建立连接。
21、 根据权利要求 20所述的用户设备, 其特征在于, 所述发起模块包括: 发送子模块和接收子模块; 所述发送子模块,用于向所述第二用户设备当前所在小区的服务基站发送 无线资源控制连接建立请求消息,以及在所述接收子模块接收到所述服务基站 发送的无线资源控制连接建立响应消息之后,向所述服务基站发送无线资源控 制连接建立完成消息,所述无线资源控制连接建立完成消息携带第二用户设备 的非接入层信令;
所述接收子模块,用于接收所述服务基站发送的无线资源控制连接建立响 应消息;
其中, 所述无线资源控制连接建立请求消息的建立原因信元的值为 D2D 连接; 和 /或, 所述无线资源控制连接建立完成消息携带所述第二用户设备的 D2D能力信息, 所述第二用户设备的 D2D能力信息用于指示所述第二用户设 备支持 D2D功能;
所述无线资源控制连接建立请求消息和所述无线资源控制连接建立完成 消息之一或全部携带所述第一用户设备的非接入层标识和接入层标识;
所述无线资源控制连接建立请求消息和所述无线资源控制连接建立完成 消息之一或全部携带所述第一用户设备的服务码。
22、 根据权利要求 20所述的用户设备, 其特征在于,
所述发起模块,还用于在附着过程中, 所述第二用户设备与所述服务基站 之间未建立 DPS承载时, 发起请求承载资源修改流程触发所述 DPS承载的建 立。
23、 根据权利要求 22所述的用户设备, 其特征在于,
所述发起模块, 具体用于发送承载资源修改请求消息给移动管理实体, 以 便所述移动管理实体将所述承载资源修改请求消息发送给网关;
所述承载资源修改请求消息携带与所述 DPS承载相关的连接承载标识和 演进分组系统承载标识, 并且所述承载资源修改请求消息中新增 D2D连接类 型指示, 或所述承载资源修改请求消息中有个专用的分组数据网络连接用于 DPS承载的管理。
24、 根据权利要求 20所述的用户设备, 其特征在于, 还包括: 消息接收 模块和消息发送模块;
所述消息接收模块, 用于接收所述第一用户设备发送的 D2D链路建立请 求消息, 所述 D2D链路建立请求消息携带所述第一用户设备的标识、 所述第 二用户设备的标识、所述第一用户设备的信道状态信息和资源分配情况; 以及 接收所述第一用户设备在接收到所述消息发送模块发送的 D2D链路建立响应 消息之后发送的 D2D链路建立完成消息;
所述消息发送模块, 用于在所述消息接收模块接收到所述 D2D链路建立 请求消息之后, 如果允许建立连接, 则向所述第一用户设备发送 D2D链路建 立响应消息, 所述 D2D链路建立响应消息携带所述第二用户设备的标识、 所 述第一用户设备的标识和所述第二用户设备的信道状态信息,以及所述第二用 户设备对所述第一用户设备的资源分配情况的接受或拒绝的应答。
PCT/CN2012/085016 2011-11-22 2012-11-22 连接建立方法和用户设备 WO2013075635A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18165914.5A EP3416451B1 (en) 2011-11-22 2012-11-22 Connection establishment method and user equipment
EP12851534.3A EP2773129B1 (en) 2011-11-22 2012-11-22 Connection establishment method and user equipment
US14/281,487 US9084222B2 (en) 2011-11-22 2014-05-19 Connection establishment method and user equipment
US14/736,112 US20150282236A1 (en) 2011-11-22 2015-06-10 Connection establishment method and user equipment
US15/457,664 US10674481B2 (en) 2011-11-22 2017-03-13 Connection establishment method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110374011.2 2011-11-22
CN201110374011.2A CN103139930B (zh) 2011-11-22 2011-11-22 连接建立方法和用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/281,487 Continuation US9084222B2 (en) 2011-11-22 2014-05-19 Connection establishment method and user equipment

Publications (1)

Publication Number Publication Date
WO2013075635A1 true WO2013075635A1 (zh) 2013-05-30

Family

ID=48469118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085016 WO2013075635A1 (zh) 2011-11-22 2012-11-22 连接建立方法和用户设备

Country Status (4)

Country Link
US (3) US9084222B2 (zh)
EP (2) EP3416451B1 (zh)
CN (2) CN103139930B (zh)
WO (1) WO2013075635A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349303A (zh) * 2013-08-05 2015-02-11 中兴通讯股份有限公司 设备到设备连接管理方法、装置及基站
CN107148766A (zh) * 2014-08-08 2017-09-08 三星电子株式会社 用于设备对设备群组通信的计数器管理和安全密钥更新的系统和方法
EP3609290A3 (en) * 2013-07-31 2020-03-04 Samsung Electronics Co., Ltd. Terminal for supporting device to device communication and method for operating same

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139930B (zh) 2011-11-22 2015-07-08 华为技术有限公司 连接建立方法和用户设备
WO2013141546A1 (ko) * 2012-03-18 2013-09-26 엘지전자 주식회사 데이터 패킷 전송 방법 및 무선기기
CN108347713B (zh) 2012-04-27 2021-12-28 交互数字专利控股公司 Wtru及由wtru执行的方法
EP2842355A2 (en) * 2012-04-27 2015-03-04 Interdigital Patent Holdings, Inc. Methods and apparatuses for optimizing proximity data path setup
JP2015521406A (ja) * 2012-04-27 2015-07-27 インターデイジタル パテント ホールディングス インコーポレイテッド サービスインターフェースを個人化および/または調整するためのシステムおよび方法
US9088976B2 (en) * 2012-04-29 2015-07-21 Blackberry Limited Provisioning radio resources in a radio access network
US20150326430A1 (en) * 2012-07-10 2015-11-12 Hewlett-Packard Development Company, L.P. Home Network Information
CN104521157B (zh) 2012-07-20 2019-02-15 Lg 电子株式会社 在无线通信系统中发送设备对设备有关信息的方法和装置
EP2918134A4 (en) * 2012-11-06 2016-07-06 Nokia Technologies Oy METHOD AND APPARATUS FOR ESTABLISHING DEVICE DEVICE COMMUNICATION
KR102013805B1 (ko) * 2012-12-06 2019-08-23 한국전자통신연구원 셀룰러 통신과 단말 직접 통신의 서비스 연속성 제공 방법
CN103974454B (zh) * 2013-01-28 2017-10-31 财团法人资讯工业策进会 传送端直接通信装置、接收端直接通信装置及其通信路径切换方法
US9100255B2 (en) 2013-02-19 2015-08-04 Futurewei Technologies, Inc. Frame structure for filter bank multi-carrier (FBMC) waveforms
EP2982170B1 (en) * 2013-04-05 2020-06-17 Nokia Solutions and Networks Oy Avoid key mismatch in security handling for multi frequency band
CN104244443B (zh) * 2013-06-08 2017-09-08 中国移动通信集团公司 终端到终端连接建立方法及移动管理实体
CN104244412B (zh) * 2013-06-09 2020-05-22 索尼公司 无线通信设备、无线通信方法以及基站
KR102115425B1 (ko) * 2013-07-02 2020-06-05 삼성전자주식회사 무선 통신 시스템에서 기본 경로 및 직접 경로 간 전환 장치 및 방법
EP3028526B1 (en) * 2013-08-04 2019-04-10 LG Electronics Inc. Method and apparatus for stopping device-to-device operation in wireless communication system
WO2015020460A1 (en) * 2013-08-07 2015-02-12 Lg Electronics Inc. Method and apparatus for performing device-to-device discovery in wireless communication system
US10681754B2 (en) * 2013-09-24 2020-06-09 Samsung Electronics Co., Ltd. Apparatus and method for establishing network controlled direct connection in communication system supporting device to device scheme
CN104519508B (zh) * 2013-09-27 2018-05-04 上海诺基亚贝尔股份有限公司 用于设备到设备通信中的发现检测的方法和设备
US9596628B2 (en) * 2013-10-31 2017-03-14 Intel Corporation Gateway arrangements for wireless communication networks
WO2015096072A1 (zh) 2013-12-25 2015-07-02 华为技术有限公司 一种建立协同通信的方法、装置及系统
US10348852B2 (en) * 2014-01-21 2019-07-09 Lg Electronics Inc. Method for determining terminal identifier in wireless communication system supporting device-to-device communication and apparatus for same
CN103889071B (zh) * 2014-02-24 2017-06-23 北京邮电大学 基于随机接入技术的d2d通信同步、建立与恢复方法
CN104918299B (zh) * 2014-03-14 2020-04-17 北京三星通信技术研究有限公司 一种支持ue接入控制的方法
WO2015163716A1 (ko) * 2014-04-23 2015-10-29 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 d2d(device-to-device) 동작 방법 및 상기 방법을 이용하는 단말
WO2015167306A1 (ko) * 2014-05-01 2015-11-05 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 셀 검색 방법 및 상기 방법을 이용하는 단말
US9439116B2 (en) * 2014-05-19 2016-09-06 Cisco Technology, Inc. System and method for identifying a subscriber in a network environment
US10681745B2 (en) 2014-06-26 2020-06-09 Nokia Solutions And Networks Oy Radio resource allocation for proximity services
US9713179B2 (en) * 2014-06-27 2017-07-18 Alcatel Lucent Configuration of layer-1 destination address for device-to-device communications
JP2016012843A (ja) * 2014-06-30 2016-01-21 株式会社リコー 伝送管理システム、伝送システム、伝送管理方法、伝送方法、及びプログラム
CN111491276B (zh) * 2014-07-02 2023-10-20 苹果公司 用于低复杂度用户设备的寻呼增强的装置、系统和方法
US9871828B2 (en) * 2014-07-18 2018-01-16 T-Mobile Usa, Inc. Enhanced IMS services restriction and selection control for mobile devices roaming in foreign networks
CN105450482B (zh) * 2014-07-29 2019-04-19 青岛海尔智能家电科技有限公司 一种设备连接方法和装置
US10080126B2 (en) * 2014-09-16 2018-09-18 Htc Corporation Device of handling open direct discovery for device-to-device communication
US11212819B2 (en) * 2014-09-26 2021-12-28 Kyocera Corporation Cooperative distributed scheduling for device-to-device (D2D) communication
EP3687202A1 (en) * 2014-10-03 2020-07-29 InterDigital Patent Holdings, Inc. Optimizations for prose communications
US9918266B2 (en) * 2014-10-06 2018-03-13 Telefonaktiebolaget Lm Ericsson (Publ) Activation and deactivation of a secondary cell for device-to-device user equipment
TWI609598B (zh) 2014-10-15 2017-12-21 財團法人工業技術研究院 基於位置資訊的通信控制方法和系統
CN105592567A (zh) * 2014-10-24 2016-05-18 中兴通讯股份有限公司 一种传输数据的方法和装置
US10594548B2 (en) 2014-10-27 2020-03-17 Hewlett Packard Enterprise Development Lp Home network information
CN105578382B (zh) * 2014-11-06 2020-04-07 中兴通讯股份有限公司 资源的获取、配置方法及装置,资源池的配置方法及装置
US11700652B2 (en) * 2014-12-19 2023-07-11 Nokia Solutions And Networks Oy Proximity services device-to-device communication services control
CN104602353A (zh) * 2015-02-27 2015-05-06 东南大学 一种蜂窝移动通信系统中d2d链路的无线资源分配方法
KR102003812B1 (ko) * 2015-03-13 2019-07-25 후아웨이 테크놀러지 컴퍼니 리미티드 서비스 처리 방법, 관련 장치 및 시스템
CN106162512A (zh) * 2015-04-09 2016-11-23 中兴通讯股份有限公司 一种中继承载控制方法和装置
JP6525714B2 (ja) * 2015-04-30 2019-06-05 キヤノン株式会社 通信装置、通信装置の制御方法及びプログラム
US9894698B2 (en) 2015-05-13 2018-02-13 Industrial Technology Research Institute Communication system, base station, user equipment, and discovery method for device-to-device communication
JP6606193B2 (ja) * 2015-05-18 2019-11-13 華為技術有限公司 D2d通信におけるipアドレス割振り方法およびユーザ機器
CN106332300A (zh) * 2015-06-16 2017-01-11 中兴通讯股份有限公司 专用承载建立方法、装置及用户设备
KR102591864B1 (ko) * 2015-06-29 2023-10-20 삼성전자 주식회사 단말의 패킷 데이터 네트워크 연결을 생성하는 방법 및 장치
JP6496079B2 (ja) 2015-08-07 2019-04-03 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 接続制御装置及び方法
CN106470384A (zh) * 2015-08-18 2017-03-01 北京信威通信技术股份有限公司 一种d2d通信中的承载配置方法
US10257677B2 (en) * 2015-10-16 2019-04-09 Qualcomm Incorporated System and method for device-to-device communication with evolved machine type communication
EP3223575B1 (en) * 2015-11-19 2019-06-12 ASUSTek Computer Inc. Methods and apparatus for switching communication interface in a wireless communication system
KR20230006050A (ko) * 2015-12-08 2023-01-10 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 연결 확립 방법 및 장치
WO2017119140A1 (ja) * 2016-01-08 2017-07-13 富士通株式会社 無線通信装置、無線通信システムおよび処理方法
US10015671B2 (en) 2016-01-19 2018-07-03 T-Mobile Usa, Inc. Network service access control
CN108370592B (zh) * 2016-03-30 2021-01-29 华为技术有限公司 承载切换方法及基站设备、网络节点
US11064557B2 (en) 2016-03-30 2021-07-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for establishing radio resource control connection
CN108886719B (zh) * 2016-04-01 2020-09-29 华为技术有限公司 一种通信方法及相关设备
WO2017173579A1 (zh) * 2016-04-05 2017-10-12 华为技术有限公司 QoS生成方法、设备以及系统
US10880304B2 (en) * 2016-04-06 2020-12-29 Qualcomm Incorporated Network verification of wearable devices
WO2017217802A1 (ko) * 2016-06-16 2017-12-21 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
WO2018018612A1 (zh) * 2016-07-29 2018-02-01 华为技术有限公司 一种接入异制式小区的方法以及相关设备。
CN108307472B (zh) * 2016-08-12 2023-06-30 中兴通讯股份有限公司 设备直通系统的通信方法及装置、通信系统
CN107819593B (zh) * 2016-09-14 2021-09-03 北京京东尚科信息技术有限公司 智能设备群组通信的方法、系统以及终端设备
CN106656418B (zh) * 2016-11-26 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种无线资源控制消息传输方法及装置
WO2018157924A1 (en) 2017-03-01 2018-09-07 Telefonaktiebolaget Lm Ericsson (Publ) D2d communications in a cellular network
CN110463283B (zh) * 2017-05-05 2021-06-22 华为技术有限公司 寻呼指示方法及装置
EP4181579A1 (en) * 2017-05-08 2023-05-17 Motorola Mobility LLC Method and apparatuses for reconfiguring a data connection
CN109246684B (zh) * 2017-05-19 2020-11-27 大唐移动通信设备有限公司 一种无线能力的获取方法及装置
JP7045808B2 (ja) * 2017-06-19 2022-04-01 シャープ株式会社 Ue及びueの通信制御方法
CN117354961A (zh) * 2017-07-10 2024-01-05 摩托罗拉移动有限责任公司 移动网络中的多接入数据连接
US11632676B2 (en) * 2018-01-09 2023-04-18 Qualcomm Incorporated Service-based access stratum (AS) security configuration
US11526853B2 (en) * 2018-03-14 2022-12-13 Microsoft Technology Licensing, Llc Configurable settings for automatic updates of calendar items
EP3565373A1 (en) * 2018-04-26 2019-11-06 HTC Corporation Device and method of handling a radio resource control reestablishment
US11672035B2 (en) * 2018-06-14 2023-06-06 Lg Electronics Inc. Method and apparatus for performing sidelink communication by UE in NR V2X
CN111065170B (zh) * 2018-10-17 2022-08-12 大唐移动通信设备有限公司 一种辅助单播连接建立和建立单播连接的方法及设备
CN109496439B (zh) * 2018-10-17 2022-06-21 北京小米移动软件有限公司 基于物物直连建立单播连接的方法及装置
WO2020191741A1 (zh) 2019-03-28 2020-10-01 Oppo广东移动通信有限公司 连接管理方法、装置、计算机设备和存储介质
CN111294980B (zh) * 2019-03-28 2022-02-15 展讯通信(上海)有限公司 无线承载建立方法及装置
CN111867146B (zh) * 2019-04-30 2022-07-22 大唐移动通信设备有限公司 一种标识信息发送、接收方法、设备及装置
US11700654B2 (en) * 2020-01-31 2023-07-11 Qualcomm Incorporated User equipment to network relay
CN112040477A (zh) * 2020-08-19 2020-12-04 广东以诺通讯有限公司 一种d2d安全直连通信方法及终端
US11700610B2 (en) * 2021-02-17 2023-07-11 Qualcomm Incorporated Layer one sidelink channel state information reporting
WO2022177417A1 (ko) * 2021-02-18 2022-08-25 엘지전자 주식회사 Mbs 관련된 통신 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772199A (zh) * 2008-11-24 2010-07-07 华为终端有限公司 一种d2d网络建立的方法和装置
WO2011109027A1 (en) * 2010-03-05 2011-09-09 Nokia Corporation Handover of direct peer to peer communication

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040252772A1 (en) 2002-12-31 2004-12-16 Markku Renfors Filter bank based signal processing
KR100663489B1 (ko) 2004-04-16 2007-01-02 삼성전자주식회사 직교 분할 다중 접속 시스템에서 셀 검출 방법 및 장치
JP4472473B2 (ja) 2004-09-13 2010-06-02 富士通株式会社 受信装置及び通信システム
US8031583B2 (en) 2005-03-30 2011-10-04 Motorola Mobility, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
US7418394B2 (en) 2005-04-28 2008-08-26 Dolby Laboratories Licensing Corporation Method and system for operating audio encoders utilizing data from overlapping audio segments
JP4352035B2 (ja) 2005-06-21 2009-10-28 株式会社東芝 Ofdm復調装置、方法およびプログラム
DE602006009541D1 (de) 2005-10-26 2009-11-12 France Telecom Verfahren zum Senden eines Mehrträgersignals, das für die Begrenzung von störungen ausgelegt ist, Signal, Emssionseinrichtung, Empfangsverfahren und Einrichtung und entsprechende Computerprogramme
EP1949547B1 (en) 2005-10-31 2019-08-07 LG Electronics, Inc. Data receiving method for mobile communication terminal
EP3965328A1 (en) 2006-09-26 2022-03-09 Optis Wireless Technology, LLC Communication scheme for channel quality information
DE102007018032B4 (de) 2007-04-17 2010-11-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Erzeugung dekorrelierter Signale
US8711833B2 (en) 2007-04-18 2014-04-29 Wi-Lan, Inc. Base station synchronization for a single frequency network
US8259673B2 (en) * 2007-06-19 2012-09-04 Telefonaktiebolaget L M Ericsson (Publ) System and method for providing voice service in a mobile network with multiple wireless technologies
CN101179356A (zh) 2007-11-28 2008-05-14 中国海洋石油总公司 一种数据发送、接收方法及装置
WO2009138820A1 (en) 2008-05-15 2009-11-19 Nokia Corporation Methods, apparatuses and computer program products for providing coordination of device to device communication
US8411638B2 (en) 2008-06-23 2013-04-02 Qualcomm Incorporated Methods and systems for background scanning in OFDMA mobile stations
GB0812632D0 (en) * 2008-07-10 2008-08-20 Vodafone Plc Security architecture for LTE relays
EP3002750B1 (en) 2008-07-11 2017-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder and decoder for encoding and decoding audio samples
ES2684297T3 (es) 2008-07-11 2018-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Método y discriminador para clasificar diferentes segmentos de una señal de audio que comprende segmentos de voz y música
US8577363B2 (en) * 2008-07-14 2013-11-05 Nokia Corporation Setup of device-to-device connection
WO2010006649A1 (en) * 2008-07-17 2010-01-21 Nokia Siemens Networks Oy Device-to-device communications in cellular system
EP2314118B1 (en) * 2008-07-17 2015-09-02 Nokia Solutions and Networks Oy Selection of connection type in cellular telecommunications system
US20100041350A1 (en) 2008-08-13 2010-02-18 Samsung Electronics, Co., Ltd. Uplink transmissions with two antenna ports
FR2935856B1 (fr) 2008-09-10 2010-08-27 Conservatoire Nat Arts Systeme de transmission numerique multiporteuse d'un signal utilisant des bancs de filtres et le prechargement de memoires pour l'initialisation
US8554200B2 (en) * 2008-09-12 2013-10-08 Nokia Corporation Method and apparatus for providing interference measurements for device to-device communication
CN101370228B (zh) * 2008-09-26 2012-06-06 华为技术有限公司 一种网络中用户全网跟踪的方法、系统及装置
CN101753498B (zh) 2008-12-05 2013-02-13 中兴通讯股份有限公司 正交频分复用信道估计结果的滤波方法与装置
US9900779B2 (en) * 2008-12-30 2018-02-20 Qualcomm Incorporated Centralized control of peer-to-peer communication
CA2748736C (en) 2009-01-05 2014-08-12 Nokia Siemens Networks Oy Trustworthiness decision making for access authentication
WO2010151186A1 (en) * 2009-06-24 2010-12-29 Telefonaktiebolaget L M Ericsson (Publ) Energy efficient base station entering sleep mode
US20120134344A1 (en) * 2009-08-07 2012-05-31 Ling Yu Scheduling In Radio Telecommunication System
CN101998657A (zh) * 2009-08-18 2011-03-30 中兴通讯股份有限公司 支持多跳的中继通信系统及该系统的接入方法
KR101091300B1 (ko) * 2009-08-21 2011-12-07 엘지전자 주식회사 이동통신 네트워크 내에서 제어 평면(Control Plane) 을 담당하는 서버 및 LIPA(Local IP Access) 서비스를 제어하는 방법
FR2951046B1 (fr) 2009-10-02 2011-10-14 Conservatoire Nat Des Arts Et Metiers Cnam Systemes de transmission multiporteuse de donnees numeriques et procedes de transmission utilisant de tels systemes
US8666403B2 (en) * 2009-10-23 2014-03-04 Nokia Solutions And Networks Oy Systems, methods, and apparatuses for facilitating device-to-device connection establishment
US8582593B2 (en) * 2009-12-29 2013-11-12 Nokia Corporation Multicast transmission within a hybrid direct and cellular communication system
US8477724B2 (en) * 2010-01-11 2013-07-02 Research In Motion Limited System and method for enabling session context continuity of local service availability in local cellular coverage
WO2011117677A1 (en) * 2010-03-24 2011-09-29 Nokia Corporation Method and apparatus for device-to-device key management
WO2011136617A2 (ko) * 2010-04-29 2011-11-03 엘지전자 주식회사 이동통신 네트워크 내에서 제어 평면(control plane)을 담당하는 서버 및 그 서버에서 서비스를 제어하는 방법
CN101867547B (zh) 2010-05-24 2013-04-24 北京科技大学 一种降低滤波器组多载波系统的峰均比的方法
WO2012032782A1 (ja) * 2010-09-09 2012-03-15 パナソニック株式会社 通信システム、通信方法、並びに移動端末及び基地局装置
KR20120028706A (ko) * 2010-09-15 2012-03-23 주식회사 케이티 Lte 시스템에서 통신 단말의 고유 식별번호를 획득하는 방법 및 이를 위한 무선망 접속 장치
KR20130079564A (ko) * 2010-09-28 2013-07-10 리서치 인 모션 리미티드 Ue가 주택/기업 네트워크 커버리지 밖으로 이동할 때 로컬 gw와의 연결을 해제시키는 방법 및 장치
JP2013538031A (ja) * 2010-09-28 2013-10-07 ブラックベリー リミテッド 住居/企業ネットワーク接続管理およびハンドオーバのシナリオ
CN102469589B (zh) 2010-11-08 2015-06-03 中兴通讯股份有限公司 用于确定中继链路资源单元组的方法及装置
US8537751B2 (en) * 2011-02-01 2013-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Minimizing tracking area updates in heterogeneous radio access network
US9144098B2 (en) * 2011-02-14 2015-09-22 Nokia Solutions And Networks Oy Real-time gaming and other applications support for D2D communications
FR2973187B1 (fr) 2011-03-25 2013-11-15 Commissariat Energie Atomique Procede de traitement d'un signal multiporteuses a bancs de filtre pour la synchronisation par preambule
US8792369B2 (en) 2011-05-02 2014-07-29 Broadcom Corporation Method for setting a mobile node specific cyclic prefix in a mobile communication
US20120294163A1 (en) * 2011-05-19 2012-11-22 Renesas Mobile Corporation Apparatus and Method for Direct Device-to-Device Communication in a Mobile Communication System
EP2727387A1 (en) * 2011-07-01 2014-05-07 Interdigital Patent Holdings, Inc. Method and apparatus for selected internet protocol (ip) traffic offload (sipto) and local ip access (lipa) mobility
CN102244873A (zh) * 2011-08-26 2011-11-16 北京邮电大学 一种基于d2d用户对的位置为其和蜂窝用户选择资源复用模式的方法
US20140254429A1 (en) * 2011-10-02 2014-09-11 Broadcom Corporation Signaling for device-to-device wireless communication
US8687556B2 (en) * 2011-11-18 2014-04-01 Cisco Technology, Inc. Method for correlating connection information with mobile device identity
CN103139930B (zh) 2011-11-22 2015-07-08 华为技术有限公司 连接建立方法和用户设备
WO2013083197A1 (en) * 2011-12-08 2013-06-13 Nokia Siemens Networks Oy Network synchronisation of devices in a d2d cluster
GB2497745B (en) * 2011-12-19 2014-11-05 Broadcom Corp Improvements to wireless communication systems and methods
GB2497741A (en) * 2011-12-19 2013-06-26 Renesas Mobile Corp A verification system for use in requesting access to a D2D communication service
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
CN108347713B (zh) * 2012-04-27 2021-12-28 交互数字专利控股公司 Wtru及由wtru执行的方法
EP2842355A2 (en) * 2012-04-27 2015-03-04 Interdigital Patent Holdings, Inc. Methods and apparatuses for optimizing proximity data path setup
KR20170001730A (ko) 2012-04-30 2017-01-04 인터디지탈 패튼 홀딩스, 인크 협력형 직교 블록 기반 자원 할당(cobra) 동작을 지원하는 방법 및 장치
WO2013173992A1 (en) 2012-05-23 2013-11-28 Renesas Mobile Corporation Method and apparatus for communicating with multicarrier mobile terminals
US8811289B2 (en) * 2012-06-28 2014-08-19 Tektronix, Inc. S1-MME and LTE-Uu interface correlation in long term evolution networks
US20140073337A1 (en) 2012-09-11 2014-03-13 Electronics And Telecommunications Research Institute Communication device and communication method using millimeter-wave frequency band
US8917708B2 (en) * 2012-09-28 2014-12-23 Intel Corporation Discovery and operation of hybrid wireless wide area and wireless local area networks
US9699589B2 (en) * 2012-12-21 2017-07-04 Blackberry Limited Managing sessions for direct device to device communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772199A (zh) * 2008-11-24 2010-07-07 华为终端有限公司 一种d2d网络建立的方法和装置
WO2011109027A1 (en) * 2010-03-05 2011-09-09 Nokia Corporation Handover of direct peer to peer communication

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3609290A3 (en) * 2013-07-31 2020-03-04 Samsung Electronics Co., Ltd. Terminal for supporting device to device communication and method for operating same
US10616943B2 (en) 2013-07-31 2020-04-07 Samsung Electronics Co., Ltd. Terminal for supporting device to device communication and method for operating same
CN104349303A (zh) * 2013-08-05 2015-02-11 中兴通讯股份有限公司 设备到设备连接管理方法、装置及基站
CN104349303B (zh) * 2013-08-05 2019-07-23 中兴通讯股份有限公司 设备到设备连接管理方法、装置及基站
CN107148766A (zh) * 2014-08-08 2017-09-08 三星电子株式会社 用于设备对设备群组通信的计数器管理和安全密钥更新的系统和方法

Also Published As

Publication number Publication date
US20140254523A1 (en) 2014-09-11
US9084222B2 (en) 2015-07-14
EP3416451A1 (en) 2018-12-19
CN105163398A (zh) 2015-12-16
EP3416451B1 (en) 2021-11-03
US20150282236A1 (en) 2015-10-01
CN105163398B (zh) 2019-01-18
CN103139930B (zh) 2015-07-08
US20170188339A1 (en) 2017-06-29
EP2773129A1 (en) 2014-09-03
CN103139930A (zh) 2013-06-05
US10674481B2 (en) 2020-06-02
EP2773129B1 (en) 2018-06-27
EP2773129A4 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
US10674481B2 (en) Connection establishment method and user equipment
CN110431859B (zh) 用于无线通信系统中层之间交互的方法及其设备
US10362511B2 (en) Method and apparatus for determining PDU session identity in wireless communication system
JP6718103B2 (ja) 通信方法
US11337271B2 (en) Apparatus and method for providing communication based on device-to-device relay service in mobile communication system
US11564268B2 (en) Radio resource control connection establishment
TWI804992B (zh) 層2使用者設備透過網路中繼進行信令傳輸的方法
TWI652918B (zh) 處理在長期演進到新無線/第五代系統間的移動性中的一封包資料網路連結的裝置及方法
KR20220030277A (ko) 셀룰러 슬라이싱된 네트워크들에서의 중계기 선택
JP2020502954A (ja) 無線通信システムにおけるv2x通信を行う方法及びこのための装置
US10244381B2 (en) Supporting multiple concurrent service contexts with a single connectivity context
US10735943B2 (en) Method for transmitting and receiving data using multiple communication devices in wireless communication system, and device supporting same
WO2018028504A1 (zh) 一种路由方法和设备
WO2013097586A1 (zh) 通信切换方法、用户设备与基站
KR102164034B1 (ko) 무선 통신 시스템에서 v2x 통신을 수행하기 방법 및 이를 위한 장치
JP2016536942A (ja) 無線通信システムにおけるd2d関連情報を送信する方法及び装置
US10681537B2 (en) Method for transreceiving data in wireless communication system and device supporting same
EP3346761B1 (en) Device and method for handling a packet flow in inter-system mobility
US11184936B2 (en) Method and apparatus for managing a bearer configuration of a relay user equipment
WO2019214384A1 (zh) 一种通信方法及装置
WO2023066855A1 (en) On demand paging for executing a path switch in sidelink relay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012851534

Country of ref document: EP