WO2013075540A1 - 内嵌触摸屏液晶显示装置及其触控驱动方法 - Google Patents

内嵌触摸屏液晶显示装置及其触控驱动方法 Download PDF

Info

Publication number
WO2013075540A1
WO2013075540A1 PCT/CN2012/081426 CN2012081426W WO2013075540A1 WO 2013075540 A1 WO2013075540 A1 WO 2013075540A1 CN 2012081426 W CN2012081426 W CN 2012081426W WO 2013075540 A1 WO2013075540 A1 WO 2013075540A1
Authority
WO
WIPO (PCT)
Prior art keywords
common electrode
liquid crystal
crystal display
display device
touch
Prior art date
Application number
PCT/CN2012/081426
Other languages
English (en)
French (fr)
Inventor
霍思涛
Original Assignee
上海天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天马微电子有限公司 filed Critical 上海天马微电子有限公司
Priority to US14/353,005 priority Critical patent/US9442330B2/en
Priority to DE112012004912.8T priority patent/DE112012004912T5/de
Publication of WO2013075540A1 publication Critical patent/WO2013075540A1/zh
Priority to US15/225,754 priority patent/US10088930B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to the field of liquid crystal display, and more particularly to an in-cell touch panel liquid crystal display device and a touch control driving method thereof.
  • a liquid crystal display has gradually become one of the fastest-developing flat panel displays due to its advantages such as lightness and thinness.
  • the liquid crystal display device uses a liquid crystal material to display an image, and the liquid crystal changes the transmittance according to the voltage applied thereto to realize display of different gray scales, and then covers a color film in the direction in which the light is emitted.
  • a liquid crystal display device has an input portion including an operation interface and a system portion that processes signals input through the input portion.
  • the liquid crystal display device realizes display of an image or an image by using a control signal output from the system portion by one-way communication.
  • the liquid crystal display device integrates a touch screen to form a touch screen liquid crystal display device, and the user's instruction can be directly input through a touch screen disposed on the liquid crystal display device, thereby making the operation simpler and more convenient.
  • the touch screen is disposed on the panel of the liquid crystal display device.
  • the touch screen detects the touched point (touched position) and drives according to the command of the selected icon.
  • a liquid crystal display device to achieve a specific display.
  • the touch screen can be used when there is no other input device such as a keyboard or a mouse and when there is no keypad for moving the product, and therefore, a liquid crystal display device having a touch screen will be more and more widely used in a display system.
  • the touch screen is mainly used in combination with the liquid crystal display device, and the touch screen needs to eliminate interference other than the user's touch signal as much as possible during operation, and therefore, the touch screen electrode and the liquid crystal display device are generally used for detecting the touch position.
  • a transparent electrode shielding layer is disposed between the electrode layers to reduce the interference of the noise of the liquid crystal display device on the touch screen.
  • FIG. 1 is a schematic structural view of a conventional touch screen liquid crystal display device. As shown in FIG.
  • the conventional touch screen liquid crystal display device includes a liquid crystal display 10 and a touch screen 20 located above the liquid crystal display 10, which are independent of each other.
  • the liquid crystal display panel 10 includes a lower polarizer 11, a lower glass substrate 12, a TFT device layer 13, a liquid crystal layer 14, a common electrode layer 15, a color filter layer 16, an upper glass substrate 17, and an upper polarizer 18 from bottom to top.
  • the touch screen 20 includes, from bottom to top, a transparent shielding layer 21, a glass substrate 22, a touch working layer 23, and a protective layer 24, which is usually made of an indium tin oxide layer (ITO).
  • ITO indium tin oxide layer
  • the imaging display of the liquid crystal display 10 can be obtained through the touch screen 20, and the information input operation is performed through the touch screen 20 to realize the human-machine dialogue process.
  • the touch screen 20 is separately manufactured from the liquid crystal display panel 10 and then fabricated together by assembly, which tends to increase the thickness of the touch screen liquid crystal display device, and the display system becomes complicated, and this method leads to complicated process and cost. high.
  • the transparent shielding layer 21 can effectively shield the influence of the electrical noise of the liquid crystal display panel 10 on the touch screen 20
  • adding this layer of indium tin oxide layer increases the difficulty of manufacturing the process, and on the other hand, increases the entire device.
  • the thickness is not conducive to the trend of thinning and thinning of the device.
  • the present invention provides an in-cell touch panel liquid crystal display device and a touch driving method thereof, which utilizes a first common electrode and a second common electrode to detect a touched position, thereby reducing the difficulty of manufacturing the process and reducing the thickness of the liquid crystal display device. .
  • the present invention provides an in-cell touch panel liquid crystal display device, comprising: a first substrate and a second substrate disposed opposite to each other;
  • liquid crystal layer disposed between the first substrate and the second substrate
  • a common electrode layer disposed on a side of the second substrate facing the first substrate
  • the common electrode layer includes a plurality of first common electrodes and second common electrodes arranged in a matrix, and the plurality of first common electrodes and second common electrodes are used to detect the embedded touch screen liquid crystal display device. Touch the location.
  • the plurality of first common electrodes are arranged and electrically connected in a first direction, and the plurality of second common electrodes are arranged in a second direction and electrically connected.
  • the plurality of first common electrodes are straight Connected, the plurality of second common electrodes are electrically connected through a metal bond bridge of the common electrode layer at different layers.
  • the in-cell touch panel liquid crystal display device further includes a TFT device layer, and the TFT device layer includes:
  • a scan line disposed on a side of the second substrate toward the first substrate and a data line intersecting the scan line
  • the TFT includes: a gate electrically connected to the scan line, a gate insulating layer disposed on the gate, a semiconductor layer, a source, and a drain, a source of the TFT being electrically connected to the data line;
  • the in-cell touch panel liquid crystal display device further includes a TFT device layer, and the TFT device layer includes:
  • a scan line disposed on a side of the second substrate toward the first substrate and a data line intersecting the scan line
  • the TFT includes: a gate electrically connected to the scan line, a gate insulating layer disposed on the gate, a semiconductor layer, a source, and a drain, a source of the TFT is electrically connected to the data line; and a pixel electrode disposed on a side of the second substrate facing the first substrate and electrically connected to the drain of the TFT;
  • the common electrode extends in the same direction as the scan line, the second common electrode and the data line extend in the same direction, and the first common electrode is electrically connected through a metal bond bridge in the same layer as the scan line.
  • the second common electrode is electrically connected through the metal bond bridge of the same layer of the data line.
  • the display signal generating unit further includes a touch signal generating unit, wherein the display signal generating unit is configured to provide a display signal to the first common electrode and the second common electrode, wherein the touch signal generating unit is configured to the first common electrode and the second common
  • the electrodes provide touch signals.
  • the display signal generating unit in the display mode, provides a display signal to the common electrode layer; in the touch mode, the touch signal generating unit A touch signal is provided to the common electrode layer.
  • the touch signal includes an excitation signal and a detection signal.
  • the touch signal generating unit in the touch mode, provides an excitation signal to the first common electrode, and provides detection to the second common electrode. signal.
  • the touch signal generating unit in the embedded touch screen liquid crystal display device, in the touch mode, provides an excitation signal to the second common electrode, and provides detection to the first common electrode. signal.
  • the display signal generating unit in the in-cell touch panel liquid crystal display device, provides a display signal to the common electrode layer, and the touch signal generating unit provides a touch to the common electrode layer. signal.
  • the touch signal generating unit in the embedded touch screen liquid crystal display device, provides an excitation signal to the first common electrode and a detection signal to the second common electrode.
  • the touch signal generating unit provides an excitation signal to the second common electrode and provides a detection signal to the first common electrode.
  • an equivalent DC component of the touch signal coincides with the display signal.
  • the color film layer disposed between the second substrate and the common electrode layer is further included.
  • a passivation layer disposed between the color film layer and the common electrode layer is further included.
  • the method further includes:
  • An upper polarizer disposed on a side of the second substrate facing away from the first substrate;
  • a lower polarizer disposed on a side of the first substrate facing away from the second substrate
  • the present invention also provides a touch driving method for a touch-screen liquid crystal display device, wherein the common electrode layer is time-multiplexed, including: providing a display signal to the common electrode layer in a display mode; Providing a touch signal to the common electrode layer.
  • the touch signal includes an excitation signal and a detection signal.
  • an excitation signal is provided to the first common electrode, and a detection signal is provided to the second common electrode.
  • an excitation signal is provided to the second common electrode, and a detection signal is provided to the first common electrode.
  • a touch driving method for a touch screen liquid crystal display device is provided, and a display signal and a touch signal are simultaneously supplied to the common electrode layer to detect the pixel while performing pixel display. The touched position of the touch screen liquid crystal display device.
  • the touch signal includes an excitation signal and a detection signal.
  • the excitation signal is provided to the first common electrode, and the detection signal is provided to the second common electrode.
  • the excitation signal is provided to the second common electrode
  • the detection signal is provided to the first common electrode.
  • the embedded touch screen liquid crystal display device of the present invention utilizes a plurality of first common electrodes and second common electrodes arranged in a matrix to detect the touched position of the embedded touch screen liquid crystal display device, and the function of the touch screen Integrating between the two substrates of the liquid crystal display device eliminates the step of attaching the touch screen to the liquid crystal panel of the liquid crystal display device, the manufacturing process of the liquid crystal display device is simpler, and the thickness of the liquid crystal display device is reduced, Conducive to the trend of thinning of liquid crystal display devices.
  • the common electrode layer and the TFT device layer are sequentially disposed on the inner side of the display and touch operation substrate, and the common electrode layer can shield external signal interference, and no additional transparent shielding layer is needed, thereby further reducing manufacturing.
  • the difficulty of the process helps to reduce manufacturing costs.
  • FIG. 1 is a schematic structural view of a conventional touch screen liquid crystal display device
  • FIG. 2 is a schematic structural view of an in-cell touch panel liquid crystal display device according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing a distribution of a common electrode layer in FIG.
  • Figure 4 is an enlarged schematic view of the circle in Figure 3;
  • Figure 5 is a schematic diagram of the pixel structure shown in Figure 4.
  • FIG. 6 is a timing schematic diagram of a touch driving method of a built-in touch screen liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of a common electrode arrangement of a liquid crystal display device with a built-in touch screen according to a second embodiment of the present invention
  • FIG. 8 is a schematic diagram of a pixel structure of a liquid crystal display device with a built-in touch screen according to a second embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of an in-cell touch panel liquid crystal display device according to Embodiment 4 of the present invention.
  • the present invention integrates the function of the touch screen between the two substrates of the liquid crystal display device, and detects the embedded touch screen liquid crystal display by using the plurality of first common electrode lines and the second common electrode lines arranged in a matrix.
  • the touched position (touch point) of the device eliminates the step of attaching the touch screen to the liquid crystal display device, the manufacturing process is simple, and the thickness of the entire device is reduced.
  • FIG. 2 is a schematic structural view of an in-cell touch panel liquid crystal display device according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view of the common electrode layer of FIG. 2
  • FIG. 5 is a schematic diagram of a pixel structure shown in FIG. 4
  • FIG. 6 is a timing schematic diagram of a touch driving method of a liquid crystal display device with a built-in touch screen according to Embodiment 1 of the present invention.
  • the in-cell touch panel liquid crystal display device of this embodiment includes:
  • first substrate 110 and second substrate 120 Oppositely disposed first substrate 110 and second substrate 120;
  • liquid crystal layer 130 disposed between the first substrate 110 and the second substrate 120;
  • a common electrode layer 140 disposed on a side of the second substrate 120 facing the first substrate 110;
  • the common electrode layer 140 includes a plurality of first common electrodes 141 and second common electrodes 142 arranged in a matrix, and the first common electrode 141 and the second common electrode 142 can be used to detect the embedded touch screen liquid crystal display. The touched position of the device.
  • the first substrate 110 is disposed above, the second substrate 120 is disposed below, and the display of the liquid crystal display device is viewed from the side of the first substrate 110, and the second substrate 120 is The side performs a touch operation.
  • the common electrode layer 140 is etched into a plurality of first common electrodes 141 and second common electrodes 142 arranged in a matrix.
  • the first common electrode 141 and the second common electrode 142 have a diamond shape.
  • the first common electrode 141 and the second common electrode 142 may have other shapes.
  • the present invention utilizes a plurality of first common electrodes 141 arranged and connected together in a second direction (such as the Y direction) as driving lines, using a plurality of second commons arranged and connected together in a first direction (eg, an X direction)
  • the electrode 142 serves as a sensing line for detecting a touched position (touch point) of the in-cell touch panel liquid crystal display device.
  • the touch layer is integrated inside the liquid crystal display device, and the step of attaching the touch screen to the liquid crystal display device is omitted, the manufacturing process is simple, and the thickness of the device is reduced.
  • first common electrode 141 and the second common electrode 142 are only a preferred mode of the present invention, and is not limited to the present invention.
  • the common electrode of several pixel units is divided into one touch area. Set according to the actual touch requirements, for example, according to the hands of the average user Referring to the area division, it is within the scope of the present invention to divide the common electrode layer into two portions that can be used to detect the intersection of the touch points.
  • the plurality of first common electrodes 141 are electrically connected to each other in the Y direction, and the plurality of second common electrodes 142 are not directly connected to each other.
  • FIG. 4 and FIG. 5 nine pixel units 1411, 1412, 1413, 1414, 1415, 1421, 1422, 1423, 1424 are illustrated, wherein each of the first common electrode and the second common electrode is composed of a plurality of
  • the common electrode of the pixel unit is composed of, for example, the pixel unit 141 1 , 1412 , 1413 , 1414 belongs to a first common electrode 141 , and the pixel unit 1415 belongs to another first common electrode 141 connected thereto , and the pixel unit 1421 1423 belongs to a second common electrode, and pixel units 1422, 1424 belong to another second common electrode 142 connected thereto.
  • the structure of the circled area 143 in FIG. 3 will be described in more detail.
  • two adjacent first common electrodes are directly connected through the common electrodes of the adjacent pixel units 1414 and 1415.
  • the two adjacent second common electrodes 142 are electrically connected by a metal bond bridge 155 connecting the common electrodes of the adjacent pixel units, and the plurality of second common electrodes 142 are electrically connected in the X direction through the metal bond bridge.
  • the metal bond bridge 155 can be implemented by various methods, such as separately performing a metal etching into a metal bond bridge. In this embodiment, the existing metal layer is utilized, which simplifies the manufacturing process.
  • the embedded touch screen liquid crystal display device of the present invention may be an IPS (In-Plane Switching) mode or an FFS (Fringe Field Switching) mode liquid crystal display device, and the IPS/FFS mode is capable of widening In the liquid crystal driving mode of the viewing angle, the pixel electrodes in the array substrate of the IPS/FFS mode are strip-shaped to form a horizontal electric field.
  • IPS In-Plane Switching
  • FFS Frringe Field Switching
  • the in-cell touch panel liquid crystal display device is an IPS type liquid crystal display device, and further includes a TFT device layer 150 disposed on the second substrate 120, the TFT device layer 150 includes a scan line 151 and A TFT 153 is formed in a pixel region defined by the scanning line 151 and a pixel region defined by the scanning line 151 and the data line 152.
  • the TFT 153 includes: a gate electrically connected to the scan line 151, a gate insulating layer disposed on the gate, a semiconductor layer, a source, and a drain.
  • the pixel electrode 154 disposed on the second substrate 120 is electrically connected to the drain of the TFT 153 through a via (not shown), and the source of the TFT 153 is electrically connected to the data line 152. Since the scan line 151 and the gate are usually formed in the same process step, they are located in the same layer and can be integrated; in addition, the metal forming the source of the TFT and the metal forming the drain are also usually Same process step Formed in the middle, so the two are in the same layer, collectively referred to as the source/drain metal layer. Generally, in the process of fabricating the TFT device layer 150, a source/drain metal layer and a gate metal layer are bound to be formed.
  • the in-cell touch panel liquid crystal display device further includes a first insulating layer 171 disposed between the common electrode layer 140 and the TFT device layer 150, and a second insulating layer 172 disposed between the common electrode layer 140 and the pixel electrode 154.
  • a shielding layer is further disposed on an outer side of the first substrate 110.
  • the common electrode layer 140 is disposed on the side of the second substrate 120 to shield the signal noise outside the second substrate 120.
  • a shielding layer needs to be separately disposed on the outer side of the first substrate 110 to shield the slave layer. Signal noise transmitted from the outside of the first substrate 110.
  • the in-cell touch panel liquid crystal display device further includes a display signal generating unit and a touch signal generating unit (not shown), and the display signal generating unit is configured to the common electrode layer 140 (including the first common electrode)
  • the 141 and the second common electrode 142 provide a display signal
  • the touch signal generating unit is configured to provide a touch signal to the common electrode layer 140 .
  • the touch signal includes an excitation signal and a detection signal.
  • the touch signal generating unit is configured to provide an excitation signal to the first common electrode 141, the first common electrode 141 as a driving electrode, and provide a detection signal to the second common electrode 142.
  • the second common electrode 142 functions as a sensing electrode.
  • the touch signal generating unit may also provide an excitation signal to the second common electrode and provide a detection signal to the first common electrode.
  • the embodiment further provides a touch driving method in which the common electrode layer 140 is time-multiplexed.
  • the embedded touch screen liquid crystal display device has two working modes: a display mode and a touch mode. In the display mode, a display signal is provided to the common electrode layer 140, and the embedded touch screen liquid crystal display device performs a display operation; in the touch mode, the touch is provided to the common electrode layer 140.
  • the signal, the in-line touch screen liquid crystal display device performs a touch operation. As shown in FIG.
  • the embedded touch screen liquid crystal display device first enters the display.
  • the display signal includes a pixel selection signal and a data signal
  • the common voltage Vcom is supplied from the display signal generating unit to the first common electrode 141 and the second common electrode 142, and a pixel selection signal is provided to be sequentially on the scan line 151. Applying a scan voltage V ..
  • the scan voltage is greater than the turn-on voltage of the TFT, so that the TFT is turned on with the scan voltage line by line, and the display signal generating unit supplies the data signal to the data line 152, the data signal
  • the data line 152 is transmitted to the respective TFTs, and an electric field parallel to the first substrate 110 and the second substrate 120 is formed between the strip-shaped pixel electrode 154 and the common electrode layer 140, and the liquid crystal molecules are deflected in the direction of the electric field, so that the liquid crystal display Array imaging, each pixel unit performs normal display.
  • the first common electrode 141 and the second common electrode 142 can be controlled to implement the touch function.
  • the first common electrode 141 functions as a driving electrode
  • the second common electrode 142 functions as a sensing electrode
  • an excitation signal can be supplied to the first common electrode 141 and a detection can be provided to the second common electrode 142.
  • the signal has a mutual capacitance at the overlap of the two.
  • the second common electrode 142 can also be used as a driving electrode
  • the first common electrode 141 can serve as an sensing electrode, provide an excitation signal to the second common electrode 142, and provide detection to the first common electrode 141.
  • the signal can also achieve the object of the present invention.
  • the in-line touch screen liquid crystal display device When each frame ends and enters the next frame, the in-line touch screen liquid crystal display device enters the display mode again, and the above-described alternation process is repeated.
  • the specific timing distribution in each frame time of the touch driving method according to the present invention is not limited to the first display mode and the touch control described above. In the mode, it is also possible to perform the touch mode and then the display mode in each frame. Those skilled in the art should be able to reasonably infer other control schemes of the above touch driving method according to specific timing.
  • the display working time of the embedded touch screen liquid crystal display device and the touch working time are separated, so that the imaging display and the touch sensing do not affect each other. Thereby improving the touch sensing accuracy and the image quality.
  • another touch driving side can be used.
  • the method that is, simultaneously providing the display signal and the touch signal to the common electrode layer 140 to detect the touched position of the embedded touch screen liquid crystal display device while performing pixel display. That is, the display signal generating unit provides the display signal to the common electrode layer 140, and the touch signal generating unit provides the touch signal (including the excitation signal and the detection signal) to the common electrode layer 140.
  • the touch signal is a high frequency signal (the period is relatively short), and the display signal is a low frequency signal (the period is relatively long), as long as the equivalent DC component of the excitation signal is made to the common voltage Vcom Coincidence, the pixel unit can't react, it can ensure the touch function without affecting the imaging of the liquid crystal display array, and also ensure the image quality.
  • the embedded touch screen liquid crystal display device provided by the embodiment integrates the function of the touch screen into the liquid crystal display device, and detects the embedded touch screen liquid crystal display by using the first common electrode and the second common electrode that intersect each other.
  • Embodiment 2 This embodiment differs from Embodiment 1 in that a plurality of first common electrodes need to be connected together in a first direction (X direction), which is realized by direct connection of common electrodes of two adjacent pixel units, and The plurality of second common electrodes need to be connected in the second direction (Y direction), and are connected by a metal bond bridge connecting the common electrodes of the two adjacent pixel units.
  • the common electrode layer is still a plurality of first common electrodes and a plurality of second common electrodes that are etched into a matrix, and FIGS.
  • a first common electrode includes pixel units 2411, 2421, 2422, 2431
  • another first common electrode includes a pixel unit 2423
  • a second common electrode includes a pixel unit 2412, 2413
  • another second common electrode includes pixel units 2432, 2433.
  • the plurality of first common electrodes need to be connected together in the X direction, which is realized by direct connection of the common electrodes of the two adjacent pixel units; and the plurality of second common electrodes need to be connected in the Y direction, and the metal is
  • the key bridge 255 is connected to the common electrode of two pixel units adjacent to each other.
  • the metal bond bridge 255 can be implemented in a variety of ways, such as a separate metal etch into a metal bond bridge.
  • the existing metal layer is utilized.
  • a metal such as a gate metal layer
  • the operation mode of the in-cell touch panel liquid crystal display device of this embodiment is the same as that of the first embodiment, and will not be described in detail herein, but will be known to those skilled in the art.
  • two adjacent first common electrodes need to be directly connected in the second direction (such as the Y direction) through the common electrodes of the adjacent pixel units, and two adjacent second common electrodes are connected.
  • the two adjacent first common electrodes need to pass adjacent in the first direction (such as the X direction) by connecting the common electrodes of the left and right adjacent pixel units by a metal bond bridge.
  • the common electrodes of the pixel units are directly connected, and the two adjacent second common electrodes are required to be connected to the common electrodes of the two adjacent pixel units by a metal key bridge.
  • adjacent first common electrodes may be electrically connected by a metal bond bridge connecting common electrodes of adjacent pixel units, and at the same time, adjacent second common electrodes are also Connected to the common electrode of the adjacent pixel unit by a metal bond bridge, for example, the first common electrode and the scan line are disposed in the same direction, and the second common electrode and the data line are disposed in the same direction, and the first common electrode passes The metal bond bridge in the same layer as the scan line is electrically connected, and the second common electrode is electrically connected through a metal bond bridge in the same layer as the data line.
  • Embodiment 3 the display of the liquid crystal display device can be viewed from the side of the first substrate, and the touch operation can be performed from the side of the second substrate.
  • the display viewing and the touch operation can be simultaneously performed from the side of the second substrate, that is, the common electrode layer, the TFT device layer, and the pixel electrode are sequentially disposed on the inner side of the second substrate, and the common electrode layer It also acts to shield external signal interference.
  • the shielding effect of the common electrode layer is the same as that of the transparent shielding layer used in the conventional touch screen liquid crystal display device, and the interference of the external electric field on the display of the liquid crystal display device can be reduced, so that no special transparent shielding layer is needed, and the manufacturing process is reduced. Difficulty and reduced manufacturing costs.
  • the in-cell touch panel liquid crystal display device of this embodiment includes:
  • first substrate 310 and second substrate 320 Oppositely disposed first substrate 310 and second substrate 320;
  • liquid crystal layer 330 disposed between the first substrate 310 and the second substrate 320;
  • the in-cell touch panel liquid crystal display device further includes a TFT device layer 350 disposed on a side of the second substrate 320 facing the first substrate 310, the TFT device layer 350 including a scan line and a data line intersecting the scan line.
  • a TFT is formed in a pixel region defined by the scan line and the data line.
  • the TFT includes: a gate electrically connected to the scan line, a gate insulating layer, a semiconductor layer, and a source/drain metal layer sequentially disposed on the gate, and a source of the TFT and the data line connection.
  • the TFT device layer further includes an ohmic contact layer formed between the semiconductor layer and the source/drain metal layer, and the ohmic contact layer is made of, for example, N+ amorphous silicon. An ohmic contact is formed.
  • the gate insulating layer, the semiconductor layer, and the ohmic contact layer are not labeled in the drawings, but will be known to those skilled in the art.
  • the in-cell touch panel liquid crystal display device of the embodiment is an in-cell touch panel liquid crystal display device of the IPS or FFS mode.
  • the in-cell touch panel liquid crystal display device further includes a color film layer 360, a passivation layer 370, and an upper polarizer. 321 .
  • the lower polarizer 311 and the backlight 380 .
  • the color film layer 360 is configured to be disposed between the second substrate 320 and the common electrode layer 340.
  • the passivation layer 370 is disposed between the color film layer 360 and the common electrode layer 340.
  • the polarizer 321 is disposed on a side of the second substrate 320 facing away from the first substrate 310, and the lower polarizer 311 is disposed on a side of the first substrate 310 facing away from the second substrate 320.
  • the color film layer 360, the common electrode layer 340, and the TFT device layer 350 are sequentially disposed on the same substrate, and the common electrode layer 340 can shield external signal interference, that is, the shielding of the common electrode layer 340.
  • the function is the same as that of the transparent shielding layer used in the conventional touch screen liquid crystal display device, and the noise interference can be reduced, so that no special transparent shielding layer is needed, the manufacturing process is difficult, and the manufacturing cost can be reduced.
  • the in-cell touch panel liquid crystal display device further includes a first insulating layer 371 and a second insulating layer 372.
  • the first insulating layer 371 is disposed between the common electrode layer 340 and the TFT device layer 350.
  • the second insulating layer 372 is disposed between the TFT device layer 350 and the pixel electrode 354 to serve as an isolation function.
  • a color film layer 360 is formed on the entire area of the second substrate 320, and a black matrix layer 361 is provided corresponding to a portion where light shielding is required.
  • the color film layer 360 and the black matrix layer 361 may also be spaced apart instead of A color film layer 360 is formed in all areas of the second substrate 320.
  • the color film layer may also be formed on the outside of the second substrate 320 without affecting the scope of protection of the present invention.
  • the distribution of the first common electrode and the second common electrode in this embodiment is similar to that of the common electrode layer and the driving method in the first embodiment or the second embodiment, and details are not described herein again.
  • the embedded touch screen liquid crystal display device provided by the embodiment can simultaneously perform display viewing and touch operation from the second substrate 320 side, which is more convenient to use; meanwhile, because the display and touch operations are simultaneously on the second substrate 320 side
  • the backlight can be mounted on the side of the first substrate 310 to provide a more uniform light source for better display performance.
  • the backlight iron frame can shield the signal noise outside the first substrate 310; meanwhile, the user performs display viewing and touch operation from the side of the second substrate 320.
  • the common electrode layer 340 disposed on the pixel electrode 354 and the TFT device layer 350 may shield the signal noise outside the second substrate 320 to reduce noise interference. Therefore, the embedded touch screen liquid crystal display device provided in this embodiment does not need to separately manufacture a dedicated transparent shielding layer, which simplifies the structure of the embedded touch screen liquid crystal display device and reduces the cost.
  • the in-cell touch panel liquid crystal display device includes:
  • first substrate 410 and second substrate 420 Oppositely disposed first substrate 410 and second substrate 420;
  • liquid crystal layer 430 disposed between the first substrate 410 and the second substrate 420;
  • a common electrode layer 440 disposed on a side of the second substrate 420 facing the first substrate 410, wherein the common electrode layer 440 includes a plurality of first common electrodes and a plurality of second common electrodes arranged in a matrix.
  • the first common electrode and the second common electrode are configured to detect a touched position of the embedded touch screen liquid crystal display device;
  • a TFT device layer 450 disposed on the inner side of the second substrate 420;
  • a color film layer 460 disposed between the second substrate 420 and the common electrode layer 440; a passivation layer 470 disposed between the color film layer 460 and the common electrode layer 440;
  • a lower polarizer 411 disposed on a side of the first substrate 410 facing away from the second substrate 420;
  • An upper polarizer 421 disposed on a side of the second substrate 420 facing away from the first substrate 410;
  • a backlight 480 disposed on a side of the lower polarizer 411;
  • the second common electrode layer 490 is disposed on the side of the first substrate 410 facing the second substrate 420.
  • the in-cell touch panel liquid crystal display device of the present embodiment forms a vertical electric field, and therefore it is necessary to form the second common electrode layer 490 on the first substrate 410.
  • the first common electrode and the second common electrode are distributed in the same manner as in the common electrode layer structure in the first or second embodiment.
  • the driving method of the embedded touch screen liquid crystal display device is also the same as the first embodiment and the second embodiment. similar.
  • the in-cell touch panel liquid crystal display device of the present invention is applicable not only to the IPS/FFS mode but also to the TN/AV mode or other modes, by integrating the functions of the touch screen into the two substrates of the liquid crystal display device.
  • the invention utilizes a plurality of first common electrodes arranged and connected together in a first direction as a driving line, and detects a built-in touch screen liquid crystal display by using a plurality of second common electrodes arranged and connected together in a second direction as sensing lines
  • the touched position of the device eliminates the step of attaching the touch screen to the liquid crystal panel of the liquid crystal display device, the manufacturing process is simple, and the thickness of the liquid crystal display device is reduced, and the manufacturing cost can be reduced.
  • the embedded touch screen liquid crystal display device of the above structure is only described as a preferred embodiment, and those skilled in the art can appropriately increase or decrease the number of layers of the embedded touch screen liquid crystal display device according to actual production needs and technical indicators. And select the type, material and thickness of each layer, etc., and will not repeat them here.
  • the various embodiments in the present specification are described in a progressive manner, and each embodiment focuses on differences from other embodiments, and the relevant points can be referred to each other.
  • the drawings are in a very simplified form and both use non-precision ratios, and are merely for convenience and clarity of the purpose of the various embodiments of the present invention. The above description of the disclosed embodiments enables those skilled in the art to make or use the invention.

Abstract

本发明公开了一种内嵌触摸屏液晶显示装置及其触控驱动方法,包括:相对设置的第一基板和第二基板;设置于所述第一基板和第二基板之间的液晶层;以及设置于第二基板朝向第一基板的一侧上的公共电极层;其中,所述公共电极层包括呈矩阵排列的多个第一公共电极和多个第二公共电极,所述第一公共电极和第二公共电极用于检测所述内嵌触摸屏液晶显示装置的被触碰位置。本发明将触摸屏的功能集成到液晶显示装置的两基板之间,省去了将触摸屏贴合到液晶显示装置的液晶面板上的步骤,该液晶显示装置的制造工艺更加简单,且可减小液晶显示装置的厚度,有利于液晶显示装置的薄化趋势。

Description

内嵌触摸屏液晶显示装置及其触控驱动方法 技术领域 本发明涉及液晶显示领域, 特别涉及一种内嵌触摸屏液晶显示装置及其触 控驱动方法。 说
背景技术 液晶显示装置( liquid crystal display, LCD )以其轻薄等优点逐渐成为发展最 为迅速的平板显示器之一。 液晶显示装置利用液书晶材料来显示图象, 而液晶则 根据其上施加的电压来改变透射率, 以实现不同灰阶的显示, 再在光线出射的 方向上覆盖一层彩膜就可以实现图片或影像的彩色显示。 通常, 液晶显示装置 具有包括操作界面的输入部分以及处理通过该输入部分输入的信号的系统部 分。 液晶显示装置通过单向通讯利用从系统部分输出的控制信号来实现图像或 影像的显示。 近来, 液晶显示装置整合了触摸屏形成触摸屏液晶显示装置, 用户的指令 可通过设置于液晶显示装置上的触摸屏直接输入, 使操作更加简单方便。 触摸 屏设置在液晶显示装置的面板上, 当使用者用手指或光笔等触摸显示图标并选 择要执行的命令时, 触摸屏检测到触摸点 (被触碰位置)并根据所选图标具有 的命令来驱动液晶显示装置, 以实现特定的显示。 触摸屏可以在没有其他输入 装置 (例如键盘或鼠标) 时以及没有用于移动产品的小键盘时使用, 因此, 具 有触摸屏的液晶显示装置将被越来越广泛的应用于显示系统之中。 目前, 主要是将触摸屏与液晶显示装置组装配合使用, 并且, 触摸屏在工 作时需要尽可能排除用户触控信号以外的干扰, 因此, 通常在为检测触碰位置 的触摸屏电极与液晶显示装置的公共电极层之间设有透明电极屏蔽层, 以降低 液晶显示装置的噪声对触摸屏的干扰。 图 1为现有的触摸屏液晶显示装置的结构示意图。 如图 1所示, 现有的触 摸屏液晶显示装置包括液晶显示屏 10以及位于所述液晶显示屏 10上方的触摸 屏 20, 两者之间相互独立。 所述液晶显示屏 10自下而上包括: 下偏光片 11、 下玻璃基板 12、 TFT器件层 13、 液晶层 14、 公共电极层 15、 彩膜层 16、 上玻 璃基板 17以及上偏光片 18。 所述触摸屏 20从下而上包括: 透明屏蔽层 21、 玻 璃基板 22、 触摸工作层 23以及保护层 24, 所述透明屏蔽层 21通常由氧化铟锡 层(ITO )制成。 用户在使用时, 可透过触摸屏 20得到液晶显示屏 10的成像显 示, 并通过触摸屏 20进行信息输入操作, 实现人机对话过程。 然而, 将触摸屏 20与液晶显示屏 10分开制造然后通过组装的方式制作在一起,势必增大触摸屏 液晶显示装置的厚度, 显示系统会变得很复杂, 并且这种做法导致工艺复杂, 成本也较高。 此外, 虽然透明屏蔽层 21能有效地屏蔽液晶显示屏 10的电噪声 对触摸屏 20的影响,但是增加这一层氧化铟锡层一方面增加了工艺制造的难度, 另一方面也增加了整个装置的厚度, 不利于装置的轻薄化趋势。
发明内容
本发明提供一种内嵌触摸屏液晶显示装置及其触控驱动方法, 利用第一公 共电极和第二公共电极检测被触碰位置, 降低了工艺制造的难度, 并可减小液 晶显示装置的厚度。 为解决上述技术问题, 本发明提供一种内嵌触摸屏液晶显示装置, 包括: 相对设置的第一基板和第二基板;
设置于所述第一基板和第二基板之间的液晶层; 以及
设置于所述第二基板朝向第一基板的一侧上的公共电极层;
其中, 所述公共电极层包括多个呈矩阵排列的第一公共电极和第二公共电 极, 所述多个第一公共电极和第二公共电极用于检测所述内嵌触摸屏液晶显示 装置的被触碰位置。 可选的, 在所述的内嵌触摸屏液晶显示装置中, 所述多个第一公共电极在 第一方向上排列并且电连接, 多个第二公共电极在第二方向上排列并且电连接。 可选的, 在所述的内嵌触摸屏液晶显示装置中, 所述多个第一公共电极直 接连接, 多个第二公共电极通过和公共电极层位于不同层的金属键桥电连接。 可选的, 在所述的内嵌触摸屏液晶显示装置中, 所述内嵌触摸屏液晶显示 装置还包括 TFT器件层, 所述 TFT器件层包括:
设置于所述第二基板朝向第一基板一侧上的扫描线以及与所述扫描线相交 的数据线;
所述扫描线和数据线限定的像素区域内形成有 TFT, 所述 TFT包括: 与所 述扫描线电连接的栅极、 设置于所述栅极上的栅绝缘层、 半导体层、 源极和漏 极, 所述 TFT的源极与所述数据线电连接; 以及
设置于所述第二基板朝向第一基板一侧上的且与所述 TFT漏极电连接的像 素电极。 可选的, 在所述的内嵌触摸屏液晶显示装置中, 所述第一公共电极与所述 扫描线沿同一方向延伸, 所述第二公共电极与所述数据线沿同一方向延伸, 所 述第二公共电极通过与所述扫描线同层的金属键桥电连接。 可选的,在所述的内嵌触摸屏液晶显示装置中,所述第一公共电极与所述数 据线沿同一方向延伸, 所述第二公共电极与所述扫描线沿同一方向延伸, 所述 第二公共电极通过与所述数据线同层的金属键桥电连接。 可选的,在所述的内嵌触摸屏液晶显示装置中,所述内嵌触摸屏液晶显示装 置还包括 TFT器件层, 所述 TFT器件层包括:
设置于所述第二基板朝向第一基板一侧上的扫描线以及与所述扫描线相交 的数据线;
所述扫描线和数据线限定的像素区域内形成有 TFT, 所述 TFT包括: 与所 述扫描线电连接的栅极、 设置于所述栅极上的栅绝缘层、 半导体层、 源极和漏 极, 所述 TFT的源极与所述数据线电连接; 以及设置于所述第二基板朝向第一 基板一侧上的且与所述 TFT漏极电连接的像素电极; 所述第一公共电极与所述扫描线沿同一方向延伸 ,所述第二公共电极与所述 数据线沿同一方向延伸, 所述第一公共电极通过与所述扫描线同层的金属键桥 电连接, 所述第二公共电极通过所述数据线同层的金属键桥电连接。 可选的,在所述的内嵌触摸屏液晶显示装置中,还包括显示信号产生单元和 触控信号产生单元, 所述显示信号产生单元用于向所述第一公共电极和第二公 共电极提供显示信号, 所述触控信号产生单元用于向所述第一公共电极和第二 公共电极提供触控信号。 可选的, 在所述的内嵌触摸屏液晶显示装置中, 在显示模式下, 所述显示信 号产生单元向所述公共电极层提供显示信号; 在触控模式下, 所述触控信号产 生单元向所述公共电极层提供触控信号。 可选的,在所述的内嵌触摸屏液晶显示装置中,所述触控信号包括激励信号 和检测信号。 可选的, 在所述的内嵌触摸屏液晶显示装置中, 在触控模式下, 所述触控信 号产生单元向所述第一公共电极提供激励信号, 并向所述第二公共电极提供检 测信号。 可选的, 在所述的内嵌触摸屏液晶显示装置中, 在触控模式下, 所述触控信 号产生单元向所述第二公共电极提供激励信号, 并向所述第一公共电极提供检 测信号。 可选的,在所述的内嵌触摸屏液晶显示装置中,所述显示信号产生单元向所 述公共电极层提供显示信号的同时, 所述触控信号产生单元向所述公共电极层 提供触控信号。 可选的,在所述的内嵌触摸屏液晶显示装置中,所述触控信号产生单元向所 述第一公共电极提供激励信号, 并向所述第二公共电极提供检测信号。 可选的,在所述的内嵌触摸屏液晶显示装置中,所述触控信号产生单元向所 述第二公共电极提供激励信号, 并向所述第一公共电极提供检测信号。 可选的,在所述的内嵌触摸屏液晶显示装置中,所述触控信号的等效直流分 量与所述显示信号重合。 可选的,在所述的内嵌触摸屏液晶显示装置中,还包括设置于所述第二基板 与所述公共电极层之间的彩膜层。 可选的,在所述的内嵌触摸屏液晶显示装置中,还包括设置于所述彩膜层与 所述公共电极层之间的钝化层。 可选的, 在所述的内嵌触摸屏液晶显示装置中, 还包括:
设置于所述第二基板背离第一基板的一侧上的上偏光片;
设置于所述第一基板背离第二基板的一侧上的下偏光片; 以及
设置于所述下偏光片一侧的背光。 本发明还提供一种内嵌触摸屏液晶显示装置的触控驱动方法,分时复用所述 公共电极层, 包括: 在显示模式下, 向所述公共电极层提供显示信号; 在触控 模式下, 向所述公共电极层提供触控信号。 可选的,在所述的内嵌触摸屏液晶显示装置的触控驱动方法中,所述触控信 号包括激励信号和检测信号。 可选的,在所述的内嵌触摸屏液晶显示装置的触控驱动方法中,向所述第一 公共电极提供激励信号, 并向所述第二公共电极提供检测信号。 可选的,在所述的内嵌触摸屏液晶显示装置的触控驱动方法中,向所述第二 公共电极提供激励信号, 并向所述第一公共电极提供检测信号。 根据本发明的另一方面,又提供一种内嵌触摸屏液晶显示装置的触控驱动方 法, 同时向所述公共电极层提供显示信号和触控信号, 以在进行像素显示的同 时检测所述内嵌触摸屏液晶显示装置的被触碰位置。 可选的,在所述的内嵌触摸屏液晶显示装置的触控驱动方法中,所述触控信 号包括激励信号和检测信号。 可选的,在所述的内嵌触摸屏液晶显示装置的触控驱动方法中,向所述第一 公共电极提供激励信号的同时, 向所述第二公共电极提供检测信号。 可选的, 在所述的内嵌触摸屏液晶显示装置的触控驱动方法中, 向所述第 二公共电极提供激励信号的同时, 向所述第一公共电极提供检测信号。 与现有技术相比, 本发明的内嵌触摸屏液晶显示装置利用多个呈矩阵排列 的第一公共电极和第二公共电极来检测内嵌触摸屏液晶显示装置的被触碰位 置, 将触摸屏的功能集成到液晶显示装置的两基板之间, 省去了将触摸屏贴合 到液晶显示装置的液晶面板上的步骤, 该液晶显示装置的制造工艺更加简单, 且减小了液晶显示装置的厚度, 有利于液晶显示装置的薄化趋势。 此外, 本发明将公共电极层和 TFT器件层依次设置在显示及触控操作基板 的内侧, 所述公共电极层可起到屏蔽外来信号干扰的作用, 无需额外制作透明 屏蔽层, 进一步降低了制造工艺的难度, 有利于降低制造成本。
附图说明 图 1为现有的触摸屏液晶显示装置的结构示意图;
图 2为本发明实施例一的内嵌触摸屏液晶显示装置的结构示意图; 图 3为图 2中公共电极层的分布示意图;
图 4为图 3中圓圈处的放大示意图;
图 5为图 4所示的像素结构示意图;
图 6 为本发明实施例一的内嵌触摸屏液晶显示装置的触控驱动方法的时序 原理图;
图 7为本发明实施例二的内嵌触摸屏液晶显示装置的公共电极排列示意图 图 8为本发明实施例二的内嵌触摸屏液晶显示装置的像素结构示意图; 图 9为本发明实施例三的内嵌触摸屏液晶显示装置的结构示意图; 图 10为本发明实施例四的内嵌触摸屏液晶显示装置的结构示意图。 具体实施方式 为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。 在下面的描述中阐述了很多具体细节以 便于充分理解本发明, 但是本发明能够以很多不同于在此描述的其它方式来实 施, 本领域技术人员可以在不违背本发明内涵的情况下做类似推广, 因此本发 明不限于下面公开的具体实施。 在背景技术中已经提及, 现有技术中通常是将触摸屏与液晶显示装置分开 制造然后通过组装的方式制作在一起, 这样不仅增大了触摸屏液晶显示装置的 厚度, 而且使得装置变的很复杂, 并且这种做法导致工艺较为复杂, 成本也较 高。 为此, 本发明将触摸屏的功能集成到液晶显示装置的两基板之间, 利用多 个呈矩阵排列的第一公共电极线和第二公共电极线来检测内嵌触摸屏液晶显示 装置的被触碰位置 (触摸点), 省去了将触摸屏贴合到液晶显示装置上的步骤, 制造工艺简单, 且减小了整个装置的厚度。
实施例一
请参考图 2至图 6所示, 其中, 图 2为本发明实施例一的内嵌触摸屏液晶 显示装置的结构示意图; 图 3为图 2中公共电极层的示意图; 图 4为图 3中圓 圈处的放大示意图; 图 5为图 4所示的像素结构示意图; 图 6为本发明实施例 一的内嵌触摸屏液晶显示装置的触控驱动方法的时序原理图。
如图 2至图 5所示, 本实施例的内嵌触摸屏液晶显示装置包括:
相对设置的第一基板 110和第二基板 120;
设置于所述第一基板 110和第二基板 120之间的液晶层 130; 以及
设置于所述第二基板 120朝向第一基板 110的一侧的公共电极层 140;
其中, 所述公共电极层 140包括多个呈矩阵排列的第一公共电极 141和第 二公共电极 142,所述第一公共电极 141和第二公共电极 142可用于检测所述内 嵌触摸屏液晶显示装置的被触碰位置。
本实施例中, 所述第一基板 110设置在上方, 所述第二基板 120设置在下 方, 可从所述第一基板 110—侧观看液晶显示装置的显示, 从所述第二基板 120 一侧进行触摸操作。 所述公共电极层 140被刻蚀成多个呈矩阵排列的第一公共 电极 141和第二公共电极 142,在本实施例中所述第一公共电极 141和第二公共 电极 142呈菱形, 所述第一公共电极 141和第二公共电极 142也可以为其他形 状。 本发明利用沿第二方向 (如 Y向)排列并连接在一起的多个第一公共电极 141作为驱动线, 利用沿第一方向 (如 X向)排列并连接在一起的多个第二公 共电极 142作为感应线, 来检测内嵌触摸屏液晶显示装置的被触碰位置 (触摸 点)。 将触控层集成在液晶显示装置内部, 省去了将触摸屏贴合到液晶显示装置 上的步骤, 制造工艺简单, 且减小了装置的厚度。
可以理解的是, 以上第一公共电极 141和第二公共电极 142的排列方式仅 是本发明的优选方式, 并非对本发明的限制, 具体将几个像素单元的公共电极 划分为一个触控区域可根据实际的触摸要求来设定, 例如可根据通常用户的手 指面积来划分, 只要将所述公共电极层分割成可用于检测触碰点的交叉的两部 分均在本发明的保护范围内。
具体地说, 多个第一公共电极 141在 Y方向上相互电连接在一起, 而多个 第二公共电极 142相互之间则并不直接连接。 图 4和图 5中简单示出了 9个像 素单元 1411、 1412、 1413、 1414、 1415、 1421、 1422、 1423、 1424 , 其中, 每 个第一公共电极和第二公共电极都是由多个像素单元的公共电极组成的, 例如, 像素单元 141 1、 1412、 1413、 1414属于一个第一公共电极 141 ,而像素单元 1415 则属于另一个与之相连的第一公共电极 141 , 像素单元 1421、 1423属于一个第 二公共电极, 而像素单元 1422、 1424属于另一个与之相连的第二公共电极 142。 下面对图 3中圓圈区域 143的结构进行更详细的介绍, 如图 4和图 5所示, 两个相邻的第一公共电极通过相邻的像素单元的 1414、 1415的公共电极直接连 接, 两个相邻的第二公共电极 142则是通过金属键桥 155连接相邻的像素单元 的公共电极而电连接的, 多个第二公共电极 142通过金属键桥可在 X方向上电 连接。 其中, 金属键桥 155可以有多种方法实现, 比如单独做一层金属刻蚀成 金属键桥; 在本实施例中则是利用已有的金属层, 可简化制作工艺。 本发明中内嵌触摸屏液晶显示装置可以为 IPS ( In-Plane Switching, 平面转 换)模式或者 FFS ( Fringe Field Switching , 边缘场开关)模式液晶显示装置, 所述 IPS/FFS模式是一种能够扩宽视角的液晶驱动模式, IPS/FFS模式的阵列基 板中的像素电极为条形, 用以形成水平电场。 在本实施例中, 所述内嵌触摸屏液晶显示装置为 IPS型液晶显示装置, 还 包括设置于所述第二基板 120上的 TFT器件层 150 , 所述 TFT器件层 150包括 扫描线 151以及与扫描线 151相交的数据线 152 , 所述扫描线 151和数据线 152 限定的像素区域内形成有 TFT 153。 所述 TFT 153 包括: 与所述扫描线 151电 连接的栅极、 设置于所述栅极上的栅绝缘层、 半导体层、 源极和漏极。 设置于 所述第二基板 120上的像素电极 154通过过孔(图中未示出)与所述 TFT 153 的 漏极电连接, 所述 TFT 153的源极与所述数据线 152电连接。 由于所述扫描线 151与栅极通常在同一个工艺步骤中形成, 因此二者位于同一层, 并可以做成一 体的; 此外, 形成 TFT的源极的金属与形成漏极的金属通常也在同一个工艺步 骤中形成, 因此二者位于同一层, 统称为源 /漏金属层。 通常来说在制造 TFT器 件层 150的过程中, 势必会形成源 /漏金属层和栅极金属层, 因此, 本实施例中 连接 X方向上的两个第二公共电极就需要使用和数据线 152同层的金属制作金 属键桥, 因为数据线 152也是在 X方向上设置的。 所述内嵌触摸屏液晶显示装 置还包括设置于公共电极层 140和 TFT器件层 150之间的第一绝缘层 171 , 以 及设置于公共电极层 140和像素电极 154之间的第二绝缘层 172。 在本实施例中, 优选地, 在所述第一基板 110的外侧还设置有一层屏蔽层。 为了降低外界信号噪音对内嵌触摸屏液晶显示装置的影响, 一般需要在内嵌触 摸屏液晶显示装置的外侧设置屏蔽层。 在本实施例中, 公共电极层 140设置在 第二基板 120—侧, 可屏蔽第二基板 120外侧的信号噪音, 但在第一基板 110 的外侧还需要单独设置一层屏蔽层, 以屏蔽从第一基板 110的外侧传来的信号 噪音。
进一步的, 所述内嵌触摸屏液晶显示装置还包括显示信号产生单元和触控 信号产生单元(未图示) , 所述显示信号产生单元用于向所述公共电极层 140 (包括第一公共电极 141和第二公共电极 142 )提供显示信号, 所述触控信号产 生单元则用于向所述公共电极层 140提供触控信号。 所述触控信号包括激励信 号和检测信号。 在本实施例中, 所述触控信号产生单元用于向所述第一公共电 极 141提供激励信号, 所述第一公共电极 141作为驱动电极; 并向所述第二公 共电极 142提供检测信号, 所述第二公共电极 142作为感应电极。 当然, 在本 发明其它具体实施例中, 也可由所述触控信号产生单元向所述第二公共电极提 供激励信号, 并向所述第一公共电极提供检测信号。 针对上述内嵌触摸屏液晶显示装置, 本实施例还提供一种触控驱动方法, 在所述触控驱动方法中分时复用所述公共电极层 140。所述内嵌触摸屏液晶显示 装置具有两种工作模式: 显示模式和触控模式。 在所述显示模式下, 向所述公 共电极层 140提供显示信号, 所述内嵌触摸屏液晶显示装置进行的是显示工作; 在所述触控模式下, 向所述公共电极层 140提供触控信号, 所述内嵌触摸屏液 晶显示装置进行的是触控工作。 如图 6所示, 在每一帧开始时, 所述内嵌触摸屏液晶显示装置先进入显示 模式, 所述显示信号包括像素选中信号和数据信号, 由显示信号产生单元向第 一公共电极 141和第二公共电极 142提供公共电压 Vcom,并提供像素选中信号, 以逐行在扫描线 151上施加扫描电压 V .. Vn-i , VN, 所述扫描电压大于 TFT的 开启电压, 使得 TFT伴随扫描电压逐行开启, 同时显示信号产生单元向数据线 152提供数据信号, 所述数据信号通过数据线 152传送给各个 TFT, 条状的像素 电极 154与公共电极层 140之间形成平行于第一基板 110和第二基板 120的电 场, 液晶分子沿着电场的方向发生偏转, 使得液晶显示阵列成像, 各个像素单 元进行正常显示。 而当内嵌触摸屏液晶显示装置随后工作在触控模式时, 此时即可控制第一 公共电极 141和第二公共电极 142实现触控功能。 例如, 在互电容模式中, 第 一公共电极 141作为驱动电极, 第二公共电极 142作为感应电极, 可以向所述 第一公共电极 141提供激励信号, 并向所述第二公共电极 142提供检测信号, 二者交叠处存在互电容, 手指触摸内嵌触摸屏液晶显示装置后, 有一部分电流 流入手指, 可以等效为互电容发生变化,从而使作为感应电极第二公共电极 142 的检测信号发生变化, 进而检测出手指是否触摸。 当然, 也可以由所述第二公 共电极 142作为驱动电极, 所述第一公共电极 141作为感应电极, 向所述第二 公共电极 142提供激励信号, 并向所述第一公共电极 141提供检测信号, 同样 能实现本发明的目的。
当每一帧结束进入下一帧时, 所述内嵌触摸屏液晶显示装置又进入显示模 式, 并重复上述的交替过程。 当然以上描述仅为本发明的一个具体实施例, 取 决于本发明所述的触控驱动方法的每一帧时间内的具体时序分布, 不局限于上 述描述的先进行显示模式再转入触控模式, 还可以在每一帧内, 先进行触控模 式再转入显示模式。 本领域技术人员应当可以根据具体时序, 合理推断出上述 触控驱动方法的其它控制方案。 由上述描述可知, 在分时复用公共电极层 140的触控驱动方法中, 将内嵌 触摸屏液晶显示装置的显示工作时间和触控工作时间分开, 使得成像显示与触 控感应互不影响, 从而提高了触控感应精度以及成像质量。 当然, 对于所述内嵌触摸屏液晶显示装置, 还可以釆用另一种触控驱动方 法, 即, 同时向公共电极层 140提供显示信号和触控信号, 以在进行像素显示 的同时检测所述内嵌触摸屏液晶显示装置的被触碰位置。 也就是说, 所述显示 信号产生单元向所述公共电极层 140提供显示信号的同时, 所述触控信号产生 单元向所述公共电极层 140提供触控信号 (包括激励信号和检测信号) , 进行 显示工作的同时还进行触控工作。 通常来说, 所述触控信号为高频信号 (周期 相对较短) , 而显示信号为低频信号 (周期相对较长) , 只要使所述激励信号 的等效直流分量与所述公共电压 Vcom重合, 像素单元来不及反应, 即可保证 实现触控功能的同时不会影响液晶显示阵列成像, 也可保证成像质量。 综上, 本实施例提供的内嵌触摸屏液晶显示装置通过将触摸屏的功能集成 到液晶显示装置的两基板之间, 利用相互交叉的第一公共电极和第二公共电极 来检测内嵌触摸屏液晶显示装置的被触碰位置, 省去了将触摸屏贴合到液晶显 示装置的液晶面板上的步骤, 制造工艺简单, 且减小了液晶显示装置的厚度。 实施例二 本实施例与实施例一不同之处在于, 多个第一公共电极需要在第一方向 ( X 向)连接在一起, 是通过两相邻像素单元的公共电极直接连接实现的, 而多个 第二公共电极则需要在第二方向 (Y向)上连接, 是通过金属键桥连接上下相 邻的两个像素单元的公共电极实现的。 具体地, 公共电极层仍然是被刻蚀成呈矩阵排列的多个第一公共电极和多 个第二公共电极, 图 7和图 8简单示出了 9个像素单元: 2411、 2412、 2413、 2421、 2422、 2423、 2431、 2432、 2433 , 一个第一公共电极包括像素单元 2411、 2421、 2422、 2431 , 另一个第一公共电极包括像素单元 2423 , —个第二公共电 极包括像素单元 2412、 2413 , 另一个第二公共电极包括像素单元 2432、 2433。 其中, 多个第一公共电极需要在 X方向连接在一起, 其是通过两相邻像素 单元的公共电极直接连接实现的; 而多个第二公共电极需要在 Y方向上连接, 则是通过金属键桥 255连接上下相邻的两个像素单元的公共电极实现的。 同样, 所述金属键桥 255可以有多种方法实现, 比如单独做一层金属刻蚀成金属键桥。 在本实施例中, 则是利用已有的金属层, 具体来说, 要在 Y方向上设置金属键 桥, 则需使用和扫描线同层的金属 (如栅极金属层) , 因为扫描线也是在 Y方 向上设置的。 本实施例的内嵌触摸屏液晶显示装置工作方式与实施例一相同, 此处不予 详细介绍, 但是本领域技术人员应是知晓的。 在本发明实施例一中, 两个相邻的第一公共电极需要在第二方向(如 Y向) 通过相邻的像素单元的公共电极直接连接的, 两个相邻的第二公共电极则是通 过金属键桥连接左右相邻的像素单元的公共电极而电连接的; 在本发明实施例 二中, 两个相邻的第一公共电极需要在第一方向 (如 X向)通过相邻的像素单 元的公共电极直接连接的, 两个相邻的第二公共电极则需要通过金属键桥连接 上下相邻的两个像素单元的公共电极实现。 然而应当认识到, 在本发明其它具 体实施例中, 相邻的第一公共电极可以是通过金属键桥连接相邻的像素单元的 公共电极而电连接, 同时, 相邻的第二公共电极也是通过金属键桥连接相邻的 像素单元的公共电极而电连接, 例如, 第一公共电极与扫描线沿同一方向设置, 第二公共电极与数据线沿同一方向设置, 所述第一公共电极通过与扫描线同层 的金属键桥电连接, 所述第二公共电极通过与数据线同层的金属键桥电连接。 实施例三 在本发明实施例一和实施例二中, 可从所述第一基板一侧观看液晶显示装 置的显示, 从所述第二基板一侧进行触摸操作。 而在本实施例中, 可从第二基 板一侧同时进行显示观看和触控操作, 即, 将公共电极层、 TFT 器件层和像素 电极依次设置在第二基板的内侧, 所述公共电极层还可起到屏蔽外来信号干扰 的作用。 该公共电极层的屏蔽作用与传统触摸屏液晶显示装置所釆用的透明屏 蔽层作用相同, 可降低外界电场对液晶显示装置显示的干扰, 如此即无需额外 制作专用的透明屏蔽层, 降低了制造工艺的难度, 并可降低制造成本。
具体如图 9所示, 本实施例的内嵌触摸屏液晶显示装置包括:
相对设置的第一基板 310和第二基板 320;
设置于所述第一基板 310和第二基板 320之间的液晶层 330; 以及
设置于所述第二基板 320朝向第一基板 310的一侧上的公共电极层 340; 其中, 所述公共电极层 340包括呈矩阵排列的多个第一公共电极和多个第 二公共电极, 所述第一公共电极和第二公共电极可用于检测所述内嵌触摸屏液 晶显示装置的被触碰位置。 此外, 所述内嵌触摸屏液晶显示装置还包括设置于第二基板 320朝向第一 基板 310的一侧上的 TFT器件层 350, 所述 TFT器件层 350包括扫描线以及与 扫描线相交的数据线, 所述扫描线和数据线限定的像素区域内形成有 TFT 。 所 述 TFT 包括:与所述扫描线电连接的栅极,依次设置于所述栅极上的栅绝缘层、 半导体层和源 /漏金属层, 所述 TFT 的源极与所述数据线电连接。 可选的, 所述 TFT器件层还包括欧姆接触层, 所述欧姆接触层形成于半导 体层与源 /漏金属层之间, 所述欧姆接触层例如是由 N+非晶硅制成, 用以形成欧 姆接触。 为方便, 附图中并未标出栅绝缘层、 半导体层和欧姆接触层, 但是本 领域技术人员应是知晓的。
本实施例的内嵌触摸屏液晶显示装置为 IPS或者 FFS模式的内嵌触摸屏液 晶显示装置, 详细而言, 所述内嵌触摸屏液晶显示装置还包括彩膜层 360、 钝化 层 370、 上偏光片 321、 下偏光片 311以及背光 380。 所述彩膜层 360用以实现 彩色显示, 其设置于第二基板 320与公共电极层 340之间, 所述钝化层 370设 置于彩膜层 360和公共电极层 340之间, 所述上偏光片 321设置于所述第二基 板 320背离第一基板 310的一侧上,所述下偏光片 311设置于所述第一基板 310 背离第二基板 320的一侧上, 所述背光 380设置于所述下偏光片 311—侧。 本 实施例将彩膜层 360、公共电极层 340、 TFT器件层 350依次设置在同一基板上, 所述公共电极层 340 可起到屏蔽外来信号干扰的作用, 即, 该公共电极层 340 的屏蔽作用与传统触摸屏液晶显示装置所釆用的透明屏蔽层作用相同, 可降低 噪声干扰, 如此即无需额外制作专用的透明屏蔽层, 降低了制造工艺的难度, 并可降低制造成本。
如图 9所示, 所述内嵌触摸屏液晶显示装置还包括第一绝缘层 371和第二 绝缘层 372 ,所述第一绝缘层 371设置于所述公共电极层 340和 TFT器件层 350 之间, 所述第二绝缘层 372设置于所述 TFT器件层 350与像素电极 354之间, 以起到隔离作用。 此外, 为了制作方便, 在第二基板 320 的全部区域上均形成 有彩膜层 360 , 对应于需要遮光的部位设置有黑矩阵层 361。 当然, 在本实用新 型其它具体实施例中, 所述彩膜层 360和黑矩阵层 361也可间隔设置, 而非在 第二基板 320所有区域均形成彩膜层 360。
在其他实施例中, 所述彩膜层还可以形成在第二基板 320 的外侧, 并不影 响本发明的保护范围。
本实施例中第一公共电极和第二公共电极的分布方式与实施例一或实施例 二中的公共电极层结构及驱动方式类似, 此处不再赘述。
本实施例提供的内嵌触摸屏液晶显示装置, 可从第二基板 320—侧同时进 行显示观看和触控操作, 使用更为方便; 同时, 因为显示和触控操作同时在第 二基板 320—侧进行, 可以在第一基板 310—侧安装背光, 提供更为均勾稳定 的光源, 使显示效果更好。
在本实施例中, 因为在第一基板 310—侧安装有背光, 背光铁框可以屏蔽 第一基板 310外侧的信号噪音; 同时, 用户是从第二基板 320—侧进行显示观 看和触控操作, 从第二基板 320—侧向下, 设置在像素电极 354和 TFT器件层 350上层的公共电极层 340可以起到屏蔽第二基板 320外侧的信号噪音,降低噪 声干扰。 所以, 本实施例提供的内嵌触摸屏液晶显示装置无需额外制作专用的 透明屏蔽层, 简化了内嵌触摸屏液晶显示装置的结构, 降低了成本。
实施例四 下面以 TN/AV模式的内嵌触摸屏液晶显示装置为例详细说明本发明。 如图 10所示, 所述内嵌触摸屏液晶显示装置包括:
相对设置的第一基板 410和第二基板 420;
设置于所述第一基板 410和第二基板 420之间的液晶层 430;
设置于所述第二基板 420朝向第一基板 410的一侧上的公共电极层 440 ,其 中, 所述公共电极层 440 包括呈矩阵排列的多个第一公共电极和多个第二公共 电极, 所述第一公共电极和第二公共电极用于检测所述内嵌触摸屏液晶显示装 置的被触碰位置;
设置于所述第二基板 420内侧的 TFT器件层 450;
设置于所述第二基板 420与公共电极层 440之间的彩膜层 460; 设置于彩膜层 460和公共电极层 440之间的钝化层 470;
设置于所述第一基板 410背离第二基板 420的一侧上的下偏光片 411 ;
设置于所述第二基板 420背离第一基板 410的一侧上的上偏光片 421 ;
设置于所述下偏光片 411一侧的背光 480; 以及
设置于所述第一基板 410朝向第二基板 420—侧上的第二公共电极层 490。 与实施例三相比, 本实施例的内嵌触摸屏液晶显示装置是形成垂直电场, 因此需要在第一基板 410上形成第二公共电极层 490。 其中, 第一公共电极和第 二公共电极的分布方式与实施例一或二中的公共电极层结构中的相同, 此外, 所述内嵌触摸屏液晶显示装置的驱动方法也与实施例一和二类似。 综上所述,本发明的内嵌触摸屏液晶显示装置不仅适用于 IPS/FFS模式,还 适用于 TN/AV模式或其它模式, 通过将触摸屏的功能集成到液晶显示装置的两 基板之间, 本发明利用沿第一方向排列并连接在一起的多个第一公共电极作为 驱动线, 利用沿第二方向排列并连接在一起的多个第二公共电极作为感应线, 来检测内嵌触摸屏液晶显示装置的被触碰位置, 省去了将触摸屏贴合到液晶显 示装置的液晶面板上的步骤, 制造工艺简单, 且减小了液晶显示装置的厚度, 可降低制造成本。 需要说明的是, 以上结构的内嵌触摸屏液晶显示装置仅作为优选实施例介 绍, 本领域技术人员可以根据实际的生产需要以及技术指标, 适当增加或减少 该内嵌触摸屏液晶显示装置的层数, 并选择各层的类型、 材质以及厚度等, 此 处不再赘述。 此外, 本说明书中各个实施例釆用递进的方式描述, 每个实施例重点说明 的都是与其他实施例的不同之处, 相关之处可互相参考。 并且, 附图均釆用非 常简化的形式且均使用非精准的比率, 仅用于方便、 明晰地辅助说明本发明各 个实施例的目的。 对所公开的实施例的上述说明, 使本领域专业技术人员能够实现或使用本 发明。 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下, 在其它 实施例中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而是要 符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims

权 利 要 求 书
1. 一种内嵌触摸屏液晶显示装置, 包括:
相对设置的第一基板和第二基板;
设置于所述第一基板和第二基板之间的液晶层; 以及
设置于所述第二基板朝向第一基板的一侧上的公共电极层;
其中, 所述公共电极层包括呈矩阵排列的多个第一公共电极和多个第二公 共电极, 所述多个第一公共电极和多个第二公共电极用于检测所述内嵌触摸屏 液晶显示装置的被触碰位置。
2. 如权利要求 1所述的内嵌触摸屏液晶显示装置, 其特征在于, 所述多个 第一公共电极在第一方向上排列并且电连接, 所述多个第二公共电极在第二方 向上排列并且电连接。
3. 如权利要求 2所述的内嵌触摸屏液晶显示装置, 其特征在于, 所述多个 第一公共电极直接连接, 所述多个第二公共电极通过和公共电极层位于不同层 的金属键桥电连接。
4. 如权利要求 3所述的内嵌触摸屏液晶显示装置, 其特征在于, 所述内嵌 触摸屏液晶显示装置还包括 TFT器件层, 所述 TFT器件层包括:
设置于所述第二基板朝向第一基板一侧上的扫描线以及与所述扫描线相交 的数据线;
所述扫描线和数据线限定的像素区域内形成有 TFT, 所述 TFT包括: 与所 述扫描线电连接的栅极、 设置于所述栅极上的栅绝缘层、 半导体层、 源极和漏 极, 所述 TFT的源极与所述数据线电连接;
其中, 设置于所述第二基板朝向第一基板一侧上的像素电极与所述 TFT漏 极电连接。
5. 如权利要求 4所述的内嵌触摸屏液晶显示装置, 其特征在于, 所述第一 公共电极与所述扫描线沿同一方向设置, 所述第二公共电极与所述数据线沿同 一方向设置, 所述第二公共电极通过与所述数据线同层的金属键桥电连接。
6. 如权利要求 4所述的内嵌触摸屏液晶显示装置, 其特征在于, 所述第一 公共电极与所述数据线沿同一方向设置, 所述第二公共电极与所述扫描线沿同 一方向设置, 所述第二公共电极通过与所述扫描线同层的金属键桥电连接。
7. 如权利要求 2所述的内嵌触摸屏液晶显示装置, 其特征在于, 所述内嵌触摸屏液晶显示装置还包括 TFT器件层, 所述 TFT器件层包括: 设置于所述第二基板朝向第一基板一侧上的扫描线以及与所述扫描线相交 的数据线;
所述扫描线和数据线限定的像素区域内形成有 TFT, 所述 TFT包括: 与所 述扫描线电连接的栅极、 设置于所述栅极上的栅绝缘层、 半导体层、 源极和漏 极, 所述 TFT的源极与所述数据线电连接; 设置于所述第二基板朝向第一基板 一侧上的像素电极与所述 TFT漏极电连接;
所述第一公共电极与所述扫描线沿同一方向设置 ,所述第二公共电极与所述 数据线沿同一方向设置, 所述第一公共电极通过与所述扫描线同层的金属键桥 电连接, 所述第二公共电极通过所述数据线同层的金属键桥电连接。
8. 如权利要求 1至 7任一所述的内嵌触摸屏液晶显示装置, 其特征在于, 还包括显示信号产生单元和触控信号产生单元, 所述显示信号产生单元用于向 所述第一公共电极和第二公共电极提供显示信号, 所述触控信号产生单元用于 向所述第一公共电极和第二公共电极提供触控信号。
9. 如权利要求 8所述的内嵌触摸屏液晶显示装置, 其特征在于, 在显示模 式下, 所述显示信号产生单元向所述公共电极层提供显示信号; 在触控模式下, 所述触控信号产生单元向所述公共电极层提供触控信号。
10.如权利要求 9所述的内嵌触摸屏液晶显示装置, 其特征在于, 所述触控 信号包括激励信号和检测信号。
11.如权利要求 10所述的内嵌触摸屏液晶显示装置, 其特征在于, 在触控模 式下, 所述触控信号产生单元向所述第一公共电极提供激励信号, 并向所述第 二公共电极提供检测信号。
12.如权利要求 10所述的内嵌触摸屏液晶显示装置, 其特征在于, 在触控模 式下, 所述触控信号产生单元向所述第二公共电极提供激励信号, 并向所述第 一公共电极提供检测信号。
13. 如权利要求 8所述的内嵌触摸屏液晶显示装置, 其特征在于, 所述显示 信号产生单元向所述公共电极层提供显示信号的同时, 所述触控信号产生单元 向所述公共电极层提供触控信号。
14. 如权利要求 13所述的内嵌触摸屏液晶显示装置, 其特征在于, 所述触 控信号产生单元向所述第一公共电极提供激励信号, 并向所述第二公共电极提 供检测信号。
15. 如权利要求 13所述的内嵌触摸屏液晶显示装置, 其特征在于, 所述触 控信号产生单元向所述第二公共电极提供激励信号, 并向所述第一公共电极提 供检测信号。
16. 如权利要求 13所述的内嵌触摸屏液晶显示装置, 其特征在于, 所述触 控信号的等效直流分量与所述显示信号重合。
17. 如权利要求 1所述的内嵌触摸屏液晶显示装置, 其特征在于, 还包括设 置于所述第二基板与所述公共电极层之间的彩膜层。
18. 如权利要求 17所述的内嵌触摸屏液晶显示装置, 其特征在于, 还包括 设置于所述彩膜层与所述公共电极层之间的钝化层。
19. 如权利要求 1所述的内嵌触摸屏液晶显示装置, 其特征在于, 还包括: 设置于所述第二基板背离第一基板的一侧上的上偏光片;
设置于所述第一基板背离第二基板的一侧上的下偏光片; 以及
设置于所述下偏光片一侧的背光。
20. 一种如权利要求 1所述的内嵌触摸屏液晶显示装置的触控驱动方法,其 特征在于, 分时复用所述公共电极层, 包括:
在显示模式下, 向所述公共电极层提供显示信号;
在触控模式下, 向所述公共电极层提供触控信号。
21.如权利要求 20所述的触控驱动方法, 其特征在于, 所述触控信号包括激 励信号和检测信号。
22.如权利要求 21所述的触控驱动方法, 其特征在于, 在触控模式下, 向所 述第一公共电极提供激励信号, 并向所述第二公共电极提供检测信号。
23.如权利要求 21所述的触控驱动方法, 其特征在于, 在触控模式下, 向所 述第二公共电极提供激励信号, 并向所述第一公共电极提供检测信号。
24.—种如权利要求 1所述的内嵌触摸屏液晶显示装置的触控驱动方法, 其 特征在于, 同时向所述公共电极层提供显示信号和触控信号, 以在进行像素显 示的同时检测所述内嵌触摸屏液晶显示装置的被触碰位置。
25.如权利要求 24所述的触控驱动方法, 其特征在于, 所述触控信号包括激 励信号和检测信号。
26.如权利要求 25所述的触控驱动方法, 其特征在于, 向所述第一公共电极 提供激励信号的同时, 向所述第二公共电极提供检测信号。
27.如权利要求 25所述的触控驱动方法, 其特征在于, 向所述第二公共电极 提供激励信号的同时, 向所述第一公共电极提供检测信号。
PCT/CN2012/081426 2011-11-25 2012-09-14 内嵌触摸屏液晶显示装置及其触控驱动方法 WO2013075540A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/353,005 US9442330B2 (en) 2011-11-25 2012-09-14 Embedded touch screen liquid crystal display device and touch drive method thereof
DE112012004912.8T DE112012004912T5 (de) 2011-11-25 2012-09-14 Eingebettete Flüssigkristallanzeigevorrichtung mit Sensorbildschirm und Verfahren zur Berührungsansteuerung derselben
US15/225,754 US10088930B2 (en) 2011-11-25 2016-08-01 Active matrix organic light emitting diode in-cell touch panel and drive method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110383654.3A CN103135815B (zh) 2011-11-25 2011-11-25 内嵌触摸屏液晶显示装置及其触控驱动方法
CN201110383654.3 2011-11-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/353,005 A-371-Of-International US9442330B2 (en) 2011-11-25 2012-09-14 Embedded touch screen liquid crystal display device and touch drive method thereof
US15/225,754 Continuation-In-Part US10088930B2 (en) 2011-11-25 2016-08-01 Active matrix organic light emitting diode in-cell touch panel and drive method thereof

Publications (1)

Publication Number Publication Date
WO2013075540A1 true WO2013075540A1 (zh) 2013-05-30

Family

ID=48469088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081426 WO2013075540A1 (zh) 2011-11-25 2012-09-14 内嵌触摸屏液晶显示装置及其触控驱动方法

Country Status (4)

Country Link
US (1) US9442330B2 (zh)
CN (1) CN103135815B (zh)
DE (1) DE112012004912T5 (zh)
WO (1) WO2013075540A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698707A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 阵列基板及其形成方法、显示装置
US20150253915A1 (en) * 2014-03-10 2015-09-10 Samsung Display Co., Ltd. Display substrate and method of manufacturing the same

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7920129B2 (en) 2007-01-03 2011-04-05 Apple Inc. Double-sided touch-sensitive panel with shield and drive combined layer
US20090174676A1 (en) 2008-01-04 2009-07-09 Apple Inc. Motion component dominance factors for motion locking of touch sensor data
FR2949007B1 (fr) 2009-08-07 2012-06-08 Nanotec Solution Dispositif et procede d'interface de commande sensible a un mouvement d'un corps ou d'un objet et equipement de commande integrant ce dispositif.
FR2976688B1 (fr) 2011-06-16 2021-04-23 Nanotec Solution Dispositif et procede pour generer une alimentation electrique dans un systeme electronique avec un potentiel de reference variable.
FR2985049B1 (fr) 2011-12-22 2014-01-31 Nanotec Solution Dispositif de mesure capacitive a electrodes commutees pour interfaces tactiles et sans contact
KR101944503B1 (ko) * 2012-06-21 2019-04-18 삼성디스플레이 주식회사 센서 기판 및 이를 포함하는 센싱 표시 패널
US9336723B2 (en) 2013-02-13 2016-05-10 Apple Inc. In-cell touch for LED
JP2014174851A (ja) * 2013-03-11 2014-09-22 Japan Display Inc タッチセンサ装置、表示装置、及び電子機器
CN103248905A (zh) * 2013-03-22 2013-08-14 深圳市云立方信息科技有限公司 一种模仿全息3d场景的显示装置和视觉显示方法
CN103257769B (zh) * 2013-03-25 2016-01-27 合肥京东方光电科技有限公司 一种电容内嵌式触摸屏和显示装置
CN103218097B (zh) * 2013-04-07 2016-07-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN104656297B (zh) * 2013-11-19 2017-06-13 苏州汉朗光电有限公司 触控型近晶相液晶显示器
CN116560524A (zh) 2013-12-13 2023-08-08 苹果公司 用于自电容触摸传感器的集成触摸和显示架构
CN103823601A (zh) * 2014-02-08 2014-05-28 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN103941450B (zh) * 2014-02-20 2017-06-06 深圳市华星光电技术有限公司 触控显示面板及触控显示装置
JP2015176512A (ja) * 2014-03-18 2015-10-05 シナプティクス・ディスプレイ・デバイス合同会社 半導体装置
US10133382B2 (en) 2014-05-16 2018-11-20 Apple Inc. Structure for integrated touch screen
US10936120B2 (en) 2014-05-22 2021-03-02 Apple Inc. Panel bootstraping architectures for in-cell self-capacitance
CN104020906B (zh) * 2014-05-30 2016-09-07 京东方科技集团股份有限公司 一种内嵌式触摸屏以及显示装置
KR102271659B1 (ko) * 2014-08-29 2021-06-30 엘지디스플레이 주식회사 터치 패널 내장형 유기 발광 표시 장치
TWI550494B (zh) * 2014-09-05 2016-09-21 晨星半導體股份有限公司 內嵌式觸控顯示面板
CN104199586B (zh) * 2014-09-16 2018-04-13 重庆京东方光电科技有限公司 一种阵列基板、内嵌式触摸屏和触控显示装置
KR102500994B1 (ko) * 2014-10-17 2023-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 터치 패널
TWM500928U (zh) * 2014-10-17 2015-05-11 Mstar Semiconductor Inc 內嵌式觸控顯示面板
FR3028062B1 (fr) * 2014-10-29 2018-01-12 Fogale Nanotech Dispositif d'interface de commande capacitif integre a un ecran d'affichage
WO2016072983A1 (en) 2014-11-05 2016-05-12 Onamp Research Llc Common electrode driving and compensation for pixelated self-capacitance touch screen
CN104536213A (zh) * 2014-12-19 2015-04-22 深圳市华星光电技术有限公司 Ffs阵列基板及液晶显示面板
CN104503647B (zh) * 2014-12-31 2017-12-08 京东方科技集团股份有限公司 一种触摸显示屏的基板及其制造方法、触摸屏及显示装置
KR102293125B1 (ko) * 2015-01-08 2021-08-24 삼성디스플레이 주식회사 접촉 감지 기능을 가진 광학계 및 이를 포함하는 표시 장치
CN104570446B (zh) 2015-01-15 2017-06-06 京东方科技集团股份有限公司 一种触控显示面板及其控制方法
CN107209602B (zh) 2015-02-02 2020-05-26 苹果公司 柔性自电容和互电容触摸感测系统架构
CN108196725B (zh) * 2015-04-01 2021-02-02 上海天马微电子有限公司 触控显示基板和触控显示装置
CN104698701B (zh) * 2015-04-01 2017-10-20 上海天马微电子有限公司 阵列基板以及显示装置
US9727771B2 (en) * 2015-04-14 2017-08-08 Chih-Chung Lin Touch device with fingerprint identification function
US10146359B2 (en) 2015-04-28 2018-12-04 Apple Inc. Common electrode auto-compensation method
CN106201036B (zh) * 2015-04-29 2023-06-20 安徽精卓光显技术有限责任公司 内嵌式触摸显示屏及触摸显示屏模组
CN104777686B (zh) * 2015-05-08 2018-01-09 上海中航光电子有限公司 阵列基板、显示面板和触控显示装置
KR102394849B1 (ko) * 2015-06-04 2022-05-04 주식회사 엘엑스세미콘 패널을 구동하는 기술
KR102619052B1 (ko) * 2015-06-15 2023-12-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP2017003976A (ja) * 2015-06-15 2017-01-05 株式会社半導体エネルギー研究所 表示装置
CN104881178A (zh) * 2015-06-19 2015-09-02 京东方科技集团股份有限公司 一种触摸显示屏、其制作方法及显示装置
CN105094422B (zh) * 2015-06-23 2018-09-11 京东方科技集团股份有限公司 一种触控显示面板、其制备方法、驱动方法及显示装置
CN104866161B (zh) * 2015-06-23 2017-10-27 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN204706011U (zh) * 2015-06-26 2015-10-14 鄂尔多斯市源盛光电有限责任公司 一种触控显示装置
US10386962B1 (en) 2015-08-03 2019-08-20 Apple Inc. Reducing touch node electrode coupling
CN105093619A (zh) * 2015-08-03 2015-11-25 深圳市华星光电技术有限公司 IPS型In Cell触控显示面板
CN106445261A (zh) * 2015-08-07 2017-02-22 群创光电股份有限公司 触控显示设备
CN105094489A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN105182582B (zh) * 2015-09-07 2019-03-05 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
KR102380960B1 (ko) * 2015-09-30 2022-04-04 엘지디스플레이 주식회사 표시장치
CN205334426U (zh) * 2015-10-28 2016-06-22 敦泰电子股份有限公司 触控显示装置
US10338754B2 (en) * 2015-12-18 2019-07-02 Synaptics Incorporated Edge-effect mitigation for capacitive sensors
US10180745B2 (en) * 2015-12-25 2019-01-15 Shanghai Avic Optoelectronics Co., Ltd. Display panel and display device with narrow bezel
CN105629597B (zh) * 2016-01-14 2019-06-21 京东方科技集团股份有限公司 阵列基板及其显示驱动方法、制作方法、显示装置
EP3491500B1 (en) 2016-07-29 2023-11-29 Apple Inc. Touch sensor panel with multi-power domain chip configuration
CN106249977B (zh) * 2016-08-23 2020-01-07 厦门天马微电子有限公司 一种触控显示面板及电子设备
CN106200077A (zh) * 2016-08-31 2016-12-07 深圳市华星光电技术有限公司 一种触控面板及其制作方法
US10788935B2 (en) 2017-03-13 2020-09-29 Microsoft Technology Licensing, Llc Multiplexing capacitance sensing and display functionality
US10386965B2 (en) 2017-04-20 2019-08-20 Apple Inc. Finger tracking in wet environment
CN107995959B (zh) * 2017-05-24 2021-01-15 昆山龙腾光电股份有限公司 视角可切换的触控显示面板及触控显示装置
CN107886922A (zh) * 2017-12-08 2018-04-06 南京中电熊猫平板显示科技有限公司 液晶显示装置及改善液晶显示装置掉电闪屏的方法
KR20200020260A (ko) 2018-08-16 2020-02-26 삼성전자주식회사 저저항 지문센서 및 그 제조 방법
CN109545162A (zh) * 2018-12-29 2019-03-29 上海中航光电子有限公司 阵列基板及其驱动方法、显示面板和显示装置
CN111459338A (zh) 2020-04-13 2020-07-28 深圳市华星光电半导体显示技术有限公司 一种触控显示器及其抗干扰方法
US11662867B1 (en) 2020-05-30 2023-05-30 Apple Inc. Hover detection on a touch sensor panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038385A (zh) * 2006-02-20 2007-09-19 三星电子株式会社 显示面板、具有该显示面板的显示设备及其方法
CN102214036A (zh) * 2010-04-02 2011-10-12 三星电子株式会社 在触摸面板上形成电极图形的方法和装置
CN102541333A (zh) * 2010-12-30 2012-07-04 上海天马微电子有限公司 内置型触摸屏

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843278B1 (en) * 1992-05-22 2002-10-23 Sharp Kabushiki Kaisha Display-integrated type tablet device
JP4627148B2 (ja) * 2004-04-09 2011-02-09 株式会社 日立ディスプレイズ 表示装置
EP3805907A1 (en) * 2006-06-09 2021-04-14 Apple Inc. Touch screen liquid crystal display
KR101297387B1 (ko) * 2006-11-09 2013-08-19 삼성디스플레이 주식회사 터치 패널 일체형 액정 표시 장치
TW200844827A (en) * 2007-05-11 2008-11-16 Sense Pad Tech Co Ltd Transparent touch panel device
KR101437866B1 (ko) * 2007-10-15 2014-09-05 삼성디스플레이 주식회사 표시장치 및 그 제어방법
JP5216495B2 (ja) * 2008-09-16 2013-06-19 株式会社ジャパンディスプレイウェスト 接触検出装置および表示装置
TWI400537B (zh) * 2008-10-03 2013-07-01 Hannstar Display Corp 垂直配向液晶顯示器與其畫素結構
TWI372284B (en) * 2008-11-25 2012-09-11 Au Optronics Corp Touch sensing substrate and touch sensing liquid crystal display
TWI376537B (en) * 2008-12-11 2012-11-11 Au Optronics Corp Structure of touch device and touch panel
US8217913B2 (en) * 2009-02-02 2012-07-10 Apple Inc. Integrated touch screen
US8922521B2 (en) * 2009-02-02 2014-12-30 Apple Inc. Switching circuitry for touch sensitive display
JP4968276B2 (ja) * 2009-02-24 2012-07-04 ソニー株式会社 表示装置およびその製造方法
KR101113516B1 (ko) * 2009-10-07 2012-02-29 삼성전기주식회사 터치 스크린용 전극 패턴, 터치 스크린용 구동 장치 및 터치 스크린
TWI428661B (zh) * 2009-11-09 2014-03-01 Silicon Integrated Sys Corp 觸碰顯示裝置
CN102109690B (zh) * 2009-12-25 2012-12-19 上海天马微电子有限公司 内嵌触摸屏液晶显示装置及控制方法
CN102236222B (zh) * 2010-04-23 2013-07-10 北京京东方光电科技有限公司 阵列基板及其制造方法和液晶显示器
US8692781B2 (en) * 2010-06-02 2014-04-08 Pixart Imaging Inc. Capacitive touchscreen system with multiplexers
KR20120014808A (ko) * 2010-08-10 2012-02-20 엘지디스플레이 주식회사 터치 센서가 내장된 액정 표시 장치 및 그 구동 방법과 그 제조 방법
KR101284714B1 (ko) * 2010-09-20 2013-07-17 엘지디스플레이 주식회사 액정 표시장치와 이의 제조방법
KR101770319B1 (ko) * 2010-11-25 2017-08-22 엘지디스플레이 주식회사 액정표시장치
TWI434208B (zh) * 2010-12-30 2014-04-11 Au Optronics Corp 電容式觸控顯示面板
KR20120109191A (ko) * 2011-03-28 2012-10-08 하이디스 테크놀로지 주식회사 터치센서 내장형 액정표시장치 및 그 제조방법
CN102253781B (zh) * 2011-08-16 2013-09-11 深圳市宝明科技股份有限公司 金属过桥一体式电容触摸屏及制造方法
US20130050130A1 (en) * 2011-08-22 2013-02-28 Sharp Kabushiki Kaisha Touch panel and display device with differential data input
KR101879479B1 (ko) * 2011-09-07 2018-07-17 시냅틱스 인코포레이티드 비-디스플레이 업데이트 시간들 동안의 용량성 센싱

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038385A (zh) * 2006-02-20 2007-09-19 三星电子株式会社 显示面板、具有该显示面板的显示设备及其方法
CN102214036A (zh) * 2010-04-02 2011-10-12 三星电子株式会社 在触摸面板上形成电极图形的方法和装置
CN102541333A (zh) * 2010-12-30 2012-07-04 上海天马微电子有限公司 内置型触摸屏

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150253915A1 (en) * 2014-03-10 2015-09-10 Samsung Display Co., Ltd. Display substrate and method of manufacturing the same
KR20150106021A (ko) * 2014-03-10 2015-09-21 삼성디스플레이 주식회사 표시 기판 및 이의 제조 방법
US9645661B2 (en) * 2014-03-10 2017-05-09 Samsung Display Co., Ltd. Display substrate and method of manufacturing the same
KR102215853B1 (ko) * 2014-03-10 2021-02-17 삼성디스플레이 주식회사 표시 기판 및 이의 제조 방법
CN104698707A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 阵列基板及其形成方法、显示装置
US9735184B2 (en) 2015-04-01 2017-08-15 Shanghai Tianma Micro-electronics Co., Ltd. Forming method for structure of crossing datalines and scanning lines in display device

Also Published As

Publication number Publication date
US20140333582A1 (en) 2014-11-13
US9442330B2 (en) 2016-09-13
DE112012004912T5 (de) 2014-08-28
CN103135815A (zh) 2013-06-05
CN103135815B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2013075540A1 (zh) 内嵌触摸屏液晶显示装置及其触控驱动方法
US10088930B2 (en) Active matrix organic light emitting diode in-cell touch panel and drive method thereof
US10180750B2 (en) Touch sensor integrated display device
CN103412675B (zh) 一种阵列基板、内嵌式触摸屏及显示装置
JP6215640B2 (ja) 静電容量式インセルタッチパネル及びディスプレイデバイス
EP2431802B1 (en) Liquid crystal display device and method for manufacturing the same
US9405143B2 (en) Liquid crystal panel, liquid crystal display and method for manufacturing the same
JP4816668B2 (ja) タッチセンサ付き表示装置
US9151979B2 (en) In-cell capacitive touch panel LCD module and method for driving the same
EP2469380B1 (en) Integrated touch screens
CN103049157B (zh) 一种电容式内嵌触摸屏及显示装置
US10691235B2 (en) On-cell touch architecture
US20130314371A1 (en) In-Cell Touch Display Panel Structure with Metal Layer for Sensing
JP2012103658A (ja) タッチスクリーンパネル一体型液晶表示装置
KR101710407B1 (ko) 터치 스크린이 내장된 액정 표시장치와 이의 구동방법
EP3270271B1 (en) In-cell touch screen and display device
EP2527912B1 (en) Liquid crystal display panel and driving method thereof
KR20130060883A (ko) 터치패널을 구비한 액정표시소자
WO2015117288A1 (zh) 内嵌式触摸屏及显示装置
CN103488341A (zh) 一种内嵌式触摸屏及显示装置
KR20130015584A (ko) 터치센서 일체형 표시장치
JP2016004476A (ja) 駆動装置、タッチ検出機能付き表示装置及び情報処理装置
WO2015010376A1 (zh) 阵列基板及其制造方法、触摸屏和显示装置
TW201545017A (zh) 觸控感測器整合型顯示裝置
CN205721724U (zh) 触控显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851713

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120049128

Country of ref document: DE

Ref document number: 112012004912

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14353005

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12851713

Country of ref document: EP

Kind code of ref document: A1