WO2013073247A1 - System for continuous production of liquid crystal display elements and method for continuous production of liquid crystal display elements - Google Patents

System for continuous production of liquid crystal display elements and method for continuous production of liquid crystal display elements Download PDF

Info

Publication number
WO2013073247A1
WO2013073247A1 PCT/JP2012/071403 JP2012071403W WO2013073247A1 WO 2013073247 A1 WO2013073247 A1 WO 2013073247A1 JP 2012071403 W JP2012071403 W JP 2012071403W WO 2013073247 A1 WO2013073247 A1 WO 2013073247A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
pedestal
blade
pedestal portion
optical film
Prior art date
Application number
PCT/JP2012/071403
Other languages
French (fr)
Japanese (ja)
Inventor
和也 秦
智 小塩
和生 北田
宏通 大橋
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201280055710.3A priority Critical patent/CN103930246A/en
Priority to KR1020147013489A priority patent/KR20140079501A/en
Publication of WO2013073247A1 publication Critical patent/WO2013073247A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/08Making a superficial cut in the surface of the work without removal of material, e.g. scoring, incising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/20Cutting beds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention is to cut the optical film in its width direction while leaving the carrier film in the optical film laminate, to form a sheet piece of the optical film, and to bond the sheet piece peeled off from the carrier film to the liquid crystal panel,
  • the present invention relates to a liquid crystal display element continuous manufacturing system and a liquid crystal display element continuous manufacturing method.
  • a liquid crystal display element comprising: a half-cut device (cutting means) that cuts in the width direction to form a sheet piece of the optical film; and a bonding device that bonds the sheet piece peeled off from the carrier film to a liquid crystal panel
  • a half-cut device cutting means
  • a bonding device that bonds the sheet piece peeled off from the carrier film to a liquid crystal panel
  • Patent Document 2 As a method that enables stable half-cutting, by using a flexible material with low rigidity for the pedestal, the base material sheet on the cutter side is cut, and the release sheet on the flexible material side is released to the flexible material side for cutting A half-cut method is not known (Patent Document 2).
  • Patent Document 1 a high-quality cut surface is required for the cut surface of the sheet piece of the optical film due to the characteristics of optical use. For example, if the adhesive layer on the cut surface is deformed at the time of half-cutting, bubbles are trapped at the deformed portion when bonded to the liquid crystal panel, resulting in a point defect in the liquid crystal display element. Therefore, in the case of an optical film including an adhesive layer, not only the stability of the half cut but also the quality of the half cut (the quality of the cut surface) is important. However, this document only describes an example of a cutter used for cutting, and does not specifically mention a method of performing a half cut stably and with high quality.
  • Patent Document 2 it is described that a stable half cut can be realized by adjusting the hardness of the pedestal.
  • the hardness of the pedestal is low, the optical film laminate is locally deformed due to the pressing of the blade, causing chipping or dragging of the glue.
  • the pedestal has a high hardness, the optical film laminate cannot escape to the pedestal side when the blade is pushed too much, causing the carrier film to break, and when the blade is not pushed sufficiently, the optical film is not cut. Insufficient glue and dragging of the glue.
  • the hardness of the pedestal depends on its constituent material, it can only take discrete values, and its optimization is difficult.
  • the present invention has been made in view of the above circumstances, and is a continuous production system for a liquid crystal display element, and a continuous production method for a liquid crystal display element, capable of half-cutting an optical film laminate in a stable and high quality manner. And it aims at providing a half cut device.
  • the present invention provides an optical film laminate having a carrier film and an optical film including the adhesive layer formed on the carrier film via an adhesive layer, leaving the carrier film in the width of the optical film.
  • a continuous production system of a liquid crystal display element comprising: a half-cut device that cuts in a direction to form a sheet piece of the optical film; and a bonding device that bonds the sheet piece peeled off from the carrier film to a liquid crystal panel.
  • the half-cut device has a blade and a pedestal facing the blade, The pedestal has a structure in which a first pedestal portion that is proximal to the blade and a second pedestal portion that is distal to the blade and has an elastic modulus higher than that of the first pedestal portion are stacked. .
  • the layer having the low elastic modulus (the first pedestal portion) is the outermost surface on the blade side, it is possible to stably perform half-cutting without requiring high accuracy in the cutting depth of the cutter.
  • the second layer is a layer having a high elastic modulus (second pedestal portion)
  • defects such as chipping and dragging can be suppressed, and high-quality half-cutting can be achieved. That is, the deformation degree of the optical film laminate at the time of cutting can be appropriately adjusted by the cooperative action of the first pedestal portion and the second pedestal portion having different elastic moduli.
  • 4A, 4B, and 5 show the concept of half-cut when pedestals having different elastic moduli are used.
  • 4A and 4B when the elastic modulus of the pedestal 212 is high (the hardness is high), the installation accuracy of the blade 201 and the shape accuracy of the blade itself (for example, roundness in the case of a round blade) immediately become the blade 201 with respect to the film.
  • the carrier film 12 is ruptured (FIG. 4A) due to excessive cutting depth, or the optical film 13 is not cut (FIG. 4B) due to insufficient cutting.
  • the pedestal 21 has a two-layer structure with different elastic moduli, and the elastic modulus of the first pedestal portion 211 on the outermost surface in contact with the carrier film is a second pedestal whose second layer (lower layer) When lower than that of the portion 212, the pedestal 21 is affected by the first pedestal portion 211 having a low elastic modulus, and is affected by the second pedestal portion 212 having a high elastic modulus while having deformability. , It will not deform too much. That is, the pedestal 21 is deformed together with the optical film laminate 10 (carrier film 12) in response to the pressing of the blade 201, and is also given a repulsive force necessary to prevent local excessive deformation of the optical film laminate 10.
  • the optical film 13 can be stably half-cut, and a clean cut surface that does not cause glue chipping or glue dragging can be formed.
  • a single layer pedestal it is difficult to half-cut the optical film laminate in a stable and high quality, but it is relatively easy by introducing the concept of lamination as in the present invention. Will be possible.
  • the thickness of the first pedestal portion is 0.1 mm to 5.0 mm.
  • the elastic modulus of the first pedestal is 0.2 GPa to 60 GPa.
  • the elastic modulus of the second pedestal portion is 130 GPa or more.
  • a difference between an elastic modulus of the first pedestal portion and an elastic modulus of the second pedestal portion is 100 GPa or more.
  • the blade is a round blade. Since it is difficult to process a round blade into a perfect circle, the cutting depth inevitably varies. However, according to the present invention, since the pedestal has a laminated structure, stable and high-quality half-cutting is possible even with a round blade without requiring high accuracy in the cutting depth of the blade.
  • the carrier film has a thickness of 20 ⁇ m to 50 ⁇ m.
  • an optical film laminate having a carrier film and an optical film including the adhesive layer formed on the carrier film via an adhesive layer leaves the carrier film and the optical film.
  • a continuous liquid crystal display element comprising a half-cut step of forming a sheet piece of the optical film by cutting the film in its width direction, and a bonding step of bonding the sheet piece peeled off from the carrier film to a liquid crystal panel
  • a manufacturing method comprising: The half-cut step includes forming the carrier on the first pedestal portion of the pedestal having a structure in which a first pedestal portion and a second pedestal portion having an elastic modulus higher than that of the first pedestal portion are stacked.
  • the optical film laminate is disposed with the film facing the first pedestal, and the optical film is cut in the width direction while leaving the carrier film.
  • the layer having the low elastic modulus (the first pedestal portion) is the outermost surface on the blade side, it is possible to stably perform half-cutting without requiring high accuracy in the cutting depth of the cutter.
  • the second layer is a layer having a high elastic modulus (second pedestal portion)
  • defects such as chipping and dragging can be suppressed, and high-quality half-cutting can be achieved. That is, the deformation degree of the optical film laminate at the time of cutting can be appropriately adjusted by the cooperative action of the first pedestal portion and the second pedestal portion having different elastic moduli.
  • a blade for cutting the optical film is a round blade. Since the pedestal has a laminated structure, stable and high-quality half-cutting is possible even with a round blade without requiring high precision in the cutting depth of the blade.
  • Another aspect of the present invention is a half-cut device having a blade and a pedestal facing the blade,
  • the pedestal has a structure in which a first pedestal portion that is proximal to the blade and a second pedestal portion that is distal to the blade and has an elastic modulus higher than that of the first pedestal portion are stacked.
  • the layer having the low elastic modulus (first pedestal) is the outermost surface on the blade side
  • the second layer is a layer having a high elastic modulus (second pedestal portion)
  • the blade is a round blade. Since the pedestal has a laminated structure, stable and high-quality half-cutting is possible even with a round blade without requiring high precision in the cutting depth of the blade.
  • Schematic which showed an example of the base of this invention Schematic which showed an example of the manufacturing system of a liquid crystal display element. Schematic which showed an example of the cutting
  • the continuous production system of the liquid crystal display element of this embodiment includes an optical film laminate having a carrier film 12 and a polarizing film (optical film) 13 including the adhesive layer 132 on the carrier film 12 via an adhesive layer 132. 10, a half-cut device 20 that forms the sheet piece 135 of the polarizing film 13 by cutting the polarizing film 13 in the width direction while leaving the carrier film 12, and the sheet peeled from the carrier film 12. It is a continuous manufacturing system of a liquid crystal display element provided with the bonding apparatus 103 which bonds the piece 135 to the liquid crystal panel 4, Comprising:
  • the said half cut apparatus 20 has the cutter 201 and the base 21 facing the said cutter 201.
  • the pedestal 21 includes a first pedestal portion 211 proximal to the blade 201 and the blade 201.
  • a second pedestal 212 having a position a and and high modulus of elasticity than the elastic modulus of the first seat portion are laminated.
  • the polarizing film 13 is generally composed of a polarizer film (thickness of about 10 to 30 ⁇ m) and a polarizer protective film (thickness of about 20 to 80 ⁇ m) on one or both sides of the polarizer film. Or it is formed with an adhesive.
  • the optical film is not limited to a polarizing film that requires a polarizer film, and may be a film having other optical characteristics (for example, a retardation film, a viewing angle compensation film, a brightness enhancement film, etc.), and a plurality of types are laminated. It may be a laminated structure.
  • the polarizing film 13 may include a surface protective film, a retardation film, a brightness enhancement film, and the like.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 132 is not particularly limited, and examples thereof include an acrylic pressure-sensitive adhesive, a silicone pressure-sensitive adhesive, and a urethane pressure-sensitive adhesive.
  • the thickness of the adhesive layer 132 is, for example, 10 to 40 ⁇ m.
  • the carrier film a conventionally known film such as a plastic film (for example, a polyethylene terephthalate film, a polyolefin film, etc.) can be used.
  • a plastic film for example, a polyethylene terephthalate film, a polyolefin film, etc.
  • an appropriate material according to the prior art such as a silicone-based, long-chain alkyl-based, fluorine-based or molybdenum sulfide-coated material may be used.
  • the carrier film 12 preferably has a thickness of 20 ⁇ m to 50 ⁇ m.
  • the thickness of the optical film laminate is, for example, in the range of 50 ⁇ m to 400 ⁇ m.
  • the rigidity per 1 mm width of the optical film laminate is, for example, 0.1 to 50 N ⁇ mm 2 .
  • the continuous roll 1 includes an optical film including a carrier film 12 and a polarizing film 13 (including the adhesive layer 132) having an absorption axis parallel to the feeding direction (longitudinal direction) formed on the carrier film 12 via the adhesive layer 132.
  • the film laminate 10 is rolled up. An example of the cross section of the laminated structure of the optical film laminated body 10 is shown in FIG.2 (b).
  • liquid crystal display element In the liquid crystal display element, at least a sheet piece of a polarizing film is formed on one side or both sides of a liquid crystal panel, and a drive circuit is incorporated as necessary.
  • a liquid crystal panel for example, an arbitrary type such as a vertical alignment (VA) type or an in-plane switching (IPS) type can be used.
  • VA vertical alignment
  • IPS in-plane switching
  • the liquid crystal panel 4 shown in FIG. 2 has a configuration in which a liquid crystal layer is sealed between a pair of opposed substrates.
  • the continuous manufacturing system of a liquid crystal display element is a sheet piece laminating apparatus 100 having a film transport unit 101, a liquid crystal panel transport unit 102, a laminating device 103 (a pasting roll 50a, a drive roll 50b), and a liquid crystal panel transport unit 104.
  • the sheet piece laminating apparatus 100 laminates a polarizing film sheet piece 135 on one surface of the liquid crystal panel 4.
  • the continuous production system for liquid crystal display elements may further include another sheet piece laminating apparatus (not shown), whereby a sheet piece of a polarizing film may be attached to the other surface of the liquid crystal panel and laminated.
  • Another sheet piece laminating apparatus may have the same configuration as the sheet piece laminating apparatus 100.
  • the film conveyance unit 101 cuts the long polarizing film 13 including the adhesive 132 while feeding the optical film laminate 10 from the continuous roll 1 to form a polarizing film sheet piece 135, and the sheet from the carrier film 12.
  • the piece 135 is peeled off and supplied to the bonding apparatus 103. Therefore, the film transport apparatus 101 includes a feeding unit 101a, a plurality of transport units 101b, a half-cut device 20, a dancer roll 30, a peeling unit 40, and a winding unit 60.
  • the continuous roll 1 is installed in the supply unit 101a, and the optical film laminate 10 is supplied from the continuous roll 1.
  • the plurality of transport units 101b are installed so as to transport the optical film laminate 10 by applying tension to the optical film laminate 10.
  • the half-cut device 20 includes a blade 201 and a base 21 that faces the blade 201.
  • the optical film laminate 10 is fixed from the carrier film 12 side by the pedestal 21, and the polarizing film 13 is cut in the width direction to form a polarizing film sheet piece 135 (including an adhesive layer) on the carrier film 12. .
  • Examples of the blade 20 include a Thomson blade, a cutter blade, and a round blade (including a fixed type and a rotation type), and a round blade is preferable.
  • a round blade has a longer blade life and less frequent replacement than a cutter blade that cuts at a fixed position because the cutting surface moves.
  • the half-cut device 20 normally further includes a slide mechanism that slides the blade in the width direction of the optical film laminate 10.
  • the pedestal 21 has a two-layer structure of a first pedestal portion 211 having low elasticity and a second pedestal portion 212 having higher elasticity than the first pedestal portion 211.
  • Each of the first pedestal portion 211 and the second pedestal portion 212 may have a single layer structure or a laminated structure.
  • the thickness of the first pedestal 211 is, for example, 0.1 mm to 5.0 mm, preferably 0.2 mm to 3.0 mm, and more preferably 0.3 mm to 1.0 mm. If the thickness is less than 0.1 mm, the first pedestal 211 does not contribute, and the carrier film 12 may be broken or the polarizing film 13 may be uncut.
  • the elastic modulus of the first pedestal portion 211 is preferably 0.2 GPa to 60 GPa, more preferably 1.0 GPa to 50 GPa. If the modulus of elasticity is less than 0.2 GPa, it may be too soft to cause adhesive chipping or adhesive residue. If the elastic modulus exceeds 60 GPa, the film is too hard and the polarizing film 13 may not be cut or the carrier film 12 may be broken.
  • Examples of the material of the first base portion 211 having low elasticity include aluminum, nitrile rubber, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, Teflon (registered trademark), ABS resin, acrylic resin, and the like. .
  • the elastic modulus of the second pedestal portion 212 (all layers constituting it in the case of a laminated structure) having higher elasticity than the first pedestal portion 211 is preferably 130 GPa or more, more preferably 150 GPa or more. If the elastic modulus is less than 130 GPa, there is a possibility that adhesive chipping or adhesive residue may occur.
  • Examples of the material of the highly elastic second pedestal 212 include steel such as stainless steel.
  • the difference between the elastic modulus of the first pedestal portion 211 and the elastic modulus of the second pedestal portion 212 is preferably 100 GPa or more, and more preferably 150 GPa or more.
  • the lamination method of the first pedestal portion 211 and the second pedestal portion 212 is not particularly limited, and examples thereof include fusion, adhesive, adhesive, and adhesive tape stopper.
  • FIG. 3 shows an example of the half-cut device 20.
  • the half-cut device 20 includes a pedestal 21 and a blade 202. Both ends of the pedestal 21 are supported by the side support portions 214 and are set apart from the device mount 215.
  • the pedestal 21 has a first pedestal portion 211 and a second pedestal portion 212.
  • the first pedestal 211 is attached to the second pedestal 212 with a tape 213.
  • the clamps 23 and 24 are waiting at the original position (not shown). At the time of cutting, as shown in FIG. 3, the clamps 23 and 24 move from the original position to the left in FIG. 3, and press the optical film laminate 10 against the surface 211 a of the first pedestal portion 211.
  • the round blade 202 waiting in its original position moves in the direction of arrow A while half-cutting the optical film laminate 10 (the carrier film 12 is left without being cut, and the polarizing film 13).
  • the clamps 23 and 24 move to the right side in FIG. 3 (return to the original position), and stop pressing the optical film laminate 10 against the surface 211a of the first pedestal 211.
  • the round blade 202 also returns to the original position and waits for the next half-cut process. And the optical film laminated body 10 is moved a predetermined distance, and the next half cut process is performed.
  • the dancer roll 30 has a function of maintaining the tension of the carrier film 12.
  • the peeling part 40 is folded with the carrier film 12 facing inward at the tip, and the sheet piece 135 of the polarizing film is peeled off from the carrier film 12.
  • a sharp knife edge portion is used as the tip portion as the peeling portion 40, but is not limited thereto.
  • the winding unit 60 winds up the carrier film 12 from which the sheet piece 135 of the polarizing film has been peeled off.
  • the laminating apparatus 102 affixes the sheet piece 135 from which the carrier film 12 has been peeled off by the peeling unit 40 from the upper side of the liquid crystal panel 4 conveyed by the conveying apparatus 80 via the adhesive layer 132.
  • the bonding apparatus 102 is comprised by the sticking roller 50a and the drive roller 50b.
  • the conveyance device 80 is a series of conveyance devices that convey the liquid crystal panel 4 and the liquid crystal display element Y in which a sheet piece of a polarizing film is attached to one side or both sides of the liquid crystal panel 4.
  • the transport device 80 includes, for example, a transport roller 81, a suction plate, and the like.
  • the sheet piece laminating apparatus 100 described above can be used.
  • the continuous manufacturing method of the liquid crystal display element includes the carrier film 12 and the optical film laminate 10 including the polarizing film 13 including the adhesive layer 132 formed on the carrier film 12 via the adhesive layer 132.
  • the first pedestal portion 211 of the pedestal 21 having a structure in which the first pedestal portion 211 and the second pedestal portion 212 having an elastic modulus higher than the elastic modulus of the first pedestal portion 211 are stacked.
  • the sheet piece 135 of a polarizing film is affixed from the upper side of a liquid crystal panel, it is not restricted to this, You may affix the sheet piece 135 from the lower side of a liquid crystal panel.
  • the long polarizing film fed from the continuous roll is cut at a predetermined interval, but the present invention is not particularly limited to this configuration.
  • a long optical film laminate fed out from a continuous roll may be inspected for defects and cut (so-called skip cut) so as to avoid the defects based on the inspection results.
  • this mark may be read and it may cut
  • the long polarizing film has an absorption axis parallel to the longitudinal direction, but the absorption axis direction of the long polarizing film is not limited to this.
  • the long polarizing film 13 may have an absorption axis parallel to the short direction (width direction), and another long polarizing film may have an absorption axis parallel to the longitudinal direction.
  • the apparatus configuration shown in FIGS. 2 and 3 is used.
  • the presence or absence of breakage when the optical film laminate 10 having the long polarizing film 13 and the carrier film 12 was half-cut with the half-cut device 20 and the quality of the half-cut (glue chipping, glue dragging) were evaluated.
  • VEGQ 1784CUAG150 (width 400 mm, rigidity per mm width 8.5 N ⁇ mm 2 , thickness 273 ⁇ m) was used as the long optical film laminate 10.
  • the long optical film laminate 10 has a long polarizing film (thickness 235 ⁇ m) containing an adhesive (thickness 23 ⁇ m) and a PET film (thickness 38 ⁇ m) as a carrier film.
  • a round blade (roundness 30 ⁇ m, blade diameter 100 mm) was used as the blade. Evaluation was performed under various conditions in which the material of the pedestal (the first pedestal portion having low elasticity and the second pedestal portion having higher elasticity than that) and the thickness of the first pedestal portion were changed.
  • the elastic modulus was measured using SAICAS manufactured by Daipura Wintes Co., Ltd. The measurement conditions were an indentation speed of 0.05 ⁇ m / sec and an indentation of 2 ⁇ m vertically.
  • a curved indenter having a curvature radius of 0.04 mm was used as the indenter.
  • Example 1 For the pedestal of Example 1, 0.5 mm thick polyethylene (PE) was used for the first pedestal, and 30 mm thick stainless steel (SUS) was used for the second pedestal.
  • PE polyethylene
  • SUS stainless steel
  • Example 2 The base of Example 2 is the same as Example 1 except that polyethylene (PE) having a thickness of 3 mm is used for the first base part.
  • PE polyethylene
  • Example 3 The pedestal of Example 3 is the same as Example 1 except that aluminum (AL) is used for the second pedestal.
  • AL aluminum
  • Example 4 The pedestal of Example 4 is the same as Example 1 except that aluminum (AL) having a thickness of 1.0 mm is used for the first pedestal.
  • AL aluminum
  • Example 5 The pedestal of Example 5 is the same as Example 1 except that polystyrene (PS) having a thickness of 0.5 mm is used for the first pedestal.
  • PS polystyrene
  • the base of Comparative Example 1 was a single layer stainless steel (SUS) having a thickness of 30 mm.
  • SUS single layer stainless steel
  • the pedestal of Comparative Example 2 was a single layer of 30 mm thick polyethylene (PE).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Details Of Cutting Devices (AREA)

Abstract

This system for the continuous production of liquid crystal display elements is provided with a half cutting device, which, in an optical film laminate, leaves a carrier film and severs the optical film in the widthwise direction thereof to form an optical film sheet piece, and a paste-together device that pastes the sheet piece peeled from the carrier film to a liquid crystal panel, wherein the half cutting device has a blade and a pedestal facing the blade, and the pedestal has a structure resulting from layering a first pedestal section, which is proximal to the blade, and a second pedestal section, which is distal to the blade and has an elasticity that is higher than that of the first pedestal section.

Description

液晶表示素子の連続製造システムおよび液晶表示素子の連続製造方法Liquid crystal display element continuous manufacturing system and liquid crystal display element continuous manufacturing method
 本発明は、光学フィルム積層体の内、キャリアフィルムを残して光学フィルムをその幅方向に切断して光学フィルムのシート片を形成し、キャリアフィルムから剥離されたシート片を液晶パネルに貼り合わせる、液晶表示素子の連続製造システムおよび液晶表示素子の連続製造方法に関する。 The present invention is to cut the optical film in its width direction while leaving the carrier film in the optical film laminate, to form a sheet piece of the optical film, and to bond the sheet piece peeled off from the carrier film to the liquid crystal panel, The present invention relates to a liquid crystal display element continuous manufacturing system and a liquid crystal display element continuous manufacturing method.
 厚さ10~50μmのキャリアフィルムと、当該キャリアフィルム上に粘着層を介して形成される当該粘着層を含む光学フィルムとを有する光学フィルム積層体の内、当該キャリアフィルムを残して当該光学フィルムをその幅方向に切断して当該光学フィルムのシート片を形成するハーフカット装置(切断手段)と、前記キャリアフィルムから剥離された前記シート片を液晶パネルに貼り合わせる貼合装置とを備える液晶表示素子の連続製造システムが知られている(特許文献1)。 Of the optical film laminate having a carrier film having a thickness of 10 to 50 μm and an optical film including the adhesive layer formed on the carrier film via an adhesive layer, the optical film is left leaving the carrier film. A liquid crystal display element comprising: a half-cut device (cutting means) that cuts in the width direction to form a sheet piece of the optical film; and a bonding device that bonds the sheet piece peeled off from the carrier film to a liquid crystal panel A continuous production system is known (Patent Document 1).
 また、安定的なハーフカットが可能となる方法として、台座に剛性の低い柔軟材を用いることで、カッター側の基材シートを切断し、柔軟材側の剥離シートを柔軟材側に逃がして切断しないハーフカット方法が知られている(特許文献2)。 In addition, as a method that enables stable half-cutting, by using a flexible material with low rigidity for the pedestal, the base material sheet on the cutter side is cut, and the release sheet on the flexible material side is released to the flexible material side for cutting A half-cut method is not known (Patent Document 2).
特開2005-37416号公報JP 2005-37416 A 特開平7-292816号公報JP-A-7-292816
 ところで、特許文献1では、光学フィルムのシート片の切断面には、光学的な使用の特徴から高品位の切断面が要求される。例えば、ハーフカット時に、切断面の粘着層が変形すると、液晶パネルに貼り合わせた際に、その変形部位に気泡のかみこみが発生し、液晶表示素子において点欠陥となってしまう。したがって、粘着層を含む光学フィルムの場合は、ハーフカットの安定性だけでなく、ハーフカットの品位(切断面の品質)が重要である。しかしながら、この文献では、切断に用いるカッターの例が記載されているだけであり、安定的かつ高品位にハーフカットを行う方法について具体的に言及されていない。 Incidentally, in Patent Document 1, a high-quality cut surface is required for the cut surface of the sheet piece of the optical film due to the characteristics of optical use. For example, if the adhesive layer on the cut surface is deformed at the time of half-cutting, bubbles are trapped at the deformed portion when bonded to the liquid crystal panel, resulting in a point defect in the liquid crystal display element. Therefore, in the case of an optical film including an adhesive layer, not only the stability of the half cut but also the quality of the half cut (the quality of the cut surface) is important. However, this document only describes an example of a cutter used for cutting, and does not specifically mention a method of performing a half cut stably and with high quality.
 また、特許文献2には、台座の硬度を調整することで、安定的なハーフカットを実現できると記載されている。しかしながら、剛性が低い光学フィルム積層体をハーフカットする場合には、単に台座の硬度調整のみによって安定的かつ高品位にハーフカットを行うことは難しい。すなわち、台座の硬度が低いと、刃物の押し込みによって、光学フィルム積層体が局所的に変形し、糊欠けや糊の引きずりなどを生じさせてしまう。逆に台座の硬度が高いと、刃物の押し込みが過多のときには、光学フィルム積層体が台座側に逃げられず、キャリアフィルムの破断を招き、刃物の押し込みが足りないときには、光学フィルムの未切断による糊欠けや糊の引きずりを招く。更に、台座の硬度は、その構成材料に依存するため、離散的な値をとることしかできず、その最適化は難しい。 In Patent Document 2, it is described that a stable half cut can be realized by adjusting the hardness of the pedestal. However, when half-cutting an optical film laminate having low rigidity, it is difficult to perform half-cut stably and with high quality only by adjusting the hardness of the pedestal. That is, if the hardness of the pedestal is low, the optical film laminate is locally deformed due to the pressing of the blade, causing chipping or dragging of the glue. Conversely, if the pedestal has a high hardness, the optical film laminate cannot escape to the pedestal side when the blade is pushed too much, causing the carrier film to break, and when the blade is not pushed sufficiently, the optical film is not cut. Insufficient glue and dragging of the glue. Further, since the hardness of the pedestal depends on its constituent material, it can only take discrete values, and its optimization is difficult.
 本発明は、上記の実情に鑑みてなされたものであって、光学フィルム積層体を、安定的かつ高品位にハーフカットすることができる液晶表示素子の連続製造システム、液晶表示素子の連続製造方法およびハーフカット装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a continuous production system for a liquid crystal display element, and a continuous production method for a liquid crystal display element, capable of half-cutting an optical film laminate in a stable and high quality manner. And it aims at providing a half cut device.
 上記課題を解決するために、鋭意研究を重ねた結果、以下の本発明を完成するに至ったものである。 As a result of intensive studies to solve the above problems, the following present invention has been completed.
 本発明は、キャリアフィルムと、当該キャリアフィルム上に粘着層を介して形成される当該粘着層を含む光学フィルムとを有する光学フィルム積層体の内、当該キャリアフィルムを残して当該光学フィルムをその幅方向に切断して当該光学フィルムのシート片を形成するハーフカット装置と、前記キャリアフィルムから剥離された前記シート片を液晶パネルに貼り合わせる貼合装置とを備える液晶表示素子の連続製造システムであって、
 前記ハーフカット装置は、刃物と、当該刃物に対向する台座とを有し、
 前記台座は、前記刃物から近位の第1台座部と、前記刃物から遠位でありかつ当該第1台座部の弾性率より高い弾性率を有する第2台座部とが積層された構造を有する。
The present invention provides an optical film laminate having a carrier film and an optical film including the adhesive layer formed on the carrier film via an adhesive layer, leaving the carrier film in the width of the optical film. A continuous production system of a liquid crystal display element, comprising: a half-cut device that cuts in a direction to form a sheet piece of the optical film; and a bonding device that bonds the sheet piece peeled off from the carrier film to a liquid crystal panel. And
The half-cut device has a blade and a pedestal facing the blade,
The pedestal has a structure in which a first pedestal portion that is proximal to the blade and a second pedestal portion that is distal to the blade and has an elastic modulus higher than that of the first pedestal portion are stacked. .
 この構成によれば、弾性率の低い層(第1台座部)を刃物側の最表面にしたことで、カッターの切り込み深さに高精度を要求することなく、安定的にハーフカットできる。また、2層目を弾性率の高い層(第2台座部)にしたことで、糊欠けや糊の引きずり等の不具合を抑制でき、高品位にハーフカットできる。すなわち、弾性率の異なる第1台座部と第2台座部との協働作用によって、切断時の光学フィルム積層体の変形度合いを適切に調整し得る。 According to this configuration, since the layer having the low elastic modulus (the first pedestal portion) is the outermost surface on the blade side, it is possible to stably perform half-cutting without requiring high accuracy in the cutting depth of the cutter. In addition, since the second layer is a layer having a high elastic modulus (second pedestal portion), defects such as chipping and dragging can be suppressed, and high-quality half-cutting can be achieved. That is, the deformation degree of the optical film laminate at the time of cutting can be appropriately adjusted by the cooperative action of the first pedestal portion and the second pedestal portion having different elastic moduli.
 本発明による効果が発現されるメカニズムについて以下に説明する。図4A,4B、5において、弾性率の異なる台座を使用した場合のハーフカットの概念を示す。図4A、図4Bにおいて、台座212の弾性率が高い(硬度が高い)場合、刃201の設置精度や刃自身の形状精度(例えば丸刃の場合は真円度)が、直ちにフィルムに対する刃201の押し込み量の変化となり、切り込み深さの過多によるキャリアフィルム12の破断(図4A)や、切り込み不足による光学フィルム13の未切断(図4B)などが発生しやすい。また、図5において、台座211の弾性率が低い(硬度が低く柔らかい)場合、刃201の押圧に応じた台座211の変形により、光学フィルム積層体10自体も切断部位にて局所的に過度に変形する。このように、光学フィルム積層体10が局所的に過度に変形した状態で切断すると、粘着剤層131に不必要な応力が掛ったり、切断部の安定性が失われ、糊欠けや糊の引きずりなどの切断面の糊不良が発生してしまう。一方、図1に示すように、台座21が、弾性率の異なる2層構造であって、キャリアフィルムと接する最表面の第1台座部211の弾性率が2層目(下層)の第2台座部212のそれよりも低い場合には、台座21は、弾性率が低い第1台座部211の影響を受け、変形性を有しつつも、弾性率が高い第2台座部212の影響を受け、変形し過ぎることがない。すなわち、台座21は、刃201の押圧に応じて、光学フィルム積層体10(キャリアフィルム12)とともに変形するとともに光学フィルム積層体10の局所的な過度の変形を防ぐために必要な反発力も与えられる。これにより、光学フィルム13を安定的にハーフカットすることが可能となり、かつ、糊欠けや糊の引きずりを生じさせない綺麗な切断面を形成できる。以上に示したように、単層台座の場合、安定的かつ高品位に光学フィルム積層体をハーフカットすることは難しいが、本発明のように積層化の概念を導入することで、比較的容易に可能になる。 The mechanism by which the effect of the present invention is manifested will be described below. 4A, 4B, and 5 show the concept of half-cut when pedestals having different elastic moduli are used. 4A and 4B, when the elastic modulus of the pedestal 212 is high (the hardness is high), the installation accuracy of the blade 201 and the shape accuracy of the blade itself (for example, roundness in the case of a round blade) immediately become the blade 201 with respect to the film. As a result, the carrier film 12 is ruptured (FIG. 4A) due to excessive cutting depth, or the optical film 13 is not cut (FIG. 4B) due to insufficient cutting. In FIG. 5, when the elastic modulus of the pedestal 211 is low (the hardness is low and soft), the optical film laminate 10 itself is excessively locally at the cutting site due to the deformation of the pedestal 211 according to the pressing of the blade 201. Deform. As described above, when the optical film laminate 10 is cut in a state where the optical film laminate 10 is locally excessively deformed, unnecessary stress is applied to the pressure-sensitive adhesive layer 131, the stability of the cut portion is lost, glue chipping or glue dragging is caused. Such as a glue failure on the cut surface. On the other hand, as shown in FIG. 1, the pedestal 21 has a two-layer structure with different elastic moduli, and the elastic modulus of the first pedestal portion 211 on the outermost surface in contact with the carrier film is a second pedestal whose second layer (lower layer) When lower than that of the portion 212, the pedestal 21 is affected by the first pedestal portion 211 having a low elastic modulus, and is affected by the second pedestal portion 212 having a high elastic modulus while having deformability. , It will not deform too much. That is, the pedestal 21 is deformed together with the optical film laminate 10 (carrier film 12) in response to the pressing of the blade 201, and is also given a repulsive force necessary to prevent local excessive deformation of the optical film laminate 10. As a result, the optical film 13 can be stably half-cut, and a clean cut surface that does not cause glue chipping or glue dragging can be formed. As described above, in the case of a single layer pedestal, it is difficult to half-cut the optical film laminate in a stable and high quality, but it is relatively easy by introducing the concept of lamination as in the present invention. Will be possible.
 上記発明の一実施形態として、前記第1台座部の厚みが、0.1mm~5.0mmである。 As an embodiment of the invention, the thickness of the first pedestal portion is 0.1 mm to 5.0 mm.
 上記発明の一実施形態として、前記第1台座部の弾性率が、0.2GPa~60GPaである。前記第2台座部の弾性率が、130GPa以上である。 As an embodiment of the above invention, the elastic modulus of the first pedestal is 0.2 GPa to 60 GPa. The elastic modulus of the second pedestal portion is 130 GPa or more.
 上記発明の一実施形態として、前記第1台座部の弾性率と前記第2台座部の弾性率との差が、100GPa以上であることが好ましい。これによって、上記作用効果をより発揮する。 As an embodiment of the invention, it is preferable that a difference between an elastic modulus of the first pedestal portion and an elastic modulus of the second pedestal portion is 100 GPa or more. As a result, the above-described operational effects are further exhibited.
 上記発明の一実施形態として、前記刃物が、丸刃である。丸刃は、真円に加工することが難しいため、必然的に切り込み深さにばらつきがある。しかし、本発明によれば、台座を積層構造にしたことで、刃物の切り込み深さに高精度を要求することなく、丸刃であっても安定的かつ高品位のハーフカットが可能である。 As an embodiment of the above invention, the blade is a round blade. Since it is difficult to process a round blade into a perfect circle, the cutting depth inevitably varies. However, according to the present invention, since the pedestal has a laminated structure, stable and high-quality half-cutting is possible even with a round blade without requiring high accuracy in the cutting depth of the blade.
 上記発明の一実施形態として、前記キャリアフィルムの厚みが、20μm~50μmである。 As an embodiment of the above invention, the carrier film has a thickness of 20 μm to 50 μm.
 また、他の本発明は、キャリアフィルムと、当該キャリアフィルム上に粘着層を介して形成される当該粘着層を含む光学フィルムとを有する光学フィルム積層体の内、当該キャリアフィルムを残して当該光学フィルムをその幅方向に切断して当該光学フィルムのシート片を形成するハーフカット工程と、前記キャリアフィルムから剥離された前記シート片を液晶パネルに貼り合わせる貼合工程とを含む液晶表示素子の連続製造方法であって、
 前記ハーフカット工程は、第1台座部と当該該第1台座部の弾性率より高い弾性率を有する第2台座部とが積層された構造を有する台座の当該第1台座部上に、前記キャリアフィルムを当該第1台座部側にして前記光学フィルム積層体を配置し、当該キャリアフィルムを残して前記光学フィルムをその幅方向に切断する工程である。
In another aspect of the present invention, an optical film laminate having a carrier film and an optical film including the adhesive layer formed on the carrier film via an adhesive layer leaves the carrier film and the optical film. A continuous liquid crystal display element comprising a half-cut step of forming a sheet piece of the optical film by cutting the film in its width direction, and a bonding step of bonding the sheet piece peeled off from the carrier film to a liquid crystal panel A manufacturing method comprising:
The half-cut step includes forming the carrier on the first pedestal portion of the pedestal having a structure in which a first pedestal portion and a second pedestal portion having an elastic modulus higher than that of the first pedestal portion are stacked. The optical film laminate is disposed with the film facing the first pedestal, and the optical film is cut in the width direction while leaving the carrier film.
 この構成によれば、弾性率の低い層(第1台座部)を刃物側の最表面にしたことで、カッターの切り込み深さに高精度を要求することなく、安定的にハーフカットできる。また、2層目を弾性率の高い層(第2台座部)にしたことで、糊欠けや糊の引きずり等の不具合を抑制でき、高品位にハーフカットできる。すなわち、弾性率の異なる第1台座部と第2台座部との協働作用によって、切断時の光学フィルム積層体の変形度合いを適切に調整し得る。 According to this configuration, since the layer having the low elastic modulus (the first pedestal portion) is the outermost surface on the blade side, it is possible to stably perform half-cutting without requiring high accuracy in the cutting depth of the cutter. In addition, since the second layer is a layer having a high elastic modulus (second pedestal portion), defects such as chipping and dragging can be suppressed, and high-quality half-cutting can be achieved. That is, the deformation degree of the optical film laminate at the time of cutting can be appropriately adjusted by the cooperative action of the first pedestal portion and the second pedestal portion having different elastic moduli.
 上記発明の一実施形態として、前記ハーフカット工程において、前記光学フィルムを切断するための刃物が、丸刃である。台座を積層構造にしたことで、刃物の切り込み深さに高精度を要求することなく、丸刃であっても安定的かつ高品位のハーフカットが可能である。 As an embodiment of the above invention, in the half-cutting step, a blade for cutting the optical film is a round blade. Since the pedestal has a laminated structure, stable and high-quality half-cutting is possible even with a round blade without requiring high precision in the cutting depth of the blade.
 また、他の本発明は、刃物と、当該刃物に対向する台座とを有するハーフカット装置であって、
 前記台座が、前記刃物から近位の第1台座部と、前記刃物から遠位でありかつ当該第1台座部の弾性率より高い弾性率を有する第2台座部とが積層された構造を有する。
Another aspect of the present invention is a half-cut device having a blade and a pedestal facing the blade,
The pedestal has a structure in which a first pedestal portion that is proximal to the blade and a second pedestal portion that is distal to the blade and has an elastic modulus higher than that of the first pedestal portion are stacked. .
 この構成によって、キャリアフィルムを残して光学フィルムをその幅方向に切断して光学フィルムのシート片を形成する場合に、弾性率の低い層(第1台座部)を刃物側の最表面にしたことで、カッターの切り込み深さに高精度を要求することなく、安定的にハーフカットできる。また、2層目を弾性率の高い層(第2台座部)にしたことで、糊欠けや糊の引きずり等の不具合を抑制でき、高品位にハーフカットできる。 With this configuration, when a sheet piece of the optical film is formed by cutting the optical film in the width direction while leaving the carrier film, the layer having the low elastic modulus (first pedestal) is the outermost surface on the blade side Thus, half-cutting can be stably performed without requiring high accuracy in the cutting depth of the cutter. In addition, since the second layer is a layer having a high elastic modulus (second pedestal portion), defects such as chipping and dragging can be suppressed, and high-quality half-cutting can be achieved.
 上記発明の一実施形態として、前記刃物が、丸刃である。台座を積層構造にしたことで、刃物の切り込み深さに高精度を要求することなく、丸刃であっても安定かつ高品位のハーフカットが可能である。 As an embodiment of the above invention, the blade is a round blade. Since the pedestal has a laminated structure, stable and high-quality half-cutting is possible even with a round blade without requiring high precision in the cutting depth of the blade.
本発明の台座の一例を示した概略図。Schematic which showed an example of the base of this invention. 液晶表示素子の製造システムの一例を示した概略図。Schematic which showed an example of the manufacturing system of a liquid crystal display element. 丸刃による切断の一例を示した概略図。Schematic which showed an example of the cutting | disconnection by a round blade. 弾性率の高い単層台座の一例を示した概略図。Schematic which showed an example of the single layer base with a high elasticity modulus. 弾性率の高い単層台座の一例を示した概略図。Schematic which showed an example of the single layer base with a high elasticity modulus. 弾性率の低い単層台座の一例を示した概略図。Schematic which showed an example of the single layer base with a low elasticity modulus.
 以下、図1、2を参照しながら、液晶表示素子の連続製造システムおよび連続製造方法をさらに具体的に説明するが、本発明は本実施形態の態様に限定されるものではない。 Hereinafter, the continuous manufacturing system and the continuous manufacturing method of the liquid crystal display element will be described more specifically with reference to FIGS. 1 and 2, but the present invention is not limited to the mode of the present embodiment.
 本実施形態の液晶表示素子の連続製造システムは、キャリアフィルム12と、当該キャリアフィルム12上に粘着層132を介して当該粘着層132を含む偏光フィルム(光学フィルム)13とを有する光学フィルム積層体10の内、当該キャリアフィルム12を残して当該偏光フィルム13をその幅方向に切断して当該偏光フィルム13のシート片135を形成するハーフカット装置20と、前記キャリアフィルム12から剥離された前記シート片135を液晶パネル4に貼り合わせる貼合装置103とを備える液晶表示素子の連続製造システムであって、前記ハーフカット装置20は、刃物201と、当該刃物201に対向する台座21とを有し、前記台座21は、前記刃物201から近位の第1台座部211と、前記刃物201から遠位でありかつ当該第1台座部の弾性率より高い弾性率を有する第2台座部212とが積層された構造を有する。 The continuous production system of the liquid crystal display element of this embodiment includes an optical film laminate having a carrier film 12 and a polarizing film (optical film) 13 including the adhesive layer 132 on the carrier film 12 via an adhesive layer 132. 10, a half-cut device 20 that forms the sheet piece 135 of the polarizing film 13 by cutting the polarizing film 13 in the width direction while leaving the carrier film 12, and the sheet peeled from the carrier film 12. It is a continuous manufacturing system of a liquid crystal display element provided with the bonding apparatus 103 which bonds the piece 135 to the liquid crystal panel 4, Comprising: The said half cut apparatus 20 has the cutter 201 and the base 21 facing the said cutter 201. FIG. The pedestal 21 includes a first pedestal portion 211 proximal to the blade 201 and the blade 201. A second pedestal 212 having a position a and and high modulus of elasticity than the elastic modulus of the first seat portion are laminated.
偏光フィルム13は、例えば、一般的には、偏光子フィルム(厚さは10~30μm程度)と、偏光子フィルムの片面または両面に偏光子保護フィルム(厚さは20~80μm程度)が接着剤または粘着剤で形成される。なお、光学フィルムは、偏光子フィルムを必須とする偏光フィルムに限定されず、他の光学特性を有するフィルム(例えば、位相差フィルム、視角補償フィルム、輝度向上フィルム等)でもよく、複数種類が積層された積層構造でもよい。本実施形態において、偏光フィルム13は表面保護フィルム、位相差フィルム、輝度向上フィルムなどを含んでいてもよい。 For example, the polarizing film 13 is generally composed of a polarizer film (thickness of about 10 to 30 μm) and a polarizer protective film (thickness of about 20 to 80 μm) on one or both sides of the polarizer film. Or it is formed with an adhesive. The optical film is not limited to a polarizing film that requires a polarizer film, and may be a film having other optical characteristics (for example, a retardation film, a viewing angle compensation film, a brightness enhancement film, etc.), and a plurality of types are laminated. It may be a laminated structure. In the present embodiment, the polarizing film 13 may include a surface protective film, a retardation film, a brightness enhancement film, and the like.
 粘着層132を構成する粘着剤は、特に制限されず、例えば、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤等が挙げられる。粘着層132の厚みは、例えば、10~40μmである。 The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 132 is not particularly limited, and examples thereof include an acrylic pressure-sensitive adhesive, a silicone pressure-sensitive adhesive, and a urethane pressure-sensitive adhesive. The thickness of the adhesive layer 132 is, for example, 10 to 40 μm.
 キャリアフィルムは、例えばプラスチックフィルム(例えば、ポリエチレンテレフタレート系フィルム、ポリオレフィン系フィルム等)等の従来公知のフィルムを用いることができる。また、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデン等の適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いうる。キャリアフィルム12は、その厚みが20μm~50μmであることが好ましい。 As the carrier film, a conventionally known film such as a plastic film (for example, a polyethylene terephthalate film, a polyolefin film, etc.) can be used. In addition, if necessary, an appropriate material according to the prior art such as a silicone-based, long-chain alkyl-based, fluorine-based or molybdenum sulfide-coated material may be used. The carrier film 12 preferably has a thickness of 20 μm to 50 μm.
 光学フィルム積層体の厚みは、例えば、50μm~400μmの範囲が挙げられる。光学フィルム積層体の1mm幅あたりの剛性は、例えば、0.1~50N・mmである。なお、光学フィルム積層体の剛性(N・mm)は、弾性率E(MPa)、幅をb(mm)、厚みをh(mm)としたときに、E×b×h/12で算出される。 The thickness of the optical film laminate is, for example, in the range of 50 μm to 400 μm. The rigidity per 1 mm width of the optical film laminate is, for example, 0.1 to 50 N · mm 2 . Incidentally, the rigidity of the optical film laminate (N · mm 2), the elastic modulus E (MPa), the width b (mm), the thickness when the h (mm), with E × b × h 3/12 Calculated.
(連続ロール)
 連続ロール1は、キャリアフィルム12と、キャリアフィルム12に粘着層132を介して形成された送り方向(長手方向)に平行な吸収軸を有する偏光フィルム13(粘着層132を含む)とを含む光学フィルム積層体10をロール状に巻いたものである。図2(b)に、光学フィルム積層体10の積層構造の断面の一例を示す。
(Continuous roll)
The continuous roll 1 includes an optical film including a carrier film 12 and a polarizing film 13 (including the adhesive layer 132) having an absorption axis parallel to the feeding direction (longitudinal direction) formed on the carrier film 12 via the adhesive layer 132. The film laminate 10 is rolled up. An example of the cross section of the laminated structure of the optical film laminated body 10 is shown in FIG.2 (b).
 (液晶表示素子)
 液晶表示素子は、液晶パネルの片面または両面に少なくとも偏光フィルムのシート片が形成されたものであり、必要に応じて駆動回路が組込まれる。液晶パネルは、例えば、垂直配向(VA)型、面内スイッチング(IPS)型などの任意なタイプのものを用いることができる。図2に示す液晶パネル4は、対向配置される一対の基板間に液晶層が封止された構成である。
(Liquid crystal display element)
In the liquid crystal display element, at least a sheet piece of a polarizing film is formed on one side or both sides of a liquid crystal panel, and a drive circuit is incorporated as necessary. As the liquid crystal panel, for example, an arbitrary type such as a vertical alignment (VA) type or an in-plane switching (IPS) type can be used. The liquid crystal panel 4 shown in FIG. 2 has a configuration in which a liquid crystal layer is sealed between a pair of opposed substrates.
 液晶表示素子の連続製造システムは、フィルム搬送部101と、液晶パネル搬送部102と、貼合装置103(貼付ロール50a、駆動ロール50b)と、液晶パネル搬送部104とを有するシート片積層装置100を備える。シート片積層装置100は、液晶パネル4の一方面に偏光フィルムのシート片135を貼り付けて積層する。液晶表示素子の連続製造システムは、さらに、別のシート片積層装置(不図示)を備え、これによって液晶パネルの他方面に偏光フィルムのシート片を貼り付けて積層してもよい。別のシート片積層装置は、シート片積層装置100と同様の構成を有してもよい。 The continuous manufacturing system of a liquid crystal display element is a sheet piece laminating apparatus 100 having a film transport unit 101, a liquid crystal panel transport unit 102, a laminating device 103 (a pasting roll 50a, a drive roll 50b), and a liquid crystal panel transport unit 104. Is provided. The sheet piece laminating apparatus 100 laminates a polarizing film sheet piece 135 on one surface of the liquid crystal panel 4. The continuous production system for liquid crystal display elements may further include another sheet piece laminating apparatus (not shown), whereby a sheet piece of a polarizing film may be attached to the other surface of the liquid crystal panel and laminated. Another sheet piece laminating apparatus may have the same configuration as the sheet piece laminating apparatus 100.
 フィルム搬送部101は、連続ロール1から光学フィルム積層体10を繰り出しながら、粘着剤132を含む長尺の偏光フィルム13を切断加工して偏光フィルムのシート片135を形成し、キャリアフィルム12からシート片135を剥離し、貼合装置103に供給する。そのために、フィルム搬送装置101は、繰出部101a、複数の搬送部101b、ハーフカット装置20、ダンサーロール30、剥離部40、巻取部60を有する。 The film conveyance unit 101 cuts the long polarizing film 13 including the adhesive 132 while feeding the optical film laminate 10 from the continuous roll 1 to form a polarizing film sheet piece 135, and the sheet from the carrier film 12. The piece 135 is peeled off and supplied to the bonding apparatus 103. Therefore, the film transport apparatus 101 includes a feeding unit 101a, a plurality of transport units 101b, a half-cut device 20, a dancer roll 30, a peeling unit 40, and a winding unit 60.
 繰出部101aには、連続ロール1が設置されており、連続ロール1から光学フィルム積層体10を繰り出すようになっている。 The continuous roll 1 is installed in the supply unit 101a, and the optical film laminate 10 is supplied from the continuous roll 1.
 複数の搬送部101bは、光学フィルム積層体10に張力を掛けて当該光学フィルム積層体10を搬送するように設置されている。 The plurality of transport units 101b are installed so as to transport the optical film laminate 10 by applying tension to the optical film laminate 10.
 ハーフカット装置20は、刃物201と、刃物201に対向する台座21を有する。台座21でキャリアフィルム12側から光学フィルム積層体10を固定しておいて、偏光フィルム13をその幅方向に切断し、キャリアフィルム12上に偏光フィルムのシート片135(粘着層含む)を形成する。 The half-cut device 20 includes a blade 201 and a base 21 that faces the blade 201. The optical film laminate 10 is fixed from the carrier film 12 side by the pedestal 21, and the polarizing film 13 is cut in the width direction to form a polarizing film sheet piece 135 (including an adhesive layer) on the carrier film 12. .
 刃物20としては、例えば、トムソン刃、カッター刃、丸刃(固定式、自転式を含む)などが挙げられるが、丸刃が好ましい。丸刃は、切断面が移動していくため一定位置で切断するカッター刃よりも刃の寿命が長く、交換頻度が少なくて済む。また、低弾性層表面(台座最表面)の押跡を回避するためには、カッター刃よりも丸刃を用いることが好ましい。跡が残りにくくなり、切断の高速連続処理(ひいては液晶表示素子の高速連続生産)に適する。 Examples of the blade 20 include a Thomson blade, a cutter blade, and a round blade (including a fixed type and a rotation type), and a round blade is preferable. A round blade has a longer blade life and less frequent replacement than a cutter blade that cuts at a fixed position because the cutting surface moves. In order to avoid imprints on the surface of the low elastic layer (the pedestal outermost surface), it is preferable to use a round blade rather than a cutter blade. Traces are less likely to remain, making it suitable for high-speed continuous processing of cutting (and thus high-speed continuous production of liquid crystal display elements).
 丸刃の刃径および真円度は、光学フィルム積層体の厚みなどによって適宜調整されるが、通常、刃径が30mm~120mm、真円度が50μm以下である。なお、刃物がカッター刃や丸刃である場合、ハーフカット装置20は、通常、刃物を光学フィルム積層体10の幅方向にスライドさせるスライド機構をさらに備える。 The blade diameter and roundness of the round blade are appropriately adjusted depending on the thickness of the optical film laminate, etc., but usually the blade diameter is 30 mm to 120 mm and the roundness is 50 μm or less. When the blade is a cutter blade or a round blade, the half-cut device 20 normally further includes a slide mechanism that slides the blade in the width direction of the optical film laminate 10.
 (台座)
 台座21は、低弾性の第1台座部211と、第1台座部211より高弾性の第2台座部212の2層構造である。なお、第1台座部211および第2台座部212は、それぞれ単層構造でもよく、積層構造であってもよい。第1台座部211の厚みは、例えば、0.1mm~5.0mmであり、好ましくは0.2mm~3.0mmであり、より好ましくは0.3mm~1.0mmである。厚みが0.1mm未満であると、第1台座部211が寄与しなくなり、キャリアフィルム12の破断や偏光フィルム13の未切断を生じるおそれがある。厚みが5.0mmを超えると、第2台座部212が寄与しなくなり(適度な反発力が得られなくなり)、切断時の光学フィルム積層体10の局所的かつ過度な変形によって、糊欠け、糊引きずりを生じるおそれがある。また、第1台座部211(積層構造の場合は、それを構成するすべての層)の弾性率は、好ましくは0.2GPa~60GPaであり、より好ましくは1.0GPa~50GPaである。弾性率が0.2GPa未満だと、柔らかすぎて糊欠けや糊残りが発生するおそれがある。弾性率が60GPaを超えると、硬過ぎて偏光フィルム13の未切断またはキャリアフィルム12の破断が生じるおそれがある。低弾性の第1台座部211の材料としては、例えば、アルミニウム、ニトリルゴム、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、テフロン(登録商標)、ABS樹脂、アクリル系樹脂などが挙げられる。
(pedestal)
The pedestal 21 has a two-layer structure of a first pedestal portion 211 having low elasticity and a second pedestal portion 212 having higher elasticity than the first pedestal portion 211. Each of the first pedestal portion 211 and the second pedestal portion 212 may have a single layer structure or a laminated structure. The thickness of the first pedestal 211 is, for example, 0.1 mm to 5.0 mm, preferably 0.2 mm to 3.0 mm, and more preferably 0.3 mm to 1.0 mm. If the thickness is less than 0.1 mm, the first pedestal 211 does not contribute, and the carrier film 12 may be broken or the polarizing film 13 may be uncut. When the thickness exceeds 5.0 mm, the second pedestal portion 212 does not contribute (appropriate repulsive force cannot be obtained), and due to local and excessive deformation of the optical film laminate 10 at the time of cutting, there is no glue or glue. There is a risk of dragging. Further, the elastic modulus of the first pedestal portion 211 (in the case of a laminated structure, all layers constituting it) is preferably 0.2 GPa to 60 GPa, more preferably 1.0 GPa to 50 GPa. If the modulus of elasticity is less than 0.2 GPa, it may be too soft to cause adhesive chipping or adhesive residue. If the elastic modulus exceeds 60 GPa, the film is too hard and the polarizing film 13 may not be cut or the carrier film 12 may be broken. Examples of the material of the first base portion 211 having low elasticity include aluminum, nitrile rubber, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, Teflon (registered trademark), ABS resin, acrylic resin, and the like. .
 第1台座部211より高弾性の第2台座部212(積層構造の場合は、それを構成するすべての層)の弾性率は、好ましくは130GPa以上であり、より好ましくは150GPa以上である。弾性率が130GPa未満だと、糊欠けや糊残りが発生するおそれがある。高弾性の第2台座部212の材料としては、例えば、ステンレス鋼等の鋼鉄などが挙げられる。 The elastic modulus of the second pedestal portion 212 (all layers constituting it in the case of a laminated structure) having higher elasticity than the first pedestal portion 211 is preferably 130 GPa or more, more preferably 150 GPa or more. If the elastic modulus is less than 130 GPa, there is a possibility that adhesive chipping or adhesive residue may occur. Examples of the material of the highly elastic second pedestal 212 include steel such as stainless steel.
 第1台座部211の弾性率と第2台座部212の弾性率との差が、100GPa以上であることが好ましく、150GPa以上であることがより好ましい。 The difference between the elastic modulus of the first pedestal portion 211 and the elastic modulus of the second pedestal portion 212 is preferably 100 GPa or more, and more preferably 150 GPa or more.
 第1台座部211と第2台座部212の積層方法は、特に制限されず、例えば、融着、接着材、粘着剤、粘着テープ止めなどが挙げられる。 The lamination method of the first pedestal portion 211 and the second pedestal portion 212 is not particularly limited, and examples thereof include fusion, adhesive, adhesive, and adhesive tape stopper.
 図3に、ハーフカット装置20の一例を示す。ハーフカット装置20は、台座21と刃物202を有する。台座21は、その両端部を側面支持部214で支持され、装置架台215から離れて設置されている。台座21は、第1台座部211および第2台座部212を有する。第1台座部211は、第2台座部212に対しテープ213で貼り付けられている。そして、クランプ23、24が原位置(不図示)に待機している。切断時において、図3に示すように、クランプ23、24が原位置から図3において左に移動し、第1台座部211の面211aに対し光学フィルム積層体10を押し付ける。この状態で、原位置(不図示)に待機していた丸刃202が矢印Aの方向に移動しながら光学フィルム積層体10をハーフカットする(キャリアフィルム12を切断せずに残して、偏光フィルム13を切断する)。次いで、クランプ23、24が図3において右側に移動し(原位置に復帰し)、第1台座部211の面211aに光学フィルム積層体10を押さえつけることをやめる。丸刃202も原位置に復帰して次のハーフカット処理のために待機する。そして、光学フィルム積層体10を所定距離移動させて、次のハーフカット処理を実行する。 FIG. 3 shows an example of the half-cut device 20. The half-cut device 20 includes a pedestal 21 and a blade 202. Both ends of the pedestal 21 are supported by the side support portions 214 and are set apart from the device mount 215. The pedestal 21 has a first pedestal portion 211 and a second pedestal portion 212. The first pedestal 211 is attached to the second pedestal 212 with a tape 213. The clamps 23 and 24 are waiting at the original position (not shown). At the time of cutting, as shown in FIG. 3, the clamps 23 and 24 move from the original position to the left in FIG. 3, and press the optical film laminate 10 against the surface 211 a of the first pedestal portion 211. In this state, the round blade 202 waiting in its original position (not shown) moves in the direction of arrow A while half-cutting the optical film laminate 10 (the carrier film 12 is left without being cut, and the polarizing film 13). Next, the clamps 23 and 24 move to the right side in FIG. 3 (return to the original position), and stop pressing the optical film laminate 10 against the surface 211a of the first pedestal 211. The round blade 202 also returns to the original position and waits for the next half-cut process. And the optical film laminated body 10 is moved a predetermined distance, and the next half cut process is performed.
 ダンサーロール30は、キャリアフィルム12の張力を保持する機能を持つ。 The dancer roll 30 has a function of maintaining the tension of the carrier film 12.
 剥離部40は、その先端部でキャリアフィルム12を内側にして折り返して、キャリアフィルム12から偏光フィルムのシート片135を剥離する。本実施形態では、剥離部40としては、先端部に先鋭ナイフエッジ部を用いているが、これに限定されるものではない。 The peeling part 40 is folded with the carrier film 12 facing inward at the tip, and the sheet piece 135 of the polarizing film is peeled off from the carrier film 12. In the present embodiment, a sharp knife edge portion is used as the tip portion as the peeling portion 40, but is not limited thereto.
 巻取部60は、偏光フィルムのシート片135が剥離されたキャリアフィルム12を巻き取る。 The winding unit 60 winds up the carrier film 12 from which the sheet piece 135 of the polarizing film has been peeled off.
 貼合装置102は、搬送装置80により搬送された液晶パネル4の上側から、剥離部40によりキャリアフィルム12が剥離されたシート片135を粘着層132を介して貼り付ける。本実施形態では、貼合装置102は、貼付ローラ50a、駆動ローラ50bで構成される。 The laminating apparatus 102 affixes the sheet piece 135 from which the carrier film 12 has been peeled off by the peeling unit 40 from the upper side of the liquid crystal panel 4 conveyed by the conveying apparatus 80 via the adhesive layer 132. In this embodiment, the bonding apparatus 102 is comprised by the sticking roller 50a and the drive roller 50b.
 搬送装置80は、液晶パネル4、液晶パネル4の片面または両面に偏光フィルムのシート片を貼り付けた液晶表示素子Yを搬送する一連の搬送装置である。この搬送装置80は、例えば、搬送ローラ81、吸着プレート等を有して構成される。 The conveyance device 80 is a series of conveyance devices that convey the liquid crystal panel 4 and the liquid crystal display element Y in which a sheet piece of a polarizing film is attached to one side or both sides of the liquid crystal panel 4. The transport device 80 includes, for example, a transport roller 81, a suction plate, and the like.
 液晶パネル4の他方面に他の偏光フィルムのシート片を貼り付けるために、上記で説明したシート片積層装置100を用いることができる。 In order to attach a sheet piece of another polarizing film to the other surface of the liquid crystal panel 4, the sheet piece laminating apparatus 100 described above can be used.
 (液晶表示素子の連続製造方法)
 液晶表示素子の連続製造方法は、キャリアフィルム12と、当該キャリアフィルム12上に粘着層132を介して形成される当該粘着層132を含む偏光フィルム13とを有する光学フィルム積層体10の内、当該キャリアフィルム12を残して当該偏光フィルム13をその幅方向に切断して当該偏光フィルム13のシート片135を形成するハーフカット工程と、前記キャリアフィルム12から剥離された前記シート片135を液晶パネル4に貼り合わせる貼合工程とを含む。前記ハーフカット工程は、第1台座部211と当該該第1台座部211の弾性率より高い弾性率を有する第2台座部212とが積層された構造を有する台座21の当該第1台座部211上に、前記キャリアフィルム12を当該第1台座部211側にして前記光学フィルム積層体10を配置し、当該キャリアフィルム12を残して前記光学フィルム13をその幅方向に切断する工程である。
(Continuous manufacturing method for liquid crystal display elements)
The continuous manufacturing method of the liquid crystal display element includes the carrier film 12 and the optical film laminate 10 including the polarizing film 13 including the adhesive layer 132 formed on the carrier film 12 via the adhesive layer 132. A half-cut step of forming the sheet piece 135 of the polarizing film 13 by cutting the polarizing film 13 in the width direction while leaving the carrier film 12, and the sheet piece 135 peeled from the carrier film 12 as the liquid crystal panel 4 And a pasting step of pasting together. In the half-cut process, the first pedestal portion 211 of the pedestal 21 having a structure in which the first pedestal portion 211 and the second pedestal portion 212 having an elastic modulus higher than the elastic modulus of the first pedestal portion 211 are stacked. It is a step of disposing the optical film laminate 10 with the carrier film 12 on the first pedestal portion 211 side and cutting the optical film 13 in the width direction while leaving the carrier film 12.
(別実施形態)
 本実施形態では、液晶パネルの上側から偏光フィルムのシート片135を貼り付けているが、これに制限されず、液晶パネルの下側からシート片135を貼り付けてもよい。
(Another embodiment)
In this embodiment, although the sheet piece 135 of a polarizing film is affixed from the upper side of a liquid crystal panel, it is not restricted to this, You may affix the sheet piece 135 from the lower side of a liquid crystal panel.
 また、本実施形態では、連続ロールから繰り出された長尺の偏光フィルムを所定間隔で切断するものであったが、本発明はとくにこの構成に制限されない。例えば、連続ロールから繰り出された長尺の光学フィルム積層体を欠点検査し、当該検査結果に基づいて欠点を避けるように切断(いわゆるスキップカット)してもよい。また、長尺の偏光フィルムに欠点位置を示すマークを予め付されている場合には、このマークを読み取り、当該マークに基づいて欠点を避けるように切断してもよい。 In this embodiment, the long polarizing film fed from the continuous roll is cut at a predetermined interval, but the present invention is not particularly limited to this configuration. For example, a long optical film laminate fed out from a continuous roll may be inspected for defects and cut (so-called skip cut) so as to avoid the defects based on the inspection results. Moreover, when the mark which shows a fault position is previously attached | subjected to the elongate polarizing film, this mark may be read and it may cut | disconnect so that a fault may be avoided based on the said mark.
 また、本実施形態では、長尺の偏光フィルムが長手方向に平行な吸収軸を有するが、長尺の偏光フィルムの吸収軸方向はこれに限定されない。例えば、長尺の偏光フィルム13がその短手方向(幅方向)に平行な吸収軸を有し、別の長尺の偏光フィルムがその長手方向に平行な吸収軸を有していてもよい。 In this embodiment, the long polarizing film has an absorption axis parallel to the longitudinal direction, but the absorption axis direction of the long polarizing film is not limited to this. For example, the long polarizing film 13 may have an absorption axis parallel to the short direction (width direction), and another long polarizing film may have an absorption axis parallel to the longitudinal direction.
 実施例は、図2および図3の装置構成を用いている。長尺の偏光フィルム13、キャリアフィルム12を有する光学フィルム積層体10をハーフカット装置20でハーフカットした際の破断発生の有無と、ハーフカットの品位(糊欠け、糊引きずり)を評価した。長尺の光学フィルム積層体10として、VEGQ 1784CUAG150(幅400mm、1mm幅あたりの剛性8.5N・mm、厚み273μm)を用いた。この長尺の光学フィルム積層体10は、粘着剤(厚み23μm)を含む長尺の偏光フィルム(厚み235μm)と、キャリアフィルムとしてPETフィルム(厚み38μm)を有する。 In the embodiment, the apparatus configuration shown in FIGS. 2 and 3 is used. The presence or absence of breakage when the optical film laminate 10 having the long polarizing film 13 and the carrier film 12 was half-cut with the half-cut device 20 and the quality of the half-cut (glue chipping, glue dragging) were evaluated. VEGQ 1784CUAG150 (width 400 mm, rigidity per mm width 8.5 N · mm 2 , thickness 273 μm) was used as the long optical film laminate 10. The long optical film laminate 10 has a long polarizing film (thickness 235 μm) containing an adhesive (thickness 23 μm) and a PET film (thickness 38 μm) as a carrier film.
 刃物に丸刃(真円度30μm、刃径100mm)を用いた。台座(低弾性の第1台座部とそれよりも高弾性の第2台座部)の材料と、第1台座部の厚みを変えた各種条件で評価した。弾性率は、ダイプラ・ウィンテス株式会社製 SAICASを用いて測定した。測定条件は、押し込み速度0.05μm/secで、垂直に2μm押し込みとした。圧子として、曲率半径0.04mmの曲面のものを用いた。 A round blade (roundness 30 μm, blade diameter 100 mm) was used as the blade. Evaluation was performed under various conditions in which the material of the pedestal (the first pedestal portion having low elasticity and the second pedestal portion having higher elasticity than that) and the thickness of the first pedestal portion were changed. The elastic modulus was measured using SAICAS manufactured by Daipura Wintes Co., Ltd. The measurement conditions were an indentation speed of 0.05 μm / sec and an indentation of 2 μm vertically. A curved indenter having a curvature radius of 0.04 mm was used as the indenter.
 実施例1の台座は、第1台座部に厚み0.5mmのポリエチレン(PE)、第2台座部に厚み30mmのステンレス鋼(SUS)を用いた。 For the pedestal of Example 1, 0.5 mm thick polyethylene (PE) was used for the first pedestal, and 30 mm thick stainless steel (SUS) was used for the second pedestal.
 実施例2の台座は、第1台座部に厚み3mmのポリエチレン(PE)を用いたこと以外は、実施例1と同じである。 The base of Example 2 is the same as Example 1 except that polyethylene (PE) having a thickness of 3 mm is used for the first base part.
 実施例3の台座は、第2台座部にアルミニウム(AL)を用いたこと以外は、実施例1と同じである。 The pedestal of Example 3 is the same as Example 1 except that aluminum (AL) is used for the second pedestal.
 実施例4の台座は、第1台座部に厚み1.0mmのアルミニウム(AL)を用いたこと以外は、実施例1と同じである。 Example 4 The pedestal of Example 4 is the same as Example 1 except that aluminum (AL) having a thickness of 1.0 mm is used for the first pedestal.
 実施例5の台座は、第1台座部に厚み0.5mmのポリスチレン(PS)を用いたこと以外は、実施例1と同じである。 Example 5 The pedestal of Example 5 is the same as Example 1 except that polystyrene (PS) having a thickness of 0.5 mm is used for the first pedestal.
 比較例1の台座は、単層の厚み30mmのステンレス鋼(SUS)とした。 The base of Comparative Example 1 was a single layer stainless steel (SUS) having a thickness of 30 mm.
 比較例2の台座は、単層の厚み30mmのポリエチレン(PE)とした。 The pedestal of Comparative Example 2 was a single layer of 30 mm thick polyethylene (PE).
 実施例1~4、比較例1~2のそれぞれにおいて、長尺の偏光フィルムをハーフカットし300枚のシート片をキャリアフィルム上に形成した。キャリアフィルムの破断、ハーフカットの品位(糊欠け、糊引きずり)について目視で確認した。その結果を表1に示す。カット品位の評価では、不良と判断された枚数が0であれば「○」とし、1~5であれば「△」とし、6以上であれば「×」とした。 In each of Examples 1 to 4 and Comparative Examples 1 and 2, the long polarizing film was half-cut to form 300 sheet pieces on the carrier film. The breakage of the carrier film and the quality of half-cut (glue chipping, glue dragging) were visually confirmed. The results are shown in Table 1. In the evaluation of the cut quality, “◯” is given if the number of sheets judged to be defective is “0”, “Δ” if it is 1 to 5, and “x” if it is 6 or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、比較例1、2のような単層の台座では、カット品位が共に悪く、比較例1のステンレス鋼の単層台座では、キャリアフィルムの破断が生じる場合があった。一方、実施例1、2および5は、いずれもキャリアフィルムの破断がなく、ハーフカットの品位も良好であった。実施例3,4は、キャリアフィルムの破断はなかったが、実施例1,2および5と比較してハーフカットの品位が若干低下した。 From the results of Table 1, the single layer pedestal as in Comparative Examples 1 and 2 had poor cut quality, and the stainless steel single layer pedestal in Comparative Example 1 sometimes caused the carrier film to break. On the other hand, Examples 1, 2, and 5 were all free from breakage of the carrier film and had good half-cut quality. In Examples 3 and 4, the carrier film was not broken, but the quality of the half cut was slightly lowered as compared with Examples 1, 2 and 5.
4        液晶パネル
10       光学フィルム積層体
12       キャリアフィルム
13       偏光フィルム
132      粘着層
135      偏光フィルムのシート片
20       ハーフカット装置
201      刃物
202      丸刃
203      カッター刃
21       台座
211      第1台座部
212      第2台座部
103      貼合装置
Y        液晶表示素子
DESCRIPTION OF SYMBOLS 4 Liquid crystal panel 10 Optical film laminated body 12 Carrier film 13 Polarizing film 132 Adhesive layer 135 Sheet piece 20 of polarizing film Half-cut device 201 Cutlery 202 Round blade 203 Cutter blade 21 Base 211 First base part 212 Second base part 103 Bonding Device Y Liquid crystal display element

Claims (9)

  1.  キャリアフィルムと、当該キャリアフィルム上に粘着層を介して形成される当該粘着層を含む光学フィルムとを有する光学フィルム積層体の内、当該キャリアフィルムを残して当該光学フィルムをその幅方向に切断して当該光学フィルムのシート片を形成するハーフカット装置と、前記キャリアフィルムから剥離された前記シート片を液晶パネルに貼り合わせる貼合装置とを備える液晶表示素子の連続製造システムであって、
     前記ハーフカット装置は、刃物と、当該刃物に対向する台座とを有し、
     前記台座は、前記刃物から近位の第1台座部と、前記刃物から遠位でありかつ当該第1台座部の弾性率より高い弾性率を有する第2台座部とが積層された構造を有する、液晶表示素子の連続製造システム。
    Of the optical film laminate having a carrier film and an optical film including the adhesive layer formed on the carrier film via an adhesive layer, the optical film is cut in the width direction while leaving the carrier film. A continuous production system of a liquid crystal display element comprising a half-cut device for forming a sheet piece of the optical film and a bonding device for bonding the sheet piece peeled off from the carrier film to a liquid crystal panel,
    The half-cut device has a blade and a pedestal facing the blade,
    The pedestal has a structure in which a first pedestal portion that is proximal to the blade and a second pedestal portion that is distal to the blade and has an elastic modulus higher than that of the first pedestal portion are stacked. , Continuous production system for liquid crystal display elements.
  2.  前記第1台座部の厚みが、0.1mm~5.0mmである、請求項1に記載の液晶表示素子の連続製造システム。 The continuous manufacturing system of a liquid crystal display element according to claim 1, wherein the thickness of the first pedestal portion is 0.1 mm to 5.0 mm.
  3.  前記第1台座部の弾性率が、0.2GPa~60GPaである、請求項1または2に記載の液晶表示素子の連続製造システム。 The continuous production system of a liquid crystal display element according to claim 1 or 2, wherein an elastic modulus of the first pedestal portion is 0.2 GPa to 60 GPa.
  4.  前記第2台座部の弾性率が、130GPa以上である、請求項1から3のいずれか1項に記載の液晶表示素子の連続製造システム。 The continuous manufacturing system of a liquid crystal display element according to any one of claims 1 to 3, wherein the elastic modulus of the second pedestal portion is 130 GPa or more.
  5.  前記第1台座部の弾性率と前記第2台座部の弾性率との差が、100GPa以上である、請求項1から4のいずれか1項に記載の液晶表示素子の連続製造システム。 The continuous manufacturing system of a liquid crystal display element according to any one of claims 1 to 4, wherein a difference between an elastic modulus of the first pedestal portion and an elastic modulus of the second pedestal portion is 100 GPa or more.
  6.  前記刃物が、丸刃である、請求項1から5のいずれか1項に記載の液晶表示素子の連続製造システム。 The continuous production system of a liquid crystal display element according to any one of claims 1 to 5, wherein the blade is a round blade.
  7.  前記キャリアフィルムの厚みが、20μm~50μmである、請求項1から6のいずれか1項に記載の液晶表示素子の連続製造システム。 The liquid crystal display element continuous manufacturing system according to any one of claims 1 to 6, wherein the carrier film has a thickness of 20 袖 m to 50 袖 m.
  8.  キャリアフィルムと、当該キャリアフィルム上に粘着層を介して形成される当該粘着層を含む光学フィルムとを有する光学フィルム積層体の内、当該キャリアフィルムを残して当該光学フィルムをその幅方向に切断して当該光学フィルムのシート片を形成するハーフカット工程と、前記キャリアフィルムから剥離された前記シート片を液晶パネルに貼り合わせる貼合工程とを含む液晶表示素子の連続製造方法であって、
     前記ハーフカット工程は、第1台座部と当該該第1台座部の弾性率より高い弾性率を有する第2台座部とが積層された構造を有する台座の当該第1台座部上に、前記キャリアフィルムを当該第1台座部側にして前記光学フィルム積層体を配置し、当該キャリアフィルムを残して前記光学フィルムをその幅方向に切断する工程である、液晶表示素子の連続製造方法。
    Of the optical film laminate having a carrier film and an optical film including the adhesive layer formed on the carrier film via an adhesive layer, the optical film is cut in the width direction while leaving the carrier film. A method for continuously producing a liquid crystal display element, comprising: a half-cut process for forming a sheet piece of the optical film; and a bonding process for bonding the sheet piece peeled off from the carrier film to a liquid crystal panel,
    The half-cut step includes forming the carrier on the first pedestal portion of the pedestal having a structure in which a first pedestal portion and a second pedestal portion having an elastic modulus higher than that of the first pedestal portion are stacked. A continuous manufacturing method of a liquid crystal display device, which is a step of disposing the optical film laminate with the film facing the first pedestal, and cutting the optical film in the width direction while leaving the carrier film.
  9.  刃物と、当該刃物に対向する台座とを有するハーフカット装置であって、
     前記台座が、前記刃物から近位の第1台座部と、前記刃物から遠位でありかつ当該第1台座部の弾性率より高い弾性率を有する第2台座部とが積層された構造を有する、ハーフカット装置。
    A half-cut device having a blade and a pedestal facing the blade,
    The pedestal has a structure in which a first pedestal portion that is proximal to the blade and a second pedestal portion that is distal to the blade and has an elastic modulus higher than that of the first pedestal portion are stacked. , Half-cut device.
PCT/JP2012/071403 2011-11-16 2012-08-24 System for continuous production of liquid crystal display elements and method for continuous production of liquid crystal display elements WO2013073247A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280055710.3A CN103930246A (en) 2011-11-16 2012-08-24 System for continuous production of liquid crystal display elements and method for continuous production of liquid crystal display elements
KR1020147013489A KR20140079501A (en) 2011-11-16 2012-08-24 System for continuous production of liquid crystal display elements and method for continuous production of liquid crystal display elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-250871 2011-11-16
JP2011250871A JP2013103322A (en) 2011-11-16 2011-11-16 Continuous manufacturing system of liquid crystal display element, and continuous manufacturing method of liquid crystal display element

Publications (1)

Publication Number Publication Date
WO2013073247A1 true WO2013073247A1 (en) 2013-05-23

Family

ID=48429328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071403 WO2013073247A1 (en) 2011-11-16 2012-08-24 System for continuous production of liquid crystal display elements and method for continuous production of liquid crystal display elements

Country Status (5)

Country Link
JP (1) JP2013103322A (en)
KR (1) KR20140079501A (en)
CN (1) CN103930246A (en)
TW (1) TW201329561A (en)
WO (1) WO2013073247A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476566B2 (en) * 2020-02-25 2024-05-01 日本ゼオン株式会社 Powder manufacturing method
JP7296147B1 (en) 2021-12-17 2023-06-22 曙機械工業株式会社 Cutting machine and cutting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826577A (en) * 1994-07-14 1996-01-30 Fuji Photo Film Co Ltd Film attaching device
JP2005037416A (en) * 2003-05-16 2005-02-10 Fuji Photo Film Co Ltd Method and apparatus for bonding polarizing plate
JP2006334715A (en) * 2005-06-01 2006-12-14 Fujifilm Holdings Corp Method and device for half cutting laminated body film
JP2007260865A (en) * 2006-03-29 2007-10-11 Fujifilm Corp Half-cutting method of laminated film and device therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2696569B2 (en) * 1989-07-21 1998-01-14 イビデン株式会社 Cutting method of thin plate
KR20040002796A (en) * 2002-06-28 2004-01-07 후지 샤신 필름 가부시기가이샤 Method and apparatus for bonding polarizing plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826577A (en) * 1994-07-14 1996-01-30 Fuji Photo Film Co Ltd Film attaching device
JP2005037416A (en) * 2003-05-16 2005-02-10 Fuji Photo Film Co Ltd Method and apparatus for bonding polarizing plate
JP2006334715A (en) * 2005-06-01 2006-12-14 Fujifilm Holdings Corp Method and device for half cutting laminated body film
JP2007260865A (en) * 2006-03-29 2007-10-11 Fujifilm Corp Half-cutting method of laminated film and device therefor

Also Published As

Publication number Publication date
CN103930246A (en) 2014-07-16
TW201329561A (en) 2013-07-16
JP2013103322A (en) 2013-05-30
KR20140079501A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5868734B2 (en) Optical display panel continuous manufacturing method and optical display panel continuous manufacturing system
JP4689763B1 (en) Liquid crystal display element continuous manufacturing system and liquid crystal display element continuous manufacturing method
JP4750227B1 (en) Liquid crystal display element continuous manufacturing system and liquid crystal display element continuous manufacturing method
JP4673414B2 (en) Manufacturing method of liquid crystal display element
JP6101431B2 (en) Optical display panel continuous manufacturing method and optical display panel continuous manufacturing system
US20120255672A1 (en) Methods and apparatuses for applying a handling tab to continuous glass ribbons
JP5868733B2 (en) Optical display panel continuous manufacturing method and optical display panel continuous manufacturing system
JP2012027455A (en) Method and system for manufacturing liquid crystal panel
JP5140788B2 (en) Liquid crystal display element continuous manufacturing system and liquid crystal display element continuous manufacturing method
JP2012242607A (en) Manufacturing system of liquid crystal display element, and method for manufacturing the element
JP4878070B2 (en) Manufacturing method of liquid crystal display element
TWI558527B (en) Knife edge and system for manufacturing liquid crystal display device, including the knife edge
WO2013073247A1 (en) System for continuous production of liquid crystal display elements and method for continuous production of liquid crystal display elements
JP4302042B2 (en) Film peeling device
KR20140034837A (en) Knife edge and liquid-crystal display device manufacturing system including same
JP5181011B2 (en) Liquid crystal display element continuous manufacturing system and liquid crystal display element continuous manufacturing method
JP5927533B2 (en) Method for discarding defective functional sheet in functional sheet pasting device
JP2011020200A (en) System for cutting optical film and method for cutting the optical film
JP2011005627A (en) Laminated body cutting method
JP2011158908A (en) Method for producing liquid crystal display element
JP2012027497A (en) Method and system for manufacturing liquid crystal panel
JP2016130860A (en) Continuous manufacturing method for optical display panel and continuous manufacturing system for optical display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147013489

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12850380

Country of ref document: EP

Kind code of ref document: A1