WO2013071843A1 - 3d显示器件及其制造方法 - Google Patents

3d显示器件及其制造方法 Download PDF

Info

Publication number
WO2013071843A1
WO2013071843A1 PCT/CN2012/084411 CN2012084411W WO2013071843A1 WO 2013071843 A1 WO2013071843 A1 WO 2013071843A1 CN 2012084411 W CN2012084411 W CN 2012084411W WO 2013071843 A1 WO2013071843 A1 WO 2013071843A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
liquid crystal
lens film
concave lens
crystal polymer
Prior art date
Application number
PCT/CN2012/084411
Other languages
English (en)
French (fr)
Inventor
武延兵
朱劲野
郭小虎
陈维涛
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/703,738 priority Critical patent/US9377630B2/en
Publication of WO2013071843A1 publication Critical patent/WO2013071843A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • Embodiments of the present invention relate to a 3D display device and a method of fabricating the same. Background technique
  • 3D display has become one of the development trends in the display field.
  • the basic principle of stereoscopic display is that the parallax produces a stereoscopic image, that is, the left eye of the person sees the left eye image, and the right eye sees the right eye image, wherein the left and right eye images are a pair of stereoscopic image pairs having parallax.
  • the so-called 3D display device allows the left and right eyes to receive two 2D (2-dimension, two-dimensional) images with parallax, so that the human brain can acquire 3D images after acquiring different 2D images seen by the left and right eyes.
  • the first method is to apply an alignment layer on a glass substrate, rub it, and then make a concave lens film on another glass substrate, and then Friction is performed on the concave lens film (the alignment layer may be applied, but the material of the existing alignment layer dissolves the concave lens film material, so the concave lens film is directly rubbed for orientation in actual production).
  • the two are then paired, wherein the liquid crystal polymer is poured, the liquid crystal is oriented, and then cured; the second method is to form a transparent electrode on a glass substrate, and to make a directional layer, and then rub the orientation.
  • a transparent electrode is formed on another glass substrate, and a concave lens film is formed, and then rubbed oriented (the alignment layer can also be applied, but the material of the existing alignment layer dissolves the concave lens film material, so direct friction in actual production)
  • the concave lens film is oriented).
  • the two are then paired into a box in which the liquid crystal polymer is poured.
  • the liquid crystal deflection is controlled by energizing the transparent electrodes of the two substrates to realize 3D display.
  • the rubbing orientation of the concave lens film is a factor affecting the 3D display effect.
  • the polarization direction of the polarized light of the polarizing device is 45° from the horizontal plane
  • the polarizing device of the IPS (In-Plane Switching) type LCD The angle between the polarization direction of the illuminating light and the horizontal plane is 90° or 0°, but the angle between the direction of the rib of the concave lens film of the birefringent grating and the horizontal plane is ⁇ , and often coincides with the angle of polarization of the outgoing light of the polarizing device and the horizontal plane.
  • the orientation and polarization device of the liquid crystal molecules are required.
  • the direction of polarization of the exiting light is parallel, which means that the rubbing direction will be at an angle to the direction of the edge of the iHJ lens film, see Figure 1.
  • This causes the friction of the frictional hair to the peak position of the concave lens film, and some friction to the trough position of the concave lens film, while the width of a concave lens film is often narrow and the trough is relatively deep, so the trough tends to have a poor liquid crystal orientation. This seriously affects the effect of 3D display. Summary of the invention
  • Embodiments of the present invention provide a 3D display device and a method of fabricating the same, which have better liquid crystal orientation and can better realize 3D display.
  • a 3D display device provided by an embodiment of the present invention includes: a display unit and a birefringent grating superimposed on a light exiting side of the display unit, wherein the birefringent grating comprises a concave lens film and a liquid crystal polymer covering the liquid crystal polymer The major or minor axis of the polymer is parallel to the direction of the rib of the IHJ lens film.
  • the display unit comprises a display and a half wave plate between the display and the birefringence grating, the half wave plate is used to adjust a polarization direction of the emitted light of the display to
  • the direction of the edge of the IHJ lens film of the refractive grating is parallel, wherein the angle between the direction of the edge of the IHJ lens film and the horizontal plane is ⁇ , and the angle of polarization of the emitted light of the display to the horizontal plane is ⁇ , and The angle between the optical axis direction of the half-wave plate and the horizontal plane is ( ⁇ + ⁇ ) 12.
  • the angle of polarization of the emitted light of the display to the horizontal plane is 0°, 45° or 90. .
  • the half wave plate includes two substrates having a transparent electrode and an alignment layer, and a liquid crystal polymer sandwiched between the two substrates, the half being controlled by controlling deflection of liquid crystal molecules in the liquid crystal polymer.
  • the optical axis direction of the wave plate is adjusted to an angle of ( ⁇ + ⁇ ) 11 with respect to the horizontal plane.
  • the half wave plate includes an upper and lower substrate and an alignment layer formed on a surface thereof, and a liquid crystal polymer sandwiched between the upper and lower substrates, and a rubbing direction and a horizontal direction of a side adjacent to the display unit The angle between the angle is ⁇ , and the angle of rubbing on the other side is ⁇ with the horizontal direction.
  • the liquid crystal polymer is a polymerizable substance having birefringence properties.
  • the display unit is an LCD, a PDP or an EL.
  • the present invention also provides a method of manufacturing the above 3D display device, comprising the steps of:
  • Al preparing a display unit, adjusting the polarization direction of the outgoing light of the display unit to and after forming
  • the direction of the ribs of the IHJ lens film of the birefringent grating is parallel;
  • the manufacturing method further comprises the step of coating the alignment layer on the concave lens film.
  • the method further includes: setting a half wave plate on a light emitting side of the display unit of the display unit, the half wave plate being located between the display and the birefringence grating and the half wave plate is used for The polarization direction of the outgoing light of the display is adjusted to be parallel to the direction of the edge of the IHJ lens film of the birefringent grating.
  • FIG. 1 is a schematic view of a concave lens film of a birefringent grating in a friction 3D display device in the prior art
  • FIG. 2 is a schematic structural view of a 3D display device according to an embodiment of the present invention
  • Schematic diagram of a 3D display device
  • a 3D display device includes: a display unit 1 and a birefringent grating 3 superimposed on a light exiting side of the display unit 1,
  • a film is usually formed (e.g., in a deposition manner) on the light-emitting side surface of the display unit 1, and then processed to form a birefringent grating 3.
  • a transparent substrate may be provided on the light-emitting side surface of the display unit 1, and then the birefringent grating 3 may be formed on the transparent substrate.
  • the birefringent grating 3 includes a concave lens film 31 and a liquid crystal polymer 32 covering the same, and the long axis or the short axis of the liquid crystal polymer 32 is parallel to the direction of the edge of the IHJ lens film.
  • the refractive index of the concave lens film 31 matches the long axis or the short axis of the liquid crystal polymer 32; wherein matching refers to the refractive index and concave in the long axis or the short axis direction of the liquid crystal polymer 32.
  • the refractive indices of the gratings are equal or close.
  • the liquid crystal molecules 321 in the liquid crystal polymer 32 may be oriented in parallel along the direction of the ribs of the concave lens film (in this case, short axis matching); the liquid crystal polymer is a polymerizable substance having birefringence properties.
  • the birefringent grating 3 may further include an alignment layer on the light exiting side of the liquid crystal polymer 32, which is formed on another transparent substrate, for example, a glass substrate.
  • the display unit 1 is an LCD (liquid crystal display).
  • the display unit 1 may further include a display such as a PDP (plasma display panel) or an EL (electroluminescent display) provided with a polarizer on the light exiting side.
  • a display such as a PDP (plasma display panel) or an EL (electroluminescent display) provided with a polarizer on the light exiting side.
  • the polarization direction of the outgoing light of the display unit 1 is parallel to the direction of the edge of the IHJ lens film of the birefringent grating 3.
  • the birefringent grating 3 may sequentially include a transparent electrode, a concave lens film, a liquid crystal polymer 32 overlying the concave lens film, an alignment layer, a transparent electrode, and a transparent substrate.
  • the direction of polarization of the outgoing light entering the display unit 1 of the birefringent grating 3 is parallel to the direction of the edge of the concave lens film of the birefringent grating 3.
  • the rubbing direction can be parallel to the direction of the edge of the concave lens film, which ensures a better rubbing effect and improves the liquid crystal orientation, thereby improving the effect of 3D display.
  • the 3D display device includes: a display unit 1 and a half wave plate 2 and a birefringent grating 3 which are sequentially formed on the display unit 1,
  • a film is generally deposited on the surface of the display unit 1, and then processed to form a half-wave plate and a birefringent grating 3.
  • the birefringent grating 3 includes a concave lens film 31 and a liquid crystal polymer 32 covering the same, and the long axis or the short axis of the liquid crystal polymer 32 is parallel to the direction of the edge of the IHJ lens film.
  • the liquid crystal molecules 321 in the liquid crystal polymer 32 are oriented along the rib of the concave lens film. Parallel orientation; the liquid crystal polymer is a polymerizable substance having birefringence properties; an angle of a rib of the iHJ lens film to a horizontal plane is ⁇ .
  • the birefringent grating 3 may sequentially include a transparent electrode, a concave lens film, a liquid crystal polymer 32 overlying the concave lens film, an alignment layer, a transparent electrode, and a transparent substrate.
  • the display unit 1 is an LCD (liquid crystal display).
  • the display unit 1 may further include a display such as a PDP (plasma display panel) or an EL (electroluminescent display) provided with a polarizer on the light exiting side.
  • the angle of polarization of the outgoing light of the display unit 1 to the horizontal plane is ⁇ , such as 0°, 45° or 90°.
  • the display unit 1 when the display unit 1 is a display such as a PDP (lasma display panel) or an EL (electroluminescent display), a polarizer may not be disposed on the light-emitting side of the displays.
  • a polarizer may not be disposed on the light-emitting side of the displays.
  • the half wave plate 2 is located between the display unit 1 and the birefringent grating 3 for adjusting the polarization direction of the outgoing light of the display unit 1 to the concave lens film of the birefringent grating 3
  • the directions of the ribs are parallel, and the angle between the optical axis direction of the half-wave plate 2 and the horizontal plane is ( ⁇ + ⁇ ) II.
  • the half wave plate 2 may be a polarizer or a polarizing film deposited on the display unit 1;
  • the half-wave plate 2 includes two substrates having a transparent electrode and an alignment layer, and a liquid crystal polymer sandwiched between the two substrates, such as a erbium-type liquid crystal, by controlling liquid crystal molecules in the liquid crystal polymer.
  • a liquid crystal polymer sandwiched between the two substrates, such as a erbium-type liquid crystal, by controlling liquid crystal molecules in the liquid crystal polymer.
  • Deflection, adjusting the optical axis direction of the half-wave plate 2 to an angle with the horizontal plane is ( ⁇ + ⁇ ) 12, that is, adjusting the polarization direction of the outgoing light of the display unit 1 to the birefringent grating 3
  • the direction of the ribs of the IHJ lens film is parallel.
  • the half wave plate 2 includes upper and lower substrates and an alignment layer formed on the surface thereof, and further includes a liquid crystal polymer sandwiched between the upper and lower substrates, for example, a TN type liquid crystal, an angle between a rubbing direction of the side adjacent to the display unit 1 and an angle of the horizontal direction is ⁇ , and an angle of rubbing of the other side with a horizontal direction
  • a liquid crystal polymer sandwiched between the upper and lower substrates, for example, a TN type liquid crystal
  • an angle between a rubbing direction of the side adjacent to the display unit 1 and an angle of the horizontal direction is ⁇
  • an angle of rubbing of the other side with a horizontal direction is adjusted to be parallel to the direction of the edge of the IHJ lens film of the birefringent grating 3.
  • the half-wave plate 2 is described as being independent of the display unit 1 for convenience of description, alternatively, the half-wave plate 2 may be used as a part of the display unit 1, and thus, the display unit 1 of this embodiment includes the half-wave plate 2.
  • the polarization direction of the outgoing light entering the display unit 1 of the birefringent grating 4 can be adjusted to be parallel to the direction of the edge of the concave lens film of the birefringent grating 4.
  • the rubbing direction can be parallel to the direction of the edge of the concave lens film, which ensures a better rubbing effect and improves the liquid crystal orientation, thereby improving the effect of 3D display.
  • Embodiments of the present invention also provide a method of fabricating a 3D display device, the method of fabricating the 3D display device comprising the steps of:
  • the liquid crystal polymer in the birefringent grating is oriented and solidified to complete the preparation of the 3D display device.
  • the manufacturing method further comprises disposing a transparent substrate on the light-emitting side surface of the display unit, and the concave lens film in the step B1 is directly formed on the transparent substrate.
  • the manufacturing method further comprises forming a transparent electrode on the transparent substrate provided on the light-emitting side surface/light-emitting side surface of the display unit, and then the concave lens film in the step B1 is formed in the transparent On the electrode; and in step E1, first on another transparent substrate Forming a transparent electrode thereon, then forming an alignment layer on the transparent electrode, then performing rubbing alignment on the alignment layer, and then aligning the other transparent substrate on which the transparent electrode and the alignment layer are formed with the substrate provided with the concave lens film, wherein the liquid crystal The polymer is sandwiched between the two.
  • the birefringent grating of the embodiment of the present invention is a structure of a concave lens film and a glass-to-cassette having an alignment layer filled with a liquid crystal polymer therebetween.
  • the birefringent grating of the embodiment of the present invention may further be a transparent electrode plus concave lens film and a glass-to-box structure having a transparent electrode and an alignment layer filled with a liquid crystal polymer therebetween.
  • the liquid crystal polymer is not cured, and the liquid crystal is heated, and the liquid crystal molecules are affected by the rubbing orientation of the upper and lower substrates. Oriented; in fact, it will be oriented without heating, and heating is only for faster and better orientation.
  • Embodiments of the present invention also provide a method of fabricating a 3D display device, the method of fabricating the 3D display device comprising the steps of:
  • A2 preparing a display unit, wherein an angle between a polarization direction of the emitted light of the display unit and a horizontal plane is ⁇ , for example, 0°, 45° or 90°;
  • ⁇ 2 forming a concave lens film on the light-emitting side surface of the display unit, for example, by deposition; C2, rubbing the concave lens film in the direction of the edge of the concave lens film, wherein the angle between the direction of the edge of the concave lens film and the horizontal plane is ⁇ ;
  • the manufacturing method further comprises disposing a transparent substrate on the light-emitting side surface of the display unit, and the concave lens film in the step B2 is directly formed on the transparent substrate.
  • the manufacturing method further comprises forming a transparent electrode on the transparent substrate provided on the light-emitting side surface/light-emitting side surface of the display unit, and then the concave lens film in the step B2 is formed in the transparent On the electrode; and in step E1, first forming a transparent electrode on another transparent substrate, then forming an alignment layer on the transparent electrode, then rubbing the alignment layer, and then forming the other layer having the transparent electrode alignment layer
  • the transparent substrate is bonded to a substrate provided with a concave lens film in which a liquid crystal polymer is sandwiched therebetween.
  • the step of coating the alignment layer on the concave lens film before B2 and after A2 can further enhance the orientation effect.
  • the birefringent grating of the embodiment of the present invention is a structure of a concave lens film and a glass-to-cassette having an alignment layer filled with a liquid crystal polymer therebetween.
  • the birefringent grating of the embodiment of the present invention may further be a transparent electrode plus concave lens film and a glass-to-box structure having a transparent electrode and an alignment layer filled with a liquid crystal polymer therebetween.
  • step B2 since the orientation direction of the liquid crystal is changed in step B2, it does not match the polarization direction of the outgoing light of the display unit. Therefore, it is necessary to place the direction of the rib between the display unit and the birefringent grating in parallel.
  • the liquid crystal polymer is placed between the concave lens film and the transparent substrate on which the alignment layer is formed, the liquid crystal polymer is not cured, and the liquid crystal is heated, and the liquid crystal molecules are oriented by the rubbing orientation of the upper and lower substrates. In fact, it will be oriented without heating, and heating is only for faster and better orientation.
  • embodiments of the present invention disclose a 3D display device and a method of fabricating the same, according to an embodiment of the present invention, by making a polarization direction of an outgoing light of a display unit and a concave lens film when fabricating a 3D display device
  • the direction of the ribs is parallel, or between the display unit and the birefringent grating
  • the direction of the edges of the film is parallel, which ensures a better friction effect and improves the liquid crystal orientation, thereby improving the

Abstract

公开了一种3D显示器件及其制造方法。3D显示器件包括显示单元(1)和叠加在显示单元(1)出光侧的双折射光栅(3)。双折射光栅(3)包括凹透镜膜(31)和覆盖其上的液晶聚合物(32)。液晶聚合物(32)的长轴或短轴与凹透镜膜(31)的棱的方向平行。显示单元(1)的出射光的偏振方向与凹透镜膜(31)的棱的方向平行。

Description

3D显示器件及其制造方法 技术领域
本发明的实施例涉及一种 3D显示器件及其制造方法。 背景技术
3D显示已经成为显示领域的发展趋势之一。立体显示的根本原理就是视 差产生立体, 即, 使人的左眼看到左眼图片, 右眼看到右眼图片, 其中左右 眼图片为有视差的一对立体图像对。 所谓的 3D显示器件让左、 右眼分别接 收到有视差的两个 2D(2-dimension,二维)影像,使人脑获取左、右眼看到的不 同 2D影像后, 能感知为 3D影像。
现有技术中常用以下两种方法来制造 3D显示器件的双折射光栅; 第一 种方法是在一个玻璃基板上涂敷取向层, 进行摩擦, 然后在另外一个玻璃基 板上制作凹透镜膜, 然后在凹透镜膜上进行摩擦(也可以涂敷取向层, 但是 现有的取向层的材料会溶解凹透镜膜材料, 所以在实际生产中直接摩擦凹透 镜膜进行取向)。 然后将二者对盒, 其中灌注液晶聚合物, 使液晶进行取向, 然后固化; 第二种方法是在一个玻璃基板上面制作一层透明电极, 并制作取 向层, 然后摩擦取向。 在另外一个玻璃基板上制作一层透明电极, 并制作凹 透镜膜, 然后进行摩擦取向 (也可以涂敷取向层, 但是现有的取向层的材料 会溶解凹透镜膜材料, 所以在实际生产中直接摩擦凹透镜膜进行取向) 。 然 后将二者对盒, 其中灌注液晶聚合物。 通过对两个基板的透明电极加电来控 制液晶偏转, 实现 3D显示。
但在现有的 3D显示器件的双折射光栅的生产过程中, 凹透镜膜的摩擦 取向是影响 3D显示效果的一个因素。 对于一般的 TN ( twisted nematic, 扭 曲向列)型 LCD, 其偏振器件的出射光偏振方向与水平面的夹角是 45°, 而 IPS ( In-Plane Switching, 平面转换)型 LCD的偏振器件的出射光偏振方向 与水平面的夹角则是 90°或者 0°, 但是双折射光栅的凹透镜膜的棱的方向与 水平面的夹角是 θ , 且往往与偏振器件的出射光偏振方向与水平面的夹角不 同。 而在这种 3D显示器件的双折射光栅中要求液晶分子的取向与偏振器件 的出射光偏振方向平行, 这就意味着摩擦方向将与 iHJ透镜膜的棱的方向成一 定角度, 参见图 1。 这样就会造成摩擦毛有的摩擦到凹透镜膜的波峰位置, 有的摩擦到凹透镜膜的波谷位置, 而一个凹透镜膜的宽度往往很窄, 波谷又 比较深, 所以波谷往往液晶取向效果很差, 从而严重影响了 3D显示的效果。 发明内容
本发明的实施例提供一种 3D显示器件及其制造方法,该 3D显示器件具 有效果更好的液晶取向, 能够更好地实现 3D显示。
本发明的实施例所提供的 3D显示器件, 包括: 显示单元和叠加在显示 单元出光侧的双折射光栅, 其中, 所述双折射光栅包括凹透镜膜和覆盖其上 的液晶聚合物, 所述液晶聚合物的长轴或者短轴与所述 IHJ透镜膜的棱的方向 的方向平行。
备选地, 所述显示单元包括显示器和位于所述显示器和所述双折射光栅 之间的半波片, 该半波片用于将所述显示器的出射光的偏振方向调整到与所 述双折射光栅的 IHJ透镜膜的棱的方向平行, 其中所述 IHJ透镜膜的棱的方向与 水平面的夹角是 Θ , 所述显示器的出射光的偏振方向与水平面的夹角为 α, 而且所述半波片的光轴方向与水平面的夹角是(α+ θ ) 12。
备选地, 所述显示器的出射光的偏振方向与水平面的夹角 α为 0°、 45° 或 90。。
作为示例, 所述半波片包括两片有透明电极和取向层的基板, 以及夹在 所述两片基板之间的液晶聚合物, 通过控制液晶聚合物中液晶分子的偏转, 将所述半波片的光轴方向调整到与水平面的夹角是(α+ θ ) 11。
备选地, 所述半波片包括上下基板及形成在其表面的取向层, 以及夹在 所述上下基板之间的液晶聚合物, 与所述显示单元相邻的一面的摩擦方向与 水平方向夹角为 α, 另一面的摩擦方向与水平方向夹角为 Θ。
作为示例, 所述液晶聚合物为具有双折射性质的可聚合物质。
作为示例, 所述显示单元为 LCD、 PDP或 EL。
本发明还提供了一种上述 3D显示器件的制造方法, 包括步骤:
Al、 制备显示单元, 将显示单元的出射光的偏振方向调整到与之后将形 成的双折射光栅的 IHJ透镜膜的棱的方向平行;
Bl、 在该显示单元的出光侧表面形成凹透镜膜;
Cl、 沿凹透镜膜的棱的方向摩擦所述凹透镜膜;
Dl、 在凹透镜膜的出光侧表面形成液晶聚合物;
El、 在另一透明基板上形成取向层, 然后摩擦取向, 然后将形成有取向 层的该另一透明基板与该凹透镜膜对合而形成双折射光栅, 其中液晶聚合物 夹置在这两者之间; 以及
Fl、 对双折射光栅中的液晶聚合物进行取向, 固化。
备选地, 在步骤 A1之后且 B1之前, 所述制造方法进一步包括: 在凹透 镜膜上涂覆取向层的步骤。
备选地, 在步骤 A1 中还包括: 在该显示单元的显示器的出光侧设置半 波片, 该半波片位于所述显示器和所述双折射光栅之间且该半波片用于将所 述显示器的出射光的偏振方向调整到与所述双折射光栅的 IHJ透镜膜的棱的方 向平行。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1是现有技术中摩擦 3D显示器件中双折射光栅的凹透镜膜的示意图; 图 2是本发明实施例所述的 3D显示器件的结构示意图; 图 4是本发明另一实施例所述的 3D显示器件的结构示意图; 以及
具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
实施例 1
如图 2所示, 根据本发明实施例 1的 3D显示器件包括: 显示单元 1和 叠加在显示单元 1出光侧的双折射光栅 3 ,
通常是在显示单元 1的出光侧表面形成(如以沉积的方式)薄膜, 然后 加工形成双折射光栅 3。
备选地, 也可以在显示单元 1的出光侧表面上设置透明基板, 然后在透 明基板上形成双折射光栅 3。
如图 2和图 3所示,所述双折射光栅 3包括凹透镜膜 31和覆盖其上的液 晶聚合物 32, 所述液晶聚合物 32的长轴或者短轴与 IHJ透镜膜的棱的方向平 行, 取决于所述凹透镜膜 31的折射率是与所述液晶聚合物 32的长轴还是短 轴相匹配;其中, 匹配是指液晶聚合物 32的长轴或者短轴方向上的折射率与 凹光栅的折射率相等或者接近。例如,可以使所述液晶聚合物 32中的液晶分 子 321沿着凹透镜膜的棱的方向进行平行取向 (此时为短轴匹配) ; 所述液 晶聚合物为具有双折射性质的可聚合物质。
备选地,所述双折射光栅 3还可以包括液晶聚合物 32的出光侧的取向层, 该取向层形成在另一透明基板, 例如, 玻璃基板上。
所述显示单元 1的一个示例为 LCD( liquid crystal display,液晶显示器 )。 作为示例, 所述显示单元 1还可以包括出光侧设置有偏振器的 PDP ( plasma display panel, 等离子显示器)或 EL ( electroluminescent, 场致发光显示器) 等显示器。 这里, 所述显示单元 1的出射光的偏振方向与所述双折射光栅 3 的 IHJ透镜膜的棱的方向平行。
作为备选示例, 所述双折射光栅 3可以顺次包括透明电极、 凹透镜膜、 覆盖在凹透镜膜上的液晶聚合物 32、 取向层、 透明电极以及透明基板。
使用上述 3D显示器件, 进入双折射光栅 3的显示单元 1的出射光的偏 振方向与所述双折射光栅 3的凹透镜膜的棱的方向平行。 这样, 在对凹透镜 膜进行摩擦时, 摩擦方向可以与凹透镜膜的棱的方向平行, 保证了更好的摩 擦效果, 改善了液晶取向, 从而提高了 3D显示的效果。
实施例 2
如图 4所示, 根据本发明实施例 2的 3D显示器件包括: 显示单元 1和 依次形成在显示单元 1上的半波片 2和双折射光栅 3 ,
一般是在显示单元 1的表面沉积薄膜, 然后加工形成半波片和双折射光 栅 3。
如图 3和图 4所示,所述双折射光栅 3包括凹透镜膜 31和覆盖其上的液 晶聚合物 32, 所述液晶聚合物 32的长轴或者短轴与 IHJ透镜膜的棱的方向平 行, 取决于所述凹透镜膜 31的折射率是与所述液晶聚合物 32的长轴或者短 轴相匹配,例如,所述液晶聚合物 32中的液晶分子 321沿着凹透镜膜的棱的 方向进行平行取向; 所述液晶聚合物为具有双折射性质的可聚合物质; 所述 iHJ透镜膜的棱的方向与水平面的夹角是 Θ 。
作为备选示例, 所述双折射光栅 3可以顺次包括透明电极、 凹透镜膜、 覆盖在凹透镜膜上的液晶聚合物 32、 取向层、 透明电极以及透明基板。
所述显示单元 1的一个示例为 LCD( liquid crystal display,液晶显示器 )。 作为示例, 所述显示单元 1还可以包括出光侧设置有偏振器的 PDP ( plasma display panel, 等离子显示器)或 EL ( electroluminescent, 场致发光显示器) 等显示器。 所述显示单元 1的出射光的偏振方向与水平面的夹角为 α, 例如 0°、 45°或 90°。
备选地, 在该实施例中, 当显示单元 1为 PDP ( lasma display panel, 等 离子显示器)或 EL ( electroluminescent, 场致发光显示器)等显示器时, 也 可以不在这些显示器的出光侧设置偏振器。
所述半波片 2, 位于所述显示单元 1和所述双折射光栅 3之间, 用于将 所述显示单元 1的出射光的偏振方向调整到与所述双折射光栅 3的凹透镜膜 的棱的方向平行, 所述半波片 2的光轴方向与水平面的夹角是(α+ θ ) II。
进一步地, 所述半波片 2可以是偏光片, 也可以是沉积在显示单元 1上 的偏振薄膜;
进一步地, 所述半波片 2包括两片有透明电极和取向层的基板, 以及夹 在所述两片基板之间的液晶聚合物, 例如 ΤΝ型液晶, 通过控制液晶聚合物 中液晶分子的偏转,将所述半波片 2的光轴方向调整到与水平面的夹角是 ( α+ Θ ) 12, 即将所述显示单元 1的出射光的偏振方向调整到与所述双折射光栅 3的 IHJ透镜膜的棱的方向平行。
进一步地, 所述半波片 2包括上下基板及形成在其表面的取向层, 还包 括夹在所述上下基板之间的液晶聚合物, 例如 TN型液晶, 与所述显示单元 1 相邻的一面的摩擦方向与水平方向夹角为 α, 另一面的摩擦方向与水平方 向夹角为 Θ , 将所述显示单元 1的出射光的偏振方向调整到与所述双折射光 栅 3的 IHJ透镜膜的棱的方向平行。
以上, 为了便于描述将半波片 2描述为独立于显示单元 1 , 备选地, 可 以将半波片 2作为显示单元 1的一部分, 这样, 该实施例的显示单元 1包括 半波片 2。
使用上述 3D显示器件, 可以将进入双折射光栅 4的显示单元 1的出射 光的偏振方向调整到与所述双折射光栅 4的凹透镜膜的棱的方向平行。这样, 在对凹透镜膜进行摩擦时, 摩擦方向可以与凹透镜膜的棱的方向平行, 保证 了更好的摩擦效果, 改善了液晶取向, 从而提高了 3D显示的效果。
实施例 3
本发明的实施例还提供了一种 3D显示器件的制造方法,所述 3D显示器 件的制造方法包括步骤:
Al、 制备显示单元, 其中该显示单元的出射光的偏振方向被调整到与之 后将形成的双折射光栅的 IHJ透镜膜的棱的方向平行;
Bl、 在显示单元的出光侧表面, 例如通过沉积方式, 形成凹透镜膜;
Cl、 沿凹透镜膜的棱的方向摩擦所述凹透镜膜;
Dl、 在凹透镜膜的出光侧表面形成液晶聚合物;
El、 在另一透明基板上形成取向层, 然后摩擦取向, 然后将形成有取向 层的该另一透明基板与该凹透镜膜对合而形成双折射光栅, 其中液晶聚合物 夹置在这两者之间; 以及
Fl、 对双折射光栅中的液晶聚合物进行取向, 固化, 而完成 3D显示器 件的制备。
备选地,在步骤 B1之前且步骤 A1之后,该制造方法还包括在显示单元 的出光侧表面设置透明基板, 而步骤 B1 中的凹透镜膜直接形成在该透明基 板上。
备选地,在步骤 A1之后且步骤 B1之前,该制造方法还包括在显示单元 的出光侧表面 /出光侧表面所设置的透明基板上形成透明电极, 然后步骤 B1 中的凹透镜膜形成在该透明电极上; 以及在步骤 E1 中, 先在另一透明基板 上形成透明电极, 然后在该透明电极上形成取向层, 然后对取向层进行摩擦 取向, 然后将形成有透明电极及取向层的该另一透明基板与设置有凹透镜膜 的基板对合, 其中液晶聚合物夹置在这两者之间。
作为示例, 本发明实施例的双折射光栅就是凹透镜膜和一片有取向层的 玻璃对盒的结构, 其间填充有液晶聚合物。
作为示例, 本发明实施例的双折射光栅还可以是透明电极加凹透镜膜和 一片有透明电极和取向层的玻璃对盒的结构, 其间填充有液晶聚合物。
在本步骤中, 这样的摩擦没有端差的变化, 将改善摩擦质量, 使波谷也 摩擦良好。
进一步地,在 B 1之前且 A1之后, 进一步包括在凹透镜膜上涂覆取向层 的步骤, 可以进一步增强取向效果。
需要说明的是, 液晶聚合物在凹透镜膜和形成有取向层的另一透明基板 之间对盒后, 液晶聚合物还没有固化, 给液晶加热, 液晶分子就会受到上下 基板摩擦取向的影响而被取向; 其实不加热也会取向, 加热只是为了更快更 好进行取向。
实施例 4
本发明的实施例还提供了一种 3D显示器件的制造方法,所述 3D显示器 件的制造方法包括步骤:
A2、 制备显示单元, 其中所述显示单元的出射光的偏振方向与水平面的 夹角是 α, 例如 0°、 45°或 90°;
Β2、 在显示单元的出光侧表面, 例如通过沉积方式, 形成凹透镜膜; C2、 沿凹透镜膜的棱的方向摩擦所述凹透镜膜, 其中所述凹透镜膜的棱 的方向与水平面的夹角是 Θ ;
D2、 在凹透镜膜的出光侧表面形成液晶聚合物;
E2、 在所述显示单元和所述双折射光栅之间加入半波片, 将所述显示单 元的出射光的偏振方向调整到与所述双折射光栅的 iHJ透镜膜的棱的方向平 行, 其中, 所述半波片的光轴方向与水平面的夹角是(α+ θ ) /2;
F2、 在另一透明基板上形成取向层, 然后摩擦取向, 然后将形成有取向 层的该另一透明基板与设置有凹透镜膜的基板对合而形成双轴折射光栅, 其 中液晶聚合物夹置在这两者之间; 以及 G2、 对双折射光栅中的液晶聚合物进行取向, 固化, 而完成 3D显示器 件的制备。
备选地,在步骤 B2之前且步骤 A2之后,该制造方法还包括在显示单元 的出光侧表面设置透明基板, 而步骤 B2 中的凹透镜膜直接形成在该透明基 板上。
备选地,在步骤 A2之后且步骤 B2之前,该制造方法还包括在显示单元 的出光侧表面 /出光侧表面所设置的透明基板上形成透明电极, 然后步骤 B2 中的凹透镜膜形成在该透明电极上; 以及在步骤 E1 中, 先在另一透明基板 上形成透明电极, 然后在该透明电极上形成取向层, 然后对取向层进行摩擦 取向, 然后将形成有透明电极取向层的该另一透明基板与设置有凹透镜膜的 基板对合, 其中液晶聚合物夹置在这两者之间。
在本步骤中, 这样的摩擦没有端差的变化, 将改善摩擦质量, 使波谷也 摩擦良好。
进一步地,在 B2之前且 A2之后进一步包括在凹透镜膜上涂覆取向层的 步骤, 可以进一步增强取向效果。
作为示例, 本发明实施例的双折射光栅就是凹透镜膜和一片有取向层的 玻璃对盒的结构, 其间填充有液晶聚合物。
作为示例, 本发明实施例的双折射光栅还可以是透明电极加凹透镜膜和 一片有透明电极和取向层的玻璃对盒的结构, 其间填充有液晶聚合物。
在本实施例中, 由于步骤 B2改变了液晶的取向方向, 使其与显示单元 的出射光的偏振方向不匹配。 所以需要在显示单元与双折射光栅之间放置一 的棱的方向平行。
需要说明的是, 液晶聚合物在凹透镜膜和形成有取向层的透明基板之间 对盒后, 液晶聚合物还没有固化, 给液晶加热, 液晶分子就会受到上下基板 摩擦取向的影响而被取向; 其实不加热也会取向, 加热只是为了更快更好进 行取向。
综上所述, 本发明的实施例公开了一种 3D显示器件及其制造方法, 根 据本发明的实施例, 通过在制作 3D显示器件时, 使显示单元的出射光的偏 振方向与凹透镜膜的棱的方向平行, 或在显示单元和双折射光栅之间加入了 膜的棱的方向平行, 保证了更好的摩擦效果, 改善了液晶取向, 从而提高了
3D显示的效果。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专 利保护范围应由权利要求限定。

Claims

权利要求书
1、 一种 3D显示器件, 包括:
显示单元; 以及
叠加在该显示单元的出光侧的双折射光栅, 包括:
凹透镜膜; 以及
液晶聚合物, 覆盖在所述凹透镜膜上,
其中所述液晶聚合物的长轴或者短轴与所述 IHJ透镜膜的棱的方向平行, 方向平行。
2、 根据权利要求 1所述的 3D显示器件, 其中所述显示单元为液晶显示 器。
3、 根据权利要求 1所述的 3D显示器件, 其中所述显示单元包括等离子 显示器或场致发光显示器以及设置在等离子显示器或场致发光显示器出光侧 的偏振器。
4、 根据权利要求 1所述的 3D显示器件, 其中所述显示单元包括显示器 和位于所述显示器和所述双折射光栅之间的半波片, 该半波片用于将所述显 示器的出射光的偏振方向调整到与所述双折射光栅的 IHJ透镜膜的棱的方向平 行。
5、 根据权利要求 4所述的 3D显示器件, 其中所述凹透镜膜的棱的方向 与水平面的夹角是 θ ,所述显示器的出射光的偏振方向与水平面的夹角为 α, 而且所述半波片的光轴方向与水平面的夹角是(α+ θ ) 12。
6、 根据权利要求 5所述的 3D显示器件, 其中所述显示器的出射光的偏 振方向与水平面的夹角 α为 0°、 45°或 90°。
7、 根据权利要求 5所述的 3D显示器件, 其中所述半波片包括两片有透 明电极和取向层的基板, 以及夹在所述两片基板之间的液晶聚合物, 通过控 制液晶聚合物中液晶分子的偏转, 将所述半波片的光轴方向调整到与水平面 的夹角是(α+ θ ) II。
8、 根据权利要求 5所述的 3D显示器件, 其中所述半波片包括上下基板 及形成在其表面的取向层, 以及夹在所述上下基板之间的液晶聚合物, 与所 述显示单元相邻的一面的摩擦方向与水平方向夹角为 α, 另一面的摩擦方向 与水平方向夹角为 Θ 。
9、根据权利要求 4所述的 3D显示器件,其中所述显示器为液晶显示器、 等离子显示器或场致发光显示器。
10、 根据权利要求 1所述的 3D显示器件, 其中所述液晶聚合物为具有 双折射性质的可聚合物质。
11、 根据权利要求 1所述的 3D显示器件, 其中所述双折射光栅还包括: 另一透明基板; 以及
取向层, 形成在该另一透明基板上,
其中形成有该取向层的该另一透明基板与该凹透镜膜接合在一起, 中间 夹设有该液晶聚合物。
12、 根据权利要求 1所述的 3D显示器件, 其中所述双折射光栅还包括: 透明电极, 设置在该显示单元与凹透镜膜之间;
另一透明基板;
透明电极, 形成在该另一透明基板上; 以及
取向层, 形成在该透明电极上, 以及
其中该另一透明基板与该凹透镜膜接合在一起, 中间夹设有该液晶聚合 物。
13、 一种权利要求 1所述的 3D显示器件的制造方法, 包括步骤:
Al、 制备显示单元, 将显示单元的出射光的偏振方向调整到与之后将形 成的双折射光栅的 IHJ透镜膜的棱的方向平行;
Bl、 在该显示单元的出光侧表面形成凹透镜膜;
Cl、 沿凹透镜膜的棱的方向摩擦所述凹透镜膜;
Dl、 在凹透镜膜的出光侧表面形成液晶聚合物;
El、 在另一透明基板上形成取向层, 然后摩擦取向, 然后将形成有取向 层的该另一透明基板与该凹透镜膜对合而形成双折射光栅, 其中液晶聚合物 夹置在这两者之间; 以及
Fl、 对双折射光栅中的液晶聚合物进行取向, 固化。
14、 根据权利要求 13所述的制造方法, 在步骤 A1中还包括: 在该显示 单元的显示器的出光侧设置半波片, 该半波片位于所述显示器和所述双折射 光栅之间且该半波片用于将所述显示器的出射光的偏振方向调整到与所述双 折射光栅的 IHJ透镜膜的棱的方向平行。
15、根据权利要求 14所述的制造方法,其中所述凹透镜膜的棱的方向与 水平面的夹角是 Θ , 所述显示器的出射光的偏振方向与水平面的夹角为 α, 而且所述半波片的光轴方向与水平面的夹角是(α+ θ ) 12。
16、 根据权利要求 13所述的制造方法, 在步骤 A1之后且 B1之前, 进 一步包括: 在凹透镜膜上涂覆取向层。
17、根据权利要求 15所述的制造方法,其中所述半波片包括两片有透明 电极和取向层的基板, 以及夹在所述两片基板之间的液晶聚合物, 通过控制 液晶聚合物中液晶分子的偏转, 将所述半波片的光轴方向调整到与水平面的 夹角是(α+ θ ) II。
18、根据权利要求 15所述的制造方法,其中所述半波片包括上下基板及 形成在其表面的取向层, 以及夹在所述上下基板之间的液晶聚合物, 与所述 显示单元相邻的一面的摩擦方向与水平方向夹角为 α, 另一面的摩擦方向与 水平方向夹角为6 。
19、根据权利要求 13所述的制造方法,其中所述液晶聚合物为具有双折 射性质的可聚合物质。
20、 根据权利要求 14所述的制造方法, 其中所述显示器为液晶显示器、 等离子显示器或场致发光显示器。
PCT/CN2012/084411 2011-11-14 2012-11-09 3d显示器件及其制造方法 WO2013071843A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/703,738 US9377630B2 (en) 2011-11-14 2012-11-09 3D display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103593749A CN102654654A (zh) 2011-11-14 2011-11-14 一种3d显示器件及其制造方法
CN201110359374.9 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013071843A1 true WO2013071843A1 (zh) 2013-05-23

Family

ID=46730294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084411 WO2013071843A1 (zh) 2011-11-14 2012-11-09 3d显示器件及其制造方法

Country Status (3)

Country Link
US (1) US9377630B2 (zh)
CN (1) CN102654654A (zh)
WO (1) WO2013071843A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654654A (zh) * 2011-11-14 2012-09-05 京东方科技集团股份有限公司 一种3d显示器件及其制造方法
TWI512343B (zh) * 2013-11-07 2015-12-11 Au Optronics Corp 光學膜以及使用此光學膜之裸視立體顯示裝置
US11156756B2 (en) 2013-12-30 2021-10-26 3M Innovative Properties Company Optical film including collimating reflective polarizer
CN104503095A (zh) * 2014-12-30 2015-04-08 京东方科技集团股份有限公司 显示装置
CN104849871A (zh) * 2015-06-15 2015-08-19 重庆卓美华视光电有限公司 一种液晶透镜式三维显示模组的制作方法
KR102457205B1 (ko) * 2015-08-31 2022-10-20 엘지디스플레이 주식회사 편광 제어 패널, 이의 제조 방법 및 이를 이용한 입체 영상 표시 장치
CN113587854B (zh) * 2021-07-21 2023-09-01 万维显示科技(深圳)有限公司 裸眼3d光栅膜角度的检测系统和检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030161040A1 (en) * 2002-02-26 2003-08-28 Namco Ltd. Stereoscopic image display device and electronic apparatus
CN101169519A (zh) * 2007-12-03 2008-04-30 北京超多维科技有限公司 显示装置
CN101287144A (zh) * 2008-05-30 2008-10-15 北京超多维科技有限公司 一种低散射2d-3d切换式立体显示装置
JP2009157301A (ja) * 2007-12-28 2009-07-16 Seiko Epson Corp 電気光学装置
CN101512391A (zh) * 2006-11-24 2009-08-19 友达光电股份有限公司 双折射液晶单元的制造方法
CN101968595A (zh) * 2010-10-13 2011-02-09 深圳市华星光电技术有限公司 2d/3d切换的液晶透镜组件及显示装置
CN102067020A (zh) * 2008-06-24 2011-05-18 夏普株式会社 液晶显示面板及液晶显示装置
CN102654654A (zh) * 2011-11-14 2012-09-05 京东方科技集团股份有限公司 一种3d显示器件及其制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161039A (en) * 1989-07-12 1992-11-03 Board Of Trustees, Leland Stanford Jr. University Birefringent structures formed by photo-exposure of polymer films and method for fabrication thereof
JPH04212102A (ja) * 1990-07-26 1992-08-03 Canon Inc ダイクロイックミラーおよび該ミラーを用いた投写型表示装置
GB0328005D0 (en) 2003-12-03 2004-01-07 Koninkl Philips Electronics Nv 2D/3D Displays
WO2005076265A1 (ja) * 2004-02-03 2005-08-18 Asahi Glass Company, Limited 液晶レンズ素子および光ヘッド装置
EP1780582A4 (en) * 2004-07-29 2009-07-08 Asahi Glass Co Ltd POLARIZED BENDING FILTER AND HISTORIZED POLARIZED BENDING FILTER
KR20070006116A (ko) * 2005-07-07 2007-01-11 삼성전자주식회사 2차원/3차원 영상 호환용 완전시차 입체 영상 디스플레이장치
WO2007099488A1 (en) * 2006-03-03 2007-09-07 Koninklijke Philips Electronics N.V. Autosterξoscopic display device using controllable liquid crystal lens array for 3d/2d mode switching
JP5412838B2 (ja) * 2009-01-09 2014-02-12 セイコーエプソン株式会社 レンズ構造体、表示装置、電子機器
CN102087415A (zh) * 2009-12-03 2011-06-08 和硕联合科技股份有限公司 立体显示装置及立体显示方法
JP5177163B2 (ja) * 2010-04-06 2013-04-03 株式会社Jvcケンウッド 立体映像表示用光学部材及び立体映像表示装置
CN101907778B (zh) * 2010-07-01 2014-07-30 深圳超多维光电子有限公司 二维/三维可转换显示装置、显示方法、个人数字助理及电脑
CN101881848B (zh) 2010-07-01 2012-07-18 深圳超多维光电子有限公司 一种双折射透镜光栅的制造及检测装置以及方法
WO2012038876A1 (en) * 2010-09-22 2012-03-29 Koninklijke Philips Electronics N.V. Multi-view display device
CN201966999U (zh) * 2011-03-17 2011-09-07 黑龙江省四维影像数码科技有限公司 三维自由立体显示手机
WO2014018269A1 (en) * 2012-07-23 2014-01-30 Reald Inc. Observer tracking autostereoscopic display

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030161040A1 (en) * 2002-02-26 2003-08-28 Namco Ltd. Stereoscopic image display device and electronic apparatus
CN101512391A (zh) * 2006-11-24 2009-08-19 友达光电股份有限公司 双折射液晶单元的制造方法
CN101169519A (zh) * 2007-12-03 2008-04-30 北京超多维科技有限公司 显示装置
JP2009157301A (ja) * 2007-12-28 2009-07-16 Seiko Epson Corp 電気光学装置
CN101287144A (zh) * 2008-05-30 2008-10-15 北京超多维科技有限公司 一种低散射2d-3d切换式立体显示装置
CN102067020A (zh) * 2008-06-24 2011-05-18 夏普株式会社 液晶显示面板及液晶显示装置
CN101968595A (zh) * 2010-10-13 2011-02-09 深圳市华星光电技术有限公司 2d/3d切换的液晶透镜组件及显示装置
CN102654654A (zh) * 2011-11-14 2012-09-05 京东方科技集团股份有限公司 一种3d显示器件及其制造方法

Also Published As

Publication number Publication date
US9377630B2 (en) 2016-06-28
CN102654654A (zh) 2012-09-05
US20140176833A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
WO2013071843A1 (zh) 3d显示器件及其制造方法
TWI444660B (zh) 2d/3d切換型立體顯示器及其控制方法
EP2530942B1 (en) 3D display panel and method of manufacturing a phase difference plate
TWI442147B (zh) 立體光學元件及其製作方法
KR101876558B1 (ko) 무안경 방식의 2차원/3차원 영상 표시장치
TW200925653A (en) Three-dimensional display device and fabricating method thereof
US9103989B2 (en) Method of manufacturing phase difference plate and 3D display panel
WO2013181910A1 (zh) 液晶透镜及2d-3d可切换立体显示装置
US20110193248A1 (en) Method and Appartus for Making Retarder in Stereoscopic Glasses
WO2017181732A1 (zh) 显示面板及其制作方法、以及显示装置
TWI449962B (zh) 用於三維顯示之液晶透鏡
TWI530729B (zh) 影像顯示裝置及液晶鏡片
WO2013012259A3 (en) Optical film, method of producing the same, stereoscopic glasses and stereoscopic display having the same
CN102859416B (zh) 立体图像显示器
CN105929594A (zh) 液晶光阀及立体显示装置
JP2012137762A (ja) 偏光板、表示装置及び偏光板の製造方法
KR101440382B1 (ko) 하이브리드 액티브 리타더 패널 및 이를 구비하는 입체영상표시장치
TWI550330B (zh) Liquid crystal lens and liquid crystal lens unit
TW201508353A (zh) 光學膜、圓偏光膜、3d影像顯示裝置
WO2014153865A1 (zh) 显示面板及3d显示装置
JP2012189899A (ja) 液晶シャッタ、およびそれを用いた表示システム。
WO2014206032A1 (zh) 偏振相位延迟薄膜及其制备方法、3d显示面板
CN104412150A (zh) 显示器件
WO2015074292A1 (zh) 一种液晶透镜、液晶显示装置及液晶透镜的制造方法
KR101896546B1 (ko) 입체 영상 표시소자 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13703738

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849428

Country of ref document: EP

Kind code of ref document: A1