WO2013071725A1 - 分组时钟恢复方法及装置 - Google Patents

分组时钟恢复方法及装置 Download PDF

Info

Publication number
WO2013071725A1
WO2013071725A1 PCT/CN2012/072667 CN2012072667W WO2013071725A1 WO 2013071725 A1 WO2013071725 A1 WO 2013071725A1 CN 2012072667 W CN2012072667 W CN 2012072667W WO 2013071725 A1 WO2013071725 A1 WO 2013071725A1
Authority
WO
WIPO (PCT)
Prior art keywords
time window
control value
loop control
short message
generated
Prior art date
Application number
PCT/CN2012/072667
Other languages
English (en)
French (fr)
Inventor
何力
李争齐
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110365833.4A external-priority patent/CN103117828B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP12850560.9A priority Critical patent/EP2782272B1/en
Publication of WO2013071725A1 publication Critical patent/WO2013071725A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0664Clock or time synchronisation among packet nodes using timestamps unidirectional timestamps

Definitions

  • the present invention relates to the field of communications, and in particular to a packet clock recovery method and apparatus.
  • BACKGROUND When a packet packet traverses a different network such as a router or a switch, a delay is introduced in each link of the packet scheduling and forwarding. For packet packets, the specific delay is affected by the forwarding design of the specific device, the background traffic size, the background packet length, and the QOS (Quality of Service) scheduling policy.
  • packet packets are clocked back through the packet network to ensure loop accuracy.
  • the main clock recovery methods are ACR (Large-Scale Access Convergence Router) adaptive technology used in 1588 and PWE3 (Pseudo-Wire Emulation Edge to Edge).
  • PWE3 Pseudo-Wire Emulation Edge to Edge
  • the key to clock recovery is to find the packet signal with source clock information in the PDV (Path Delay value) in a complex network environment.
  • the current algorithms for clock recovery usually use packet packet reception, PDV
  • the PDV level is mainly caused by the variation of the external network delay, and is affected by many factors as a whole, with random uncertainty.
  • the shorter phase-detection period ie, short message selection time window, the message selection time window is abbreviated as time window
  • the data characterized by the short message selection time window may reflect the correct clock original information, and may also reflect the error information caused by various factors such as delay hopping.
  • a packet clock recovery method including: acquiring a first loop control value generated by a current short message selection time window; and accurately controlling a value of the first loop by using a sliding window Judging, wherein, using the current short message selection time window as a starting point, the sliding window is established by selecting a time window for consecutive M short messages; generating a clock generator control value according to the decision result, and controlling clock generation , restore the packet clock.
  • the acquiring the first loop control value generated by the current short message selection time window comprises: sampling, by using a fixed window, the packet received by the packet network in the current short message selection time window; The sampled value is subjected to packet preprocessing, debounced and noise reduced, and the first loop control value is obtained.
  • the determining, by using the sliding window, the accuracy of the first loop control value comprises: using the sliding window to locate an abnormal point and a PDV hopping occurring in the current short message selection time window; Determining the accuracy of the first loop control value using the positioning result.
  • the generating the clock generator control value according to the determination result comprising: generating the clock generator control value by using the first loop control value when the determination result is trusted; And generating a second loop control value according to the historical data recorded by the time window according to the long message, and generating the clock generator control value by using the second loop control value, wherein the long message selection time
  • the window is configured to record the first loop control value generated by each short message time window loop analysis in units of the short message selection time window.
  • the generating the second loop control value according to the historical data recorded in the long message selection time window including: selecting the historical data recorded in the time window according to the long message, and selecting the time window according to the long message The characteristics of the selected crystal are predicted to generate the second loop control value.
  • the generating the second loop control value according to the historical data recorded by the long message selection time window comprises: selecting a historical data recorded by the time window according to the long message, and using a back pressure control algorithm to simulate the output
  • the second loop control data is described.
  • the timestamp of the device (slaver).
  • is the loop integral value
  • is T1W
  • T2 The time difference between (n).
  • it is generated according to the following formula: Where kl and k2 are adjustment parameters,
  • the short-message selects the phase cumulative value of the time window as the phase integral value.
  • ⁇ "_1) + ⁇ " the short message
  • ⁇ " the short message
  • a packet clock recovery apparatus including: an obtaining module, configured to acquire a first loop control value generated by a current short message selection time window; and a decision module configured to utilize a sliding window Determining the accuracy of the first loop control value, where the current short message selection time window is used as a starting point, and the sliding window is established by selecting a time window for consecutive M short messages; the recovery module , is set to generate a clock generator control value according to the decision result, control clock generation, and recover the packet clock.
  • the accuracy of the first loop control value generated by the current short message selection time window is determined by using the sliding window, and the clock generator control value is generated according to the decision result, the clock generation is controlled, and the packet clock is recovered.
  • the time window and the sliding window are selected in combination with the short message, and the accuracy of the first loop control value generated by the current short message selection time window is considered, so as to avoid the clock recovery error caused by only selecting the short message selection time window. Big problem.
  • FIG. 1 is a schematic diagram of a first processing flow of a packet clock recovery method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a sliding window according to an embodiment of the present invention
  • FIG. 3 is a diagram of a packet clock recovery method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a second-order phase-locked loop according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of Embodiment 1 according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a flow according to an embodiment of the present invention.
  • the embodiment of the present invention provides a packet clock recovery method, and the processing flow thereof is as shown in FIG. 1 , and includes steps S102 to S106: Step S102: Acquire a first generated by a current short message selection time window. a loop control value; Step S104, using a sliding window to determine the accuracy of the first loop control value; wherein, the sliding window is established by: selecting a time window as a starting point from the current short message, and continuing M consecutively The short message selection time window establishes a sliding window; the schematic view of the sliding window is as shown in FIG.
  • Step S106 generating a clock generator control value according to the decision result, controlling clock generation, and recovering the packet clock.
  • the accuracy of the first loop control value generated by the current short message selection time window is determined by using the sliding window, and the clock generator control value is generated according to the decision result, the clock generation is controlled, and the packet clock is recovered.
  • the time window and the sliding window are selected in combination with the short message, and the accuracy of the first loop control value generated by the current short message selection time window is considered, so as to avoid the clock recovery error caused by only selecting the short message selection time window. Big problem.
  • step S102 the first loop control value generated by the current short message selection time window is obtained.
  • the packet received by the packet network is received.
  • the message is sampled by a fixed window, and the sampled value is subjected to packet preprocessing, debounced and noise-reduced, and the first loop control value is obtained.
  • the sliding window is used to determine the accuracy of the first loop control value, and the decision step is as follows: Step 1: Using the sliding window to locate the current short message selection time window appears The abnormal point and the PDV jump; Step 2, using the positioning result to judge the accuracy of the first loop control value. After the decision is completed according to the above steps, the clock generator control value is further generated according to the judgment result.
  • the first loop control value is used to generate the clock generator control value; when the judgment result is unreliable, according to The long message selects the historical data recorded in the time window, generates a second loop control value, and generates a clock generator control value by using the second loop control value, wherein the long message selection time window is based on the short message selection time window. , used to record the first loop control value generated by each short message time window loop analysis.
  • the characteristics of the crystal selected by the long message selection time window are combined to generate a second loop control value. . As shown in FIG.
  • Step S102 Acquire the current short message selection time window. Generating a first loop control value; Step S104, using a sliding window to determine the accuracy of the first loop control value; Step S106, generating a clock generator control value according to the decision result, controlling clock generation, and recovering the packet clock; S108. Determine the credibility of the determination result.
  • Step S110 When the determination result is trusted, use the first loop control value to generate a clock generator control value.
  • Step S112 When the determination result is untrusted, select the time according to the long message.
  • the historical data recorded by the window generates a second loop control value, and the second loop control value is used to generate a clock generator control value.
  • a long message selection time window can be used to generate a clock generator control value to control clock recovery, but if a long message is used to select a time window, although the time window is selected with respect to the short message. The influence of short-term fluctuations can be ignored.
  • the PDV delay and the correct clock information are consistent, but the clock tracking performance is not good, and the advantage of clock variation cannot be reflected quickly.
  • the short message selection time window and the long message selection time window are combined, and the PDV hopping processing capability combined with the sliding time window is used, and the long message selection is used.
  • the method of selecting the characteristics of the crystal of the window enhances the stability of the frequency recovery and improves the ability of the recovered clock to resist interference.
  • the long message selection time window is in the form of a queue, first in first out, discarding historical clock generator control values that exceed the long window period.
  • the second loop control value is generated according to the historical data recorded by the long message selection time window, and the algorithm may be used in various manners. In this example, preferably, the back pressure may be used. The control algorithm simulates the second loop control data. Wherein, when the back pressure control algorithm is adopted, the second loop control value can be obtained by the following formula:
  • ⁇ 2( ⁇ ) ⁇ ( ⁇ ) - ⁇ ( ⁇ _ 1) + ⁇ 2( ⁇ _ 1) + Among them, 72 (")" is the second loop control value, the phase cumulative value of the time window is selected for the short message, and ⁇ 1( ⁇ ) is the time stamp when the message leaves the master device, and T2(n) is The timestamp when the message arrived at the slave (slaver).
  • ⁇ (" is the loop
  • the integral value, ⁇ is the time difference between ⁇ 1 ( ⁇ ) and ⁇ 2 ( ⁇ ), and Sd ⁇ n , can be generated as follows: Where kl and k2 are adjustment parameters,
  • S ⁇ the phase cumulative value of the time window
  • S " the phase integral value.
  • S ") S " _ 1) + [( " _ 1) + ")) / 2 ' AJ]
  • ⁇ 7 1 the integral calculated in the current short message selection time window time.
  • ⁇ "_1) + ⁇ , where the phase-detection value of the time window is selected for the short message.
  • the above formula is generated based on the principle of the phase-locked loop.
  • the generation principle is as follows: According to the principle of the phase-locked loop, taking the second-order phase-locked loop as an example, the flow diagram of the second-order phase-locked loop is shown in Fig. 4. Shown.
  • the timestamp T1 representing the time information of the master characterizes the input phase
  • the timestamp T2 representing the time information of the slaver or the processed T2 characterizing the feedback phase information ⁇ . Therefore, the timestamp value between the ⁇ and n+m masters and the slaver message can be characterized as the phase-detection value of the phase-locked loop input. Therefore, the packet message loop control module of the group can use the universal phase locked loop algorithm.
  • the model with a second-order phase-locked loop as an example is
  • the control value of the clock generator is f / ⁇ t), which is the voltage control sensitivity of the voltage controlled oscillator.
  • Fm is the center frequency; is the natural frequency; is the damping coefficient;
  • the phase-detection value of the short-time window can be phase-detected by using the timestamp between the two packets of ⁇ and n+m, and the timestamp is selected as before, using T1 and T2'; ⁇ ⁇ , short Time window phase cumulative value; indicates phase integral value; ⁇ (") clock generator control value; ⁇ indicates the integration time calculated in the current short time window.
  • the method of the present invention is to provide a stable clock.
  • the packet clock recovery method provided by the embodiment of the present invention involves a clock recovery through the packet network, and can be applied to the 1588 or E1 adaptive clock processing technology.
  • a method for generating a new clock recovery architecture fully utilizing the characteristics of the crystal, and combining the long and short time windows to ensure the accuracy of the loop.
  • the method provided by the embodiment of the present invention can generate a new frequency recovery.
  • the architecture can improve the accuracy of checking PDV jitter when using packet messages for frequency recovery, and can also fully integrate the clock generator.
  • the performance of the crystal is improved, and the anti-interference of the loop algorithm is improved.
  • the embodiment of the present invention can be used for 1588v2.
  • Clock recovery can also be used for packet-based packet-based clock recovery such as ⁇ or CES ACR. Now, 1588 clock recovery is taken as an example, and the method embodiment is illustrated.
  • the flow diagram is shown in Figure 5. 1. Short-time window processing
  • the 158V2 packet can obtain accurate timestamp information through hardware. Take the 1588 sync packet as an example. When the 1588 sync packet leaves the master device, the precision T1 timestamp is marked. When the slave receives the packet, it will mark the accurate T2 timestamp. The T1 and T2 timestamps indicate the clock frequency deviation information of the master and the slaver. The deviation information can be used to recover the clock information on the slaver side. However, after the 1588v2 packet passes through the packet network, the T2 is uncertain due to the forwarding delay, which will cause serious interference to the recovered clock. Therefore, the data packet needs to be processed, and the clock recovery is performed based on the processed data.
  • the slaver device receives 1588 packets, assuming that N packets are received.
  • the received N messages are sampled, the sampled data channels are preprocessed, debounced and noise-reduced, and ⁇ 2', which initially excludes the delay delay interference, is generated, and ⁇ 2' corresponds to ⁇ 2.
  • the processing of the sliding window with the current short time window as the starting point, to create a sliding window for a short time window the schematic diagram is shown in Figure 2, the continuous sliding window can calibrate more realistic trend information.
  • the multi-window characteristic is used to locate the abnormal point and the small PDV hopping, and the accuracy of generating the T2' in the short time window can be determined.
  • the timestamp T1 representing the time information of the master characterizes the input phase, and represents the time information of the slaver.
  • the stamp T2 or the processed T2 characterizes the feedback phase information, so the phase-stamp phase-value between the nth and n+m master and the slaver message can be characterized as the phase-detection value of the phase-locked loop input. Therefore, the packetized message loop control module of the packet can use the universal phase locked loop algorithm.
  • the model with a second-order phase-locked loop as an example is
  • the parameter d K ' b , parameter ⁇ 2 , parameter 2 ' 10_9 , the control value of the clock generator is ⁇ ), and jS ⁇ is the voltage control sensitivity of the voltage controlled oscillator.
  • L is the center frequency; is the natural frequency; is the damping coefficient; a m
  • the phase-detection value of the short-time window can be phase-detected by using the timestamp between the two packets of ⁇ and n+m.
  • the timestamp is selected as before, using T1 and T2' to generate; Cumulative value; represents the phase integral value; ⁇ (") represents the clock generator control value; ⁇ represents the integration time calculated in the current short time window.
  • n-1 is only a specific example value, in practical application.
  • loop control The module can get a stable clock.
  • the decision sliding window of the sliding window provides dynamic real-time monitoring, correlates the data of the current short time window with the data of the historical window, and obtains the accuracy judgment of the sampling value of the short time window.
  • the loop processing module uses the phase-detection values generated by T1 and T2' of the short-time window, and the loop control module can obtain a stable clock.
  • the back pressure control algorithm is started, and the loop control data is simulated according to the long time window data.
  • Long-term window prediction establishes a long-time window.
  • the minimum unit of the long-term window is a short-time window, and the clock generator control value obtained by each short-time window processing is recorded.
  • the long window is in the form of a queue, first in, first out.
  • the current time window clock generator control value ⁇ ("' is predicted by historical data.
  • the above-mentioned back pressure control algorithm is specifically analyzed as follows. For the unreliable decision point, the loop control value is simulated according to the long-term window data, and the simulated T2 "replaces T2' is estimated.
  • the control loop of the secondary loop For example, through the long-term window prediction, the loop integral value S ⁇ ") and the phase cumulative value ") can be obtained by the above loop formula. From the above formula, the derivation can be obtained.
  • the embodiment of the present invention also provides a A packet clock recovery device, the structure of which is shown in FIG.
  • an obtaining module 601 configured to acquire a first loop control value generated by a current short message selection time window; and a decision module 602 coupled with the obtaining module 601, And determining, by using a sliding window, determining the accuracy of the first loop control value, wherein the current short message selection time window is used as a starting point, and the sliding window is selected by continuously selecting a short message forward time window; the recovery module 603 And being coupled to the decision module 602, configured to generate a clock generator control value according to the decision result, control clock generation, and recover the packet clock.
  • the present invention achieves the following technical effects:
  • the accuracy of the first loop control value generated by the current short message selection time window is determined by using the sliding window, and the clock generator control value is generated according to the decision result, the clock generation is controlled, and the packet clock is recovered.
  • the time window and the sliding window are selected in combination with the short message, and the accuracy of the first loop control value generated by the current short message selection time window is considered, so as to avoid the clock recovery error caused by only selecting the short message selection time window. Big problem.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种分组时钟恢复方法及装置,该方法包括:获取当前短报文选择时间窗生成的第一环路控制数值;利用滑动窗对所述第一环路控制数值的准确性进行判决,其中,以所述当前短报文选择时间窗为起点,以向前连续M个短报文选择时间窗建立所述滑动窗;根据判决结果生成时钟发生器控制值,控制时钟生成,恢复分组时钟。采用本发明能够解决相关技术中短报文选择时间窗导致时钟恢复误差较大的问题。

Description

分组时钟恢复方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种分组时钟恢复方法及装置。 背景技术 分组报文穿越路由器、 交换机等不同网络时, 经过每一个节点, 在报文的调度、 转发等各个环节会引入时延。对于分组报文而言, 具体的时延受具体设备的转发设计、 背景流量大小、 背景包长度、 QOS (Quality of Service, 服务质量)调度策略等多方面 因素影响。 目前, 分组报文穿越分组网络后会对报文进行时钟恢复, 以保证环路精度。 主要 采用的时钟恢复方法有 1588和 PWE3 (Pseudo-Wire Emulation Edge to Edge, 边缘到 边缘的伪线仿真)里使用的 ACR (Large-scale Access Convergence Router, 大规模接入 路由器) 自适应技术, 分组时钟恢复的关键是在复杂网络环境下的 PDV (Path Delay value, 通路延迟值) 里寻找到具有源时钟信息的包信号。 目前时钟恢复的过程通常采用的算法是分组包接收、 PDV分析, 再到控制滤波到 时钟发生器的处理流程。
PDV层面主要由外部网络时延变化引起, 整体而言受到多种因素影响, 具有随机 不确定性。在每一个以 PDV数据为原型的微观鉴相周期里,虽然较短的鉴相周期(即: 短报文选择时间窗, 下文将报文选择时间窗都简写为时间窗) 具备能够较快反映时钟 变化的优势, 但是, 短报文选择时间窗表征的数据可能反映了正确的时钟原始信息, 也可能反映了以时延跳变等多种因素导致的错误信息。 针对相关技术中短报文选择时间窗导致时钟恢复误差较大的问题, 目前尚未提出 有效的解决方案。 发明内容 针对相关技术中短报文选择时间窗导致时钟恢复误差较大的问题, 本发明实施例 提供了一种分组时钟恢复方法及装置, 以至少解决上述问题。 根据本发明的一个实施例, 提供了一种分组时钟恢复方法, 包括: 获取当前短报 文选择时间窗生成的第一环路控制数值; 利用滑动窗对所述第一环路控制数值的准确 性进行判决, 其中, 以所述当前短报文选择时间窗为起点, 以向前连续 M个短报文选 择时间窗建立所述滑动窗; 根据判决结果生成时钟发生器控制值, 控制时钟生成, 恢 复分组时钟。 优选的, 所述获取当前短报文选择时间窗生成的第一环路控制数值, 包括: 在所 述当前短报文选择时间窗中, 对经过分组网络接收到的报文采用固定窗口取样; 对取 样值进行包预处理, 去抖降噪, 获取所述第一环路控制数值。 优选的, 所述利用滑动窗对所述第一环路控制数值的准确性进行判决, 包括: 利 用所述滑动窗定位所述当前短报文选择时间窗中出现的异常点和 PDV跳变;利用所述 定位结果对所述第一环路控制数值的准确性进行判决。 优选的, 所述根据判决结果生成时钟发生器控制值, 包括: 所述判决结果为可信 时, 使用所述第一环路控制数值生成所述时钟发生器控制值; 所述判决结果为不可信 时, 根据长报文选择时间窗记录的历史数据, 生成第二环路控制数值, 使用所述第二 环路控制数值生成所述时钟发生器控制值, 其中, 所述长报文选择时间窗以所述短报 文选择时间窗为单位, 设置为记录每次短报文时间窗环路分析生成的所述第一环路控 制数值。 优选的, 所述根据长报文选择时间窗记录的历史数据, 生成第二环路控制数值, 包括: 根据所述长报文选择时间窗记录的历史数据, 结合所述长报文选择时间窗选用 的晶体的特性进行预测, 生成所述第二环路控制数值。 优选的, 所述根据长报文选择时间窗记录的历史数据, 生成第二环路控制数值, 包括: 根据所述长报文选择时间窗记录的历史数据, 使用反压回控算法仿真出所述第 二环路控制数据。 优 选 的 , 所 述 第 二 环 路 控 制 数 值 按 如 下 公 式 获 取 : T2 n = θ η> - θ η - !) + τ2 η - !) + (n(w) - n - !)) , 其中, 为所述第二环路控制 数值, 为所述短报文选择时间窗的相位累积值, Tl(n)为报文离开主设备(master) 时的时间戳, T2(n)为报文到达从设备 (slaver) 时的时间戳。 优选的, 按如下公式生成: ") = 2 ' AJ ' 0^(") _ S^" _ 1》_ ^" _ 1), 其中, ^ (^为环路积分值, ^为 T1W与 T2(n)间的时间差。 优 选 的 , 按 如 下 公 式 生 成 :
Figure imgf000005_0001
其中, klk2为调整参数,
W '为所述长报文选择时间窗预测的时钟发生器控制值。 优选的, 所述时钟发生器控制值按如下公式生成: Ψ(ή) = ·θ(ή) + Ι^·8θ(ή), 其 中, ^(")为时钟发生器控制值, 为所述短报文选择时间窗的相位累积值, 为相位积分值。 优选的, 按如下公式生成: (") = ^("_Ι)+[(^"_Ι)+^"; /2·ΔΠ, 其 中, ΔΤ为当前短报文选择时间窗内计算的积分时间。 优选的, 按如下公式生成: ) = ^"_1) + Δ^"), 其中, 所述 Δ^")为所述 短报文选择时间窗的鉴相值。 优选的, Δ^")按如下公式生成: A^") = (J2(")_J2("_1))_(J1(")_J1("_1)), 其中, Tl(n)为报文离开 master时的时间戳, T2(n)为报文到达 slaver时的时间戳。 根据本发明的另一实施例, 提供了一种分组时钟恢复装置, 包括: 获取模块, 设 置为获取当前短报文选择时间窗生成的第一环路控制数值; 判决模块, 设置为利用滑 动窗对所述第一环路控制数值的准确性进行判决, 其中, 以所述当前短报文选择时间 窗为起点, 以向前连续 M个短报文选择时间窗建立所述滑动窗; 恢复模块, 设置为根 据判决结果生成时钟发生器控制值, 控制时钟生成, 恢复分组时钟。 在本发明实施例中, 利用滑动窗对当前短报文选择时间窗生成的第一环路控制数 值的准确性进行判断, 根据判决结果生成时钟发生器控制值, 控制时钟生成, 恢复分 组时钟。 本发明实施例结合短报文选择时间窗和滑动窗, 考虑到当前短报文选择时间 窗生成的第一环路控制数值的准确性, 避免只考虑短报文选择时间窗导致时钟恢复误 差较大的问题。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例的分组时钟恢复方法的第一种处理流程示意图; 图 2是根据本发明实施例的滑动窗的示意图; 图 3是根据本发明实施例的分组时钟恢复方法的第二种处理流程示意图; 图 4是根据本发明实施例的二阶锁相环的流程示意图; 图 5是根据本发明实施例的实施例一的流程示意图; 以及 图 6是根据本发明实施例的分组时钟恢复装置的结构示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 相关技术中提到,在每一个以 PDV数据为原型的微观鉴相周期里, 虽然较短的鉴 相周期具备能够较快反映时钟变化的优势, 但是, 短报文选择时间窗表征的数据可能 反映了正确的时钟原始信息, 也可能反映了以时延跳变等多种因素导致的错误信息。 为解决上述技术问题, 本发明实施例提供了一种分组时钟恢复方法, 其处理流程 如图 1所示, 包括步骤 S102至步骤 S106: 步骤 S102、 获取当前短报文选择时间窗生成的第一环路控制数值; 步骤 S104、 利用滑动窗对第一环路控制数值的准确性进行判决; 其中, 滑动窗的建立方式为: 以当前短报文选择时间窗为起点, 以向前连续 M个 短报文选择时间窗建立滑动窗; 滑动窗的示意图如图 2所示; 步骤 S106、根据判决结果生成时钟发生器控制值,控制时钟生成,恢复分组时钟。 在本发明实施例中, 利用滑动窗对当前短报文选择时间窗生成的第一环路控制数 值的准确性进行判断, 根据判决结果生成时钟发生器控制值, 控制时钟生成, 恢复分 组时钟。 本发明实施例结合短报文选择时间窗和滑动窗, 考虑到当前短报文选择时间 窗生成的第一环路控制数值的准确性, 避免只考虑短报文选择时间窗导致时钟恢复误 差较大的问题。 如图 1所示流程,步骤 S102在实施时,获取当前短报文选择时间窗生成的第一环 路控制数值, 具体的, 在当前短报文选择时间窗中, 对经过分组网络接收到的报文采 用固定窗口取样, 对取样值进行包预处理, 去抖降噪, 获取第一环路控制数值。 如图 1所示流程,步骤 S104在实施时,利用滑动窗对第一环路控制数值的准确性 进行判决, 判决步骤具体如下: 步骤一、 利用滑动窗定位当前短报文选择时间窗中出现的异常点和 PDV跳变; 步骤二、 利用定位结果对第一环路控制数值的准确性进行判决。 根据上述步骤完成判决后,进一步根据判决结果生成时钟发生器控制值, 具体的: 判决结果为可信时, 使用第一环路控制数值生成时钟发生器控制值; 判决结果为不可信时, 根据长报文选择时间窗记录的历史数据, 生成第二环路控 制数值, 使用第二环路控制数值生成时钟发生器控制值, 其中, 长报文选择时间窗以 短报文选择时间窗为单位, 用于记录每次短报文时间窗环路分析生成的第一环路控制 数值。 第二环路控制数值的生成过程中,除根据长报文选择时间窗记录的历史数据之外, 还结合了长报文选择时间窗选用的晶体的特性进行预测, 生成第二环路控制数值。 结合了短报文选择时间窗、 滑动窗以及长报文选择时间窗三者进行时钟恢复的流 程图如图 3所示, 包括步骤 S102至步骤 S112: 步骤 S102、 获取当前短报文选择时间窗生成的第一环路控制数值; 步骤 S104、 利用滑动窗对第一环路控制数值的准确性进行判决; 步骤 S106、根据判决结果生成时钟发生器控制值,控制时钟生成,恢复分组时钟; 步骤 S108、 确定判决结果的可信性; 步骤 S110、 判决结果为可信时, 使用第一环路控制数值生成时钟发生器控制值; 步骤 S112、 判决结果为不可信时, 根据长报文选择时间窗记录的历史数据, 生成 第二环路控制数值, 使用第二环路控制数值生成时钟发生器控制值。 相关技术中,关于恢复时钟还可以采用长报文选择时间窗生成时钟发生器控制值, 控制时钟恢复, 但是, 如果使用一个长报文选择时间窗, 虽然相对于短报文选择时间 窗而言, 可以忽略短时波动的影响, PDV时延和正确的时钟信息具有一致性, 但是时 钟跟踪性能不佳, 不能够较快反映时钟变化的优势。 因此, 在本发明实施例中, 若判 决结果不可信时, 采用了短报文选择时间窗和长报文选择时间窗结合, 以及结合滑动 时间窗的 PDV跳变处理能力,利用长报文选择窗选用的晶体的特性的方法增强频率恢 复的稳定性, 提高恢复时钟抗干扰的能力。 在一个优选的实施例中, 长报文选择时间窗采用队列形式, 先进先出, 丢弃超出 长时间窗周期的历史时钟发生器控制值。 在一个优选的实施例中, 根据长报文选择时间窗记录的历史数据, 生成第二环路 控制数值, 其采用的算法可以有多种, 在本例中, 优选的, 可以使用反压回控算法仿 真出第二环路控制数据。 其中, 在采用反压回控算法时, 第二环路控制数值可以按如下公式获取:
Τ2(η)" = θ(ή) - θ(η _ 1) + Τ2(η _ 1) +
Figure imgf000008_0001
其中, 72(")"为第二环路控制数值, 为短报文选择时间窗的相位累积值, Τ1(η) 为报文离开主设备 (master) 时的时间戳, T2(n)为报文到达从设备 (slaver) 时的时间 戳。 上 述 公 式 中 的 、 可 以 按 如 下 公 式 生 成 : θ(η) = 2 - AT - (S0(n) - S0(n - 1)) - θ(η - 1) ? 其中, ^(")为环路积分值, ^为 Τ 1 (η)与 Τ2(η) 间 的 时 间 差 。 而 Sd{n、 可 以 按 如 下 公 式 生 成 :
Figure imgf000008_0002
其中, klk2为调整参数,
• '为长报文选择时间窗预测的时钟发生器控制值。 相应的, 时钟发生器控制值可以按如下公式生成: Ψ(ή) = · θ(ή) + Ι^ ·8θ(ή), 其 中, ^(")为时钟发生器控制值, 为短报文选择时间窗的相位累积值, S^")为相 位积分值。 进一步, 可以按如下公式生成: S ") = S " _ 1) + [( " _ 1) + "))/ 2 ' AJ], 其中, Δ71为当前短报文选择时间窗内计算的积分时间。 进一步, 可以按如下公式生成: ^ = ^"_1) + Δ^ , 其中, 为短报 文选择时间窗的鉴相值。 其中的 可以按如下公式生成: 、 = (Τ2(η) - Τ2(η - 1)) -
Figure imgf000009_0001
- 1)), 其中, Τ1(η)为报文离开 master时的时间戳, T2(n)为报文到达 slaver时的时间戳。 上述公式是以锁相环的原理为依据进行分析后生成的, 其生成原理解析如下: 根据锁相环的原理, 以二阶锁相环为例, 二阶锁相环的流程示意图如图 4所示。 其中, 代表 master的时间信息的时间戳 T1表征了输入相位 , 代表 slaver的时 间信息的时间戳 T2或处理后的 T2表征反馈相位信息的 θ。,因而第 η和 n+m个 master 与 slaver报文间的时间戳鉴相值, 可以表征为锁相环输入的鉴相值 。 故而分组的报 文信息环路控制模块可以使用通用锁相环算法。 以二阶锁相环为例的模型为
Uf(n)=Kd-b-0e(n) + Kd-a-^- s
其中参数
Figure imgf000009_0002
, 参数 =2 '1()_9, 时钟发生器的控制 值为 f/^t), 为压控振荡器的压控灵敏度。 fm 为中心频点; 为固有频率; 为阻尼系数;
参数 ;
参数
Figure imgf000009_0003
。 上面二阶环模型可以转换为下面的关系:
Αθ(η) = (Τ2(ή) - Τ2(η - 1)) -
Figure imgf000009_0004
- 1)) θ(η) = θ(η-\) + ΑΘ(η) S0(n) = S0{n _ 1) + [(θ(η _ 1) + θ{ή)) / 2 · ΔΓ]
其中 、为短时间窗的鉴相值, 可以通过以 η和 n+m两个报文间的时间戳进行 鉴相, 时间戳的选取如前文, 使用 T1和 T2'生成; θ η、 表示短时间窗相位累积值; 表示相位积分值; ^(")时钟发生器控制值; ΔΤ表示当前短时间窗内计算的积 分时间。 对于滤除抖动的 T1和 T2'生成的鉴相值, 通过环路控制模块, 可以获取稳定的时 钟。 本发明实施例提供的分组时钟恢复方法涉及穿越分组网络进行时钟恢复, 可以应 用于 1588或 E1 自适应进行时钟处理的技术。 采用本发明实施例提供的方法能够生成 一种新的时钟恢复架构, 充分利用晶体的特性, 结合长短时间窗进行处理, 保证环路 精度的方法。 换句话说, 采用本发明实施例提供的方法能够生成一种新的频率恢复架 构, 可以提高使用分组报文进行频率恢复时, 对 PDV抖动的检查精度, 也能充分结合 时钟发生器的晶体的性能, 提高环路算法的抗干扰性。 为将本发明实施例提供的分组时钟恢复方法阐述地更清楚更明白, 现以一个具体 实施例对其进行说明。 本发明实施例可用于 1588v2时钟恢复,也可以用于 ΝΤΡ或 CES ACR等基于分组 报文的时钟恢复, 现以 1588 时钟恢复为例, 做方法实施例阐述, 流程示意图如图 5 所示。 1、 短时间窗的处理
158V2的报文通过硬件的方式可以获取准确的时间戳信息。 以 1588 sync报文为 例, 当 1588 sync报文离开 master设备, 会标记出精准 T1时间戳, 当 slaver接收到报 文, 会标记出精准的 T2时间戳。 T1和 T2时间戳表明了 master和 slaver的时钟频率 偏差信息, 通过该偏差信息可以在 slaver端恢复时钟信息。 但是 1588v2报文经过分组网络以后, 由于转发时延导致 T2存在不确定性, 会对 恢复时钟带来严重的干扰。 因而需要对数据包进行处理, 根据处理后的数据进行时钟 恢复。 在一个短时间窗里, slaver设备接收到 1588报文, 假设接收到 N个报文。 根据选 包策略, 对接收到的 N个报文进行采样, 对采样后的数据通进行预处理, 去抖降噪, 生成初步排除转发时延干扰的 Τ2',Τ2'与 Τ2对应。
2、 滑动窗的处理 以当前短时间窗为起点, 以向前连续 Μ个短时间窗建立滑动窗, 其示意图如图 2 所示, 连续的滑动窗口可以标定较为真实的趋势信息。 通过小跳变检测技术,利用多窗口特性定位出异常点和微小的 PDV跳变,可以对 短时间窗里生成 T2'的准确性进行判决。
3、 控制环路的处理 根据锁相环的原理, 以二阶锁相环为例, 如图 4所示, 代表 master的时间信息的 时间戳 T1表征了输入相位 , 代表 slaver的时间信息的时间戳 T2或处理后的 T2表 征反馈相位信息的 , 因而第 n和 n+m个 master与 slaver报文间的时间戳鉴相值,可 以表征为锁相环输入的鉴相值 。 故而分组的报文信息环路控制模块可以使用通用锁 相环算法。 以二阶锁相环为例的模型为
Uf(n)=Kd-b-0e(n) + Kd-a-^- s
其中参数 d K 'b , 参数 ^ 2 , 参数 =2 '10_9, 时钟发生器的控 制值为 ^^^), jS ^为压控振荡器的压控灵敏度。
L 为中心频点; 为固有频率; 为阻尼系数; a m
参数 f
参数
Figure imgf000011_0001
上面二阶环模型可以转换为下面的关系:
Αθ(η) = (Τ2(η) - Τ2(η - 1)) -
Figure imgf000012_0001
- 1)) θ(η) = θ(η - \) + ΑΘ(η)
S0(n) = S0(n _ 1) + [(θ(η _ 1) + θ{ή)) / 2 · ΔΓ]
其中 、为短时间窗的鉴相值, 可以通过以 η和 n+m两个报文间的时间戳进行 鉴相,时间戳的选取如前文,使用 T1和 T2'生成; 表示短时间窗相位累积值; 表示相位积分值; ^(")表示时钟发生器控制值; ΔΤ表示当前短时间窗内计算的积分 时间。 上述公式中, n-1仅仅是一个具体实例的取值, 在实际应用中, 可以使用通用公式 n-k代替上述公式中的 n-l, 其中, k的取值可以是任意实数, 根据具体情况而定。 对于滤除抖动的 T1和 T2'生成的鉴相值, 通过环路控制模块, 可以获取稳定的时 钟。
4、 滑动窗口的判决 滑动窗口提供动态实时监控, 将当前短时间窗口的数据与历史窗口的数据进行关 联数学分析, 获取短时间窗口采样值的准确性判决。 对于判决可信点, 环路处理模块使用短时间窗口的 T1和 T2'生成的鉴相值, 通过 环路控制模块, 可以获取稳定的时钟。 对于判决不可信点, 启动反压回控算法,根据长时间窗数据仿真出环路控制数据。 5、 长时间窗预测 建立长时间窗, 长时间窗最小单位为短时间窗, 记录每次短时间窗处理获取的时 钟发生器控制值。 长时间窗采用队列形式, 先进先出。 在长时间窗里, 通过历史数据预测当前时间窗时钟发生器控制值 ^(")'。 预测算法可有多种, 此处不再详述。 6、 上述提及的反压回控算法具体分析如下 对于判决不可信点, 根据长时间窗数据仿真出环路控制值, 估算出仿真的 T2"取 代 T2'。 以二级环的控制环路为例。 通过长时间窗预测 , 通过上述环路公式可以获取到环路积分值 S^")和相 位累积值 ")。 由上面公式, 推导可以得到
S0(n):
Figure imgf000013_0001
k AT - Uf(ny + k2 - S0(n) θ(ή) = 2 · ΔΓ · (S6(n) - S6(n - 1)) - θ(η - 1) 因而可有获得仿真的 Τ2"。
Αθ(η) = (Τ2(η) - Τ2(η - 1)) - Τ2(η)" = θ(ή) - θ(η _ 1) + Τ2(
Figure imgf000013_0002
获取到仿真的 Τ2"后, 替代 T2'与 T1做为环路控制的输入, 经过步骤 5的环路控 制模块处理后, 获取稳定的时钟。 基于同一发明构思, 本发明实施例还提供了一种分组时钟恢复装置, 其结构示意 图如图 6所示, 包括: 获取模块 601, 设置为获取当前短报文选择时间窗生成的第一环路控制数值; 判决模块 602, 与获取模块 601耦合, 设置为利用滑动窗对第一环路控制数值的 准确性进行判决, 其中, 以当前短报文选择时间窗为起点, 以向前连续 Μ个短报文选 择时间窗建立滑动窗; 恢复模块 603, 与判决模块 602耦合, 设置为根据判决结果生成时钟发生器控制 值, 控制时钟生成, 恢复分组时钟。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 在本发明实施例中, 利用滑动窗对当前短报文选择时间窗生成的第一环路控制数 值的准确性进行判断, 根据判决结果生成时钟发生器控制值, 控制时钟生成, 恢复分 组时钟。 本发明实施例结合短报文选择时间窗和滑动窗, 考虑到当前短报文选择时间 窗生成的第一环路控制数值的准确性, 避免只考虑短报文选择时间窗导致时钟恢复误 差较大的问题。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种分组时钟恢复方法, 包括:
获取当前短报文选择时间窗生成的第一环路控制数值;
利用滑动窗对所述第一环路控制数值的准确性进行判决, 其中, 以所述当 前短报文选择时间窗为起点,以向前连续 M个短报文选择时间窗建立所述滑动 窗;
根据判决结果生成时钟发生器控制值, 控制时钟生成, 恢复分组时钟。
2. 根据权利要求 1所述的方法, 其中, 所述获取当前短报文选择时间窗生成的第 一环路控制数值, 包括:
在所述当前短报文选择时间窗中, 对经过分组网络接收到的报文采用固定 窗口取样;
对取样值进行包预处理, 去抖降噪, 获取所述第一环路控制数值。
3. 根据权利要求 1所述的方法, 其中, 所述利用滑动窗对所述第一环路控制数值 的准确性进行判决, 包括:
利用所述滑动窗定位所述当前短报文选择时间窗中出现的异常点和通路延 迟值 PDV跳变; 利用所述定位结果对所述第一环路控制数值的准确性进行判决。
4. 根据权利要求 1所述的方法,其中,所述根据判决结果生成时钟发生器控制值, 包括:
所述判决结果为可信时, 使用所述第一环路控制数值生成所述时钟发生器 控制值;
所述判决结果为不可信时, 根据长报文选择时间窗记录的历史数据, 生成 第二环路控制数值, 使用所述第二环路控制数值生成所述时钟发生器控制值, 其中, 所述长报文选择时间窗以所述短报文选择时间窗为单位, 用于记录每次 短报文时间窗环路分析生成的所述第一环路控制数值。
5. 根据权利要求 4所述的方法, 其中, 所述根据长报文选择时间窗记录的历史数 据, 生成第二环路控制数值, 包括: 根据所述长报文选择时间窗记录的历史数 据, 结合所述长报文选择时间窗选用的晶体的特性进行预测, 生成所述第二环 路控制数值。
6. 根据权利要求 4或 5所述的方法, 其中, 所述根据长报文选择时间窗记录的历 史数据, 生成第二环路控制数值, 包括: 根据所述长报文选择时间窗记录的历 史数据, 使用反压回控算法仿真出所述第二环路控制数据。
7. 根据权利要求 6所述的方法, 其中, 所述第二环路控制数值按如下公式获取:
Τ2(η)" = θ(ή) - θ(η _ 1) + Τ2(η _ 1) +
Figure imgf000016_0001
其中, Τ2(")"为所述第二环路控制数值, 为所述短报文选择时间窗的相 位累积值, Tl(n)为报文离开主设备 master时的时间戳, T2(n)为报文到达从设 备 slaver时的时间戳。
8. 根据权利要求 7 所述的方法, 其中, 、按如下公式生成: θ(η) = 2·ΔΓ· (S0(n) - S0(n _ 1))— e(„— 1),其中, S0(n)为环路积分值, ^为 T i (n) 与 T2(n;>间的时间差。
9. 根据权利要求 8 所述的方法, 其中, 按如下公式生成: )~ /l-k^AT-Ufiny + k^Sein)^ 其中, klk2为调 整参数, 为所述长报文选择时间窗预测的时钟发生器控制值。
10. 根据权利要求 1至 5任一项所述的方法, 其中, 所述时钟发生器控制值按如下公式生成: ^(«) = ^(«) + ^'S («),其中, ^(")为时钟发生器控制值, 为所述短报文选择时间窗的相位累积值, 为相位积分值。
11. 根据权利要求 10 所述的方法, 其中, ^(")按如下公式生成: S θ(η) = S0(n-\) + [(θ(η - 1) + θ(η)) / 2 · ΔΓ] ?其中, ΔΓ为当前短报文选择时间窗 内计算的积分时间。
12. 根据权利要求 11 所述的方法, 其中, 按如下公式生成: θ(η) = θ(η-\) + ΑΘ(η)7 其中, 所述 Δ (")为所述短报文选择时间窗的鉴相值。
13. 根据权利要求 12 所述的方法, 其中, Δ^(")按如下公式生成: Αθ(η) = (Τ2(η) - Τ2(η - 1)) - (Tl(n) - Tl(n - 1)) , 其中, Τ 1(η)为报文离开 画 ter 时的时间戳, T2(n)为报文到达 slaver时的时间戳。
14. 一种分组时钟恢复装置, 包括:
获取模块, 设置为获取当前短报文选择时间窗生成的第一环路控制数值; 判决模块,设置为利用滑动窗对所述第一环路控制数值的准确性进行判决, 其中, 以所述当前短报文选择时间窗为起点, 以向前连续 M个短报文选择时间 窗建立所述滑动窗;
恢复模块, 设置为根据判决结果生成时钟发生器控制值, 控制时钟生成, 恢复分组时钟。
PCT/CN2012/072667 2011-11-17 2012-03-21 分组时钟恢复方法及装置 WO2013071725A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12850560.9A EP2782272B1 (en) 2011-11-17 2012-03-21 Method and apparatus for packet timing recovery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110365833.4 2011-11-17
CN201110365833.4A CN103117828B (zh) 2011-11-17 分组时钟恢复方法及装置

Publications (1)

Publication Number Publication Date
WO2013071725A1 true WO2013071725A1 (zh) 2013-05-23

Family

ID=48416111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072667 WO2013071725A1 (zh) 2011-11-17 2012-03-21 分组时钟恢复方法及装置

Country Status (2)

Country Link
EP (1) EP2782272B1 (zh)
WO (1) WO2013071725A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080002738A1 (en) * 2006-06-30 2008-01-03 Juergen Beck Method and apparatus for circuit emulation services over cell and packet networks
CN101599806A (zh) * 2009-06-25 2009-12-09 杭州再灵电子科技有限公司 采用时钟预测技术的精确时钟恢复方法
CN101640578A (zh) * 2009-08-25 2010-02-03 北京邮电大学 一种用于分组传送网络的tdm业务时钟恢复方法
CN101674174A (zh) * 2008-09-12 2010-03-17 华为技术有限公司 一种提高时钟稳定度的方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416814B2 (en) * 2005-06-28 2013-04-09 Axerra Networks, Ltd. System and method for high precision clock recovery over packet networks
US7839897B2 (en) * 2006-09-29 2010-11-23 Agere Systems Inc. Methods and apparatus for unidirectional timing message transport over packet networks
US8411705B2 (en) * 2010-01-06 2013-04-02 Lsi Corporation Three-stage architecture for adaptive clock recovery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080002738A1 (en) * 2006-06-30 2008-01-03 Juergen Beck Method and apparatus for circuit emulation services over cell and packet networks
CN101674174A (zh) * 2008-09-12 2010-03-17 华为技术有限公司 一种提高时钟稳定度的方法及设备
CN101599806A (zh) * 2009-06-25 2009-12-09 杭州再灵电子科技有限公司 采用时钟预测技术的精确时钟恢复方法
CN101640578A (zh) * 2009-08-25 2010-02-03 北京邮电大学 一种用于分组传送网络的tdm业务时钟恢复方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2782272A4 *

Also Published As

Publication number Publication date
EP2782272A4 (en) 2015-07-15
CN103117828A (zh) 2013-05-22
EP2782272A1 (en) 2014-09-24
EP2782272B1 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
CA2767499C (en) A method of time synchronization of free running nodes in an avionics network
US7876791B2 (en) Synchronizing apparatus and method in packet network
US8644348B2 (en) Method for generating a robust timing correction in timing transfer systems
US8571008B2 (en) Time synchronization method in wireless sensor network
US8427963B2 (en) Method and system for analyzing and qualifying routes in packet networks
US20100098111A1 (en) Method and system for precise-clock synchronization, and device for precise-clock frequency/time synchronization
EP1756987B1 (fr) Procede et systeme de synchronisation distribuee
US8243759B2 (en) Clock recovery method over packet switched networks based on network quiet period detection
JP2012170076A5 (zh)
JP2009538101A (ja) ネットワークタイムプロトコル精密タイムスタンプサービス
JP2010527193A (ja) ネットワークコンポーネントのクロックを別のネットワークコンポーネントのクロックに同期させる方法及びネットワークコンポーネント
WO2017032113A1 (zh) 一种时间同步偏差检测方法和装置
WO2013071725A1 (zh) 分组时钟恢复方法及装置
WO2008106887A1 (fr) Procédé de réglage de fréquence d'horloge et client et système associés
Ferrari et al. High availability IEEE 1588 nodes over IEEE 802.1 aq shortest path bridging networks
EP3420666B1 (en) Methods and systems for estimating skew
JP5534548B2 (ja) クロック同期のための受信側ノード、その方法及びそのプログラム
WO2014029319A1 (zh) 分组时钟网节点的频偏估算方法及装置
JP5168734B2 (ja) キューイング遅延計測方法、その方法を用いた同期システム、その方法及びそのプログラム
WO2024021091A1 (zh) 周期同步方法、系统、装置及电子设备
CN102664697A (zh) 一种网络时钟同步系统及其方法
CN112867132B (zh) 一种基于ptp的多链路时延抖动优化方法及装置
Luo et al. Impact analysis and detection of time-delay attacks in time-sensitive networking
Ou et al. The one-way delay measurement algorithm on to time synchronization of NTP
JP2017126864A (ja) 通信システム、通信装置、第二装置、通信方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012850560

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE