WO2024021091A1 - 周期同步方法、系统、装置及电子设备 - Google Patents

周期同步方法、系统、装置及电子设备 Download PDF

Info

Publication number
WO2024021091A1
WO2024021091A1 PCT/CN2022/109171 CN2022109171W WO2024021091A1 WO 2024021091 A1 WO2024021091 A1 WO 2024021091A1 CN 2022109171 W CN2022109171 W CN 2022109171W WO 2024021091 A1 WO2024021091 A1 WO 2024021091A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission node
cycle
clock domain
time point
time
Prior art date
Application number
PCT/CN2022/109171
Other languages
English (en)
French (fr)
Inventor
郭道荣
Original Assignee
新华三技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新华三技术有限公司 filed Critical 新华三技术有限公司
Priority to PCT/CN2022/109171 priority Critical patent/WO2024021091A1/zh
Priority to CN202280002524.7A priority patent/CN117941288A/zh
Publication of WO2024021091A1 publication Critical patent/WO2024021091A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile

Definitions

  • This application relates to network communication technology, and in particular to period synchronization methods, systems, devices and electronic equipment.
  • clock synchronization between transmission nodes at both ends requires hardware-level support.
  • any transmission node at both ends of the 5GS such as network-side TSN translator (NW-TT: Network-side TSN translator), equipment Device-side TSN translator (DS-TT: Device-side TSN translator) requires hardware-level support when achieving clock synchronization.
  • NW-TT Network-side TSN translator
  • DS-TT Device-side TSN translator
  • Embodiments of the present application provide cycle synchronization methods, systems, devices, and electronic equipment to achieve synchronization of the scheduling cycles used locally by the transmission nodes at both ends for scheduling message queues on the premise that the clock domains of the transmission nodes at both ends remain independent of each other.
  • the embodiment of the present application provides a periodic synchronization method, which is applied to a first transmission node.
  • the first transmission node is also connected to a second transmission node.
  • the first clock domain of the first transmission node is different from the second clock domain of the second transmission node.
  • the network system between the first transmission node and the second transmission node is respectively connected to the first transmission node through the first intermediate device and the second transmission node through the second intermediate device.
  • the first intermediate device and the second intermediate device The network system has the same third clock domain; the method includes:
  • a periodic synchronization information message is sent to the second transmission node at time point t1[1] in the first clock domain for the second transmission node to use the
  • the first cycle synchronization information message determines that it is necessary to adjust the width of the scheduling period used locally by the second transmission node to schedule the message queue, adjust the width of the scheduling period so that the adjusted width of the scheduling period is consistent with the first
  • the deviation of the width of the scheduling cycle used locally by the transmission node to schedule the message queue is within the preset synchronization range
  • the first cycle synchronization information message carries at least: the current cycle C1_1 of the first transmission node and first time information; where the current cycle is the scheduling cycle for scheduling message queues where the first transmission node is currently located. , or the current cycle is the local system cycle of the first transmission node; the first time information is a time point in the third clock domain, which is based on the relationship between the third clock domain and the first The time information t3[1] corresponding to the time point t1[1] in the clock domain is determined.
  • the embodiment of the present application also provides a periodic synchronization method, which is applied to a second transmission node.
  • the second transmission node is also connected to the first transmission node.
  • the first clock domain of the first transmission node is different from the second clock domain of the second transmission node.
  • the network system between the first transmission node and the second transmission node is respectively connected to the first transmission node through the first intermediate device and the second transmission node through the second intermediate device.
  • the first intermediate device and the second intermediate device The device has the same third clock domain in the network system; the method includes:
  • C2_0 represents the current period when the second transmission node receives the second period synchronization information message.
  • C1_0 represents the current period when the second transmission node receives the second period synchronization information message. The period in which a transmission node is located.
  • Embodiments of the present application also provide a periodic synchronization system.
  • the system includes: a first transmission node and a second transmission node; the first clock domain of the first transmission node is different from the second clock domain of the second transmission node.
  • the network system between the node and the second transmission node is respectively connected to the first transmission node through a first intermediate device and the second transmission node through a second intermediate device.
  • the first intermediate device and the second intermediate device have the same configuration in the network system.
  • the first transmission node performs the steps in the first method above;
  • the second transmission node performs the steps in the second method above.
  • Embodiments of the present application provide a period synchronization device, which is applied to a first transmission node.
  • the first transmission node is also connected to a second transmission node.
  • the first clock domain of the first transmission node is different from the second clock of the second transmission node.
  • the network system between the first transmission node and the second transmission node is respectively connected to the first transmission node through the first intermediate device, and connected to the second transmission node through the second intermediate device.
  • the first intermediate device and the second intermediate device are in The network system has the same third clock domain; the device includes:
  • the detection unit is used to detect message sending events
  • a sending unit configured to send a periodic synchronization information message to the second transmission node at time point t1[1] in the first clock domain when the detection unit detects a message sending event.
  • the width of the scheduling period is adjusted so that the adjusted The deviation between the width of the scheduling period and the width of the scheduling period locally used by the first transmission node to schedule the message queue is within a preset synchronization range;
  • the first cycle synchronization information message carries at least: the current cycle C1_1 of the first transmission node and first time information; where the current cycle is the scheduling cycle for scheduling message queues where the first transmission node is currently located. , or the current cycle is the local system cycle of the first transmission node; the first time information is a time point in the third clock domain, which is based on the relationship between the third clock domain and the first The time information t3[1] corresponding to the time point t1[1] in the clock domain is determined.
  • Embodiments of the present application provide a period synchronization device, which is applied to a second transmission node.
  • the second transmission node is also connected to the first transmission node.
  • the first clock domain of the first transmission node is different from the second clock of the second transmission node.
  • the network system between the first transmission node and the second transmission node is respectively connected to the first transmission node through the first intermediate device, and connected to the second transmission node through the second intermediate device.
  • the first intermediate device and the second intermediate device are in The network system has the same third clock domain; the device includes:
  • a receiving unit configured to receive the first cycle synchronization information message sent by the first transmission node at time point t2[1] in the second clock domain, and determine the current cycle C2_1 of the second transmission node;
  • a determining unit configured to determine the cycle C1_2 currently in which the first transmission node is at the time point t2[1] based on the cycle C1_1 and the first time information carried in the first cycle synchronization information message;
  • the adjustment unit is configured to determine whether to adjust the local use of the second transmission node for scheduling reports based on the C2_1 and the C1_2, as well as the C2_0 and C1_0 determined when the second transmission node previously received the second periodic synchronization information message.
  • the width of the scheduling period of the message queue If so, adjust the width of the scheduling period used locally by the second transmission node to schedule the message queue, so that the adjusted width of the scheduling period is consistent with the width of the scheduling period used locally by the first transmission node.
  • the deviation in the width of the scheduling cycle of the message queue is within the preset synchronization range.
  • C2_0 represents the current cycle when the second transmission node receives the second cycle synchronization information message.
  • C1_0 represents the second cycle synchronization received at the second transmission node.
  • the information message is the period of the first transmission node.
  • An embodiment of the present application also provides an electronic device, which includes: a processor and a machine-readable storage medium;
  • a machine-readable storage medium stores machine-executable instructions capable of being executed by the processor
  • the processor is configured to execute machine-executable instructions to implement any of the above methods.
  • Embodiments of the present application also provide a machine-readable storage medium, which stores machine-executable instructions that can be executed by the processor;
  • the machine-executable instructions are executed by the processor to implement any of the above methods.
  • the transmission nodes at both ends are no longer required to strictly synchronize their clocks. It is only necessary to adjust the width of the scheduling period used by the transmission node at one end to schedule the message queue locally, so that after adjustment The deviation between the width of the scheduling period and the width of the scheduling period used locally by another transmission node to schedule the message queue is within the preset synchronization range, realizing weak synchronization of the transmission nodes at both ends in deterministic flow transmission, ensuring deterministic flow normal forwarding.
  • Figure 1 is a method flow chart provided by an embodiment of the present application.
  • Figure 2 is another method flow chart provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the networking provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram of the clock domain provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of the implementation timing provided by the embodiment of the present application.
  • Figure 6 is a device structure diagram provided by an embodiment of the present application.
  • Figure 7 is another device structure diagram provided by an embodiment of the present application.
  • Figure 8 is a structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a method flow chart provided by an embodiment of the present application.
  • the method is applied to a first transmission node, which is also connected to a second transmission node.
  • the first transmission node and the second transmission node are only named for convenience of description and are not used for limitation.
  • one of the first transmission node and the second transmission node is DS-TT, and the other is NW-TT, or , then the first transmission node and the second transmission node are two different DS-TTs, etc., which are not specifically limited in this embodiment.
  • the first clock domain of the first transmission node is different from the second clock domain of the second transmission node.
  • a network system also exists between the first transmission node and the second transmission node.
  • the network system is 5GS or other mobile systems, which is not specifically limited in this embodiment.
  • the above network system is connected to the first transmission node through the first intermediate device and the second transmission node through the second intermediate device.
  • the first intermediate device and the second intermediate device have the same third party in the network system. clock domain.
  • the user plane function network element UPF: User Plane Function
  • the terminal UE
  • UPF User Plane Function
  • 5GS is connected to two transmission points through two intermediate devices, UPF and UE.
  • the first transmission node is NW-TT and the second transmission node is DS-TT
  • 5GS is connected to NW-TT as the first transmission node through UPF
  • the second intermediate device is the UE
  • the third time domain is the 5GS clock domain.
  • the first transmission node and the second transmission node may refer to the time information belonging to the above-mentioned third time domain, such as the 5GS clock domain, on the connected first intermediate device and the second intermediate device respectively. , and achieve macroscopic synchronization of the first transmission node and the second transmission node through interaction.
  • the following is an example description through the steps shown in Figure 1.
  • the process may include the following steps:
  • Step 101 When a message sending event is detected, step 102 is executed.
  • the message sending event has many implementation forms, such as message sending time arrival (such as sending cycle arrival, message sending timing time arrival, etc.), external trigger, etc. This embodiment is not specific.
  • Step 102 Send the constructed first periodic synchronization information message to the second transmission node at time point t1[1] in the first clock domain for the second transmission node to use the first periodic synchronization information message based on the first periodic synchronization information message.
  • the width of the scheduling period is adjusted so that the width of the adjusted scheduling period is consistent with the width of the scheduling period used locally by the first transmission node to schedule the message queue.
  • the deviation of the period width is within the preset synchronization range.
  • the first cycle synchronization information message carries at least: the current cycle of the first transmission node (denoted as C1_1) and first time information.
  • the current period is the scheduling period currently used by the first transmission node for scheduling the message queue, for example, indicating the i-th scheduling period.
  • the message queue here is used to store messages belonging to deterministic flows.
  • the current cycle is a local system cycle of the first transmission node.
  • the system cycle refers to the total number of scheduling cycles that the first transmission node has experienced locally. Each time a scheduling cycle is experienced, the system cycle increases by a set value, such as 1.
  • the first time information is a time point in the third clock domain, which can be based on the time information in the third clock domain corresponding to the above time point t1[1] in the first clock domain (denoted as t3[1]) OK.
  • t3[1] is a time point in the third clock domain.
  • the first time information can be a time point in the 5GS clock domain in 5GS, which can be based on the 5GS time point in 5GS corresponding to the above time point t1[1] Sure.
  • t3_1[0] is the time information in the third clock domain obtained by the first transmission node at time point t1[0] in the first clock domain.
  • the time information is t3_1[0 in the third clock domain.
  • the first transmission node is obtained at t1[0].
  • t3_1[0] is a time point in the third clock domain.
  • t3_1[0] can be a time in the 5GS clock domain in 5GS. point.
  • t3_1[0] is less than t3[1].
  • ⁇ t1 represents the time difference between time point t1[1] and time point t1[0].
  • the above-mentioned first time information may be the above-mentioned t3[1].
  • the above-mentioned first time information may also be the difference between t3[1] and t1 CyclePast .
  • t1 CyclePast is the difference between time point t1[1] and the starting time of the current cycle.
  • the time information of the third clock domain such as 5GS time information
  • the node sends at least the first cycle synchronization information message carrying the above-mentioned cycle identifier C1_1 (used to identify the current cycle of the first transmission node) and first time information (a time point in the third clock domain), so that the second transmission
  • the node determines that it is necessary to adjust the width of the scheduling period locally used by the second transmission node for scheduling the message queue based on the synchronization information message of the first period, it adjusts the width of the scheduling period locally used by the second transmission node for scheduling the message queue, so as to Make the deviation between the width of the adjusted scheduling period of the second transmission node and the width of the scheduling period of the first transmission node locally used for scheduling the message queue within the preset synchronization range, and achieve the first transmission node in a mac
  • the scheduling cycle synchronization method of the first transmission node and the second transmission node no longer relies on strict clock synchronization of the transmission nodes at both ends. It only needs to adjust the local transmission node at one end for scheduling message queues.
  • the width of the scheduling cycle is such that the deviation between the adjusted width of the scheduling cycle and the width of the scheduling cycle used locally by another transmission node to schedule the message queue is within the preset synchronization range, achieving deterministic stream transmission between the transmission nodes at both ends.
  • the weak synchronization ensures the normal forwarding of deterministic flows.
  • FIG 2 is a flow chart of another method provided by an embodiment of the present application. This method is applied to the above-mentioned second transmission node.
  • the process may include the following steps:
  • Step 201 Receive the first cycle synchronization information message sent by the first transmission node at time point t2[1] in the second clock domain, and determine the current cycle of the second transmission node.
  • the current cycle of the second transmission node is marked as C2_1.
  • the current cycle of the second transmission node is the scheduling cycle (used for scheduling message queues) in which the second transmission node is currently located.
  • the second transmission node is exactly in the M-th scheduling cycle at time point t2[1], then the current cycle C2_1 of the second transmission node may be M at this time.
  • the current cycle of the second transmission node is also the local system cycle of the second transmission node.
  • the second transmission node happens to be in the Mth scheduling cycle at time point t2[1], and the system cycle recorded locally by the second transmission node at this time is 2M, then the above C2_1 can be 2M.
  • Step 202 Determine the current cycle of the first transmission node at time point t2[1] based on the cycle C1_1 and the first time information carried in the first cycle synchronization information message.
  • the current cycle of the first transmission node at time point t2[1] is marked as C1_2.
  • second time information can be introduced here.
  • the second time information is a time point in the third clock domain, which is determined based on the time information in the third clock domain corresponding to the time point t2[1] in the second clock domain. Since the first time information and the second time information are in the same third clock domain such as the 5GS clock domain, it is easy to determine the corresponding third time at time point t2[1] based on the time difference between the first time information and the second time information.
  • the period of a transmission node is a time point in the third clock domain, which is determined based on the time information in the third clock domain corresponding to the time point t2[1] in the second clock domain. Since the first time information and the second time information are in the same third clock domain such as the 5GS clock domain, it is easy to determine the corresponding third time at time point t2[1] based on the time difference between the first time information and the second time information.
  • the period of a transmission node is a time point in the third clock domain, which
  • determining the current cycle of the first transmission node at time point t2[1] in this step 202 can be achieved through the following steps a1 to a3:
  • Step a1 Calculate the time difference between the second time information and the first time information.
  • the second time information is determined in a manner similar to the above-described first time information, and is determined based on the time information corresponding to time point t2[1] in the third clock domain.
  • the time information corresponding to time point t2[1] in the third clock domain is denoted as t3[2].
  • the first time information is the time information t3[1] in the third clock domain corresponding to the time point t1[1] in the first clock domain.
  • the second time information is the time information in the third clock domain and the second time point t1[1] in the first clock domain.
  • the first time information is the difference between t3[1] and the above-mentioned t1 CyclePast .
  • the second time information is the difference between the above-mentioned t3[2] and t2 CyclePast , where t2 CyclePast is the time point t2[1] and t2 CyclePast.
  • the difference in the starting time of the scheduling cycle corresponding to C1_2 (such as the Mth scheduling cycle mentioned above).
  • t3[2] is expressed by the following formula 2:
  • t3_2[0] represents the time information in the third clock domain obtained by the second transmission node at time point t2[0] in the second clock domain.
  • the time information is in the third clock domain t3_2[0]. is sent at t2[0], and the second transmission node is obtained at t2[0].
  • t3_2[0] is a time point in the third clock domain. Taking the third clock domain as the 5GS clock domain under 5GS as an example, then t3_2[0] can be 5GS in 5GS. A point in time in the clock domain.
  • t3_2[0] is less than t3[2].
  • b represents the transmission delay of time information between the second transmission node and the second intermediate device.
  • ⁇ t2 represents the time difference between time point t2[0] and time point t2[1].
  • the second time information described above is determined in a similar manner to the first time information. Both are in a third clock domain such as the 5GS clock domain. The time difference between the first time information and the second time information can be calculated directly.
  • Step a2 Based on the time difference and the length of the scheduling cycle of the first transmission node, determine the number of cycles of the scheduling cycle of the first transmission node corresponding to the time difference.
  • the quotient of the time difference and the duration of the scheduling cycle of the first transmission node can be calculated, and the number of cycles is determined based on the quotient. For example, the positive integer closest to the quotient is determined as the number of cycles.
  • Step a3 Based on the above-mentioned number of cycles and the above-mentioned C1_1, determine the current cycle (denoted as C1_2) of the first transmission node at time point t2[1].
  • the above-mentioned C1_2 may be the scheduling period for scheduling the message queue currently in which the first transmission node is at the above-mentioned time point t2[1]. Based on this, if the above-mentioned C1_1 also represents the scheduling cycle of the first transmission node, then in this step a3, C1_2 may be the sum of the above-mentioned C1_1 and the above-mentioned period number.
  • the above-mentioned C1_1 is L (identifying the L-th scheduling cycle of the first transmission node), and the above-mentioned number of cycles is 10, then the above-mentioned C1_2 is L+10, indicating the (L+10)-th scheduling cycle of the first transmission node.
  • step 202 The specific implementation of step 202 is described by taking the above step a1 to step a3 as an example. But this is just an example and not a limitation.
  • Step 203 Determine whether to adjust the width of the scheduling cycle of the second transmission node based on C2_1 and C1_2, as well as C2_0 and C1_0 determined when the second transmission node previously received the second cycle synchronization information message. If so, adjust the width of the second transmission node.
  • the width of the scheduling cycle of the transmission node is such that the deviation between the adjusted width of the scheduling cycle and the width of the scheduling cycle used locally by the first transmission node to schedule the message queue is within the preset synchronization range.
  • C2_0 indicates that the second transmission node receives The current cycle when the second cycle synchronization information message is received
  • C1_0 indicates the current cycle of the first transmission node when the second transmission node receives the second cycle synchronization information message.
  • C2_1 represents the current scheduling period when the second transmission node receives the first periodic synchronization information message
  • C2_0 represents the current scheduling period when the second transmission node receives the second periodic synchronization information message.
  • C2_1 represents the current system period when the second transmission node receives the first periodic synchronization information message
  • C2_0 represents the current system period when the second transmission node receives the second periodic synchronization information message. cycle.
  • the above-mentioned C1_2 is the scheduling period for scheduling the message queue currently in the first transmission node at the above-mentioned time point t2[1] correspondingly, the above-mentioned C1_0 is the scheduling period received at the second transmission node.
  • the second cycle synchronization information message is the scheduling cycle in which the first transmission node is currently located.
  • the above-mentioned C1_2 is the system cycle that the first transmission node is currently in at the above-mentioned time point t2[1]
  • the above-mentioned C1_0 is the first transmission time when the second transmission node receives the second cycle synchronization information message.
  • Step b1 calculate the first increment between C2_1 and C2_0.
  • the first increment may be the difference between C2_1 and C2_0.
  • the current process can be ended directly.
  • Step b2 Calculate the second increment between C1_2 and C1_0.
  • the second increment may be the difference between C1_2 and C1_0.
  • Step b3 Determine whether the difference between the first increment and the second increment is within the preset value range. If not, determine to adjust the width of the scheduling cycle of the second transmission node. If so, determine not to adjust the second transmission node. The width of the node's scheduling period.
  • the preset numerical range can be set according to actual needs, and is not specifically limited in this embodiment.
  • adjusting the width of the scheduling cycle of the second transmission node may also be to adjust the length of the scheduling cycle of the second transmission node, such as increasing the length of the scheduling cycle of the second transmission node, or reducing the length of the scheduling cycle of the second transmission node.
  • the length of the node's scheduling cycle, etc., whether to increase or decrease mainly depends on the difference between the first increment and the second increment, and is not limited here. However, no matter how it is adjusted, the ultimate goal is to ensure macroscopic synchronization of the scheduling cycles of the first transmission node and the second transmission node.
  • the adjustment step size can be limited, and the first transmission can finally be realized macroscopically through asymptotic adjustment.
  • the scheduling cycles of the node and the second transmission node are synchronized.
  • the records of previously received second cycle synchronization information messages (such as the above-mentioned C2_0, C1_0, etc.) can be directly deleted.
  • the transmission nodes at both ends refer to the time information of the third clock domain, such as the 5GS clock domain, and send at least the above period C1_1 (for A first periodic synchronization information message identifying the current deterministic flow scheduling period of the first transmission node) and first time information, and the second transmission node determines whether to adjust the scheduling of the second transmission node based on the first periodic synchronization information message.
  • the scheduling period of the second transmission node when determining to adjust the scheduling period of the second transmission node, adjust the scheduling period of the second transmission node so that the deviation between the adjusted scheduling period and the scheduling period of the first transmission node is within a preset range, which is realized on a macro level
  • the scheduling cycles of the first transmission node and the second transmission node are synchronized, ensuring deterministic network application scenarios that require higher jitter accuracy.
  • this embodiment no longer relies on strict clock synchronization of the transmission nodes at both ends, and only needs to adjust the local transmission node at one end for
  • the width of the scheduling period of the scheduled message queue is such that the deviation between the adjusted width of the scheduling period and the width of the local scheduling period of another transmission node for scheduling the message queue is within the preset synchronization range, so that the transmission nodes at both ends can
  • the weak synchronization of deterministic stream transmission ensures the normal forwarding of deterministic streams and ensures that the clock domains of the transmission nodes at both ends remain independent of each other.
  • NW-TT connects to the UPF through the channel between it and the UPF in 5GS.
  • the channel here, such as an Ethernet connection or an internal connection, depends on whether NW-TT and UPF are integrated in the same device or implemented separately, which is not specifically limited in this embodiment.
  • DS-TT is connected to the UE in 5GS through 1PPS and TOD time information channels.
  • Figure 4 illustrates a schematic diagram of the clock domain (Timer) relationship between NW-TT, 5GS, and DS-TT.
  • 5GS has a unified clock domain (can be recorded as 5GS clock domain), and the time of UPF and UE is synchronized in the 5GS clock domain.
  • the first transmission node is NW-TT and the second transmission node is DS-TT, then:
  • NW-TT first obtains the current time information t UPF[1] of UPF in the 5GS clock domain through the channel (such as Ethernet connection or internal connection) with the UPF in 5GS (such as the above t3_1 [0]), the time delay after obtaining the time information t UPF[1] is set to a, and the timing on NW-TT at this time is t1 NW-TT[1] (that is, the above-mentioned t1[0]).
  • the transmission delay a is fixed and very small, and can be regarded as a constant.
  • NW-TT sends the first cycle synchronization information message to DS-TT at t1 NW-TT[2] (that is, the above-mentioned t1[1]).
  • the first cycle synchronization information message carries C1_1 and t1 NW-TT2UPF[1] (that is, the above-mentioned first time information).
  • C1_1 is used to represent the current cycle of NW-TT at t1 NW-TT[2] .
  • C1_1 is the second scheduling cycle for scheduling message queues currently in NW-TT at t1 NW-TT[2]
  • C1_1 is 2; for another example, C1_1 is the NW-TT at t1 NW-TT.
  • [2] is the 20th system cycle currently in, and C1_1 is 20.
  • t1 NW-TT2UPF[1] can be expressed by Formula 3:
  • t1 NW-TT2UPF[1] t UPF[1] +a+ ⁇ t1-t1 CyclePast (Formula 3)
  • t1 CyclePast is the difference between time point t1 NW-TT[2] and the starting time of the cycle represented by C1_1 above.
  • ⁇ t1 represents the time difference between time point t1 NW-TT[2] and time point t1 NW-TT[1] .
  • the time difference here can include from time point t1 NW-TT[1] to time point t1
  • the delay of NW-TT[2] also includes the construction of the first cycle synchronization information message and the internal processing of the first cycle synchronization information message, etc.).
  • ⁇ t1 is small. In such a short period of time, the clock accumulation deviation of each independent timing of NW-TT and 5GS can be ignored. Therefore, although ⁇ t1 is the timing in the clock domain of NW-TT, it can also be approximately regarded as Timing of the 5GS clock domain.
  • the DS-TT receives the first cycle synchronization information message sent by NW-TT at t2 DS-TT[1] (that is, the above-mentioned t2[1]).
  • the current period of DS-TT at t2 DS-TT[1] is C2_1.
  • C2_1 may be the current scheduling period of DS-TT at t2 DS-TT[1] for scheduling the message queue.
  • DS-TT is currently in the second scheduling cycle at t2 DS-TT[1] , then C2_1 can be 2.
  • C2_1 may be the current system cycle of DS-TT at t2 DS-TT[1] .
  • DS-TT is currently in the 20th system cycle at t2 DS-TT[1] , then C2_1 can be 20.
  • DS-TT passes between DS-TT and UE before time point t2 DS-TT[1] , for example, at time point t2 DS-TT[2] (that is, the above-mentioned t3_2[0]).
  • the 1PPS and TOD time information channels accurately obtain the UE's time information t UE[1] .
  • b is the transmission delay of DS-TT to obtain t UE[1] (that is, the transmission delay between DS-TT and UE).
  • the time information corresponding to the above time point t2 DS-TT[1] in the 5GS clock domain can be approximated as: t UE[1] +b+ ⁇ t2.
  • ⁇ t2 uses the DS-TT clock domain timing, because ⁇ t2 is very small, the impact of frequency offset can be ignored.
  • ⁇ t2 represents the difference between t2 DS-TT[1] and t2 DS-TT[2] .
  • this embodiment can also use a similar method to calculate t2 DS-TT2UE[1] (that is, the above-mentioned second time information).
  • t2 DS-TT2UE[1] can be expressed by Formula 4:
  • t2 DS-TT2UE[1] t UE[1] +b+ ⁇ t2-t2 CyclePast (Formula 4)
  • t2 CyclePast is the difference between time point t2 DS-TT[1] and the starting time of the cycle represented by C2_1 above.
  • DS-TT extracts t1 Nw-TT2UPF[1] , C1_1 from the received first cycle synchronization information message.
  • the current cycle C1_2 of NW-TT at time point t2 DS-TT[1] can be calculated based on the extracted t1 NW-TT2UPF[1] and the above-mentioned t2 DS-TT2UE[1] .
  • calculate t2 first The time difference t TT_Delay [1] between DS-TT2UE[1] and t1 NW-TT2UPF[1] . Because UE and UPF are both in the same time domain, t2 DS-TT2UE[1] and t1 NW-TT2UPF[1] can be calculated directly. The calculated time difference is approximate to the internal transmission and processing delay of 5GS.
  • C TT_Delay[1] can be expressed by the following formula:
  • the change of t NW-TTCyleLen[1] is very small, and the accumulated error based on the change has little impact on the calculation. Therefore, t NW-TTCyleLen[1] can be equal to a constant value.
  • the current cycle C1_2 of NW-TT at time point t2 DS-TT[1] is determined based on the above-mentioned cycle number C TT_Delay[1] and the above-mentioned C1_1.
  • C1_1 represents the current scheduling period of the NW-TT at t1 NW-TT[2]
  • C1_2 represents the current scheduling period of the NW-TT at t2 DS-TT[1]
  • C1_2 can be expressed by the following formula 5:
  • the period increments ⁇ C DS-TT (that is, the above-mentioned first increment) and ⁇ C NW-TT (that is, the above-mentioned second increment) of DS-TT and NW- TT are respectively calculated.
  • the scheduling cycle of DS-TT is adjusted. For example, if ⁇ C DS-TT is greater than ⁇ C NW-TT , increase the duration of the DS-TT scheduling cycle (as to how much it increases, it depends on the difference between ⁇ C DS-TT and ⁇ C NW-TT ); if If ⁇ C DS-TT is less than ⁇ C NW-TT , the duration of the DS-TT scheduling cycle is reduced (how much depends on the difference between ⁇ C DS-TT and ⁇ C NW-TT ).
  • DS-TT can schedule the packets in the packet queue for forwarding according to the adjusted scheduling cycle.
  • This embodiment provides a periodic synchronization system, which includes: a first transmission node and a second transmission node; wherein the first transmission node performs the steps in the process shown in Figure 1; the second transmission node performs the steps shown in Figure 1 The steps in the process shown in 2.
  • the embodiment of the present application also provides a device structure diagram as shown in Figure 6.
  • the device is applied to the first transmission node. This device corresponds to the process shown in Figure 1.
  • the device includes:
  • the detection unit is used to detect message sending events
  • a sending unit configured to send periodic synchronization to the second transmission node at time point t1[1] in the first clock domain when the detection unit detects the message sending event.
  • An information message used to adjust the scheduling period when the second transmission node determines based on the first periodic synchronization information message that it is necessary to adjust the width of the scheduling period locally used by the second transmission node for scheduling message queues. Width, so that the deviation between the width of the adjusted scheduling period and the width of the scheduling period locally used by the first transmission node to schedule the message queue is within the preset synchronization range;
  • the first cycle synchronization information message carries at least: the current cycle C1_1 of the first transmission node and first time information; where the current cycle is the scheduling cycle for scheduling message queues where the first transmission node is currently located. , or the current cycle is the local system cycle of the first transmission node; the first time information is a time point in the third clock domain, which is based on the relationship between the third clock domain and the first The time information t3[1] corresponding to the time point t1[1] in the clock domain is determined.
  • t3[1] is expressed by the following formula:
  • t3_1[0] represents the time information in the third clock domain obtained by the first transmission node at time point t1[0] in the first clock domain, and time point t1[0] is at time point t1[ 1] before; a represents the transmission delay of time information between the first transmission node and the first intermediate device, and ⁇ t1 represents the time difference between time point t1[1] and time point t1[0].
  • the first time information is the time information t3[1] corresponding to the time point t1[1] in the first clock domain in the third clock domain; or,
  • the first time information is the difference between t3[1] and t1 CyclePast , where the t1 CyclePast is the difference between the time point t1[1] and the starting time of the current cycle.
  • the message sending event at least includes: arrival of message sending time, or external sending instruction.
  • the network system is a 5G system 5GS;
  • the first transmission node is NW-TT, the first intermediate device is UPF, the second transmission node is DS-TT, and the second intermediate device is UE; or, the first transmission node is DS -TT, the first intermediate device is UE, the second transmission node is, and the second intermediate device is UPF; or,
  • the first transmission node and the second transmission node are two different DS-TTs, and the first intermediate device and the second intermediate device are two different UEs.
  • the embodiment of this application also provides a structural diagram of the device shown in Figure 7.
  • This device corresponds to the process shown in Figure 2.
  • the device is applied to the second transmission node.
  • the device includes:
  • a receiving unit configured to receive the first cycle synchronization information message sent by the first transmission node at time point t2[1] in the second clock domain, and determine the current cycle C2_1 of the second transmission node;
  • the determining unit is configured to determine the cycle C1_2 currently in which the first transmission node is at the time point t2[1] based on the cycle C1_1 and the first time information carried in the first cycle synchronization information message.
  • the adjustment unit is configured to determine whether to adjust the local use of the second transmission node for scheduling reports based on the C2_1 and the C1_2, as well as the C2_0 and C1_0 determined when the second transmission node previously received the second periodic synchronization information message.
  • the width of the scheduling period of the message queue If so, adjust the width of the scheduling period used locally by the second transmission node to schedule the message queue, so that the adjusted width of the scheduling period is consistent with the width of the scheduling period used locally by the first transmission node.
  • the deviation in the width of the scheduling cycle of the message queue is within the preset synchronization range.
  • C2_0 represents the current cycle when the second transmission node receives the second cycle synchronization information message.
  • C1_0 represents the second cycle synchronization received at the second transmission node.
  • the information message is the period of the first transmission node.
  • the determining unit determines the current location of the first transmission node at the time point t2[1] based on the period C1_1 and the first time information carried in the first periodic synchronization information message.
  • Cycle C1_2 includes:
  • the second time information is a time point in the third clock domain, which is based on the time point t2 in the third clock domain and the second clock domain. [1] The corresponding time information t3[2] is determined;
  • the cycle C1_2 currently in which the first transmission node is located at time point t2[1] is determined.
  • t3_2[0] represents the time information in the third clock domain obtained by the second transmission node at time point t2[0] in the second clock domain, where time point t2[0] is at time point t2[1] Before; b represents the transmission delay of time information between the second transmission node and the second intermediate device, and ⁇ t2 represents the time difference between time point t2[1] and time point t2[0].
  • the second time information is the t3[2]; or,
  • the second time information is the difference between t3[2] and t2 CyclePast , where the t2 CyclePast is the difference between the time point t2[1] and the starting time of the cycle represented by C2_1.
  • the adjustment unit determines whether to adjust the local area of the second transmission node based on the C2_1 and the C1_2, as well as the C2_0 and C1_0 determined when the second transmission node previously received the second cycle synchronization information message.
  • the width of the scheduling period used to schedule the message queue includes:
  • the network system is a 5G system 5GS;
  • the first transmission node is NW-TT
  • the first intermediate device is UPF
  • the second transmission node is DS-TT
  • the second intermediate device is UE
  • the first transmission node is DS -TT
  • the first intermediate device is UE
  • the second transmission node is NW-TT
  • the second intermediate device is UPF
  • the first transmission node and the second transmission node are two different DS-TTs, and the first intermediate device and the second intermediate device are two different UEs.
  • Figure 8 is a structural diagram of an electronic device provided by an embodiment of the present application.
  • the hardware structure may include: a processor and a machine-readable storage medium.
  • the machine-readable storage medium stores machine-executable instructions that can be executed by the processor; the processor is configured to execute machine-executable instructions. instructions to implement the methods disclosed in the above examples of this application.
  • embodiments of the present application also provide a machine-readable storage medium.
  • Several computer instructions are stored on the machine-readable storage medium.
  • the present invention can be realized. Apply the methods disclosed in the examples above.
  • machine-readable storage medium can be any electronic, magnetic, optical or other physical storage device, which can contain or store information, such as executable instructions, data, etc.
  • machine-readable storage media can be: RAM (Radom Access Memory, random access memory), volatile memory, non-volatile memory, flash memory, storage drive (such as hard drive), solid state drive, any type of storage disk (such as optical discs, DVDs, etc.), or similar storage media, or a combination thereof.
  • a typical implementation device is a computer, which may be in the form of a personal computer, a laptop, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email transceiver, or a game controller. desktop, tablet, wearable device, or a combination of any of these devices.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, embodiments of the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • these computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means,
  • the instruction device implements the functions specified in one process or multiple processes of the flowchart and/or one block or multiple blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了周期同步方法、系统、装置及电子设备。在本申请中,不再依赖两端传输节点在时钟上严格同步,只需要通过调整一端传输节点本地用于调度报文队列的调度周期的宽度,使得调整后的调度周期的宽度与另一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内,实现两端传输节点在确定性流传输的弱同步,保证了确定性流的正常转发。

Description

周期同步方法、系统、装置及电子设备 技术领域
本申请涉及网络通信技术,特别涉及周期同步方法、系统、装置及电子设备。
背景技术
在目前的确定性流传输应用中,两端传输节点之间要实现时钟同步都需要硬件层面的支持。比如,5G系统(5GS:5G System)两端的传输节点之间要实现时钟同步为例,则5GS两端的任一传输节点比如网络侧TSN转换器(NW-TT:Network-side TSN translator)、设备侧TSN转换器(DS-TT:Device-side TSN translator)在实现时钟同步时都需要硬件层面的支持。而这对大多数低成本产品,硬件层面很难支撑时间同步。
发明内容
本申请实施例提供了周期同步方法、系统、装置及电子设备,以在两端传输节点的时钟域保持相互独立的前提下实现两端传输节点本地用于调度报文队列的调度周期的同步。
本申请实施例提供了一种周期同步方法,该方法应用于第一传输节点,第一传输节点还连接第二传输节点,第一传输节点的第一时钟域不同于第二传输节点的第二时钟域,第一传输节点和第二传输节点之间的网络系统分别通过第一中间设备连接第一传输节点、以及通过第二中间设备连接第二传输节点,第一中间设备和第二中间设备在网络系统具有相同的第三时钟域;该方法包括:
在检测到报文发送事件时,在所述第一时钟域下的时间点t1[1]向所述第二传输节点发送周期同步信息报文,以用于所述第二传输节点基于所述第一周期同步信息报文确定出需要调整所述第二传输节点本地用于调度报文队列的调度周期的宽度时调整调度周期的宽度,以使调整后的调度周期的宽度与所述第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内;
所述第一周期同步信息报文至少携带:第一传输节点的当前周期C1_1和第一时间信息;其中,当前周期为所述第一传输节点当前所处的用于调度报文队列的调度周期,或者,当前周期为所述第一传输节点本地的系统周期;所述第一时间信息为所述第三时钟域下的一个时间点,其依据所述第三时钟域下与所述第一时钟域中的所述时间点t1[1]对应的时间信息t3[1]确定。
本申请实施例还提供了一种周期同步方法,该方法应用于第二传输节点,第二传输节点还连接第一传输节点,第一传输节点的第一时钟域不同于第二传输节点的第二时钟域,第一传输节点和第二传输节点之间的网络系统分别通过第一中间设备连接第一传输节点、以及通过第二中间设备连接第二传输节点,第一中间设备和第二中间设备在网络系统具有相同的第三时钟域;该方法包括:
在所述第二时钟域下的时间点t2[1]接收所述第一传输节点发送的第一周期同步信息报文,并确定第二传输节点的当前周期C2_1;
依据所述第一周期同步信息报文携带的周期C1_1和第一时间信息,确定在所述时间点t2[1]时所述第一传输节点当前所处的周期C1_2;
依据所述C2_1和所述C1_2,以及第二传输节点之前接收到第二周期同步信息报文时确定的C2_0和C1_0,确定是否调整所述第二传输节点本地用于调度报文队列的调度周期的宽度,如果是,则调整所述第二传输节点本地用于调度报文队列的调度周期的宽度,以使调整后的调度周期的宽度与第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内,C2_0表示第二传输节点接收到第二周期同步信息报文时的当前周期,C1_0表示在第二传输节点接收到第二周期同步信息报文时第一传输节点所处的周期。
本申请实施例还提供一种周期同步系统,该系统包括:第一传输节点和第二传输节点;第一传输节点的第一时钟域不同于第二传输节点的第二时钟域,第一传输节点和第二传输节点之间的网络系统分别通过第一中间设备连接第一传输节点、以及通过第二中间设备连接第二传输节点,第一中间设备和第二中间设备在网络系统具有相同的第三时钟域;
所述第一传输节点执行如上第一种方法中的步骤;
所述第二传输节点执行如上第二种方法中的步骤。
本申请实施例提供一种周期同步装置,该装置应用于第一传输节点,第一传输节点还连接第二传输节点,第一传输节点的第一时钟域不同于第二传输节点的第二时钟域,第一传输节点和第二传输节点之间的网络系统分别通过第一中间设备连接第一传输节点、以及通过第二中间设备连接第二传输节点,第一中间设备和第二中间设备在网络系统具有相同的第三时钟域;该装置包括:
检测单元,用于检测报文发送事件;
发送单元,用于在所述检测单元检测到报文发送事件时,在所述第一时钟域下的时间点t1[1]向所述第二传输节点发送周期同步信息报文,以用于所述第二传输节点基于所述第一周期同步信息报文确定出需要调整所述第二传输节点本地用于调度报文队列的调度周期的宽度时调整调度周期的宽度,以使调整后的调度周期的宽度与所述第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内;
所述第一周期同步信息报文至少携带:第一传输节点的当前周期C1_1和第一时间信息;其中,当前周期为所述第一传输节点当前所处的用于调度报文队列的调度周期,或者,当前周期为所述第一传输节点本地的系统周期;所述第一时间信息为所述第三时钟域下的一个时间点,其依据所述第三时钟域下与所述第一时钟域中的所述时间点t1[1]对应的时间信息t3[1]确定。
本申请实施例提供一种周期同步装置,该装置应用于第二传输节点,第二传输节点还连接第一传输节点,第一传输节点的第一时钟域不同于第二传输节点的第二时钟域,第一传输节点和第二传输节点之间的网络系统分别通过第一中间设备连接第一传输节点、以及通过第二中间设备连接第二传输节点,第一中间设备和第二中间设备在网络系统具有相同的第三时钟域;该装置包括:
接收单元,用于在所述第二时钟域下的时间点t2[1]接收所述第一传输节点发送的第一周期同步 信息报文,并确定第二传输节点的当前周期C2_1;
确定单元,用于依据所述第一周期同步信息报文携带的周期C1_1和第一时间信息,确定在所述时间点t2[1]时所述第一传输节点当前所处的周期C1_2;
调整单元,用于依据所述C2_1和所述C1_2,以及第二传输节点之前接收到第二周期同步信息报文时确定的C2_0和C1_0,确定是否调整所述第二传输节点本地用于调度报文队列的调度周期的宽度,如果是,则调整所述第二传输节点本地用于调度报文队列的调度周期的宽度,以使调整后的调度周期的宽度与第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内,C2_0表示第二传输节点接收到第二周期同步信息报文时的当前周期,C1_0表示在第二传输节点接收到第二周期同步信息报文时第一传输节点所处的周期。
本申请实施例还提供了一种电子设备,该电子设备包括:处理器和机器可读存储介质;
机器可读存储介质存储有能够被所述处理器执行的机器可执行指令;
所述处理器用于执行机器可执行指令,以实现如上任一方法。
本申请实施例还提供一种机器可读存储介质,机器可读存储介质存储有能够被所述处理器执行的机器可执行指令;
所述机器可执行指令被处理器执行,以实现如上任一方法。
由以上技术方案可以看出,本申请实施例中,不再依赖两端传输节点在时钟上严格同步,只需要通过调整一端传输节点本地用于调度报文队列的调度周期的宽度,使得调整后的调度周期的宽度与另一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内,实现两端传输节点在确定性流传输的弱同步,保证了确定性流的正常转发。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1为本申请实施例提供的方法流程图;
图2为本申请实施例提供的另一方法流程图;
图3为本申请实施例提供的组网示意图;
图4为本申请实施例提供的时钟域示意图;
图5为本申请实施例提供的实现时序示意图;
图6为本申请实施例提供的装置结构图;
图7为本申请实施例提供的另一装置结构图;
图8为本申请实施例提供的电子设备结构图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
下面对本申请实施例提供的方法进行描述:
参见图1,图1为本申请实施例提供的方法流程图。该方法应用于第一传输节点,第一传输节点还连接第二传输节点。这里,第一传输节点、第二传输节点只是为便于描述而进行的命名,并非用于限定。以第一传输节点、第二传输节点为5GS两端的传输节点为例,在本实施例中,第一传输节点和第二传输节点中的一个为DS-TT,另一个为NW-TT,或者,则第一传输节点和第二传输节点为两个不同的DS-TT,等等,本实施例并不具体限定。
在本实施例中,第一传输节点的第一时钟域不同于第二传输节点的第二时钟域。
另外,在本实施例中,第一传输节点和第二传输节点之间还存在网络系统。比如,该网络系统为5GS或者其它移动系统等,本实施例并不具体限定。在本实施例中,上述网络系统分别通过第一中间设备连接第一传输节点、以及通过第二中间设备连接第二传输节点,第一中间设备和第二中间设备在网络系统具有相同的第三时钟域。
仍以上述网络系统为5GS为例,通过对5GS进行研究,发现用户面功能网元(UPF:User Plane Function)和终端(UE)在5GS中具有统一的时钟域即5GS时钟域(5GS Timer),并且5GS分别通过UPF、UE这两个中间设备与两个传输点有连接。比如,第一传输节点为NW-TT,第二传输节点为DS-TT时,5GS通过UPF与作为第一传输节点的NW-TT连接,以及通过UE与作为第二传输节点的DS-TT连接,此时上述第一中间设备为UPF,第二中间设备为UE,上述第三时间域为5GS时钟域。
基于此,在本实施例中,第一传输节点和第二传输节点可分别以所连接的第一中间设备和第二中间设备上属于上述第三时间域比如5GS时钟域中的时间信息为参照,并通过交互在宏观上实现第一传输节点和第二传输节点的周期同步。下面通过图1所示的步骤进行举例描述。
如图1所示,该流程可包括以下步骤:
步骤101,在检测到报文发送事件时,执行步骤102。
在本实施例中,报文发送事件有很多实现形式,比如报文发送时间到达(比如发送周期到达、报文发送定时时间到达等)、外部触发等,本实施例并不具体现定。
步骤102,在所述第一时钟域下的时间点t1[1]向第二传输节点发送已构造的第一周期同步信息报文,以用于第二传输节点基于第一周期同步信息报文确定出需要调整第二传输节点本地用于调度报文队列的调度周期的宽度时调整调度周期的宽度,以使调整后的调度周期的宽度与第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内。
在本实施例中,第一周期同步信息报文至少携带:第一传输节点的当前周期(记为C1_1)和第一时间信息。
作为一个实施例,当前周期为第一传输节点当前所处的用于调度报文队列的调度周期,比如指示第i个调度周期。这里的报文队列用于存放属于确定性流的报文。
作为另一个实施例,当前周期为第一传输节点本地的系统周期。在本实施例中,系统周期是指第一传输节点本地已经历的调度周期的总数量,每经历一个调度周期,系统周期增加设定值比如1。
在本实施例中,第一时间信息是第三时钟域下的一个时间点,其可依据第三时钟域下与第一时钟域中的上述时间点t1[1]对应的时间信息(记为t3[1])确定。t3[1]为第三时钟域下的一个时间点。以第三时钟域为5GS下的5GS时钟域为例,则第一时间信息可为5GS中5GS时钟域的一个时间点,其可依据5GS中与上述时间点t1[1]对应的5GS时间点确定。
作为一个实施例,在本实施例中,考虑到第一传输节点与上述第一中间设备之间时间信息的传输时延(记为a),则此时第三时钟域下与第一时钟域中的时间点t1[1]对应的时间信息t3[1]可通过公式1表示:
t3[1]=t3_1[0]+a+Δt1           (公式1)
在公式1中,t3_1[0]为第一传输节点在第一时钟域下的时间点t1[0]获得的第三时钟域下的时间信息,该时间信息为第三时钟域的t3_1[0]时发送,第一传输节点在t1[0]获得。作为一个实施例,t3_1[0]为第三时钟域下的一个时间点,以第三时钟域为5GS下的5GS时钟域为例,则t3_1[0]可为5GS中5GS时钟域的一个时间点。t3_1[0]小于t3[1]。
在公式1中,Δt1表示时间点t1[1]与时间点t1[0]之间的时差。
基于如上描述的t3[1],则作为一个实施例,上述第一时间信息可为上述的t3[1]。
作为另一个实施例,在考虑到精度的前提下,上述第一时间信息也可为t3[1]与t1 CyclePast之差。这里,t1 CyclePast为时间点t1[1]与当前周期的起始时刻之差。
至此,完成图1所示流程。
通过图1所示流程可以看出,在本实施例中,第一传输节点和第二传输节点所连接的网络系统下第三时钟域的时间信息比如5GS时间信息等为参照,通过第一传输节点发送至少携带上述周期标识C1_1(用于标识第一传输节点的当前周期)和第一时间信息(第三时钟域下的一个时间点)的第 一周期同步信息报文,以使第二传输节点基于第一周期同步信息报文确定出需要调整第二传输节点本地用于调度报文队列的调度周期的宽度时,调整第二传输节点本地用于调度报文队列的调度周期的宽度,以使得第二传输节点调整后的调度周期的宽度与第一传输节点第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内,在宏观上实现第一传输节点和第二传输节点本地用于调度报文队列的调度周期的同步,保障了更高抖动精度要求的确定性网络应用场景。
进一步地,本实施例提供的第一传输节点和第二传输节点的调度周期同步方法,不再依赖两端传输节点在时钟上严格同步,只需要通过调整一端传输节点本地用于调度报文队列的调度周期的宽度,使得调整后的调度周期的宽度与另一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内,实现两端传输节点在确定性流传输的弱同步,保证了确定性流的正常转发。
下面站在第二传输节点的角度描述本申请实施例提供的方法:
参见图2,图2为本申请实施例提供的另一方法流程图。该方法应用于上述的第二传输节点。
如图2所示,该流程可包括以下步骤:
步骤201,在第二时钟域下的时间点t2[1]接收第一传输节点发送的第一周期同步信息报文,并确定第二传输节点的当前周期。
在本实施例中,第二传输节点的当前周期记为C2_1。
作为一个实施例,第二传输节点的当前周期为第二传输节点当前所处的调度周期(用于调度报文队列)。比如,第二传输节点在时间点t2[1]正好处于第M个调度周期,则此时第二传输节点的当前周期C2_1可为M。
作为另一个实施例,第二传输节点的当前周期也为第二传输节点本地的系统周期。比如,第二传输节点在时间点t2[1]正好处于第M个调度周期,而此时的第二传输节点本地记录的系统周期为2M,则上述C2_1可为2M。
步骤202,依据第一周期同步信息报文携带的周期C1_1和第一时间信息,确定在时间点t2[1]时第一传输节点当前所处的周期。
在本实施例中,时间点t2[1]时第一传输节点当前所处的周期记为C1_2。
作为一个实施例,为方便确定C1_2,这里可引入第二时间信息。第二时间信息为第三时钟域下的一个时间点,其依据第三时钟域下与第二时钟域中的时间点t2[1]对应的时间信息确定。由于第一时间信息、第二时间信息在同一第三时钟域比如5GS时钟域,则基于第一时间信息与第二时间信息之间的时差很容易确定在时间点t2[1]时对应的第一传输节点的周期。
作为一个实施例,本步骤202中确定在时间点t2[1]时第一传输节点当前所处的周期可通过以下步骤a1至步骤a3实现:
步骤a1,计算第二时间信息与第一时间信息之间的时差。
第二时间信息的确定类似于上述第一时间信息的确定方式,是依据第三时钟域中与时间点t2[1]对应的时间信息确定。这里,第三时钟域中与时间点t2[1]对应的时间信息记为t3[2]。
比如,第一时间信息为第三时钟域下与第一时钟域中的时间点t1[1]对应的时间信息t3[1],对应地,第二时间信息为第三时钟域下与第二时钟域中的时间点t2[1]对应的时间信息t3[2]。
再比如,第一时间信息为t3[1]与上述t1 CyclePast之差,对应地,第二时间信息为上述t3[2]与t2 CyclePast之差,其中,t2 CyclePast为时间点t2[1]与C1_2对应的调度周期(比如上述的第M个调度周期)的起始时刻之差。
作为一个实施例,t3[2]的确定方式类似上述t3[1]。比如,t3[2]通过下述公式2表示:
t3[2]=t3_2[0]+b+Δt2             (公式2)
在公式2中,t3_2[0]表示第二传输节点在第二时钟域下的时间点t2[0]获得的第三时钟域下的时间信息,该时间信息在第三时钟域t3_2[0]时发送,第二传输节点在t2[0]获得。作为一个实施例,在公式2中,t3_2[0]为第三时钟域下的一个时间点,以第三时钟域为5GS下的5GS时钟域为例,则t3_2[0]可为5GS中5GS时钟域的一个时间点。t3_2[0]小于t3[2]。
在公式2中,b表示第二传输节点与第二中间设备之间时间信息的传输时延。Δt2表示时间点t2[0]与时间点t2[1]之间的时差。
如上描述的第二时间信息,其和第一时间信息的确定方式类似,两者都是在第三时钟域比如5GS时钟域下,第一时间信息与第二时间信息可以直接计算时差。
步骤a2,依据时差以及第一传输节点的调度周期的时长,确定该时差对应的第一传输节点的调度周期的周期数量。
在本实施例中,可计算上述时差与第一传输节点的调度周期的时长的商,依据该商确定上述周期数量,比如将最接近该商的正整数确定为上述周期数量。
在本实施例中,因为同步原因,上述时长虽非固定值,但因变化非常小,积累误差对计算影响很小,因此可等同于一常数值。
步骤a3,依据上述周期数量和上述C1_1,确定在时间点t2[1]时第一传输节点当前所处的周期(记为C1_2)。
作为一个实施例,上述C1_2可为上述时间点t2[1]时,第一传输节点当前所处的用于调度报文队列的调度周期。基于此,假若上述C1_1也表示第一传输节点的调度周期,则本步骤a3中,C1_2可为上述C1_1与上述周期数量之和。比如,上述C1_1为L(标识第一传输节点的第L个调度周期),上述周期数量为10,则上述C1_2为L+10,表示第一传输节点的第(L+10)个调度周期。
通过上述步骤a1至步骤a3举例描述了步骤202的具体实现。但这只是举例,并非用于限定。
步骤203,依据C2_1和C1_2,以及第二传输节点之前接收到第二周期同步信息报文时确定的 C2_0和C1_0,确定是否调整第二传输节点的调度周期的宽度,如果是,则调整第二传输节点的调度周期的宽度,以使调整后的调度周期的宽度与第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内,C2_0表示第二传输节点接收到第二周期同步信息报文时的当前周期,C1_0表示在第二传输节点接收到第二周期同步信息报文时第一传输节点当前所处的周期。
在本实施例中,假若C2_1表示第二传输节点接收到第一周期同步信息报文时当前所处的调度周期,对应地,C2_0表示第二传输节点接收到第二周期同步信息报文时当前所处的调度周期。同样,假若C2_1表示第二传输节点接收到第一周期同步信息报文时当前所处的系统周期,对应地,C2_0表示第二传输节点接收到第二周期同步信息报文时当前所处的系统周期。
在本实施例中,假若上述C1_2为上述时间点t2[1]时,第一传输节点当前所处的用于调度报文队列的调度周期,对应地,上述C1_0为在第二传输节点接收到第二周期同步信息报文时第一传输节点当前所处的调度周期。同样,假若上述C1_2为上述时间点t2[1]时,第一传输节点当前所处的系统周期,对应地,上述C1_0为在第二传输节点接收到第二周期同步信息报文时第一传输节点当前所处的系统周期。
作为一个实施例,这里,依据C2_1和C1_2,确定是否调整第二传输节点的调度周期的宽度有很多实现方式,比如下述的步骤b1至步骤b3描述的实现方式:
步骤b1,计算C2_1与C2_0之间的第一增量。
作为一个实施例,第一增量可为C2_1与C2_0之差。当然,假若当前还不存在第二周期同步信息报文的接收记录,则可直接结束当前流程。
步骤b2,计算C1_2与C1_0之间的第二增量。
作为一个实施例,第二增量可为C1_2与C1_0之差。
步骤b3,判断第一增量和第二增量之间的差值是否在预设数值范围内,如果否,确定调整第二传输节点的调度周期的宽度,如果是,确定不调整第二传输节点的调度周期的宽度。
在本实施例中,预设数值范围可根据实际需求设置,本实施例并不具体限定。
另外,在本实施例中,调整第二传输节点的调度周期的宽度也可为调整第二传输节点的调度周期的时长,比如增大第二传输节点的调度周期的时长,或者缩小第二传输节点的调度周期的时长等,具体是增大还是缩小,主要依赖于第一增量和第二增量的差值,这里不进行限定。但不管如何调整,最终目的是保证在宏观上实现第一传输节点和第二传输节点的调度周期同步。
需要说明的是,在本实施例中,为了保证精度,在调整第二传输节点的调度周期的时长时,可限定调整的步长,通过渐近式调整以最终实现在宏观上实现第一传输节点和第二传输节点的调度周期同步。
还需要说明的是,本实施例中,当确定调整第二传输节点的调度周期时,则可直接删除之前接收到第二周期同步信息报文的记录(比如上述的C2_0、C1_0等)。
至此,完成图2所示流程。
通过图2所示流程可以看出,在本实施例中,两端传输节点都以第三时钟域比如5GS时钟域的时间信息为参照,通过第一传输节点发送至少携带上述周期C1_1(用于标识第一传输节点的当前的确定性流调度周期)和第一时间信息的第一周期同步信息报文,第二传输节点基于该第一周期同步信息报文确定是否调整第二传输节点的调度周期,在确定调整第二传输节点的调度周期时调整第二传输节点的调度周期,以使得调整后的的调度周期与第一传输节点的调度周期的偏差在预设范围内,在宏观上实现第一传输节点和第二传输节点的调度周期同步,保障了更高抖动精度要求的确定性网络应用场景。
进一步地,基于上述第一传输节点和第二传输节点的调度周期同步的实现,可以看出本实施例不再依赖两端传输节点在时钟上严格同步,只需要通过调整一端传输节点本地用于调度报文队列的调度周期的宽度,使得调整后的调度周期的宽度与另一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内,实现两端传输节点在确定性流传输的弱同步,保证了确定性流的正常转发,并保证两端传输节点的时钟域保持相互独立。
下面以5GS两端的传输节点为例,对本申请实施例提供的上述方法进行举例描述:
应用于图3所示的组网中,NW-TT通过与5GS中UPF之间的通道连接UPF。这里的通道比如以太连接或者内部连接,取决于NW-TT与UPF是集成在同一设备还是分离实现,本实施例并不具体限定。
在图3所示的组网中,DS-TT通过1PPS和TOD时间信息通道与5GS中的UE相连。图4举例示出了NW-TT、5GS、DS-TT三者之间的时钟域(Timer)关系示意图。5GS具有统一的时钟域(可记为5GS时钟域),UPF和UE的时间在5GS时钟域内时同步的。
假若第一传输节点为NW-TT,第二传输节点为DS-TT,则:
如图5所示的时序,NW-TT先通过与5GS中UPF之间的通道(比如以太连接或者内部连接)获取UPF在5GS时钟域下的当前时间信息t UPF[1](比如上述的t3_1[0]),获取到时间信息t UPF[1]经过的时延设为a,此时NW-TT上的计时为t1 NW-TT[1](也即上述的t1[0])。t1 NW-TT[1]与t UPF[1]之间的映射关系为:t1 NW-TT[1]=t UPF[1]+a。在本实施例中,传输时延a固定且很小,可视为常量。
NW-TT在t1 NW-TT[2](也即上述的t1[1])向DS-TT发送第一周期同步信息报文。这里第一周期同步信息报文携带C1_1和t1 NW-TT2UPF[1](也即上述第一时间信息)。
在本实施例中,C1_1用于表示NW-TT在t1 NW-TT[2]时当前所处的周期。比如,C1_1为NW-TT在t1 NW-TT[2]时当前所处的第2个用于调度报文队列的调度周期,C1_1为2;再比如,C1_1为NW-TT在t1 NW-TT[2]时当前所处的第20个系统周期,C1_1为20。
作为一个实施例,t1 NW-TT2UPF[1]可通过公式3表示:
t1 NW-TT2UPF[1]=t UPF[1]+a+Δt1-t1 CyclePast       (公式3)
在公式3中,t1 CyclePast为时间点t1 NW-TT[2]与上述C1_1表示的周期的起始时刻之差。
在公式3中,Δt1表示时间点t1 NW-TT[2]与时间点t1 NW-TT[1]之间的时差,这里的时差可包括从时间点t1 NW-TT[1]至时间点t1 NW-TT[2]的时延(也包含构造第一周期同步信息报文以及内部处理第一周期同步信息报文等)。在具体实现时,Δt1较小,在这么短的时间内,NW-TT、5GS各独立计时的时钟积累偏差可以忽略,因此Δt1虽是NW-TT的时钟域中的计时,也可以近似看成5GS时钟域的计时。
DS-TT在t2 DS-TT[1](也即上述的t2[1])收到NW-TT发送的第一周期同步信息报文。此时DS-TT在t2 DS-TT[1]时当前所处的周期为C2_1。在一个例子中,C2_1可为DS-TT在t2 DS-TT[1]时当前所处的用于调度报文队列的调度周期。比如,DS-TT在t2 DS-TT[1]时当前正处于第2个调度周期,则C2_1可为2。在另一个例子中,C2_1可为DS-TT在t2 DS-TT[1]时当前所处的系统周期。比如,DS-TT在t2 DS-TT[1]时当前正处于第20个系统周期,则C2_1可为20。
在本实施例中,DS-TT在时间点t2 DS-TT[1]之前,比如在时间点t2 DS-TT[2](也即上述的t3_2[0])通过DS-TT和UE之间的1PPS和TOD时间信息通道精确获得UE的时间信息t UE[1]。此时时间点t2 DS-TT[2]与5GS时钟域下t UE[1]之间的映射关系为:t2 DS-TT[2]=t UE[1]+b。其中,b为DS-TT获得t UE[1]的传输时延(也即DS-TT与UE之间的传输时延)。
在本实施例中,5GS时钟域下与上述时间点t2 DS-TT[1]对应的时间信息(也即上述的t3[2])可近似为:t UE[1]+b+Δt2。其中Δt2虽然用的是DS-TT的时钟域计时,但因Δt2很小,故频偏产生的影响可以忽略。Δt2表示t2 DS-TT[1]与t2 DS-TT[2]之差。
之后,与上述计算t1 NW-TT2UPF[1]类似,本实施例还可采用类似方式计算t2 DS-TT2UE[1](也即上述的第二时间信息)。则本实施例中,t2 DS-TT2UE[1]可通过公式4表示:
t2 DS-TT2UE[1]=t UE[1]+b+Δt2-t2 CyclePast(公式4)
在公式4中,t2 CyclePast为时间点t2 DS-TT[1]与上述C2_1表示的周期的起始时刻之差。
在本实施例中,DS-TT从接收到的第一周期同步信息报文中提取t1 Nw-TT2UPF[1],C1_1。
之后,即可根据提取的t1 NW-TT2UPF[1]和上述的t2 DS-TT2UE[1]可以计算在时间点t2 DS-TT[1]时NW-TT当前的周期C1_2,比如:先计算t2 DS-TT2UE[1]与t1 NW-TT2UPF[1]之间的时差t TT_Delay[1]。因为UE和UPF都是统一的时间域,因此t2 DS-TT2UE[1]与t1 NW-TT2UPF[1]可以直接计算。该计算出的时差近似于5GS内部传输及处理时延。之后,进一步再依据该时差t TT_Delay[1]和NW-TT的调度周期的时长t NW-TTCyleLen[1]计算该时差对应的NW-TT的调度周期的周期数量C TT_Delay[1]。其中,C TT_Delay[1]可通过下式表示:
Figure PCTCN2022109171-appb-000001
在本实施例中,t NW-TTCyleLen[1]变化非常小,并且基于变化产生的积累误差对计算影响很小,因此,t NW-TTCyleLen[1]可等同于一常数值。最后再依据上述周期数量C TT_Delay[1]和上述C1_1确定时间点t2 DS-TT[1]时NW-TT当前的周期C1_2。
本实施例中,C1_1表示NW-TT在t1 NW-TT[2]时当前所处的调度周期,C1_2表示t2 DS-TT[1] 时NW-TT当前所处的调度周期。C1_2可通过如下公式5表示:
C1_2=C1_1+C TT_Delay[1](公式5)。
至此,最终获得以下记录:DS-TT在时间点t2 DS-TT[1]时当前所处的调度周期C2_1、以及在时间点t2 DS-TT[1]时NW-TT当前所处的调度周期C1_2。为便于描述,将本次记录为第I次记录。
假若在第I次之前还存有第J次记录(都是采用类似上述方式得到)。第J次记录了如下内容:DS-TT在接收到第二周期同步信息报文时当前所处的调度周期C2_0、以及在DS-TT接收到第二周期同步信息报文时NW-TT当前所处的调度周期C1_0。
基于此,则分别计算DS-TT和NW-TT的周期增量△C DS-TT(也即上述的第一增量)和△C NW-TT(也即上述的第二增量)。
△C DS-TT=C2_1-C2_0;
△C NW-TT=C1_2–C1_0。
判断△C DS-TT与△C NW-TT的差值是否在预设数值范围内,如果否,对
DS-TT的调度周期进行调整。比如,若△C DS-TT大于△C NW-TT,则增加DS-TT的调度周期的时长(至于增加多少,则依赖于△C DS-TT、△C NW-TT的差值);若△C DS-TT小于△C NW-TT,则减少DS-TT的调度周期的时长(至于减少多少,则依赖于△C DS-TT、△C NW-TT的差值)。
之后,DS-TT即可根据调整后的调度周期调度报文队列中的报文进行转发。
至此,完成本申请实施例的描述。
以上对本申请实施例提供的方法进行了描述。下面对本申请实施例提供的系统和装置进行描述:
本实施例提供了一种周期同步系统,该系统包括:第一传输节点与第二传输节点;其中,第一传输节点执行如图1所示的流程中的步骤;第二传输节点执行如图2所示的流程中的步骤。
对应地,本申请实施例还提供了如图6所示的装置结构图。该装置应用于第一传输节点。该装置对应图1所示流程。
如图6所示,该装置包括:
检测单元,用于检测报文发送事件;
发送单元,用于在检测单元检测到报文发送事件时,在检测到报文发送事件时,在所述第一时钟域下的时间点t1[1]向所述第二传输节点发送周期同步信息报文,以用于所述第二传输节点基于所述第一周期同步信息报文确定出需要调整所述第二传输节点本地用于调度报文队列的调度周期的宽度时调整调度周期的宽度,以使调整后的调度周期的宽度与所述第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内;
所述第一周期同步信息报文至少携带:第一传输节点的当前周期C1_1和第一时间信息;其 中,当前周期为所述第一传输节点当前所处的用于调度报文队列的调度周期,或者,当前周期为所述第一传输节点本地的系统周期;所述第一时间信息为所述第三时钟域下的一个时间点,其依据所述第三时钟域下与所述第一时钟域中的所述时间点t1[1]对应的时间信息t3[1]确定。
作为一个实施例,所述t3[1]通过下式表示:
t3[1]=t3[0]+a+Δt1;
其中,t3_1[0]表示所述第一传输节点在第一时钟域下的时间点t1[0]获得的所述第三时钟域下的时间信息,时间点t1[0]在时间点t1[1]之前;a表示所述第一传输节点与所述第一中间设备之间时间信息的传输时延,Δt1表示时间点t1[1]与时间点t1[0]之间的时差。
作为一个实施例,所述第一时间信息为所述第三时钟域下与所述第一时钟域中的所述时间点t1[1]对应的时间信息t3[1];或者,
所述第一时间信息为所述t3[1]与t1 CyclePast之差,其中,所述t1 CyclePast为所述时间点t1[1]与所述当前周期的起始时刻之差。
作为一个实施例,所述报文发送事件至少包括:报文发送时间到达,或者外部发送指令。
作为一个实施例,所述网络系统为5G系统5GS;
所述第一传输节点为NW-TT,所述第一中间设备为UPF,所述第二传输节点为DS-TT,所述第二中间设备为UE;或者,所述第一传输节点为DS-TT,所述第一中间设备为UE,所述第二传输节点为,所述第二中间设备为UPF;或者,
所述第一传输节点和所述第二传输节点为两个不同的DS-TT,所述第一中间设备和所述第二中间设备为两个不同的UE。
至此,完成图6所示装置的结构描述。
本申请实施例还提供了图7所示装置的结构图。该装置对应图2所示流程。该装置应用于第二传输节点。如图7所示,该装置包括:
接收单元,用于在所述第二时钟域下的时间点t2[1]接收所述第一传输节点发送的第一周期同步信息报文,并确定第二传输节点的当前周期C2_1;
确定单元,用于依据所述第一周期同步信息报文携带的周期C1_1和第一时间信息,确定在所述时间点t2[1]时所述第一传输节点当前所处的周期C1_2。
调整单元,用于依据所述C2_1和所述C1_2,以及第二传输节点之前接收到第二周期同步信息报文时确定的C2_0和C1_0,确定是否调整所述第二传输节点本地用于调度报文队列的调度周期的宽度,如果是,则调整所述第二传输节点本地用于调度报文队列的调度周期的宽度,以使调整后的调度周期的宽度与第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内,C2_0表示第二传输节点接收到第二周期同步信息报文时的当前周期,C1_0表示在第二传输 节点接收到第二周期同步信息报文时第一传输节点所处的周期。
作为一个实施例,所述确定单元依据所述第一周期同步信息报文携带的周期C1_1和第一时间信息,确定在所述时间点t2[1]时所述第一传输节点当前所处的周期C1_2包括:
计算第二时间信息与所述第一时间信息之间的时差;所述第二时间信息第三时钟域下的一个时间点,其依据第三时钟域下与第二时钟域中的时间点t2[1]对应的时间信息t3[2]确定;
依据时差以及第一传输节点的调度周期的时长,确定该时差对应的第一传输节点的调度周期的周期数量;
依据上述周期数量和上述C1_1,确定在时间点t2[1]时第一传输节点当前所处的周期C1_2。
作为一个实施例,t3[2]通过下述公式表示:t3[2]=t3_2[0]+b+Δt2;
其中,t3_2[0]表示第二传输节点在第二时钟域下的时间点t2[0]获得的第三时钟域下的时间信息,其中,时间点t2[0]在时间点t2[1]之前;b表示第二传输节点与第二中间设备之间时间信息的传输时延,所述Δt2表示时间点t2[1]与时间点t2[0]之间的时差。
作为一个实施例,所述第二时间信息为所述t3[2];或者,
所述第二时间信息为所述t3[2]与t2 CyclePast之差,其中,所述t2 CyclePast为所述时间点t2[1]与C2_1表示的周期的起始时刻之差。
作为一个实施例,所述调整单元依据所述C2_1和所述C1_2,以及第二传输节点之前接收到第二周期同步信息报文时确定的C2_0和C1_0,确定是否调整所述第二传输节点本地用于调度报文队列的调度周期的宽度包括:
计算C2_1与C2_0之间的第一增量;
计算C1_2与C1_0之间的第二增量;
判断所述第一增量和所述第二增量之间的差值是否在预设数值范围内,如果否,确定调整所述第二传输节点的调度周期的宽度,如果是,确定不调整所述第二传输节点的调度周期的宽度。
作为一个实施例,所述网络系统为5G系统5GS;
所述第一传输节点为NW-TT,所述第一中间设备为UPF,所述第二传输节点为DS-TT,所述第二中间设备为UE;或者,所述第一传输节点为DS-TT,所述第一中间设备为UE,所述第二传输节点为NW-TT,所述第二中间设备为UPF;或者,
所述第一传输节点和所述第二传输节点为两个不同的DS-TT,所述第一中间设备和所述第二中间设备为两个不同的UE。
至此,完成图7所示装置的结构描述。
图8为本申请实施例提供的电子设备结构图。如图8所示,该硬件结构可包括:处理器和机器可读存储介质,机器可读存储介质存储有能够被所述处理器执行的机器可执行指令;所述处理 器用于执行机器可执行指令,以实现本申请上述示例公开的方法。
基于与上述方法同样的申请构思,本申请实施例还提供一种机器可读存储介质,所述机器可读存储介质上存储有若干计算机指令,所述计算机指令被处理器执行时,能够实现本申请上述示例公开的方法。
示例性的,上述机器可读存储介质可以是任何电子、磁性、光学或其它物理存储装置,可以包含或存储信息,如可执行指令、数据,等等。例如,机器可读存储介质可以是:RAM(Radom Access Memory,随机存取存储器)、易失存储器、非易失性存储器、闪存、存储驱动器(如硬盘驱动器)、固态硬盘、任何类型的存储盘(如光盘、DVD等),或者类似的存储介质,或者它们的组合。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机,计算机的具体形式可以是个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件收发设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任意几种设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可以由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其它可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其它可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
而且,这些计算机程序指令也可以存储在能引导计算机或其它可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或者多个流程和/或方框图一个方框或者多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其它可编程数据处理设备上,使得在计算机或者其它可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其它可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本 申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (25)

  1. 一种周期同步方法,其特征在于,该方法应用于第一传输节点,第一传输节点还连接第二传输节点,第一传输节点的第一时钟域不同于第二传输节点的第二时钟域,第一传输节点和第二传输节点之间的网络系统分别通过第一中间设备连接第一传输节点、以及通过第二中间设备连接第二传输节点,第一中间设备和第二中间设备在网络系统具有相同的第三时钟域;该方法包括:
    在检测到报文发送事件时,在所述第一时钟域下的时间点t1[1]向所述第二传输节点发送周期同步信息报文,以用于所述第二传输节点基于所述第一周期同步信息报文确定出需要调整所述第二传输节点本地用于调度报文队列的调度周期的宽度时调整调度周期的宽度,以使调整后的调度周期的宽度与所述第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内;
    所述第一周期同步信息报文至少携带:第一传输节点的当前周期C1_1和第一时间信息;其中,当前周期为所述第一传输节点当前所处的用于调度报文队列的调度周期,或者,当前周期为所述第一传输节点本地的系统周期;所述第一时间信息为所述第三时钟域下的一个时间点,其依据所述第三时钟域下与所述第一时钟域中的所述时间点t1[1]对应的时间信息t3[1]确定。
  2. 根据权利要求1所述的方法,其特征在于,所述t3[1]通过下式表示:
    t3[1]=t3_1[0]+a+Δt1;
    其中,t3_1[0]表示所述第一传输节点在第一时钟域下的时间点t1[0]获得的所述第三时钟域下的时间信息,时间点t1[0]在时间点t1[1]之前,a表示所述第一传输节点与所述第一中间设备之间时间信息的传输时延,所述Δt1表示时间点t1[1]与时间点t1[0]之间的时差。
  3. 根据权利要求1所述的方法,其特征在于,所述第一时间信息为所述第三时钟域下与所述第一时钟域中的所述时间点t1[1]对应的时间信息t3[1];或者,
    所述第一时间信息为所述t3[1]与t1 CyclePast之差,其中,所述t1 CyclePast为所述时间点t1[1]与所述当前周期的起始时刻之差。
  4. 根据权利要求1所述的方法,其特征在于,所述报文发送事件至少包括:报文发送时间到达,或者外部发送指令。
  5. 根据权利要求1所述的方法,其特征在于,所述网络系统为5G系统5GS;
    所述第一传输节点为网络侧TSN转换器NW-TT,所述第一中间设备为用户面功能网元UPF,所述第二传输节点为设备侧TSN转换器DS-TT,所述第二中间设备为终端UE;或者,所述第一传输节点为设备侧TSN转换器DS-TT,所述第一中间设备为UE,所述第二传输节点为网络侧TSN转换器NW-TT,所述第二中间设备为UPF;或者,
    所述第一传输节点和所述第二传输节点为两个不同的DS-TT,所述第一中间设备和所述第二中间设备为两个不同的UE。
  6. 一种周期同步方法,其特征在于,该方法应用于第二传输节点,第二传输节点还连接第一传输节点,第一传输节点的第一时钟域不同于第二传输节点的第二时钟域,第一传输节点和第二传输节点之间的网络系统分别通过第一中间设备连接第一传输节点、以及通过第二中间设备连接第二传输节点,第一中间设备和第二中间设备在网络系统具有相同的第三时钟域;该方法包括:
    在所述第二时钟域下的时间点t2[1]接收所述第一传输节点发送的第一周期同步信息报文,并确定第二传输节点的当前周期C2_1;
    依据所述第一周期同步信息报文携带的周期C1_1和第一时间信息,确定在所述时间点t2[1]时所述第一传输节点当前所处的周期C1_2;
    依据所述C2_1和所述C1_2,以及第二传输节点之前接收到第二周期同步信息报文时确定的C2_0和C1_0,确定是否调整所述第二传输节点本地用于调度报文队列的调度周期的宽度,如果是,则调整所述第二传输节点本地用于调度报文队列的调度周期的宽度,以使调整后的调度周期的宽度与第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内,C2_0表示第二传输节点接收到第二周期同步信息报文时的当前周期,C1_0表示在第二传输节点接收到第二周期同步信息报文时第一传输节点所处的周期。
  7. 根据权利要求6所述的方法,其特征在于,所述依据所述第一周期同步信息报文携带的周期C1_1和第一时间信息,确定在所述时间点t2[1]时所述第一传输节点当前所处的周期C1_2包括:
    计算第二时间信息与所述第一时间信息之间的时差;所述第二时间信息为第三时钟域下的一个时间点,其依据第三时钟域下与第二时钟域中的时间点t2[1]对应的时间信息t3[2]确定;
    依据时差以及第一传输节点的调度周期的时长,确定该时差对应的第一传输节点的调度周期的周期数量;
    依据所述周期数量和所述C1_1,确定在时间点t2[1]时第一传输节点所处的周期C1_2。
  8. 根据权利要求7所述的方法,其特征在于,
    t3[2]通过下述公式表示:t3[2]=t3_2[0]+b+Δt2;
    其中,t3_2[0]表示第二传输节点在第二时钟域下的时间点t2[0]获得的第三时钟域下的时间信息,其中,时间点t2[0]在时间点t2[1]之前;b表示第二传输节点与第二中间设备之间时间信息的传输时延,所述Δt2表示时间点t2[1]与时间点t2[0]之间的时差。
  9. 根据权利要求7所述的方法,其特征在于,所述第二时间信息为所述t3[2];或者,
    所述第二时间信息为所述t3[2]与t2 CyclePast之差,其中,所述t2 CyclePast为所述时间点t2[1]与C2_1表示的周期的起始时刻之差。
  10. 根据权利要求6所述的方法,其特征在于,所述依据所述C2_1和所述C1_2,以及第二传输节点之前接收到第二周期同步信息报文时确定的C2_0和C1_0,确定是否调整所述第二传输节点本地用于调度报文队列的调度周期的宽度包括:
    计算C2_1与C2_0之间的第一增量;
    计算C1_2与C1_0之间的第二增量;
    判断所述第一增量和所述第二增量之间的差值是否在预设数值范围内,如果否,确定调整所述第二传输节点的调度周期的宽度,如果是,确定不调整所述第二传输节点的调度周期的宽度。
  11. 根据权利要求6所述的方法,其特征在于,所述网络系统为5G系统5GS;
    所述第一传输节点为网络侧TSN转换器NW-TT,所述第一中间设备为用户面功能网元UPF,所述第二传输节点为设备侧TSN转换器DS-TT,所述第二中间设备为终端UE;或者,所述第一传 输节点为设备侧TSN转换器DS-TT,所述第一中间设备为UE,所述第二传输节点为网络侧TSN转换器NW-TT,所述第二中间设备为UPF;或者,
    所述第一传输节点和所述第二传输节点为两个不同的DS-TT,所述第一中间设备和所述第二中间设备为两个不同的UE。
  12. 一种周期同步系统,其特征在于,该系统包括:第一传输节点和第二传输节点;第一传输节点的第一时钟域不同于第二传输节点的第二时钟域,第一传输节点和第二传输节点之间的网络系统分别通过第一中间设备连接第一传输节点、以及通过第二中间设备连接第二传输节点,第一中间设备和第二中间设备在网络系统具有相同的第三时钟域;
    所述第一传输节点执行如权利要求1至5任一所述方法中的步骤;
    所述第二传输节点执行如权利要求6至11任一所述方法中的步骤。
  13. 一种周期同步装置,其特征在于,该装置应用于第一传输节点,第一传输节点还连接第二传输节点,第一传输节点的第一时钟域不同于第二传输节点的第二时钟域,第一传输节点和第二传输节点之间的网络系统分别通过第一中间设备连接第一传输节点、以及通过第二中间设备连接第二传输节点,第一中间设备和第二中间设备在网络系统具有相同的第三时钟域;该装置包括:
    检测单元,用于检测报文发送事件;
    发送单元,用于在所述检测单元检测到报文发送事件时,在所述第一时钟域下的时间点t1[1]向所述第二传输节点发送周期同步信息报文,以用于所述第二传输节点基于所述第一周期同步信息报文确定出需要调整所述第二传输节点本地用于调度报文队列的调度周期的宽度时调整调度周期的宽度,以使调整后的调度周期的宽度与所述第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内;
    所述第一周期同步信息报文至少携带:第一传输节点的当前周期C1_1和第一时间信息;其中,当前周期为所述第一传输节点当前所处的用于调度报文队列的调度周期,或者,当前周期为所述第一传输节点本地的系统周期;所述第一时间信息为所述第三时钟域下的一个时间点,其依据所述第三时钟域下与所述第一时钟域中的所述时间点t1[1]对应的时间信息t3[1]确定。
  14. 根据权利要求13所述的装置,其特征在于,所述t3[1]通过下式表示:
    t3[1]=t3_1[0]+a+Δt1;
    其中,t3_1[0]表示所述第一传输节点在第一时钟域下的时间点t1[0]获得的所述第三时钟域下的时间信息,时间点t1[0]在时间点t1[1]之前,a表示所述第一传输节点与所述第一中间设备之间时间信息的传输时延,所述Δt1表示时间点t1[1]与时间点t1[0]之间的时差。
  15. 根据权利要求13所述的装置,其特征在于,所述第一时间信息为所述第三时钟域下与所述第一时钟域中的所述时间点t1[1]对应的时间信息t3[1];或者,
    所述第一时间信息为所述t3[1]与t1 CyclePast之差,其中,所述t1 CyclePast为所述时间点t1[1]与所述当前周期的起始时刻之差。
  16. 根据权利要求13所述的装置,其特征在于,所述报文发送事件至少包括:报文发送时间到达,或者外部发送指令。
  17. 根据权利要求13所述的装置,其特征在于,所述网络系统为5G系统5GS;
    所述第一传输节点为网络侧TSN转换器NW-TT,所述第一中间设备为用户面功能网元UPF,所述第二传输节点为设备侧TSN转换器DS-TT,所述第二中间设备为终端UE;或者,所述第一传输节点为设备侧TSN转换器DS-TT,所述第一中间设备为UE,所述第二传输节点为网络侧TSN转换器NW-TT,所述第二中间设备为UPF;或者,
    所述第一传输节点和所述第二传输节点为两个不同的DS-TT,所述第一中间设备和所述第二中间设备为两个不同的UE。
  18. 一种周期同步装置,其特征在于,该装置应用于第二传输节点,第二传输节点还连接第一传输节点,第一传输节点的第一时钟域不同于第二传输节点的第二时钟域,第一传输节点和第二传输节点之间的网络系统分别通过第一中间设备连接第一传输节点、以及通过第二中间设备连接第二传输节点,第一中间设备和第二中间设备在网络系统具有相同的第三时钟域;该装置包括:
    接收单元,用于在所述第二时钟域下的时间点t2[1]接收所述第一传输节点发送的第一周期同步信息报文,并确定第二传输节点的当前周期C2_1;
    确定单元,用于依据所述第一周期同步信息报文携带的周期C1_1和第一时间信息,确定在所述时间点t2[1]时所述第一传输节点当前所处的周期C1_2;
    调整单元,用于依据所述C2_1和所述C1_2,以及第二传输节点之前接收到第二周期同步信息报文时确定的C2_0和C1_0,确定是否调整所述第二传输节点本地用于调度报文队列的调度周期的宽度,如果是,则调整所述第二传输节点本地用于调度报文队列的调度周期的宽度,以使调整后的调度周期的宽度与第一传输节点本地用于调度报文队列的调度周期的宽度的偏差在预设同步范围内,C2_0表示第二传输节点接收到第二周期同步信息报文时的当前周期,C1_0表示在第二传输节点接收到第二周期同步信息报文时第一传输节点所处的周期。
  19. 根据权利要求18所述的装置,其特征在于,所述确定单元依据所述第一周期同步信息报文携带的周期C1_1和第一时间信息,确定在所述时间点t2[1]时所述第一传输节点当前所处的周期C1_2包括:
    计算第二时间信息与所述第一时间信息之间的时差;所述第二时间信息为第三时钟域下的一个时间点,其依据第三时钟域下与第二时钟域中的时间点t2[1]对应的时间信息t3[2]确定;
    依据时差以及第一传输节点的调度周期的时长,确定该时差对应的第一传输节点的调度周期的周期数量;
    依据所述周期数量和所述C1_1,确定在时间点t2[1]时第一传输节点所处的周期C1_2。
  20. 根据权利要求19所述的装置,其特征在于,
    t3[2]通过下述公式表示:t3[2]=t3_2[0]+b+Δt2;
    其中,t3_2[0]表示第二传输节点在第二时钟域下的时间点t2[0]获得的第三时钟域下的时间信息,其中,时间点t2[0]在时间点t2[1]之前;b表示第二传输节点与第二中间设备之间时间信息的传输时延,所述Δt2表示时间点t2[1]与时间点t2[0]之间的时差。
  21. 根据权利要求19所述的装置,其特征在于,所述第二时间信息为所述t3[2];或者,
    所述第二时间信息为所述t3[2]与t2 CyclePast之差,其中,所述t2 CyclePast为所述时间点t2[1]与C2_1表示的周期的起始时刻之差。
  22. 根据权利要求18所述的装置,其特征在于,所述调整单元依据所述C2_1和所述C1_2,以及第二传输节点之前接收到第二周期同步信息报文时确定的C2_0和C1_0,确定是否调整所述第二传输节点本地用于调度报文队列的调度周期的宽度包括:
    计算C2_1与C2_0之间的第一增量;
    计算C1_2与C1_0之间的第二增量;
    判断所述第一增量和所述第二增量之间的差值是否在预设数值范围内,如果否,确定调整所述第二传输节点的调度周期的宽度,如果是,确定不调整所述第二传输节点的调度周期的宽度。
  23. 根据权利要求18所述的装置,其特征在于,所述网络系统为5G系统5GS;
    所述第一传输节点为网络侧TSN转换器NW-TT,所述第一中间设备为用户面功能网元UPF,所述第二传输节点为设备侧TSN转换器DS-TT,所述第二中间设备为终端UE;或者,所述第一传输节点为设备侧TSN转换器DS-TT,所述第一中间设备为UE,所述第二传输节点为网络侧TSN转换器NW-TT,所述第二中间设备为UPF;或者,
    所述第一传输节点和所述第二传输节点为两个不同的DS-TT,所述第一中间设备和所述第二中间设备为两个不同的UE。
  24. 一种电子设备,其特征在于,该电子设备包括:处理器和机器可读存储介质;
    机器可读存储介质存储有能够被所述处理器执行的机器可执行指令;
    所述处理器用于执行机器可执行指令,以实现权利要求1至11任一所述的方法。
  25. 一种机器可读存储介质,其特征在于,机器可读存储介质存储有能够被处理器执行的机器可执行指令;
    所述机器可执行指令被处理器执行,以实现权利要求1至11任一所述的方法。
PCT/CN2022/109171 2022-07-29 2022-07-29 周期同步方法、系统、装置及电子设备 WO2024021091A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/109171 WO2024021091A1 (zh) 2022-07-29 2022-07-29 周期同步方法、系统、装置及电子设备
CN202280002524.7A CN117941288A (zh) 2022-07-29 2022-07-29 周期同步方法、系统、装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109171 WO2024021091A1 (zh) 2022-07-29 2022-07-29 周期同步方法、系统、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2024021091A1 true WO2024021091A1 (zh) 2024-02-01

Family

ID=89705088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109171 WO2024021091A1 (zh) 2022-07-29 2022-07-29 周期同步方法、系统、装置及电子设备

Country Status (2)

Country Link
CN (1) CN117941288A (zh)
WO (1) WO2024021091A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111698787A (zh) * 2019-03-14 2020-09-22 华为技术有限公司 调度规则确定方法及其装置
CN111865830A (zh) * 2019-04-29 2020-10-30 华为技术有限公司 一种时延敏感网络业务tsn的处理方法、装置及系统
CN113556763A (zh) * 2019-09-27 2021-10-26 腾讯科技(深圳)有限公司 实现时间敏感网络的数据传输的方法、相关设备及介质
CN113747512A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 一种通信方法、装置及计算机可读存储介质
WO2022023555A1 (en) * 2020-07-30 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Handling reference time delivery failure in a time-sensitive network (tsn)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111698787A (zh) * 2019-03-14 2020-09-22 华为技术有限公司 调度规则确定方法及其装置
CN111865830A (zh) * 2019-04-29 2020-10-30 华为技术有限公司 一种时延敏感网络业务tsn的处理方法、装置及系统
CN113556763A (zh) * 2019-09-27 2021-10-26 腾讯科技(深圳)有限公司 实现时间敏感网络的数据传输的方法、相关设备及介质
CN113747512A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 一种通信方法、装置及计算机可读存储介质
WO2022023555A1 (en) * 2020-07-30 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Handling reference time delivery failure in a time-sensitive network (tsn)

Also Published As

Publication number Publication date
CN117941288A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US11888588B2 (en) Clock drift processing method, network element, and storage medium
US11314567B2 (en) Methods and apparatus for scheduling time sensitive operations among independent processors
CN101449520B (zh) 网络时间协议精确时间戳标记服务
US10084559B1 (en) System and method for maintaining a time of day in a port of a PHY module
US11552871B2 (en) Receive-side timestamp accuracy
US20080095198A1 (en) Playout based delay scheduler
WO2015116980A1 (en) Network clock skew estimation and calibration
WO2017101528A1 (zh) 一种时钟链路切换方法、装置及基站
TWI794645B (zh) 傳輸資料包的方法和實施該方法的裝置
WO2010057398A1 (zh) 透传时钟的实现装置和方法
CN106464398A (zh) 网络时钟比较的系统和方法
CN116456450B (zh) 一种EtherCAT与5G融合组网的时间同步方法
US20220007321A1 (en) Network Entities and Methods for a Wireless Network System for Determining Time Information
US20220329338A1 (en) Synchronizing a distributed application via a communication network
US11678288B2 (en) Synchronization of time sensitive communication hold-and-forward buffers with time sensitive communication assistance information
WO2020104005A1 (en) Signalling of dejittering buffer capabilities for tsn integration
WO2024021091A1 (zh) 周期同步方法、系统、装置及电子设备
WO2010102565A1 (zh) 时间同步的方法、装置和系统
CN108183762B (zh) RapidIO网络系统和RapidIO网络系统的时间同步方法
CN112751641A (zh) 一种tsn网络时间同步方法、设备及储存介质
US10334539B2 (en) Metered interface
US20090073889A1 (en) Phy bandwidth estimation from backpressure patterns
JP2009171529A (ja) 受信装置及び通信データリオーダリング処理方法
US10812402B2 (en) Shaping of post-scheduling network pipeline jitter
KR101203529B1 (ko) 네트워크에서 단말들간의 애플리케이션을 동기화하는 방법및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002524.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022952538

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022952538

Country of ref document: EP

Effective date: 20240527