WO2013069591A1 - 慣性駆動アクチュエータ - Google Patents
慣性駆動アクチュエータ Download PDFInfo
- Publication number
- WO2013069591A1 WO2013069591A1 PCT/JP2012/078583 JP2012078583W WO2013069591A1 WO 2013069591 A1 WO2013069591 A1 WO 2013069591A1 JP 2012078583 W JP2012078583 W JP 2012078583W WO 2013069591 A1 WO2013069591 A1 WO 2013069591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- generating means
- vibration substrate
- field generating
- drive actuator
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 101
- 230000004907 flux Effects 0.000 claims abstract description 32
- 238000006073 displacement reaction Methods 0.000 claims abstract description 19
- 239000000696 magnetic material Substances 0.000 claims description 3
- 230000002940 repellent Effects 0.000 abstract 1
- 239000005871 repellent Substances 0.000 abstract 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 239000012141 concentrate Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K33/00—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
- H02K33/18—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/021—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
- H02N2/025—Inertial sliding motors
Definitions
- the present invention relates to an inertial drive actuator that moves a moving element in a predetermined direction.
- an actuator for supplying a sawtooth drive pulse to an electromechanical transducer coupled to a drive shaft to displace the drive shaft in the axial direction and moving a moving member frictionally coupled to the drive shaft in the axial direction.
- an actuator is referred to as an “impact drive actuator” or an “inertia drive actuator”.
- FIG. 9A is a diagram showing the configuration.
- the vibration member 103 is inserted into a hole formed in the rising portion of the support member 101, and is disposed so as to be movable in the axial direction of the vibration member 103.
- One end of the vibration member 103 is fixed to one end of the piezoelectric element 102, and the other end of the piezoelectric element 102 is fixed to the support member 101. For this reason, the vibration member 103 vibrates in the axial direction with the vibration of the piezoelectric element 102.
- the moving body 104 is also provided with two holes, and the vibration member 103 is inserted into the holes.
- a leaf spring 105 is attached to the moving body 104 from below, and a protrusion provided on the leaf spring 105 is pressed against the vibration member 103.
- the moving body 104 and the vibration member 103 are frictionally coupled to each other by the pressing by the leaf spring 105.
- FIGS. 9B and 9C show drive waveforms for driving the impact drive actuator.
- FIG. 9B shows a driving waveform for moving the moving body 104 to the right
- FIG. 9C shows a driving waveform for moving the moving body 104 to the left.
- the operation principle of the impact drive actuator will be described using these drive waveforms.
- the direction in which the piezoelectric element 102 extends is left and the direction in which the piezoelectric element 102 contracts is right.
- the vertical axis V represents voltage
- the horizontal axis T represents time.
- the drive waveform shown in FIG. 9B When moving the moving body 104 to the right, the drive waveform shown in FIG. 9B is used.
- the drive waveform has a part that rises steeply and a part that falls gently.
- the piezoelectric element 102 extends rapidly.
- the vibration member 103 since the vibration member 103 is fixed to the piezoelectric element 102, the vibration member 103 rapidly moves to the left in response to the rapid expansion of the piezoelectric element 102.
- the inertia of the moving body 104 overcomes the frictional coupling force with the vibrating member 103 (the frictional force between the moving body 104 pressed by the leaf spring 105 and the vibrating member 103). Does not move to the left, but stays in that position.
- the piezoelectric element 102 gradually shrinks.
- the vibrating member 103 moves slowly to the right according to the gentle contraction of the piezoelectric element 102.
- the inertia of the moving body 104 cannot overcome the frictional coupling force with the vibrating member 103. Therefore, the moving body 104 moves to the right along with the movement of the vibration member 103.
- the drive waveform has a part that rises gently and a part that falls sharply.
- the piezoelectric element 102 extends gently.
- the vibrating member 103 moves slowly to the left in accordance with the gentle expansion of the piezoelectric element 102.
- the inertia of the moving body 104 cannot overcome the frictional coupling force with the vibrating member 103. Therefore, the moving body 104 moves to the left along with the movement of the vibration member 103.
- the inertia of the moving body 104 overcomes the frictional coupling force with the vibration member 103, so the moving body 104 moves to the right. Does not move and stays in that position.
- the movable body 104 is supported by the vibration member 103 by friction because the leaf spring 105 is always pressed against the vibration member 103. Therefore, the position is maintained even when the moving body 104 is stopped.
- the impact drive actuator is an actuator that uses the frictional coupling and inertia between the moving body 104 and the vibration member 103 by the leaf spring 105, and uses the drive waveforms shown in FIGS. 9B and 9C.
- the actuator can move the moving body 104.
- the impact drive actuator described in Patent Document 1 applies a frictional force to the vibrating member 103 and the moving body 104 by a leaf spring.
- a desired frictional force cannot be obtained due to the influence of wear or the like. Therefore, the impact drive actuator described in Patent Document 1 may not be able to operate stably over a long period of time.
- the present invention has been made in view of the above circumstances, and is less affected by wear and the like, and can move or drive the mover efficiently, improving the durability of the wiring, preventing disconnection, and stable driving over a long period of time. It is an object of the present invention to provide an inertial drive actuator capable of performing the above.
- an inertial drive actuator includes: Displacement means for generating a minute displacement in a second direction opposite to the first direction and the first direction; A vibration substrate that reciprocates by a minute displacement of the displacement means; A mover arranged on the plane of the vibration substrate; First magnetic field generating means for generating a magnetic field so that a magnetic attractive force or a magnetic repulsive force acts in a direction facing the moving element of the vibration substrate; The mover induces the magnetic flux generated by the first magnetic field generating means so that the magnetic flux generated by the first magnetic field generating means is concentrated on both the N pole and the S pole on the surface of the mover facing the vibration substrate.
- the second yoke is such that the magnetic flux generated by the first magnetic field generating means is concentrated on both the north and south poles on the surface on the stator side.
- the second magnetic field generation that generates a magnetic field so that a magnetic attractive force or a magnetic repulsive force acts in a direction in which the moving element faces the vibration substrate.
- the second magnetic field generating means is arranged so that the magnetic flux generated by the second magnetic field generating means together with the first magnetic field generating means is concentrated on both the north and south poles on the surface on the stator side.
- the second magnetic field generating means In order to induce the generated magnetic flux, it is arranged around the second magnetic field generating means, By controlling the magnetic field generated from at least one of the first magnetic field generating means and the second magnetic field generating means, the frictional force acting between the moving element and the vibration substrate is controlled to drive the moving element. It is desirable.
- the first magnetic field generating means is an electromagnetic coil.
- the second magnetic field generating means is a permanent magnet.
- the displacement means is a piezoelectric element.
- the vibration substrate is a non-magnetic material.
- the vibration substrate has a nonmagnetic part and a magnetic part.
- the vibration substrate has the first magnetic field generating means.
- the vibration substrate has the second magnetic field generating means.
- the vibration substrate also serves as the function of the second yoke.
- the moving element has a permanent magnet.
- the influence of wear and the like can be reduced by using magnetic force, and the moving body (moving element) can be efficiently moved or driven by using the yoke, and the durability of the wiring is improved.
- the inertial drive actuator that is prevented from being disconnected and can be driven stably over a long period of time.
- FIG. 1 It is a figure which shows the drive method when driving the inertial drive actuator of 1st Embodiment.
- FIG. 1 A)-(c) is a side view which shows the structure of the inertial drive actuator of 5th Embodiment.
- (A)-(c) is a figure which shows the drive method when driving the inertial drive actuator of 5th Embodiment. It is a figure which shows the conventional impact drive actuator, Comprising: (a) The figure which shows a structure, (b) The figure which shows the drive waveform for moving a slider to the right, (c) For moving a slider to the left It is a figure which shows a drive waveform.
- FIG. 1A is a side view of the inertial drive actuator
- FIG. 1B is a cross-sectional view at a position indicated by AA in FIG. 1A.
- the inertial drive actuator 100 includes a piezoelectric element (displacement means) 3, a vibration substrate 4, a mover 10, and a stator 20.
- the piezoelectric element 3 and the vibration substrate 4 are located above the stator 20, and the mover 10 is located above the vibration substrate 4.
- the mover 10 has the function of the first yoke 9.
- the piezoelectric element 3 and the vibration substrate 4 are both plate-like members. Here, a non-magnetic material is used for the vibration substrate 4. One end of the piezoelectric element 3 and one end of the vibration substrate 4 are mechanically connected. In addition, it is not restricted to the structure connected mechanically, Bonding may be sufficient.
- the piezoelectric element 3 and the vibration substrate 4 are placed on the stator 20. The piezoelectric element 3 generates a minute displacement, and the vibration substrate 4 reciprocates due to the minute displacement.
- the piezoelectric element 3 (displacement means) generates a minute displacement in the second direction opposite to the first direction and the first direction. Due to the minute displacement of the piezoelectric element 3, the vibration substrate 4 reciprocates.
- the mover 10 is disposed on the plane of the vibration substrate 4.
- the coil 11 that generates a magnetic field so that a magnetic attractive force or a magnetic repulsive force acts on the stator 20 side in a direction facing the moving element 10 of the vibration substrate 4 (first Magnetic field generating means) is provided.
- the coil 11 is, for example, an electromagnetic coil wound around a coil core.
- second yokes 12 and 22 magnetic flux guiding members for guiding the magnetic flux generated by the coil 11 are formed so that the magnetic flux generated by the coil 11 is concentrated on both the N pole and the S pole.
- the member for winding the coil 11 also functions as the second yoke 12.
- the second yokes 12 and 22 control the magnetic field generated from the coil 11 so that the magnetic flux generated by the coil 11 is concentrated on both the north and south poles on the surface (predetermined position) on the stator 20 side. As a result, the frictional force acting between the movable element 10 and the vibration substrate 4 is controlled to drive the movable element 10.
- a permanent magnet 21 (second magnetic field generation) that generates a magnetic field so that a magnetic attractive force or a magnetic repulsive force acts in a direction in which the moving element 10 faces the vibration substrate 4. (Means) can be further provided.
- the second yoke 22 is configured such that the magnetic flux generated by the permanent magnet 21 (second magnetic field generating means) together with the coil 11 (first magnetic field generating means) is N pole on the surface (predetermined position) on the stator 20 side. In order to induce the magnetic flux generated by the permanent magnet 21 (second magnetic field generating means) so that both the S poles are concentrated, they are arranged with respect to the permanent magnet 21 (around the second magnetic field generating means). Then, by controlling the magnetic field generated from at least one of the coil 11 (first magnetic field generating means) and the permanent magnet 21 (second magnetic field generating means), the distance between the movable element 10 and the vibration substrate 4 is controlled. The moving force is driven by controlling the frictional force acting on the actuator 10.
- the stator 20 includes a coil 11, second yokes (magnetic flux guide members) 12, 22, and a permanent magnet 21 (second magnetic field generating means).
- the permanent magnet 21 is a rectangular parallelepiped member, and one surface side (upper side surface) is an N pole, and the other surface side (lower side surface) is an S pole.
- the length of the coil 11 in the longitudinal direction is substantially the same as the length of the permanent magnet 21 in the longitudinal direction.
- the second yoke 22 is a box-shaped member.
- the permanent magnet 21 is placed inside the second yoke 22 with the N-pole side face up.
- the permanent magnet 21 is fixed to the bottom surface portion of the second yoke 22. Thereby, the effect of preventing leakage of magnetic flux to the outside can be achieved.
- the coil 11 is always fixed to the permanent magnet 21 (or the second yoke 22). Therefore, the coil 11 does not move as the mover 10 moves. Therefore, the wiring connected to the coil 11 does not move.
- Modification of the first embodiment Moreover, it can also be set as a cross-sectional structure as shown in FIG.1 (c) with respect to the structure shown in FIG.1 (b).
- the inertial drive actuator 150 shown in FIG. 1C does not have the permanent magnet 21. For this reason, the moving element 10 is placed on the vibration substrate 4 by gravity.
- the N pole is generated in the upward direction on the paper surface.
- the N pole concentrates on the center upper part P1 of the second yoke 12, and the S pole concentrates on the center lower part P2.
- the second yoke 22 is disposed on both sides of the coil 11. Therefore, leakage of the magnetic flux generated in the coil 11 to the outside can be suppressed by the second yoke 22.
- the north pole is concentrated on the lower center P3 of the second yoke 22.
- the south pole is concentrated on the two upper end portions P4 of the second yoke 22.
- the coil 11 and the permanent magnet 21 are surrounded by the first yoke 9 and the second yoke 22. Therefore, leakage of the magnetic flux generated by the coil 11 and the permanent magnet 21 to the outside can be suppressed by the first yoke 9 and the second yoke 22.
- each of the moving element 10 and the stator 20 suppresses leakage of the magnetic flux to the outside, thereby concentrating the S pole and the N pole in a predetermined region. it can. Therefore, a magnetic attractive force can be efficiently generated between the mover 10 and the stator 20 toward the lower side of the drawing.
- the inertial drive actuator 100 of the present embodiment magnetic force is used for moving or driving the moving element 10. That is, the inertial drive actuator 100 of the present embodiment does not use a member such as an elastic body that causes wear when driven. Therefore, even if the movable element 10 is moved or driven, wear does not occur. As a result, the movable element 10 can be moved or driven stably (moved to a desired position or held at a desired position) over a long period of time. Furthermore, since the inertial drive actuator 100 of the present embodiment uses a yoke, leakage of magnetic flux to the outside can be suppressed. Thereby, a magnetic attractive force and a magnetic repulsive force can be generated efficiently. For this reason, the moving element 10 can be efficiently moved or driven while having a simple and low-cost configuration.
- (Modification) Moreover, it can also be set as a cross-sectional structure as shown in FIG.1 (c) with respect to the structure shown in FIG.1 (b).
- the inertial drive actuator 150 shown in FIG. 1C is different from the above-described first embodiment in that the permanent magnet 21 is not provided. For this reason, the moving element 10 is placed on the vibration substrate 4 by gravity.
- FIG. 2A is a side view of the inertial drive actuator 200
- FIG. 2B is a cross-sectional view at a position indicated by AA in FIG. 2A.
- the same components as those of the inertial drive actuator 100 of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the inertial drive actuator 200 includes the piezoelectric element 3, the mover 10, and the vibration substrate 40.
- the mover 10 is positioned on the vibration substrate 40.
- One end of the piezoelectric element 3 and one end of the vibration substrate 40 are mechanically connected. Details of a configuration example for connecting the piezoelectric element 3 and the vibration substrate 40 will be described later.
- the mover 10 has the function of the first yoke 9. Since the structure of the mover 10 is the same as that of the mover 10 of the first embodiment, the description thereof is omitted.
- the mover 10 of this embodiment also plays the same role as the mover 10 of the first embodiment.
- the vibration substrate 40 includes the permanent magnet 21 and the second yokes 12 and 22.
- the vibration board 40 plays the same role as the stator 20 of the first embodiment, and also plays the role of the vibration board 4.
- This embodiment is different from the first embodiment described above in that the vibration substrate 4 of the first embodiment is not provided. Instead, the vibration substrate 40 includes the coil 11, the permanent magnet 21, and the second yokes 12 and 22.
- the vibration board 40 plays the same role as the stator 20 of the first embodiment, and also plays the role of the vibration board 4.
- the coil 11 is disposed on the vibration substrate 40 side. For this reason, as described above, since there is no wiring in the movable element 10, the durability of the wiring is improved, the disconnection is prevented, and stable driving can be performed for a long period of time. In addition, since there is no wiring, it is desirable that stable driving can be performed without generating a burden.
- the inertial drive actuator 200 according to the present embodiment includes a member that performs the same operation as that of the inertial drive actuator 100 according to the first embodiment, and thus has the same effects as the inertial drive actuator 100 according to the first embodiment. . Furthermore, in the inertial drive actuator 200 of the present embodiment, since the vibration substrate 40 has a plurality of roles, the actuator size can be reduced.
- FIGS. 3A, 3 ⁇ / b> B, and 3 ⁇ / b> C show three different configurations for connecting the piezoelectric element 3 and the vibration substrate 40.
- 3A and 3B the thickness of the piezoelectric element 3 and the thickness of the vibration substrate 40 are different (though the thickness of the piezoelectric element 3 is larger than the thickness of the vibration substrate 40).
- the thicknesses of both may be the same.
- the vibration substrate 40 includes the coil 11 (first magnetic field generating means). According to this, since the vibration substrate 40 is the coil 11, it can be set as a simple structure.
- FIG. 3B shows a configuration in which the coil 11 and the permanent magnet 21 are connected to the piezoelectric element 3 to vibrate.
- the piezoelectric element 3 and the permanent magnet 21 may be connected to vibrate. Thereby, the mover 10 can always be held with a constant magnetic attractive force.
- FIG. 3C shows a configuration in which the coil 11, the permanent magnet 21, and the yoke 22 are connected to the piezoelectric element 3 to vibrate.
- the inertial drive actuator 200 a magnetic force is used to move or drive the mover 10. That is, the inertial drive actuator 100 of the present embodiment does not use a member such as an elastic body that causes wear when driven. Therefore, even if the movable element 10 is moved or driven, wear does not occur. As a result, the movable element 10 can be moved or driven stably (moved to a desired position or held at a desired position) over a long period of time. Furthermore, since the inertial drive actuator 100 of the present embodiment uses a yoke, leakage of magnetic flux to the outside can be suppressed. Thereby, a magnetic attractive force and a magnetic repulsive force can be generated efficiently. For this reason, the moving element 10 can be efficiently moved or driven while having a simple and low-cost configuration.
- FIG. 4 is a cross-sectional view of an inertial drive actuator 300 similar to FIG.
- the same components as those of the inertial drive actuator of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the inertial drive actuator 300 of the third embodiment includes a piezoelectric element 3 (not shown), a vibration substrate 4, a mover 10, and a stator 20.
- the piezoelectric element 3 and the vibration substrate 4 are located above the stator 20, and the mover 10 is located above the vibration substrate 4.
- the mover 10 includes a first yoke 12 d and a permanent magnet 13. That is, the mover 10 has a permanent magnet 13.
- the stator 20 includes a coil 11 and second yokes 12 and 22. This embodiment is different from the first embodiment in that a permanent magnet 13 is provided on the mover 10 side.
- a holding force always acts on the moving element 10 even when no current is passed through the coil 11. For this reason, stable driving can be performed even if the entire system of the inertial drive actuator is tilted.
- the coil 11 is provided on the stator 20 side. For this reason, the durability of the wiring is improved, disconnection is prevented, and stable driving can be performed over a long period of time.
- FIG. 5 is a cross-sectional view of an inertial drive actuator 400 similar to FIG.
- the same components as those of the inertial drive actuator of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the inertial drive actuator 400 of the fourth embodiment includes a piezoelectric element 3 (not shown), a vibration substrate 4, a mover 10, and a stator 20.
- the piezoelectric element 3 and the vibration substrate 4 are located above the stator 20, and the mover 10 is located above the vibration substrate 4.
- the inertial drive actuator 400 of the fourth embodiment and the inertial drive actuator 100 of the first embodiment differ in the structure of the vibration substrate.
- the vibration substrate 4 of the first embodiment is composed only of a nonmagnetic material.
- the vibration substrate 4 of the present embodiment includes a magnetic part 41 and a nonmagnetic part 42.
- the magnetic part functions as a yoke.
- the magnetic body portion 41 is divided into three parts, which are respectively disposed on the center of the vibration substrate 4 and on both sides sandwiching the center.
- the position of the central magnetic body portion 41 is a position substantially opposite to the second yoke 12. Further, the positions of the magnetic body portions 41 on both sides are substantially opposed to the end of the second yoke 12.
- the magnetic flux induced by the first yoke 9 of the moving element 10 and the magnetic flux induced by the second yokes 12 and 22 of the stator 20 are respectively magnetic properties of the vibration substrate 4. Since it flows through the body part 41, there exists an effect which suppresses magnetic flux leakage further. In particular, at the upper ends of both ends of the second yoke 22, the magnetic body portions 41 on both sides exist between the two, so that magnetic flux leakage from the outside to the outside can be greatly suppressed.
- the coil 11 is provided on the stator 20 side. For this reason, the durability of the wiring is improved, disconnection is prevented, and stable driving can be performed over a long period of time.
- FIG. 6 shows a driving method when driving the inertial drive actuator 100 of the first embodiment, for example.
- the horizontal axis indicates time T
- the vertical axis indicates the displacement XX of the piezoelectric element 3.
- FIG. 1A the case where the piezoelectric element 3 extends in the left direction of the drawing is positive. Magnetic adsorption is indicated by YY.
- Reference numerals such as time T in the drawings are also used in FIG. 8 and FIG.
- the piezoelectric element 3 is stretched. During this time, a current is passed through the coil 11 so that an N pole is generated in the upward direction on the paper. Then, the magnetic attraction force acting on the vibration substrate 4 side with respect to the moving element 10 increases. Therefore, the friction between the mover 10 and the vibration substrate 4 increases. As a result, the vibration substrate 4 moves to the left in the drawing as the piezoelectric element 3 extends, and the moving element 10 also moves to the left in the drawing.
- the piezoelectric element 3 is contracted. During this time, the flow of current through the coil 11 is stopped. Then, the magnetic attraction force generated by the coil 11 does not work on the moving element 10. Therefore, the frictional force between the mover 10 and the vibration substrate 4 is reduced. This means that the amount of sliding of the moving element 10 with respect to the movement of the vibration substrate 4 has increased. As a result, even if the vibration substrate 4 moves to the right in the drawing as the piezoelectric element 3 contracts, the mover 10 appears to be stationary at the moved position.
- the mover 10 can be moved to the left in the drawing.
- the mover 10 can be moved in the right direction on the paper surface by reversing the timing of supplying a current to the coil 11 as shown in FIG. That is, from time 0 to time A (the vibration substrate 4 is being stretched), no current is passed through the coil 11, and from time A to time B (the vibration substrate 4 is contracting), the coil 11 has a paper surface. A current is passed so that an N pole is generated in the upward direction. By doing in this way, the mover 10 can be moved rightward on the paper surface.
- the current is not supplied to the coil 11 from time A to time B.
- an electric current may be passed through the coil 11 so that a magnetic repulsive force acts on the vibration substrate 4 side with respect to the moving element 10 (or the magnetic attractive force is reduced).
- the mover 10 can be moved in the left direction of the drawing.
- the vibration substrate 4 can be moved in the left direction of the drawing as the piezoelectric element 3 is stretched. Then, during the period from time A to time B, a current is caused to flow through the coil 11 so that a magnetic repulsive force acts on the moving substrate 10 on the vibration substrate 4 side. Even in this case, the movable element 10 can be moved in the left direction of the drawing.
- the operation is as follows. From time 0 to A, a current is passed through the coil 11 so that an N pole is generated in the upward direction on the paper. Then, the friction between the moving element 10 and the vibration substrate 4 increases. As a result, the vibration substrate 4 moves to the left in the drawing as the piezoelectric element 3 extends, and the moving element 10 also moves to the left in the drawing.
- the moving element 10 can be moved in the right direction on the paper surface by changing the timing of supplying the current to the coil 11 as described above. Further, the moving element 10 can be moved even if the direction of the current flowing through the coil 11 is reversed.
- FIG. 7A is a side view of the inertial drive actuator 500
- FIG. 7B is a top view
- FIG. 7C is a cross-sectional view
- FIGS. 8A, 8B, and 8C show a driving method for driving the inertial drive actuator 500 of the fifth embodiment.
- the inertial drive actuator 500 according to the fifth embodiment includes two moving elements 10 in the inertial drive actuator 100 according to the first embodiment. That is, the inertial drive actuator 500 of the fifth embodiment includes the piezoelectric element 3, the vibration substrate 4, the mover 10a, the mover 10b, and the stator 20. The piezoelectric element 3 and the vibration substrate 4 are located above the stator 20, and the mover 10 a and the mover 10 b are located above the vibration substrate 4.
- a method for driving the inertial drive actuator 500 will be described.
- 8A, 8 ⁇ / b> B, and 8 ⁇ / b> C the horizontal axis indicates time, and the vertical axis indicates the displacement of the piezoelectric element 3.
- 7A, 7 ⁇ / b> B, and 7 ⁇ / b> C the case where the piezoelectric element 3 extends in the left direction in the drawing is positive.
- the coil 11a is provided on the stator 20 side in the range in which the mover 10a moves.
- the coil 11b is provided on the stator 20h side in the range in which the mover 10b moves. That is, a coil corresponding to each moving element is required.
- the coil 11a is used when changing the attractive force of the moving element 10a.
- the coil 11b is used when changing the attractive force of the moving element 10b.
- the piezoelectric element 3 is stretched. During this time, no current is passed through the coil 11a of the mover 10a. In this case, the magnetic attraction force does not act on the moving element 10a. Therefore, the mover 10a remains stationary without changing its position. On the other hand, a current is passed through the coil 11b of the moving element 10b so that an N pole is generated in the upward direction on the paper surface. In this case, as described with reference to FIG. 6, a magnetic attractive force acts on the vibration substrate 4 side with respect to the moving element 10b. Therefore, the mover 10b moves in the left direction on the page.
- the piezoelectric element 3 is contracted.
- a current is passed through the coil 11a of the mover 10a so that an N pole is generated in the upward direction on the paper.
- a magnetic attractive force acts on the vibration substrate 4 side with respect to the moving element 10a. Therefore, the mover 10a moves in the right direction on the page.
- no current is allowed to flow through the coil 11b of the mover 10b. In this case, the magnetic attraction force does not work on the moving element 10b. Therefore, the mover 10b remains stationary without changing its position.
- the moving element 10a As described above, from time 0 to time A, the moving element 10a is stationary, and the moving element 10b moves to the left in the drawing, that is, toward the moving element 10a.
- the moving element 10a moves in the right direction on the page, that is, toward the moving element 10b, and the moving element 10b is stationary.
- the mover 10a and the mover 10b can be brought close to each other.
- the moving element 10a and the moving element 10b can be brought closer to each other. Further, if the driving method is changed, the moving element 10a and the moving element 10b can be moved in the same direction, or the moving element 10a and the moving element 10b can be separated.
- the present invention provides stable operation over a long period of time, for example, moving the moving element to a desired position, stopping the moving element at a desired position, and maintaining a stationary state. It is suitable for an inertial drive actuator that can.
- Piezoelectric elements 4 40, 42 Vibration substrate 9 Yoke 10, 10a, 10b Mover 11, 11a, 11b Coil 12, 12a, 12b, 12d Yoke 13, 21 Permanent magnet 20 Stator 22 Yoke 41 Yoke part 100, 200, 300, 400, 500, 600 Inertial drive actuator 101 Support member 102 Piezoelectric element 103 Vibrating member 104 Moving body 105 Leaf spring
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
変位手段3と、振動基板4と、移動子10と、移動子10に対向した向きに磁気吸引力又は反発力が働くように磁界を発生する第1の磁界発生手段11と、移動子10の振動基板4に対向した面に第1の磁界発生手段11が発生する磁束が集中するように、移動子10は第1の磁界発生手段11が発生する磁束を誘導する第1のヨークを有し、振動基板4の移動子10に対向した向きと反対側に第2のヨーク12,22と、を有し、第2のヨーク12、22は、第1の磁界発生手段11が発生する磁束が、固定子20側の面にN極、S極が集中するように、第1の磁界発生手段11から発生する磁界を制御することによって、移動子10と振動基板4の間に働く摩擦力を制御し、移動子10を駆動する。
Description
本発明は、移動子を所定方向に移動させる慣性駆動アクチュエータに関するものである。
駆動軸に結合された電気機械変換素子に鋸歯状波駆動パルスを供給して駆動軸を軸方向に変位させ、この駆動軸に摩擦結合させた移動部材を軸方向に移動させるアクチュエータが知られている(以下、このようなアクチュエータを「インパクト駆動アクチュエータ」或いは「慣性駆動アクチュエータ」と称する)。
このようなインパクト駆動アクチュエータが、特許文献1に開示されている。図9(a)は、その構成を示す図である。振動部材103は支持部材101の立ち上がり部にあけられた穴に挿入され、振動部材103の軸方向に移動可能に配置されている。振動部材103の一端は圧電素子102の一端と固定され、圧電素子102の他端は支持部材101に固定されている。
このため、圧電素子102の振動に伴い振動部材103が軸方向に振動する。移動体104にも2つの穴が設けられており、振動部材103がその穴に挿入されている。更に移動体104には下方から板ばね105が取り付けられており、板ばね105に設けられている突起部が振動部材103に押付けられている。このように板ばね105による押圧によって、移動体104と振動部材103は互いに摩擦結合されている。
このため、圧電素子102の振動に伴い振動部材103が軸方向に振動する。移動体104にも2つの穴が設けられており、振動部材103がその穴に挿入されている。更に移動体104には下方から板ばね105が取り付けられており、板ばね105に設けられている突起部が振動部材103に押付けられている。このように板ばね105による押圧によって、移動体104と振動部材103は互いに摩擦結合されている。
図9(b)、(c)に、インパクト駆動アクチュエータを駆動するための駆動波形を示す。図9(b)は移動体104を右に移動させるための駆動波形で、図9(c)は移動体104を左に移動させるための駆動波形である。これらの駆動波形を用いて、インパクト駆動アクチュエータの動作原理を説明する。なお、以下の説明では、圧電素子102が伸びる方向を左、縮む方向を右とする。
縦軸Vは電圧、横軸Tは時間を示している。
縦軸Vは電圧、横軸Tは時間を示している。
移動体104を右に動かす場合には、図9(b)に示す駆動波形を用いる。駆動波形は、急峻に立ち上がる部分と緩やかに立ち下がる部分を有している。駆動波形が急峻に立ち上がる部分では、圧電素子102が急激に伸びる。ここで、振動部材103は圧電素子102に固定されているため、振動部材103は、圧電素子102の急激な伸びに応じて急速に左に移動する。このとき、移動体104の慣性は振動部材103との間の摩擦結合力(板ばね105で押圧されている移動体104と振動部材103との間の摩擦力)に打ち勝つことから、移動体104は左には移動せず、その位置にとどまる。
次に、駆動波形が緩やかに立ち下がる部分では、圧電素子102が緩やかに縮む。振動部材103は、圧電素子102の緩やかな縮みに応じてゆっくりと右に移動する。この場合、移動体104の慣性は振動部材103との間の摩擦結合力に打ち勝つことができない。そのため、移動体104は振動部材103の移動と共に右に移動する。
一方、移動体104を左に動かす場合には、図9(c)に示す駆動波形を用いる。駆動波形は、緩やかに立ち上がる部分と急峻に立ち下がる部分を有している。駆動波形が緩やかに立ち上がる部分では、圧電素子102が緩やかに伸びる。この場合、振動部材103は、圧電素子102の緩やかな伸びに応じてゆっくりと左に移動する。この場合、移動体104の慣性は振動部材103との間の摩擦結合力に打ち勝つことができない。そのため、移動体104は振動部材103の移動と共に左に移動する。
次に、駆動波形が急峻に立ち上がる部分では、図9(b)で説明したように、移動体104の慣性は振動部材103との間の摩擦結合力に打ち勝つことから、移動体104は右には移動せず、その位置にとどまる。
なお、板ばね105が常に振動部材103を押し付けられていることにより、移動体104は振動部材103に摩擦で支持されている。よって、移動体104が停止している際にも、その位置は保持されている。
上記のように、インパクト駆動アクチュエータは、板ばね105による移動体104と振動部材103との摩擦結合と慣性を利用したアクチュエータであって、図9(b)、(c)に示す駆動波形を用いることで、移動体104を移動させることができるアクチュエータである。
特許文献1に記載されているインパクト駆動アクチュエータは、板ばねにより振動部材103と移動体104に摩擦力を与えている。しかしながら、板ばねは常に振動部材と接触しているため、摩耗などの影響で所望の摩擦力が得られなくなる。そのため、特許文献1に記載されているインパクト駆動アクチュエータは、長期に亘って、安定した動作ができなくなるおそれがある。
本発明は、上記実情に鑑みなされたもので、磨耗等の影響が少なく、効率よく移動子を移動あるいは駆動でき、配線の耐久性が向上し、断線することが防止され長期間にわたり安定した駆動を行うことができる慣性駆動アクチュエータを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明による慣性駆動アクチュエータは、
第1の方向と第1の方向とは逆の第2の方向に微小変位を発生する変位手段と、
変位手段の微小変位によって往復運動する振動基板と、
振動基板の平面上に配置された移動子と、
振動基板の移動子に対向した向きに磁気吸引力又は磁気反発力が働くように磁界を発生する第1の磁界発生手段と、
移動子の振動基板に対向した面に第1の磁界発生手段が発生する磁束がN極、S極ともに集中するように、移動子は第1の磁界発生手段が発生する磁束を誘導する第1のヨークを有し、
振動基板の移動子に対向した向きと反対側に第2のヨークと、を有し、
第2のヨークは、第1の磁界発生手段が発生する磁束が、固定子側の面にN極、S極、ともに集中するように、
第1の磁界発生手段から発生する磁界を制御することによって、移動子と振動基板の間に働く摩擦力を制御し、移動子を駆動することを特徴とする。
第1の方向と第1の方向とは逆の第2の方向に微小変位を発生する変位手段と、
変位手段の微小変位によって往復運動する振動基板と、
振動基板の平面上に配置された移動子と、
振動基板の移動子に対向した向きに磁気吸引力又は磁気反発力が働くように磁界を発生する第1の磁界発生手段と、
移動子の振動基板に対向した面に第1の磁界発生手段が発生する磁束がN極、S極ともに集中するように、移動子は第1の磁界発生手段が発生する磁束を誘導する第1のヨークを有し、
振動基板の移動子に対向した向きと反対側に第2のヨークと、を有し、
第2のヨークは、第1の磁界発生手段が発生する磁束が、固定子側の面にN極、S極、ともに集中するように、
第1の磁界発生手段から発生する磁界を制御することによって、移動子と振動基板の間に働く摩擦力を制御し、移動子を駆動することを特徴とする。
また、本発明の好ましい態様によれば、第1の磁界発生手段とは別に移動子が振動基板に対向した方向に磁気吸引力または磁気反発力が働くように磁界を発生する第2の磁界発生手段をさらに有し、
第2のヨークは、第1の磁界発生手段とともに第2の磁界発生手段が発生する磁束も、固定子側の面にN極、S極、ともに集中するように、第2の磁界発生手段が発生する磁束を誘導するために、第2の磁界発生手段周辺に配置されており、
第1の磁界発生手段と第2の磁界発生手段のうち少なくとも1つの発生手段から発生する磁界を制御することによって、移動子と振動基板の間に働く摩擦力を制御し、移動子を駆動することが望ましい。
第2のヨークは、第1の磁界発生手段とともに第2の磁界発生手段が発生する磁束も、固定子側の面にN極、S極、ともに集中するように、第2の磁界発生手段が発生する磁束を誘導するために、第2の磁界発生手段周辺に配置されており、
第1の磁界発生手段と第2の磁界発生手段のうち少なくとも1つの発生手段から発生する磁界を制御することによって、移動子と振動基板の間に働く摩擦力を制御し、移動子を駆動することが望ましい。
また、本発明の好ましい態様によれば、第1の磁界発生手段が電磁コイルであることが望ましい。
また、本発明の好ましい態様によれば、第2の磁界発生手段が永久磁石であることが望ましい。
また、本発明の好ましい態様によれば、変位手段が圧電素子であることが望ましい。
また、本発明の好ましい態様によれば、振動基板が非磁性体であることが望ましい。
また、本発明の好ましい態様によれば、振動基板が非磁性部と磁性部を有することが望ましい。
また、本発明の好ましい態様によれば、振動基板は、少なくとも一部が第1の磁界発生手段を有することが望ましい。
また、本発明の好ましい態様によれば、振動基板は、少なくとも一部が第2の磁界発生手段を有することが望ましい。
また、本発明の好ましい態様によれば、前記振動基板は、前記第2のヨークの機能を兼用することが望ましい。
また、本発明の好ましい態様によれば、前記移動子が永久磁石を有することが望ましい。
本発明によれば、磁気力を用いることで摩耗等の影響を少なくすることができ、さらにヨークを用いることから効率よく移動体(移動子)を移動あるいは駆動でき、配線の耐久性が向上し、断線することが防止され長期間にわたり安定した駆動を行うことができる慣性駆動アクチュエータを提供することができる。
本実施形態の慣性駆動アクチュエータの構成による作用効果を説明する。なお、この実施形態によって本発明は限定されるものではない。すなわち、実施形態の説明に当たって、例示のために特定の詳細な内容が多く含まれるが、これらの詳細な内容に色々なバリエーションや変更を加えても、本発明の範囲を超えない。従って、以下で説明する本発明の例示的な実施形態は、権利請求された発明に対して、一般性を失わせることなく、また、何ら限定をすることもなく、述べられたものである。
(第1実施形態)
第1実施形態に係る慣性駆動アクチュエータを図1に示す。図1(a)は慣性駆動アクチュエータの側面図、図1(b)は図1(a)におけるA-Aで示す位置における断面図である。
第1実施形態に係る慣性駆動アクチュエータを図1に示す。図1(a)は慣性駆動アクチュエータの側面図、図1(b)は図1(a)におけるA-Aで示す位置における断面図である。
第1実施形態の慣性駆動アクチュエータ100は、圧電素子(変位手段)3と、振動基板4と、移動子10と固定子20で構成されている。固定子20の上部に圧電素子3と振動基板4が位置し、振動基板4の上部に移動子10が位置する。移動子10は、第1のヨーク9の機能を有している。
圧電素子3と振動基板4は、共に板状の部材である。ここで、振動基板4には非磁性体の材料が用いられている。圧電素子3の一端と振動基板4の一端は機械的に連結されている。なお、機械的に連結する構成に限られず、接着でも良い。圧電素子3と振動基板4は、固定子20の上部に載置される。圧電素子3は微小変位を発生させ、振動基板4は微小変位によって往復運動する。
上記構成により、圧電素子3(変位手段)は、第1の方向と第1の方向とは逆の第2の方向に微小変位を発生する。圧電素子3の微小変位によって、振動基板4は往復運動する。移動子10は、振動基板4の平面上に配置されている。
図1(b)に示す断面図において、振動基板4の移動子10に対向した向きに、固定子20側に磁気吸引力又は磁気反発力が働くように磁界を発生するコイル11(第1の磁界発生手段)が設けられている。コイル11は、例えばコイル芯に巻いた電磁コイルである。
また、コイル11の周囲には、コイル11が発生する磁束がN極、S極ともに集中するように、コイル11が発生する磁束を誘導する第2のヨーク12、22(磁束誘導部材)が形成されている。ここで、コイル11を巻きつけるための部材は、第2のヨーク12の機能を兼用している。
また、コイル11の周囲には、コイル11が発生する磁束がN極、S極ともに集中するように、コイル11が発生する磁束を誘導する第2のヨーク12、22(磁束誘導部材)が形成されている。ここで、コイル11を巻きつけるための部材は、第2のヨーク12の機能を兼用している。
第2のヨーク12、22は、コイル11が発生する磁束が、固定子20側の面(所定の位置)にN極、S極、ともに集中するように、コイル11から発生する磁界を制御することによって、移動子10と振動基板4の間に働く摩擦力を制御し、移動子10を駆動する。
このような構成によれば、コイル11が固定子20側に設けられているため、移動子10に配線が存在しない。このため、配線の耐久性が向上し、断線することが防止され長期間にわたり安定した駆動ができる。また、配線が存在していないので、負担が発生せず安定した駆動を行うことができるので望ましい。
コイル11(第1の磁界発生手段)とは別に、移動子10が振動基板4に対向した方向に磁気吸引力または磁気反発力が働くように磁界を発生する永久磁石21(第2の磁界発生手段)をさらに設ける構成をとることができる。
第2のヨーク22は、コイル11(第1の磁界発生手段)とともに永久磁石21(第2の磁界発生手段)が発生する磁束も、固定子20側の面(所定の位置)にN極、S極、ともに集中するように、永久磁石21(第2の磁界発生手段)が発生する磁束を誘導するために、永久磁石21(第2の磁界発生手段周辺)に対して配置されている。
そして、コイル11(第1の磁界発生手段)と永久磁石21(第2の磁界発生手段)のうち少なくとも1つの発生手段から発生する磁界を制御することによって、移動子10と振動基板4の間に働く摩擦力を制御し、移動子10を駆動する。
そして、コイル11(第1の磁界発生手段)と永久磁石21(第2の磁界発生手段)のうち少なくとも1つの発生手段から発生する磁界を制御することによって、移動子10と振動基板4の間に働く摩擦力を制御し、移動子10を駆動する。
さらに、具体的に説明する。図1(b)に示すように、固定子20は、コイル11、第2のヨーク(磁束誘導部材)12、22と、さらに、永久磁石21(第2の磁界発生手段)で構成されている。永久磁石21は直方体の部材で、一方の面側(上側面)がN極、他方の面側(下側面)がS極となっている。また、本実施例では、コイル11は、その長手方向の長さが、永久磁石21の長手方向の長さとほぼ同じである。第2のヨーク22は箱状の部材である。永久磁石21はN極側の面を上にして、第2のヨーク22の内側に載置されている。この永久磁石21は、第2のヨーク22の底面部に固定されている。これにより、磁束の外部への漏れ防止の効果を奏することができる。
なお、コイル11は永久磁石21(あるいは第2のヨーク22)に対して常時固定されている。そのため、コイル11は移動子10の移動に伴って移動することはない。したがって、コイル11へ接続されている配線が動くことがない。
このように、永久磁石21を設けることにより、コイル11に電流を流していないときも移動子10に常に保持力が作用する。このため、慣性駆動アクチュエータの系全体が傾いても安定した駆動ができる。
(第1実施形態の変形例)
また、図1(b)に示した構成に対して、図1(c)に示すような断面構成とすることもできる。図1(c)に示す慣性駆動アクチュエータ150は、永久磁石21を有していない。このため、移動子10は、振動基板4に対して、重力により載置される状態となる。
また、図1(b)に示した構成に対して、図1(c)に示すような断面構成とすることもできる。図1(c)に示す慣性駆動アクチュエータ150は、永久磁石21を有していない。このため、移動子10は、振動基板4に対して、重力により載置される状態となる。
次に、慣性駆動アクチュエータ100の動作について説明する。なお、駆動原理(駆動方法)については図6で説明する。
上記のような構成において、例えば、紙面上方向にN極が発生するように、コイル11に電流を流す。すると、第2のヨーク12の中央上部P1にはN極が集中し、中央下部P2にはS極が集中する。
ここで、コイル11の両側には第2のヨーク22が配置されている。そのため、コイル11で発生した磁束の外部への漏れを、第2のヨーク22によって抑えることができる。
第2のヨーク22の中央下部P3にはN極が集中する。第2のヨーク22の2つの上端部P4にはS極が集中する。
それに対向し、移動子10では、第1のヨーク9の中央部P5には逆極性であるS極が誘起される。また、移動子10の2つの両端部P6にはN極が集中する。
その結果、移動子10に対して紙面下側に向かって、強い磁気吸着力が発生する。
ここで、コイル11の両側には第2のヨーク22が配置されている。そのため、コイル11で発生した磁束の外部への漏れを、第2のヨーク22によって抑えることができる。
第2のヨーク22の中央下部P3にはN極が集中する。第2のヨーク22の2つの上端部P4にはS極が集中する。
それに対向し、移動子10では、第1のヨーク9の中央部P5には逆極性であるS極が誘起される。また、移動子10の2つの両端部P6にはN極が集中する。
その結果、移動子10に対して紙面下側に向かって、強い磁気吸着力が発生する。
ここで、コイル11と、永久磁石21は、第1のヨーク9と第2のヨーク22で囲まれている状態になる。そのため、コイル11と永久磁石21で発生した磁束の外部への漏れを、第1のヨーク9と第2のヨーク22によって抑えることができる。
一方、上述した磁束の関係とは反対に、第2のヨーク12の中央上部P1にS極が集中するように、コイル11に電流を流した場合は、磁気吸着力が減少する。また、コイル11に流す電流を変えることによって、移動子10の振動基板4に対する垂直抗力の強さを変えることができる。このようにすることで、移動子10と振動基板4の摩擦力を制御することが可能となる。
このように、本実施形態の慣性駆動アクチュエータ100では、移動子10と固定子20の各々で磁束の外部への漏れを抑制し、これによりS極やN極を所定の領域に集中させることができる。よって、移動子10と固定子20の間に、紙面下側に向かって効率的に磁気吸着力を発生させることができる。
以上述べたように、本実施形態の慣性駆動アクチュエータ100では、移動子10の移動あるいは駆動に磁気力を用いている。すなわち、本実施形態の慣性駆動アクチュエータ100は、駆動したときに磨耗が生じる弾性体のような部材を使っていない。そのため、移動子10を移動あるいは駆動させても磨耗が生じない。その結果、長期間にわたって、安定して移動子10を移動あるいは駆動する(所望の位置に移動させることや、所望の位置で保持する)ことができる。更に、本実施形態の慣性駆動アクチュエータ100では、ヨークを用いていることから、外部への磁束漏れを抑制できる。これにより、磁気吸着力や磁気反発力を効率よく発生させることができる。このため、簡単かつ低コストな構成でありながら、移動子10を効率よく移動あるいは駆動できる。
さらに加えて、上述したように、移動子10に配線が存在しないため、配線の耐久性が向上し、断線することが防止され長期間にわたり安定した駆動ができる。また、配線が存在していないので、負担が発生せず安定した駆動を行うことができるので望ましい。
(変形例)
また、図1(b)に示した構成に対して、図1(c)に示すような断面構成とすることもできる。図1(c)に示す慣性駆動アクチュエータ150は、永久磁石21を有していない点が上述の第1実施形態と異なる。このため、移動子10は、振動基板4に対して、重力により載置される状態となる。
また、図1(b)に示した構成に対して、図1(c)に示すような断面構成とすることもできる。図1(c)に示す慣性駆動アクチュエータ150は、永久磁石21を有していない点が上述の第1実施形態と異なる。このため、移動子10は、振動基板4に対して、重力により載置される状態となる。
(第2実施形態)
次に、第2実施形態に係る慣性駆動アクチュエータについて説明する。
図2(a)は慣性駆動アクチュエータ200の側面図、図2(b)は図2(a)におけるA-Aで示す位置における断面図である。第1実施形態の慣性駆動アクチュエータ100と同じ構成については同一の番号を付し、その説明は省略する。
次に、第2実施形態に係る慣性駆動アクチュエータについて説明する。
図2(a)は慣性駆動アクチュエータ200の側面図、図2(b)は図2(a)におけるA-Aで示す位置における断面図である。第1実施形態の慣性駆動アクチュエータ100と同じ構成については同一の番号を付し、その説明は省略する。
第2実施形態の慣性駆動アクチュエータ200は、圧電素子3と、移動子10と、振動基板40で構成されている。振動基板40の上部に移動子10が位置する。そして、圧電素子3の一端と振動基板40の一端は機械的に連結されている。
なお、圧電素子3と、振動基板40とを連結する構成例の詳細に関しては、後述する。
なお、圧電素子3と、振動基板40とを連結する構成例の詳細に関しては、後述する。
移動子10は、第1のヨーク9の機能を有している。なお、移動子10の構造は第1実施形態の移動子10と同じなので、説明を省略する。本実施形態の移動子10も、第1実施形態の移動子10と同様の役割をする。
また、振動基板40は、永久磁石21と第2のヨーク12、22で構成されている。振動基板40は、第1実施形態の固定子20と同様の役割をし、振動基板4の役割も果たす。
また、振動基板40は、永久磁石21と第2のヨーク12、22で構成されている。振動基板40は、第1実施形態の固定子20と同様の役割をし、振動基板4の役割も果たす。
本実施形態においては、第1実施形態の振動基板4を有していない点が上述した第1実施形態と異なる。代わりに、振動基板40は、コイル11、永久磁石21と第2のヨーク12、22で構成されている。振動基板40は、第1実施形態の固定子20と同様の役割をし、振動基板4の役割も果たす。
また、コイル11は、振動基板40側に配置されている。このため、上述したように、移動子10に配線が存在しないため、配線の耐久性が向上し、断線することが防止され長期間にわたり安定した駆動ができる。また、配線が存在していないので、負担が発生せず安定した駆動を行うことができるので望ましい。
このように、本実施形態の慣性駆動アクチュエータ200は、第1実施形態の慣性駆動アクチュエータ100と同じ作用を行う部材を備えているので、第1実施形態の慣性駆動アクチュエータ100と同様の効果を奏する。更に、本実施形態の慣性駆動アクチュエータ200では、振動基板40に複数の役割を持たせているので、アクチュエータサイズの小型化が可能となる。
次に、本実施形態における、圧電素子3と、振動基板40とを連結する構成例を説明する。図3(a)、図3(b)、図3(c)は、圧電素子3と、振動基板40とを連結する3つの異なる構成を示している。なお、図3(a)、図3(b)では、圧電素子3の厚みと振動基板40の厚みが異なっているが(圧電素子3の厚みの方が振動基板40の厚みよりも厚いが)、図3(c)と同じように、両者の厚みが同じになるようにしてもよい。
図3(a)は、コイル11のみが圧電素子3と連結し振動する構成である。つまり、振動基板40は、少なくとも一部がコイル11(第1の磁界発生手段)を有する構成である。これによれば、振動基板40がコイル11であるため、簡易な構成とすることができる。
図3(b)は、コイル11と永久磁石21とが圧電素子3と連結し振動する構成である。ここで、圧電素子3と永久磁石21のみが連結して振動する構成でもよい。これにより、移動子10を常に一定の磁気吸引力で保持することができる。
図3(c)は、コイル11と永久磁石21とヨーク22とが圧電素子3と連結し振動する構成である。これにより、ヨークを用いていることから、外部への磁束漏れを抑制できる。したがって、磁気吸着力や磁気反発力を効率よく発生させることができる。このため、簡単かつ低コストである構成でありながら、移動子10を効率よく移動あるいは駆動できる。
図3(c)の構成のさらなる効果として、振動する際に上述の図3(a)、図3(b)の構成と比べて、全部の部材を振動させるので、振動方向に対して垂直に働く磁石の吸着力がないため、圧電素子3は小さい力でコイル11と永久磁石21とヨーク22を振動させることが出来る。
図3(c)の構成のさらなる効果として、振動する際に上述の図3(a)、図3(b)の構成と比べて、全部の部材を振動させるので、振動方向に対して垂直に働く磁石の吸着力がないため、圧電素子3は小さい力でコイル11と永久磁石21とヨーク22を振動させることが出来る。
ここで、圧電素子3とヨーク22のみと連結する構成、または圧電素子3とヨーク22とコイル22のみとを接続する構成、または圧電素子3とヨーク22と永久磁石21のみが連結し振動する構成でもよい。
本実施形態の作用効果を説明する。慣性駆動アクチュエータ200では、移動子10の移動あるいは駆動に磁気力を用いている。すなわち、本実施形態の慣性駆動アクチュエータ100は、駆動したときに磨耗が生じる弾性体のような部材を使っていない。そのため、移動子10を移動あるいは駆動させても磨耗が生じない。その結果、長期間にわたって、安定して移動子10を移動あるいは駆動する(所望の位置に移動させることや、所望の位置で保持する)ことができる。更に、本実施形態の慣性駆動アクチュエータ100では、ヨークを用いていることから、外部への磁束漏れを抑制できる。これにより、磁気吸着力や磁気反発力を効率よく発生させることができる。このため、簡単かつ低コストな構成でありながら、移動子10を効率よく移動あるいは駆動できる。
(第3実施形態)
次に、第3実施形態に係る慣性駆動アクチュエータ300について説明する。
図4は、図1(b)と同様の慣性駆動アクチュエータ300の断面図である。第1実施形態の慣性駆動アクチュエータと同じ構成については同一の番号を付し、その説明は省略する。
次に、第3実施形態に係る慣性駆動アクチュエータ300について説明する。
図4は、図1(b)と同様の慣性駆動アクチュエータ300の断面図である。第1実施形態の慣性駆動アクチュエータと同じ構成については同一の番号を付し、その説明は省略する。
第3実施形態の慣性駆動アクチュエータ300は、圧電素子3(不図示)と、振動基板4と、移動子10と固定子20で構成されている。固定子20の上部に圧電素子3と振動基板4が位置し、振動基板4の上部に移動子10が位置する。
移動子10は、第1のヨーク12dと、永久磁石13で構成されている。すなわち、移動子10は、永久磁石13を有している。
一方、固定子20は、コイル11と、第2のヨーク12、22を有している。
本実施形態は、第1実施形態に比較して、移動子10側に永久磁石13が設けられている点が異なる。
このように、永久磁石13を設けることにより、コイル11に電流を流していないときも移動子10に常に保持力が作用する。このため、慣性駆動アクチュエータの系全体が傾いても安定した駆動ができる。
一方、固定子20は、コイル11と、第2のヨーク12、22を有している。
本実施形態は、第1実施形態に比較して、移動子10側に永久磁石13が設けられている点が異なる。
このように、永久磁石13を設けることにより、コイル11に電流を流していないときも移動子10に常に保持力が作用する。このため、慣性駆動アクチュエータの系全体が傾いても安定した駆動ができる。
また、本実施形態においても、コイル11は、固定子20側に設けられている。このため、配線の耐久性が向上し、断線することが防止され長期間にわたり安定した駆動を行うことができる
(第4実施形態)
次に、第4実施形態に係る慣性駆動アクチュエータ400について説明する。
図5は、図1(b)と同様の慣性駆動アクチュエータ400の断面図である。第1実施形態の慣性駆動アクチュエータと同じ構成については同一の番号を付し、その説明は省略する。
次に、第4実施形態に係る慣性駆動アクチュエータ400について説明する。
図5は、図1(b)と同様の慣性駆動アクチュエータ400の断面図である。第1実施形態の慣性駆動アクチュエータと同じ構成については同一の番号を付し、その説明は省略する。
第4実施形態の慣性駆動アクチュエータ400は、圧電素子3(不図示)と、振動基板4と、移動子10と固定子20で構成されている。固定子20の上部に圧電素子3と振動基板4が位置し、振動基板4の上部に移動子10が位置する。
第4実施形態の慣性駆動アクチュエータ400と第1実施形態の慣性駆動アクチュエータ100は、振動基板の構造が異なる。第1実施形態の振動基板4は、非磁性体のみで構成されている。
これに対して、本実施形態の振動基板4は、磁性体部41と非磁性体部42を有する。磁性体部はヨークとして機能する。磁性体部41は3つに分かれており、それぞれ振動基板4の中央と、中央を挟んだ両側に配置されている。中央の磁性体部41の位置は、第2のヨーク12とほぼ対向する位置である。また、両側の磁性体部41の位置は、第2のヨーク12の端とほぼ対向する位置である。
これに対して、本実施形態の振動基板4は、磁性体部41と非磁性体部42を有する。磁性体部はヨークとして機能する。磁性体部41は3つに分かれており、それぞれ振動基板4の中央と、中央を挟んだ両側に配置されている。中央の磁性体部41の位置は、第2のヨーク12とほぼ対向する位置である。また、両側の磁性体部41の位置は、第2のヨーク12の端とほぼ対向する位置である。
本実施形態の慣性駆動アクチュエータ400では、移動子10の第1のヨーク9により誘導された磁束と、固定子20の第2のヨーク12、22に誘導された磁束が、それぞれ振動基板4の磁性体部41を介して流れるため、磁束漏れをさらに抑制する効果がある。特に、第2のヨーク22の両端上部では、両者の間に両側の磁性体部41が存在するため、この間から外部への磁束漏れを大幅に抑制できる。
また、本実施形態においても、コイル11は、固定子20側に設けられている。このため、配線の耐久性が向上し、断線することが防止され長期間にわたり安定した駆動を行うことができる。
次に、上述した慣性駆動アクチュエータ100の駆動方法を説明する。
図6は、例えば、第1実施形態の慣性駆動アクチュエータ100を駆動するときの駆動方法を示している。図6において、横軸は時間Tを示し、縦軸は圧電素子3の変位XXを示している。図1(a)において、圧電素子3が紙面左方向に伸びた場合を正としている。
また、磁気吸着はYYで示す。図面における時間Tなどの参照符号は、以下、図8、図9においても同じ符号を使用する。
図6は、例えば、第1実施形態の慣性駆動アクチュエータ100を駆動するときの駆動方法を示している。図6において、横軸は時間Tを示し、縦軸は圧電素子3の変位XXを示している。図1(a)において、圧電素子3が紙面左方向に伸びた場合を正としている。
また、磁気吸着はYYで示す。図面における時間Tなどの参照符号は、以下、図8、図9においても同じ符号を使用する。
時刻0からAまでの間、圧電素子3は延伸している。この間は、コイル11に、紙面上方向にN極が発生するように電流を流す。すると、移動子10に対して振動基板4側に働く磁気吸着力が増加する。そのため、移動子10と振動基板4との間の摩擦は増加する。その結果、圧電素子3の延伸とともに振動基板4は紙面左方向に移動し、それとともに移動子10も紙面左方向に移動する。
次に、時刻Aから時刻Bまでの間、圧電素子3は収縮している。この間、コイル11に電流を流すのを止める。すると、移動子10に対してコイル11により発生する磁気吸着力が働かなくなる。そのため、移動子10と振動基板4との間の摩擦力は減少する。これは、振動基板4の動きに対して移動子10のすべる量が増加したことを意味する。その結果、圧電素子3の収縮とともに振動基板4が紙面右方向に移動しても、見かけ上、移動子10は移動した位置で静止した状態となる。このように、圧電素子3の収縮とともに、紙面右方向に移動する振動基板4に対して移動子10は左方向に滑るため、時刻0から時刻Bまでの間で、移動子10は紙面左方向に移動することとなる。同様のことを、時刻Bから時刻C、時刻Cから時刻Dというように繰り返すことにより、移動子10を紙面左方向に移動させていくことができる。
なお、移動子10の紙面右方向への移動は、コイル11に電流を流すタイミングを、図6と逆にすることにより可能である。すなわち、時刻0から時刻Aまでの間(振動基板4は延伸中)は、コイル11に電流を流さず、時刻Aから時刻Bまでの間(振動基板4は収縮中)に、コイル11に紙面上方向にN極が発生するように電流を流す。このようにすることで、移動子10を紙面右方向へ移動させことができる。
尚、上記の左移動の例では、時刻Aから時刻Bまでの間は、コイル11に電流を流すのを止めている。これに代わり、移動子10に対して振動基板4側に磁気反発力が働くように(あるいは、磁気吸着力が減少するように)、コイル11に電流を流してもよい。このようにすることで、移動子10の紙面左方向への移動が可能である。
上述のように、コイル11に電流を流さない場合、移動子10と振動基板4との間の摩擦力は減少し、その結果、振動基板4が紙面右方向に移動しても、見かけ上、移動子10は移動した位置で静止した状態となる、とした。しかしながら、移動子10(第1のヨーク9)、コイル11、第2のヨーク12、永久磁石13のスペック(材質、重さ、長さ等)を適宜選択すれば、コイルに電流を流さない場合であっても、移動子10と振動基板4との間の摩擦力をある程度維持することができる。
そこで、時刻0からAまでの間、コイル11に電流を流さないようにすると、圧電素子3の延伸とともに振動基板4を紙面左方向に移動させることができる。そして、時刻Aから時刻Bまでの間は、移動子10に対して振動基板4側に磁気反発力が働くように、コイル11に電流を流すようにする。このようにしても、移動子10を紙面左方向に移動させていくことができる。
また、例えば、第1実施形態の変形例の慣性駆動アクチュエータ150を駆動する場合は、次のようになる。時刻0からAまでの間、コイル11に、紙面上方向にN極が発生するように電流を流す。すると、移動子10と振動基板4との間の摩擦は増加する。その結果、圧電素子3の延伸とともに振動基板4は紙面左方向に移動し、それとともに移動子10も紙面左方向に移動する。
次に、時刻Aから時刻Bまでの間、コイル11に電流を流すのを止める。すると、移動子10と振動基板4との間の摩擦は減少する。その結果、圧電素子3の収縮とともに振動基板4が紙面右方向に移動しても、見かけ上、移動子10は移動した位置で静止した状態となる。このようにすることで、移動子10を紙面左方向へ移動させことができる。
なお、上述のようにコイル11に電流を流すタイミングを変えることで、移動子10を紙面右方向へ移動させことができることはいうまでもない。また、コイル11に流す電流の向きを逆にしても移動子10を移動させることはできる。
(第5実施形態)
次に、第5実施形態に係る慣性駆動アクチュエータ500について説明する。
図7(a)は、慣性駆動アクチュエータ500の側面図、図7(b)は上面図、(c)は断面図である。また、図8(a)、(b)、(c)は、第5実施形態の慣性駆動アクチュエータ500を駆動するときの駆動方法を示している。
次に、第5実施形態に係る慣性駆動アクチュエータ500について説明する。
図7(a)は、慣性駆動アクチュエータ500の側面図、図7(b)は上面図、(c)は断面図である。また、図8(a)、(b)、(c)は、第5実施形態の慣性駆動アクチュエータ500を駆動するときの駆動方法を示している。
第5実施形態の慣性駆動アクチュエータ500は、第1実施形態の慣性駆動アクチュエータ100における移動子10を2つ備えている。すなわち、第5実施形態の慣性駆動アクチュエータ500は、圧電素子3と、振動基板4と、移動子10aと、移動子10bと固定子20で構成されている。固定子20の上部に圧電素子3と振動基板4が位置し、振動基板4の上部に移動子10aと、移動子10bが位置する。
慣性駆動アクチュエータ500の駆動方法について説明する。図8(a)、(b)、(c)において、横軸は時間を示し、縦軸は圧電素子3の変位を示している。図7(a)、(b)、(c)において、圧電素子3が紙面左方向に伸びた場合を正としている。
図7(c)の断面図に示すように、本実施形態においては、移動子10aが移動する範囲において、コイル11aを固定子20側に設けている。同様に、移動子10bが移動する範囲において、コイル11bを固定子20h側に設けている。即ち各移動子に対応したコイルが必要となる。
移動子10aの吸引力を変化させるときはコイル11aを使用する。移動子10bの吸引力を変化させるときはコイル11bを使用する。
移動子10aの吸引力を変化させるときはコイル11aを使用する。移動子10bの吸引力を変化させるときはコイル11bを使用する。
時刻0から時刻Aまでの間、圧電素子3は延伸している。この間、移動子10aのコイル11aに電流を流さないでおく。この場合、移動子10aに対して磁気吸着力が働かなくなる。そのため、移動子10aは、その位置を変えずに静止したままである。一方、移動子10bのコイル11bに、紙面上方向にN極が発生するように電流を流す。この場合、図6で説明したように、移動子10bに対して振動基板4側に磁気吸着力が働く。そのため、移動子10bは紙面左方向に移動する。
次に、時刻Aから時刻Bまでの間、圧電素子3は収縮している。この間、移動子10aのコイル11aに、紙面上方向にN極が発生するように電流を流す。この場合、図6で説明したように、移動子10aに対して振動基板4側に磁気吸着力が働く。そのため、移動子10aは紙面右方向に移動する。一方、移動子10bのコイル11bに電流を流さないでおく。この場合、移動子10bに対して磁気吸着力が働かなくなる。そのため、移動子10bは、その位置を変えずに静止したままである。
以上のように、時刻0から時刻Aの間、移動子10aは静止し、移動子10bは紙面左方向、すなわち移動子10aに向かって移動する。一方、時刻Aから時刻Bまでの間、移動子10aは紙面右方向、すなわち移動子10bに向かって移動し、移動子10bは静止している。その結果、移動子10aと移動子10bを近づけることができる。また、時刻0から時刻Bまでの間の駆動方法を繰り返すことで、移動子10aと移動子10bを更に近づけることができる。また、駆動方法を変えれば、移動子10aと移動子10bを同一方向に移動させることや、移動子10aと移動子10bを離すようにすることもできる。
なお、図7および図8では、説明のために2個の移動子の構成とその駆動方法を例示したが、原理的には2個以上の移動子においても、同一の振動基板上で、それぞれを独立に駆動することが可能である。
また、本実施形態においても、コイル11が固定子20側に設けられているため、移動子10に配線が存在しない。このため、配線の耐久性が向上し、断線することが防止され長期間にわたり安定した駆動ができる。また、配線が存在していないので、負担が発生せず安定した駆動を行うことができるので望ましい。
なお、本発明は、その趣旨を逸脱しない範囲で様々な変形例をとることができる。
以上のように、本発明は、長期に亘って、安定した動作、例えば、移動子を所望の位置に移動させることや、所望の位置で移動子を静止させることや、静止した状態を維持することができる慣性駆動アクチュエータに適している。
3 圧電素子
4、40、42 振動基板
9 ヨーク
10、10a、10b 移動子
11、11a、11b コイル
12、12a、12b、12d ヨーク
13、21 永久磁石
20 固定子
22 ヨーク
41 ヨーク部
100、200、300、400、500、600 慣性駆動アクチュエータ
101 支持部材
102 圧電素子
103 振動部材
104 移動体
105 板ばね
4、40、42 振動基板
9 ヨーク
10、10a、10b 移動子
11、11a、11b コイル
12、12a、12b、12d ヨーク
13、21 永久磁石
20 固定子
22 ヨーク
41 ヨーク部
100、200、300、400、500、600 慣性駆動アクチュエータ
101 支持部材
102 圧電素子
103 振動部材
104 移動体
105 板ばね
Claims (11)
- 第1の方向と前記第1の方向とは逆の第2の方向に微小変位を発生する変位手段と、
前記変位手段の前記微小変位によって往復運動する振動基板と、
前記振動基板の平面上に配置された移動子と、
前記振動基板の前記移動子に対向した向きに磁気吸引力又は磁気反発力が働くように磁界を発生する第1の磁界発生手段と、
前記移動子の前記振動基板に対向した面に第1の磁界発生手段が発生する磁束がN極、S極ともに集中するように、前記移動子は前記第1の磁界発生手段が発生する磁束を誘導する第1のヨークを有し、
前記振動基板の前記移動子に対向した向きと反対側に第2のヨークと、を有し、
前記第2のヨークは、前記第1の磁界発生手段が発生する磁束が、固定子側の面にN極、S極、ともに集中するように、
第1の磁界発生手段から発生する磁界を制御することによって、前記移動子と前記振動基板の間に働く摩擦力を制御し、前記移動子を駆動することを特徴とする慣性駆動アクチュエータ。 - 前記第1の磁界発生手段とは別に前記移動子が前記振動基板に対向した方向に磁気吸引力または磁気反発力が働くように磁界を発生する第2の磁界発生手段をさらに有し、
前記第2のヨークは、前記第1の磁界発生手段とともに前記第2の磁界発生手段が発生する磁束も、固定子側の面にN極、S極、ともに集中するように、前記第2の磁界発生手段が発生する磁束を誘導するために、前記第2の磁界発生手段周辺に配置されており、
前記第1の磁界発生手段と前記第2の磁界発生手段のうち少なくとも1つの発生手段から発生する磁界を制御することによって、前記移動子と前記振動基板の間に働く摩擦力を制御し、前記移動子を駆動することを特徴とする請求項1に記載の慣性駆動アクチュエータ。 - 前記第1の磁界発生手段が電磁コイルであることを特徴とする請求項1または2に記載の慣性駆動アクチュエータ。
- 前記第2の磁界発生手段が永久磁石であることを特徴とする請求項2に記載の慣性駆動アクチュエータ。
- 前記変位手段が圧電素子であることを特徴とする請求項1または2に記載の慣性駆動アクチュエータ。
- 前記振動基板が非磁性体であることを特徴とする請求項1または2に記載の慣性駆動アクチュエータ。
- 前記振動基板が非磁性部と磁性部を有することを特徴とする請求項1または2に記載の慣性駆動アクチュエータ。
- 前記振動基板は、少なくとも一部が前記第1の磁界発生手段を有することを特徴とする請求項2に記載の慣性駆動アクチュエータ。
- 前記振動基板は、少なくとも一部が前記第2の磁界発生手段を有することを特徴とする請求項2に記載の慣性駆動アクチュエータ。
- 前記振動基板は、前記第2のヨークの機能を兼用することを特徴とする請求項1または2に記載の慣性駆動アクチュエータ。
- 前記移動子が永久磁石を有することを特徴とする請求項1または2に記載の慣性駆動アクチュエータ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280049975.2A CN103875173B (zh) | 2011-11-11 | 2012-11-05 | 惯性驱动促动器 |
EP12847484.8A EP2779411A4 (en) | 2011-11-11 | 2012-11-05 | TRÄGHEITSANTRIEBSAKTUATOR |
US14/272,937 US9385579B2 (en) | 2011-11-11 | 2014-05-08 | Inertial drive actuator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-247334 | 2011-11-11 | ||
JP2011247334A JP5851210B2 (ja) | 2011-11-11 | 2011-11-11 | 慣性駆動アクチュエータ |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/272,937 Continuation US9385579B2 (en) | 2011-11-11 | 2014-05-08 | Inertial drive actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013069591A1 true WO2013069591A1 (ja) | 2013-05-16 |
Family
ID=48289965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/078583 WO2013069591A1 (ja) | 2011-11-11 | 2012-11-05 | 慣性駆動アクチュエータ |
Country Status (5)
Country | Link |
---|---|
US (1) | US9385579B2 (ja) |
EP (1) | EP2779411A4 (ja) |
JP (1) | JP5851210B2 (ja) |
CN (1) | CN103875173B (ja) |
WO (1) | WO2013069591A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104865775A (zh) * | 2014-02-24 | 2015-08-26 | 柯尼卡美能达株式会社 | 抖动修正装置、透镜单元、摄像装置以及驱动器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9892837B2 (en) | 2015-05-21 | 2018-02-13 | Adicep Technologies, Inc | Energy efficient actuator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01138975A (ja) * | 1987-11-25 | 1989-05-31 | Matsushita Electric Ind Co Ltd | リニアアクチュエータの出力方法およびリニアアクチュエータ |
JPH10257786A (ja) * | 1997-03-14 | 1998-09-25 | Kanetetsuku Kk | 作動装置 |
JP2007288828A (ja) | 2006-04-12 | 2007-11-01 | Olympus Corp | 慣性駆動アクチュエータ |
JP2009273253A (ja) * | 2008-05-08 | 2009-11-19 | Olympus Corp | 慣性駆動アクチュエータ |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5134335A (en) * | 1987-11-25 | 1992-07-28 | Matsushita Electric Industrial Co., Ltd. | Linear actuator |
AU3756299A (en) * | 1998-04-23 | 1999-11-08 | Omnific International, Ltd | Specialized actuators driven by oscillatory transducers |
JP2007129821A (ja) * | 2005-11-02 | 2007-05-24 | Olympus Corp | インパクト駆動アクチュエータ及びこれを用いたレンズ駆動装置 |
JP2008125229A (ja) * | 2006-11-10 | 2008-05-29 | Olympus Corp | 慣性駆動アクチュエータ |
CN101018024A (zh) * | 2007-02-16 | 2007-08-15 | 吉林大学 | 压电惯性步进驱动装置 |
JP5185640B2 (ja) | 2008-01-25 | 2013-04-17 | オリンパス株式会社 | 慣性駆動アクチュエータ |
JP2009222040A (ja) * | 2008-03-19 | 2009-10-01 | Olympus Corp | 形状記憶合金アクチュエータ |
-
2011
- 2011-11-11 JP JP2011247334A patent/JP5851210B2/ja active Active
-
2012
- 2012-11-05 CN CN201280049975.2A patent/CN103875173B/zh not_active Expired - Fee Related
- 2012-11-05 WO PCT/JP2012/078583 patent/WO2013069591A1/ja active Application Filing
- 2012-11-05 EP EP12847484.8A patent/EP2779411A4/en not_active Withdrawn
-
2014
- 2014-05-08 US US14/272,937 patent/US9385579B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01138975A (ja) * | 1987-11-25 | 1989-05-31 | Matsushita Electric Ind Co Ltd | リニアアクチュエータの出力方法およびリニアアクチュエータ |
JPH10257786A (ja) * | 1997-03-14 | 1998-09-25 | Kanetetsuku Kk | 作動装置 |
JP2007288828A (ja) | 2006-04-12 | 2007-11-01 | Olympus Corp | 慣性駆動アクチュエータ |
JP2009273253A (ja) * | 2008-05-08 | 2009-11-19 | Olympus Corp | 慣性駆動アクチュエータ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2779411A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104865775A (zh) * | 2014-02-24 | 2015-08-26 | 柯尼卡美能达株式会社 | 抖动修正装置、透镜单元、摄像装置以及驱动器 |
CN104865775B (zh) * | 2014-02-24 | 2018-01-05 | 柯尼卡美能达株式会社 | 抖动修正装置、透镜单元、摄像装置以及驱动器 |
Also Published As
Publication number | Publication date |
---|---|
EP2779411A4 (en) | 2015-07-29 |
EP2779411A1 (en) | 2014-09-17 |
CN103875173B (zh) | 2017-02-15 |
CN103875173A (zh) | 2014-06-18 |
JP5851210B2 (ja) | 2016-02-03 |
US20140239747A1 (en) | 2014-08-28 |
US9385579B2 (en) | 2016-07-05 |
JP2013106395A (ja) | 2013-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4912728B2 (ja) | 慣性駆動アクチュエータ | |
JP5185640B2 (ja) | 慣性駆動アクチュエータ | |
JP5722145B2 (ja) | 慣性駆動アクチュエータ | |
JP5808000B2 (ja) | 慣性駆動アクチュエータ | |
JP5851210B2 (ja) | 慣性駆動アクチュエータ | |
JP5784461B2 (ja) | 慣性駆動アクチュエータ | |
JP5269009B2 (ja) | 駆動装置 | |
JP2005133555A (ja) | 弾性振動板ファン | |
JP3404139B2 (ja) | 電磁アクチュエータ | |
JP7441533B2 (ja) | リニア振動アクチュエータ | |
JP5889100B2 (ja) | 慣性駆動アクチュエータ | |
JP2013066275A (ja) | 慣性駆動アクチュエータ | |
JP5669446B2 (ja) | 移動体の駆動機構 | |
JP2013066276A (ja) | 慣性駆動アクチュエータ | |
JP2009100493A (ja) | 蠕動型アクチュエータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12847484 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012847484 Country of ref document: EP |