WO2013069238A1 - 照明装置 - Google Patents

照明装置 Download PDF

Info

Publication number
WO2013069238A1
WO2013069238A1 PCT/JP2012/007039 JP2012007039W WO2013069238A1 WO 2013069238 A1 WO2013069238 A1 WO 2013069238A1 JP 2012007039 W JP2012007039 W JP 2012007039W WO 2013069238 A1 WO2013069238 A1 WO 2013069238A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting element
light emitting
optical axis
lighting device
Prior art date
Application number
PCT/JP2012/007039
Other languages
English (en)
French (fr)
Inventor
中村 真人
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to CN201280053186.6A priority Critical patent/CN103906968B/zh
Priority to US14/353,341 priority patent/US20140321118A1/en
Priority to KR1020147008880A priority patent/KR20140097121A/ko
Priority to EP12848047.2A priority patent/EP2778506A4/en
Publication of WO2013069238A1 publication Critical patent/WO2013069238A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • F21V7/0016Reflectors for light sources providing for indirect lighting on lighting devices that also provide for direct lighting, e.g. by means of independent light sources, by splitting of the light beam, by switching between both lighting modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/041Optical design with conical or pyramidal surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a lighting device that has a light emitting element and a light flux controlling member and can be used in place of an incandescent bulb.
  • LEDs light emitting diodes
  • a conventional lighting device using an LED as a light source emits light only in the forward direction, and cannot emit light in a wide range like incandescent bulbs. For this reason, the conventional illuminating device cannot illuminate the room widely using the reflected light from a ceiling or a wall surface like an incandescent bulb.
  • FIG. 1 is a schematic diagram showing the configuration of the illumination device described in Patent Document 1.
  • the lighting device 10 includes a plurality of LEDs 12 disposed on a substrate, and a cylindrical cover 14 made of a light-transmitting material disposed around the LEDs 12.
  • the upper surface of the cover 14 is formed in an inverted truncated cone shape.
  • An aluminum plate 16 that reflects light is attached to the inclined surface of the truncated cone and functions as a reflecting surface.
  • the plane of the truncated cone functions as a transmission window 18 that transmits light. As shown by the arrows in FIG.
  • a part of the light emitted from the LED 12 passes through the transmission window 18 and becomes outgoing light in the forward direction (upward direction). Further, part of the light emitted from the LED 12 is reflected by the aluminum plate 16 and becomes emitted light in the lateral direction (horizontal direction).
  • FIG. 2 is a schematic diagram showing the configuration of the illumination device described in Patent Document 2.
  • the lighting device 20 includes a plurality of LEDs 22 arranged on the device main body, and a diffusion cover 24 and a transparent cover 26 arranged around the LEDs 22.
  • the diffusion cover 24 has light diffusibility and transmits incident light while diffusing.
  • a reflection surface is formed on the inner surface of the diffusion cover 24, and the diffusion cover 24 reflects a part of incident light toward the transparent cover.
  • the transparent cover 26 does not have light diffusibility and transmits incident light as it is.
  • a part of the light emitted from the LED 22 passes through the diffusion cover 24 and becomes outgoing light in the forward direction (upward direction). Further, part of the light emitted from the LED 22 is reflected by the diffusion cover 24, passes through the transparent cover 26, and becomes emitted light in the backward direction (downward direction).
  • the traveling direction of the emitted light from the LED using the light flux controlling member, it is possible to obtain the emitted light not only in the forward direction but also in the lateral direction or the backward direction. Therefore, by using the light flux controlling member (reflecting surface) described in Patent Documents 1 and 2, the light distribution characteristic of the lighting device (LED light bulb) can be brought close to the light distribution characteristic of the incandescent light bulb to some extent.
  • the lighting devices described in Patent Documents 1 and 2 have a problem that the balance of light distribution characteristics is poor. That is, the illumination device described in Patent Document 1 can distribute light to some extent in the forward direction and the lateral direction, but cannot appropriately distribute light in the backward direction. Therefore, the area A shown in FIG. 1 becomes dark. Moreover, although the illuminating device of patent document 2 can distribute light to some extent in the front direction and back direction, it cannot distribute light appropriately to a side direction. Therefore, the area B shown in FIG. 2 becomes dark. As described above, the illumination devices described in Patent Documents 1 and 2 have a poor balance of light distribution characteristics as compared with incandescent bulbs.
  • An object of the present invention is an illumination device having a light emitting element, which can distribute light in an angle direction larger than a half-value angle at which the light amount is insufficient in a light distribution characteristic of a general light emitting element, and is directed forward and laterally. It is an object of the present invention to provide an illumination device that can distribute light in a balanced manner in all directions and backward directions.
  • the illuminating device of the present invention is arranged via an air layer with respect to the light emitting element such that one or more light emitting elements arranged on the substrate and the optical axis of the light emitting element coincide with the central axis thereof.
  • a light flux control member that reflects part of the light emitted from the light emitting element and transmits part of the light, and the light flux control member faces the light emitting element and is emitted from the light emitting element.
  • a reflective surface that reflects a part of the light, and the reflective surface is an aspheric surface that increases in height from the light emitting element toward the outer peripheral part from the center that is the intersection with the optical axis of the light emitting element.
  • the outer peripheral part of the reflecting surface is formed at a position away from the light emitting element in the direction of the optical axis of the light emitting element as compared with the position of the central part of the reflecting surface.
  • the reflective surface extends from the light emitting element to the optical axis of the light emitting element.
  • ⁇ (b2) is emitted from the light emission center of the light emitting element at an angle of ⁇ (b1) with respect to the optical axis of the light emitting element and reflected by the reflecting surface.
  • the angle of the emitted light with respect to the optical axis of the light emitting element, and the light emitted in a direction parallel to the optical axis of the light emitting element from the point farthest from the light emission center of the light emitting element in the light emitting element ⁇ (c1) ⁇ ⁇ (a1) ⁇ (b1), where ⁇ (c1) is the angle of the line connecting the point reaching the light emission center and the emission center of the light emitting element with respect to the optical axis of the light emitting element. It is.
  • the illuminating device of the present invention is arranged via an air layer with respect to the light emitting element such that one or more light emitting elements arranged on the substrate and the optical axis of the light emitting element coincide with the central axis thereof.
  • a light flux control member that reflects part of the light emitted from the light emitting element and transmits part of the light, and the light flux control member faces the light emitting element and is emitted from the light emitting element.
  • a reflective surface that reflects a part of the light, and the reflective surface is an aspheric surface that increases in height from the light emitting element toward the outer peripheral part from the center that is the intersection with the optical axis of the light emitting element.
  • the outer peripheral part of the reflecting surface is formed at a position away from the light emitting element in the direction of the optical axis of the light emitting element as compared with the position of the central part of the reflecting surface.
  • the reflection surface is centered on the central axis of the light flux controlling member. A rotationally symmetric surface, and a concave shape with respect to the generating line said light emitting element, a configuration.
  • the lighting device of the present invention exhibits a light distribution characteristic closer to that of an incandescent bulb than a conventional lighting device.
  • FIG. 3 is a cross-sectional view illustrating a configuration of the lighting apparatus according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating an example of an optical path in the illumination device according to the first embodiment.
  • 4 is a graph showing the relationship between the angle of outgoing light ( ⁇ (r1)) and the angle of reflected light ( ⁇ (r2)) in the illumination device of the first embodiment.
  • 3 is a graph showing the light distribution characteristics of the illumination device according to the first embodiment. It is sectional drawing which shows the structure of the illuminating device of the comparative example 1.
  • FIG. 10 is a cross-sectional view showing an example of an optical path in the illumination device of Comparative Example 1.
  • FIG. It is a graph which shows the relationship between the angle ((theta) (r1)) of the emitted light in the illuminating device of the comparative example 1, and the angle ((theta) (r2)) of reflected light.
  • 10 is a graph showing light distribution characteristics of the lighting device of Comparative Example 1.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a lighting device according to a second embodiment.
  • FIG. 10 is a cross-sectional view illustrating an example of an optical path in the illumination device according to the second embodiment.
  • 6 is a graph showing the relationship between the angle of outgoing light ( ⁇ (r1)) and the angle of reflected light ( ⁇ (r2)) in the illumination device of the second embodiment.
  • 6 is a graph showing light distribution characteristics of the illumination device according to the second embodiment.
  • It is sectional drawing which shows the structure of the illuminating device of the comparative example 2.
  • 12 is a cross-sectional view showing an example of an optical path in the illumination device of Comparative Example 2.
  • FIG. It is a graph which shows the relationship between the angle ((theta) (r1)) of the emitted light in the illuminating device of the comparative example 2, and the angle ((theta) (r2)) of reflected light.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a lighting device according to a third embodiment.
  • FIG. 10 is a cross-sectional view illustrating an example of an optical path in the illumination device according to the third embodiment. 10 is a graph showing the relationship between the angle of outgoing light ( ⁇ (r1)) and the angle of reflected light ( ⁇ (r2)) in the illumination device of the third embodiment. 10 is a graph showing light distribution characteristics of the illumination device according to the third embodiment.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a lighting device according to a fourth embodiment.
  • FIG. 10 is a cross-sectional view illustrating an example of an optical path in the illumination device according to the fourth embodiment.
  • 10 is a graph showing the relationship between the angle of emitted light ( ⁇ (r1)) and the angle of reflected light ( ⁇ (r2)) in the illumination device of the fourth embodiment.
  • 10 is a graph illustrating light distribution characteristics of the illumination device according to the fourth embodiment.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a lighting device according to a fifth embodiment.
  • FIG. 10 is a cross-sectional view illustrating an example of an optical path in the illumination device according to the fifth embodiment.
  • 10 is a graph showing the relationship between the angle of outgoing light ( ⁇ (r1)) and the angle of reflected light ( ⁇ (r2)) in the illumination device of the fifth embodiment.
  • FIG. 10 is a graph illustrating light distribution characteristics of the illumination device according to the fifth embodiment.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a lighting device according to a sixth embodiment. It is sectional drawing which shows an example of the optical path in the illuminating device of Embodiment 6. 14 is a graph showing the relationship between the angle of outgoing light ( ⁇ (r1)) and the angle of reflected light ( ⁇ (r2)) in the illumination device of the sixth embodiment. 14 is a graph illustrating light distribution characteristics of the illumination device according to the sixth embodiment.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a light bulb-type lighting device according to a seventh embodiment.
  • FIG. 3 is a cross-sectional view illustrating an example of a light bulb-type lighting device including the lighting device according to Embodiment 1.
  • FIG. 6 is a cross-sectional view showing another example of a light bulb-type lighting device including the lighting device of Embodiment 1.
  • FIG. It is a graph which shows the light distribution characteristic of the illuminating device shown by FIG.
  • It is a graph which shows the light distribution characteristic of the illuminating device shown by FIG.
  • FIG. 14 is a graph showing the light distribution characteristics of the light bulb-type lighting device of the seventh embodiment.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a light bulb-type lighting device according to an eighth embodiment.
  • 22 is a graph illustrating light distribution characteristics of the light bulb-type lighting device according to the eighth embodiment.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a light bulb-type lighting device according to a ninth embodiment.
  • 38 is a graph illustrating light distribution characteristics of the light bulb-type lighting device according to the ninth embodiment.
  • FIG. 22 is a cross-sectional view illustrating a configuration of a light bulb-type lighting device according to a tenth embodiment.
  • 38 is a graph illustrating light distribution characteristics of the light bulb-type lighting device according to the tenth embodiment.
  • FIG. 38 is a cross-sectional view illustrating a configuration of a light bulb-type lighting device according to an eleventh embodiment. 38 is a graph illustrating light distribution characteristics of the light bulb-type lighting device according to the eleventh embodiment.
  • FIG. 3 is a cross-sectional view showing a configuration of lighting apparatus 100 according to Embodiment 1 of the present invention. Lighting device 100 of the present embodiment can be used in place of an incandescent bulb.
  • the lighting device 100 includes a substrate 110, one or more light emitting elements 120, a light flux control member 130, a side wall 140, and a cover 150.
  • the light emitting element 120 is a light source of the lighting device 100 and is fixed on the substrate 110.
  • the light emitting element 110 is a light emitting diode (LED) such as a white light emitting diode.
  • LED light emitting diode
  • each light emitting element 120 may be arrange
  • the shape of the reflecting surface 132 (described later) of the light flux controlling member 130 it is preferable that the plurality of light emitting elements 120 be uniformly arranged in a region facing the reflecting surface 132.
  • the shape of the substrate 110 is not particularly limited as long as the light-emitting element can be fixed, and may not be a plate shape.
  • the light flux controlling member 130 is a member having a substantially circular shape in plan view that controls the traveling direction of the light emitted from the light emitting element 120.
  • the light flux controlling member 130 is supported by a cylindrical side wall portion 140 made of a light-transmitting material, and the air flux controlling member 130 is air-tight with respect to the light emitting element 120 so that the central axis CA coincides with the optical axis LA of the light emitting element 120. Arranged through layers. That is, the light flux controlling member 130 is disposed so as to face the light emitting element 120.
  • the “optical axis of the light emitting elements” refers to the traveling direction of light at the center of a three-dimensional light beam from the plurality of light emitting elements.
  • the light flux controlling member 130 reflects a part of the light emitted from the light emitting element 120 and transmits a part thereof.
  • Means for imparting such a function to the light flux controlling member 130 is not particularly limited.
  • a transmission / reflection film may be formed on the surface of the light flux controlling member 130 made of a light-transmitting material (the surface facing the light emitting element 120).
  • the light transmissive material include transparent resin materials such as polymethyl methacrylate (PMMA), polycarbonate (PC), and epoxy resin (EP), and transparent glass.
  • the transmission / reflection film examples include a multilayer film of TiO 2 and SiO 2, a multilayer film of ZnO 2 and SiO 2, a multilayer film of Ta 2 O 2 and SiO 2 , and aluminum (Al).
  • light scatterers such as beads may be dispersed inside the light flux controlling member 130 made of a light transmissive material. That is, the light flux controlling member 130 may be formed of a material that reflects part of light and transmits part of light. Further, the light transmission part may be formed on the light flux controlling member 130 made of a light reflective material. Examples of the light reflective material include white resin and metal. Examples of the light transmitting part include a through hole and a recessed part with a bottom. In the latter case, the light emitted from the light emitting element 120 is transmitted through the bottom of the recess (the portion where the thickness is reduced).
  • the light flux controlling member 130 has a reflecting surface 132 that faces the light emitting element 120 and reflects part of the light emitted from the light emitting element 120.
  • the light axis LA of the light emitting element 120 of the light emitted from the light emission center of the light emitting element 120 at an angle ⁇ (r1) with respect to the optical axis LA of the light emitting element 120 and reflected by the reflecting surface 132.
  • the angle with respect to is ⁇ (r2) (see FIG. 4).
  • “ ⁇ (r1)” is the smaller of the two angles formed by the light emitted from the light emitting element 120 and the optical axis LA.
  • ⁇ (r2) is the larger of the two angles formed by the direction in which the outgoing light with the angle ⁇ (r1) is reflected by the reflecting surface 132 and the optical axis LA.
  • ⁇ (r1) indicates a specific angle
  • ⁇ (a1), ⁇ (b1),... are written instead of ⁇ (r1).
  • ⁇ (r2) indicates a specific angle
  • ⁇ (a2), ⁇ (b2),... are written instead of ⁇ (r2).
  • ⁇ (a2) and ⁇ (b2) are emitted from the light emission center of the light emitting element 120 at an angle of ⁇ (a1) or ⁇ (b1) with respect to the optical axis LA of the light emitting element 120, respectively, and are reflected by the reflecting surface 132. This is an angle of the reflected light with respect to the optical axis LA of the light emitting element 120.
  • the reflection surface 132 reflects the emitted light from the light emitting element 120 toward the side wall 140. From another viewpoint, the reflection surface 132 has an angle ⁇ (r2) (see FIG. 4) of the arbitrary reflected light with respect to the optical axis LA of the light emitting element 120 larger than the half-value angle ⁇ (h1) of the light emitting element 120. Thus, it can be said that the light emitted from the light emitting element 120 is reflected. The reflected light passes through the side wall portion 140 made of a light transmissive material and reaches the cover 150.
  • the illumination device 100 of the present invention has a main feature in the shape of the reflection surface 132 of the light flux controlling member 130. Therefore, the shape of the reflecting surface 132 of the light flux controlling member 130 will be described in detail separately.
  • the cover 150 is a member in which a hollow region having an opening is formed.
  • the light emitting element 120, the light flux controlling member 130, and the side wall portion 140 are disposed in the hollow region of the cover 150.
  • the cover 150 transmits the light (reflected light and transmitted light) whose traveling direction is controlled by the light flux controlling member 130 while diffusing it.
  • the means for imparting light diffusing power to the cover 150 is not particularly limited.
  • the inner surface or the outer surface of the cover 150 may be subjected to light diffusion processing (for example, roughening processing), or a light diffusing material (for example, light transmissive material including scatterers such as beads) is used.
  • the cover 150 may be manufactured.
  • the shape of the cover 150 is not particularly limited as long as desired light distribution characteristics can be realized.
  • the shape of the cover 150 is a spherical crown shape (a shape obtained by cutting a part of a spherical surface with a plane).
  • the reflecting surface 132 of the light flux controlling member 130 is a rotationally symmetric (circularly symmetric) surface about the central axis CA of the light flux controlling member 130. Further, as shown in FIG. 3, the generatrix of the rotationally symmetric surface is concave with respect to the light emitting element 120. That is, the reflecting surface 132 has an aspherical curved surface whose height from the light emitting element 120 increases from the central portion toward the outer peripheral portion. Further, the outer peripheral portion of the reflecting surface 132 is formed at a position where the distance (height) from the light emitting element 120 in the direction of the optical axis LA of the light emitting element 120 is larger than the center portion of the reflecting surface 132.
  • the reflecting surface 132 is an aspherical curved surface whose height from the light emitting element 120 increases from the center to the outer periphery, or from the center to a predetermined point from the center to the outer periphery.
  • the height from the light emitting element 120 (substrate 110) increases as it goes, and the height from the light emitting element 120 decreases from the center to the outer periphery from the predetermined point to the outer periphery. is there.
  • the inclination angle of the reflecting surface 132 with respect to the surface direction of the substrate 110 becomes smaller from the central portion toward the outer peripheral portion.
  • the reflecting surface 132 has a tilt angle of zero with respect to the surface direction of the substrate 110 (parallel to the substrate 110) between the center portion and the outer peripheral portion and close to the outer peripheral portion. There is a point.
  • the reflecting surface 132 satisfies the following expression (1) when the angle of light emitted from the light emitting element 120 in the positive direction of the optical axis LA of the light emitting element 120 is 0 °.
  • the shape reflects a part of the light emitted from the light emitting element 120.
  • FIG. 4 is a cross-sectional view showing an example of an optical path in the illumination device 100.
  • the side wall 140 and the cover 150 are omitted.
  • ⁇ (a2) and ⁇ (b2) (denoted as “ ⁇ (r2)” in FIG. 4) in the above formula (1) are respectively from the light emission center of the light emitting element 120 to the optical axis LA of the light emitting element 120.
  • the light emitted at an angle of ⁇ (a1) or ⁇ (b1) (indicated as “ ⁇ (r1)” in FIG. 4) and reflected by the reflecting surface 132 with respect to the optical axis LA of the light emitting element 120 Is an angle.
  • Both ⁇ (a1) and ⁇ (b1) are arbitrary angles greater than ⁇ (c1). However, (theta) (b1) shall be larger than (theta) (a1). That is, in the above formula (1), ⁇ (c1) ⁇ ⁇ (a1) ⁇ (b1).
  • ⁇ (c1) is an angle determined by the size and arrangement of the light emitting element 120 and the distance between the light emitting element 120 and the light flux controlling member 130. That is, as shown in FIG. 4, in one or more light emitting elements 120, light emitted in a direction parallel to the optical axis LA of the light emitting element 120 from the point farthest from the light emission center reaches the reflecting surface 132. Let C be the point to do. The angle of light emitted from the light emission center of the light emitting element 120 toward the point C with respect to the optical axis LA of the light emitting element 120 is ⁇ (c1).
  • the reflective surface 132 that satisfies the above formula (1) reflects light in the lateral direction (horizontal direction) in the central region, and in the backward direction (downward) in the peripheral region. Reflect the light toward. In this way, by generating light in the backward direction not in the central portion side of the reflecting surface 132 but in the region on the outer peripheral portion side, the irradiated surface in the backward direction is efficiently prevented without being obstructed by the substrate 110. You will be able to shine well. Even if light in the backward direction is generated in the region on the center side of the reflecting surface 132, the light is hindered by the substrate 110, so that the irradiated surface in the backward direction cannot be efficiently illuminated.
  • FIG. 5 shows an angle ( ⁇ (r1)) of emitted light from the light emission center of the light emitting element 120 (size: 7.6 mm ⁇ 6.6 mm) in the illumination device 100 of Embodiment 1 shown in FIG. It is a graph (simulation result) which shows the relationship with the angle ((theta) (r2)) of the reflected light corresponding to the emitted light.
  • the angles of the emitted light and the reflected light are both angles with respect to the optical axis LA of the light emitting element 120.
  • ⁇ (c1) 26.69 °.
  • the reflection angle increases as the emission angle increases.
  • the light is reflected in the lateral direction (horizontal direction) in the region on the central portion side of the reflecting surface 132, and the rear direction (in the region on the outer peripheral portion side). It can be seen that the light is reflected toward (downward).
  • the light distribution characteristics of the lighting apparatus 100 of the first embodiment were measured.
  • the light distribution characteristics were measured by the following procedure.
  • An illuminometer was placed at a position (reference position 0 °) that is a predetermined distance away from the light emission center of the light emitting element 120 in the illumination device 100 along the optical axis LA.
  • the illuminance is measured by rotating the illuminance meter 180 degrees in the clockwise direction (+ ⁇ direction) at 5 ° intervals with the light emission center of the light emitting element 120 as the rotation center, and the illuminance is 180 in the counterclockwise direction ( ⁇ direction) at 5 ° intervals.
  • the illuminance was measured after rotating.
  • a graph was created by smoothly connecting the relative illuminance (dimensionless value) with a curve when the maximum illuminance among the measured illuminances was 1.
  • FIG. 6 is a graph showing the light distribution characteristics of the lighting apparatus 100 according to the first embodiment.
  • 0 ° means the forward direction (upward direction)
  • 90 ° means the lateral direction (horizontal direction)
  • 180 ° means the backward direction (downward direction). From FIG. 6, it can be seen that the lighting device 100 of Embodiment 1 has a wide and well-balanced light distribution characteristic.
  • FIG. 7 is a cross-sectional view illustrating a configuration of the illumination device 100 ′ of the comparative example 1
  • FIG. 8 is a cross-sectional view illustrating an example of an optical path in the illumination device 100 ′ of the comparative example 1.
  • the illumination device 100 ′ of the first comparative example is different from the illumination device 100 of the first embodiment in the shape of the reflecting surface 132 ′ of the light flux controlling member 130 ′.
  • FIG. 9 shows an angle ( ⁇ (r1)) of emitted light from the light emission center of the light emitting element 120 (size: 7.6 mm ⁇ 6.6 mm) in the illumination device 100 ′ of Comparative Example 1 shown in FIG. It is a graph which shows the relationship with the angle ((theta) (r2)) of the reflected light corresponding to the emitted light.
  • ⁇ (c1) 26.89 °.
  • the reflection angle was small when the emission angle exceeded 35 °. From this, it can be seen that in the illumination device 100 ′ of the comparative example 1, light cannot be reflected backward (downward) in the region on the outer peripheral portion side of the reflecting surface 132 ′ (see FIG. 8).
  • FIG. 10 is a graph showing the light distribution characteristics of the illumination device 100 ′ of Comparative Example 1. From this graph, it can be seen that the illumination device 100 ′ of Comparative Example 1 cannot sufficiently distribute light in the backward direction.
  • the illumination device 100 according to Embodiment 1 reflects some of the light emitted from the light emitting element 120 that has reached the light flux controlling member 130 in the lateral direction and the rearward direction by the reflecting surface 132, thereby producing some light. Is transmitted in the forward direction. At this time, the amount of light emitted in each direction can be easily controlled by adjusting the light reflectance and transmittance of the light flux controlling member 130.
  • lighting device 100 of Embodiment 1 generates reflected light in the lateral direction in the region on the central portion side of reflecting surface 132 and generates reflected light in the backward direction in the region on the outer peripheral portion side. For this reason, the illuminating device 100 of Embodiment 1 can illuminate the back surface to be irradiated efficiently without being obstructed by the substrate 110.
  • the illumination device 100 according to the first embodiment can realize the light distribution characteristic close to that of an incandescent bulb by controlling the amount of emitted light directed in the forward direction, the lateral direction, and the backward direction, respectively.
  • Illumination apparatus 100 according to Embodiment 1 can be used for indoor lighting instead of an incandescent bulb.
  • lighting device 100 of Embodiment 1 can reduce power consumption as compared to incandescent bulbs and can be used for a longer period than incandescent bulbs.
  • FIG. 11 is a cross-sectional view illustrating a configuration of lighting apparatus 200 according to Embodiment 2 of the present invention
  • FIG. 12 is a cross-sectional view illustrating an example of an optical path in lighting apparatus 200 according to Embodiment 2.
  • the illumination device 200 according to the second embodiment is slightly different from the illumination device 100 according to the first embodiment in the shapes of the substrate 210, the light flux controlling member 230, and the side wall 240.
  • the illuminating device 200 of Embodiment 2 differs from the illuminating device 100 of Embodiment 1 also in the point which does not have a cover.
  • the reflection angle increases as the emission angle increases. For this reason, in the illumination device 200 according to the second embodiment, light is reflected in the lateral direction in the region on the center side of the reflecting surface 232, and light is directed in the backward direction in the region on the outer peripheral portion side. You can see that it reflects.
  • FIG. 14 is a graph showing the light distribution characteristics of the lighting apparatus 200 according to the second embodiment. From this graph, it can be seen that the illumination device 200 of the second embodiment has a wide and well-balanced light distribution characteristic.
  • FIG. 15 is a cross-sectional view illustrating a configuration of an illumination device 200 ′ of Comparative Example 2
  • FIG. 16 is a cross-sectional view illustrating an example of an optical path in the illumination device 200 ′ of Comparative Example 2.
  • the illumination device 200 ′ of the comparative example 2 is different from the illumination device 200 of the second embodiment in the shape of the reflection surface 232 ′ of the light flux controlling member 230 ′.
  • FIG. 18 is a graph showing the light distribution characteristics of the illumination device 200 ′ of Comparative Example 2. It can be seen from FIG. 18 that the illumination device 200 ′ of Comparative Example 2 cannot sufficiently distribute light in the backward direction.
  • the lighting device 200 according to the second embodiment has the same effect as the lighting device 100 according to the first embodiment.
  • Illumination apparatus 200 according to Embodiment 2 can be used for indoor lighting instead of an incandescent bulb.
  • FIG. 19 is a cross-sectional view illustrating a configuration of lighting apparatus 300 according to Embodiment 3 of the present invention
  • FIG. 20 is a cross-sectional view illustrating an example of an optical path in lighting apparatus 300 according to Embodiment 3.
  • the illumination device 300 of the third embodiment is slightly different from the illumination device 100 of the first embodiment in the shape of the light flux controlling member 330.
  • the illuminating device 300 of Embodiment 3 differs from the illuminating device 100 of Embodiment 1 also in the point which does not have a cover.
  • the reflection angle increases as the emission angle increases.
  • the light is reflected in the lateral direction in the region on the center side of the reflecting surface 332, and the light is directed in the backward direction in the region on the outer peripheral portion side. You can see that it reflects.
  • FIG. 22 is a graph showing the light distribution characteristics of the lighting apparatus 300 according to the third embodiment. From this graph, it can be seen that the lighting apparatus 300 of Embodiment 3 has a wide and well-balanced light distribution characteristic.
  • the lighting device 300 according to the third embodiment has the same effects as the lighting device 100 according to the first embodiment.
  • Illumination apparatus 300 according to Embodiment 3 can be used for indoor lighting instead of an incandescent bulb.
  • FIG. 23 is a cross-sectional view showing a configuration of illumination apparatus 400 according to Embodiment 4 of the present invention
  • FIG. 24 is a cross-sectional view showing an example of an optical path in illumination apparatus 400 according to Embodiment 4.
  • the illumination device 400 of the fourth embodiment is slightly different from the illumination device 100 of the first embodiment in the shapes of the substrate 410, the light flux controlling member 430, and the side wall portion 440.
  • the illuminating device 400 of Embodiment 4 differs from the illuminating device 100 of Embodiment 1 also in the point which does not have a cover.
  • the reflection angle increases as the emission angle increases.
  • ⁇ (c1) 40.55 °
  • the reflection angle increases as the emission angle increases.
  • light is reflected in the lateral direction in the region on the central portion side of the reflecting surface 432, and light is directed in the backward direction in the region on the outer peripheral portion side. It can be seen that it is reflected (see FIG. 24).
  • FIG. 26 is a graph showing the light distribution characteristics of the lighting apparatus 400 of the fourth embodiment. From this graph, it can be seen that the illumination device 400 of Embodiment 4 has a wide and well-balanced light distribution characteristic.
  • Illumination device 400 of the fourth embodiment has the same effects as illumination device 100 of the first embodiment.
  • Illuminating apparatus 400 of Embodiment 4 can be used for indoor lighting or the like instead of incandescent light bulbs.
  • FIG. 27 is a cross-sectional view showing a configuration of illumination apparatus 500 according to Embodiment 5 of the present invention
  • FIG. 28 is a cross-sectional view showing an example of an optical path in illumination apparatus 500 according to Embodiment 5.
  • the illumination device 500 includes a substrate 510, one or more light emitting elements 120, a light flux control member 530, a side wall portion 540, and a lid portion 550.
  • the illumination device 500 of the fifth embodiment is slightly different from the illumination device 100 of the first embodiment in the shape of the light flux controlling member 530.
  • the illumination apparatus 500 of Embodiment 5 differs from the illumination apparatus 100 of Embodiment 1 in that the side wall portion 540 and the lid portion 550 are integrated and function as a cover.
  • the side wall part 540 supports the light flux controlling member 530 and diffuses the light reflected by the light flux controlling member 530.
  • the cover part 550 covers the light beam control member 530 through the air layer, and diffuses the light transmitted through the light beam control member 530. That is, the side wall portion 540 and the lid portion 550 function as a cover that diffuses light whose traveling direction is controlled by the light flux controlling member 530.
  • the reflection angle increases as the emission angle increases.
  • the light is reflected in the lateral direction in the region on the central portion side of the reflecting surface 532, and the light is directed in the backward direction in the region on the outer peripheral portion side. It can be seen that it is reflected (see FIG. 28).
  • FIG. 30 is a graph showing the light distribution characteristics of the lighting apparatus 500 according to the fifth embodiment. From this graph, it can be seen that the illumination device 500 of Embodiment 5 has a wide and well-balanced light distribution characteristic.
  • the illumination device 500 according to the fifth embodiment has the same effects as the illumination device 100 according to the fifth embodiment.
  • Illumination apparatus 500 of Embodiment 5 can be used for indoor lighting or the like instead of an incandescent bulb.
  • FIG. 31 is a cross-sectional view showing a configuration of illumination apparatus 600 according to Embodiment 6 of the present invention
  • FIG. 32 is a cross-sectional view showing an example of an optical path in illumination apparatus 600 according to Embodiment 6.
  • the illumination device 600 of the sixth embodiment is slightly different from the illumination device 100 of the first embodiment in the shapes of the substrate 610, the light flux controlling member 630, and the side wall portion 640.
  • the illuminating device 600 of Embodiment 6 differs from the illuminating device 100 of Embodiment 1 also in the point which has the lens 660 which covers the light emitting element 120.
  • FIG. 1 is a cross-sectional view showing a configuration of illumination apparatus 600 according to Embodiment 6 of the present invention
  • FIG. 32 is a cross-sectional view showing an example of an optical path in illumination apparatus 600 according to Embodiment 6.
  • the illumination device 600 of the sixth embodiment is slightly different from the illumination device 100 of the first embodiment in the shapes of the substrate 610, the light
  • the reflection angle increases as the emission angle increases.
  • (c1) (20.15 °) or more
  • the reflection angle increases as the emission angle increases.
  • light is reflected in the lateral direction in the region on the center side of the reflecting surface 632, and light is directed in the backward direction in the region on the outer peripheral portion side. It can be seen that it is reflected (see FIG. 32).
  • FIG. 34 is a graph showing the light distribution characteristics of the lighting apparatus 600 according to the sixth embodiment. From this graph, it can be seen that the illumination device 600 of the sixth embodiment has a wide and well-balanced light distribution characteristic.
  • Illuminating apparatus 600 of Embodiment 6 has the same effect as lighting apparatus 100 of Embodiment 1.
  • Illumination apparatus 600 according to Embodiment 6 can be used for indoor lighting or the like instead of an incandescent bulb.
  • FIG. 35 is a cross-sectional view showing a configuration of illumination apparatus 700 according to Embodiment 7 of the present invention.
  • the lighting device 700 includes one or more light emitting elements 120, a light flux control member 130, a side wall portion 140, a base 710, a cover 720, a light bulb housing 730, and a base 740.
  • Illumination device 700 of Embodiment 7 has a bulb shape, and is used in the same manner as an incandescent bulb.
  • the light emitting element 120, the light flux controlling member 130, and the side wall portion 140 are the same as those included in the illumination device 100 of the first embodiment.
  • the light emitting element 120, the light flux controlling member 130 and the side wall 140 are disposed on the base 710.
  • the light emitting element 120, the light flux controlling member 130, and the side wall portion 140 are such that the light emitting element 120 is positioned closer to the opening of the cover 720 than the light flux controlling member 130, and the optical axis LA of the light emitting element 120 and the central axis of the cover 720.
  • the base 710 is provided on the light bulb casing 730 and adjusts the positional relationship between the light emitting element 120, the light flux controlling member 130, the side wall 140, and the cover 720.
  • a circuit for connecting the light emitting element 120 and a circuit in the bulb housing 730 is provided.
  • the cover 720 is a member in which a hollow region having an opening is formed. As described above, the light emitting element 120, the light flux controlling member 130, and the side wall portion 140 are disposed in the hollow region of the cover 720. The cover 720 diffuses and transmits the reflected light and transmitted light from the light flux controlling member 130. In the example shown in FIG. 35, the shape of the cover 720 has a substantially spherical crown shape. The cover 720 is fixed to the upper part of the light bulb housing 730, and the opening of the cover 720 is closed by the light bulb housing 730.
  • a circuit for causing the light emitting element 120 to emit light is provided in the light bulb casing 730.
  • This electric circuit is connected to the base 740 and the light emitting element 120.
  • the light bulb housing 730 also functions as a heat radiating unit.
  • the lighting device 700 is characterized in that the light emitting element 120, the light flux controlling member 130, and the side wall 140 are arranged at predetermined positions in the cover 720. That is, in lighting device 700 of the present embodiment, light emitting element 120, light flux controlling member 130, and side wall 140 are above the maximum outer diameter portion (indicated by an arrow in FIG. 35) of cover 720 (opposite the opening). Located on the side). In the illumination device 700 of this embodiment, the opening of the cover 720 is located below the light emitting element 120 (a negative direction when the light emission direction along the optical axis of the light emitting element 120 is positive). Located in.
  • the light emitting element 120, the light flux controlling member 130, and the side wall portion 140 above the opening of the cover 720 the backward light reflected by the light flux controlling member 130 is stored in the light bulb housing 730. It becomes difficult to be disturbed. For this reason, regardless of the size of the light bulb casing 730, the light distribution characteristic of the lighting device 700 can be brought close to an incandescent light bulb.
  • FIG. 36 is a cross-sectional view showing a light bulb-type lighting device 700 ′ including the lighting device 100 of the first embodiment. As shown in this figure, if the relationship between the size of the light flux controlling member 130 and the size of the light bulb housing 730 is appropriate, the backward light reflected by the light flux controlling member 130 is blocked by the light bulb housing 730. The illuminated surface in the rear direction can be illuminated without any problems.
  • FIG. 37 is a cross-sectional view showing a light bulb-type lighting device 700 ′′ including the lighting device 100 of the first embodiment.
  • the lighting device 700 ′′ shown in FIG. 37 includes a lighting device 700 ′ and a light bulb shown in FIG.
  • the size of the housing 730 is different. As shown in this figure, if the relationship between the size of the light flux control member 130 and the size of the bulb housing 730 is inappropriate, the backward light reflected by the light flux control member 130 interferes with the bulb housing 730. May be.
  • the light beam control member 130 is arranged by arranging the light emitting element 120, the light beam control member 130, and the side wall portion 140 above the opening of the cover 720.
  • the light in the rear direction reflected by the light bulb is less likely to be blocked by the light bulb housing 730. Therefore, as shown in FIG. 35, in the illumination device 700 of the present embodiment, the light emitting element 120, the light flux controlling member 130, and the side wall portion 140 are arranged on the base 710.
  • FIG. 38 is a graph showing the light distribution characteristics of a bulb-type lighting device 700 ′ including the lighting device 100 of the first embodiment shown in FIG.
  • the outer diameter of the bulb housing 730 is 35 mm, and the size of the light emitting element 120 is 7.6 mm ⁇ 6.6 mm. From this graph, it can be seen that the illumination device 700 ′ shown in FIG. 36 has a wide and well-balanced light distribution characteristic.
  • FIG. 39 is a graph showing the light distribution characteristics of the bulb-type lighting device 700 ′′ including the lighting device 100 of the first embodiment shown in FIG. 37.
  • the outer diameter of the bulb housing 730 is 52.5 mm.
  • the size of the light-emitting element 120 is 7.6 mm ⁇ 6.6 mm From this graph, it can be seen that if the bulb housing 730 is larger than the light flux controlling member 130, the light cannot be sufficiently distributed in the rearward direction.
  • FIG. 40 is a graph showing the light distribution characteristics of the illumination device 700 of the seventh embodiment shown in FIG.
  • the outer diameter of the bulb casing 730 is 52.5 mm
  • the size of the light emitting element 120 is 7.6 mm ⁇ 6.6 mm
  • the distance between the bulb casing 730 and the light emitting element 120 (the height of the base 710). ) Is 17 mm. From this graph, even when the bulb housing 730 is larger than the light flux control member 130, the light emitting element 120, the light flux control member 130, and the side wall portion 140 are disposed above the opening of the cover 720. Thus, it can be seen that the light can be sufficiently distributed in the backward direction.
  • the lighting device 700 according to the seventh embodiment adjusts the height of the base 710 according to the outer diameter of the bulb housing 730 so that the balance of the lighting device 700 can be improved without changing the size of the light flux controlling member 130. Good light distribution characteristics can be realized.
  • FIG. 41 is a cross-sectional view showing a configuration of illumination apparatus 800 according to Embodiment 8 of the present invention.
  • the illuminating device 800 according to the eighth embodiment is different from the illuminating device 700 according to the seventh embodiment in that the light flux controlling member 130 and the side wall 140 are supported by three legs 810.
  • FIG. 42 is a graph showing the light distribution characteristics of lighting apparatus 800 according to the eighth embodiment.
  • the size of each component is the same as that of lighting device 700 of the seventh embodiment.
  • the columnar leg portions 810 each have an outer diameter of 1 mm and a length of 2 mm. From this graph, it can be seen that the lighting apparatus 800 of Embodiment 8 has a wide and well-balanced light distribution characteristic.
  • Illuminating device 800 of Embodiment 8 has an effect that the space for installing light flux controlling member 130 on base 710 can be significantly reduced in addition to the same effects as lighting device 100 of Embodiment 7. .
  • FIG. 43 is a cross-sectional view showing a configuration of illumination apparatus 900 according to Embodiment 9 of the present invention.
  • the illumination device 900 according to the ninth embodiment is different from the illumination device 700 according to the seventh embodiment in that the light flux controlling member 130 is supported by three legs 910 instead of the side walls.
  • the light flux controlling member 130 and the leg portion 910 may be manufactured as a single unit, or may be manufactured separately.
  • FIG. 44 is a graph showing the light distribution characteristics of the lighting apparatus 900 according to the ninth embodiment.
  • the size of each component is the same as that of lighting device 700 of the seventh embodiment.
  • the columnar leg portions 910 each have an outer diameter of 1 mm and a length of 2 mm. From this graph, it can be seen that the lighting device 900 of Embodiment 9 has a wide and well-balanced light distribution characteristic.
  • the lighting device 900 according to the ninth embodiment has the same effects as the lighting device 800 according to the eighth embodiment.
  • FIG. 45 is a cross-sectional view showing a configuration of illumination apparatus 1000 according to the tenth embodiment of the present invention.
  • the illuminating device 1000 according to the tenth embodiment is different from the illuminating device 700 according to the seventh embodiment in that the light flux controlling member 130 is supported by three hanging portions 1010 instead of the side wall portions.
  • the hanging part 1010 is fixed to the inner surface of the cover 720.
  • the hanging part 1010 may be manufactured integrally with the light flux controlling member 130 or the cover 720, or may be separately manufactured.
  • FIG. 46 is a graph showing the light distribution characteristics of lighting apparatus 1000 according to the tenth embodiment.
  • the size of each component is the same as that of lighting device 700 of the seventh embodiment.
  • the column-shaped hanging parts 1010 have an outer diameter of 1 mm and a length of 10.8 mm, respectively. From this graph, it can be seen that the illumination device 1000 of Embodiment 10 has a wide and well-balanced light distribution characteristic.
  • illumination device 1000 of Embodiment 10 has an effect that a space for installing light flux controlling member 130 on base 710 is unnecessary.
  • FIG. 47 is a cross-sectional view showing a configuration of lighting apparatus 1100 according to Embodiment 11 of the present invention.
  • the illuminating device 1100 of the eleventh embodiment is the same as the illuminating device 700 ′′ shown in FIG. 37, in which the cover 150 is extended 9.1 mm toward the base 740 side (cover 720), and a part of the bulb housing 730 is moved accordingly. That is, both the base 710 and the light bulb housing 730 in the lighting apparatus 700 of Embodiment 7 have the roles of the light bulb housing 1110.
  • FIG. 48 is a graph showing the light distribution characteristics of lighting apparatus 1100 of the eleventh embodiment. From this graph, it can be seen that the lighting apparatus 1100 of Embodiment 11 has a wide and well-balanced light distribution characteristic.
  • Illuminating device 1100 of the eleventh embodiment has the same effect as lighting device 700 of the seventh embodiment.
  • the lighting device of the present invention can be used in place of an incandescent bulb, it can be widely applied to various lighting devices such as chandeliers and indirect lighting devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

 照明装置(100)は、基板(110)上に配置された発光素子(120)と、発光素子(120)から出射された光の一部を反射し、一部を透過させる光束制御部材(130)とを有する。光束制御部材130は、発光素子120と対向し、かつ発光素子(120)から出射された光の一部を反射させる反射面(132)を有する。反射面(132)は、中心部から外周部に向かうにつれて発光素子(120)からの高さが高くなる非球面形状の曲面を有する。反射面(132)は、中心部側の領域では側方方向に向けて光を反射させ、外周部側の領域では後方方向に向けて光を反射させる。

Description

照明装置
 本発明は、発光素子および光束制御部材を有し、白熱電球に代えて使用できる照明装置に関する。
 近年、省エネルギーや環境保全の観点から、発光ダイオード(以下「LED」ともいう)を光源とする照明装置(例えば、LED電球)が、白熱電球に代わるものとして使用されている。
 しかしながら、従来のLEDを光源とする照明装置は、前方方向のみに光を出射し、白熱電球のように幅広い方向に光を出射することができない。このため、従来の照明装置は、白熱電球のように天井や壁面からの反射光を利用して室内を広範囲に照らすことができない。
 このような従来のLEDを光源とする照明装置の配光特性を白熱電球の配光特性に近づけるため、LEDからの出射光の進行方向を光束制御部材で制御することが提案されている(例えば、特許文献1,2参照)。
 図1は、特許文献1に記載の照明装置の構成を示す模式図である。図1に示されるように、照明装置10は、基板上に配置された複数のLED12と、LED12の周囲に配置された光透過性材料からなる円筒形のカバー14とを有する。カバー14の上面は、逆円錐台形状に形成されている。円錐台の斜面は、光を反射させるアルミ板16が貼り付けられており、反射面として機能する。一方、円錐台の平面は、光を透過させる透過窓18として機能する。図1において矢印で示されるように、LED12から出射された光の一部は、透過窓18を通過して前方方向(上方向)への出射光となる。また、LED12から出射された光の一部は、アルミ板16で反射して側方方向(水平方向)への出射光となる。
 図2は、特許文献2に記載の照明装置の構成を示す模式図である。図2に示されるように、照明装置20は、装置本体上に配置された複数のLED22と、LED22の周囲に配置された拡散カバー24および透明カバー26とを有する。拡散カバー24は、光拡散性を有しており、入射光を拡散させながら透過させる。また、拡散カバー24の内面には反射面が形成されており、拡散カバー24は、入射光の一部を透明カバーに向けて反射させる。一方、透明カバー26は、光拡散性を有しておらず、入射光をそのまま透過させる。図2において矢印で示されるように、LED22から出射された光の一部は、拡散カバー24を通過して前方方向(上方向)への出射光となる。また、LED22から出射された光の一部は、拡散カバー24で反射し、透明カバー26を透過して後方方向(下方向)への出射光となる。
 このように光束制御部材を用いてLEDからの出射光の進行方向を制御することにより、前方方向だけでなく、側方方向または後方方向への出射光を得ることができる。したがって、特許文献1,2に記載の光束制御部材(反射面)を使用することで、照明装置(LED電球)の配光特性を白熱電球の配光特性にある程度近づけることができる。
特開2003-258319号公報 特開2010-176890号公報
 しかしながら、特許文献1,2に記載の照明装置には、配光特性のバランスが悪いという問題がある。すなわち、特許文献1に記載の照明装置は、前方方向および側方方向にはある程度配光できるものの、後方方向に適切に配光することができない。そのため、図1に示されるAの領域が暗くなってしまう。また、特許文献2に記載の照明装置は、前方方向および後方方向にはある程度配光できるものの、側方方向に適切に配光することができない。そのため、図2に示されるBの領域が暗くなってしまう。このように、特許文献1,2に記載の照明装置は、白熱電球に比べて配光特性のバランスが悪かった。
 本発明の目的は、発光素子を有する照明装置であって、一般的な発光素子の配光特性において光量不足となる半値角より大きな角度方向へも光を振り分けることができ、前方方向、側方方向および後方方向のすべてにバランスよく配光することができる照明装置を提供することである。
 本発明の照明装置は、基板上に配置された1または2以上の発光素子と、前記発光素子の光軸とその中心軸が一致するように前記発光素子に対して空気層を介して配置され、前記発光素子から出射された光の一部を反射し、一部を透過させる光束制御部材と、を有し、前記光束制御部材は、前記発光素子と対向し、かつ前記発光素子から出射された光の一部を反射させる反射面を有し、前記反射面は、前記発光素子の光軸との交点である中心部から外周部に向かうにつれて前記発光素子からの高さが高くなる非球面形状の曲面を有し、前記反射面の外周部は、前記反射面の中心部の位置と比較して、前記発光素子の光軸の方向における前記発光素子からの距離が離れた位置に形成され、前記反射面は、前記発光素子から前記発光素子の光軸に沿って出射された光の角度を0°としたときに、以下の式(1)を満たすように前記発光素子から出射された光の一部を反射させる、構成を採る。
 θ(a2)<θ(b2)   …(1)
 ただし、式(1)において、θ(a2)は、前記発光素子の発光中心から前記発光素子の光軸に対してθ(a1)の角度で出射され、かつ前記反射面により反射された光の、前記発光素子の光軸に対する角度であり、θ(b2)は、前記発光素子の発光中心から前記発光素子の光軸に対してθ(b1)の角度で出射され、かつ前記反射面により反射された光の、前記発光素子の光軸に対する角度であり、前記発光素子において前記発光素子の発光中心から一番遠い点から、前記発光素子の光軸と平行方向に出射した光が前記反射面に到達する点と、前記発光素子の発光中心とを結ぶ線の、前記発光素子の光軸に対する角度をθ(c1)としたときに、θ(c1)≦θ(a1)<θ(b1)である。
 本発明の照明装置は、基板上に配置された1または2以上の発光素子と、前記発光素子の光軸とその中心軸が一致するように前記発光素子に対して空気層を介して配置され、前記発光素子から出射された光の一部を反射し、一部を透過させる光束制御部材と、を有し、前記光束制御部材は、前記発光素子と対向し、かつ前記発光素子から出射された光の一部を反射させる反射面を有し、前記反射面は、前記発光素子の光軸との交点である中心部から外周部に向かうにつれて前記発光素子からの高さが高くなる非球面形状の曲面を有し、前記反射面の外周部は、前記反射面の中心部の位置と比較して、前記発光素子の光軸の方向における前記発光素子からの距離が離れた位置に形成され、前記反射面は、前記光束制御部材の中心軸を中心とする回転対称面であり、かつその母線が前記発光素子に対して凹形状である、構成を採る。
 本発明の照明装置は、従来の照明装置に比べて、より白熱電球に近い配光特性を示す。
特許文献1に記載の照明装置の構成を示す模式図である。 特許文献2に記載の照明装置の構成を示す模式図である。 実施の形態1の照明装置の構成を示す断面図である。 実施の形態1の照明装置における光路の一例を示す断面図である。 実施の形態1の照明装置における出射光の角度(θ(r1))と反射光の角度(θ(r2))との関係を示すグラフである。 実施の形態1の照明装置の配光特性を示すグラフである。 比較例1の照明装置の構成を示す断面図である。 比較例1の照明装置における光路の一例を示す断面図である。 比較例1の照明装置における出射光の角度(θ(r1))と反射光の角度(θ(r2))との関係を示すグラフである。 比較例1の照明装置の配光特性を示すグラフである。 実施の形態2の照明装置の構成を示す断面図である。 実施の形態2の照明装置における光路の一例を示す断面図である。 実施の形態2の照明装置における出射光の角度(θ(r1))と反射光の角度(θ(r2))との関係を示すグラフである。 実施の形態2の照明装置の配光特性を示すグラフである。 比較例2の照明装置の構成を示す断面図である。 比較例2の照明装置における光路の一例を示す断面図である。 比較例2の照明装置における出射光の角度(θ(r1))と反射光の角度(θ(r2))との関係を示すグラフである。 比較例2の照明装置の配光特性を示すグラフである。 実施の形態3の照明装置の構成を示す断面図である。 実施の形態3の照明装置における光路の一例を示す断面図である。 実施の形態3の照明装置における出射光の角度(θ(r1))と反射光の角度(θ(r2))との関係を示すグラフである。 実施の形態3の照明装置の配光特性を示すグラフである。 実施の形態4の照明装置の構成を示す断面図である。 実施の形態4の照明装置における光路の一例を示す断面図である。 実施の形態4の照明装置における出射光の角度(θ(r1))と反射光の角度(θ(r2))との関係を示すグラフである。 実施の形態4の照明装置の配光特性を示すグラフである。 実施の形態5の照明装置の構成を示す断面図である。 実施の形態5の照明装置における光路の一例を示す断面図である。 実施の形態5の照明装置における出射光の角度(θ(r1))と反射光の角度(θ(r2))との関係を示すグラフである。 実施の形態5の照明装置の配光特性を示すグラフである。 実施の形態6の照明装置の構成を示す断面図である。 実施の形態6の照明装置における光路の一例を示す断面図である。 実施の形態6の照明装置における出射光の角度(θ(r1))と反射光の角度(θ(r2))との関係を示すグラフである。 実施の形態6の照明装置の配光特性を示すグラフである。 実施の形態7の電球型の照明装置の構成を示す断面図である。 実施の形態1の照明装置を含む電球型の照明装置の例を示す断面図である。 実施の形態1の照明装置を含む電球型の照明装置の別の例を示す断面図である。 図36に示される照明装置の配光特性を示すグラフである。 図37に示される照明装置の配光特性を示すグラフである。 実施の形態7の電球型の照明装置の配光特性を示すグラフである。 実施の形態8の電球型の照明装置の構成を示す断面図である。 実施の形態8の電球型の照明装置の配光特性を示すグラフである。 実施の形態9の電球型の照明装置の構成を示す断面図である。 実施の形態9の電球型の照明装置の配光特性を示すグラフである。 実施の形態10の電球型の照明装置の構成を示す断面図である。 実施の形態10の電球型の照明装置の配光特性を示すグラフである。 実施の形態11の電球型の照明装置の構成を示す断面図である。 実施の形態11の電球型の照明装置の配光特性を示すグラフである。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 (実施の形態1)
 [照明装置の構成]
 図3は、本発明の実施の形態1の照明装置100の構成を示す断面図である。本実施の形態の照明装置100は、白熱電球に代えて使用されうる。
 図3に示されるように、照明装置100は、基板110、1または2以上の発光素子120、光束制御部材130、側壁部140およびカバー150を有する。
 発光素子120は、照明装置100の光源であり、基板110上に固定されている。発光素子110は、例えば白色発光ダイオードなどの発光ダイオード(LED)である。基板110上に複数の発光素子120が固定されている場合、各発光素子120は、円周上に配置されていてもよい。光束制御部材130の反射面132(後述)の形状設計をする上では、複数の発光素子120が反射面132と対向する領域に満遍なく配置されていることが好ましい。なお、基板110の形状は、発光素子を固定することができれば特に限定されず、板状でなくてもよい。
 光束制御部材130は、発光素子120からの出射光の進行方向を制御する、平面視形状が略円形の部材である。光束制御部材130は、光透過性の材料からなる筒状の側壁部140により支持されており、その中心軸CAが発光素子120の光軸LAと一致するように、発光素子120に対して空気層を介して配置されている。すなわち、光束制御部材130は、発光素子120と対向するように配置されている。基板110上に複数の発光素子120が配置されている場合、「発光素子の光軸」とは、複数の発光素子からの立体的な光束の中心における光の進行方向をいう。
 光束制御部材130は、発光素子120から出射された光の一部を反射し、一部を透過させる。光束制御部材130にこのような機能を付与する手段は、特に限定されない。たとえば、光透過性の材料からなる光束制御部材130の表面(発光素子120に対向する面)に透過反射膜を形成すればよい。光透過性の材料の例には、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)などの透明樹脂材料や、透明なガラスなどが含まれる。透過反射膜の例には、TiOおよびSiOの多層膜、ZnOおよびSiOの多層膜、TaおよびSiOの多層膜などの誘電体多層膜や、アルミニウム(Al)などからなる金属薄膜などが含まれる。また、光透過性の材料からなる光束制御部材130の内部にビーズなどの光散乱子を分散させてもよい。すなわち、光束制御部材130は、一部の光を反射させ、一部の光を透過させる材料により形成されていてもよい。また、光反射性の材料からなる光束制御部材130に光透過部を形成してもよい。光反射性の材料の例には、白色樹脂や金属などが含まれる。光透過部の例には、貫通孔や有底の凹部などが含まれる。後者の場合、発光素子120からの出射光は、凹部の底部(厚みが薄くなっている部分)を透過する。
 光束制御部材130は、発光素子120と対向し、かつ発光素子120から出射された光の一部を反射させる反射面132を有する。以下の説明では、発光素子120の発光中心から発光素子120の光軸LAに対してθ(r1)の角度で出射され、かつ反射面132により反射された光の、発光素子120の光軸LAに対する角度をθ(r2)とする(図4参照)。ここで「θ(r1)」は、発光素子120からの出射光が光軸LAと形成する2つの角度のうちの小さい方の角度である。また、「θ(r2)」は、角度θ(r1)の出射光が反射面132で反射されて向かう方向と光軸LAとが形成する2つの角度のうちの大きい方の角度である。また、θ(r1)が具体的な角度を示すときは、θ(r1)の代わりに、θ(a1),θ(b1),…と表記する。同様に、θ(r2)が具体的な角度を示すときは、θ(r2)の代わりに、θ(a2),θ(b2),…と表記する。θ(a2)およびθ(b2)は、それぞれ、発光素子120の発光中心から発光素子120の光軸LAに対してθ(a1)またはθ(b1)の角度で出射され、かつ反射面132により反射された光の、発光素子120の光軸LAに対する角度である。
 反射面132は、発光素子120からの出射光を側壁部140に向けて反射させる。別の観点から見ると、反射面132は、任意の反射光の発光素子120の光軸LAに対する角度θ(r2)(図4参照)が、発光素子120の半値角θ(h1)よりも大きくなるように、発光素子120からの出射光を反射させるともいえる。反射光は、光透過性の材料からなる側壁部140を透過してカバー150に到達する。
 本発明の照明装置100は、光束制御部材130の反射面132の形状に主たる特徴を有する。そこで、光束制御部材130の反射面132の形状については、別途詳細に説明する。
 カバー150は、開口部を有する中空領域が形成された部材である。発光素子120、光束制御部材130および側壁部140は、カバー150の中空領域内に配置される。カバー150は、光束制御部材130により進行方向を制御された光(反射光および透過光)を拡散させつつ透過させる。
 カバー150に光拡散能を付与する手段は、特に限定されない。たとえば、カバー150の内面または外面に光拡散処理(例えば、粗面化処理)を行ってもよいし、光拡散性の材料(例えば、ビーズなどの散乱子を含む光透過性の材料)を用いてカバー150を作製してもよい。なお、カバー150の形状は、所望の配光特性を実現することができれば特に限定されない。たとえば、カバー150の形状は、球冠形状(球面の一部を平面で切り取った形状)である。
 [光束制御部材の反射面の形状]
 光束制御部材130の反射面132は、光束制御部材130の中心軸CAを中心とする回転対称(円対称)面である。また、図3に示されるように、この回転対称面の母線は、発光素子120に対して凹形状である。すなわち、反射面132は、中心部から外周部に向かうにつれて発光素子120からの高さが高くなる非球面形状の曲面を有する。また、反射面132の外周部は、反射面132の中心部と比較して、発光素子120の光軸LA方向における発光素子120からの距離(高さ)が離れた位置に形成されている。たとえば、反射面132は、中心部から外周部に向かうにつれて発光素子120からの高さが高くなる非球面形状の曲面であるか、または、中心部から所定の地点までは中心部から外周部に向かうにつれて発光素子120(基板110)からの高さが高くなり、前記所定の地点から外周部までは中心部から外周部に向かうにつれて発光素子120からの高さが低くなる非球面形状の曲面である。前者の場合、基板110の面方向に対する反射面132の傾斜角度は、中心部から外周部に向かうにつれて小さくなる。一方、後者の場合、反射面132には、中心部と外周部との間であって、かつ外周部に近い位置に、基板110の面方向に対する傾斜角度が零(基板110と平行)となる点が存在する。
 より具体的には、反射面132は、発光素子120から発光素子120の光軸LAの正方向へ出射された光の角度を0°としたときに、以下の式(1)を満たすように発光素子120から出射された光の一部を反射させる形状である。
 θ(a2)<θ(b2)   …(1)
 図4は、照明装置100における光路の一例を示す断面図である。この図では、側壁部140およびカバー150を省略している。前述のとおり、上記式(1)におけるθ(a2)およびθ(b2)(図4では「θ(r2)」と表記)は、それぞれ、発光素子120の発光中心から発光素子120の光軸LAに対してθ(a1)またはθ(b1)(図4では「θ(r1)」と表記)の角度で出射され、かつ反射面132により反射された光の、発光素子120の光軸LAに対する角度である。θ(a1)およびθ(b1)は、いずれもθ(c1)以上の任意の角度である。ただし、θ(b1)は、θ(a1)よりも大きいものとする。すなわち、上記式(1)では、θ(c1)≦θ(a1)<θ(b1)であるものとする。
 θ(c1)は、発光素子120の大きさおよび配置、ならびに発光素子120と光束制御部材130との間の間隔により定まる角度である。すなわち、図4に示されるように、1または2以上の発光素子120において、発光中心から最も遠い点から、発光素子120の光軸LAと平行方向に出射された光が、反射面132に到達する点をCとする。この点Cに向かって発光素子120の発光中心から出射された光の、発光素子120の光軸LAに対する角度がθ(c1)である。
 上記式(1)は、反射面132の点Cよりも外周側の領域において反射する光については、より外側の領域で反射した光ほど、より発光素子120の光軸LAに対する角度が大きくなることを示している。すなわち、上記式(1)を満たす反射面132は、中心部側の領域では、側方方向(水平方向)に向けて光を反射させ、外周部側の領域では、後方方向(下方向)に向けて光を反射させる。このように、反射面132の中心部側ではなく、外周部側の領域で、後方方向の光を生成するようにすることで、基板110に妨げられることなく、後方方向の被照射面を効率よく照らすことができるようになる。仮に、反射面132の中心部側の領域で後方方向の光を生成しても、基板110により妨げられてしまうため、後方方向の被照射面を効率よく照らすことができない。
 [評価試験]
 (実施の形態1の照明装置)
 図5は、図3に示される実施の形態1の照明装置100における、発光素子120(サイズ:7.6mm×6.6mm)の発光中心からの出射光の角度(θ(r1))と、その出射光に対応する反射光の角度(θ(r2))との関係を示すグラフ(シミュレーション結果)である。出射光および反射光の角度は、いずれも発光素子120の光軸LAに対する角度である。この照明装置100では、θ(c1)=26.89°である。
 このグラフに示されるように、θ(c1)(26.89°)以上の出射角度の光については、出射角度が大きくなるほど反射角度も大きくなっていた。このことから、実施の形態1の照明装置100では、反射面132の中心部側の領域では、側方方向(水平方向)に向けて光を反射させ、外周部側の領域では、後方方向(下方向)に向けて光を反射させることがわかる。
 次に、実施の形態1の照明装置100の配光特性を測定した。配光特性は、以下の手順で測定した。照明装置100内の発光素子120の発光中心から光軸LAに沿って所定の距離離れた位置(基準位置0°)に照度計を配置した。照度計を発光素子120の発光中心を回転中心として、右回り方向(+θ方向)に5°間隔で180°回転させて照度を測定し、左回り方向(-θ方向)に5°間隔で180°回転させて照度を測定した。測定した照度のうちの最高照度を1とした場合の相対照度(無次元値)を曲線で滑らかに結んで、グラフを作成した。
 図6は、実施の形態1の照明装置100の配光特性を示すグラフである。このグラフにおいて、0°は前方方向(上方方向)を意味し、90°は側方方向(水平方向)を意味し、180°は後方方向(下方方向)を意味する。図6から、実施の形態1の照明装置100は、広くかつバランスのよい配光特性であることがわかる。
 (比較例1の照明装置)
 図7は、比較例1の照明装置100’の構成を示す断面図であり、図8は、比較例1の照明装置100’における光路の一例を示す断面図である。図7および図8に示されるように、比較例1の照明装置100’は、実施の形態1の照明装置100と光束制御部材130’の反射面132’の形状が異なる。
 図9は、図7に示される比較例1の照明装置100’における、発光素子120(サイズ:7.6mm×6.6mm)の発光中心からの出射光の角度(θ(r1))と、その出射光に対応する反射光の角度(θ(r2))との関係を示すグラフである。この照明装置100’では、θ(c1)=26.89°である。このグラフに示されるように、比較例1の照明装置100’では、出射角度が35°を超えると反射角度が小さくなっていた。このことから、比較例1の照明装置100’では、反射面132’の外周部側の領域において、後方方向(下方向)に向けて光を反射させられないことがわかる(図8参照)。
 図10は、比較例1の照明装置100’の配光特性を示すグラフである。このグラフから、比較例1の照明装置100’は、後方方向に十分に光を配光できないことがわかる。
 [効果]
 実施の形態1の照明装置100は、光束制御部材130に到達した発光素子120からの出射光のうち、一部の光を反射面132によって側方方向および後方方向へ反射させ、一部の光を前方方向へ透過させる。このとき、光束制御部材130の光の反射率および透過率を調整することで、各方向への出射光量を容易に制御することができる。また、実施の形態1の照明装置100は、反射面132の中心部側の領域において側方方向の反射光を生成し、外周部側の領域において後方方向の反射光を生成する。このため、実施の形態1の照明装置100は、基板110に妨げられることなく、後方方向の被照射面を効率よく照らすことができる。
 以上のように、実施の形態1の照明装置100は、前方方向、側方方向および後方方向へ向かう出射光量をそれぞれ制御して、白熱電球に近い配光特性を実現することができる。実施の形態1の照明装置100は、白熱電球に代えて室内照明などに使用されうる。また、実施の形態1の照明装置100は、白熱電球よりも消費電力を少なくすることができるとともに、白熱電球よりも長期間使用することができる。
 (実施の形態2)
 [照明装置の構成]
 図11は、本発明の実施の形態2の照明装置200の構成を示す断面図であり、図12は、実施の形態2の照明装置200における光路の一例を示す断面図である。実施の形態2の照明装置200は、実施の形態1の照明装置100と、基板210、光束制御部材230および側壁部240の形状がそれぞれわずかに異なる。また、実施の形態2の照明装置200は、カバーを有していない点でも実施の形態1の照明装置100と異なる。
 [評価試験]
 (実施の形態2の照明装置)
 図13は、実施の形態2の照明装置200における、発光素子120(サイズ:16mm×14mm)の発光中心からの出射光の角度(θ(r1))と、その出射光に対応する反射光の角度(θ(r2))との関係を示すグラフである。この照明装置200では、θ(c1)=40.55°である。
 このグラフに示されるように、θ(c1)(40.55°)以上の出射角度の光については、出射角度が大きくなるほど反射角度も大きくなっていた。このことから、実施の形態2の照明装置200では、反射面232の中心部側の領域では、側方方向に向けて光を反射させ、外周部側の領域では、後方方向に向けて光を反射させることがわかる。
 図14は、実施の形態2の照明装置200の配光特性を示すグラフである。このグラフから、実施の形態2の照明装置200は、広くかつバランスのよい配光特性であることがわかる。
 (比較例2の照明装置)
 図15は、比較例2の照明装置200’の構成を示す断面図であり、図16は、比較例2の照明装置200’における光路の一例を示す断面図である。図15および図16に示されるように、比較例2の照明装置200’は、実施の形態2の照明装置200と光束制御部材230’の反射面232’の形状が異なる。
 図17は、比較例2の照明装置200’における、発光素子120(サイズ:16mm×14mm)の発光中心からの出射光の角度(θ(r1))と、その出射光に対応する反射光の角度(θ(r2))との関係を示すグラフである。この照明装置200’では、θ(c1)=40.54°である。このグラフに示されるように、比較例2の照明装置200’では、出射角度が40°を超えると反射角度が小さくなっていた。このことから、比較例2の照明装置200’では、反射面232’の外周部側の領域において、後方方向(下方向)に向けて光を反射させられないことがわかる(図16参照)。
 図18は、比較例2の照明装置200’の配光特性を示すグラフである。図18から、比較例2の照明装置200’は、後方方向に十分に光を配光できないことがわかる。
 [効果]
 実施の形態2の照明装置200は、実施の形態1の照明装置100と同様の効果を有する。実施の形態2の照明装置200は、白熱電球に代えて室内照明などに使用されうる。
 (実施の形態3)
 [照明装置の構成]
 図19は、本発明の実施の形態3の照明装置300の構成を示す断面図であり、図20は、実施の形態3の照明装置300における光路の一例を示す断面図である。実施の形態3の照明装置300は、実施の形態1の照明装置100と、光束制御部材330の形状がわずかに異なる。また、実施の形態3の照明装置300は、カバーを有していない点でも実施の形態1の照明装置100と異なる。
 [評価試験]
 図21は、実施の形態3の照明装置300における、発光素子120(サイズ:7.6mm×6.6mm)の発光中心からの出射光の角度(θ(r1))と、その出射光に対応する反射光の角度(θ(r2))との関係を示すグラフである。この照明装置300では、θ(c1)=30.55°である。
 このグラフに示されるように、θ(c1)(30.55°)以上の出射角度の光については、出射角度が大きくなるほど反射角度も大きくなっていた。このことから、実施の形態3の照明装置300では、反射面332の中心部側の領域では、側方方向に向けて光を反射させ、外周部側の領域では、後方方向に向けて光を反射させることがわかる。
 図22は、実施の形態3の照明装置300の配光特性を示すグラフである。このグラフから、実施の形態3の照明装置300は、広くかつバランスのよい配光特性であることがわかる。
 [効果]
 実施の形態3の照明装置300は、実施の形態1の照明装置100と同様の効果を有する。実施の形態3の照明装置300は、白熱電球に代えて室内照明などに使用されうる。
 (実施の形態4)
 [照明装置の構成]
 図23は、本発明の実施の形態4の照明装置400の構成を示す断面図であり、図24は、実施の形態4の照明装置400における光路の一例を示す断面図である。実施の形態4の照明装置400は、実施の形態1の照明装置100と、基板410、光束制御部材430および側壁部440の形状がそれぞれわずかに異なる。また、実施の形態4の照明装置400は、カバーを有していない点でも実施の形態1の照明装置100と異なる。
 [評価試験]
 図25は、実施の形態4の照明装置400における、発光素子120(サイズ:16mm×14mm)の発光中心からの出射光の角度(θ(r1))と、その出射光に対応する反射光の角度(θ(r2))との関係を示すグラフである。この照明装置400では、θ(c1)=40.55°である。
 このグラフに示されるように、θ(c1)(40.55°)以上の出射角度の光については、出射角度が大きくなるほど反射角度も大きくなっていた。このことから、実施の形態4の照明装置400では、反射面432の中心部側の領域では、側方方向に向けて光を反射させ、外周部側の領域では、後方方向に向けて光を反射させることがわかる(図24参照)。
 図26は、実施の形態4の照明装置400の配光特性を示すグラフである。このグラフから、実施の形態4の照明装置400は、広くかつバランスのよい配光特性であることがわかる。
 [効果]
 実施の形態4の照明装置400は、実施の形態1の照明装置100と同様の効果を有する。実施の形態4の照明装置400は、白熱電球に代えて室内照明などに使用されうる。
 (実施の形態5)
 [照明装置の構成]
 図27は、本発明の実施の形態5の照明装置500の構成を示す断面図であり、図28は、実施の形態5の照明装置500における光路の一例を示す断面図である。
 図27に示されるように、照明装置500は、基板510、1または2以上の発光素子120、光束制御部材530、側壁部540および蓋部550を有する。実施の形態5の照明装置500は、実施の形態1の照明装置100と光束制御部材530の形状がわずかに異なる。また、実施の形態5の照明装置500は、側壁部540および蓋部550が一体となり、カバーとして機能する点で実施の形態1の照明装置100と異なる。
 側壁部540は、光束制御部材530を支持するとともに、光束制御部材530により反射された光を拡散させる。また、蓋部550は、空気層を介して光束制御部材530を覆い、光束制御部材530を透過した光を拡散させる。すなわち、側壁部540および蓋部550は、光束制御部材530により進行方向を制御された光を拡散させるカバーとして機能する。
 [評価試験]
 図29は、実施の形態5の照明装置500における、発光素子120(サイズ:16mm×14mm)の発光中心からの出射光の角度(θ(r1))と、その出射光に対応する反射光の角度(θ(r2))との関係を示すグラフである。この照明装置400では、θ(c1)=42.79°である。
 このグラフに示されるように、θ(c1)(42.79°)以上の出射角度の光については、出射角度が大きくなるほど反射角度も大きくなっていた。このことから、実施の形態5の照明装置500では、反射面532の中心部側の領域では、側方方向に向けて光を反射させ、外周部側の領域では、後方方向に向けて光を反射させることがわかる(図28参照)。
 図30は、実施の形態5の照明装置500の配光特性を示すグラフである。このグラフから、実施の形態5の照明装置500は、広くかつバランスのよい配光特性であることがわかる。
 [効果]
 実施の形態5の照明装置500は、実施の形態5の照明装置100と同様の効果を有する。実施の形態5の照明装置500は、白熱電球に代えて室内照明などに使用されうる。
 (実施の形態6)
 [照明装置の構成]
 図31は、本発明の実施の形態6の照明装置600の構成を示す断面図であり、図32は、実施の形態6の照明装置600における光路の一例を示す断面図である。実施の形態6の照明装置600は、実施の形態1の照明装置100と、基板610、光束制御部材630および側壁部640の形状がわずかに異なる。また、実施の形態6の照明装置600は、発光素子120を覆うレンズ660を有する点でも実施の形態1の照明装置100と異なる。
 [評価試験]
 図33は、実施の形態6の照明装置600における、発光素子120(サイズ:1mm×1mm)の発光中心からの出射光の角度(θ(r1))と、その出射光に対応する反射光の角度(θ(r2))との関係を示すグラフである。この照明装置600では、θ(c1)=20.15°である。
 このグラフに示されるように、θ(c1)(20.15°)以上の出射角度の光については、出射角度が大きくなるほど反射角度も大きくなっていた。このことから、実施の形態6の照明装置600では、反射面632の中心部側の領域では、側方方向に向けて光を反射させ、外周部側の領域では、後方方向に向けて光を反射させることがわかる(図32参照)。
 図34は、実施の形態6の照明装置600の配光特性を示すグラフである。このグラフから、実施の形態6の照明装置600は、広くかつバランスのよい配光特性であることがわかる。
 [効果]
 実施の形態6の照明装置600は、実施の形態1の照明装置100と同様の効果を有する。実施の形態6の照明装置600は、白熱電球に代えて室内照明などに使用されうる。
 (実施の形態7)
 [照明装置の構成]
 図35は、本発明の実施の形態7の照明装置700の構成を示す断面図である。図35に示されるように、照明装置700は、1または2以上の発光素子120、光束制御部材130、側壁部140、基台710、カバー720、電球筐体730および口金740を有する。実施の形態7の照明装置700は、電球型の形状をしており、白熱電球と同じように使用される。
 発光素子120、光束制御部材130および側壁部140は、実施の形態1の照明装置100に含まれるものと同じである。発光素子120、光束制御部材130および側壁部140は、基台710の上に配置されている。また、発光素子120、光束制御部材130および側壁部140は、発光素子120が光束制御部材130よりもカバー720の開口部側に位置し、かつ発光素子120の光軸LAとカバー720の中心軸とが一致するようにカバー720の中空領域内に配置されている。
 基台710は、電球筐体730の上に設けられており、発光素子120、光束制御部材130および側壁部140と、カバー720との位置関係を調整する。基台710内には、発光素子120と電球筐体730内の回路とを接続する回路が設けられている。
 カバー720は、開口部を有する中空領域が形成された部材である。前述の通り、発光素子120、光束制御部材130および側壁部140は、カバー720の中空領域内に配置される。カバー720は、光束制御部材130からの反射光および透過光を拡散させつつ透過させる。図35に示される例では、カバー720の形状は、略球冠形状である。カバー720は、電球筐体730の上部に固定されており、カバー720の開口部は、電球筐体730により塞がれている。
 電球筐体730内には、発光素子120を発光させるための回路が設けられている。この電気回路は、口金740および発光素子120と接続されている。また、電球筐体730は、放熱部としても機能する。
 本実施の形態の照明装置700は、発光素子120、光束制御部材130および側壁部140が、カバー720内の所定の位置に配置されていることを一つの特徴とする。すなわち、本実施の形態の照明装置700では、発光素子120、光束制御部材130および側壁部140は、カバー720の最大外径部分(図35において矢印で示す)よりも、上側(開口部の反対側)に位置する。また、本実施の形態の照明装置700では、カバー720の開口部は、発光素子120よりも、下側(発光素子120の光軸に沿った光の出射方向を正とした場合の負方向)に位置する。
 このように、発光素子120、光束制御部材130および側壁部140を、カバー720の開口部に対して上方に配置することで、光束制御部材130で反射した後方方向の光が、電球筐体730に妨げられにくくなる。このため、電球筐体730のサイズに関係なく、照明装置700の配光特性を白熱電球に近づけることができるようになる。
 図36は、実施の形態1の照明装置100を含む電球型の照明装置700’を示す断面図である。この図に示されるように、光束制御部材130のサイズと電球筐体730のサイズとの関係が適切であれば、光束制御部材130で反射した後方方向の光は、電球筐体730に妨げられることなく後方方向の被照射面を照らすことができる。
 図37は、実施の形態1の照明装置100を含む電球型の照明装置700”を示す断面図である。図37に示される照明装置700”は、図36に示される照明装置700’と電球筐体730のサイズが異なる。この図に示されるように、光束制御部材130のサイズと電球筐体730のサイズとの関係が不適切であると、光束制御部材130で反射した後方方向の光は、電球筐体730に妨げられることがある。
 このように大きな電球筐体730を使用する場合であっても、発光素子120、光束制御部材130および側壁部140を、カバー720の開口部に対して上方に配置することで、光束制御部材130で反射した後方方向の光が、電球筐体730に妨げられにくくなる。そこで、図35に示されるように、本実施の形態の照明装置700では、発光素子120、光束制御部材130および側壁部140を基台710の上に配置している。
 [評価試験]
 図38は、図36に示される実施の形態1の照明装置100を含む電球型の照明装置700’の配光特性を示すグラフである。電球筐体730の外径は、35mmであり、発光素子120のサイズは、7.6mm×6.6mmである。このグラフから、図36に示される照明装置700’は、広くかつバランスのよい配光特性であることがわかる。
 図39は、図37に示される実施の形態1の照明装置100を含む電球型の照明装置700”の配光特性を示すグラフである。電球筐体730の外径は、52.5mmであり、発光素子120のサイズは、7.6mm×6.6mmである。このグラフから、光束制御部材130に比べて電球筐体730が大きいと、後方方向に十分に配光できないことがわかる。
 図40は、図35に示される実施の形態7の照明装置700の配光特性を示すグラフである。電球筐体730の外径は、52.5mmであり、発光素子120のサイズは、7.6mm×6.6mmであり、電球筐体730と発光素子120との間隔(基台710の高さ)は、17mmである。このグラフから、光束制御部材130に比べて電球筐体730が大きい場合であっても、発光素子120、光束制御部材130および側壁部140を、カバー720の開口部に対して上方に配置することで、後方方向に十分に配光できることがわかる。
 [効果]
 小型電球用の発光素子120および光束制御部材130を、それよりも大型の電球にそのまま適用すると、後方方向の光が電球筐体730に妨げられてしまい、バランスのよい配光特性を実現することができない(図37参照)。一方で、電球筐体730に合わせて光束制御部材130を大きくすると、成形性や透過反射膜の成膜の観点から製造コストが増大してしまう。
 これに対し、実施の形態7の照明装置700は、電球筐体730の外径に応じて基台710の高さを調整することで、光束制御部材130の大きさを変えることなく、バランスのよい配光特性を実現することができる。
 (実施の形態8)
 [照明装置の構成]
 図41は、本発明の実施の形態8の照明装置800の構成を示す断面図である。実施の形態8の照明装置800は、光束制御部材130および側壁部140が3本の脚部810により支持されている点において実施の形態7の照明装置700と異なる。
 [評価試験]
 図42は、実施の形態8の照明装置800の配光特性を示すグラフである。各構成要素のサイズは、実施の形態7の照明装置700と同一である。円柱形状の脚部810は、それぞれ外径1mm、長さ2mmである。このグラフから、実施の形態8の照明装置800は、広くかつバランスのよい配光特性であることがわかる。
 [効果]
 実施の形態8の照明装置800は、実施の形態7の照明装置100と同様の効果に加えて、基台710上における光束制御部材130を設置するためのスペースを顕著に削減できるという効果を有する。
 (実施の形態9)
 [照明装置の構成]
 図43は、本発明の実施の形態9の照明装置900の構成を示す断面図である。実施の形態9の照明装置900は、光束制御部材130が側壁部の代わりに3本の脚部910により支持されている点において実施の形態7の照明装置700と異なる。光束制御部材130および脚部910は、一体として作製されてもよいし、それぞれ別個に作製されてもよい。
 [評価試験]
 図44は、実施の形態9の照明装置900の配光特性を示すグラフである。各構成要素のサイズは、実施の形態7の照明装置700と同一である。円柱形状の脚部910は、それぞれ外径1mm、長さ2mmである。このグラフから、実施の形態9の照明装置900は、広くかつバランスのよい配光特性であることがわかる。
 [効果]
 実施の形態9の照明装置900は、実施の形態8の照明装置800と同様の効果を有する。
 (実施の形態10)
 [照明装置の構成]
 図45は、本発明の実施の形態10の照明装置1000の構成を示す断面図である。実施の形態10の照明装置1000は、光束制御部材130が側壁部の代わりに3本の吊り下げ部1010により支持されている点において実施の形態7の照明装置700と異なる。吊り下げ部1010は、カバー720の内面に固定されている。吊り下げ部1010は、光束制御部材130またはカバー720と一体として作製されてもよいし、それぞれ別個に作製されてもよい。
 [評価試験]
 図46は、実施の形態10の照明装置1000の配光特性を示すグラフである。各構成要素のサイズは、実施の形態7の照明装置700と同一である。円柱形状の吊り下げ部1010は、それぞれ外径1mm、長さ10.8mmである。このグラフから、実施の形態10の照明装置1000は、広くかつバランスのよい配光特性であることがわかる。
 [効果]
 実施の形態10の照明装置1000は、実施の形態7の照明装置700と同様の効果に加えて、基台710上における光束制御部材130を設置するためのスペースが不要であるという効果を有する。
 (実施の形態11)
 [照明装置の構成]
 図47は、本発明の実施の形態11の照明装置1100の構成を示す断面図である。実施の形態11の照明装置1100は、図37に示される照明装置700”において、カバー150を口金740側に9.1mm延長するとともに(カバー720)、それに合わせて電球筐体730の一部を除去したものである。すなわち、実施の形態7の照明装置700における基台710および電球筐体730の両方の役割を、電球筐体1110に担わせている。
 [評価試験]
 図48は、実施の形態11の照明装置1100の配光特性を示すグラフである。このグラフから、実施の形態11の照明装置1100は、広くかつバランスのよい配光特性であることがわかる。
 [効果]
 実施の形態11の照明装置1100は、実施の形態7の照明装置700と同様の効果を有する。
 本出願は、2011年11月7日出願の特願2011-243366に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明の照明装置は、白熱電球に代えて使用されうるため、シャンデリアや間接照明装置などの各種照明機器に幅広く適用されうる。
 10,20 照明装置
 12,22 LED
 14 カバー
 16 アルミ板
 18 透過窓
 24 拡散カバー
 26 透明カバー
 100,100’,200,300,400,500,600 照明装置
 110,210,410,510,610 基板
 120 発光素子
 130,130’,230,330,430,530,630 光束制御部材
 132,132’,232,332,432,532,632 反射面
 140,240,440,540,640 側壁部
 150,720 カバー
 550 蓋部
 660 レンズ
 700,700’,700”,800,900,1000,1100 電球型の照明装置
 710 基台
 730,1110 電球筐体
 740 口金
 810,910 脚部
 1010 吊り下げ部
 CA 光束制御部材の中心軸
 LA 発光素子の光軸

Claims (10)

  1.  基板上に配置された1または2以上の発光素子と、
     前記発光素子の光軸とその中心軸が一致するように前記発光素子に対して空気層を介して配置され、前記発光素子から出射された光の一部を反射し、一部を透過させる光束制御部材と、を有し、
     前記光束制御部材は、前記発光素子と対向し、かつ前記発光素子から出射された光の一部を反射させる反射面を有し、
     前記反射面は、前記発光素子の光軸との交点である中心部から外周部に向かうにつれて前記発光素子からの高さが高くなる非球面形状の曲面を有し、
     前記反射面の外周部は、前記反射面の中心部の位置と比較して、前記発光素子の光軸の方向における前記発光素子からの距離が離れた位置に形成され、
     前記反射面は、前記発光素子から前記発光素子の光軸に沿って出射された光の角度を0°としたときに、以下の式(1)を満たすように前記発光素子から出射された光の一部を反射させる、
     照明装置。
     θ(a2)<θ(b2)   …(1)
     ただし、式(1)において、
     θ(a2)は、前記発光素子の発光中心から前記発光素子の光軸に対してθ(a1)の角度で出射され、かつ前記反射面により反射された光の、前記発光素子の光軸に対する角度であり、
     θ(b2)は、前記発光素子の発光中心から前記発光素子の光軸に対してθ(b1)の角度で出射され、かつ前記反射面により反射された光の、前記発光素子の光軸に対する角度であり、
     前記発光素子において前記発光素子の発光中心から一番遠い点から、前記発光素子の光軸と平行方向に出射した光が前記反射面に到達する点と、前記発光素子の発光中心とを結ぶ線の、前記発光素子の光軸に対する角度をθ(c1)としたときに、θ(c1)≦θ(a1)<θ(b1)である。
  2.  前記反射面には、前記発光素子から出射された光の一部を反射し、一部を透過させる透過反射膜が形成されている、請求項1に記載の照明装置。
  3.  前記光束制御部材は、前記発光素子から出射された光の一部を反射し、一部を透過させる材料により形成されている、請求項1に記載の照明装置。
  4.  前記光束制御部材は、前記発光素子から出射された光の一部を透過させる透過部を有している、請求項1に記載の照明装置。
  5.  前記透過部は、貫通孔または凹部である、請求項4に記載の照明装置。
  6.  開口部を有する中空領域が形成されたカバーをさらに有し、
     前記発光素子および前記光束制御部材は、前記カバーの前記中空領域内に配置され、
     前記カバーは、前記光束制御部材からの反射光および透過光を拡散させつつ透過させる、
     請求項1~5のいずれか一項に記載の照明装置。
  7.  前記カバーは、略球冠形状である、請求項6に記載の照明装置。
  8.  前記カバーの開口部は、前記発光素子から出射された光の前記光軸に沿った出射方向を正とした場合に、前記発光素子よりも前記光軸の負の方向に位置する、請求項6に記載の照明装置。
  9.  前記発光素子および前記光束制御部材は、前記カバーの最大外径部分よりも、前記開口部の反対側に位置する、請求項6に記載の照明装置。
  10.  基板上に配置された1または2以上の発光素子と、
     前記発光素子の光軸とその中心軸が一致するように前記発光素子に対して空気層を介して配置され、前記発光素子から出射された光の一部を反射し、一部を透過させる光束制御部材と、を有し、
     前記光束制御部材は、前記発光素子と対向し、かつ前記発光素子から出射された光の一部を反射させる反射面を有し、
     前記反射面は、前記発光素子の光軸との交点である中心部から外周部に向かうにつれて前記発光素子からの高さが高くなる非球面形状の曲面を有し、
     前記反射面の外周部は、前記反射面の中心部の位置と比較して、前記発光素子の光軸の方向における前記発光素子からの距離が離れた位置に形成され、
     前記反射面は、前記光束制御部材の中心軸を中心とする回転対称面であり、かつその母線が前記発光素子に対して凹形状である、
     照明装置。
PCT/JP2012/007039 2011-11-07 2012-11-02 照明装置 WO2013069238A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280053186.6A CN103906968B (zh) 2011-11-07 2012-11-02 照明装置
US14/353,341 US20140321118A1 (en) 2011-11-07 2012-11-02 Lighting device
KR1020147008880A KR20140097121A (ko) 2011-11-07 2012-11-02 조명 장치
EP12848047.2A EP2778506A4 (en) 2011-11-07 2012-11-02 LIGHTING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-243366 2011-11-07
JP2011243366A JP5839674B2 (ja) 2011-11-07 2011-11-07 照明装置

Publications (1)

Publication Number Publication Date
WO2013069238A1 true WO2013069238A1 (ja) 2013-05-16

Family

ID=48289233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007039 WO2013069238A1 (ja) 2011-11-07 2012-11-02 照明装置

Country Status (6)

Country Link
US (1) US20140321118A1 (ja)
EP (1) EP2778506A4 (ja)
JP (1) JP5839674B2 (ja)
KR (1) KR20140097121A (ja)
CN (1) CN103906968B (ja)
WO (1) WO2013069238A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102093344B1 (ko) * 2013-05-21 2020-03-25 엘지이노텍 주식회사 조명 장치
CN104299317A (zh) * 2013-07-16 2015-01-21 鸿富锦精密工业(武汉)有限公司 自动售货机柜门
KR101472463B1 (ko) * 2014-05-13 2014-12-15 장영환 엘이디 조명기구
KR20160127216A (ko) * 2015-04-23 2016-11-03 주식회사 케이엠더블유 엘이디 조명장치
JP2016213051A (ja) * 2015-05-08 2016-12-15 株式会社エンプラス 面光源装置
CN111396799A (zh) * 2017-01-05 2020-07-10 光宝电子(广州)有限公司 照明装置
US11028977B2 (en) 2017-07-21 2021-06-08 Signify Holding B.V. Light emitting module
CN108506757B (zh) * 2018-02-05 2020-06-30 惠州市华星光电技术有限公司 一种led发光装置及其二次透镜结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505835A (ja) * 1999-07-21 2003-02-12 テレダイン ライティング アンド ディスプレイ プロダクツ, インコーポレイテッド 照明装置
JP2003258319A (ja) 2002-02-28 2003-09-12 Toyoda Gosei Co Ltd 発光ダイオード及び灯具
JP2009187951A (ja) * 2001-09-17 2009-08-20 Philips Solid-State Lighting Solutions Inc 発光ダイオードに基づく製品
JP3158378U (ja) * 2009-10-06 2010-04-02 趨勢照明股▲ふん▼有限公司 光源装置
JP2010157459A (ja) * 2008-12-31 2010-07-15 Keiji Iimura Ledランプおよび電球形ledランプ
JP2010176890A (ja) 2009-01-27 2010-08-12 Panasonic Electric Works Co Ltd 照明器具
JP3163068U (ja) * 2010-02-08 2010-09-30 東莞瑩輝燈飾有限公司 照明灯具
JP2011504297A (ja) * 2007-11-26 2011-02-03 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング 変換リフレクタを備えるled照明装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992681B2 (ja) * 1996-10-24 1999-12-20 マルヤス電業 株式会社 表示灯
JP2003257219A (ja) * 2002-03-04 2003-09-12 Ichikoh Ind Ltd Ledを光源とする車両用灯具
US6932496B2 (en) * 2002-04-16 2005-08-23 Farlight Llc LED-based elevated omnidirectional airfield light
EP1586811A1 (en) * 2004-04-16 2005-10-19 Koninklijke Philips Electronics N.V. Lamps and reflector arrangement for color mixing
JP4587847B2 (ja) * 2005-03-09 2010-11-24 小糸工業株式会社 標識灯
JP2006324036A (ja) * 2005-05-17 2006-11-30 Stanley Electric Co Ltd 車両用灯具用ledバルブ
US7425084B2 (en) * 2006-09-30 2008-09-16 Ruud Lighting, Inc. Bollard luminaire
GB2460703A (en) * 2008-06-07 2009-12-09 Yu-Chen Chang Light-transmittable cover for a light emitting diode bulb
JP2010129300A (ja) * 2008-11-26 2010-06-10 Keiji Iimura 半導体発光ランプおよび電球形半導体発光ランプ
US8324645B2 (en) * 2010-07-15 2012-12-04 Pinecone Energies, Inc. Optical device for semiconductor based lamp
KR101615799B1 (ko) * 2011-03-25 2016-04-26 나럭스 컴퍼니 리미티드 조명 장치
US8608347B2 (en) * 2011-07-22 2013-12-17 Ge Lighting Solutions Llc Lighting apparatus with a light source comprising light emitting diodes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505835A (ja) * 1999-07-21 2003-02-12 テレダイン ライティング アンド ディスプレイ プロダクツ, インコーポレイテッド 照明装置
JP2009187951A (ja) * 2001-09-17 2009-08-20 Philips Solid-State Lighting Solutions Inc 発光ダイオードに基づく製品
JP2003258319A (ja) 2002-02-28 2003-09-12 Toyoda Gosei Co Ltd 発光ダイオード及び灯具
JP2011504297A (ja) * 2007-11-26 2011-02-03 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング 変換リフレクタを備えるled照明装置
JP2010157459A (ja) * 2008-12-31 2010-07-15 Keiji Iimura Ledランプおよび電球形ledランプ
JP2010176890A (ja) 2009-01-27 2010-08-12 Panasonic Electric Works Co Ltd 照明器具
JP3158378U (ja) * 2009-10-06 2010-04-02 趨勢照明股▲ふん▼有限公司 光源装置
JP3163068U (ja) * 2010-02-08 2010-09-30 東莞瑩輝燈飾有限公司 照明灯具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2778506A4

Also Published As

Publication number Publication date
CN103906968B (zh) 2017-03-08
JP5839674B2 (ja) 2016-01-06
US20140321118A1 (en) 2014-10-30
JP2013098159A (ja) 2013-05-20
EP2778506A4 (en) 2015-08-19
CN103906968A (zh) 2014-07-02
EP2778506A1 (en) 2014-09-17
KR20140097121A (ko) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5839674B2 (ja) 照明装置
JP5957340B2 (ja) 光束制御部材および照明装置
JP5335945B2 (ja) 光束制御部材および照明装置
US9568168B2 (en) Light flux controlling member, light emitting device and illumination apparatus
US9671087B2 (en) Illumination device
WO2016194959A1 (ja) 光束制御部材、発光装置および照明装置
JP5977636B2 (ja) 光束制御部材、発光装置および照明装置
JP5119379B2 (ja) 面照明光源装置及び面照明装置
US10125951B2 (en) Light flux control member, light-emitting device and lighting device
JP5746566B2 (ja) 光束制御部材および照明装置
JP6689590B2 (ja) 光束制御部材、発光装置および照明装置
JP2015162447A (ja) 照明器具および光源カバー
WO2016181789A1 (ja) 光束制御部材、発光装置および照明装置
WO2013035324A1 (ja) 光束制御部材および照明装置
JP2016146260A (ja) 照明ランプ及び照明装置
WO2014056988A1 (en) Illuminating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147008880

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14353341

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012848047

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE