WO2013069177A1 - 画像表示装置、画像表示方法、および画像表示プログラム - Google Patents

画像表示装置、画像表示方法、および画像表示プログラム Download PDF

Info

Publication number
WO2013069177A1
WO2013069177A1 PCT/JP2012/005119 JP2012005119W WO2013069177A1 WO 2013069177 A1 WO2013069177 A1 WO 2013069177A1 JP 2012005119 W JP2012005119 W JP 2012005119W WO 2013069177 A1 WO2013069177 A1 WO 2013069177A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
image
white
illuminance
display device
Prior art date
Application number
PCT/JP2012/005119
Other languages
English (en)
French (fr)
Inventor
豊史 堀川
紀之 町村
和憲 幸山
大和 朝日
健 稲田
齊藤 浩二
青木 淳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013069177A1 publication Critical patent/WO2013069177A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to an image display device, an image display method, and an image display program, and more particularly to image signal processing that makes a display image that is difficult to see due to illuminance around the display screen to be easily viewed by adjusting the contrast. .
  • Mobile devices are used in various environments such as bright and dark places, but the liquid crystal display devices used in the display units of mobile devices are difficult to see when light enters from the surroundings. .
  • the illumination intensity of the backlight is such that when the surroundings become bright, the backlight brightness is increased to strongly illuminate the liquid crystal screen, and when the surroundings become dark, the backlight brightness is decreased.
  • FIG. 11 is a diagram for explaining the image display device disclosed in Patent Document 1.
  • FIG. 11 is a diagram for explaining the image display device disclosed in Patent Document 1.
  • the video display device 1 is connected to an image source 2 such as a DVD player 2A, for example, and corrects and displays the image signal A from the image source 2 according to the intensity of external light.
  • An external light detection unit 11 that detects illuminance, an image processing LSI 12 that corrects the image signal A according to the illuminance of external light, and outputs a corrected image signal A1, a display 13 that receives the corrected image signal A1, and
  • the CPU 14 generates a correction amount group C used for correcting the image signal A, and these are connected to each other by a data bus.
  • the external light detection unit 11 is, for example, an illuminance sensor 11A.
  • the illuminance sensor 11A is attached around the display 13 and detects the illuminance i of the incident light.
  • the illuminance sensor 11 ⁇ / b> A outputs a signal indicating the detected illuminance i to the CPU 14.
  • the image processing LSI 12 includes a feature detection unit 12a and a video signal processing unit 12b.
  • the feature detection unit 12a calculates a feature amount group F of the image represented by the input image signal A, and calculates the calculated feature amount group F.
  • the feature amount group F is the minimum luminance, the average luminance, and the maximum luminance.
  • the feature detection unit 12a outputs the input image signal A to the image signal processing unit 12b.
  • the video signal processing unit 12b uses the correction amount group C sent from the CPU 14 and the feature amount group F sent from the feature detection unit 12a to receive the image signal A sent from the feature detection unit 12a. to correct.
  • the processed image signal A1 generated by this correction is output to the display 13.
  • the display 13 is a liquid crystal display, and includes a screen 13a, a backlight 13c, and a backlight control unit 13b. An image is displayed on the screen 13a according to the image signal A1 sent from the video signal processing unit 12b. .
  • the backlight control unit 13b controls the light emission of the backlight 13c based on the luminance control signal (Lmax, L) sent from the CPU.
  • the backlight 13c is provided behind the screen 13a, emits light under the control of the backlight control unit 13b, and gives light to the screen 13a for image display.
  • the contrast of the display image and the light emission luminance of the backlight 13c are adjusted based on the intensity of external light.
  • the CPU 14 determines the intensity of external light.
  • the video signal processing unit 12b obtains an amplification factor G for amplifying the maximum amplitude of the input image signal to the dynamic range width, amplifies the image signal by the amplification factor G, The average luminance level ALP is corrected by the shift amount S so that the amplified image signal falls within the dynamic range, and when it is determined that the external light is strong, processing for correcting the contrast of the input image signal is performed.
  • the backlight control unit 13b determines that the external light is strong, the backlight control unit 13b fixes the light emission luminance of the backlight to a constant value, and when it is determined that the external light is weak, the backlight control unit 13b adjusts the light emission luminance of the backlight. Dynamic adjustment is performed based on the average luminance level of the input image signal.
  • Patent Document 1 when the surroundings become bright, the color of the high-intensity signal may exceed the maximum value, or the hue (Hue) of most pixels may change due to correction using the gamma coefficient g. .
  • the hue (Hue) changes in this way, depending on the image, the color may change, resulting in an image different from the original color.
  • the present invention has been made to solve the above-described problems, and an image display capable of suppressing the display image from becoming difficult to see due to ambient illuminance without changing the hue in the display image.
  • An object is to obtain an apparatus, an image display method, and an image display program.
  • An image display device is an image display device that displays an image based on an image signal, and includes an image signal processing unit that generates a display signal by signal processing on the image signal, a display surface, A display unit that displays the image on the display surface based on the display signal; and an illuminance sensor unit that measures the intensity of light incident on the display surface of the display unit and outputs an illuminance signal.
  • the signal processing unit includes a white signal conversion unit that converts a white signal among the red signal, the green signal, the blue signal, and the white signal constituting the image signal so as to have a signal level corresponding to the illuminance signal,
  • the converted white signal obtained by the conversion of the white signal is output to the display unit as the display signal together with the red signal, the green signal, and the blue signal in the image signal, thereby achieving the above object.
  • the image signal processing unit generates a conversion table used for converting the white signal according to the illuminance signal, and a table storing the generated conversion table And storing the white signal so that the signal level of the white signal becomes a signal level corresponding to the illuminance signal based on the conversion table stored in the table storage unit. It is preferable that the converted white signal obtained by converting the white signal is output to the display unit as the display signal together with the red signal, the green signal, and the blue signal in the image signal.
  • the image signal processing unit performs signal processing on the red signal, the green signal, and the blue signal that constitute the image signal so that the saturation of the image signal does not change. And a converted white signal obtained by converting the white signal is output to the display unit as the display signal together with the red signal, the green signal, and the blue signal subjected to the signal processing. preferable.
  • a four-color image signal including a red signal, a green signal, a blue signal, and a white signal is input to the image signal processing unit as the image signal.
  • the white signal conversion unit The white signal in the four-color image signal is converted to have a signal level corresponding to the illuminance signal, and the image signal processing unit converts the converted white signal obtained by the conversion of the white signal into the four-color image signal. It is preferable to output the display signal as the display signal together with the red signal, the green signal, and the blue signal.
  • a three-color image signal including a red signal, a green signal, and a blue signal is input to the image signal processing unit as the image signal.
  • a signal generation unit that generates a four-color image signal including a red signal, a green signal, a blue signal, and a white signal from the color image signal, wherein the white signal conversion unit outputs the four-color image output from the signal generation unit;
  • the white signal of the signal is converted to have a signal level corresponding to the illuminance signal, and the image signal processing unit converts the converted white signal obtained by the conversion of the white signal into a red signal and a green signal in the four-color image signal. It is preferable that the signal and the blue signal are output to the display unit as the display signal.
  • the white signal conversion unit changes according to the illuminance signal so that the signal level of the white signal of the four-color image signal increases as the illuminance signal increases. It is preferable that the white signal of the four-color image signal is converted by a conversion function using a variable as a parameter.
  • the white signal conversion unit converts the white signal using a linear function having the variable as a parameter as the conversion function.
  • the white signal conversion unit includes, as the conversion function, a linear function having the variable as a parameter and a nonlinear function having a negative second-order differential coefficient having the variable as a parameter.
  • the white signal is converted using a composite function that switches between the linear function and the nonlinear function according to the variable.
  • the variable is a first coefficient that increases when the illuminance indicated by the illuminance signal increases and decreases when the illuminance indicated by the illuminance signal decreases. It is preferable that the coefficient is a coefficient included in the multiplier part of the multiplication operation for the signal level of the white signal in the mathematical expression defining the conversion function.
  • the variable is a second coefficient that increases when the illuminance indicated by the illuminance signal increases and decreases when the illuminance indicated by the illuminance signal decreases. It is preferable that the coefficient is included in the exponent part of the exponentiation operation for the white signal in the mathematical expression defining the conversion function.
  • the display unit includes one pixel including four auxiliary pixels of red, green, blue, and white.
  • An image display method is an image display method for displaying an image based on an image signal, the step of generating a display signal by signal processing on the image signal, and the display signal on a display surface of a display device.
  • the step of displaying the image based on the step, and the step of measuring the intensity of light incident on the display surface of the display device by the illuminance sensor unit and outputting the illuminance signal, and generating the display signal The converted white signal obtained by converting the white signal of the red signal, the green signal, the blue signal, and the white signal constituting the image signal so as to have a signal level corresponding to the illuminance signal. Is output to the display device as the display signal together with the other red signal, green signal and blue signal in the image signal, thereby achieving the above object.
  • the image display program according to the present invention is an image display program for executing the above-described image display method according to the present invention by a computer, thereby achieving the above object.
  • an image signal processing unit that generates a display signal by signal processing on an image signal, a display unit that displays an image on a display surface based on the display signal, and an intensity of light incident on the display surface of the display unit.
  • An illuminance sensor unit that measures the illuminance and outputs an illuminance signal
  • the image signal processing unit determines a white signal of the red signal, the green signal, the blue signal, and the white signal that constitutes the image signal according to the illuminance signal. Since it has a white signal conversion unit that converts to have a signal level, the converted white signal obtained by conversion of this white signal is output to the display unit as a display signal together with the red signal, green signal, and blue signal in the image signal.
  • the present invention has a table creation unit that creates a conversion table used for conversion of a white signal according to the illuminance signal, and a table storage unit that stores the created conversion table.
  • the white signal conversion unit Based on the conversion table stored in the storage unit, the white signal is converted so that the signal level of the white signal becomes a signal level corresponding to the illuminance signal, so it is necessary to perform an operation on the white signal within the processing time corresponding to the pixel.
  • the calculation load can be reduced.
  • the image signal processing unit in addition to the white signal conversion unit that converts the white signal among the red signal, the green signal, the blue signal, and the white signal that constitute the image signal, the red signal that constitutes the image signal, A signal processing unit that performs signal processing so that the saturation of the image signal does not change with respect to the green signal and the blue signal, and the converted white signal obtained by converting the white signal is converted into a red signal that has been subjected to signal processing, Since it is output to the display unit as a display signal together with the green signal and the blue signal, it is possible to perform not only the white signal for the four-color image signal but also the processing for signals of other colors within a range in which the hue is not changed, The range of signal processing possible for four-color pixel signals can be expanded.
  • the image signal processing unit can be simplified in configuration by reducing the signal generation unit that generates the four-color image signal from the three-color image signal.
  • an image display device, an image display method, and an image display program that can suppress a display image from becoming difficult to be seen due to ambient illuminance without changing the hue of the display image. Can be obtained.
  • FIG. 1 is a block diagram illustrating an image display apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram for explaining the image display device according to the first embodiment of the present invention, and shows the configuration of the RGBW signal conversion unit of the image signal processing unit constituting the image display device.
  • FIG. 3 is a diagram for explaining the image display apparatus according to the first embodiment of the present invention.
  • FIG. 3A shows the relationship between hue and saturation in a two-dimensional color space
  • FIG. 2 shows a configuration of a pixel of a display portion in a display device.
  • 4A and 4B are diagrams for explaining the image display device according to the first embodiment of the present invention.
  • FIG. 4A shows the W signal conversion characteristic according to the equation (1)
  • FIG. 5 is a diagram for explaining the effect of the present invention, in which the hue and luminance of the pixel A are in a normal state (FIG. 5A), a strong light incident state (no signal processing) (FIG. 5B). , And a strong light incident state (with signal processing of the present invention) (FIG. 5C), and the hue and luminance of the pixel B in the normal state (FIG. 5D), strong light incident
  • FIG. 5 is a diagram for explaining the effect of the present invention, in which the hue and luminance of the pixel A are in a normal state (FIG. 5A), a strong light incident state (no signal processing) (FIG. 5B). , And a strong light incident state (with signal processing of the present invention) (FIG. 5C), and the hue and luminance of the pixel B in the normal state (FIG. 5D), strong light incident
  • FIG. 5 (e) shows the state (without signal processing)
  • FIG. 5 (f) shows the strong light incident state (with
  • FIG. 6 is a block diagram for explaining an image display apparatus according to Embodiment 2 of the present invention.
  • FIG. 7 is a diagram for explaining an image display device according to Embodiment 2 of the present invention, and shows a configuration of an RGBW signal conversion unit of an image signal processing unit constituting the image display device.
  • FIG. 8 is a block diagram for explaining an image display apparatus according to Embodiment 3 of the present invention.
  • FIG. 9 is a diagram for explaining an image display device according to Embodiment 3 of the present invention, and shows a configuration of an RGBW signal conversion unit of an image signal processing unit constituting the image display device.
  • FIG. 10 is a block diagram illustrating an image display apparatus according to Embodiment 4 of the present invention.
  • FIG. 11 is a diagram illustrating an image display device disclosed in Patent Document 1. In FIG.
  • FIG. 1 is a block diagram illustrating an image display apparatus according to Embodiment 1 of the present invention.
  • the image display apparatus 100 displays an image based on an input image signal V3s that is an input three-color image signal (hereinafter also referred to as RGB signal), and a signal corresponding to the input image signal V3s.
  • An image signal processing unit 110 that generates a display signal V4sa that is a four-color image signal (hereinafter also referred to as an RGBW signal) by processing, and a display surface.
  • the RGBW signal V4sa is received and an image is displayed on the display surface.
  • the display unit 104 includes an illuminance sensor unit 102 that measures the intensity of light incident on the display surface of the display unit 104 and outputs an illuminance signal Lx.
  • the image signal processing unit 110 includes a red signal (hereinafter referred to as an R signal) V3r, a green signal (hereinafter referred to as a G signal) V3g, and a blue signal (hereinafter referred to as an R signal) that constitute an RGB signal that is the input image signal V3s.
  • RGBW signal generation unit 103 that generates V4b and white signal (hereinafter referred to as W signal) V4w, and W signal V4w in the RGBW signal output from RGBW signal processing unit 103 in accordance with illuminance signal Lx
  • W signal V4b and white signal
  • W signal V4w W signal
  • V4wa white signal
  • R signal V4r R signal
  • RGBW signal converter 101 for outputting signals V4g, and together with B signal V4b as the display signal V4sa.
  • the display unit 104 uses an RGBW liquid crystal panel obtained by adding W (white) to R (red), G (green), and B (blue), which are the three primary colors of light.
  • one pixel Px is composed of four auxiliary pixels of a red pixel Pxr, a green pixel Pxg, a blue pixel Pxb, and a white pixel Pxw, and an R signal from the image signal processing unit 110
  • a display signal V4sa including four signals of V4r, G signal V4g, B signal V4r, and W signal V4wa represents a color of each pixel by, for example, 256 gradation colors.
  • the signal levels (signal values) r, g, b, and w of the R signal V4r, G signal V4g, B signal V4r, and W signal V4wa correspond to the gradation levels set in the display unit 104. is doing.
  • FIG. 2 shows the configuration of the RGBW signal converter.
  • the RGBW signal conversion unit 101 converts the W signal V4w in the RGBW signal output from the RGBW signal generation unit 103 so that the signal level of the W signal V4w increases in accordance with the increase in the illuminance signal Lx.
  • a white signal converter hereinafter referred to as a W signal converter
  • the W signal conversion unit 201 converts the signal level of the W signal V4w by a conversion function F1 using a variable L1 that changes in accordance with the illuminance signal Lx as a parameter.
  • the conversion function F1 is expressed by the following equation: It is represented by (1).
  • w ′ w ⁇ L1 (L1 is a value of 1.0 or more) Expression (1)
  • w is the signal level of the W signal V4w from the RGBW signal generation unit 103
  • w ′ is the signal level of the W ′ signal V4wa obtained by signal processing on the W signal V4w.
  • the coefficient (parameter) L1 is 1.0 up to a certain illuminance indicated by the illuminance signal Lx (see graph X1 in FIG. 4A), and when the illuminance indicated by the illuminance signal Lx becomes a certain value or more. As the output value of the illuminance signal Lx increases, it becomes larger than 1 (initial value).
  • clipping processing is performed.
  • the coefficient L1 is 2.0
  • the signal level w ′ of the W ′ signal V4wa has the maximum gradation MAX. In this case, clipping is performed.
  • the W signal conversion unit 201 is not limited to the one that converts the W signal using a linear function such as the conversion function F1 represented by Expression (1), and uses, for example, a nonlinear function such as the conversion function F2. It may be a thing.
  • the conversion function F2 is a linear function similar to the conversion function F1 when the coefficient (parameter) L2 is 1 (see the graph Y1 in FIG. 4B).
  • the coefficient is a negative function (in other words, expressed by an upwardly convex graph) (see graph Y2 in FIG. 4B). That is, the conversion function F2 is switched between the linear function and the nonlinear function when the coefficient L2 is 1.0 and when the coefficient L2 is a value other than that.
  • the conversion function for converting the W signal V4w to the W 'signal V4wa may be performed by combining various calculations including other addition and subtraction.
  • the RGBW signal converter 101 having such a configuration changes the hue of the pixels constituting the display image by converting only the signal level of the W signal constituting the RGBW signal according to the illuminance signal Lx for each pixel. Therefore, it is possible to prevent the display image from becoming difficult to see due to ambient illuminance, and the signal processing in the RGBW signal conversion unit 101 performs any signal processing on the W signal constituting the RGBW signal.
  • this is based on the principle that the hue (Hue) of the RGBW signal does not change, and this principle will be described below.
  • FIG. 3A is a diagram for explaining the hue and saturation using a two-dimensional color space, and the position Phs on the circumference shown in FIG. 3A uses pure red (R) as a reference angle. (0 °), the angle corresponding to pure green (G) is 120 °, the angle corresponding to pure blue (B) is 240 °, and the hue H depends on how many other colors are away from the reference angle. (Hue). Further, a point Xp on a straight line connecting the center Po of the circle and the position Phs on the circumference represents the degree of saturation S.
  • the color and the color space are often expressed by the gradation levels of the signals of the respective colors in the RGB signal, but the color and the color space have the hue H, the saturation S, and the intensity V. Can be expressed as
  • RGB color space a color space defined by RGB signals
  • H, saturation S, and intensity V a color space defined by hue H, saturation S, and intensity V.
  • R, G, and B are the signal levels of the R, G, and B signals that make up the RGB signal
  • the expression (3a) is the highest of the signal levels of the R, G, and B signals.
  • the signal level of the large signal is defined as MAX
  • the expression (3b) defines the signal level of the signal having the smallest signal level among the R signal, G signal, and B signal as MIN.
  • the hue H is defined by one of the equations (4a) to (4c) depending on which signal level is the maximum among the R signal, the G signal, and the B signal as follows.
  • the saturation S is defined by the following equation (5).
  • V MAX (6)
  • the signal levels of the R signal, G signal, B signal, and W signal of the 4-color image signal (RGBW signal) are R 4 , G 4 , B 4 , and W 4 , respectively, and R of the 3-color image signal (RGB signal) is set. signal, when each signal level of the G signal and the B signal and R 3, G 3, B 3, the four color image signals are converted into three color image signals by the following equation (7a) ⁇ (7c).
  • Equations (7a) to (7c) are obtained, and signal levels R 3 , R signals, G signals, and B signals of RGB signals are obtained.
  • G 3 and B 3 are obtained.
  • the expression (3a) defines the signal level (any one of R, G, and B) of the signal having the highest signal level among the R signal, the G signal, and the B signal in the RGB signal as MAX. From the RGB signal levels R 3 , G 3 , and B 3 , the RGBW signal levels R 4 , G 4 , B 4 , and W 4 are used as R 4 + W 4 , G 4 + W 4 , and B 4 + W, respectively. 4 , the signal level of the RGB signal having the highest signal level is obtained by adding the signal level W 4 to the highest signal level of the RGBW signal levels R 4 , G 4 , and B 4. It will be.
  • the expression (3b) defines the signal level (any one of R, G, and B) of the signal having the lowest signal level among the R signal, the G signal, and the B signal in the RGB signal as MIN.
  • the RGBW signal levels R 4 , G 4 , B 4 , and W 4 are used as R 4 + W 4 , G 4 + W 4 , and B 4 + W, respectively.
  • the signal level of the lowest signal level among the RGB signals is obtained by adding the signal level W 4 to the lowest signal level of the RGBW signal levels R 4 , G 4 , and B 4. It will be.
  • C1-C2 is any one of a R 3, G 3, B 3 , R 3, G 3, is the remaining two except for the most of the signal levels larger among the B 3.
  • C1 and C2 differ depending on which of R 3 , G 3 , and B 3 is the maximum signal level.
  • the hue H of the pixel displayed by the RGBW signal is not affected no matter how the W signal constituting the RGBW signal is converted. Therefore, even if the signal level w ′ of the W ′ signal obtained by converting the W signal by the conversion function F1 or F2 is changed, the hue does not change.
  • the W signal constituting the RGBW signal is converted based on the illuminance signal Lx that is the detection result of the illuminance sensor unit. It is possible to prevent the display screen from becoming difficult to see due to ambient brightness without causing a change in hue.
  • the image signal processing unit 110 converts the three-color image signal V3s according to the ambient brightness.
  • the signal is converted into a display signal V4sa, which is a four-color image signal, and output to the display unit 104.
  • the display unit 104 displays an image represented by the RGBW signal that is the input image signal V4sa based on the display signal V4sa.
  • the RGBW signal generation unit 103 generates a four-color image signal (RGBW signal) from the R signal V3r, the G signal V3g, and the B signal V3b that constitute the input RGB signal V3s.
  • R signal V4r, G signal V4g, B signal V4b and W signal V4w are generated.
  • the illuminance sensor unit 102 detects ambient brightness, specifically, the intensity of light incident on the display surface of the display unit 104 in the image display device 100, and an illuminance signal as a detection result. Lx is output to the image signal processing unit 110.
  • the RGBW signal conversion unit 101 When the signals V4r, V4g, V4b, and V4w constituting the four-color image signal generated by the RGBW signal generation unit 103 are input to the RGBW signal conversion unit 101, the RGBW signal conversion unit 101 only applies to the W signal 4w. Based on the illuminance signal Lx from the illuminance sensor unit 102, signal processing is performed to increase the signal level w of the W signal 4w as the illuminance increases, and a converted W signal (hereinafter also referred to as W ′ signal) obtained by this signal processing. ) V4wa is output to the display unit 104 as a display signal V4sa together with signals V4r, V4g, and V4b other than the W signal V4w.
  • W ′ signal a converted W signal
  • RGBW signal calculation methods by the RGBW signal generation unit 103, but here, when converting an RGB signal into an RGBW signal, the W signal is calculated by the following equation (A).
  • W min (R, G, B) Expression (11) That is, as the signal level W 4 and W signals V4w the RGBW signal, R signal V3r and G signals V3g and B signal V3b signal level R 3 of, G 3, B 3 using the minimum.
  • the signal levels R 4 , G 4 , and B 4 of the R signal V4r, the G signal V4g, and the B signal V4b of the RGBW signal are the signal level W of the W signal V4w so as to satisfy the above equations (7a) to (7c), respectively. 4 and the signal levels R 3 , G 3 , and B 3 of the R signal V3r, the G signal V3g, and the B signal V3b.
  • the calculation method of the R signal, the G signal, the B signal, and the W signal in the RGBW signal generation unit 103 is not limited to the method according to the above equation (11) or equation (12).
  • the calculation method of G signal, B signal, and W signal is not particularly limited.
  • the RGBW signal generation unit 103 passes the R signal V4r, G signal V4g, B signal V4b, and W signal V4w generated as described above to the RGBW signal conversion unit 101.
  • the signal levels R 4 , G 4 , B 4 , and W 4 of the R signal V 4 r, G signal V 4 g, B signal V 4 b, and W signal V 4 w are based on the illuminance signal Lx from the illuminance sensor unit 102. Then, conversion is performed so that a display signal V4sa as an RGBW signal suitable for the driving state of the display unit 104 (that is, the intensity of ambient light) is obtained, and the obtained display signal V4sa is output to the display unit 104.
  • the R signal V4r, the G signal V4g, and the B signal V4b constituting the RGBW signal from the RGBW signal generation unit 103 are output as display signals to the display unit 104 as they are, and the RGBW signal generation unit 103 outputs them. Only the W signal V4w constituting the RGBW signal is converted by the signal processing according to the illuminance signal in the W signal conversion unit 201, and the converted W signal V4wa obtained by the conversion is output to the display unit 104 as the display signal V4sa.
  • the reason why only the W signal is converted is that, as described above, even if the signal level of the W signal among the four signals constituting the RGBW signal is changed, the color component (from the converted RGBW signal ( This is because there is no change in hue among hue, saturation, and luminance.
  • the converted W signal is referred to as a W ′ signal.
  • Various processing methods are used for the processing in the W signal conversion unit 201.
  • the W ′ signal is changed as the illuminance signal Lx becomes stronger.
  • a calculation method for increasing the multiplication coefficient L1 is used.
  • this is a calculation method for calculating the signal level w ′ of the W ′ signal using the above-described equation (1).
  • the coefficient L1 is increased as the illuminance signal Lx increases.
  • the initial value of the coefficient L1 is 1.0, and the signal level w of the W signal V4w and the signal level w 'of the W' signal V4wa are the same value. That is, when the initial value of the coefficient L1 is 1.0, the signal level w ′ of the W ′ signal V4wa is the same as when the W signal is not converted.
  • L1 1.0.
  • a method of setting the fixed value to, for example, twice the illuminance of the reference, based on the illuminance in a state where the illumination is turned on indoors at night, for example, is considered.
  • the W signal conversion unit 201 has a signal level w ′ of the W ′ signal obtained by converting the W signal according to the expression (1), so that the maximum of the RGBW signals output from the image signal processing unit 110 as the display signal V4sa.
  • clipping processing is performed on the W ′ signal V4wa so that the signal level w ′ of the W ′ signal V4wa becomes the maximum signal level.
  • FIG. 4 is a graph showing the conversion characteristics of the W signal.
  • the conversion characteristics of the W signal shown in FIG. 4A is an example in which the signal level (signal value) of each color of the RGBW signal takes a signal level corresponding to a value from 0 to 255.
  • the conversion process according to the equation (2) is also a process of increasing the coefficient L2 as the illuminance signal Lx becomes stronger.
  • the coefficient L2 is the same coefficient as the gamma coefficient in the gamma correction for the input image signal.
  • the signal level w of the W signal V4w as the input signal and the signal level w ′ of the W ′ signal V4sa as the output signal have the same value, and as the coefficient L2 increases, W Between the maximum value (MAX) of the signal level of the 'signal (output signal) and 0, the signal level w' of the W signal is converted to a signal level higher than the signal level w of the W signal (input signal). Signal enhancement is performed.
  • the conversion from the W signal to the W ′ signal may be a combination of the conversion according to Expression (1) and the conversion according to Expression (2).
  • FIG. 5 is a diagram for explaining the effect in the present invention.
  • the hue and luminance of the pixel A are set in a normal state (FIG. 5A), a strong light incident state (FIG. 5B), and the present invention.
  • the signal processing is performed (FIG. 5C)
  • the hue and luminance of the pixel B are set to the normal state (FIG. 5D) and the incident state of strong light (FIG. 5E).
  • a state in which the signal processing of the present invention is performed FIG. 5 (f)).
  • the signal levels r, g, b, and w of the RGB signal R signal V4r, G signal V4g, B signal V4b, and W signal V4w corresponding to the pixel A are 50 and 70, respectively.
  • G, b, and w are 70, 100, 120, and 70, and the signal level by external light is 30.
  • the signal levels r, g, b, and w of the R signal V4r, G signal V4g, B signal V4b, and W signal V4w of the RGBW signal corresponding to the pixel A are 50, 70, and 60, respectively.
  • the signal levels r, g, b of the R signal V4r, the G signal V4g, the B signal V4b, and the W signal V4w of the RGBW signal corresponding to the pixel B adjacent to the pixel A are shown.
  • W is 70, 100, 120, 140
  • the signal level due to external light is 30.
  • the hue (Hue) Ha of the pixel A is 150 as shown in FIG.
  • the hue (Hue) Hb of B is 204 as shown in FIG. 5 (d) according to the equation (9c).
  • the luminance Y is obtained from the following equation (13) from the signal levels R, G, and B of the R signal, the G signal, and the B signal of the RGB signal.
  • the signal levels r, g, b, and w of the RGBW signal signals V4r, V4g, V4b, and V4w are set to the RGBW signal signals V3r and V3g according to equations (7a) to (7c).
  • the RGBW signal signals V4r, V4g, V4b, and V4w are converted to the RGBW signal signals V3r, V3g, and V3b by the equations (7a) to (7c).
  • the contrast that is, the luminance ratio (Yb / Ya) between the pixel A and the pixel B is 1.44.
  • the luminance Ya of the pixel A is 172.9, and the luminance Yb of the pixel B is 223.3.
  • the signal levels r, g, b, and w of the RGBW signal signals V4r, V4g, V4b, and V4w are expressed by the equations (7a) to (7c) as the signal levels R of the RGBW signal signals V3r, V3g, and V3b.
  • the RGBW signal signals V4r, V4g, V4b, and V4w are converted to the RGBW signal signals V3r, V3g, and V3b by the equations (7a) to (7c).
  • the B signal V3b is converted.
  • the contrast that is, the luminance ratio (Yb / Ya) between the pixel A and the pixel B is 1.29.
  • the luminance Ya of the pixel A is 222.9 and the luminance Yb of the pixel B is 293.3.
  • the signal levels r, g, b, and w of the RGBW signal signals V4r, V4g, V4b, and V4w are expressed by the equations (7a) to (7c) as the signal levels R of the RGBW signal signals V3r, V3g, and V3b.
  • the signal level of the G signal V3g 230
  • the RGBW signal signals V4r, V4g, V4b, and V4w are converted to the RGBW signal signals V3r, V3g, and V3b by the equations (7a) to (7c).
  • the contrast that is, the luminance ratio (Yb / Ya) between the pixel A and the pixel B is 1.31.
  • the liquid crystal screen becomes generally brighter as the illuminance of outside light increases, and the luminance ratio between the pixels decreases.
  • the coefficients L1 and L2 are increased. By increasing the value, it is possible to suppress a decrease in the luminance ratio between pixels.
  • Expression (1) or Expression (2) when used for the conversion of the W signal, a luminance difference between pixels of low gradation to intermediate gradation can be created and the luminance ratio can be increased.
  • the decrease in the luminance ratio due to ambient light can be mitigated by the process of increasing the luminance ratio by converting the W signal, and the hue change is not caused by the W signal conversion.
  • the image signal processing unit 110 that generates the RGBW signal V4sa by the signal processing on the input image signal (RGB signal) V3s and the RGBW signal V4sa are received and the image is displayed on the display surface.
  • an illuminance sensor unit 102 that measures the intensity of light incident on the display surface of the display unit 104 and outputs an illuminance signal Lx.
  • the image signal processing unit 110 outputs the RGB signal V3s.
  • the R signal V4r, the G signal V4g, and the B signal V4b and the W signal V4w constituting the RGBW signal are generated from the constituting R signal V3r, the G signal V3g, and the B signal V3b, and the W signal V4w in the RGBW signal is converted into the illuminance.
  • the signal is converted to have a signal level corresponding to the signal Lx, and the W ′ signal V4wa obtained by the conversion is converted into the RGBW signal.
  • FIG. 6 is a block diagram for explaining an image display apparatus according to Embodiment 2 of the present invention.
  • the image display device 100a according to the second embodiment includes an RGBW signal processing unit 101a that converts a W signal using a lookup table instead of the RGBW signal conversion unit 101 in the image display device 100 according to the first embodiment.
  • RGBW signal processing unit 101a that converts a W signal using a lookup table instead of the RGBW signal conversion unit 101 in the image display device 100 according to the first embodiment.
  • Other configurations are the same as those of the image display apparatus of the first embodiment.
  • the pixel signal processing unit 110a in the image display device 100a uses the four-color image signal (RGBW) from the R signal V3r, the G signal V3g, and the B signal V3b that constitute the input image signal (RGB signal) V3s.
  • RGBW four-color image signal
  • the RGBW signal conversion unit 101a outputs the W ′ signal V4wa obtained by the conversion to the display unit 104 as the display signal V4sa together with the R signal V4a, the G signal V4g, and the B signal V4b in the RGBW signal. .
  • FIG. 7 is a block diagram for explaining the RGBW signal conversion unit constituting the image signal processing unit 110a of the second embodiment.
  • the RGBW signal processing unit 101a creates a lookup table for converting the W signal V4w every time the illuminance signal Lx is updated based on the illuminance signal Lx output from the illuminance sensor unit 102.
  • the W signal V4w The signal level w is converted to a signal level w ′ corresponding to the increase in the illuminance signal Lx.
  • the LUT creation unit 203 creates a lookup table Ts based on a conversion function for converting the signal level w of the W signal V4w into a signal level w ′ corresponding to an increase in the illuminance signal Lx.
  • the conversion function used to create the lookup table in FIG. 4 includes a conversion function F1 defined by the above-described equation (1), a conversion function F2 defined by the equation (2), a combination function of these conversion functions, or In addition, a function such as a conversion function for executing a more complicated operation can be used.
  • the look-up table Ts stored in the table storage unit 202 is rewritten whenever the illuminance signal Lx is updated, that is, whenever the illuminance sensor unit 102 measures light incident on the display surface of the display unit 104.
  • the rewriting of the lookup table Ts is not performed once with the determined number of frames, but the next rewriting is performed after 9 frames, and the next rewriting is performed after 10 frames. It is asynchronous with the frame rate.
  • the interval of rewriting the lookup table Ts (that is, the interval of measurement by the illuminance sensor unit 102) is specifically an interval of about several milliseconds to several tens of seconds.
  • the table storage unit (LUT storage unit) 202 is not limited to the one provided in the white signal conversion unit 201a as in the second embodiment, and may be provided outside the W signal conversion unit 201a.
  • the V4g, the B signal V4b, and the W signal V4w only the signal level w of the W signal V4w is converted according to the illuminance signal Lx, and the display can be performed without changing the hue of the pixels constituting the display image. It is possible to suppress the image from becoming difficult to see due to ambient illuminance.
  • the conversion from the W signal to the W ′ signal is performed using a lookup table ( By defining as LUT), it is not necessary to perform complicated calculation for each pixel, and in the panel having a large number of pixels, an effect that the conversion efficiency of the W signal using the lookup table is good is obtained.
  • FIG. 8 is a block diagram for explaining an image display apparatus according to Embodiment 3 of the present invention.
  • the image display device 100b replaces the RGBW signal conversion unit 101 in the image display device 100 according to the first embodiment with a signal for the W signal V4w that constitutes the RGBW signal converted from the input image signal (RGB signal) V3s.
  • the RGBW signal processing unit 101b that performs signal processing on the R signal V4r, the G signal V4g, and the B signal V4b constituting the RGBW signal is provided.
  • the display device 100 is the same.
  • the pixel signal processing unit 110b in the image display device 100b uses the four-color image signal (RGBW) from the R signal V3r, the G signal V3g, and the B signal V3b that constitute the input image signal (RGB signal) V3s.
  • RGBW four-color image signal
  • RGBW signal generation unit 103 that generates R signal V4r, G signal V4g, and B signal V4b and W signal V4w, and the W signal V4w in the RGBW signal output from the RGBW signal processing unit 103, It is converted so as to have a signal level corresponding to the signal Lx, and further, signal processing for the R signal V4r, G signal V4g, and B signal V4b in the RGBW signal is performed without changing the hue, and obtained by converting the W signal V4w.
  • the converted W signal V4wa, the R signal V4r, the G signal V4g, and the B signal V4b That signal processing by the resultant R 'signal V4ra, G' and a signal V4ga, and B 'RGBW signal converter 101b for outputting a signal V4ba as the display signal V4sb.
  • FIG. 9 is a block diagram for explaining the RGBW signal conversion unit constituting the image signal processing unit of the third embodiment.
  • the RGBW signal conversion unit 101b converts the W signal V4w constituting the RGBW signal to have a signal level corresponding to the illuminance signal Lx
  • the signal processing for the R signal V4r, G signal V4g, and B signal V4b constituting the RGBW signal is performed without changing the hue, and the R ′ signal V4ra, the G ′ signal V4ga, and the B ′ signal V4ba are output. Part 204.
  • the R signal V4r and the G signal constituting the RGBW signal converted from the RGB signal which is the input image signal V3s.
  • the V4g, B signal V4b, and W signal V4w only the signal level w of the W signal V4w is converted according to the illuminance signal Lx, and the R signal V4r, G signal V4g, B signal V4b, and RGB signal constituting the RGBW signal are converted. Since the signal processing that does not change the hue is performed on the W signal V4w, it is possible to suppress the display image from becoming difficult to see due to ambient illuminance without changing the hue of the pixels constituting the display image. Can do.
  • FIG. 10 is a block diagram illustrating an image display apparatus according to Embodiment 4 of the present invention.
  • the image display device 100c receives a four-color image signal V4s as an input image signal, and the image signal processing unit 110c constituting the image display device 100c is the same as the image display device 100 according to the first embodiment.
  • the image signal processing unit 110 having the RGBW signal generation unit 103 and the RGBW signal conversion unit 101
  • the W signal V4w in the RGBW signal as the input image signal V4s is converted to have a signal level corresponding to the illuminance signal Lx
  • the image signal processing unit 110c is provided.
  • the RGBW signal generation unit that generates the RGBW signal from the RGB signal in the first embodiment can be eliminated.
  • the input image signal is a three-color image signal (RGB signal) including an R signal, a G signal, and a B signal. It may be a YUV signal including a signal (Y), a color difference signal (U), and a color difference signal (V).
  • RGB signal three-color image signal
  • U color difference signal
  • V color difference signal
  • the image signal processing unit of the image display apparatus includes a conversion unit that converts a YUV signal into an RGB signal, so that the same image signal processing as in the first to third embodiments can be performed. .
  • the signal processing in the image signal processing unit in the image display device of each embodiment described above can be executed by a computer.
  • the image signal processing in the image display device is executed by a computer
  • the image signal processing in the image display device is executed by a computer
  • An image display program for executing signal processing for image display by the computer by a computer is stored in a recording medium such as a DVD or HDD, and the image display program is read into a central processing unit (CPU) and is
  • CPU central processing unit
  • the image display of any one of the first to fourth embodiments is realized.
  • Signal processing in the image signal processing unit in the apparatus can be performed by a computer.
  • the present invention relates to an image display apparatus, an image display method, and an image display program that can suppress a display image from becoming difficult to be seen due to ambient illuminance without changing the hue of a pixel, An image display method and an image display program can be realized.

Abstract

表示画像が周囲の照度によって見えにくくなるのを、画素の色相を変化させることなく抑制することができる画像表示装置を得る。画像表示装置(100)において、入力画像信号(RGB信号)V3sに対する信号処理によりRGBW信号V4saを生成する画像信号処理部(110)と、RGBW信号V4saを受けて表示面上に画像を表示する表示部(104)と、表示部(104)の表示面に入射する光の強さを測定して照度信号Lxを出力する照度センサー部(102)とを備え、RGB信号V3sから得られたRGBW信号におけるW信号V4wを、照度信号Lxに応じた信号レベルを持つよう変換し、変換により得られたW'信号V4waを、RGBW信号におけるR信号V4r、G信号V4g、およびB信号V4bとともに表示信号V4saとして表示部(104)に出力するようにした。

Description

画像表示装置、画像表示方法、および画像表示プログラム
 本発明は、画像表示装置、画像表示方法、および画像表示プログラムに関し、特に、表示画面の周囲の照度によって見えにくくなる表示画像を、コントラスト感を調整して見えやすくする画像信号処理に関するものである。
 近年、携帯電話やポータブルゲーム機のように持ち運びできるモバイル機器が増えてきており、このようなモバイル機器には液晶表示装置がついている。
 モバイル機器は、周りが明るい所や暗い所など、様々な環境で使用されるが、モバイル機器の表示部に用いられている液晶表示装置などは、周囲から光が差し込むと見えにくくなる性質がある。
 このようなモバイル機器周辺の照度によって液晶表示装置の画面(液晶画面)が見えにくくなることの対処方法として、照度センサを組合せた技術があり、例えば、周囲の明るさに応じてバックライトの照度を制御する方法がある。
 バックライトの照度調整は、具体的には、周囲が明るくなった時にはバックライトの輝度を上げて液晶画面を強く照らし、周囲が暗くなった時にはバックライトの輝度を下げるというものである。
 このような照度調整を行うことで、外部からの光に負けない強い光で画像表示することにより、表示画像が見え難くなることを防いでいる。
 また、他の方法として、バックライトの制御だけでなく、画像表示する画像信号を変えるものがある(例えば、特許文献1)。
 図11は、特許文献1に開示の画像表示装置を説明する図である。
 映像表示装置1は、例えばDVDプレイヤ2Aのような画像源2と接続されており、画像源2からの画像信号Aを外光の強弱に応じて補正して表示するものであり、外光の照度を検出する外光検出部11と、画像信号Aを外光の照度に応じて補正して補正画像信号A1を出力する画像処理LSI12と、この補正画像信号A1を入力とするディスプレイ13と、画像信号Aの補正に用いる補正量群Cを生成するCPU14とを備え、これらはデータバスにより相互に接続されている。
 ここで、外光検出部11は、例えば照度センサ11Aである。照度センサ11Aは、ディスプレイ13の周辺に取り付けられ、入射光の照度iを検出する。照度センサ11Aは、検出した照度iを示す信号をCPU14に出力する。
 画像処理LSI12は、特徴検出部12aと映像信号処理部12bとを備えており、特徴検出部12aは、入力画像信号Aが表す画像の特徴量群Fを算出し、算出した特徴量群Fを、CPU14と映像信号処理部12bとに出力する。ここで、特徴量群Fは、最小輝度、平均輝度、及び最大輝度である。また、特徴検出部12aは、入力画像信号Aを画像信号処理部12bに出力する。
 映像信号処理部12bは、CPU14から送られてくる補正量群Cと、特徴検出部12aから送られてくる特徴量群Fとを使って、特徴検出部12aから送られてくる画像信号Aを補正する。この補正により生成された処理後の画像信号A1は、ディスプレイ13に出力される。
 ディスプレイ13は液晶ディスプレイであり、画面13aと、バックライト13cと、バックライト制御部13bとを備え、画面13aには、映像信号処理部12bから送られてくる画像信号A1に従って画像が表示される。バックライト制御部13bは、CPU14から送られてくる輝度制御信号(Lmax,L)に基づき、バックライト13cの発光を制御する。バックライト13cは、画面13aの背後に備わり、バックライト制御部13bの制御下で発光し、画像表示のために光を画面13aに与える。
 このような画像表示装置10では、外光の強弱に基づいて、表示画像のコントラストと、バックライト13cの発光輝度とが調整される。
 つまり、CPU14は、外光の強弱を判断する。映像信号処理部12bは、外光が弱いと判断されると、入力された画像信号の最大振幅をダイナミックレンジ幅まで増幅するための増幅率Gを求め、画像信号を増幅率Gで増幅し、増幅した画像信号がダイナミックレンジ内に収まるよう、その平均輝度レベルALPをシフト量Sにより補正し、外光が強いと判断されると、入力画像信号のコントラストを補正する処理を行う。また、バックライト制御部13bは、外光が強いと判断されると、前記バックライトの発光輝度を一定値に固定し、外光が弱いと判断されると、該バックライトの発光輝度を該入力画像信号の平均輝度レベルに基づき動的に調整する。
 つまり、この特許文献1では、周囲が暗い時、最大輝度と最小輝度をダイナミックレンジ一杯に広げ、平均輝度が変化しないようにバックライトを制御し、一方、周囲が明るい時、バックライトを一定輝度で発光させ、表示画面の平均輝度に応じたパラメータ(c,b,g)を用いて、出力信号として((入力信号)*c+b)にて演算された値を使用する。ここで、cはコントラストゲイン、bはブライトネスオフセット、gはガンマ係数である。
特開2009-276425号公報
 しかし、前述のような従来技術ではいくつかの問題点がある。
 周囲の明るさに応じてバックライト(BL)の照度を調整する方法では、周りが明るくなった時バックライトを照らし、周りが暗くなった時、バックライトを暗くする必要があり、周囲が明るくなるにつれBL輝度を上げるにも限界がある。
 また上記特許文献1では、周囲が明るくなった時、高輝度信号の色が最大値以上となる場合や、ガンマ係数gによる補正のため大部分の画素の色相(Hue)が変化する場合があ
る。
 このように色相(Hue)が変化すると、画像によっては、変色したようになり、本来の色
味と異なった画像になってしまう。
 本発明は、上記のような問題点を解決するためになされたものであり、表示画像が周囲の照度によって見えにくくなるのを、表示画像における色相を変化させることなく抑制することができる画像表示装置、画像表示方法、および画像表示プログラムを得ることを目的とする。
 本発明に係る画像表示装置は、画像信号に基づいて画像を表示する画像表示装置であって、該画像信号に対する信号処理により表示信号を生成する画像信号処理部と、表示面を有し、該表示面上に該表示信号に基づいて該画像を表示する表示部と、該表示部の表示面に入射する光の強さを測定して照度信号を出力する照度センサー部とを備え、該画像信号処理部は、該画像信号を構成する赤信号、緑信号、青信号および白信号のうちの白信号を、該照度信号に応じた信号レベルを持つよう変換する白信号変換部を有し、該白信号の変換により得られた変換白信号を、該画像信号における赤信号、緑信号、および青信号とともに該表示信号として該表示部に出力するものであり、そのことにより上記目的が達成される。
 本発明は、上記画像表示装置において、前記画像信号処理部は、前記照度信号に応じて、前記白信号の変換に用いる変換テーブルを作成するテーブル作成部と、作成された変換テーブルを格納するテーブル格納部とを有し、前記白信号変換部を、該テーブル格納部に格納された変換テーブルに基づいて、該白信号の信号レベルが該照度信号に応じた信号レベルになるよう該白信号を変換する構成とし、該白信号の変換により得られた変換白信号を、該画像信号における赤信号、緑信号、および青信号とともに前記表示信号として前記表示部に出力するものであることが好ましい。
 本発明は、上記画像表示装置において、前記画像信号処理部は、前記画像信号を構成する赤信号、緑信号および青信号に対して、該画像信号の彩度が変化しないよう信号処理を施す信号処理部を有し、前記白信号の変換により得られた変換白信号を、該信号処理が施された赤信号、緑信号、および青信号とともに前記表示信号として前記表示部に出力するものであることが好ましい。
 本発明は、上記画像表示装置において、前記画像信号処理部には、前記画像信号として、赤信号、緑信号、青信号、および白信号を含む4色画像信号が入力され、前記白信号変換部は、該4色画像信号における白信号を該照度信号に応じた信号レベルを持つよう変換し、前記画像信号処理部は、該白信号の変換により得られた変換白信号を、該4色画像信号における赤信号、緑信号、および青信号とともに前記表示信号として前記表示部に出力するものであることが好ましい。
 本発明は、上記画像表示装置において、前記画像信号処理部には、前記画像信号として、赤信号、緑信号、および青信号を含む3色画像信号が入力され、該画像信号処理部は、該3色画像信号から、赤信号、緑信号、青信号、および白信号を含む4色画像信号を生成する信号生成部を有し、前記白信号変換部は、該信号生成部から出力された4色画像信号の白信号を該照度信号に応じた信号レベルを持つよう変換し、該画像信号処理部は、該白信号の変換により得られた変換白信号を、該4色画像信号における赤信号、緑信号、および青信号とともに前記表示信号として前記表示部に出力するものであることが好ましい。
 本発明は、上記画像表示装置において、前記白信号変換部は、前記4色画像信号の白信号の信号レベルが該照度信号の増加に応じて増加するように、該照度信号に応じて変化する変数をパラメータとする変換関数により該4色画像信号の白信号を変換するものであることが好ましい。
 本発明は、上記画像表示装置において、前記白信号変換部は、前記変換関数として、前記変数をパラメータとする線形関数を用いて前記白信号を変換するものであることが好ましい。
 本発明は、上記画像表示装置において、前記白信号変換部は、前記変換関数として、前記変数をパラメータとする線形関数と、前記変数をパラメータとする、負の二階微分係数を有する非線形関数とを含み、該変数に応じて該線形関数と該非線形関数とが切り換わる複合関数を用いて前記白信号を変換するものであることが好ましい。
 本発明は、上記画像表示装置において、前記変数は、前記照度信号が示す照度が強くなると大きくなり、該照度信号が示す照度が弱くなると小さくなる第1の係数であり、該第1の係数は、前記変換関数を定義する数式における、前記白信号の信号レベルに対する乗算演算の乗数部に含まれる係数となっていることが好ましい。
 本発明は、上記画像表示装置において、前記変数は、前記照度信号が示す照度が強くなると大きくなり、該照度信号が示す照度が弱くなると小さくなる第2の係数であり、該第2の係数は、前記変換関数を定義する数式における、前記白信号に対するべき乗演算の指数部に含まれる係数であることが好ましい。
 本発明は、上記画像表示装置において、前記表示部は、1画素を、赤色、緑色、青色および白色の4つの補助画素により構成したものであることが好ましい。
 本発明に係る画像表示方法は、画像信号に基づいて画像を表示する画像表示方法であって、該画像信号に対する信号処理により表示信号を生成するステップと、表示装置の表示面上に該表示信号に基づいて該画像を表示するステップと、該表示装置の表示面に入射する光の強さを照度センサー部により測定して照度信号を出力するステップとを含み、該表示信号を生成するステップでは、該画像信号を構成する赤信号、緑信号、青信号および白信号のうちの白信号を、該照度信号に応じた信号レベルを持つよう変換し、該白信号の変換により得られた変換白信号を、該画像信号における他の赤信号、緑信号、および青信号とともに該表示信号として該表示装置に出力するものであり、そのことにより上記目的が達成される。
 本発明に係る画像表示プログラムは、上述した本発明による画像表示方法をコンピュータにより実行するための画像表示プログラムであり、そのことにより上記目的が達成される。
 次に作用について説明する。
 本発明においては、画像信号に対する信号処理により表示信号を生成する画像信号処理部と、表示信号に基づいて表示面上に画像を表示する表示部と、表示部の表示面に入射する光の強さを測定して照度信号を出力する照度センサー部とを備え、画像信号処理部は、画像信号を構成する赤信号、緑信号、青信号および白信号のうちの白信号を、照度信号に応じた信号レベルを持つよう変換する白信号変換部を有し、この白信号の変換により得られた変換白信号を、画像信号における赤信号、緑信号、および青信号とともに表示信号として表示部に出力するので、画像信号を構成する赤信号、緑信号、青信号および白信号のうちの白信号のみが照度信号に応じて変換されることとなり、表示画像を構成する画素の色相を変化させることなく、コントラストを高めることができ、これにより表示画面の周辺が明るくなった場合でも、表示画像が見えにくくなるのを抑制することができる。
 本発明においては、照度信号に応じて、白信号の変換に用いる変換テーブルを作成するテーブル作成部と、作成された変換テーブルを格納するテーブル格納部とを有し、白信号変換部では、テーブル格納部に格納された変換テーブルに基づいて、白信号の信号レベルが照度信号に応じた信号レベルになるよう白信号を変換するので、画素に対応する処理時間内に白信号に対する演算を行う必要がなくなり、演算負荷を低減することができる。
 本発明においては、画像信号処理部は、画像信号を構成する赤信号、緑信号、青信号および白信号のうちの白信号を変換する白信号変換部に加えて、画像信号を構成する赤信号、緑信号および青信号に対して、画像信号の彩度が変化しないよう信号処理を施す信号処理部を有し、白信号の変換により得られた変換白信号を、信号処理が施された赤信号、緑信号、および青信号とともに表示信号として表示部に出力するので、4色画像信号に対しては白信号だけでなく、その他の色の信号に対する処理も色相を変化させない範囲で行うことが可能となり、4色画素信号に対して可能な信号処理の範囲を広げることができる。
 本発明においては、入力画像信号として4色画像信号を受けるので、画像信号処理部を、3色画像信号から4色画像信号を生成する信号生成部を削減した簡単な構成とすることができる。
 以上のように、本発明によれば、表示画像が周囲の照度によって見えにくくなるのを、表示画像の色相を変化させることなく抑制することができる画像表示装置、画像表示方法、および画像表示プログラムを得ることができる。
図1は、本発明の実施形態1による画像表示装置を説明するブロック図である。 図2は、本発明の実施形態1による画像表示装置を説明する図であり、この画像表示装置を構成する画像信号処理部のRGBW信号変換部の構成を示している。 図3は、本発明の実施形態1による画像表示装置を説明する図であり、図3(a)は、2次元色空間にて色相と彩度の関係を示し、図3(b)は画像表示装置における表示部の画素の構成を示している。 図4は、本発明の実施形態1による画像表示装置を説明する図であり、図4(a)は、式(1)によるW信号の変換特性を示し、図4(b)は、式(2)によるW信号の変換特性を示している。 図5は、本発明における効果を説明する図であり、画素Aの色相および輝度を、通常状態(図5(a))、強い光の入射状態(信号処理なし)(図5(b))、および強い光の入射状態(本発明の信号処理あり)(図5(c))で対比して示し、画素Bの色相および輝度を、通常状態(図5(d))、強い光の入射状態(信号処理なし)(図5(e))、および強い光の入射状態(本発明の信号処理あり)(図5(f))で対比して示している。 図6は、本発明の実施形態2による画像表示装置を説明するブロック図である。 図7は、本発明の実施形態2による画像表示装置を説明する図であり、この画像表示装置を構成する画像信号処理部のRGBW信号変換部の構成を示している。 図8は、本発明の実施形態3による画像表示装置を説明するブロック図である。 図9は、本発明の実施形態3による画像表示装置を説明する図であり、この画像表示装置を構成する画像信号処理部のRGBW信号変換部の構成を示している。 図10は、本発明の実施形態4による画像表示装置を説明するブロック図である。 図11は、特許文献1に開示の画像表示装置を説明する図である。
 以下、本発明の実施形態について図面を参照しながら説明する。
 (実施形態1)
 図1は、本発明の実施形態1による画像表示装置を説明するブロック図である。
 この実施形態1による画像表示装置100は、入力された3色画像信号(以下、RGB信号ともいう。)である入力画像信号V3sに基づいて画像を表示するものであり、入力画像信号V3sに対する信号処理により4色画像信号(以下、RGBW信号ともいう。)である表示信号V4saを生成する画像信号処理部110と、表示面を有し、RGBW信号V4saを受けて表示面上に画像を表示する表示部104と、表示部104の表示面に入射する光の強さを測定して照度信号Lxを出力する照度センサー部102とを備えている。
 ここで、画像信号処理部110は、入力画像信号V3sであるRGB信号を構成する赤信号(以下、R信号という。)V3r、緑信号(以下、G信号という。)V3g、および青信号(以下、B信号という。)V3bから、4色画像信号(RGBW信号)を構成する赤信号(以下、R信号という。)V4r、緑信号(以下、G信号という。)V4g、および青信号(以下、B信号という。)V4bおよび白信号(以下、W信号という。)V4wを生成するRGBW信号生成部103と、このRGBW信号処理部103から出力されたRGBW信号におけるW信号V4wを、照度信号Lxに応じた信号レベルを持つよう変換し、変換により得られた変換W信号(以下、W’信号ともいう。)V4waを、RGBW信号におけるR信号V4r、G信号V4g、およびB信号V4bとともに表示信号V4saとして出力するRGBW信号変換部101とを有している。
 また、表示部104には、光の3原色であるR(赤)、G(緑)、B(青)に、W(白)を加えたRGBW液晶パネルを用いており、この液晶パネルは、図3(b)に示すように、1画素Pxを赤色画素Pxr、緑色画素Pxg、青色画素Pxbおよび白色画素Pxwの4つの補助画素により構成したものであり、画像信号処理部110からのR信号V4r、G信号V4g、B信号V4rおよびW信号V4waの4信号を含む表示信号V4saにより、各画素の色を例えば256階調の色により表現する構成となっている。これらのR信号V4r、G信号V4g、B信号V4rおよびW信号V4waの各信号の信号レベル(信号値)r、g、b、およびwは、表示部104に設定されている階調レベルに対応している。
 次に、本実施形態1の画像表示装置の画像信号処理部110を構成するRGBW信号変換部について説明する。
 図2は、このRGBW信号変換部の構成を示している。
 このRGBW信号変換部101は、上記RGBW信号生成部103から出力されたRGBW信号におけるW信号V4wを、このW信号V4wの信号レベルが照度信号Lxの増加に応じて増加するように変換してW’信号V4waを出力する白信号変換部(以下、W信号変換部という。)201を有している。
 このW信号変換部201は、W信号V4wの信号レベルを、照度信号Lxに応じて変化する変数L1をパラメータとする変換関数F1により変換するものであり、ここでこの変換関数F1は以下の式(1)により表される。
 w’=w×L1(L1は1.0以上の値)            ・・・式(1)
 ここで、wは、RGBW信号生成部103からのW信号V4wの信号レベルであり、w’は、このW信号V4wに対する信号処理により得られたW’信号V4waの信号レベルである。
 また、係数(パラメータ)L1は、照度信号Lxが示す照度がある一定照度までは1.0であり(図4(a)のグラフX1参照)、照度信号Lxが示す照度が一定値以上になると、照度信号Lxの出力値が大きくなるにつれて、1(初期値)より大きくなるものとしている。
 また、W信号V4wからW’信号V4waへの変換の結果、負の値や最大階調MAXを超える値になる場合は、クリッピング処理を行う。例えば、図4(a)のグラフX2は、係数L1が2.0であり、W信号V4wからW’信号V4waへの変換の結果、W’信号V4waの信号レベルw’が最大階調MAXを超えるため、クリッピングを行った場合を示している。
 なお、このW信号変換部201は、式(1)で示す変換関数F1のような線形関数を用いてW信号を変換するものに限定されず、例えば、変換関数F2のような非線形関数を用いるものでもよい。
 ここでこの変換関数F2は、以下の式(2)により表される。
 w’={(w/255)(1/L2)}×255(L2は1.0以上の値) ・・・式(2)
 この変換関数F2は、係数(パラメータ)L2が1のときは、変換関数F1と同様の線形関数となり(図4(b)のグラフY1参照)、係数L2が1より大きいときは、二階微分の係数が負となる(言い換えると上に凸のグラフにより表される)非線形関数となる(図4(b)のグラフY2参照)。つまり、この変換関数F2は、係数L2が1.0であるときとそれ以外の値であるときとで、線形関数と非線形関数との間で切替わることとなる。
 また、W信号V4wをW’信号V4waに変換する変換関数としては、その他の加減算なども含めた様々な演算を組み合わせて行うものであってもよい。
 このような構成のRGBW信号変換部101は、RGBW信号を構成するW信号の信号レベルのみを画素毎に照度信号Lxに応じて変換することで、表示画像を構成する画素の色相を変化させることなく、表示画像が周囲の照度によって見えにくくなるのを回避するものであり、このRGBW信号変換部101での信号処理は、RGBW信号を構成するW信号に対してはどのような信号処理を行っても、RGBW信号の持つ色相(Hue)は変わらないという原理に基づいており、以下この原理について説明する。
 図3(a)は、色相と彩度を2次元の色空間を用いて説明する図であり、図3(a)に示す円周上の位置Phsは、純色の赤(R)を基準角(0°)とし、純色の緑(G)に対応する角度を120°とし、純色の青(B)に対応する角度を240°として他の色を基準角から何度離れているかによって色相H(Hue)を表している。また、この円の中心Poと円周上の位置Phsとを結ぶ直線上の点Xpは、鮮やかさの度合い彩度Sを表している。
 ところで、色および色空間を表現する方法として、色および色空間をRGB信号における各色の信号の階調レベルで表現する場合が多いが、色および色空間は、色相H、彩度S、強度Vとして表すことができる。
 なお、RGB信号により定義される色空間をRGB色空間と呼び、色相H、彩度S、強度Vにより定義される色空間をHSV色空間と呼ぶ。
 そして、RGB色空間(R,G,B)からHSV色空間(H,S,V)への変換式は、下記の通りになる。
 MAX=max(R,G,B)  ・・・(3a)
 MIN=min(R,G,B)  ・・・(3b)
 ここで、R,G,Bは、RGB信号を構成するR信号、G信号、B信号の信号レベルであり、式(3a)は、R信号、G信号、B信号のうちの信号レベルの最も大きい信号の信号レベルをMAXと定義し、式(3b)は、R信号、G信号、B信号のうちの信号レベルの最も小さい信号の信号レベルをMINと定義している。
 そして、色相Hは、以下のとおり、R信号、G信号、B信号のうちでいずれの信号レベルが最大であるかによって、式(4a)~式(4c)のいずれかにより定義される。
 MAX=Rのとき、
 H=60×(G-B)/(MAX-MIN)+0   ・・・(4a)
 MAX=Gのとき、
 H=60×(B-R)/(MAX-MIN)+120 ・・・(4b)
 MAX=Bのとき、
 H=60×(R-G)/(MAX-MIN)+240 ・・・(4c)
 ここで、H<0となった場合は、H=H+360により、つまりHに360度を加えることにより正の値として扱う。つまり、H=-10は、H=350として扱う。
 さらに、彩度Sは、以下の式(5)により定義される。
 S=(MAX-MIN)/MAX  ・・・(5)
 なお、HSV空間における強度(明るさに相当する値)Vは、以下の(6)式により定義される。
 V=MAX            ・・・(6)
 また、4色画像信号(RGBW信号)のR信号、G信号、B信号およびW信号の信号レベルをそれぞれR、G、B、Wとし、3色画像信号(RGB信号)のR信号、G信号およびB信号の信号レベルをそれぞれR、G、Bとすると、4色画像信号は以下の式(7a)~(7c)により3色画像信号に換算される。
 R=R+W   ・・・(7a)
 G=G+W   ・・・(7b)
 B=B+W   ・・・(7c)
 そこで、これらの式(7a)~(7c)、式(3a)、(3b)、および式(4a)~(4c)を用いて、4色画像信号におけるR信号、G信号、B信号およびW信号の信号レベルにより色相Hが表されることとなる。
 式(7a)~(7c)を式(3a)、(3b)に代入すると、式(8a)、(8b)が得られ、RGB信号のR信号、G信号、B信号の信号レベルR、G、Bを式(4a)~(4c)のR,G、Bに代入すると、式(9a)~(9c)が得られる。
 つまり、式(3a)は、RGB信号におけるR信号、G信号、B信号のうちの信号レベルの最も大きい信号の信号レベル(R、G、Bのいずれか)をMAXと定義するものであることから、RGB信号の信号レベルR、G、BをそれぞれRGBW信号の信号レベルR、G、B、Wを用いて、R+W、G+W、B+Wとして表したときは、RGB信号のうちの信号レベルの最も大きい信号の信号レベルは、RGBW信号の信号レベルR、G、Bのうちの最も大きい信号レベルに信号レベルWを加えたものとなる。 
 また、式(3b)は、RGB信号におけるR信号、G信号、B信号のうちの信号レベルの最も小さい信号の信号レベル(R、G、Bのいずれか)をMINと定義するものであることから、RGB信号の信号レベルR、G、BをそれぞれRGBW信号の信号レベルR、G、B、Wを用いて、R+W、G+W、B+Wとして表したときは、RGB信号のうちの信号レベルの最も小さい信号の信号レベルは、RGBW信号の信号レベルR、G、Bのうちの最も小さい信号レベルに信号レベルWを加えたものとなる。 
 MAX=max(R,G,B)=max(R,G,B)+W ・・・(8a)
 MIN=min(R,G,B)=min(R,G,B)+W ・・・(8b)
 MAX=Rのとき、
 H=60×(G-B)/(MAX-MIN)+0   ・・・(9a)
 MAX=Gのとき、
 H=60×(B-R)/(MAX-MIN)+120 ・・・(9b)
 MAX=Bのとき、
 H=60×(R-G)/(MAX-MIN)+240 ・・・(9c)
 さらに、式(8a)、(8b)を式(9a)~式(9c)に代入し、R信号、G信号、B信号の信号レベルを各色について一般化すると、以下の式(10)が得られる。
 H=60×(C1-C2)/(MAX-MIN)+α
  =60×(C1-C2)/((max(R,G,B)+W)-(min(R,G,B)+W))+α
  =60×(C1-C2)/(max(R,G,B)-min(R,G,B))+α
  ・・・式(10)
 ここで、C1、C2はR、G、Bのいずれか1つであって、R、G、Bのうちで最も信号レベルの大きいものを除いた残り2つである。C1、C2は、R、G、Bのいずれが最大の信号レベルであるかによって異なる。また、αは、MAX=Rのときは0であり、MAX=Gのときは120であり、MAX=Bのときは240である。
 また、(C1-C2)の項も、3色画像信号(RGB信号)のR信号、G信号、B信号のいずれか2つの差分となるため、式(7a)~式(7c)から、4色画像信号(RGBW信号)のW信号成分(W信号の信号レベル)がキャンセルされる。
 このことから、RGBW信号により表示される画素の色相Hは、RGBW信号を構成するW信号をどのように変換しても影響を受けないことが分かる。従って、上述した変換関数F1あるいはF2によりW信号を変換して得られるW’信号の信号レベルw’を変更しても色相は変わらない。
 本発明の実施形態1の画像表示装置100では、このRGBW信号における特性を利用し、照度センサー部の検出結果である照度信号Lxに基づいてRGBW信号を構成するW信号の変換を行うことで、周囲の明るさによって表示画面が見えにくくなるのを、色相の変化を招くことなく抑制することができる。
 次に動作について説明する。
 このような構成の画像表示装置100では、入力画像信号として3色画像信号(RGB信号)V3sが入力されると、画像信号処理部110は、3色画像信号V3sを、周囲の明るさに応じた信号処理により4色画像信号である表示信号V4saに変換して表示部104に出力する。表示部104では、この表示信号V4saに基づいて、入力された画像信号V4saであるRGBW信号が表す画像を表示する。
 具体的には、画像信号処理部110では、RGBW信号生成部103が、入力されたRGB信号V3sを構成するR信号V3r、G信号V3g、およびB信号V3bから、4色画像信号(RGBW信号)を構成するR信号V4r、G信号V4g、B信号V4bおよびW信号V4wを生成する。
 この画像表示装置100では、照度センサー部102は、周囲の明るさ、具体的にはこの画像表示装置100における表示部104の表示面に入射する光の強度を検出し、検出結果である照度信号Lxを画像信号処理部110に出力している。
 RGBW信号生成部103で生成された4色画像信号を構成する各信号V4r、V4g、V4bおよびV4wがRGBW信号変換部101に入力されると、RGBW信号変換部101ではW信号4wに対してのみ、照度センサー部102からの照度信号Lxに基づいて照度が高いほどW信号4wの信号レベルwを高める信号処理を施し、この信号処理により得られた変換W信号(以下、W’信号ともいう。)V4waを、W信号V4w以外の信号V4r、V4g、V4bとともに表示信号V4saとして表示部104に出力する。
 以下、画像信号処理部110における表示信号の算出方法について説明する。
 まず、RGBW信号生成部103で入力画像信号であるRGB信号からRGBW信号を生成する方法について説明する。
 このRGBW信号生成部103によるRGBW信号の計算方法は、多種多様存在するが、ここでは、RGB信号をRGBW信号に変換する場合、W信号を以下の式(A)により算出する。
 W=min(R,G,B)   ・・・式(11)
 つまり、RGBW信号のW信号V4wの信号レベルWとして、R信号V3rとG信号V3gとB信号V3bの信号レベルR、G、Bの最小値を用いる。
 また、RGBW信号のR信号V4r、G信号V4g、B信号V4bの信号レベルR、G、Bは、それぞれ上記式(7a)~(7c)を満たすよう、W信号V4wの信号レベルWと、R信号V3r、G信号V3g、B信号V3bの信号レベルR、G、Bとから求める。
 なお、W信号V4wの信号レベルWとしては、以下の式(12)に示すように、RGBの輝度値を用いてもよい。
 W=(0.299×R+0.587×G+0.114×B)  ・・・(12)
 ただし、RGBW信号生成部103でのR信号、G信号、B信号、W信号の計算方法は上記の式(11)あるいは式(12)によるものに限定されるものではなく、本発明ではR信号、G信号、B信号、W信号の計算方法は特に問わない。
 RGBW信号生成部103は、上記のように生成したR信号V4r、G信号V4g、B信号V4b、W信号V4wをRGBW信号変換部101に渡す。
 RGBW信号変換部101では、R信号V4r、G信号V4g、B信号V4b、W信号V4wの信号レベルR,G,B,Wを、照度センサー部102からの照度信号Lxに基づいて、表示部104の駆動状態(つまり、周囲光の強さ)に合ったRGBW信号としての表示信号V4saが得られるよう変換し、得られた表示信号V4saを表示部104に出力する。
 次に、RGBW信号変換部101での信号処理の一例を、図2を用いて説明する。
 このRGBW信号変換部101では、RGBW信号生成部103からのRGBW信号を構成するR信号V4r、G信号V4g、B信号V4bは、そのまま表示信号として表示部104に出力し、RGBW信号生成部103からのRGBW信号を構成するW信号V4wのみをW信号変換部201にて照度信号に応じた信号処理により変換し、変換により得られた変換W信号V4waを表示信号V4saとして表示部104に出力する。
 ここで、W信号のみ変換を行っている理由は、上述したように、RGBW信号を構成する4信号のうちW信号の信号レベルを変えても、変換後のRGBW信号から作成される色成分(色相、彩度、輝度)のうちの色相には変化が生じないからである。
 以下、W信号変換部201にて、照度センサー部102からの照度信号Lxに基づいて、RGBW信号生成部103からのW信号を変換する処理について具体的に説明する。
 ここでは、W信号変換部201に対する入力信号であるW信号V4wと、W信号変換部201から出力される変換W信号V4waとを区別するため、変換W信号をW’信号とする。
 なお、このW信号変換部201における処理には様々な演算方法が用いられるが、ここでは、W信号からW’信号への変換方法の一つとして、照度信号Lxが強くなるにつれW’信号にかける係数L1を増やす演算方法を用いている。
 つまり、上述した式(1)を用いて、W’信号の信号レベルw’を算出する演算方法である。
 この演算方法では、照度信号Lxが強いほど係数L1を大きな値にする。
 係数L1の初期値は1.0で、W信号V4wの信号レベルwとW’信号V4waの信号レベルw’とは同じ値とする。すなわち、係数L1の初期値が1.0であるときは、W’信号V4waの信号レベルw’は、W信号の変換を行わない場合と同じになる。
 照度信号が一定値以下の時は、L1=1.0とする。
 この一定値は、例えば、一般に夜間に室内で照明を点灯させている状態での照度などを基準とし、この基準の照度の2倍とするなどの方法が考えられる。
 また、W信号変換部201は、式(1)によりW信号を変換して得られるW’信号の信号レベルw’が、この画像信号処理部110から表示信号V4saとして出力するRGBW信号の、最大階調レベルに対応する最大信号レベルを超える時は、W’信号V4waに対するクリッピング処理を行い、W’信号V4waの信号レベルw’が最大信号レベルとなるようにする。
 図4は、W信号の変換特性をグラフで示す図であり、図4(a)は、式(1)によるW信号の変換特性として、L1=1.0の時の特性(グラフX1)と、L1=2.0の時の特性(グラフX2)とを対比して示している。なお、図4(a)に示すW信号の変換特性は、RGBW信号の各色の信号レベル(信号値)が、0から255の値に対応する信号レベルをとるものとした場合の例である。
 なお、W信号変換部201でのW信号からW’信号への変換処理としては、式(2)を用いてW信号からW’信号を算出する別の変換処理を用いることもできる。
 この式(2)による変換処理も、照度信号Lxが強くなるにつれ、係数L2を増やす処理であり、係数L2は、入力される画像信号に対するガンマ補正におけるガンマ係数と同様の係数である。
 図4(b)は、式(2)によるW信号の変換特性として、L2=1.0の時の特性(グラフY1)と、L2=2.0の時の特性(グラフY2)とを対比して示している。なお、図4(b)に示すW信号の変換特性は、RGBW信号の各色の信号レベル(信号値)が、0から255の値に対応する信号レベルをとるものとした場合の例である。
 図4(b)に示す式(2)によるW信号の変換特性では、W信号変換部201の入力信号であるW信号V4wの信号レベルwが最大レベル(MAX)であるときは、W信号変換部201の出力信号であるW’信号V4waの信号レベルw’は最大レベル(MAX)となり、W信号V4wの信号レベルwが0であるときは、W’信号V4waの信号レベルw’は0となる。また、係数L2=1.0の時、入力信号であるW信号V4wの信号レベルwと出力信号であるW’信号V4saの信号レベルw’は同じ値になり、係数L2が大きくなるにつれ、W’信号(出力信号)の信号レベルの最大値(MAX)と0との間では、W’信号の信号レベルw’はW信号(入力信号)の信号レベルwより大きな信号レベルに変換される出力信号の強調が行われる。
 なお、W信号からW’信号への変換は、式(1)による変換と式(2)による変換とを組合せてもよい。
 次に本実施形態の効果について説明する。
 図5は、本発明における効果を説明する図であり、画素Aの色相および輝度を、通常状態(図5(a))、強い光の入射状態(図5(b))、および本発明の信号処理を行った状態(図5(c))で対比して示し、また、画素Bの色相および輝度を、通常状態(図5(d))、強い光の入射状態(図5(e))、および本発明の信号処理を行った状態(図5(f))で対比して示している。
 図5(a)、(b)では、例えば、画素Aに対応するRGBW信号のR信号V4r、G信号V4g、B信号V4b、W信号V4wの信号レベルr、g、b、wが50、70、60、50であり、図5(d)、(e)では、画素Aに隣接する画素Bに対応するRGBW信号のR信号V4r、G信号V4g、B信号V4b、W信号V4wの信号レベルr、g、b、wが70、100、120、70であり、外光による信号レベルが30である場合を例示している。
 また、図5(c)では、例えば、画素Aに対応するRGBW信号のR信号V4r、G信号V4g、B信号V4b、W信号V4wの信号レベルr、g、b、wが50、70、60、100であり、図5(f)では、例えば、画素Aに隣接する画素Bに対応するRGBW信号のR信号V4r、G信号V4g、B信号V4b、W信号V4wの信号レベルr、g、b、wが70、100、120、140であり、外光による信号レベルが30である場合を例示している。
 上記の場合、周囲の明かりが表示面の見え難さに影響を与えない状態では、画素Aの色相(Hue)Haは、式(9b)により図5(a)に示すように150となり、画素Bの色相(Hue)Hbは、式(9c)により図5(d)に示すように204となる。
 また、輝度Yは、RGB信号のR信号、G信号、およびB信号の信号レベルR、G、Bより以下の式(13)より求められる。
 Y=0.299R+0.587G+0.114B  ・・・(13)
 そこで、まず、画素Aについて、RGBW信号の各信号V4r、V4g、V4b、V4wの信号レベルr、g、b、wを、式(7a)~(7c)により、RGBW信号の各信号V3r、V3g、V3bの信号レベルR、G、Bに変換すると、画素Aについては、R信号V3rの信号レベルRは100(r+w=50+50)、G信号V3gの信号レベルGは120(g+w=70+50)、B信号V3bの信号レベルBは110(b+w=60+50)となる。
 これらのR信号V3r、G信号V3g、B信号V3bの信号レベルR(100)、G(120)、B(110)を式(13)に代入すると、画素Aの輝度Ya(112.9=100×0.299+120×0.587+110×0.114)が求められる。
 また、画素Bについて、RGBW信号の各信号V4r、V4g、V4b、V4wの信号レベルr、g、b、wを、式(7a)~(7c)により、RGBW信号の各信号V3r、V3g、V3bの信号レベルR、G、Bに変換すると、画素Bについては、R信号V3rの信号レベルRは140(r+w=70+70)、G信号V3gの信号レベルGは170(g+w=100+70)、B信号V3bの信号レベルBは190(b+w=120+70)となる。
 これらのR信号V3r、G信号V3g、B信号V3bの信号レベルR(140)、G(170)、B(190)を式(13)に代入すると、画素Bの輝度Yb(163.3=140×0.299+170×0.587+190×0.114)が求められる。
 このとき、コントラスト、つまり画素Aと画素Bとの輝度の比率(Yb/Ya)は1.44である。
 表示部104の表示面に強い外光が当たった状態では、この外光の影響を信号レベルで+30とすると、画素Aの色相(Hue)Haは、式(9b)により図5(b)に示すように150となり、画素Bの色相(Hue)Hbは、式(9c)により図5(e)に示すように204となる。
 また、強い外光が当たった状態では、画素Aの輝度Yaは172.9となり、画素Bの輝度Ybは223.3となる。
 つまり、RGBW信号の各信号V4r、V4g、V4b、V4wの信号レベルr、g、b、wを、式(7a)~(7c)により、RGBW信号の各信号V3r、V3g、V3bの信号レベルR、G、Bに変換すると、画素Aについては、R信号V3rの信号レベルRは160(r+w=80+80)、G信号V3gの信号レベルGは180(g+w=100+80)、B信号V3bの信号レベルBは170(b+w=90+80)となる。
 これらのR信号V3r、G信号V3g、B信号V3bの信号レベルR(160)、G(180)、B(170)を式(13)に代入すると、画素Aの輝度Ya(172.9=160×0.299+180×0.587+170×0.114)が求められる。
 また、画素Bについて、RGBW信号の各信号V4r、V4g、V4b、V4wの信号レベルr、g、b、wを、式(7a)~(7c)により、RGBW信号の各信号V3r、V3g、V3bの信号レベルR、G、Bに変換すると、画素Bについては、R信号V3rの信号レベルRは200(r+w=100+100)、G信号V3gの信号レベルGは230(g+w=130+100)、B信号V3bの信号レベルBは250(b+w=150+100)となる。
 これらのR信号V3r、G信号V3g、B信号V3bの信号レベルR(200)、G(230)、B(250)を式(13)に代入すると、画素Bの輝度Yb(223.3=200×0.299+230×0.587+250×0.114)が求められる。
 このとき、コントラスト、つまり画素Aと画素Bとの輝度の比率(Yb/Ya)は1.29である。
 表示部104の表示面に強い外光が当たった状態で上述したW信号に対する変換処理を行った場合は、この外光の影響を信号レベルで+30とし、変換処理によりW信号の信号レベルwを2倍にしたとすると、画素Aの色相(Hue)Haは、式(9b)により図5(c)に示すように150となり、画素Bの色相(Hue)Hbは、式(9c)により図5(f)に示すように204となる。
 また強い外光が当たった状態で上述したW信号に対する変換処理を行った場合は、画素Aの輝度Yaは222.9となり、画素Bの輝度Ybは293.3となる。
 つまり、RGBW信号の各信号V4r、V4g、V4b、V4wの信号レベルr、g、b、wを、式(7a)~(7c)により、RGBW信号の各信号V3r、V3g、V3bの信号レベルR、G、Bに変換すると、画素Aについては、R信号V3rの信号レベルRは210(r+w=80+130)、G信号V3gの信号レベルは230(g+w=100+130)、B信号V3bの信号レベルBは220(b+w=90+130)となる。
 これらのR信号V3r、G信号V3g、B信号V3bの信号レベルR(210)、G(230)、B(220)を式(13)に代入すると、画素Aの輝度Ya(222.9=210×0.299+230×0.587+220×0.114)が求められる。
 また、画素Bについて、RGBW信号の各信号V4r、V4g、V4b、V4wの信号レベルr、g、b、wを、式(7a)~(7c)により、RGBW信号の各信号V3r、V3g、V3bの信号レベルR、G、Bに変換すると、画素Bについては、R信号V3rの信号レベルRは270(r+w=100+170)、G信号V3gの信号レベルGは300(g+w=130+170)、B信号V3bの信号レベルBは320(b+w=150+170)となる。
 これらのR信号V3r、G信号V3g、B信号V3bの信号レベルR(270)、G(300)、B(320)を式(13)に代入すると、画素Bの輝度Yb(293.3=270×0.299+300×0.587+320×0.114)が求められる。
 このとき、コントラスト、つまり画素Aと画素Bとの輝度の比率(Yb/Ya)は1.31である。
 この結果、W信号を変換しない場合、外光の照度が強くなるにつれ、液晶画面は全体的に明るくなり、画素間の輝度比が減少するが、周囲照度が強くなるにつれ、係数L1や係数L2が大きくなるようにすることで、画素間の輝度比の減少を抑えることができる。
 また、W信号の変換に式(1)や式(2)を用いると、低階調から中階調の輝度を持つ画素の画素間の輝度差をつくり、輝度比を強めることができる。
 このように周囲の光による輝度比の減少を、W信号の変換により輝度比を強める処理によって緩和させることができ、しかもW信号の変換では色相の変化を招くこともない。
 また、変換式としては、式(1)や式(2)以外にも様々な変換式があるが、式(1)を用いた変換では、掛け算とクリッピング処理だけのため処理が簡単であるという効果がある。また、式(2)を用いた変換では、高階調輝度を持つW信号が、変換後のクリッピングによって最大値に張り付くことを回避することができる。
 このように本実施形態1による画像表示装置100では、入力画像信号(RGB信号)V3sに対する信号処理によりRGBW信号V4saを生成する画像信号処理部110と、RGBW信号V4saを受けて表示面上に画像を表示する表示部104と、表示部104の表示面に入射する光の強さを測定して照度信号Lxを出力する照度センサー部102とを備え、画像信号処理部110では、RGB信号V3sを構成するR信号V3r、G信号V3g、およびB信号V3bから、RGBW信号を構成するR信号V4r、G信号V4g、およびB信号V4bおよびW信号V4wを生成し、RGBW信号におけるW信号V4wを、照度信号Lxに応じた信号レベルを持つよう変換し、変換により得られたW’信号V4waを、RGBW信号におけるR信号V4r、G信号V4g、およびB信号V4bとともに表示部104に表示信号V4saとして出力するので、RGBW信号を構成するW信号V4wの信号レベルwのみが照度信号Lxに応じて変換されることとなり、表示画像を構成する画素の色相を変化させることなく、表示画像が周囲の照度によって見えにくくなるのを抑制することができる。つまり、液晶画面などの表示装置では周囲から光が差し込むと画面の色が全体的に薄くなり見え難くなるのを軽減することができる。
(実施形態2)
 図6は、本発明の実施形態2による画像表示装置を説明するブロック図である。
 この実施形態2の画像表示装置100aは、実施形態1による画像表示装置100におけるRGBW信号変換部101に代えて、W信号の変換をルックアップテーブルを用いて行うRGBW信号処理部101aを備えたものであり、その他の構成は上記実施形態1の画像表示装置と同一である。
 つまり、この実施形態2の画像表示装置100aにおける画素信号処理部110aは、入力画像信号(RGB信号)V3sを構成するR信号V3r、G信号V3g、およびB信号V3bから、4色画像信号(RGBW信号)を構成するR信号V4r、G信号V4g、およびB信号V4bおよびW信号V4wを生成するRGBW信号生成部103と、照度信号Lxに基づいて作成したルックアップテーブルを用いてW信号V4wを変換し、変換により得られたW’信号V4waを、RGBW信号におけるR信号V4a、G信号V4g、およびB信号V4bとともに表示信号V4saとして表示部104に出力するRGBW信号変換部101aとを有している。
 図7は、本実施形態2の画像信号処理部110aを構成するRGBW信号変換部を説明するブロック図である。
 このRGBW信号処理部101aは、W信号V4wを変換するためのルックアップテーブルを、照度センサー部102から出力される照度信号Lxに基づいてこの照度信号Lxが更新される度に作成するテーブル作成部(LUT作成部)203と、作成されたルックアップテーブルTsを格納するテーブル格納部(LUT格納部)202を含み、このテーブル格納部202に格納されたルックアップテーブルTsに基づいて、W信号V4wの信号レベルwを、照度信号Lxの増加に応じた信号レベルw’に変換するW信号変換部201aとを有している。
 ここで、LUT作成部203は、W信号V4wの信号レベルwを、照度信号Lxの増加に応じた信号レベルw’に変換する変換関数に基づいてルックアップテーブルTsを作成するものであり、ここでルックアップテーブルの作成に用いる変換関数には、上述した式(1)で定義される変換関数F1、式(2)で定義される変換関数F2、これらの変換関数を組み合わせた変換関数、あるいは、さらに複雑な演算を実行する変換関数といった関数を用いることができる。
 また、テーブル格納部202に格納されているルックアップテーブルTsは、照度信号Lxが更新される度に、つまり、照度センサー部102が表示部104の表示面に入射する光を測定する度に書き換えられるが、このルックアップテーブルTsの書き換えは、決められたフレーム数で1回行われるのではなく、次の書き換えが9フレーム後に行われ、さらにその次の書き換えが10フレーム後に行われるというようにフレームレートとは非同期である。このルックアップテーブルTsの書き換えの間隔(つまり照度センサー部102による測定の間隔)は、具体的には数ミリ秒程度から十数秒程度の間隔である。
 なお、テーブル格納部(LUT格納部)202は、この実施形態2のように白信号変換部201a内に設けたものに限定されず、W信号変換部201aの外部に設けてもよい。
 このような構成の本実施形態2の画像表示装置100aにおいても、実施形態1の画像表示装置100と同様、入力画像信号V3sであるRGB信号から変換したRGBW信号を構成するR信号V4r、G信号V4g、B信号V4b、およびW信号V4wのうちの、W信号V4wの信号レベルwのみが照度信号Lxに応じて変換されることとなり、表示画像を構成する画素の色相を変化させることなく、表示画像が周囲の照度によって見えにくくなるのを抑制することができる。
 また、W信号V4wの信号レベルwを、照度信号Lxの増加に応じた信号レベルw’に変換する変換関数による演算が複雑な場合には、W信号からW’信号の変換をルックアップテーブル(LUT)として定義することにより、画素ごとに複雑な演算を行う必要がなくなり、画素数が多いパネルでは、ルックアップテーブルを用いたW信号の変換の効率がよいという効果が得られる。
 なお、上記実施形態1および2では、RGBW信号変換部は、RGBW信号を構成するR信号、G信号、B信号に対して信号処理を行うものではないが、RGBW信号におけるR信号、G信号、B信号に対する信号処理を色相を変えないように行うものであってもよく、以下このような構成の画像表示装置を実施形態3として説明する。
(実施形態3)
 図8は、本発明の実施形態3による画像表示装置を説明するブロック図である。
 この実施形態3の画像表示装置100bは、実施形態1による画像表示装置100におけるRGBW信号変換部101に代えて、入力画像信号(RGB信号)V3sから変換したRGBW信号を構成するW信号V4wに対する信号処理だけでなく、RGBW信号を構成するR信号V4r、G信号V4gおよびB信号V4bに対しても信号処理を行うRGBW信号処理部101bを備えたものであり、その他の構成は実施形態1の画像表示装置100と同一である。
 つまり、この実施形態3の画像表示装置100bにおける画素信号処理部110bは、入力画像信号(RGB信号)V3sを構成するR信号V3r、G信号V3g、およびB信号V3bから、4色画像信号(RGBW信号)を構成するR信号V4r、G信号V4g、およびB信号V4bおよびW信号V4wを生成するRGBW信号生成部103と、このRGBW信号処理部103から出力されたRGBW信号におけるW信号V4wを、照度信号Lxに応じた信号レベルを持つよう変換し、さらに、RGBW信号におけるR信号V4r、G信号V4g、およびB信号V4bに対する信号処理を色相を変えないように行い、W信号V4wの変換により得られた変換W信号V4wa、およびR信号V4r、G信号V4g、およびB信号V4bに対する信号処理により得られたR’信号V4ra、G’信号V4ga、およびB’信号V4baを表示信号V4sbとして出力するRGBW信号変換部101bとを有している。
 図9は、本実施形態3の画像信号処理部を構成するRGBW信号変換部を説明するブロック図である。
 つまり、この実施形態3の画像表示装置100bでは、RGBW信号変換部101bは、RGBW信号を構成するW信号V4wを、照度信号Lxに応じた信号レベルを持つよう変換するW信号変換部201と、RGBW信号を構成するR信号V4r、G信号V4g、およびB信号V4bに対する信号処理を色相を変えないように行って、R’信号V4ra、G’信号V4ga、およびB’信号V4baを出力する信号処理部204とを備えている。
 このような構成の本実施形態3でも、RGBW信号におけるW信号の変換は、RGB信号から算出される色相に影響を与えないため、RGBW信号におけるR信号、G信号、およびB信号に対する演算処理で色相が変わらなければ、RGBW信号の4色の信号で作成される色相も変わらない。
 このような構成の本実施形態3の画像表示装置100bにおいても、実施形態1の画像表示装置100と同様、入力画像信号V3sであるRGB信号から変換したRGBW信号を構成するR信号V4r、G信号V4g、B信号V4b、およびW信号V4wのうちの、W信号V4wの信号レベルwのみが照度信号Lxに応じて変換され、RGBW信号を構成するR信号V4r、G信号V4g、B信号V4b、およびW信号V4wに対しては色相を変えないような信号処理が施されるので、表示画像を構成する画素の色相を変化させることなく、表示画像が周囲の照度によって見えにくくなるのを抑制することができる。
 また、この場合、RGBW信号におけるR信号V4r、G信号V4g、B信号V4bに対する信号処理を行う必要がある場合にも対応でき、RGBW信号に対して可能な信号処理の範囲を広げることができる。
 なお、上述した各実施形態では、画像表示装置に入力される入力画像信号がRGB信号である場合について説明したが、画像表示装置に入力される入力画素信号がRGBW信号である場合は、RGBW信号生成部は不要とでき、このような構成の画像表示装置を実施形態4として説明する。
(実施形態4)
 図10は、本発明の実施形態4による画像表示装置を説明するブロック図である。
 この実施形態4による画像表示装置100cは、入力画像信号として4色画像信号V4sを受けるものであり、画像表示装置100cを構成する画像信号処理部110cは、実施形態1による画像表示装置100において、RGBW信号生成部103およびRGBW信号変換部101を有する画像信号処理部110に代えて、入力画像信号V4sであるRGBW信号におけるW信号V4wを、照度信号Lxに応じた信号レベルを持つよう変換し、変換により得られたW’信号V4waを、入力画像信号V4sであるRGBW信号におけるR信号V4r、G信号V4g、およびB信号V4bとともに表示信号V4scとして表示部104に出力するRGBW信号変換部101のみを有する画像信号処理部110cを備えたものである。
 この実施形態4の画像表示装置におけるその他の構成は、実施形態1の画像表示装置100と同一である。
 このような構成の本実施形態4による画像表示装置100cでは、入力画像信号V4sであるRGBW信号を構成するR信号V4r、G信号V4g、B信号V4b、およびW信号V4wのうちの、W信号V4wの信号レベルwのみが照度信号Lxに応じて変換されることとなり、実施形態1の画像表示装置100と同様、表示画像を構成する画素の色相を変化させることなく、表示画像が周囲の照度によって見えにくくなるのを抑制することができる。
 また、この実施形態4では、入力画像信号としてRGBW信号を受けるので、実施形態1におけるRGB信号からRGBW信号を生成するRGBW信号生成部を不要とできる。
 なお、上述した実施形態1から実施形態3では、入力画像信号は、R信号、G信号、およびB信号を含む3色画像信号(RGB信号)である場合について説明したが、入力画像信号は輝度信号(Y)、色差信号(U)、色差信号(V)を含むYUV信号であってもよい。
 この場合は、画像表示装置の画像信号処理部を、YUV信号をRGB信号に変換する変換部を有する構成とすることで、上記実施形態1から3と同様な画像信号に対する処理を行うことができる。
 また、上述した各実施形態の画像表示装置における画像信号処理部での信号処理は、コンピュータにより実行することも可能である。
 例えば、実施形態1ないし実施形態4のいずれかの実施形態の画像表示装置における画像信号処理部での信号処理をコンピュータにより実行するシステムでは、上記いずれかの実施形態の画像表示装置における画像信号処理部による画像表示のための信号処理をコンピュータにより実行するための画像表示プログラムをDVDやHDDなどの記録媒体に格納しておき、この画像表示プログラムを中央演算処理装置(CPU)に読み込んで上記各実施形態の画像表示装置における画像信号処理部の機能(つまり、画像表示のための信号処理を行う機能)を実現することにより、上記実施形態1ないし実施形態4のいずれかの実施形態の画像表示装置における画像信号処理部での信号処理をコンピュータにより行うことができる。
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 本発明は、画像表示装置、画像表示方法、および画像表示プログラムの分野において、表示画像が周囲の照度によって見えにくくなるのを、画素の色相を変化させることなく抑制することができる画像表示装置、画像表示方法、および画像表示プログラムを実現することができる。
 100、100a、100b、100c 画像表示装置
 101、101a、101b RGBW信号変換部
 102 照度センサー部
 103 RGBW信号生成部
 104 表示部
 110、110a、110b、110c 画像信号処理部
 201、201a W信号変換部
 202 LUT格納部
 203 LUT生成部
 204 信号処理部
 H 色相
 Lx 照度信号
 Px 画素
 Pxb 青色画素
 Pxg 緑色画素
 Pxr 赤色画素
 S 彩度
 Ts LUT情報
 V3b、V4b B信号(青信号)
 V3g、V4g G信号(緑信号)
 V3r、V4r R信号(赤信号)
 V3s RGB信号(入力画像信号)
 V4ba B’信号(変換青信号)
 V4ga G’信号(変換緑信号)
 V4ra R’信号(変換赤信号)
 V4s RGBW信号(入力画像信号)
 V4sa、V4sb、V4sc 表示信号
 V4w W信号(白信号)
 V4wa W’信号(変換白信号)
 X1、X2、Y1、Y2 グラフ

Claims (13)

  1.  画像信号に基づいて画像を表示する画像表示装置であって、
     該画像信号に対する信号処理により表示信号を生成する画像信号処理部と、
     表示面を有し、該表示面上に該表示信号に基づいて該画像を表示する表示部と、
     該表示部の表示面に入射する光の強さを測定して照度信号を出力する照度センサー部とを備え、
     該画像信号処理部は、該画像信号を構成する赤信号、緑信号、青信号および白信号のうちの白信号を、該照度信号に応じた信号レベルを持つよう変換する白信号変換部を有し、
     該白信号の変換により得られた変換白信号を、該画像信号における赤信号、緑信号、および青信号とともに該表示信号として該表示部に出力するものである、画像表示装置。
  2.  請求項1に記載の画像表示装置において、
     前記画像信号処理部は、
     前記照度信号に応じて、前記白信号の変換に用いる変換テーブルを作成するテーブル作成部と、
     作成された変換テーブルを格納するテーブル格納部とを有し、
     前記白信号変換部を、該テーブル格納部に格納された変換テーブルに基づいて、該白信号の信号レベルが該照度信号に応じた信号レベルになるよう該白信号を変換する構成とし、
     該白信号の変換により得られた変換白信号を、該画像信号における赤信号、緑信号、および青信号とともに前記表示信号として前記表示部に出力するものである、画像表示装置。
  3.  請求項1または請求項2に記載の画像表示装置において、
     前記画像信号処理部は、
     前記画像信号を構成する赤信号、緑信号および青信号に対して、該画像信号の彩度が変化しないよう信号処理を施す信号処理部を有し、
     前記白信号の変換により得られた変換白信号を、該信号処理が施された赤信号、緑信号、および青信号とともに前記表示信号として前記表示部に出力するものである、画像表示装置。
  4.  請求項1ないし請求項3のいずれか1項に記載の画像表示装置において、
     前記画像信号処理部には、前記画像信号として、赤信号、緑信号、青信号、および白信号を含む4色画像信号が入力され、
     前記白信号変換部は、
     該4色画像信号における白信号を該照度信号に応じた信号レベルを持つよう変換し、
     前記画像信号処理部は、該白信号の変換により得られた変換白信号を、該4色画像信号における赤信号、緑信号、および青信号とともに前記表示信号として前記表示部に出力するものである、画像表示装置。
  5.  請求項1ないし請求項3のいずれか1項に記載の画像表示装置において、
     前記画像信号処理部には、前記画像信号として、赤信号、緑信号、および青信号を含む3色画像信号が入力され、
     該画像信号処理部は、
     該3色画像信号から、赤信号、緑信号、青信号、および白信号を含む4色画像信号を生成する信号生成部を有し、
     前記白信号変換部は、該信号生成部から出力された4色画像信号の白信号を該照度信号に応じた信号レベルを持つよう変換し、
     該画像信号処理部は、該白信号の変換により得られた変換白信号を、該4色画像信号における赤信号、緑信号、および青信号とともに前記表示信号として前記表示部に出力するものである、画像表示装置。
  6.  請求項1から請求項5のいずれか1項に記載の画像表示装置において、
     前記白信号変換部は、前記4色画像信号の白信号の信号レベルが該照度信号の増加に応じて増加するように、該照度信号に応じて変化する変数をパラメータとする変換関数により該4色画像信号の白信号を変換するものである、画像表示装置。
  7.  請求項6に記載の画像表示装置において、
     前記白信号変換部は、前記変換関数として、前記変数をパラメータとする線形関数を用いて前記白信号を変換するものである、画像表示装置。
  8.  請求項6に記載の画像表示装置において、
     前記白信号変換部は、前記変換関数として、前記変数をパラメータとする線形関数と、前記変数をパラメータとする、負の二階微分係数を有する非線形関数とを含み、該変数に応じて該線形関数と該非線形関数とが切り換わる複合関数を用いて前記白信号を変換するものである、画像表示装置。
  9.  請求項6ないし請求項8のいずれか1項に記載の画像表示装置において、
     前記変数は、前記照度信号が示す照度が強くなると大きくなり、該照度信号が示す照度が弱くなると小さくなる第1の係数であり、
     該第1の係数は、前記変換関数を定義する数式における、前記白信号の信号レベルに対する乗算演算の乗数部に含まれる係数となっている、画像表示装置。
  10.  請求項6ないし請求項8のいずれか1項に記載の画像表示装置において、
     前記変数は、前記照度信号が示す照度が強くなると大きくなり、該照度信号が示す照度が弱くなると小さくなる第2の係数であり、
     該第2の係数は、前記変換関数を定義する数式における、前記白信号に対するべき乗演算の指数部に含まれる係数である、画像表示装置。
  11.  請求項1ないし請求項10のいずれか1項に記載の画像表示装置において、
     前記表示部は、1画素を、赤色、緑色、青色および白色の4つの補助画素により構成したものである、画像表示装置。
  12.  画像信号に基づいて画像を表示する画像表示方法であって、
     該画像信号に対する信号処理により表示信号を生成するステップと、
     表示装置の表示面上に該表示信号に基づいて該画像を表示するステップと、
     該表示装置の表示面に入射する光の強さを照度センサー部により測定して照度信号を出力するステップとを含み、
     該表示信号を生成するステップでは、
     該画像信号を構成する赤信号、緑信号、青信号および白信号のうちの白信号を、該照度信号に応じた信号レベルを持つよう変換し、該白信号の変換により得られた変換白信号を、該画像信号における他の赤信号、緑信号、および青信号とともに該表示信号として該表示装置に出力する、画像表示方法。
  13.  請求項12に記載の画像表示方法をコンピュータにより実行するための画像表示プログラム。
PCT/JP2012/005119 2011-11-11 2012-08-10 画像表示装置、画像表示方法、および画像表示プログラム WO2013069177A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011247940 2011-11-11
JP2011-247940 2011-11-11

Publications (1)

Publication Number Publication Date
WO2013069177A1 true WO2013069177A1 (ja) 2013-05-16

Family

ID=48288954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005119 WO2013069177A1 (ja) 2011-11-11 2012-08-10 画像表示装置、画像表示方法、および画像表示プログラム

Country Status (1)

Country Link
WO (1) WO2013069177A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126311A (ja) * 2015-01-08 2016-07-11 ライトハウス・テクノロジーズ・リミテッド Led映像ディスプレイおよび標識での使用のためのフルカラーledおよび白色ledのピクセル組合せ
JP7191057B2 (ja) 2020-02-18 2022-12-16 三菱電機株式会社 表示装置、画像データ変換装置およびホワイトバランス調整方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510936A (ja) * 2003-10-02 2007-04-26 イーストマン コダック カンパニー 白色発光要素を備えるカラーディスプレイ
JP2008065185A (ja) * 2006-09-08 2008-03-21 Sharp Corp 表示コントローラ、表示装置、表示システム、および表示制御方法
JP2008083483A (ja) * 2006-09-28 2008-04-10 Epson Imaging Devices Corp 電気光学装置とその駆動方法、及び電子機器
WO2008139766A1 (ja) * 2007-05-14 2008-11-20 Sharp Kabushiki Kaisha 表示装置ならびにその表示方法
JP2009251077A (ja) * 2008-04-02 2009-10-29 Sharp Corp カラー表示装置の駆動制御回路および駆動制御方法
JP2011186191A (ja) * 2010-03-09 2011-09-22 Sony Corp 液晶装置とその駆動方法、および電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510936A (ja) * 2003-10-02 2007-04-26 イーストマン コダック カンパニー 白色発光要素を備えるカラーディスプレイ
JP2008065185A (ja) * 2006-09-08 2008-03-21 Sharp Corp 表示コントローラ、表示装置、表示システム、および表示制御方法
JP2008083483A (ja) * 2006-09-28 2008-04-10 Epson Imaging Devices Corp 電気光学装置とその駆動方法、及び電子機器
WO2008139766A1 (ja) * 2007-05-14 2008-11-20 Sharp Kabushiki Kaisha 表示装置ならびにその表示方法
JP2009251077A (ja) * 2008-04-02 2009-10-29 Sharp Corp カラー表示装置の駆動制御回路および駆動制御方法
JP2011186191A (ja) * 2010-03-09 2011-09-22 Sony Corp 液晶装置とその駆動方法、および電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126311A (ja) * 2015-01-08 2016-07-11 ライトハウス・テクノロジーズ・リミテッド Led映像ディスプレイおよび標識での使用のためのフルカラーledおよび白色ledのピクセル組合せ
JP7191057B2 (ja) 2020-02-18 2022-12-16 三菱電機株式会社 表示装置、画像データ変換装置およびホワイトバランス調整方法

Similar Documents

Publication Publication Date Title
JP4203081B2 (ja) 画像表示装置および画像表示方法
KR100854219B1 (ko) 화상 표시 장치 및 화상 표시 방법
JP4030560B2 (ja) 画像処理装置及び画像表示装置
TWI427608B (zh) 紅綠藍白顯示裝置及其控制方法
US9196204B2 (en) Image processing apparatus and image processing method
WO2014038517A1 (ja) 多原色表示装置
US9324283B2 (en) Display device, driving method of display device, and electronic apparatus
JP5091995B2 (ja) 液晶表示装置
US8854295B2 (en) Liquid crystal display for displaying an image using a plurality of light sources
JPWO2014024577A1 (ja) 色信号処理回路、色信号処理方法、表示装置、及び、電子機器
EP2161918B1 (en) Image processor, image display device, image processing method, and image display method
JP2010085524A (ja) 液晶表示装置
JP2008107507A (ja) 映像データ変換装置および映像表示装置
JP2014074752A (ja) 画像表示装置および画像表示装置の駆動方法、並びに、信号生成装置、信号生成プログラムおよび信号生成方法
JP2009205128A (ja) 表示装置
JP5487597B2 (ja) 画像処理装置、画像表示装置及び画像処理方法
WO2014141884A1 (ja) 画像処理装置及び液晶表示装置
JP6551230B2 (ja) 信号生成装置、及び、画像表示装置
JP2003099010A (ja) 映像表示装置および映像表示方法
WO2013069177A1 (ja) 画像表示装置、画像表示方法、および画像表示プログラム
WO2016111362A1 (ja) 液晶表示装置、液晶表示装置の制御方法
JP5509610B2 (ja) 画像処理装置、画像表示装置及び画像処理方法
JP6288818B2 (ja) 信号生成装置、信号生成プログラム、信号生成方法、及び、画像表示装置
JP4470587B2 (ja) 画像表示装置
JP2006165950A (ja) 画像処理装置及び画像処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP