WO2014038517A1 - 多原色表示装置 - Google Patents

多原色表示装置 Download PDF

Info

Publication number
WO2014038517A1
WO2014038517A1 PCT/JP2013/073557 JP2013073557W WO2014038517A1 WO 2014038517 A1 WO2014038517 A1 WO 2014038517A1 JP 2013073557 W JP2013073557 W JP 2013073557W WO 2014038517 A1 WO2014038517 A1 WO 2014038517A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary color
sub
pixel
primary
color image
Prior art date
Application number
PCT/JP2013/073557
Other languages
English (en)
French (fr)
Inventor
悠一 吉田
冨沢 一成
智彦 森
長谷川 誠
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/426,468 priority Critical patent/US9886932B2/en
Publication of WO2014038517A1 publication Critical patent/WO2014038517A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/028Circuits for converting colour display signals into monochrome display signals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6016Conversion to subtractive colour signals
    • H04N1/6022Generating a fourth subtractive colour signal, e.g. under colour removal, black masking
    • H04N1/6025Generating a fourth subtractive colour signal, e.g. under colour removal, black masking using look-up tables

Definitions

  • the present invention relates to a multi-primary color display device that performs display using four or more primary colors.
  • one pixel is constituted by three sub-pixels that display red, green, and blue which are the three primary colors of light, thereby enabling color display.
  • FIG. 18 shows a color reproduction range of a conventional display device that performs display using the three primary colors.
  • FIG. 18 is an xy chromaticity diagram in the XYZ color system, and a triangle having apexes at three points corresponding to the three primary colors of red, green, and blue represents a color reproduction range.
  • the colors of various objects existing in nature see Non-Patent Document 1), which are clarified by Pointer, are plotted with crosses. As can be seen from FIG. 18, there are object colors that are not included in the color reproduction range, and a display device that displays using the three primary colors cannot display some of the object colors.
  • one pixel is composed of six sub-pixels R, G, B, Ye, Cy, and Ma that display red, green, blue, yellow, cyan, and magenta.
  • a liquid crystal display device 800 is disclosed.
  • the color reproduction range of the liquid crystal display device 800 is shown in FIG. As shown in FIG. 20, the color reproduction range represented by a hexagon with six points corresponding to the six primary colors as vertices almost covers the object color. Thus, the color reproduction range can be widened by increasing the number of primary colors used for display.
  • a display device that performs display using four or more primary colors is referred to as a “multi-primary color display device”.
  • a conventional general display device that performs display using the three primary colors is referred to as a “three primary color display device”.
  • the RGB format, the YCC format, etc. are common. Since the image signals (RGB signal, YCC signal) in these formats include three parameters (a so-called three-dimensional signal), the luminance (gradation level) of the three primary colors (red, green, and blue) used for display. ) Is uniquely determined.
  • an image signal in the format for the three primary color display device In order to perform display on a multi-primary color display device, it is necessary to convert the image signal in the format for the three primary color display device into an image signal including more parameters (four or more parameters). Such an image signal corresponding to four or more primary colors is referred to as a “multi-primary image signal” in the present specification.
  • an image signal in a format for a three primary color display device that is, an image signal corresponding to the three primary colors is referred to as a “three primary color image signal” in the present specification.
  • the inventor of the present application has studied in detail the relationship between the method of conversion from the three primary color image signals to the multi-primary color image signal (multi-primary color conversion) and the display quality of the multi-primary color display device.
  • the present inventors have found that when a pixel displays an achromatic color, display quality is deteriorated due to variations in luminance of a plurality of sub-pixels constituting one pixel.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a multi-primary color display device in which deterioration of display quality when a pixel displays an achromatic color is suppressed.
  • a multi-primary color display device corresponds to a multi-primary color display panel having pixels defined by a plurality of sub-pixels including a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a yellow sub-pixel, and three primary colors.
  • a multi-primary color display device comprising: a signal conversion circuit for converting three primary color image signals into a multi-primary color image signal corresponding to four or more primary colors, wherein the signal conversion circuit converts at least a halftone achromatic color. When the three primary color image signals shown are input, signal conversion is performed so that the variation in luminance of the plurality of sub-pixels is leveled.
  • the signal conversion circuit includes a multi-primary color generation unit that generates a multi-primary color image signal based on the input three primary color image signals, and the signal conversion circuit is at least in the multi-primary color conversion unit.
  • the multi-primary color image signal generated by the multi-primary color generating unit is adjusted so that the luminance variations of the plurality of sub-pixels are leveled.
  • a luminance ratio adjustment unit is further included.
  • the luminance ratio adjustment unit has the red sub-pixel defined by the multi-primary color image signal, and the luminance of the yellow sub-pixel defined by the multi-primary color image signal is lower than before the adjustment after the adjustment.
  • the multi-primary color image signal is adjusted so that the luminance of the pixel and the green sub-pixel becomes higher after the adjustment than before the adjustment.
  • the luminance ratio adjusting unit adjusts the multi-primary color image signal so that the color difference ⁇ E between the achromatic color displayed by the pixels before and after the adjustment is 3.0 or less. .
  • the signal conversion circuit includes a multi-primary color generating unit that generates a multi-primary color image signal based on the input three primary color image signals, and the multi-primary color converting unit includes the at least halftone achromatic color.
  • a multi-primary color image signal is generated so that variations in luminance of the plurality of sub-pixels are leveled.
  • the multi-primary color conversion unit refers to a lookup table based on the input three primary color image signals, and thereby, among the n primary colors.
  • the gradation levels of (n-3) primary colors are determined, and the remaining three of the n primary colors are calculated by performing calculations using the gradation levels of the (n-3) primary colors.
  • the gradation level of the primary color is calculated.
  • the multi-primary color conversion unit includes a lookup table memory that stores the lookup table, and a calculation unit that performs the calculation.
  • the three primary color image signals indicating at least a halftone achromatic color are three primary color image signals indicating an achromatic color of 64/255 gradations or more and 200/255 gradations or less.
  • the signal conversion circuit receives an average luminance of the plurality of sub-pixels and a luminance of each of the plurality of sub-pixels when a three-primary color image signal indicating an achromatic color of 128/255 gradations is input. Signal conversion is performed so that the root mean square value of the difference between the two is 0.023 or less.
  • the plurality of sub-pixels include cyan sub-pixels.
  • the plurality of sub-pixels includes a further red sub-pixel.
  • the multi-primary color display panel includes a pair of substrates facing each other and a liquid crystal layer provided between the pair of substrates.
  • a multi-primary color display device in which deterioration of display quality when a pixel displays an achromatic color is suppressed.
  • FIG. 1 is a block diagram schematically showing a liquid crystal display device 100 in an embodiment of the present invention.
  • 2 is a diagram illustrating a pixel configuration of a liquid crystal display device 100.
  • FIG. It is a figure for demonstrating the multi-primary color conversion of a comparative example. It is a graph which shows the brightness
  • FIG. 3 is a block diagram illustrating an example of a specific configuration of a signal conversion circuit 20 included in the liquid crystal display device 100.
  • FIG. 6 is a graph showing the luminance of each sub-pixel before and after adjustment by the luminance ratio adjustment unit 26 included in the signal conversion circuit 20.
  • 4 is a block diagram illustrating an example of a specific configuration of a luminance ratio adjustment unit 26 included in the signal conversion circuit 20.
  • FIG. 10 is a block diagram illustrating another example of a specific configuration of the signal conversion circuit 20 included in the liquid crystal display device 100.
  • 3 is a block diagram illustrating an example of a specific configuration of multi-primary color units 24 and 24 ′ included in the signal conversion circuit 20.
  • FIG. It is a block diagram which shows typically the liquid crystal display device 200 in embodiment of this invention.
  • FIG. 2 is a diagram illustrating a pixel configuration of a liquid crystal display device 200.
  • FIG. It is a figure for demonstrating the multi-primary color conversion of a comparative example. It is a graph which shows the brightness
  • 3 is a block diagram illustrating an example of a specific configuration of a signal conversion circuit 20 included in the liquid crystal display device 200.
  • FIG. 6 is a graph showing the luminance of each sub-pixel before and after adjustment by the luminance ratio adjustment unit 26 included in the signal conversion circuit 20.
  • FIG. 12 is a block diagram illustrating another example of a specific configuration of the signal conversion circuit 20 included in the liquid crystal display device 200.
  • FIG. It is xy chromaticity diagram which shows the color reproduction range of a three primary color display apparatus. It is a figure which shows the conventional multi-primary-color liquid crystal display device 800 typically. 4 is an xy chromaticity diagram showing a color reproduction range of a multi-primary color liquid crystal display device 800.
  • FIG. 1 shows a liquid crystal display device 100 according to this embodiment.
  • the liquid crystal display device 100 includes a multi-primary color display panel 10 and a signal conversion circuit 20, and is a multi-primary color display device that performs display using four or more primary colors.
  • the multi-primary color display panel 10 has a plurality of pixels arranged in a matrix, and each pixel is defined by a plurality of sub-pixels.
  • FIG. 2 shows a pixel configuration of the multi-primary color display panel 10. As shown in FIG. 2, each pixel displays a red sub-pixel R for displaying red, a green sub-pixel G for displaying green, a blue sub-pixel B for displaying blue, a yellow sub-pixel Ye for displaying yellow, and cyan. Defined by the cyan sub-pixel Cy.
  • Table 1 shows chromaticity x of primary colors (that is, red, green, blue, yellow, and cyan) displayed by the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, the yellow sub-pixel Ye, and the cyan sub-pixel Cy, respectively. Examples of Y, Y and Y values are shown.
  • FIG. 2 shows an example in which the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, the yellow sub-pixel Ye, and the cyan sub-pixel Cy are arranged in this order from the left side to the right side.
  • the arrangement of the sub-pixels is not limited to this.
  • the signal conversion circuit 20 converts the input three primary color image signals into multi-primary color image signals corresponding to four or more (here, five) primary colors.
  • the multi-primary color display panel 10 receives the multi-primary color image signal output from the signal conversion circuit 20, and displays a color corresponding to the input multi-primary color image signal by each pixel.
  • the multi-primary color display panel 10 is a liquid crystal display panel having a pair of substrates facing each other and a liquid crystal layer provided between the pair of substrates.
  • a vertical alignment mode capable of realizing a wide viewing angle characteristic can be suitably used.
  • an MVA (Multi-domain Vertical Alignment) mode or a CPA (Continuous Pinwheel Alignment) mode is used. it can.
  • the panel of the MVA mode or the CPA mode includes a vertical alignment type liquid crystal layer in which liquid crystal molecules are aligned substantially perpendicular to the substrate when no voltage is applied, and the orientation in which the liquid crystal molecules are tilted when a voltage is applied in each sub-pixel.
  • a wide viewing angle display is realized by forming a plurality of regions different from each other.
  • a transverse electric field mode capable of realizing a wide viewing angle characteristic can be suitably used.
  • an IPS (In-Plane Switching) mode or an FFS (Fringe Field Switching) mode is used. it can.
  • An IPS mode or FFS mode panel includes a horizontal alignment type liquid crystal layer in which liquid crystal molecules are aligned substantially horizontally with respect to the substrate when no voltage is applied, and the alignment direction of the liquid crystal molecules is determined in each subpixel when a voltage is applied. By changing in a plane substantially parallel to the substrate, display with a wide viewing angle is realized.
  • the three primary color image signals are converted into multi-primary color image signals.
  • the luminance of each primary color is not uniquely determined, and there are many combinations of luminances. That is, it can be said that the color displayed by the pixels of the multi-primary color display device has redundancy.
  • the liquid crystal display device 100 according to this embodiment by using the above-described color redundancy, it is possible to suppress deterioration in display quality when a pixel displays an achromatic color.
  • this point will be described more specifically.
  • the relationship between the tristimulus values (X 0 , Y 0 , Z 0 ) of a certain color and the luminances (R, G, B) of red, green, and blue is expressed by the following formula (1).
  • red, green and blue intensities (tone levels) that is represented and corresponds to one tristimulus value.
  • the coefficients X R , Y R , Z R ... Z B of the 3 ⁇ 3 conversion matrix shown in Equation (1) are the red subpixel, green subpixel, and blue subpixel of the three primary color display device. It is determined based on the XYZ value of the pixel.
  • tristimulus values (X 0 , Y 0 , Z 0 ) of a certain color and luminances (R, G, B, Ye) of red, green, blue, yellow and cyan are used.
  • Cy is expressed by the following formula (2), and there are many combinations of luminances (gradation levels) of red, green, and blue corresponding to one tristimulus value.
  • the coefficients X R , Y R , Z R ... Z Cy of the 3 ⁇ 5 conversion matrix shown in Equation (2) are the red subpixel R and green subpixel of the multi-primary color display panel 10. It is determined based on the XYZ values of G, blue subpixel B, yellow subpixel Ye, and cyan subpixel Cy.
  • the signal conversion circuit 20 of the liquid crystal display device 100 performs signal conversion so that variations in luminance of a plurality of sub-pixels are leveled when at least a three primary color image signal indicating a halftone achromatic color is input. That is, the signal conversion is performed so that the variation in luminance between the sub-pixels is smaller than when the three primary color image signals indicating achromatic colors are simply converted into the multi-primary color image signal (comparative example described later). Thereby, it is possible to suppress a decrease in display quality when the pixel displays an achromatic color.
  • FIG. 3 schematically shows the signal conversion of the comparative example.
  • This comparative example is a general signal conversion in the case of displaying an achromatic color.
  • the gradation levels of red, green, and blue defined by the input three primary color image signals remain as they are as a multi-primary color image.
  • the gradation levels of the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, the yellow sub-pixel Ye, and the cyan sub-pixel Cy are defined by the signal.
  • this multi-primary color image signal is displayed on the multi-primary color display panel 10 having the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, the yellow sub-pixel Ye, and the cyan sub-pixel Cy having the specifications shown in Table 1,
  • the luminance of the pixel is as shown in FIG.
  • the dotted line in FIG. 4 has shown average brightness
  • the luminance of the yellow sub-pixel Ye is extremely high among the plurality of sub-pixels that define one pixel. Therefore, the yellow sub-pixel Ye becomes conspicuous, and when the color filter has a stripe arrangement, a streak-like display is obtained as shown in FIG. Therefore, display quality and a feeling of resolution are lowered.
  • the signal conversion circuit 20 of the liquid crystal display device 100 performs signal conversion so that variations in luminance of a plurality of sub-pixels are leveled when at least a three primary color image signal indicating a halftone achromatic color is input. I do. That is, a combination of luminances is selected such that the variation in subpixel luminance is smaller than in the comparative example described above. For this reason, the yellow subpixel Ye becomes inconspicuous, and a decrease in display quality and resolution is suppressed.
  • FIG. 6 shows an example of a specific configuration of the signal conversion circuit 20.
  • the signal conversion circuit 20 includes a multi-primary color conversion unit 24 that generates a multi-primary color image signal based on the input three primary color image signals.
  • the signal conversion circuit 20 further includes an input conversion unit 22, a luminance ratio adjustment unit 26, and an independent gamma processing unit 28.
  • the input conversion unit 22 converts the input three-color signal (three primary color image signals) into a wide color gamut signal used inside the circuit.
  • the three-color signal is, for example, an RGB signal or a YCC signal.
  • the wide color gamut signal is an RGB signal including a negative value (minus gradation), a tristimulus value XYZ, or the like.
  • the multi-primary color converting unit 24 converts the wide color gamut signal into a 5-color signal (multi-primary color image signal). This conversion is performed using, for example, a lookup table as will be described later.
  • the luminance ratio adjustment unit 26 is generated by the multi-primary color generating unit 24 when the three primary color image signals indicating at least halftone achromatic colors are input to the multi-primary color generating unit 24 (here, input as a wide color gamut signal).
  • the five-color signals are adjusted so that the luminance variations of the plurality of sub-pixels are leveled. That is, the luminance ratio adjusting unit 26 adjusts the luminance ratio of the plurality of sub-pixels.
  • the luminance ratio adjusting unit 26 typically has the red sub-pixel R defined by the five-color signal, and the luminance of the yellow sub-pixel Ye defined by the five-color signal is lower than that before the adjustment after the adjustment.
  • the five-color signal (multi-primary image signal) is adjusted so that the luminance of the green sub-pixel G becomes higher after the adjustment than before the adjustment.
  • the independent gamma processing unit 28 performs gamma processing independently for each sub-pixel.
  • the five color signals output from the independent gamma processing unit 28 are input to the multi-primary color display panel 10.
  • the root mean square value L of the difference between the average luminance of the plurality of sub-pixels and the luminance of each of the plurality of sub-pixels is the luminance of the red sub-pixel R as Y R , the luminance of the green sub-pixel G as Y G , the luminance of the blue sub-pixel B as Y B , the luminance of the yellow sub-pixel Ye as Y Ye , and the luminance of the cyan sub-pixel Cy. Is represented by the following formula (3), where Y Cy is the average luminance and Y ave is the average luminance. In the case of the luminance ratio shown in FIG. 4, the shift amount L is 0.030784.
  • the chromaticity x, y, and Y values of achromatic colors displayed by the pixels are as shown in Table 3 below.
  • the luminance ratio of the red subpixel R, the green subpixel G, the blue subpixel B, the yellow subpixel Ye, and the cyan subpixel Cy before and after adjustment is as shown in FIG.
  • the luminance of the yellow sub-pixel Ye is lower than that before the adjustment after the adjustment, and the luminance of the red sub-pixel R and the green sub-pixel G is higher than that before the adjustment after the adjustment.
  • the luminance of the blue sub-pixel B is slightly lower after the adjustment than before the adjustment, and the luminance of the cyan sub-pixel Cy is higher after the adjustment than before the adjustment.
  • the shift amount L is 0.01868. Therefore, the shift amount L is reduced by about 40% after adjustment. For this reason, the yellow subpixel Ye becomes inconspicuous, a streak-like display is prevented, and a reduction in display quality is suppressed.
  • the luminance ratio adjustment unit 26 may perform adjustment so that the color difference ⁇ E between the achromatic color displayed by the pixel before and after adjustment is as small as possible.
  • the color difference ⁇ E before and after the adjustment is preferably 3.0 or less, and more preferably 2.0 or less. Colors having a color difference ⁇ E of 2.0 or less cannot be found to be different unless they are compared adjacent to each other, and generally they can be called the same color.
  • FIG. 8 shows an example of a specific configuration of the luminance ratio adjusting unit 26.
  • the luminance ratio adjustment unit 26 includes a hue detection unit 26a, a luminance conversion unit 26b, an average luminance / luminance difference calculation unit 26c, a luminance difference adjustment unit 26d, and a gradation conversion unit 26e.
  • the hue detection unit 26a detects the hue of a color defined by the multi-primary color image signal generated by the multi-primary color conversion unit 24. That is, the hue detection unit 26a detects the hue from the input five-color signal. Whether or not the luminance ratio adjusting unit 26 performs adjustment is determined according to the hue detected by the hue detecting unit 26a.
  • the luminance ratio adjusting unit 26 mainly adjusts the five-color signal indicating an achromatic color and does not adjust the five-color signal having high saturation.
  • the luminance conversion unit 26b converts a 5-color signal (that is, gradation information) indicating the gradation level of each sub-pixel into luminance information.
  • the average luminance / luminance difference calculating unit 26c calculates the average luminance of the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, the yellow sub-pixel Ye, and the cyan sub-pixel Cy, and further calculates the average luminance and each sub-pixel. The difference from the brightness is calculated.
  • the luminance difference adjusting unit 26d redistributes the luminance to each sub-pixel so that the shift amount L becomes small.
  • the gradation conversion unit 26e converts the luminance information into a five-color signal (that is, gradation information) indicating the gradation level of each sub pixel.
  • the specific configuration of the signal conversion circuit 20 is not limited to the example shown in FIG. Further, the signal conversion circuit 20 does not necessarily need to include the luminance ratio adjustment unit 26.
  • FIG. 9 shows another example of a specific configuration of the signal conversion circuit 20.
  • the signal conversion circuit 20 does not include the luminance ratio adjustment unit 26.
  • the signal conversion circuit 20 includes a multi-primary color converting unit 24 'having a function different from that of the multi-primary color converting unit 24 in the example illustrated in FIG.
  • the multi-primary color conversion unit 24 ′ has five colors so that variations in luminance of a plurality of sub-pixels are leveled when a three-color signal (three primary color image signals) indicating at least a halftone achromatic color is input.
  • a signal multi-primary color image signal
  • the multi-primary color conversion unit 24 performs multi-primary color conversion considering the luminance ratio.
  • the multi-primary color generating sections 24 and 24 ' have a look-up table including data indicating sub-pixel gradation levels corresponding to the colors specified by the three primary color image signals, so that this look is determined according to the input three primary color image signals.
  • a multi-primary color image signal can be generated with reference to the uptable.
  • the data indicating the sub-pixel gradation level is included in the lookup table for all colors, the amount of data in the lookup table increases, and the lookup table can be easily configured using an inexpensive memory with a small capacity. Difficult to do.
  • FIG. 10 shows an example of a preferable configuration of the multi-primary color changing unit 24 (or 24 ').
  • the multi-primary color conversion unit 24 (or 24 ') includes a lookup table memory 24a and a calculation unit 24b.
  • the lookup table memory 24a stores a lookup table (LUT).
  • This look-up table has data of a three-dimensional matrix structure indicating the gradation levels of the yellow sub-pixel Ye and the cyan sub-pixel Cy corresponding to the target color tristimulus values (X D , Y D , Z D ). .
  • the yellow subpixel Ye corresponding to the tristimulus values (X D , Y D , Z D ) of the target color that is, the achromatic color indicated by the three primary color image signals
  • the gradation level of the cyan sub pixel Cy can be determined.
  • the calculation unit 24b performs calculation using the tristimulus values (X D , Y D , Z D ) of the target color and the gradation levels of the yellow sub-pixel Ye and the cyan sub-pixel Cy determined by the lookup table memory 24a. Thus, the gradation levels of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B are calculated. Specifically, the calculation unit 24b performs a calculation according to the following equation (4).
  • (Ye, Cy) (88, 160).
  • the tristimulus values XYZ (portion (i) in the above formula (4)) corresponding to this data, that is, corresponding to the yellow subpixel Ye and the cyan subpixel Cy of 88 gradation and 160 gradation are shown in Table 4 below. Street.
  • the result of subtracting the tristimulus values XYZ shown in Table 4 from the tristimulus values (X D , Y D , Z D ) of the target color (the part (ii) in the above formula (4)) is the red subpixel R, green
  • the tristimulus values XYZ corresponding to the sub-pixel G and the blue sub-pixel B are as shown in Table 5 below.
  • the gradation levels of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B can be uniquely determined by performing an inverse matrix operation on the tristimulus values XYZ shown in Table 5.
  • the lookup table has data of tristimulus values XYZ (part (i) in the above formula (4)) corresponding to the gradation levels of the yellow sub-pixel Ye and the cyan sub-pixel Cy, so that the calculation of the part (i) is performed. Is no longer necessary. That is, it is only necessary to perform (ii) partial subtraction and overall inverse matrix operation.
  • the multi-primary color generating unit 24 (or 24 ′) shown in FIG. 10 first determines the gradation levels of the two subpixels using the lookup table stored in the lookup table memory 24a. Thereafter, the gradation levels of the remaining three sub-pixels are calculated by the calculation unit 24b. Accordingly, the look-up table stored in the look-up table memory 24a need not include data for all five subpixels, but only include data for two of the five subpixels. Just go out. Therefore, when the configuration as shown in FIG. 10 is adopted, the lookup table can be easily configured using an inexpensive memory having a small capacity.
  • the look-up table includes data indicating the gradation levels of the yellow sub-pixel Ye and the cyan sub-pixel Cy, and the remaining red sub-pixel R, green sub-pixel G, and blue sub-pixel B are processed by the calculation unit 24b.
  • the gradation level is calculated.
  • the data included in the lookup table in advance does not necessarily have to be for the yellow sub-pixel Ye and the cyan sub-pixel Cy. If data indicating the gradation levels of any two sub-pixels is included in the lookup table, the gradation levels of the remaining three sub-pixels can be calculated by the calculation unit 24b.
  • the multi-primary color generating units 24 and 24 ′ refer to the lookup table, where n is the number of primary colors used for display, and the gradation of (n ⁇ 3) primary colors out of the n primary colors.
  • the level is determined (that is, data for (n-3) primary colors is included in the lookup table), and n calculations are performed by using the gradation level of (n-3) primary colors.
  • the gradation levels of the remaining three primary colors among the primary colors may be calculated.
  • the signal conversion circuit 20 refers to the lookup table.
  • the luminance of one subpixel may be obtained, and the luminance of the remaining three subpixels may be calculated by the calculation of the calculation unit 23.
  • the luminance and chromaticity corresponding to the gradation level of the yellow subpixel Ye are reduced by the red subpixel R and the green subpixel G in the portion corresponding to the achromatic color of the lookup table The same effect can be obtained.
  • the gray level of the gradation when the luminance of the yellow sub-pixel Ye is lowered, sufficient luminance compensation cannot be performed with other sub-pixels (because there is no gradation exceeding 255 gradations). Further, in the achromatic color on the low gradation side, since the luminance change for each gradation is large, it may be difficult to finely adjust the output chromaticity.
  • the signal conversion circuit 20 When the N gradation in the 256 gradation display (displaying from the 0 gradation to the 255 gradation) is expressed as “N / 255 gradation”, the signal conversion circuit 20 has 64/255 gradation or more and 200/255 floor. By performing signal conversion so that the variation in luminance is leveled for the achromatic color below the tone, it is possible to sufficiently suppress the deterioration in display quality.
  • the chromaticity x, y, and Y values of the achromatic colors displayed by the pixels are as shown in Table 6 below.
  • the achromatic chromaticity x, y, and Y values displayed by the pixels are as shown in Table 7 below.
  • (R, G, B, Ye, Cy) (200, 200, 200, 200, 200).
  • the chromaticity x, y, and Y values of the achromatic colors displayed by the pixels are as shown in Table 8 below.
  • the achromatic chromaticity x, y, and Y values displayed by the pixels are as shown in Table 9 below.
  • the signal conversion circuit 20 receives the three primary color image signals indicating 128/255 gray levels.
  • the signal conversion is performed so that the root mean square value (the deviation L described above) of the difference between the average luminance of the plurality of sub-pixels and the luminance of each of the plurality of sub-pixels is 0.023 or less. It is preferable that the signal conversion is performed so as to be 0.019 or less.
  • the deviation L before the adjustment is about 0.03078
  • the deviation L after the adjustment is 0.023 or less, so that the deviation L can be improved by about 25%, and the deviation after the adjustment.
  • the shift amount L can be improved by about 40%.
  • the signal conversion circuit 20 may perform signal conversion so that the shift amount L is 0.0377 or less when the three primary color image signals indicating achromatic colors having 160/255 gradations are input.
  • signal conversion is more preferably performed so as to be 0.0302 or less.
  • the deviation L before adjustment is about 0.0503
  • the deviation L after adjustment is 0.0377 or less, so that the deviation L can be improved by about 25%, and the deviation after adjustment.
  • L is 0.0302 or less
  • the shift amount L can be improved by about 40%.
  • the signal conversion circuit 20 may perform signal conversion so that the shift amount L is 0.0122 or less when the three primary color image signals indicating 96/255 gray levels are input. It is more preferable to perform signal conversion so as to be 0.0098 or less.
  • the deviation L before the adjustment is about 0.0163
  • the deviation L after the adjustment is 0.0122 or less, so that the deviation L can be improved by about 25%, and the deviation after the adjustment.
  • L is 0.0098 or less
  • the shift amount L can be improved by about 40%.
  • FIG. 11 shows a liquid crystal display device 200 according to this embodiment.
  • the liquid crystal display device 200 includes a multi-primary color display panel 10 and a signal conversion circuit 20 and is a multi-primary color display device that performs display using four or more primary colors.
  • the multi-primary color display panel 10 has a plurality of pixels arranged in a matrix, and each pixel is defined by a plurality of sub-pixels.
  • FIG. 12 shows a pixel configuration of the multi-primary color display panel 10. As shown in FIG. 12, each pixel includes a red sub-pixel R0 that displays red, a further red sub-pixel R1 that displays red, a green sub-pixel G that displays green, a blue sub-pixel B that displays blue, and yellow. It is defined by a yellow sub-pixel Ye for displaying and a cyan sub-pixel Cy for displaying cyan.
  • Table 10 shows the primary colors (ie, red, green, blue, yellow and cyan) displayed by the red sub-pixel R0, further red sub-pixel R1, green sub-pixel G, blue sub-pixel B, yellow sub-pixel Ye and cyan sub-pixel Cy. ) Shows examples of chromaticity x, y and Y values. For red, a value obtained by combining red displayed by the red sub-pixel R0 and red displayed by the further red sub-pixel R1 is shown.
  • the red sub-pixel R0, the further red sub-pixel R1, the green sub-pixel G, the blue sub-pixel B, the yellow sub-pixel Ye, and the cyan sub-pixel Cy are arranged in this order from the left side to the right side.
  • the arrangement of the sub-pixels is not limited to this.
  • the signal conversion circuit 20 converts the input three primary color image signals into multi-primary color image signals corresponding to four or more (here, five) primary colors.
  • the multi-primary color display panel 10 receives the multi-primary color image signal output from the signal conversion circuit 20, and displays a color corresponding to the input multi-primary color image signal by each pixel. Also in this embodiment, the multi-primary color display panel 10 is a liquid crystal display panel.
  • the signal conversion circuit 20 of the liquid crystal display device 200 performs signal conversion so that variations in luminance of a plurality of sub-pixels are leveled when at least a three-primary color image signal indicating a halftone achromatic color is input. That is, the signal conversion is performed so that the variation in luminance between the sub-pixels is smaller than when the three primary color image signals indicating achromatic colors are simply converted into the multi-primary color image signal (comparative example described later). Thereby, it is possible to suppress a decrease in display quality when the pixel displays an achromatic color.
  • FIG. 13 schematically shows the signal conversion of the comparative example.
  • This comparative example is a general signal conversion in the case of displaying an achromatic color.
  • the gradation levels of red, green, and blue defined by the input three primary color image signals remain as they are as a multi-primary color image.
  • the gradation levels of the red sub-pixel R0, the further red sub-pixel R1, the green sub-pixel G, the blue sub-pixel B, the yellow sub-pixel Ye, and the cyan sub-pixel Cy defined by the signal are obtained.
  • This multi-primary color image signal is output from a multi-primary color display panel 10 having a red sub-pixel R0, a further red sub-pixel R1, a green sub-pixel G, a blue sub-pixel B, a yellow sub-pixel Ye, and a cyan sub-pixel Cy having the specifications shown in Table 10.
  • the luminance of each sub-pixel is as shown in FIG.
  • the dotted line in FIG. 14 has shown average brightness
  • luminance of the yellow sub-pixel Ye is extremely high among the plurality of sub-pixels that define one pixel. For this reason, the yellow subpixel Ye becomes conspicuous, and when the color filter is in a stripe arrangement, a streak-like display is obtained. Therefore, display quality and a feeling of resolution are lowered.
  • the signal conversion circuit 20 of the liquid crystal display device 200 performs signal conversion so that variations in luminance of a plurality of sub-pixels are leveled when at least a three primary color image signal indicating a halftone achromatic color is input. I do. That is, a combination of luminances is selected such that the variation in subpixel luminance is smaller than in the comparative example described above. For this reason, the yellow subpixel Ye becomes inconspicuous, and a decrease in display quality and resolution is suppressed.
  • FIG. 15 shows an example of a specific configuration of the signal conversion circuit 20 of the liquid crystal display device 200.
  • the signal conversion circuit 20 includes a multi-primary color conversion unit 24 that generates a multi-primary color image signal based on the input three primary color image signals.
  • the signal conversion circuit 20 further includes an input conversion unit 22, a luminance ratio adjustment unit 26, and an independent gamma processing unit 28.
  • the input conversion unit 22 converts the input three-color signal (three primary color image signals) into a wide color gamut signal used inside the circuit.
  • the three-color signal is, for example, an RGB signal or a YCC signal.
  • the wide color gamut signal is an RGB signal including a negative value (minus gradation), a tristimulus value XYZ, or the like.
  • the multi-primary color converting unit 24 converts the wide color gamut signal into a 5-color 6-sub-pixel signal (multi-primary color image signal). This conversion is performed using, for example, a lookup table.
  • the luminance ratio adjustment unit 26 is generated by the multi-primary color generating unit 24 when the three primary color image signals indicating at least halftone achromatic colors are input to the multi-primary color generating unit 24 (here, input as a wide color gamut signal).
  • the five-color six-subpixel signal (multi-primary image signal) is adjusted so that the luminance variations of the plurality of subpixels are leveled. That is, the luminance ratio adjusting unit 26 adjusts the luminance ratio of the plurality of sub-pixels.
  • the luminance ratio adjusting unit 26 typically has the luminance of the yellow sub-pixel Ye defined by the 5-color 6-subpixel signal lower than that after the adjustment after the adjustment, and is defined by the 5-color 6-subpixel signal.
  • the five-color six-subpixel signal (multi-primary image signal) is adjusted so that the luminance of the red subpixel R0, the further red subpixel R1, and the green subpixel G becomes higher after the adjustment than before the adjustment.
  • the independent gamma processing unit 28 performs gamma processing independently for each sub-pixel.
  • the 5 color 6 sub-pixel signals output from the independent gamma processing unit 28 are input to the multi-primary color display panel 10.
  • “Deviation amount” is used as an index for evaluating the variation in luminance of the plurality of sub-pixels defining one pixel.
  • Shift amount L is luminance Y R0 of the red sub-pixel R0, the luminance Y R1 further red subpixel R1, the luminance of the green subpixel G Y G, luminance Y B of the blue sub-pixel B, the yellow subpixel Ye the brightness Y Ye, the luminance of the cyan sub pixel Cy and Y Cy, when these average brightness and Y ave, represented by the following formula (5).
  • the shift amount L is 0.030735.
  • the achromatic chromaticity x, y and Y values displayed by the pixels are as shown in Table 12 below. is there.
  • the luminance ratio of the red subpixel R0, the further red subpixel R1, the green subpixel G, the blue subpixel B, the yellow subpixel Ye, and the cyan subpixel Cy before and after adjustment is as shown in FIG.
  • the luminance of the yellow sub-pixel Ye is lower than before the adjustment after the adjustment, and the luminance of the red sub-pixel R0, the further red sub-pixel R1, and the green sub-pixel G is higher after the adjustment than before the adjustment.
  • the luminance of the blue sub-pixel B is slightly lower after the adjustment than before the adjustment, and the luminance of the cyan sub-pixel Cy is higher after the adjustment than before the adjustment.
  • the shift amount L is 0.01950. Therefore, the shift amount L is reduced by about 40% after adjustment. For this reason, the yellow subpixel Ye becomes inconspicuous, a streak-like display is prevented, and a reduction in display quality is suppressed.
  • the specific configuration of the signal conversion circuit 20 is not limited to the example shown in FIG. Further, the signal conversion circuit 20 does not necessarily need to include the luminance ratio adjustment unit 26.
  • FIG. 17 shows another example of a specific configuration of the signal conversion circuit 20.
  • the signal conversion circuit 20 does not include the luminance ratio adjustment unit 26.
  • the signal conversion circuit 20 includes a multi-primary color unit 24 'having a function different from that of the multi-primary color unit 24 in the example illustrated in FIG.
  • the multi-primary color conversion unit 24 ′ has five colors so that variations in luminance of a plurality of sub-pixels are leveled when a three-color signal (three primary color image signals) indicating at least a halftone achromatic color is input. 6 sub-pixel signals (multi-primary color image signals) are generated. That is, in the example shown in FIG. 17, the multi-primary color conversion unit 24 ′ performs multi-primary color conversion considering the luminance ratio.
  • liquid crystal display devices 100 and 200 As described above, in the liquid crystal display devices 100 and 200 according to the first and second embodiments, deterioration in display quality when a pixel displays an achromatic color is suppressed.
  • the plurality of sub-pixels constituting one pixel are not limited to those exemplified in the first and second embodiments.
  • a plurality of sub-pixels constituting one pixel may include a magenta sub-pixel Ma that displays magenta instead of the cyan sub-pixel Cy.
  • the number of primary colors used for display is not limited to 5 illustrated in the first and second embodiments. The number of primary colors used for display may be 4 or 6 or more.
  • the maximum gradation level of the blue gradation level is the gradation level of the achromatic color)
  • the achromatic color of each gradation can be determined.
  • an achromatic color with 200 gradations is (200, 200, 157), and an achromatic color with 128 gradations is (128, 128, 100).
  • a multi-primary color display device in which deterioration of display quality when a pixel displays an achromatic color is suppressed. Since the multi-primary color display device according to the embodiment of the present invention can perform high-quality display, the multi-primary color display device is suitably used for various electronic devices such as a liquid crystal television.

Abstract

 多原色表示装置(100)は、赤サブ画素(R)、緑サブ画素(G)、青サブ画素(B)および黄サブ画素(Ye)を含む複数のサブ画素によって規定される画素を有する多原色表示パネル(10)と、三原色に対応した三原色画像信号を4つ以上の原色に対応した多原色画像信号に変換する信号変換回路(20)とを備える。信号変換回路(20)は、少なくともある中間調の無彩色を示す三原色画像信号が入力された場合、複数のサブ画素の輝度のばらつきが平準化されるように信号変換を行う。

Description

多原色表示装置
 本発明は、4つ以上の原色を用いて表示を行う多原色表示装置に関する。
 現在、液晶表示装置をはじめとする種々の表示装置が様々な用途に利用されている。一般的な表示装置では、光の三原色である赤、緑、青を表示する3つのサブ画素によって1つの画素が構成されており、そのことによってカラー表示が可能になっている。
 しかしながら、従来の表示装置は、表示可能な色の範囲(「色再現範囲」と呼ばれる。)が狭いという問題を有している。図18に、三原色を用いて表示を行う従来の表示装置の色再現範囲を示す。図18は、XYZ表色系におけるxy色度図であり、赤、緑、青の三原色に対応した3つの点を頂点とする三角形が色再現範囲を表している。また、図中には、Pointerによって明らかにされた、自然界に存在する様々な物体の色(非特許文献1参照)が×印でプロットされている。図18からわかるように、色再現範囲に含まれない物体色が存在しており、三原色を用いて表示を行う表示装置では、一部の物体色を表示することができない。
 そこで、表示装置の色再現範囲を広くするために、表示に用いる原色の数を4つ以上に増やす手法が提案されている。
 例えば、特許文献1には、図19に示すように、赤、緑、青、黄、シアン、マゼンタを表示する6つのサブ画素R、G、B、Ye、Cy、Maによって1つの画素が構成された液晶表示装置800が開示されている。この液晶表示装置800の色再現範囲を図20に示す。図20に示すように、6つの原色に対応した6つの点を頂点とする六角形によって表される色再現範囲は、物体色をほぼ網羅している。このように、表示に用いる原色の数を増やすことによって、色再現範囲を広くすることができる。本願明細書では、4つ以上の原色を用いて表示を行う表示装置を「多原色表示装置」と称する。また、三原色を用いて表示を行う従来の一般的な表示装置を「三原色表示装置」と称する。
 三原色表示装置に入力される画像信号の形式としては、RGBフォーマットやYCCフォーマットなどが一般的である。これらのフォーマットの画像信号(RGB信号、YCC信号)は、3つのパラメータを含んでいる(いわば三次元信号である)ので、表示に用いられる三原色(赤、緑および青)の輝度(階調レベル)が一義的に決定される。
 多原色表示装置で表示を行うためには、三原色表示装置用のフォーマットの画像信号を、より多くのパラメータ(4つ以上のパラメータ)を含む画像信号に変換する必要がある。4つ以上の原色に対応したこのような画像信号を、本願明細書では「多原色画像信号」と称する。また、三原色表示装置用のフォーマットの画像信号、つまり、三原色に対応した画像信号を、本願明細書では「三原色画像信号」と称する。
特表2004-529396号公報
M. R. Pointer, "The gamut of real surface colors", Color Research and Application, Vol.5, No.3, pp.145-155 (1980)
 本願発明者は、三原色画像信号から多原色画像信号への変換(多原色変換)の手法と、多原色表示装置の表示品位との関係を詳細に検討した結果、単純に多原色変換を行うと、画素が無彩色を表示する場合に、1つの画素を構成する複数のサブ画素の輝度のばらつきに起因した表示品位の低下が発生することを見出した。
 本発明は、上記問題に鑑みてなされたものであり、その目的は、画素が無彩色を表示するときの表示品位の低下が抑制された多原色表示装置を提供することにある。
 本発明の実施形態における多原色表示装置は、赤サブ画素、緑サブ画素、青サブ画素および黄サブ画素を含む複数のサブ画素によって規定される画素を有する多原色表示パネルと、三原色に対応した三原色画像信号を、4つ以上の原色に対応した多原色画像信号に変換する信号変換回路と、を備えた多原色表示装置であって、前記信号変換回路は、少なくともある中間調の無彩色を示す三原色画像信号が入力された場合、前記複数のサブ画素の輝度のばらつきが平準化されるように信号変換を行う。
 ある実施形態において、前記信号変換回路は、入力された三原色画像信号に基づいて多原色画像信号を生成する多原色化部を有し、前記信号変換回路は、前記多原色化部に前記少なくともある中間調の無彩色を示す三原色画像信号が入力された場合に、前記多原色化部によって生成された多原色画像信号を、前記複数のサブ画素の輝度のばらつきが平準化されるように調整する輝度比調整部をさらに有する。
 ある実施形態において、前記輝度比調整部は、多原色画像信号によって規定される前記黄サブ画素の輝度が調整後において調整前よりも低くなり、且つ、多原色画像信号によって規定される前記赤サブ画素および前記緑サブ画素の輝度が調整後において調整前よりも高くなるように、多原色画像信号の調整を行う。
 ある実施形態において、前記輝度比調整部は、前記画素によって表示される無彩色の、調整前と調整後とでの色差ΔEが3.0以下となるように、多原色画像信号の調整を行う。
 ある実施形態において、前記信号変換回路は、入力された三原色画像信号に基づいて多原色画像信号を生成する多原色化部を有し、前記多原色化部は、前記少なくともある中間調の無彩色を示す三原色画像信号が入力された場合に、前記複数のサブ画素の輝度のばらつきが平準化されるような多原色画像信号を生成する。
 ある実施形態において、前記多原色化部は、表示に用いられる原色の数をnとしたとき、入力された三原色画像信号に基づいてルックアップテーブルを参照することによって、n個の原色のうちの(n-3)個の原色の階調レベルを決定し、前記(n-3)個の原色の階調レベルを用いた演算を行うことによって前記n個の原色のうちの残りの3個の原色の階調レベルを算出する。
 ある実施形態において、前記多原色化部は、前記ルックアップテーブルを格納するルックアップテーブルメモリと、前記演算を行う演算部と、を有する。
 ある実施形態において、前記少なくともある中間調の無彩色を示す三原色画像信号は、64/255階調以上200/255階調以下の無彩色を示す三原色画像信号である。
 ある実施形態において、前記信号変換回路は、128/255階調の無彩色を示す三原色画像信号が入力された場合、前記複数のサブ画素の平均輝度と、前記複数のサブ画素のそれぞれの輝度との差の2乗平均平方根値が0.023以下となるように信号変換を行う。
 ある実施形態において、前記複数のサブ画素は、シアンサブ画素を含む。
 ある実施形態において、前記複数のサブ画素は、さらなる赤サブ画素を含む。
 ある実施形態において、前記多原色表示パネルは、互いに対向する一対の基板と、前記一対の基板間に設けられた液晶層とを有する。
 本発明の実施形態によると、画素が無彩色を表示するときの表示品位の低下が抑制された多原色表示装置が提供される。
本発明の実施形態における液晶表示装置100を模式的に示すブロック図である。 液晶表示装置100の画素構成を示す図である。 比較例の多原色変換を説明するための図である。 比較例の多原色変換を行った場合の赤サブ画素R、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyの輝度を示すグラフである。 比較例の多原色変換を行った場合に発生する筋状の表示を模式的に示す図である。 液晶表示装置100が備える信号変換回路20の具体的な構成の例を示すブロック図である。 信号変換回路20が有する輝度比調整部26による調整前後での各サブ画素の輝度を示すグラフである。 信号変換回路20が有する輝度比調整部26の具体的な構成の例を示すブロック図である。 液晶表示装置100が備える信号変換回路20の具体的な構成の他の例を示すブロック図である。 信号変換回路20が有する多原色化部24および24’の具体的な構成の例を示すブロック図である。 本発明の実施形態における液晶表示装置200を模式的に示すブロック図である。 液晶表示装置200の画素構成を示す図である。 比較例の多原色変換を説明するための図である。 比較例の多原色変換を行った場合の赤サブ画素R0、さらなる赤サブ画素R1、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyの輝度を示すグラフである。 液晶表示装置200が備える信号変換回路20の具体的な構成の例を示すブロック図である。 信号変換回路20が有する輝度比調整部26による調整前後での各サブ画素の輝度を示すグラフである。 液晶表示装置200が備える信号変換回路20の具体的な構成の他の例を示すブロック図である。 三原色表示装置の色再現範囲を示すxy色度図である。 従来の多原色液晶表示装置800を模式的に示す図である。 多原色液晶表示装置800の色再現範囲を示すxy色度図である。
 以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。
 (実施形態1)
 図1に、本実施形態における液晶表示装置100を示す。液晶表示装置100は、図1に示すように、多原色表示パネル10と、信号変換回路20とを備え、4つ以上の原色を用いて表示を行う多原色表示装置である。
 多原色表示パネル10は、マトリクス状に配列された複数の画素を有し、各画素は、複数のサブ画素によって規定されている。図2に、多原色表示パネル10の画素構成を示す。各画素は、図2に示すように、赤を表示する赤サブ画素R、緑を表示する緑サブ画素G、青を表示する青サブ画素B、黄を表示する黄サブ画素Yeおよびシアンを表示するシアンサブ画素Cyによって規定される。
 下記表1に、赤サブ画素R、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyによってそれぞれ表示される原色(つまり赤、緑、青、黄およびシアン)の色度x、yおよびY値の例を示す。
Figure JPOXMLDOC01-appb-T000001
 なお、図2には、画素内で赤サブ画素R、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyが左側から右側に向かってこの順で配置されている例を示しているが、サブ画素の配置はこれに限定されるものではない。
 信号変換回路20は、入力された三原色画像信号を4つ以上(ここでは5つ)の原色に対応した多原色画像信号に変換する。多原色表示パネル10には、信号変換回路20から出力された多原色画像信号が入力され、入力された多原色画像信号に応じた色が各画素によって表示される。本実施形態では、多原色表示パネル10は、互いに対向する一対の基板と、一対の基板間に設けられた液晶層とを有する液晶表示パネルである。
 液晶表示パネルの表示モードとしては、広視野角特性を実現し得る垂直配向モードを好適に用いることができ、例えばMVA(Multi-domain Vertical Alignment)モードやCPA(Continuous Pinwheel Alignment)モードを用いることができる。MVAモードやCPAモードのパネルは、電圧無印加時に液晶分子が基板に対して略垂直に配向する垂直配向型の液晶層を備えており、各サブ画素内で電圧印加時に液晶分子が傾斜する方位が互いに異なる複数の領域が形成されることによって、広視野角の表示が実現される。
 あるいは、液晶表示パネルの表示モードとして、広視野角特性を実現し得る横電界モードを好適に用いることができ、例えばIPS(In-Plane Switching)モードやFFS(Fringe Field Switching)モードを用いることができる。IPSモードやFFSモードのパネルは、電圧無印加時に液晶分子が基板に対して略水平に配向する水平配向型の液晶層を備えており、各サブ画素内で電圧印加時に液晶分子の配向方向を基板に略平行な面内で変化させることによって、広視野角の表示が実現される。
 既に説明したように、多原色表示装置で表示を行う場合、三原色画像信号が多原色画像信号に変換される。しかしながら、三原色表示装置用のフォーマットの画像信号で示される色を、4つ以上の原色を用いて表現する場合、それぞれの原色の輝度は一義的には決まらず、輝度の組み合わせは多数存在する。つまり、多原色表示装置の画素によって表示される色は、冗長性を有しているといえる。本実施形態における液晶表示装置100では、上述した色の冗長性を利用することにより、画素が無彩色を表示するときの表示品位の低下が抑制される。以下、この点をより具体的に説明する。
 三原色で表示を行う場合、ある色の三刺激値(X0、Y0、Z0)と、赤、緑および青の輝度(R、G、B)との関係は、下記式(1)で表され、1つの三刺激値に対応する赤、緑および青の輝度(階調レベル)の組み合わせは、1つしか存在しない。なお、式(1)中に示されている3行3列の変換マトリクスの係数XR、YR、ZR・・・ZBは、三原色表示装置の赤サブ画素、緑サブ画素および青サブ画素のXYZ値に基づいて決定される。
Figure JPOXMLDOC01-appb-M000002
 これに対し、例えば5原色で表示を行う場合、ある色の三刺激値(X0、Y0、Z0)と、赤、緑、青、黄およびシアンの輝度(R、G、B、Ye、Cy)との関係は、下記式(2)で表され、1つの三刺激値に対応する赤、緑および青の輝度(階調レベル)の組み合わせは、多数存在する。なお、式(2)中に示されている3行5列の変換マトリクスの係数XR、YR、ZR・・・ZCyは、多原色表示パネル10の赤サブ画素R、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素CyのXYZ値に基づいて決定される。
 液晶表示装置100の信号変換回路20は、少なくともある中間調の無彩色を示す三原色画像信号が入力された場合、複数のサブ画素の輝度のばらつきが平準化されるように信号変換を行う。つまり、無彩色を示す三原色画像信号を単純に多原色画像信号に変換する場合(後述する比較例)よりもサブ画素間の輝度のばらつきが小さくなるように信号変換が行われる。これにより、画素が無彩色を表示するときの表示品位の低下を抑制することができる。
 図3に、比較例の信号変換を模式的に示す。この比較例は、無彩色を表示する場合の一般的な信号変換であり、この比較例では、入力された三原色画像信号によって規定される赤、緑および青の階調レベルが、そのまま多原色画像信号によって規定される赤サブ画素R、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyの階調レベルとなる。例えば、128階調の無彩色を示す三原色画像信号、つまり、(R, G, B)=(128, 128, 128)と表される三原色画像信号は、赤サブ画素R、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyのすべてについて階調レベル128を規定する多原色画像信号、つまり、(R, G, B, Ye, Cy)=(128, 128, 128, 128, 128)と表される多原色画像信号に変換される。
 この多原色画像信号を、表1に示す仕様の赤サブ画素R、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyを有する多原色表示パネル10で表示した場合、各サブ画素の輝度は、図4に示す通りとなる。なお、図4中の点線は、平均輝度を示している。図4に示されているように、1つの画素を規定する複数のサブ画素のうちで、黄サブ画素Yeの輝度が極端に高い。そのため、黄サブ画素Yeが目立ってしまい、カラーフィルタがストライプ配列の場合には、図5に示すように、筋状の表示となってしまう。そのため、表示品位や解像度感が低下してしまう。
 これに対し、液晶表示装置100の信号変換回路20は、少なくともある中間調の無彩色を示す三原色画像信号が入力された場合、複数のサブ画素の輝度のばらつきが平準化されるように信号変換を行う。つまり、上述した比較例よりもサブ画素輝度のばらつきが小さくなるような輝度の組み合わせが選択される。そのため、黄サブ画素Yeが目立ちにくくなり、表示品位や解像度感の低下が抑制される。
 図6に、信号変換回路20の具体的な構成の例を示す。信号変換回路20は、入力された三原色画像信号に基づいて多原色画像信号を生成する多原色化部24を有する。図6に示す例では、信号変換回路20は、さらに、入力変換部22、輝度比調整部26および独立ガンマ処理部28を有する。
 入力変換部22は、入力された3色信号(三原色画像信号)を、回路内部で用いられる広色域信号に変換する。3色信号は、例えばRGB信号やYCC信号である。広色域信号は、具体的には、負の値(マイナス階調)を含んだRGB信号や、三刺激値XYZ等である。
 多原色化部24は、広色域信号を5色信号(多原色画像信号)に変換する。この変換は、例えば後述するようにルックアップテーブルを用いて行われる。
 輝度比調整部26は、多原色化部24に少なくともある中間調の無彩色を示す三原色画像信号が入力(ここでは広色域信号として入力)された場合に、多原色化部24によって生成された5色信号(多原色画像信号)を、複数のサブ画素の輝度のばらつきが平準化されるように調整する。つまり、輝度比調整部26により、複数のサブ画素の輝度比が調整される。
 輝度比調整部26は、典型的には、5色信号によって規定される黄サブ画素Yeの輝度が調整後において調整前よりも低くなり、且つ、5色信号によって規定される赤サブ画素Rおよび緑サブ画素Gの輝度が調整後において調整前よりも高くなるように、5色信号(多原色画像信号)の調整を行う。
 独立ガンマ処理部28は、各サブ画素について独立にガンマ処理を行う。独立ガンマ処理部28から出力された5色信号は、多原色表示パネル10に入力される。
 ここで、輝度比調整部26による輝度比の調整の具体例を説明する。
 ここでは、128階調の無彩色を示す3色信号((R, G, B)=(128, 128, 128)と表される)が入力される場合を例とする。多原色化部24が、比較例と同様の単純な変換を行う場合、多原色化部24によって(R, G, B, Ye, Cy)=(128, 128, 128, 128, 128)と表される5色信号が生成される。輝度比調整部26による調整を行わずに、この5色信号を用いて多原色表示パネル10で表示を行った場合、画素によって表示される無彩色の色度x、yおよびY値は、下記表2に示す通りである。また、赤サブ画素R、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyの輝度比は、図4に示した通りである。
Figure JPOXMLDOC01-appb-T000004
 ここで、1つの画素を規定する複数のサブ画素の輝度のばらつきを評価する指標として、複数のサブ画素の平均輝度と、複数のサブ画素のそれぞれの輝度との差の2乗平均平方根値L(以下では「ずれ量」と呼ぶ)を用いる。ずれ量Lは、赤サブ画素Rの輝度をYR、緑サブ画素Gの輝度をYG、青サブ画素Bの輝度をYB、黄サブ画素Yeの輝度をYYe、シアンサブ画素Cyの輝度をYCyとし、これらの平均輝度をYaveとすると、下記式(3)で表される。図4に示した輝度比の場合、ずれ量Lは、0.030784となる。
Figure JPOXMLDOC01-appb-M000005
 輝度比調整部26は、(R, G, B, Ye, Cy)=(128, 128, 128, 128, 128)と表される5色信号を、例えば、(R, G, B, Ye, Cy)=(160, 135, 122, 105, 160)と表される5色信号に調整する。この調整後の5色信号を用いて多原色表示パネル10で表示を行った場合、画素によって表示される無彩色の色度x、yおよびY値は、下記表3に示す通りである。また、調整前および調整後の赤サブ画素R、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyの輝度比は、図7に示す通りである。
Figure JPOXMLDOC01-appb-T000006
 表2と表3との比較から、調整前と調整後とで、画素によって表示される無彩色の色度x、yが同じであることがわかる。また、調整前と調整後とで、画素によって表示される無彩色のY値がほぼ同じであることもわかる。
 また、図7から、黄サブ画素Yeの輝度が調整後において調整前よりも低くなり、赤サブ画素Rおよび緑サブ画素Gの輝度が調整後において調整前よりも高くなることがわかる。さらに、この例では、青サブ画素Bの輝度が調整後において調整前よりもわずかに低くなり、シアンサブ画素Cyの輝度が調整後において調整前よりも高くなることがわかる。
 図7に示した調整後の輝度比の場合、ずれ量Lは、0.01868となる。従って、ずれ量Lは、調整後には約40%小さくなる。そのため、黄サブ画素Yeが目立ちにくくなり、筋状の表示となることが防止され、表示品位の低下が抑制される。
 なお、入力に忠実な色再現を行う観点から、輝度比調整部26は、画素によって表示される無彩色の、調整前と調整後とでの色差ΔEがなるべく小さくなるように調整を行うことが好ましい。具体的には、画素を正面方向から見たときに、調整前と調整後とで色差ΔEが3.0以下であることが好ましく、2.0以下であることがより好ましい。色差ΔEが2.0以下である色同士は、隣接させて比較しなければ異なっていることが分からず、一般には同じ色と呼んで差支えない。
 図8に、輝度比調整部26の具体的な構成の例を示す。図8に示す例では、輝度比調整部26は、色相検出部26a、輝度変換部26b、平均輝度・輝度差分算出部26c、輝度差調整部26dおよび階調変換部26eを有する。
 色相検出部26aは、多原色化部24によって生成された多原色画像信号によって規定される色の色相を検出する。つまり、色相検出部26aは、入力された5色信号から色相を検出する。色相検出部26aによって検出された色相に応じて、輝度比調整部26が調整を行うか否かが決定される。輝度比調整部26は、無彩色を示す5色信号に対して主に調整を行い、彩度の高い5色信号に対しては調整を行わない。
 輝度変換部26bは、各サブ画素の階調レベルを示す5色信号(つまり階調情報)を、輝度情報に変換する。平均輝度・輝度差分算出部26cは、赤サブ画素R、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyの平均輝度を算出し、さらに、その平均輝度と各サブ画素の輝度との差分を算出する。
 輝度差調整部26dは、ずれ量Lが小さくなるように、各サブ画素への輝度の再分配を行う。階調変換部26eは、輝度情報を、各サブ画素の階調レベルを示す5色信号(つまり階調情報)に変換する。
 なお、信号変換回路20の具体的な構成は、図8に示した例に限定されない。また、信号変換回路20は、必ずしも輝度比調整部26を有する必要はない。図9に、信号変換回路20の具体的な構成の他の例を示す。
 図9に示す例では、信号変換回路20は、輝度比調整部26を有していない。また、図9に示す例では、信号変換回路20は、図6に示す例における多原色化部24とは異なる機能を有する多原色化部24’を有する。この多原色化部24’は、少なくともある中間調の無彩色を示す3色信号(三原色画像信号)が入力された場合に、複数のサブ画素の輝度のばらつきが平準化されるような5色信号(多原色画像信号)を生成する。つまり、図9に示す例では、多原色化部24’が輝度比を考慮した多原色変換を行う。
 ここで、多原色化部24および24’の具体的な構成の例を説明する。多原色化部24および24’は、三原色画像信号によって特定される色に対応したサブ画素階調レベルを示すデータを含むルックアップテーブルを有することにより、入力された三原色画像信号に応じてこのルックアップテーブルを参照して多原色画像信号を生成することができる。ただし、サブ画素階調レベルを示すデータをすべての色についてルックアップテーブルに含めると、ルックアップテーブルのデータ量が多くなってしまい、容量の小さな安価なメモリを用いてルックアップテーブルを簡便に構成することが難しい。
 図10に、多原色化部24(あるいは24’)の好ましい構成の一例を示す。図10に示す例では、多原色化部24(あるいは24’)は、ルックアップテーブルメモリ24aおよび演算部24bを有する。
 ルックアップテーブルメモリ24aは、ルックアップテーブル(LUT)を格納している。このルックアップテーブルは、目標色の三刺激値(XD, YD, ZD)に対応する黄サブ画素Yeおよびシアンサブ画素Cyの階調レベルを示す3次元マトリクス構造のデータを有している。ルックアップテーブルメモリ24aのルックアップテーブルを参照することにより、目標色の三刺激値(XD, YD, ZD)、つまり、三原色画像信号によって示される無彩色に対応する黄サブ画素Yeおよびシアンサブ画素Cyの階調レベルを決定することができる。
 演算部24bは、目標色の三刺激値(XD, YD, ZD)と、ルックアップテーブルメモリ24aによって決定された黄サブ画素Yeおよびシアンサブ画素Cyの階調レベルを用いた演算を行うことによって、赤サブ画素R、緑サブ画素Gおよび青サブ画素Bの階調レベルを算出する。演算部24bは、具体的には、下記式(4)に従って演算を行う。
Figure JPOXMLDOC01-appb-M000007
 例えば、多原色化部24’のルックアップテーブルは、128階調の無彩色を示す3色信号((R, G, B)=(128, 128, 128)と表される)に対応して、(Ye, Cy)=(88, 160)と表されるデータを有している。このデータに対応する、つまり、88階調および160階調の黄サブ画素Yeおよびシアンサブ画素Cyに対応する三刺激値XYZ(上記式(4)における(i)部分)は、下記表4に示す通りである。
Figure JPOXMLDOC01-appb-T000008
 目標色の三刺激値(XD, YD, ZD)から、表4に示す3刺激値XYZを減算した結果(上記式(4)における(ii)部分)が、赤サブ画素R、緑サブ画素Gおよび青サブ画素Bに対応する三刺激値XYZであり、これは下記表5に示す通りである。
Figure JPOXMLDOC01-appb-T000009
 表5に示す三刺激値XYZに、逆行列演算を行うことにより、赤サブ画素R、緑サブ画素Gおよび青サブ画素Bの階調レベルを一意に決定することができる。なお、黄サブ画素Yeおよびシアンサブ画素Cyの階調レベルに対応する三刺激値XYZ(上記式(4)における(i)部分)のデータをルックアップテーブルが有することにより、(i)部分の演算が不要となる。つまり、(ii)部分の減算および全体の逆行列演算を行うだけでよい。
 上述したように、図10に示した多原色化部24(あるいは24’)では、まず、ルックアップテーブルメモリ24aに格納されたルックアップテーブルを用いて2つのサブ画素の階調レベルを決定し、その後、演算部24bによって残りの3つのサブ画素の階調レベルを算出する。従って、ルックアップテーブルメモリ24aに格納されるルックアップテーブルは、5つのサブ画素のすべてについてのデータを含んでいる必要はなく、5つのサブ画素のうちの2つのサブ画素についてのデータのみを含んでいればよい。従って、図10に示すような構成を採用すると、容量の小さい安価なメモリを用いてルックアップテーブルを簡便に構成することができる。
 なお、上記の説明では、ルックアップテーブルには黄サブ画素Yeおよびシアンサブ画素Cyの階調レベルを示すデータを含め、演算部24bによって残りの赤サブ画素R、緑サブ画素Gおよび青サブ画素Bの階調レベルを算出する例を述べたが、ルックアップテーブルに予め含めておくデータは、必ずしも黄サブ画素Yeおよびシアンサブ画素Cyについてのものである必要はない。ルックアップテーブルに任意の2つのサブ画素の階調レベルを示すデータを含めれば、演算部24bによって残りの3つのサブ画素の階調レベルを算出することができる。
 また、1つの画素を規定するサブ画素の数が5つ以外の場合についても、同様の手法により、ルックアップテーブルのデータ量を少なくすることができる。多原色化部24および24’は、表示に用いられる原色の数をnとしたとき、ルックアップテーブルを参照することによって、n個の原色のうちの(n-3)個の原色の階調レベルを決定し(つまりルックアップテーブルには(n-3)個の原色についてのデータを含めておく)、(n-3)個の原色の階調レベルを用いた演算を行うことによってn個の原色のうちの残りの3個の原色の階調レベルを算出すればよい。
 例えば、1つの画素が4つのサブ画素(赤サブ画素R、緑サブ画素G、青サブ画素Bおよび黄サブ画素Ye)によって規定される場合、信号変換回路20は、ルックアップテーブルを参照して1つのサブ画素の輝度を得て、演算部23の演算によって残りの3個のサブ画素の輝度を算出すればよい。ルックアップテーブルの無彩色に対応する部分に、黄サブ画素Yeの階調レベルを下げた分の輝度および色度が赤サブ画素Rおよび緑サブ画素Gにより補償されるようなデータを含めることにより、同様の効果を得ることができる。
 また、信号変換回路20は、必ずしもすべての中間調の無彩色において輝度のばらつきが平準化されるような信号変換を行う必要はない。高階調側の無彩色では、黄サブ画素Yeの輝度を低くしたときに、他のサブ画素で十分な輝度補償が行えない可能性があるからである。例えば、0階調~255階調で表示を行う場合(つまり256階調表示)、(R, G, B, Ye, Cy)=(240, 240, 240, 240, 240)と表される240階調の無彩色については、黄サブ画素Yeの輝度を低くしたときに、他のサブ画素で十分な輝度補償を行うことができない(255階調を超える階調がないからである)。また、低階調側の無彩色では、1階調ごとの輝度変化が大きいので、出力される色度の微調整が困難であることがある。
 256階調表示(0階調~255階調で表示を行う)におけるN階調を「N/255階調」と表記する場合、信号変換回路20が、64/255階調以上200/255階調以下の無彩色について、輝度のばらつきが平準化されるような信号変換を行うことにより、表示品位の低下を十分に抑制することができる。
 64/255階調の無彩色および200/255階調の無彩色についての信号変換の例を説明する。
 64/255階調の無彩色を示す三原色画像信号((R, G, B)=(64, 64, 64)と表される)は、図3に示したような単純な信号変換を行うと、(R, G, B, Ye, Cy)=(64, 64, 64, 64, 64)と表される多原色画像信号となる。この多原色画像信号によって多原色表示パネル10で表示を行った場合、画素によって表示される無彩色の色度x、yおよびY値は、下記表6に示す通りである。
Figure JPOXMLDOC01-appb-T000010
 信号変換回路20は、64/255階調の無彩色を示す三原色画像信号を、例えば、(R, G, B, Ye, Cy)=(86, 67, 59, 47, 88)と表される多原色画像信号に変換する。この多原色画像信号によって多原色表示パネル10で表示を行った場合、画素によって表示される無彩色の色度x、yおよびY値は、下記表7に示す通りである。
Figure JPOXMLDOC01-appb-T000011
 表6と表7との比較から、(R, G, B, Ye, Cy)=(64, 64, 64, 64, 64)と表される多原色画像信と、(R, G, B, Ye, Cy)=(86, 67, 59, 47, 88)と表される多原色画像信号とで、画素によって表示される無彩色のY値が同じであることがわかる。また、画素によって表示される無彩色の色度x、yがほぼ同じであることもわかる。
 200/255階調の無彩色を示す三原色画像信号((R, G, B)=(200, 200, 200)と表される)は、図3に示したような単純な信号変換を行うと、(R, G, B, Ye, Cy)=(200, 200, 200, 200, 200)と表される多原色画像信号となる。この多原色画像信号によって多原色表示パネル10で表示を行った場合、画素によって表示される無彩色の色度x、yおよびY値は、下記表8に示す通りである。
Figure JPOXMLDOC01-appb-T000012
 信号変換回路20は、200/255階調の無彩色を示す三原色画像信号を、例えば、(R, G, B, Ye, Cy)=(229, 185, 190, 185, 255)と表される多原色画像信号に変換する。この多原色画像信号によって多原色表示パネル10で表示を行った場合、画素によって表示される無彩色の色度x、yおよびY値は、下記表9に示す通りである。
Figure JPOXMLDOC01-appb-T000013
 表8と表9との比較から、(R, G, B, Ye, Cy)=(200, 200, 200, 200, 200)と表される多原色画像信と、(R, G, B, Ye, Cy)=(229, 185, 190, 185, 255)と表される多原色画像信号とで、画素によって表示される無彩色のY値が同じであることがわかる。また、画素によって表示される無彩色の色度x、yがほぼ同じであることもわかる。
 一部のサブ画素が目立つことを抑制し、表示品位や解像度感の低下を十分に抑制する観点からは、信号変換回路20は、128/255階調の無彩色を示す三原色画像信号が入力された場合、複数のサブ画素の平均輝度と、複数のサブ画素のそれぞれの輝度との差の2乗平均平方根値(既に説明したずれ量L)が0.023以下となるように信号変換を行うことが好ましく、0.019以下となるように信号変換を行うことがより好ましい。調整前のずれ量Lが0.03078程度の場合、調整後のずれ量Lが0.023以下であることにより、ずれ量Lを約25%改善することができることになり、調整後のずれ量Lが0.019以下であることにより、ずれ量Lを約40%改善することができることになる。
 また、同様の観点から、信号変換回路20は、160/255階調の無彩色を示す三原色画像信号が入力された場合、ずれ量Lが0.0377以下となるように信号変換を行うことが好ましく、0.0302以下となるように信号変換を行うことがより好ましい。調整前のずれ量Lが0.0503程度の場合、調整後のずれ量Lが0.0377以下であることにより、ずれ量Lを約25%改善することができることになり、調整後のずれ量Lが0.0302以下であることにより、ずれ量Lを約40%改善することができることになる。
 さらに、同様の観点から、信号変換回路20は、96/255階調の無彩色を示す三原色画像信号が入力された場合、ずれ量Lが0.0122以下となるように信号変換を行うことが好ましく、0.0098以下となるように信号変換を行うことがより好ましい。調整前のずれ量Lが0.0163程度の場合、調整後のずれ量Lが0.0122以下であることにより、ずれ量Lを約25%改善することができることになり、調整後のずれ量Lが0.0098以下であることにより、ずれ量Lを約40%改善することができることになる。
 (実施形態2)
 図11に、本実施形態における液晶表示装置200を示す。液晶表示装置200は、図11に示すように、多原色表示パネル10と、信号変換回路20とを備え、4つ以上の原色を用いて表示を行う多原色表示装置である。
 多原色表示パネル10は、マトリクス状に配列された複数の画素を有し、各画素は、複数のサブ画素によって規定されている。図12に、多原色表示パネル10の画素構成を示す。各画素は、図12に示すように、赤を表示する赤サブ画素R0、赤を表示するさらなる赤サブ画素R1、緑を表示する緑サブ画素G、青を表示する青サブ画素B、黄を表示する黄サブ画素Yeおよびシアンを表示するシアンサブ画素Cyによって規定される。
 下記表10に、赤サブ画素R0、さらなる赤サブ画素R1、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyによって表示される原色(つまり赤、緑、青、黄およびシアン)の色度x、yおよびY値の例を示す。なお、赤については、赤サブ画素R0によって表示される赤と、さらなる赤サブ画素R1によって表示される赤とを合わせた値が示されている。
Figure JPOXMLDOC01-appb-T000014
 なお、図12には、画素内で赤サブ画素R0、さらなる赤サブ画素R1、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyが左側から右側に向かってこの順で配置されている例を示しているが、サブ画素の配置はこれに限定されるものではない。
 信号変換回路20は、入力された三原色画像信号を4つ以上(ここでは5つ)の原色に対応した多原色画像信号に変換する。多原色表示パネル10には、信号変換回路20から出力された多原色画像信号が入力され、入力された多原色画像信号に応じた色が各画素によって表示される。本実施形態においても、多原色表示パネル10は、液晶表示パネルである。
 液晶表示装置200の信号変換回路20は、少なくともある中間調の無彩色を示す三原色画像信号が入力された場合、複数のサブ画素の輝度のばらつきが平準化されるように信号変換を行う。つまり、無彩色を示す三原色画像信号を単純に多原色画像信号に変換する場合(後述する比較例)よりもサブ画素間の輝度のばらつきが小さくなるように信号変換が行われる。これにより、画素が無彩色を表示するときの表示品位の低下を抑制することができる。
 図13に、比較例の信号変換を模式的に示す。この比較例は、無彩色を表示する場合の一般的な信号変換であり、この比較例では、入力された三原色画像信号によって規定される赤、緑および青の階調レベルが、そのまま多原色画像信号によって規定される赤サブ画素R0、さらなる赤サブ画素R1、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyの階調レベルとなる。例えば、128階調の無彩色を示す三原色画像信号、つまり、(R, G, B)=(128, 128, 128)と表される三原色画像信号は、赤サブ画素R0、さらなる赤サブ画素R1、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyのすべてについて階調レベル128を規定する多原色画像信号、つまり、(R0, R1, G, B, Ye, Cy)=(128, 128, 128, 128, 128, 128)と表される多原色画像信号に変換される。
 この多原色画像信号を、表10に示す仕様の赤サブ画素R0、さらなる赤サブ画素R1、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyを有する多原色表示パネル10で表示した場合、各サブ画素の輝度は、図14に示す通りとなる。なお、図14中の点線は、平均輝度を示している。図14に示されているように、1つの画素を規定する複数のサブ画素のうちで、黄サブ画素Yeの輝度が極端に高い。そのため、黄サブ画素Yeが目立ってしまい、カラーフィルタがストライプ配列の場合には、筋状の表示となってしまう。そのため、表示品位や解像度感が低下してしまう。
 これに対し、液晶表示装置200の信号変換回路20は、少なくともある中間調の無彩色を示す三原色画像信号が入力された場合、複数のサブ画素の輝度のばらつきが平準化されるように信号変換を行う。つまり、上述した比較例よりもサブ画素輝度のばらつきが小さくなるような輝度の組み合わせが選択される。そのため、黄サブ画素Yeが目立ちにくくなり、表示品位や解像度感の低下が抑制される。
 図15に、液晶表示装置200の信号変換回路20の具体的な構成の例を示す。信号変換回路20は、入力された三原色画像信号に基づいて多原色画像信号を生成する多原色化部24を有する。図15に示す例では、信号変換回路20は、さらに、入力変換部22、輝度比調整部26および独立ガンマ処理部28を有する。
 入力変換部22は、入力された3色信号(三原色画像信号)を、回路内部で用いられる広色域信号に変換する。3色信号は、例えばRGB信号やYCC信号である。広色域信号は、具体的には、負の値(マイナス階調)を含んだRGB信号や、三刺激値XYZ等である。
 多原色化部24は、広色域信号を5色6サブ画素信号(多原色画像信号)に変換する。この変換は、例えばルックアップテーブルを用いて行われる。
 輝度比調整部26は、多原色化部24に少なくともある中間調の無彩色を示す三原色画像信号が入力(ここでは広色域信号として入力)された場合に、多原色化部24によって生成された5色6サブ画素信号(多原色画像信号)を、複数のサブ画素の輝度のばらつきが平準化されるように調整する。つまり、輝度比調整部26により、複数のサブ画素の輝度比が調整される。
 輝度比調整部26は、典型的には、5色6サブ画素信号によって規定される黄サブ画素Yeの輝度が調整後において調整前よりも低くなり、且つ、5色6サブ画素信号によって規定される赤サブ画素R0、さらなる赤サブ画素R1および緑サブ画素Gの輝度が調整後において調整前よりも高くなるように、5色6サブ画素信号(多原色画像信号)の調整を行う。
 独立ガンマ処理部28は、各サブ画素について独立にガンマ処理を行う。独立ガンマ処理部28から出力された5色6サブ画素信号は、多原色表示パネル10に入力される。
 ここで、輝度比調整部26による輝度比の調整の具体例を説明する。
 ここでは、128階調の無彩色を示す3色信号((R, G, B)=(128, 128, 128)と表される)が入力される場合を例とする。多原色化部24が、比較例と同様の単純な変換を行う場合、多原色化部24によって(R0, R1, G, B, Ye, Cy)=(128, 128, 128, 128, 128, 128)と表される5色6サブ画素信号が生成される。輝度比調整部26による調整を行わずに、この5色6サブ画素信号を用いて多原色表示パネル10で表示を行った場合、画素によって表示される無彩色の色度x、yおよびY値は、下記表11に示す通りである。また、赤サブ画素R0、さらなる赤サブ画素R1、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyの輝度比は、図14に示した通りである。
Figure JPOXMLDOC01-appb-T000015
 ここで、1つの画素を規定する複数のサブ画素の輝度のばらつきを評価する指標として、複数のサブ画素の平均輝度と、複数のサブ画素のそれぞれの輝度との差の2乗平均平方根値L(「ずれ量」)を用いる。ずれ量Lは、赤サブ画素R0の輝度をYR0、さらなる赤サブ画素R1の輝度をYR1、緑サブ画素Gの輝度をYG、青サブ画素Bの輝度をYB、黄サブ画素Yeの輝度をYYe、シアンサブ画素Cyの輝度をYCyとし、これらの平均輝度をYaveとすると、下記式(5)で表される。図14に示した輝度比の場合、ずれ量Lは、0.030735となる。
Figure JPOXMLDOC01-appb-M000016
 輝度比調整部26は、(R0, R1, G, B, Ye, Cy)=(128, 128, 128, 128, 128, 128)と表される5色6サブ画素信号を、例えば、(R0, R1, G, B, Ye, Cy)=(151, 151, 130, 116, 100, 181)と表される5色6サブ画素信号に調整する。この調整後の5色6サブ画素信号を用いて多原色表示パネル10で表示を行った場合、画素によって表示される無彩色の色度x、yおよびY値は、下記表12に示す通りである。また、調整前および調整後の赤サブ画素R0、さらなる赤サブ画素R1、緑サブ画素G、青サブ画素B、黄サブ画素Yeおよびシアンサブ画素Cyの輝度比は、図16に示す通りである。
Figure JPOXMLDOC01-appb-T000017
 表11と表12との比較から、調整前と調整後とで、画素によって表示される無彩色の色度x、yがほぼ同じであることがわかる。また、調整前と調整後とで、画素によって表示される無彩色のY値がほぼ同じであることもわかる。
 また、図16から、黄サブ画素Yeの輝度が調整後において調整前よりも低くなり、赤サブ画素R0、さらなる赤サブ画素R1および緑サブ画素Gの輝度が調整後において調整前よりも高くなることがわかる。さらに、この例では、青サブ画素Bの輝度が調整後において調整前よりもわずかに低くなり、シアンサブ画素Cyの輝度が調整後において調整前よりも高くなることがわかる。
 図16に示した調整後の輝度比の場合、ずれ量Lは、0.01950となる。従って、ずれ量Lは、調整後には約40%小さくなる。そのため、黄サブ画素Yeが目立ちにくくなり、筋状の表示となることが防止され、表示品位の低下が抑制される。
 なお、信号変換回路20の具体的な構成は、図15に示した例に限定されない。また、信号変換回路20は、必ずしも輝度比調整部26を有する必要はない。図17に、信号変換回路20の具体的な構成の他の例を示す。
 図17に示す例では、信号変換回路20は、輝度比調整部26を有していない。また、図17に示す例では、信号変換回路20は、図15に示す例における多原色化部24とは異なる機能を有する多原色化部24’を有する。この多原色化部24’は、少なくともある中間調の無彩色を示す3色信号(三原色画像信号)が入力された場合に、複数のサブ画素の輝度のばらつきが平準化されるような5色6サブ画素信号(多原色画像信号)を生成する。つまり、図17に示す例では、多原色化部24’が輝度比を考慮した多原色変換を行う。
 上述したように、実施形態1および2における液晶表示装置100および200では、画素が無彩色を表示するときの表示品位の低下が抑制される。
 なお、1つの画素を構成する複数のサブ画素は、実施形態1および2で例示したものに限定されない。例えば、1つの画素を構成する複数のサブ画素は、シアンサブ画素Cyに代えて、マゼンタを表示するマゼンタサブ画素Maを有してもよい。また、表示に用いられる原色の数も、実施形態1および2で例示した5に限定されるものではない。表示に用いられる原色の数は、4であってもよいし、6以上であってもよい。
 上記の説明では、(R, G, B)=(N, N, N)と表される三原色画像信号が入力される場合を例として説明を行ったが、無彩色を示す三原色画像信号は、(R, G, B)=(N, N, N)と表されるものに限定されない。
 表示パネルには、色温度調整においてマージンがあるので、高色温度に設計された表示パネルでは、色温度を低くした白色が、例えば(R, G, B)=(255, 255, 200)と表される入力信号によって表示され得る。このように、階調制御により任意の色温度における白色を生成できるので、無彩色を示す三原色画像信号は、(R, G, B)=(N, N, N)と表されるものに限定されない。
 本願明細書では、入力階調レベル(R, G, B)のうち、最小階調レベルをA_MIN=MIN(R, G, B)とし、最大階調レベルをA_MAX=MAX(R, G, B)としたとき、A_MIN/A_MAXが0.78以上となるような場合、三原色画像信号が無彩色を示しているものとする。(R, G, B)=(255, 255, 255)と表される三原色画像信号は、A_MIN/A_MAXが1.0(=255/255)である。また、(R, G, B)=(255, 255, 200)と表される三原色画像信号は、A_MIN/A_MAXが0.78(=200/255)である。
 高色温度に設計された表示パネルにおいて、色温度を下げた無彩色を表示したい場合、青み成分を減らすために青の階調レベルを下げて無彩色とする。例えば(R, G, B)=(N, N, N)と表される無彩色の色温度を下げるために(R, G, B)=(N', N'', M)とした場合、N’, N’’>Mの関係が成立する。赤と緑に関しては目標色度点に応じた色度調整のために任意の増減を行うが、青については青み成分を減らすため大幅に階調レベルを下げる必要があるからである。
 このようにして(R, G, B)=(N, N, N)とは表されない無彩色が定義された場合、上述したような調整によって得られた値から線形補間することにより、各階調に対応した無彩色を決定することができる。例えば、上記調整によって色温度が下げられ、(R, G, B)=(255, 255, 200)とされた無彩色を、この色温度における255階調の無彩色とし(つまり赤、緑、青の階調レベルのうちの最大の階調レベルがその無彩色の階調レベルとされる)、あとは0階調(R, G, B)=(0, 0, 0)へ線形補間を行って各階調の無彩色を決定することができる。例えばこの場合、200階調の無彩色は、(200, 200, 157)となり、128階調の無彩色は(128, 128, 100)となる。
 本発明の実施形態によると、画素が無彩色を表示するときの表示品位の低下が抑制された多原色表示装置が提供される。本発明の実施形態による多原色表示装置は、高品位の表示を行うことができるので、液晶テレビをはじめとする種々の電子機器に好適に用いられる。
 10  多原色表示パネル
 20  信号変換回路
 22  入力変換部
 24、24’  多原色化部
 24a  ルックアップテーブルメモリ
 24b  演算部
 26  輝度比調整部
 26a  色相検出部
 26b  輝度変換部
 26c  平均輝度・輝度差分算出部
 26d  輝度差調整部
 26e  階調変換部
 28  独立ガンマ処理部
 100、200  液晶表示装置(多原色表示装置)
 R、R0  赤サブ画素
 R1  さらなる赤サブ画素
 G  緑サブ画素
 B  青サブ画素
 Ye  黄サブ画素
 Cy  シアンサブ画素
 Ma  マゼンタサブ画素

Claims (12)

  1.  赤サブ画素、緑サブ画素、青サブ画素および黄サブ画素を含む複数のサブ画素によって規定される画素を有する多原色表示パネルと、
     三原色に対応した三原色画像信号を、4つ以上の原色に対応した多原色画像信号に変換する信号変換回路と、を備えた多原色表示装置であって、
     前記信号変換回路は、少なくともある中間調の無彩色を示す三原色画像信号が入力された場合、前記複数のサブ画素の輝度のばらつきが平準化されるように信号変換を行う多原色表示装置。
  2.  前記信号変換回路は、入力された三原色画像信号に基づいて多原色画像信号を生成する多原色化部を有し、
     前記信号変換回路は、前記多原色化部に前記少なくともある中間調の無彩色を示す三原色画像信号が入力された場合に、前記多原色化部によって生成された多原色画像信号を、前記複数のサブ画素の輝度のばらつきが平準化されるように調整する輝度比調整部をさらに有する請求項1に記載の多原色表示装置。
  3.  前記輝度比調整部は、多原色画像信号によって規定される前記黄サブ画素の輝度が調整後において調整前よりも低くなり、且つ、多原色画像信号によって規定される前記赤サブ画素および前記緑サブ画素の輝度が調整後において調整前よりも高くなるように、多原色画像信号の調整を行う請求項2に記載の多原色表示装置。
  4.  前記輝度比調整部は、前記画素によって表示される無彩色の、調整前と調整後とでの色差ΔEが3.0以下となるように、多原色画像信号の調整を行う請求項2または3に記載の多原色表示装置。
  5.  前記信号変換回路は、入力された三原色画像信号に基づいて多原色画像信号を生成する多原色化部を有し、
     前記多原色化部は、前記少なくともある中間調の無彩色を示す三原色画像信号が入力された場合に、前記複数のサブ画素の輝度のばらつきが平準化されるような多原色画像信号を生成する請求項1に記載の多原色表示装置。
  6.  前記多原色化部は、表示に用いられる原色の数をnとしたとき、入力された三原色画像信号に基づいてルックアップテーブルを参照することによって、n個の原色のうちの(n-3)個の原色の階調レベルを決定し、前記(n-3)個の原色の階調レベルを用いた演算を行うことによって前記n個の原色のうちの残りの3個の原色の階調レベルを算出する、請求項2から5のいずれかに記載の多原色表示装置。
  7.  前記多原色化部は、前記ルックアップテーブルを格納するルックアップテーブルメモリと、前記演算を行う演算部と、を有する請求項6に記載の多原色表示装置。
  8.  前記少なくともある中間調の無彩色を示す三原色画像信号は、64/255階調以上200/255階調以下の無彩色を示す三原色画像信号である請求項1から7のいずれかに記載の多原色表示装置。
  9.  前記信号変換回路は、128/255階調の無彩色を示す三原色画像信号が入力された場合、前記複数のサブ画素の平均輝度と、前記複数のサブ画素のそれぞれの輝度との差の2乗平均平方根値が0.023以下となるように信号変換を行う請求項1から8のいずれかに記載の多原色表示装置。
  10.  前記複数のサブ画素は、シアンサブ画素を含む請求項1から9のいずれかに記載の多原色表示装置。
  11.  前記複数のサブ画素は、さらなる赤サブ画素を含む請求項1から10のいずれかに記載の多原色表示装置。
  12.  前記多原色表示パネルは、互いに対向する一対の基板と、前記一対の基板間に設けられた液晶層とを有する請求項1から11のいずれかに記載の多原色表示装置。
PCT/JP2013/073557 2012-09-07 2013-09-02 多原色表示装置 WO2014038517A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/426,468 US9886932B2 (en) 2012-09-07 2013-09-02 Multi-primary color display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-197375 2012-09-07
JP2012197375 2012-09-07

Publications (1)

Publication Number Publication Date
WO2014038517A1 true WO2014038517A1 (ja) 2014-03-13

Family

ID=50237126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073557 WO2014038517A1 (ja) 2012-09-07 2013-09-02 多原色表示装置

Country Status (2)

Country Link
US (1) US9886932B2 (ja)
WO (1) WO2014038517A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10580832B2 (en) 2013-01-18 2020-03-03 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
US9264683B2 (en) * 2013-09-03 2016-02-16 Sony Corporation Decoding device and decoding method, encoding device, and encoding method
US10700134B2 (en) * 2014-05-27 2020-06-30 Universal Display Corporation Low power consumption OLED display
EP3399497A1 (en) * 2017-05-05 2018-11-07 Koninklijke Philips N.V. Optimizing decoded high dynamic range image saturation
CN107945729B (zh) * 2017-12-15 2020-05-08 京东方科技集团股份有限公司 转换方法及电路、显示装置及驱动方法和电路、存储介质
US10911748B1 (en) * 2018-07-10 2021-02-02 Apple Inc. Display calibration system
US11069280B2 (en) 2018-10-25 2021-07-20 Baylor University System and method for a multi-primary wide gamut color system
US11289003B2 (en) 2018-10-25 2022-03-29 Baylor University System and method for a multi-primary wide gamut color system
US10997896B2 (en) 2018-10-25 2021-05-04 Baylor University System and method for a six-primary wide gamut color system
US11587491B1 (en) 2018-10-25 2023-02-21 Baylor University System and method for a multi-primary wide gamut color system
US11037481B1 (en) 2018-10-25 2021-06-15 Baylor University System and method for a multi-primary wide gamut color system
US11043157B2 (en) 2018-10-25 2021-06-22 Baylor University System and method for a six-primary wide gamut color system
US11062638B2 (en) 2018-10-25 2021-07-13 Baylor University System and method for a multi-primary wide gamut color system
US11289000B2 (en) 2018-10-25 2022-03-29 Baylor University System and method for a multi-primary wide gamut color system
US10607527B1 (en) 2018-10-25 2020-03-31 Baylor University System and method for a six-primary wide gamut color system
US11410593B2 (en) 2018-10-25 2022-08-09 Baylor University System and method for a multi-primary wide gamut color system
US11341890B2 (en) 2018-10-25 2022-05-24 Baylor University System and method for a multi-primary wide gamut color system
US10950161B2 (en) 2018-10-25 2021-03-16 Baylor University System and method for a six-primary wide gamut color system
US11030934B2 (en) 2018-10-25 2021-06-08 Baylor University System and method for a multi-primary wide gamut color system
US10950162B2 (en) 2018-10-25 2021-03-16 Baylor University System and method for a six-primary wide gamut color system
US11069279B2 (en) 2018-10-25 2021-07-20 Baylor University System and method for a multi-primary wide gamut color system
US11488510B2 (en) 2018-10-25 2022-11-01 Baylor University System and method for a multi-primary wide gamut color system
US11189210B2 (en) 2018-10-25 2021-11-30 Baylor University System and method for a multi-primary wide gamut color system
US11315467B1 (en) 2018-10-25 2022-04-26 Baylor University System and method for a multi-primary wide gamut color system
US11403987B2 (en) 2018-10-25 2022-08-02 Baylor University System and method for a multi-primary wide gamut color system
US11532261B1 (en) 2018-10-25 2022-12-20 Baylor University System and method for a multi-primary wide gamut color system
US11373575B2 (en) 2018-10-25 2022-06-28 Baylor University System and method for a multi-primary wide gamut color system
US11475819B2 (en) 2018-10-25 2022-10-18 Baylor University System and method for a multi-primary wide gamut color system
KR102503770B1 (ko) * 2018-10-29 2023-02-27 삼성디스플레이 주식회사 영상 데이터 처리 장치 및 이를 포함하는 표시 장치
US11575884B1 (en) 2019-07-26 2023-02-07 Apple Inc. Display calibration system
CN111862888B (zh) * 2020-08-25 2021-10-26 深圳市奥拓电子股份有限公司 一种四色低蓝光广色域显示的方法、装置、系统及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090845A1 (ja) * 2007-01-25 2008-07-31 Sharp Kabushiki Kaisha 多原色表示装置
WO2011083808A1 (ja) * 2010-01-07 2011-07-14 シャープ株式会社 液晶表示装置および信号変換回路
WO2011115169A1 (ja) * 2010-03-18 2011-09-22 シャープ株式会社 多原色液晶パネル駆動回路、多原色液晶パネルの駆動方法、液晶表示装置およびオーバードライブ駆動の設定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3702699B2 (ja) * 1999-03-26 2005-10-05 三菱電機株式会社 カラー画像表示装置
EP2273481A3 (en) 2001-06-11 2012-02-22 Genoa Color Technologies Ltd. Device, system and method for color display
EP2330585A4 (en) * 2008-09-22 2013-02-27 Sharp Kk SIGNAL CONVERSION SWITCHING AND LIQUID CRYSTAL DISPLAY WITH MULTIPLE PRIMARY COLORS WITH THIS SWITCHING
KR101245455B1 (ko) * 2008-12-26 2013-03-19 샤프 가부시키가이샤 액정 표시 장치
US8872743B2 (en) * 2009-11-20 2014-10-28 Sharp Kabushiki Kaisha Liquid crystal display device and control method therefor
US8642363B2 (en) * 2009-12-09 2014-02-04 Nano And Advanced Materials Institute Limited Monolithic full-color LED micro-display on an active matrix panel manufactured using flip-chip technology
KR101878362B1 (ko) * 2010-11-26 2018-08-07 엘지디스플레이 주식회사 영상표시장치 및 그 구동방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090845A1 (ja) * 2007-01-25 2008-07-31 Sharp Kabushiki Kaisha 多原色表示装置
WO2011083808A1 (ja) * 2010-01-07 2011-07-14 シャープ株式会社 液晶表示装置および信号変換回路
WO2011115169A1 (ja) * 2010-03-18 2011-09-22 シャープ株式会社 多原色液晶パネル駆動回路、多原色液晶パネルの駆動方法、液晶表示装置およびオーバードライブ駆動の設定方法

Also Published As

Publication number Publication date
US9886932B2 (en) 2018-02-06
US20150235615A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
WO2014038517A1 (ja) 多原色表示装置
JP5395092B2 (ja) 表示装置
JP5863925B2 (ja) 制御装置及び制御方法
JP5593920B2 (ja) 液晶表示装置
JP5300866B2 (ja) 液晶表示装置
TWI476753B (zh) 處理用於顯示於包含多原色圖像顯示面板之顯示裝置之圖像資料之方法
WO2013002146A1 (ja) 液晶表示装置
US10347198B2 (en) Image displaying methods and display devices
JP5875423B2 (ja) 画像処理装置および画像処理方法
WO2011102343A1 (ja) 表示装置
JP5043860B2 (ja) 信号変換回路およびそれを備えた多原色液晶表示装置
US20140225940A1 (en) Multi-primary colour display device
WO2012005170A1 (ja) 多原色液晶表示装置
US20110075043A1 (en) Color shift solution for dynamic contrast ratio in a liquid crystal display
WO2015152004A1 (ja) 多原色表示装置
TW201807693A (zh) 像素驅動方法
WO2012090880A1 (ja) 信号変換回路およびそれを備えた多原色液晶表示装置
WO2012176685A1 (ja) 表示装置、補正方法、プログラム及び記録媒体
KR101999546B1 (ko) 색보정 방법, 다원색 매트릭스 표시장치의 기계 구현 방법 및 영상 데이터 신호 처리 장치
WO2014141884A1 (ja) 画像処理装置及び液晶表示装置
JP6551230B2 (ja) 信号生成装置、及び、画像表示装置
CN103578441A (zh) 图像处理装置、显示装置以及图像处理方法
JP5485366B2 (ja) 表示装置
JP2017181834A (ja) 多原色表示装置およびテレビジョン受像機
JP5236788B2 (ja) 表示装置、表示方法及びテレビ受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14426468

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP