WO2012176685A1 - 表示装置、補正方法、プログラム及び記録媒体 - Google Patents

表示装置、補正方法、プログラム及び記録媒体 Download PDF

Info

Publication number
WO2012176685A1
WO2012176685A1 PCT/JP2012/065281 JP2012065281W WO2012176685A1 WO 2012176685 A1 WO2012176685 A1 WO 2012176685A1 JP 2012065281 W JP2012065281 W JP 2012065281W WO 2012176685 A1 WO2012176685 A1 WO 2012176685A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
gradation data
correction
sub
gradation
Prior art date
Application number
PCT/JP2012/065281
Other languages
English (en)
French (fr)
Inventor
健 稲田
大和 朝日
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012176685A1 publication Critical patent/WO2012176685A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/06Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using colour palettes, e.g. look-up tables
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation

Definitions

  • the present invention relates to a display device for correcting image data and a correction method.
  • the present invention also relates to a program for operating a computer as such a display device, and a recording medium storing such a program.
  • a display device including a liquid crystal display expresses various colors using three primary colors (red, blue, and green) of light and displays an image.
  • a display device has been developed that displays various colors and displays images using four colors, which are three primary colors plus one other color (for example, white or yellow). Has been.
  • RGB three primary colors
  • the value of each gradation data of RGB is set to 255 gradations
  • the intermediate gradation is set to 189 gradations
  • the first floor The chromaticity of white expressed in each case when the tone is adjusted may be different. This is due to the characteristic of the liquid crystal display that the lower the RGB gradation data value, that is, the lower the luminance, the more the chromaticity of the pixel shifts to blue.
  • FIG. 18 is a graph showing the chromaticity range that can be expressed by a three-color display liquid crystal display as triangles (RGB triangles) in the xy color space, and values of RGB gradation data for each pixel data included in input image data and white It is a chromaticity diagram showing the relationship with the degree.
  • each vertex R, G, and B of a triangle has shown single color red, green, and blue, respectively.
  • each gradation data of RGB is 255 gradations (in FIG. 18, chromaticities of R: 255, G: 255, B: 255), white in the chromaticity diagram (So-called achromatic color) (hereinafter, also simply referred to as 255 gradation white).
  • achromatic color So-called achromatic color
  • the RGB gradation data values are 189 gradations (R: 189, G: 189, and B: 189 chromaticity in FIG. 18)
  • the chromaticity shown in the case of 255 gradations is more than that. , It is shifted to a position close to the vertex B (hereinafter, also simply referred to as 189 gradation white).
  • each gradation data of RGB is 1 gradation (in FIG. 18, chromaticities of R: 1, G: 1, and B: 1)
  • it is more than that of 189 gradations.
  • Shifted to a position close to the vertex B (hereinafter, also simply referred to as one gradation white). That is, when compared with white of 255 gradation, white of 189 gradation is a bluish color, and white of 1 gradation is a bluish color than white of 189 gradation.
  • FIG. 19 is a graph showing respective gamma curves of red, green and blue. As shown in FIG. 19, the gamma curve indicates the luminance characteristic for each of the RGB gradation data for each pixel data included in the input image data.
  • each of the RGB gamma curve characteristics has the highest luminance for blue gradation data, the lowest luminance for green gradation data, and the luminance for red gradation data. Is a value between the luminances for the respective gradations of blue and green.
  • FIG. 20 is a block diagram illustrating an outline of a configuration of the display device 100 including the correction unit 120 in the related art.
  • FIG. 21 is a diagram illustrating an example of a look-up table (LUT: Lookup Table) referred to in the correction unit 120 in the prior art.
  • LUT Lookup Table
  • the display device 100 includes a correction unit 120 that performs gamma correction on input image data by referring to an LUT, and an LCD (Liquid Crystal Display) 130 that displays an image. Yes.
  • a correction unit 120 that performs gamma correction on input image data by referring to an LUT
  • an LCD Liquid Crystal Display
  • the correction unit 120 For each pixel data included in the input image data, the correction unit 120 has R gradation data indicating a red gradation, G gradation data indicating a green gradation, and B gradation data indicating a blue gradation.
  • Each gradation data value is corrected by referring to the LUT shown in FIG. More specifically, the correction unit 120 refers to the LUT shown in FIG. 21, and includes an R correction unit 121 that corrects the value of R gradation data, a G correction unit 122 that corrects the value of G gradation data, and B
  • the B correction unit 123 that corrects the value of the gradation data individually corrects the values of the red, green, and blue gradation data for each pixel data included in the input image data.
  • FIG. 22 shows a gamma correction graph showing the values (input gradation-output gradation characteristics) of the red, green and blue output gradation data.
  • the correction unit 120 performs gamma correction on the green gradation so that the value of the output gradation data becomes larger than the value of the input gradation data.
  • the gamma correction is performed so that the value of the output tone data becomes smaller than the value of the input tone data, and for the red tone, the value of the input tone data and the value of the output tone data Gamma correction so that and are almost the same.
  • FIG. 23 shows RGB gamma curves (gradation-luminance characteristics) when gamma correction as shown in FIG. 22 is performed.
  • the correction unit 120 can obtain a gamma curve having substantially the same RGB, that is, an ideal gamma curve, as shown in FIG.
  • FIG. 24 shows the chromaticity range that can be expressed by the liquid crystal display as triangles (RGB triangles) in the xy color space, and the values of RGB gradation data and whiteness for each pixel data included in the input image data.
  • a chromaticity diagram showing the relationship is shown.
  • the chromaticity of white after performing gamma correction on RGB of 189 gradations and the chromaticity of white after performing gamma correction on RGB of 1 gradation are both 255 gradations.
  • the white chromaticity is substantially the same. That is, by performing gamma correction with reference to the LUT, even when RGB gradation data having different gradations is input in order to express the same white, white having the same chromaticity can be obtained.
  • Patent Document 1 discloses a technique related to so-called independent gamma correction in which gamma curve characteristics of three primary colors are corrected using independent look-up tables (LUTs).
  • Non-Patent Document 1 discloses a technique for suppressing the blue shift of input image data by using an LUT that reduces the luminance of only blue of the input image data.
  • Non-Patent Document 1 when the white color is expressed by four colors of three primary colors and one color different from the three primary colors, RGB gradations having different gradations are used. When data is input, white with the same chromaticity cannot be obtained.
  • FIG. 25 is a chromaticity diagram showing the relationship between the RGBW gradation data value for each pixel data included in the input image data and the whiteness, in which the chromaticity range that can be expressed by the liquid crystal display is represented by a triangle in the xy color space. It is.
  • the whiteness when the value of each gradation data of RGB is 255 gradations and the value of the gradation data of W is 0 gradation, and the values of each gradation data of RGBW are 189th floor, respectively.
  • the whiteness in the case of a tone should be the same chromaticity.
  • the luminance when the value of each gradation data of RGB is 189 gradations is half the luminance when the value of each gradation data of RGB is 255 gradations, respectively.
  • the luminance when the value of the W gradation data is 189 gradation and the luminance when the values of the RGB gradation data are 189 gradations are the same.
  • RGB and W are 185 gradations, which are half the luminance when the value of each gradation data of RGB is 255 gradations, RGB and W are combined, and each of RGB is 255 gradations. This is because the brightness should be the same.
  • each gradation data of RGB is 255 gradations and the value of the gradation data of W is 0 gradation
  • white is shown in the chromaticity diagram.
  • the RGBW gradation data values are 189 gradations (in FIG. 25, chromaticities of R: 189, G: 189, B: 189, and W: 189)
  • the gradation is 255 gradations. It is shifted to a position closer to the vertex B than the chromaticity shown in some cases.
  • FIG. 26 a chromaticity diagram showing the relationship between the gradation data value for each pixel data included in the input image data and the whiteness is shown in FIG. 26.
  • the whiteness when the RGB gradation data values are corrected is when the RGB gradation data values are not corrected.
  • the whiteness is shifted to the white side.
  • a graph of the values is shown in FIG.
  • the solid line, broken line, and alternate long and short dash line graphs in FIG. 27 show R gradation data, G gradation data, and B gradation data when gamma correction is performed without considering the chromaticity shift due to the W gradation. Gamma correction of each value of the gradation data is shown.
  • FIG. 27 show the R input gradation data, the G input gradation data, and the G input gradation data when gamma correction is performed in consideration of the chromaticity shift due to the W gradation.
  • B shows the gamma correction of each value of the input gradation data.
  • the value of the G gradation data becomes higher than when the chromaticity shift due to the W gradation is not taken into consideration.
  • the B gradation data is corrected to a lower value. In this way, by correcting the RGB gradation so that the RGB chromaticity indicates the color on the complementary color side of the blue so as to cancel the W chromaticity shift in the blue direction, Even when the value is 189 gradations, it is possible to obtain the same whiteness as the whiteness when the value of each gradation data of RGB is 255 gradations and the value of the gradation data of W is 0 gradations. .
  • FIG. 29 shows a gamma curve (gradation-luminance characteristic) when the RGB gradation data values are gamma-corrected in consideration of the chromaticity shift when the W gradation data value is 189 gradations. Show.
  • the present invention has been made in order to solve the above-described problems, and has as its main purpose a liquid crystal display that performs four-color display (that is, includes four sub-pixels for each pixel).
  • An object of the present invention is to provide a display device that can obtain the same chromaticity even when tone data is input.
  • a display device includes a display portion including a plurality of pixels each including four sub-pixels each displaying one of the three primary colors and one of the three primary colors.
  • Acquisition means for acquiring image data including four gradation data for the four sub-pixels for each pixel, and three for the three sub-pixels for displaying the three primary colors for each pixel
  • correction means for correcting the value of the gradation data in accordance with the value of the gradation data for the sub-pixel displaying one color different from any of the three primary colors.
  • a correction method includes a display including a plurality of pixels each including four sub-pixels each displaying one of the three primary colors and one of the three primary colors.
  • the gradation data value for the pixel is corrected. Therefore, the pixel included in the display unit (for example, a liquid crystal display) in the display device has a characteristic in which the chromaticity of the color to be displayed varies depending on the values of the four gradation data for the four sub-pixels.
  • the gradation data values for the three sub-pixels that respectively display the three primary colors are corrected so that a constant chromaticity can be obtained regardless of the four gradation data values. be able to.
  • the three primary colors include red, green and blue. Examples of one color different from any of the three primary colors include white or yellow, but are not limited thereto.
  • the display device includes a display portion including a plurality of pixels each including four sub-pixels each displaying one of the three primary colors and one of the three primary colors, and the four above-described pixels.
  • the pixel included in the display unit in the display device has a characteristic in which the chromaticity of the color to be displayed varies depending on the values of the four gradation data for the four sub-pixels.
  • the values of the gradation data for the three sub-pixels that respectively display the three primary colors can be corrected so that a constant chromaticity can be obtained regardless of the values of the three gradation data.
  • FIG. 6 is a graph showing a gamma curve (gradation-luminance characteristic) when the input gradation of RGB is gamma-corrected in an embodiment of the present invention. It is a block diagram which shows the structure of the display apparatus which concerns on other embodiment of this invention.
  • FIG. 12 is a gamma correction graph showing RGB input gradation-output gradation characteristics in still another embodiment of the present invention. It is a flowchart which shows the gamma correction process in the display apparatus which concerns on further another embodiment of this invention.
  • It is a graph which shows the gamma curve in a prior art.
  • FIG. 10 is a diagram showing a gamma curve when the gradation of each RGB color is gamma-corrected in consideration of the chromaticity shift when the gradation of W is 189 gradations in the prior art.
  • FIG. 2 is a block diagram illustrating an outline of the display device 1 according to the present embodiment.
  • the display device 1 includes an RGBW image generation unit 10, a correction unit (acquisition unit, correction unit) 20, and an LCD (Liquid Crystal Display) (display unit) 30.
  • RGBW image generation unit 10 a correction unit (acquisition unit, correction unit) 20
  • LCD Liquid Crystal Display
  • the LCD 30 is configured to be able to display an image using four colors of red, green, blue and white (hereinafter also simply referred to as four-color display).
  • the LCD 30 includes an R pixel that is a sub-pixel that displays red, a G pixel that is a sub-pixel that displays green, and a B pixel that is a sub-pixel that displays blue (three sub-pixels each displaying three primary colors).
  • Pixel and four sub-pixels (all not shown) of W pixel (sub-pixel displaying one color different from all three primary colors) which is a sub-pixel displaying white as one color different from any of the three primary colors
  • the plurality of pixels are arranged in a matrix on the LCD 30.
  • the RGBW image generation unit 10 is one color different from any of the three primary colors from the RGB image data for three-color display including the three primary colors red, green, and blue (hereinafter also simply referred to as RGB). Image data for four-color display including white (W) is generated. The RGBW image generation unit 10 outputs the generated image data for four color display to the correction unit 20.
  • the correction unit 20 acquires four-color display image data (hereinafter also referred to as input image data) from the RGBW image generation unit 10.
  • the input image data includes gradation data for the four sub-pixels included in the LCD 30 (that is, gradation data for the R pixel, gradation data for the G pixel, gradation data for the B pixel, and W Pixel gradation data) is included for each pixel.
  • data displayed in one pixel including gradation data for R pixel, gradation data for G pixel, gradation data for B pixel, and gradation data for W pixel is pixel data.
  • what is included in the input image data is also referred to as input pixel data).
  • the correction unit 20 For each input pixel data included in the acquired input image data, the correction unit 20 is included in the input image data in accordance with the value of the W pixel gradation data (hereinafter also referred to as W input gradation data). An image correction process (gamma correction process) for correcting the gradation data value for each of the RGB pixels (hereinafter also referred to as RGB input gradation data) is performed. Further, the correction unit 20 outputs the image data after the gamma correction as output image data. Details of the correction unit 20 and gamma correction processing will be described later with different drawings.
  • FIG. 3 is a chromaticity diagram showing the relationship between RGBW input tone data values and whiteness, in which the chromaticity range that can be expressed by the LCD 30 is represented by triangles (RGB triangles) in the xy color space.
  • each vertex R, G, and B of a triangle has shown single color red, green, and blue, respectively.
  • the RGB input gradation data value is 255 gradations and the W input gradation data value is 0 gradation (in FIG. 3, R: 255).
  • G: 255, B: 255, W: 0 white is shown in the chromaticity diagram.
  • the RGBW input gradation data value is 189 gradations (in FIG. 3, chromaticities of R: 189, G: 189, B: 189, and W: 189)
  • the input gradation data White color shifted to a position closer to the vertex B than the chromaticity shown when the data value is 255 gradations is shown.
  • the RGBW input gradation data values are 189 gradations
  • the RGB input gradation data values are 255 gradations
  • the W input gradation data values are 0 gradations. Bluish white than in some cases. This is due to the characteristic of the liquid crystal display that the lower the value of RGB input gradation data or the value of W input gradation data, that is, the lower the luminance, the more the chromaticity of the pixel shifts to blue. is there.
  • the RGBW image generation unit 10 may generate RGBY image data for four-color display including yellow from RGB image data for three-color display.
  • the correction unit 20 performs gamma correction on the values of the RGB input gradation data according to the values of the yellow input gradation data.
  • the chromaticity may be corrected.
  • the LCD 30 can further display four colors by further including a sub-pixel that displays yellow in addition to the R pixel, the G pixel, and the B pixel. It only has to be configured.
  • a case where white is displayed on a pixel using each input gradation data of RGBW will be described as an example.
  • the present invention is not limited to this, and for example, a pixel Even when displaying a color other than white, such as yellow, is applicable.
  • FIG. 1 is a block diagram illustrating details of the configuration of the correction unit 20 according to the present embodiment.
  • the correction unit 20 includes an image correction unit 21 and a LUT (Lookup Table) storage unit 22 in order to improve the display characteristics of the LCD 30 described above.
  • LUT Lookup Table
  • the image correction unit 21 is a unit that performs gamma correction on the value of RGB input gradation data input to the correction unit 20 in accordance with the value of W input gradation data, and outputs the result as output image data.
  • the image correction unit 21 includes an LUT reading unit 23 and an RGB correction unit 24 as shown in FIG. 1 in order to correct the RGB input tone data values in accordance with the W input tone data values. I have.
  • the image correction unit 21 reads the LUT (look-up table) stored in the LUT storage unit 22 in the LUT reading unit 23, and the RGB correction unit 24 refers to the read LUT and the values of the RGB input gradation data Gamma correction.
  • the LUT storage unit 22 stores an LUT that is referenced by the RGB correction unit 24.
  • RGB gradation data hereinafter also referred to as RGB output gradation data
  • RGB output gradation data included in the output image data with respect to RGB input gradation data values (values before correction of gradation data) are stored.
  • a value value after gradation data correction
  • the LUT storage unit 22 stores as many LUTs as the number of values that the value of the input gradation data of W can take. For example, when the value of the W input gradation data can take 256 values from 0 gradation to 255 gradation, the LUT storage unit 22 stores each of the 256 W input gradation data values. The corresponding 256 types of LUTs only need to be stored. Details of the LUT will be described later.
  • the LUT reading unit 23 is a unit that reads an LUT corresponding to the value of W input gradation data from the LUT storage unit 22 and supplies the LUT to the RGB correction unit 24. Specifically, the LUT reading unit 23 acquires W input gradation data from the input image data, and reads the LUT corresponding to the gradation value indicated by the acquired W input gradation data from the LUT storage unit 22. To the RGB correction unit 24.
  • the RGB correction unit 24 is a means for generating RGB output gradation data by individually gamma-correcting RGB input gradation data values according to the value of W input gradation data. As shown in FIG. 1, the RGB correction unit 24 includes an R correction unit 241 that performs gamma correction on the value of R input gradation data, a G correction unit 242 that performs gamma correction on the value of G input gradation data, and B B correction unit 243 for performing gamma correction on the value of the input gradation data.
  • the R correction unit 241, the G correction unit 242, and the B correction unit 243 are configured to input the R input gradation data value, the G input gradation data value, and the B input.
  • the gradation data values are each gamma corrected to generate R output gradation data, G output gradation data, and B output gradation data.
  • the correction unit 20 outputs output image data including a plurality of pixel data including the W input gradation data input to the LUT reading unit 23 and the RGB output gradation data generated by the RGB correction unit 24.
  • FIG. 4 is a diagram illustrating an example of an LUT referred to in gamma correction in the correction unit 20 according to the present embodiment.
  • a plurality of LUTs are determined according to the value of W input gradation data.
  • the RGBW input gradation data values take 256 values from 0 gradation to 255 gradations will be described as an example, but the RGBW input gradation data values are taken as examples. The value obtained is not limited to this.
  • the LUT storage unit 22 stores 256 LUTs corresponding to 256 W input gradation data values from 0 gradation to 255 gradations.
  • the RGB input gradation data value is 0 gradation
  • the RGB output gradation data value is 0 gradation
  • the RGB input gradation data is 1 gradation.
  • the value of R output gradation data is 1 gradation
  • the value of G output gradation data is 2 gradations
  • the value of B output gradation data is 0.
  • the value of the output gradation data with respect to the value of the RGB input gradation data is set so that the amount of change in the output value increases, and the value of the output gradation data relative to the value of the RGB input gradation data becomes larger as the value of the RGB input gradation data becomes higher or lower.
  • the correction value is set so that the amount of change is small.
  • the value of R output gradation data is larger than the value of input gradation data
  • the value of B output gradation data is greater than the value of input gradation data.
  • a correction value is set such that the value of the R output gradation data is larger than the value of the input gradation data and smaller than the value of the G output gradation data.
  • the amount of change in the value of output gradation data with respect to the value of RGB input gradation data is the input of W
  • the correction value is set to be larger than the change amount of the output gradation data value with respect to the RGB input gradation data value when the gradation data value is high gradation or low gradation.
  • FIG. 5 is a gamma correction graph showing RGB input gradation-output gradation characteristics.
  • the solid line, broken line, and alternate long and short dash line graphs in FIG. 5 are respectively R input gradation data, G input gradation data, and B when the value of W input gradation data is 0 gradation.
  • 5 shows a graph of gamma correction of each value of the input gradation data.
  • the solid line, the broken line, and the one-dot-dotted thick line graph indicate the R input gradation data, the G input gradation data, and the B input when the value of the W input gradation data is 189 gradations.
  • FIG. 5 shows the value of the output gradation data relative to the value of the RGB input gradation data when the W input gradation data values are the 0 gradation and the 189 gradation in the LUT shown in FIG. Is a graph.
  • the image correction unit 21 has a case where the value of the W input gradation data is a low gradation and a high gradation (for example, 0 gradation and 255 gradation) and an intermediate gradation (for example, In the case of (189 gradation), gamma correction is performed so that the output gradation data value differs from the RGB input gradation data value. More specifically, the image correction unit 21 refers to the LUT shown in FIG. 4, and sets the output gradation data for the RGB input gradation data values when the W input gradation data value is an intermediate gradation.
  • the image correction unit 21 can perform more appropriate gamma correction according to the value of the W input gradation data by referring to the LUT shown in FIG.
  • the image correcting unit 21 corrects the G output gradation data value to a higher value, and corrects the B output gradation data value to a lower value, thereby correcting the RGB value.
  • Gamma correction is performed so as to cancel the chromaticity shift in the blue direction of white expressed in the LCD 30 due to the low value of the input gradation data and the value of the W input gradation data.
  • the image correction unit 21 corrects the value of the RGB input gradation data so that the white chromaticity represented by the RGB color mixture indicates the color on the complementary color side of the blue color on the LCD 30.
  • FIG. 6 is a flowchart showing a flow of gamma correction processing in the correction unit 20 according to the present embodiment.
  • the correction unit 20 acquires W input gradation data from each input pixel data included in the input image data in the LUT reading unit 23, and performs RGB correction.
  • the unit 24 acquires RGB input gradation data included in the input image data (step S1).
  • the LUT reading unit 23 Upon acquiring the W input gradation data, the LUT reading unit 23 reads the LUT corresponding to the W input gradation data from the LUT storage unit 22 (step S2). The LUT reading unit 23 supplies the read LUT to the RGB correction unit 24.
  • the RGB correction unit 24 refers to the supplied LUT, and each of the R correction unit 241, the G correction unit 242, and the B correction unit 243 provides R input gradation data.
  • G input gradation data value and B input gradation data value are gamma corrected to generate RGB output gradation data (step S3).
  • the correction unit 20 When RGB output gradation data is generated in the RGB correction unit 24, the correction unit 20 outputs output image data from a plurality of pixel data including the generated RGB output gradation data and W input gradation data. Generate and output (step S4).
  • the correction unit 20 repeats the processing from steps S1 to S4 described above, and outputs output image data.
  • FIG. 7 is a chromaticity diagram showing the relationship between RGBW input gradation and whiteness, in which the chromaticity range that can be expressed by the LCD 30 is represented by a triangle in the xy color space when gamma correction is performed.
  • FIG. 8 shows a gamma curve (grayscale-brightness) when the RGB input tone data values are gamma-corrected so as to cancel the RGBW chromaticity shift by referring to the LUT according to the W input tone data values. It is a graph which shows a characteristic.
  • the whiteness when the RGBW input gradation data value is 189 gradations (corrected R: 189 and G: 189 in FIG. 7).
  • B: 189, W: 189) the whiteness when the value of RGB input gradation data is 255 gradations and the value of W input gradation data is 0 gradations (in FIG. 7, R: 255, G: 255, B: 255, W: 0) can be obtained.
  • the RGB gamma curves are substantially the same, and an ideal gamma curve can be obtained.
  • the LCD 30 in the display device 1 including the correction unit 20 can display image data using four colors of one of the three primary colors and one of the three primary colors, and display by each input gradation data of the four colors. Even when the chromaticity of the pixel being changed has a characteristic of changing, the gradations of the three primary colors are corrected so that a constant chromaticity can be obtained in the LCD 30 regardless of the input gradations of the four colors. be able to.
  • FIG. 9 is a block diagram showing the configuration of the correction unit 20 ′ according to this embodiment.
  • the correction unit 20 ′ has the same configuration as the correction unit 20 according to the first embodiment except that the image correction unit 21 ′ further includes a correction value calculation unit 25.
  • the LUT storage unit 22 stores an LUT corresponding to the case where the value of the W input gradation data is 0 gradation and the value of the W input gradation data of 16 A case where an LUT corresponding to a value that is a multiple of is stored is described as an example.
  • the LUT reading unit 23 is a unit that reads an LUT corresponding to the value of the input gradation data of W from the LUT storage unit 22.
  • the LUT reading unit 23 acquires W input gradation data from the input image data. If the acquired W input gradation data value is a multiple of 16, the input gradation data value is set.
  • the corresponding LUT is read from the LUT storage unit 22.
  • the LUT reading unit 23 supplies the read LUT to the correction value calculation unit 25.
  • the LUT reading unit 23 determines the value of the W input gradation data as the most. LUTs corresponding to two near gradations are read out. Specifically, when the value of the input gradation data of W is 8 gradations, the LUT reading unit 23 performs LUT corresponding to each of 0 gradation and 16 gradations which are the nearest two gradations. Is read.
  • the LUT reading unit 23 when the value of the W input gradation data is 10 gradations, the LUT corresponding to the closest gradation 16 gradations and the second closest gradation 0 What is necessary is just to read LUT corresponding to a gradation.
  • the LUT reading unit 23 supplies the two read LUTs to the correction value calculation unit 25.
  • the correction value calculation unit 25 supplies the supplied LUT to the RGB correction unit 24 as it is. Further, when there are two LUTs supplied from the LUT reading unit 23, the correction value calculation unit 25 performs a correction value calculation process for calculating a value used for gamma correction performed by the RGB correction unit 24, and performs calculation. The obtained value is supplied to the RGB correction unit 24.
  • the correction value calculation process will be described later with different drawings.
  • the LUT reading unit 23 is configured to supply the read LUT to the correction value calculating unit 25 when the value of the input gradation data of W is a multiple of 16, for example.
  • the present invention is not limited to this.
  • a configuration may be employed in which the LUT reading unit 23 directly supplies the read LUT to the RGB correction unit 24 when the value of the input gradation data of W is a multiple of 16.
  • FIG. 10 is a diagram illustrating an example of an LUT referred to in gamma correction in the correction unit 20 ′ according to the present embodiment.
  • FIG. 10 when the values of each gradation data of RGBW take 256 values from 0 gradation to 255 gradation, every 16 gradations (every multiple of 16 including 0 gradation)
  • the present invention is not limited to this example.
  • the LUT storage unit 22 stores 16 types of LUTs corresponding to the input gradation of W every 16 gradations from 0 gradation to 255 gradations.
  • the RGB input gradation data value is 0 gradation
  • the RGB output gradation data value is 0 gradation
  • the RGB input gradation data value is 1 gradation
  • the R output gradation data value is 1 gradation
  • the G output gradation data value is 2 gradations
  • the B output gradation data value is 0 gradations.
  • the value of RGB output gradation data is determined to be 255 gradations. It has been.
  • the LUT stored in the LUT storage unit 22 is an example of 16 LUTs corresponding to the case where the value of the W input gradation data is a gradation for every 16 gradations.
  • the present invention is not limited to this.
  • an LUT corresponding to the case where the value of the W input gradation data is a gradation for every 8 gradations may be provided, and the value of the W input gradation data is set for each value of the predetermined gradation data. What is necessary is just to provide the LUT corresponding to the case of gradation.
  • the number of LUTs corresponding to the case where the value of the W input gradation data is low gradation and high gradation is reduced that is, the interval between the values of the W input gradation data for which the LUT is defined is wide.
  • the number of LUTs corresponding to the case where the value of the input gradation data of W is an intermediate gradation is large (that is, the input gradation data of W for which the LUT is defined).
  • a configuration in which the interval between values is narrow may be adopted.
  • FIG. 11 is a graph of gamma correction showing the input gradation-output gradation characteristics of RGB.
  • the solid line, broken line, and alternate long and short dash line graphs in FIG. 11 show the R input gradation data, the G input gradation data, and the B input gradation data when the value of the W input gradation data is 0 gradation.
  • 3 shows a gamma correction graph of each value of input gradation data.
  • FIG. 11 is a graph showing the output gradation relative to the RGB input gradation when the value of the input gradation data of W is 0 gradation and 16 gradations in the LUT shown in FIG. is there.
  • the input gradation-output gradation characteristics of RGB are different between the case where the input gradation of W is 0 gradation and the case of 16 gradations. Perform gamma correction.
  • the amount of change in the value of the output gradation data relative to the value of the RGB input gradation data in the case where the value of the input gradation data of W is an intermediate gradation in the image correction unit 21 is the input of W.
  • Gamma correction is performed so that the amount of change in the value of the output gradation data with respect to the value of the input gradation data of RGB when the value of the gradation data is low gradation and high gradation is larger.
  • the image correction unit 21 ′ corrects the output gradation data value of G to a higher gradation and corrects the output gradation data value of B to a lower gradation.
  • the gamma correction is performed so as to cancel the chromaticity shift in the blue direction of the white color expressed in each pixel of the LCD 30 due to the low values of the RGB input gradation data and the W input gradation data.
  • the image correcting unit 21 ′ corrects the RGB input gradation so that the white chromaticity expressed by the RGB color mixture indicates the color on the complementary color side of blue in each pixel of the LCD 30.
  • FIG. 12 is a graph in which a part of the input gradation-output gradation characteristic shown in FIG. 11 is enlarged.
  • the value of G output gradation data is calculated when the value of W input gradation data is 8 gradations
  • the value of RGB input gradation data is Tin
  • the value of G output gradation data when the value of W input gradation data is 0 gradation with respect to Tin is TG0out
  • W The value of G output gradation data when the value of the input gradation data of 16 is 16 gradations
  • the value of G output gradation data when the value of the input gradation data of W is 8 gradations
  • the value of G output gradation data Is TG8out Is TG8out.
  • TG8out is calculated based on the values of TG0out and TG16out.
  • TG8out (TG16out ⁇ 8 + TG0out ⁇ 8) / 16 Equation 1
  • the value of RGB output gradation data when the value of W input gradation data is W1 is To1
  • the value of RGB output gradation data when the value of the output gradation data of To is To2
  • the value of the input gradation data of W that is not defined in the LUT is Wa, which is a value between W1 and W2.
  • Ta Ta
  • the RGB output gradation data values in the W input gradation data values not defined in the LUT are more generally expressed as follows.
  • FIG. 13 is a flowchart showing a gamma correction process in the correction unit 20 ′ according to this embodiment.
  • the correction unit 20 ′ acquires W input gradation data of each input pixel data included in the input image data in the LUT reading unit 23, and performs RGB correction.
  • the unit 24 acquires RGB input gradation data of each input pixel data included in the input image data (step S11).
  • the LUT reading unit 23 Upon acquiring the W input gradation data, the LUT reading unit 23 reads the LUT corresponding to the value of the W input gradation data from the LUT storage unit 22 (step S12). The LUT reading unit 23 supplies the read LUT to the correction value calculation unit 25.
  • the correction value calculation unit 25 determines whether or not the correction value calculation process described above is necessary (step S13).
  • the correction value calculation unit 25 may include a method of determining whether the number of LUTs supplied from the LUT reading unit 23 is one or two. Specifically, when the supplied LUT is one (that is, when the value of the input gradation data of W is a multiple of 16), it is determined that the correction value calculation processing is unnecessary, When two LUTs are supplied (that is, when the value of W input gradation data is a value other than a multiple of 16), it is determined that correction value calculation processing is necessary. Note that the determination method in the present invention is not limited to this.
  • the correction value calculation unit 25 executes the above-described correction value calculation process based on the two LUTs supplied from the LUT reading unit 23. (Step S14). The correction value calculation unit 25 supplies the calculated correction value to the RGB correction unit 24.
  • the correction value calculation unit 25 supplies the LUT supplied from the LUT reading unit 23 to the RGB correction unit 24 as it is.
  • the RGB correction unit 24 refers to the supplied LUT, and each of the R correction unit 241, the G correction unit 242, and the B correction unit 243 has an R input gradation.
  • the data value, the G input gradation data value, and the B input gradation data value are gamma corrected to generate RGB output gradation data (step S15).
  • the correction unit 20 ′ When the value of RGB output gradation data is generated by the RGB correction unit 24, the correction unit 20 ′ includes a plurality of pixel data including the generated RGB output gradation data and W input gradation data. Output image data is output (step S4).
  • the correction unit 20 ′ repeats the above-described processing from steps S ⁇ b> 1 to S ⁇ b> 4 every time input image data is input, and outputs output image data.
  • the RGB input gradation data has a value of 255 gradations and the W input gradation data regardless of the value of the RGBW input gradation data. It is possible to obtain the same whiteness as the whiteness when the value of is 0 gradation.
  • the RGB gamma curves are substantially the same, and an ideal gamma curve can be obtained.
  • the LCD 30 in the display device 1 including the correcting unit 20 ′ can display the image data in four colors, and the chromaticity of the image displayed in the pixel changes depending on the values of the input gradation data of the four colors. Even in the case of having the characteristics, the values of the gradation data of the three primary colors can be corrected so that a constant chromaticity can be obtained in the LCD 30 regardless of the values of the input gradation data of the four colors.
  • FIG. 14 is a block diagram illustrating a configuration of the correction unit 20 ′′ according to the present embodiment. As illustrated in FIG. 14, the correction unit 20 ′′ is replaced with the image correction unit 21 and the LUT storage unit 22, and The configuration is the same as that of the correction unit 20 according to the first embodiment except that the image correction unit 21 ′′ is provided.
  • the image correction unit 21 ′′ performs gamma correction on the value of the RGB input gradation data in accordance with the value of the W input gradation data, and generates RGB output gradation data. Therefore, a first RGB correction unit 24a and a second RGB correction unit 24b are provided.
  • a first LUT (a first LUT) that determines correction values for RGB input tone data values, regardless of W input tone data values. Lookup table) is stored.
  • the storage unit (not shown) provided in the second RGB correction unit 24b stores the RGB input tone data values corrected based on the first LUT according to the W input tone data values.
  • a second LUT (second look-up table) for determining a correction value to be corrected is stored. Details of the first LUT and the second LUT will be described later.
  • the first RGB correction unit 24a is a means for individually gamma-correcting RGB input gradation data values regardless of W input gradation data values.
  • the first RGB correction unit 24a performs gamma correction on the values of RGB input gradation data individually, so that the R correction unit 241a that performs gamma correction on the values of R input gradation data, A G correction unit 242a for correcting and a B correction unit 243a for performing gamma correction on the value of the input gradation data of B are provided.
  • the first RGB correction unit 24a acquires RGB input gradation data of each input pixel data included in the input image data
  • the first RGB correction unit 24a reads a correction value for the value of the RGB input gradation data from the first LUT, and the R correction unit 241a
  • the G correction unit 242a and the B correction unit 243a perform gamma correction on the values of RGB input gradation data based on the read correction values.
  • the first RGB correction unit 24a supplies RGB input gradation data values subjected to gamma correction to the second RGB correction unit 24b.
  • the second RGB correction unit 24b is means for further performing gamma correction on the value of the RGB input gradation data supplied from the first RGB correction unit 24a in accordance with the value of the W input gradation data.
  • the second RGB correction unit 24b includes an R correction unit 241b that further performs gamma correction on the value of the R input gradation data, a G correction unit 242b that further performs gamma correction on the value of the G input gradation data, and the B input gradation.
  • a B correction unit 243b for further gamma-correcting the data value is provided.
  • the second RGB correction section 24b receives W for further correcting the value of the RGB input gradation data from the second LUT.
  • the correction value corresponding to the value of the input gradation data is read out.
  • the second RGB correction unit 24b performs gamma correction on the values of the RGB input gradation data based on the read correction values in the R correction unit 241b, the G correction unit 242b, and the B correction unit 243b.
  • the correction unit 20 ′′ outputs output image data including a plurality of pieces of pixel data including W input gradation data and RGB output gradation data subjected to gamma correction in the first RGB correction unit 24a and the second RGB correction unit 24b. .
  • FIG. 15 is a diagram showing an example of an LUT that is referred to in gamma correction in the correction unit 20 ′′ according to the present embodiment.
  • FIG. 15A is a diagram that is referred to in gamma correction in the first RGB correction unit 24a.
  • An example of the 1LUT is shown, and
  • FIG. 7B shows an example of the second LUT referred to in the gamma correction in the second RGB correction unit 24b.
  • correction values for RGB input gradation data values are defined in the first LUT.
  • 256 values of RGB input gradation data are defined from 256 gradations from 0 gradation to 255 gradations.
  • RGB correction values for the RGB input gradation data values defined in the first column of the LUT are defined.
  • the second LUT is subjected to gamma correction in the first RGB correction unit 24a according to the value of the input gradation data of W corresponding to each of the 0th gradation to the 255th gradation.
  • a correction value for further correcting the value of the RGB input gradation data is determined.
  • the correction value for further correcting the value of the input gradation data of G that has been gamma-corrected in the first RGB correction unit 24a is “ “+1” is defined, and “ ⁇ 1” is defined as a correction value for further correcting the value of the input gradation data of B.
  • the amount of change is corrected to be larger than the amount of change in the value of the output gradation data with respect to the value of the RGB input gradation data when the value of the W input gradation data is high gradation or low gradation. Value is set.
  • FIG. 16 is a gamma correction graph showing RGB input gradation-output gradation characteristics.
  • the solid line, broken line, and alternate long and short dash line graphs in FIG. 16 indicate the R input gradation data, the G input gradation data, and the B input gradation data when the value of the W input gradation data is 0 gradation.
  • 3 shows a gamma correction graph of each value of input gradation data.
  • the solid line, the broken line, and the one-dot-dotted thick line graph indicate the R input gradation data, the G input gradation data, and the B input when the value of the W input gradation data is 189 gradations.
  • a graph of gamma correction of each value of gradation data is shown.
  • the correction value for the RGB input gradation data values defined in the first LUT shown in FIG. 16 is a graph.
  • the image correction unit 21 ′′ uses the RGB input gradation-output gradation characteristics depending on whether the value of the W input gradation data is 0 gradation or 189 gradation. Gamma correction so that is different.
  • the image correction unit 21 ′′ refers to the second LUT shown in FIG. 15B and determines the value of the RGB input gradation data when the value of the W input gradation data is an intermediate gradation.
  • the amount of change in the value of the output gradation data is greater than the amount of change in the value of the output gradation data with respect to the value of the RGB input gradation data when the value of the W input gradation data is the low gradation and the high gradation.
  • the image correction unit 21 ′′ can perform more appropriate gamma correction according to the value of the input gradation data of W by referring to the first LUT and the second LUT shown in FIG. it can.
  • the image correction unit 21 ′′ corrects the output gradation data value of G to a higher gradation and corrects the output gradation data value of B to a lower gradation.
  • Gamma correction is performed so as to cancel the chromaticity shift of white in the blue direction expressed in each pixel of the LCD 30 due to the low values of RGB input gradation data and W input gradation data.
  • the image correcting unit 21 ′′ corrects the input gradation of RGB in each pixel of the LCD 30 so that the white chromaticity expressed by the RGB color mixture indicates the color on the complementary color side of blue.
  • FIG. 17 is a flowchart showing the gamma correction process in the correction unit 20 ′′ according to the present embodiment.
  • the correction unit 20 ′′ first acquires RGB input gradation data of each input pixel data included in the input image data in the first RGB correction unit 24a. (Step S21).
  • the first RGB correction unit 24a When the first RGB correction unit 24a acquires the RGB input gradation data, the first RGB correction unit 24a refers to the first LUT and performs gamma correction on the value of the RGB input gradation data (step S22). The first RGB correction unit 24a supplies the corrected RGB input gradation data to the second RGB correction unit 24b.
  • the second RGB correction unit 24b acquires the W input tone data input to the correction unit 20 ′′ (step S23). ).
  • the second RGB correction unit 24b refers to the second LUT, further gamma-corrects the supplied RGB input tone data values according to the acquired W input tone data values, and outputs RGB output tone data. Is generated (step S24).
  • the correction unit 20 ′′ displays the RGB output gradation data after the gamma correction and the W input gradation data.
  • Output image data including a plurality of pixel data including the data is output (step S25).
  • correction unit 20 repeats the above-described processing from step S1 to S4 each time input image data is input, and outputs output image data.
  • the RGB input gradation data value is 255 gradations and the W input gradation data value is equal to any value regardless of the RGBW input gradation data value.
  • the same whiteness as the whiteness when the value is 0 gradation can be obtained.
  • the RGB gamma curves are substantially the same, and an ideal gamma curve can be obtained.
  • the LCD 30 in the display device 1 including the correction unit 20 ′′ can display the image data in four colors, and the characteristics in which the chromaticity of the image displayed in each pixel changes according to the input gradation data of the four colors. Even in the case of having, the gray levels of the three primary colors can be corrected so that a constant chromaticity can be obtained in each pixel of the LCD 30, regardless of the input gray level data of the four colors.
  • the correction unit 20 ′′ corrects the input gradation data values of the three primary colors according to the first LUT, and then corrects the input levels of the three primary colors according to the first LUT according to the second LUT.
  • the tone data value is further corrected, so that only two LUTs are determined, and the input tone data value of one primary color that is different from any of the three primary colors is determined according to the input tone data value of the three primary colors. Therefore, the storage area necessary for storing the LUT in the image correction unit 21 ′′ can be reduced.
  • a display device includes a display portion including a plurality of pixels each including four sub-pixels each displaying one of the three primary colors and one of the three primary colors.
  • Acquisition means for acquiring image data including four gradation data for the four sub-pixels for each pixel, and three for the three sub-pixels for displaying the three primary colors for each pixel
  • correction means for correcting the value of the gradation data in accordance with the value of the gradation data for the sub-pixel displaying one color different from any of the three primary colors.
  • a correction method includes a display including a plurality of pixels each including four sub-pixels each displaying one of the three primary colors and one of the three primary colors.
  • the gradation data value for the pixel is corrected. Therefore, the pixel included in the display unit (for example, a liquid crystal display) in the display device has a characteristic in which the chromaticity of the color to be displayed varies depending on the values of the four gradation data for the four sub-pixels.
  • the gradation data values for the three sub-pixels that respectively display the three primary colors are corrected so that a constant chromaticity can be obtained regardless of the four gradation data values. be able to.
  • the three primary colors include red, green and blue. Examples of one color different from any of the three primary colors include white or yellow, but are not limited thereto.
  • the correction unit displays each of the three primary colors according to the value of the gradation data for the sub-pixel that displays one color different from any of the three primary colors.
  • the three gradation data for the three sub-pixels that display each of the three primary colors with reference to a look-up table that determines correction values for the three gradation data values for the three sub-pixels. It is preferable to correct the value of.
  • the display means has the lookup table in which a correction value is set in advance according to the value of the gradation data for the sub-pixel that displays one color different from any of the three primary colors.
  • the gradation data values for the three sub-pixels displaying the three primary colors are corrected. Accordingly, the correction unit can easily determine a corrected value for the value before correction of the gradation data for the three sub-pixels that respectively display the three primary colors.
  • a plurality of the lookup tables are determined according to the value of the gradation data for the sub-pixel displaying one color different from any of the three primary colors.
  • the look-up tables when the gradation data values for the three subpixels that display the three primary colors are intermediate gradations, the three subpixels that display the three primary colors, respectively.
  • the correction value is set so that the change amount of the corrected value with respect to the value before correction of the gradation data for use is increased, and the value of the gradation data for the three sub-pixels displaying each of the three primary colors As the gradation becomes higher gradation or lower gradation, the amount of change in the value after correction with respect to the value before correction of the gradation data for the three sub-pixels for displaying the three primary colors becomes smaller. Correction value is set, it is preferable.
  • the correction value set in the look-up table is such that the gradation data values for the three sub-pixels displaying the three primary colors are changed from a low gradation to an intermediate gradation.
  • the change in the value after correction with respect to the value before the correction of the gradation data is set to be large, and the value after correction with respect to the value before the correction of the gradation data as the intermediate gradation becomes a high gradation. Is set to be small.
  • the four sub-pixels that is, one for the pixels included in the image data in which the chromaticity displayed on the pixel is input depending on the characteristics of the pixels included in the display unit in the display device.
  • an intermediate gradation that is greatly deviated from the chromaticity indicated by each value of the gradation data
  • the chromaticity displayed on the pixel does not greatly deviate from the chromaticity indicated by each value of the four gradation data for one pixel included in the input image data as compared with the intermediate gradation.
  • the low gradation and the high gradation it is possible to prevent the correction of the gradations of the three primary colors from being corrected more than necessary.
  • the three primary colors are red, green, and blue
  • the gradation data for the sub-pixel that displays green in the correction unit is displayed in the lookup table.
  • the correction value is set so that the corrected value is larger than the value before correction, and the corrected value of the gradation data for the sub-pixel displaying the blue color in the correction means is corrected.
  • a correction value that is smaller than the previous value is set, and the corrected value of the gradation data for the sub-pixel that displays red in the correction means is larger than the value before correction.
  • it is preferable that a correction value that is smaller than the corrected value of the gradation data for the sub-pixel that displays the green color is set.
  • the correction unit refers to the lookup table so that the corrected value of the gradation data for the sub-pixel displaying the green color and the red color is greater than the value before correction.
  • the correction is made so that the value after correction of the gradation data for the sub-pixel displaying the blue color is smaller than the value before correction.
  • the chromaticity indicated by the four gradation data after correction is smaller than the chromaticity indicated by the four gradation data before correction, and the green and red colors are reduced. It is corrected to increase the degree. Further, it is preferable that the chromaticity of the complementary color of blue, which is a mixed color of green and red, is increased by increasing the chromaticity of green and red.
  • the look-up table is defined by the number of values that the gradation data for the sub-pixel displaying one color different from any of the three primary colors can take. It is preferable.
  • the display device corresponds to the value of the gradation data as many as the number of values of the gradation data for the sub-pixel displaying one color different from any of the three primary colors.
  • a lookup table for determining correction values for the gradation data values for the three sub-pixels for displaying the three primary colors respectively.
  • the value of the gradation data for the sub-pixel displaying one color different from any of the three primary colors can take 256 values from 0 gradation to 255 gradation. It is sufficient that the 256 lookup tables corresponding to the 256 gradation data values are provided.
  • the lookup table includes, for each value of predetermined gradation data, the gradation data for the sub-pixel that displays one color different from any of the three primary colors. It is preferable that it is defined.
  • the said display apparatus has the said look-up table for every said predetermined value of the said gradation data for the said sub pixel which displays one color different from all of the said three primary colors.
  • the display device only needs to have the lookup table defined for every 16 gradations of the gradation data for the sub-pixel that displays one color different from any of the three primary colors.
  • the gradation data value for the sub-pixel displaying one color different from any of the three primary colors can take 256 values from 0 gradation to 255 gradation, It suffices to have 16 different lookup tables, which are 1/16.
  • the look-up table is compared with the case where the look-up table is defined by the number of values of the gradation data for the sub-pixel that displays one color different from any of the three primary colors.
  • the storage area required for storing the table can be reduced.
  • gradation data value for the sub-pixel that displays one color different from any of the three primary colors is not the predetermined value, a plurality of lookups determined according to the predetermined value are used. What is necessary is just to calculate using a table.
  • the lookup table includes a case where a value of the gradation data for the sub-pixel displaying one color different from any of the three primary colors is an intermediate gradation.
  • a value of the gradation data for the sub-pixel displaying one color different from any of the three primary colors is an intermediate gradation.
  • the correction value is set to be larger than the amount of change.
  • the correction unit refers to the look-up table, and according to the value of the gradation data for the sub-pixel that displays one color different from any of the three primary colors. Appropriate gamma correction can be performed.
  • the look-up table displays each of the three primary colors regardless of the value of the gradation data for the sub-pixel that displays one color different from any of the three primary colors.
  • a first lookup table for determining correction values for the gradation data values for the three sub-pixels to be displayed, and the gradation data for the sub-pixels for displaying one color different from any of the three primary colors.
  • a second value that determines a correction value for further correcting the value of the gradation data for the three sub-pixels that display each of the three primary colors, corrected based on the first look-up table, according to the value.
  • a lookup table is
  • the display device corrects the values of the gradation data for the three sub-pixels that respectively display the three primary colors according to the first lookup table, and then corrects the second data.
  • the gradation data values for the three sub-pixels that respectively display the three primary colors corrected according to the first lookup table are further corrected according to the lookup table.
  • the value of the gradation data for the sub-pixel displaying one color different from any of the three primary colors is an intermediate gradation in the second lookup table.
  • the correction value for further correcting the gradation data for the three sub-pixels that display each of the three primary colors is the gradation for the sub-pixel that displays one color different from any of the three primary colors.
  • the correction value is set to be larger than the correction value for further correcting the gradation data for the three sub-pixels displaying each of the three primary colors. It is preferable that it is set.
  • the correction unit refers to the tick-up table, and more according to the value of the gradation data for the sub-pixel displaying one color different from any of the three primary colors. Appropriate gamma correction can be performed.
  • Each block of the display device 1 may be realized in hardware by a logic circuit formed on an integrated circuit (IC chip), or may be realized in software using a CPU (Central Processing Unit). .
  • IC chip integrated circuit
  • CPU Central Processing Unit
  • the display device 1 includes a CPU that executes instructions of a program that realizes each function, a ROM (Read Memory ⁇ ) that stores the program, a RAM (Random Access Memory) that expands the program, the program, and various types
  • a storage device such as a memory for storing data is provided.
  • An object of the present invention is to provide a recording medium in which a program code (execution format program, intermediate code program, source program) of a control program of the display device 1 which is software that realizes the above-described functions is recorded so as to be readable by a computer. This can also be achieved by supplying the display device 1 and reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU).
  • Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R.
  • IC cards including memory cards
  • semiconductor memories such as mask ROM / EPROM / EEPROM / flash ROM, or PLD (Programmable logic device) or FPGA (Field Programmable Gate Array) Logic circuits can be used.
  • the program code may be supplied to the display device 1 via a communication network.
  • the communication network is not particularly limited as long as it can transmit the program code.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network (Virtual Private Network), telephone line network, mobile communication network, satellite communication network, etc. can be used.
  • the transmission medium constituting the communication network may be any medium that can transmit the program code, and is not limited to a specific configuration or type.
  • wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL (Asymmetric Digital Subscriber Line) line, infrared such as IrDA or remote control, Bluetooth (registered trademark), IEEE 8021 wireless, HDR (High Data) Rate), NFC (Near Field Communication), DLNA (Digital Living Network Alliance), mobile phone network, satellite line, terrestrial digital network, and the like.
  • wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL (Asymmetric Digital Subscriber Line) line, infrared such as IrDA or remote control, Bluetooth (registered trademark), IEEE 8021 wireless, HDR (High Data) Rate), NFC (Near Field Communication), DLNA (Digital Living Network Alliance), mobile phone network, satellite line, terrestrial digital network, and the like.
  • wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL (Asymmetric Digital Subscriber Line) line, infrared such as IrDA or remote control, Bluetooth (registered trademark), IEEE
  • the display device can be suitably applied to a television receiver, a personal computer, a car navigation system, a mobile phone, a digital camera, a digital video camera, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

 本発明の一態様に係る表示装置は、3原色及び3原色の何れとも異なる1色をそれぞれ表示する4つのサブ画素から構成される画素を複数備えるLCD(30)と、4つのサブ画素用の4つの階調データを画素毎に含む画像データを取得し、画素毎に、3原色をそれぞれ表示する3つのサブ画素用の3つの階調データの値を、3原色の何れとも異なる1色を表示するサブ画素用の階調データの値に応じて補正する補正部(20)とを備えている。

Description

表示装置、補正方法、プログラム及び記録媒体
 本発明は、画像データの補正を行う表示装置、及び、補正方法に関する。また、コンピュータをそのような表示装置として動作させるためのプログラム、及び、そのようなプログラムが格納された記録媒体に関する。
 従来、液晶ディスプレイを備える表示装置では、光の3原色(赤色、青色、及び、緑色)の3色を用いて様々な色を表現し、画像を表示している。これに対し、近年では、3原色に、さらに他の1色(例えば、白色、又は、黄色など)を加えた4色を用いて、様々な色を表現し、画像を表示する表示装置が開発されてきている。
 表示装置に備えられるディスプレイでは、3原色(以降、単にRGBとも呼称する)を用いて色を表現する場合、原理的には、RGBのそれぞれの階調データの値が等しいとき、白色の色度を示すことが知られている。しかし、ディスプレイが液晶ディスプレイである場合には、後述するように、RGBのそれぞれの階調データの値を255階調とした場合、中間階調である189階調にした場合、及び、1階調にした場合のそれぞれの場合において表現される白色の色度が異なることがある。これは、RGBの階調データの値が低くなるほど、すなわち、輝度が低くなるほど、画素における色度が青色へシフトするという液晶ディスプレイの特性によるものである。
 ここで、図18を参照して、色度図における、入力画像データに含まれる画素データ毎のRGBの階調データと白色度との関係について説明する。図18は、3色表示用の液晶ディスプレイが表現できる色度範囲をxy色空間において三角形(RGB三角形)で表した、入力画像データに含まれる画素データ毎のRGBの階調データの値と白色度との関係を示す色度図である。なお、三角形の各頂点R、G及びBは、それぞれ、単色の赤色、緑色及び青色を示している。
 図18に示すように、RGBの各階調データの値がそれぞれ255階調(図18において、R:255、G:255、B:255の色度)である場合には、色度図において白色(いわゆる、無彩色)を示す(以降、単に255階調の白とも呼称する)。RGBの各階調データの値がそれぞれ189階調(図18において、R:189、G:189、B:189の色度)である場合には、255階調である場合に示す色度よりも、頂点Bに近い位置にシフトしている(以降、単に189階調の白とも呼称する)。また、RGBの各階調データの値がそれぞれ1階調(図18において、R:1、G:1、B:1の色度)である場合には、189階調である場合よりも、さらに、頂点Bに近い位置にシフトしている(以降、単に1階調の白とも呼称する)。つまり、255階調の白と比較すると、189階調の白は青味がかった色になり、1階調の白は、189階調の白よりも、さらに青味がかった色になる。
 次に、図19を参照して、RGBのそれぞれのガンマカーブ(階調-輝度特性)について説明する。図19は、赤色、緑色及び青色のそれぞれのガンマカーブを示すグラフである。ガンマカーブは、図19に示すように、入力画像データに含まれる画素データ毎のRGBの各階調データに対する輝度の特性を示している。
 図19に示すように、RGBの各ガンマカーブ特性は、青色の階調データに対する輝度が最も高くなっており、緑色の階調データに対する輝度が最も低くなっており、赤色の階調データに対する輝度は、青色と緑色のそれぞれの階調に対する輝度の間の値になっている。
 ここで、図19に示すガンマカーブ特性を補正するために従来用いられてきた補正部について、図20から図24を用いて説明する。図20は、従来技術における補正部120を備えた表示装置100の構成の概略を示すブロック図である。図21は、従来技術における補正部120において参照されるルックアップテーブル(LUT:Lookup Table)の一例を示す図である。
 図20に示すように、従来技術における表示装置100は、入力画像データに対してLUTを参照してガンマ補正を行う補正部120、及び、画像の表示を行うLCD(LiquidCrystal Display)130を備えている。
 補正部120は、入力画像データに含まれる画素データ毎の、赤色の階調を示すR階調データ、緑色の階調を示すG階調データ、及び、青色の階調を示すB階調データのそれぞれの階調データの値を、図21に示す、LUTを参照することにより補正する。より詳細には、補正部120は、図21に示すLUTを参照し、R階調データの値を補正するR補正部121、G階調データの値を補正するG補正部122、及び、B階調データの値を補正するB補正部123において、入力画像データに含まれる画素データ毎の、赤色、緑色及び青色の階調データの値をそれぞれ個別に補正する。
 次に、補正部120に入力された入力画像データに含まれる画素データ毎の赤色、緑色及び青色の入力階調データの値に対する、補正部120から出力される出力画像データに含まれる画素データ毎の赤色、緑色及び青色の出力階調データの値(入力階調-出力階調特性)を示すガンマ補正のグラフを図22に示す。補正部120は、図22に示すように、緑色の階調について、入力階調データの値に対する出力階調データの値が大きくなるようにガンマ補正する。また、青色の階調について、入力階調データの値に対する出力階調データの値が小さくなるようにガンマ補正し、赤色の階調については、入力階調データの値と出力階調データの値とがほぼ同一となるようガンマ補正する。
 図22に示すようなガンマ補正を行った場合の、RGBそれぞれのガンマカーブ(階調-輝度特性)を、図23に示す。補正部120は、LUTを参照してガンマ補正することにより、図23に示すように、RGBのそれぞれが略同一なガンマカーブ、すなわち、理想的なガンマカーブを得ることができる。
 また、図24に、液晶ディスプレイが表現できる色度範囲をxy色空間において三角形(RGB三角形)で表した、入力画像データに含まれる画素データ毎のRGBの階調データの値と白色度との関係を示す色度図を示す。図24示すように、189階調のRGBにガンマ補正を行った後の白の色度、及び、1階調のRGBにガンマ補正を行った後の白の色度は、共に、255階調の白の色度と略同一になる。つまり、LUTを参照してガンマ補正することにより、同じ白色を表現するために、異なる階調のRGBの階調データが入力された場合にも、同じ色度の白色を得ることができる。
 なお、特許文献1には、従来から用いられている、3原色のガンマカーブ特性をそれぞれ独立したルックアップテーブル(LUT)を用いて補正する、いわゆる独立ガンマ補正に関する技術が開示されている。
 また、非特許文献1には、入力画像データのうち青色のみの輝度を下げるLUTを用いることによって入力画像データの青偏移を抑える技術が開示されている。
日本国公開特許公報「特開2005-328386号公報(2005年5月14公開)」
岡野幸夫、塩谷望、「液晶ディスプレイパネルの色再現特性とその標準色再現」、シャープ技報、シャープ株式会社、2001年8月、第80号、p.43-46
 しかしながら、特許文献1、非特許文献1、及び、上述した従来技術では、白色を3原色及び3原色と異なる1色の4色で表現しようとする場合には、異なる階調のRGBの階調データが入力された場合に、同じ色度の白色を得ることができない。
 例えば、RGBにW(白色)を加えた4色で画像を表示する場合を例に挙げ、図25から図29を参照して説明する。図25は、液晶ディスプレイが表現できる色度範囲をxy色空間において三角形で表した、入力画像データに含まれる画素データ毎のRGBWの階調データの値と白色度との関係を示す色度図である。
 本来であれば、RGBの各階調データの値がそれぞれ255階調であってWの階調データの値が0階調である場合の白色度と、RGBWの各階調データの値がそれぞれ189階調である場合の白色度とは、同じ色度になるはずである。ここで、原理的には、RGBの各階調データの値がそれぞれ189階調である場合の輝度は、RGBの各階調データの値がそれぞれ255階調である場合の輝度の半分である。また、Wの階調データの値が189階調である場合の輝度と、RGBの各階調データの値がそれぞれ189階調である場合の輝度は同じである。したがって、原理的には、RGBの各階調データの値がそれぞれ255階調である場合の半分の輝度である、189階調のRGB及びWが合わさることにより、RGBがそれぞれ255階調である場合と同じ輝度になるはずだからである。
 しかし、図25に示すように、RGBWの各階調データの値がそれぞれ189階調である場合の白色度は、RGBの各階調データの値がそれぞれ255階調であってWの階調データの値が0階調である場合の白色度よりも、頂点B(青色)にシフトしてしまっている。これは、Wの階調データの値が低くなるほど、すなわち、輝度が低くなるほど、画素において表現できる色度が青色へシフトするという液晶ディスプレイの特性によるものである。
 図25に示すように、RGBの各階調データの値がそれぞれ255階調であってWの階調データの値が0階調(図25において、R:255、G:255、B:255、W:0の色度)である場合には、色度図において白色を示している。これに対し、RGBWの各階調データの値がそれぞれ189階調(図25において、R:189、G:189、B:189、W:189の色度)である場合には、255階調である場合に示す色度よりも、頂点Bに近い位置にシフトしている。
 次に、従来技術における補正部120を用いて入力画像データを補正した場合の、入力画像データに含まれる画素データ毎の階調データの値と白色度との関係を示す色度図を、図26に示す。図26に示すように、RGBWの各階調データの値がそれぞれ189階調であるとき、RGBの階調データの値を補正した場合の白色度は、RGBの階調データの値を補正しない場合の白色度よりも、白色側にシフトしている。しかし、RGBの各階調データの値を補正しても、RGBの各階調データの値がそれぞれ255階調であってWの階調データの値が0階調である入力画像データが示す白色度と同じにはならない。
 そこで、Wの階調データの値が189階調である場合の色度シフトを考慮してRGBの各階調データの値を補正した場合の、RGBの入力階調データの値に対する出力階調データの値のグラフを図27に示す。図27における実線、破線及び一点鎖線の細線のグラフは、Wの階調による色度シフトを考慮せずにガンマ補正した場合の、Rの階調データ、Gの階調データ、及び、Bの階調データのそれぞれの値のガンマ補正を示している。また、図27における実線、破線及び一点鎖線の太線のグラフは、Wの階調による色度シフトを考慮してガンマ補正した場合の、Rの入力階調データ、Gの入力階調データ、及び、Bの入力階調データのそれぞれの値のガンマ補正を示している。
 図27に示すように、Wの階調による色度シフトを考慮した場合は、Wの階調による色度シフトを考慮しない場合と比較して、G階調データの値がより高い値になるよう補正し、B階調データの値がより低い値になるよう補正している。このように、青色方向へのWの色度シフトを打ち消すように、RGBの色度が、青色の補色側の色を示すようにRGBの階調を補正することによって、RGBWの各階調データの値が189階調である場合にもRGBの各階調データの値が255階調であってWの階調データの値が0階調である場合の白色度と同じ白色度を得ることができる。
 Wの階調データの値が189階調である場合の色度シフトを考慮してRGBの各階調データの値を補正した場合における、RGBWの階調データの値と白色度との関係を示す色度図を図28に示す。また、Wの階調データの値が189階調である場合の色度シフトを考慮してRGBの各階調データの値をガンマ補正した場合におけるガンマカーブ(階調-輝度特性)を図29に示す。
 図28に示すように、Wの階調データの値が189階調である場合の色度シフトを考慮してRGBの各階調データの値をガンマ補正した場合には、RGBの各階調データの値がそれぞれ255階調であってWの階調データの値が0階調である場合の白色度と同じ白色度を得ることができている。
 しかしながら、Wの階調データの値が189階調である場合の色度シフトを考慮した場合、Wの階調データの値が189階調以外の場合に対応できず、図29に示すように、RGBそれぞれのガンマカーブがばらばらになってしまい、RGBそれぞれのガンマカーブが略同一になる理想的なガンマカーブを得ることができないという問題があった。
 本発明は、上記の課題を解決するためになされたものであり、その主たる目的は、4色表示を行う(すなわち、画素毎に4つのサブ画素を備える)液晶ディスプレイにおいて、何れの値の階調データが入力される場合にも、同じ色度を得ることができる表示装置を提供することにある。
 本発明の一態様に係る表示装置は、上記の課題を解決するために、3原色及び3原色の何れとも異なる1色をそれぞれ表示する4つのサブ画素から構成される画素を複数備える表示部と、4つの上記サブ画素用の4つの階調データを上記画素毎に含む画像データを取得する取得手段と、上記画素毎に、上記3原色をそれぞれ表示する3つの上記サブ画素用の3つの上記階調データの値を、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて補正する補正手段と、を備えている、ことを特徴としている。
 また、本発明の一態様に係る補正方法は、上記の課題を解決するために、3原色及び3原色の何れとも異なる1色をそれぞれ表示する4つのサブ画素から構成される画素を複数備える表示部に表示される、4つの上記サブ画素用の4つの階調データを上記画素毎に含む画像データを取得する取得ステップと、上記画素毎に、上記3原色をそれぞれ表示する3つの上記サブ画素用の3つの上記階調データの値を、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて補正する補正ステップと、を含んでいる、ことを特徴としている。
 上記の構成によれば、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データが何れの値であるかに応じて、上記3原色をそれぞれ表示する3つの上記サブ画素用の上記階調データの値を補正する。したがって、上記表示装置における表示部(例えば、液晶ディスプレイなど)が備える上記画素が、4つの上記サブ画素用の4つの上記階調データの値によって表示する色の色度が変化する特性を持っている場合にも、4つの上記階調データの値によらず、一定の色度が得られるように、上記3原色をそれぞれ表示する3つの上記サブ画素用の上記階調データの値を補正することができる。
 なお、上記3原色としては、赤色、緑色及び青色が挙げられる。また、上記3原色の何れとも異なる1色の例としては、白色又は黄色などを挙げることができるが、これに限定されるものではない。
 本発明の一態様に係る表示装置は、上述したように、3原色及び3原色の何れとも異なる1色をそれぞれ表示する4つのサブ画素から構成される画素を複数備える表示部と、4つの上記サブ画素用の4つの階調データを上記画素毎に含む画像データを取得する取得手段と、上記画素毎に、上記3原色をそれぞれ表示する3つの上記サブ画素用の3つの上記階調データの値を、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて補正する補正手段と、を備えている、ことを特徴としている。
 これによって、上記表示装置における表示部が備える上記画素が、4つの上記サブ画素用の4つの上記階調データの値によって表示する色の色度が変化する特性を持っている場合にも、4つの上記階調データの値によらず、一定の色度が得られるように、上記3原色をそれぞれ表示する3つの上記サブ画素用の上記階調データの値を補正することができる。
本発明の一実施形態に係る補正部の構成を示すブロック図である。 本発明の一実施形態に係るLCDが表現できる色度範囲をxy色空間において三角形で表した、RGBWの入力階調データの値と白色度との関係を示す色度図である。 本発明の一実施形態に係る表示装置の概略を示すブロック図である。 本発明の一実施形態に係る表示装置におけるガンマ補正において参照されるLUTの一例を示す図である。 本発明の一実施形態における、RGBの入力階調に対する出力階調を示すガンマ補正のグラフである。 本発明の一実施形態に係る表示装置におけるガンマ補正処理の流れを示すフローチャートである。 本発明の一実施形態に係るLCDが表現できる色度範囲を三角形で表したxy色空間において、ガンマ補正を行った場合におけるRGBWの入力階調データの値と白色度との関係を示す色度図である。 本発明の一実施形態において、RGBの入力階調をガンマ補正した場合におけるガンマカーブ(階調-輝度特性)を示すグラフである。 本発明の他の実施形態に係る表示装置の構成を示すブロック図である。 本発明の他の実施形態に係る表示装置におけるガンマ補正において参照されるLUTの一例を示す図である。 本発明の他の実施形態における、RGBの入力階調-出力階調特性を示すガンマ補正のグラフである。 図11に示す入力階調-出力階調特性の一部を拡大したグラフである。 本発明の他の実施形態に係る表示装置におけるガンマ補正処理を示すフローチャートである。 本発明のさらに他の実施形態に係る表示装置におけるガンマ補正処理を示すフローチャートである。 本発明のさらに他の実施形態に係る表示装置における、ガンマ補正において参照されるLUTの一例を示す図である。 本発明のさらに他の実施形態における、RGBの入力階調-出力階調特性を示すガンマ補正のグラフである。 本発明のさらに他の実施形態に係る表示装置におけるガンマ補正処理を示すフローチャートである。 従来技術における3色表示用の液晶ディスプレイが表現できる色度範囲をxy色空間において三角形で表した、入力画像データに含まれるRGBの階調データの値と白色度との関係を示す色度図である。 従来技術におけるガンマカーブを示すグラフである。 従来技術における表示装置の構成の概略を示すブロック図である。 従来技術における表示装置において参照されるルックアップテーブルの一例を示す図である。 従来技術における表示装置に入力された入力画像データの入力階調-出力階調特性を示すガンマ補正のグラフ 従来技術におけるRGBそれぞれのガンマカーブを示すグラフである。 従来技術における3色表示用の液晶ディスプレイが表現できる色度範囲をxy色空間において三角形で表した、入力画像データに含まれるRGBWの階調データの値と白色度との関係を示す色度図である。 従来技術における4色表示可能な液晶ディスプレイが表現できる色度範囲を色空間において三角形で表した、入力画像データに含まれるRGBの階調データの値と白色度との関係を示す色度図を示す。 従来技術における表示装置を用いて入力画像データを補正した場合の、入力画像データの階調データの値と白色度との関係を示す色度図である。 従来技術において、Wの階調が189階調である場合の色度シフトを考慮してRGB各色の階調を補正した場合の、RGBの入力階調に対する出力階調を示すグラフである。 従来技術において、Wの階調が189階調である場合の色度シフトを考慮してRGB各色の階調を補正した場合における、入力画像データに含まれるRGBWの階調データの値と白色度との関係を示す色度図である。 従来技術において、Wの階調が189階調である場合の色度シフトを考慮してRGB各色の階調をガンマ補正した場合におけるガンマカーブを示す図である。
 <実施形態1>
 本発明の一実施形態に係る表示装置について、図1から図8を参照して説明する。但し、この実施形態に記載されている構成は、特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
 〔表示装置の構成〕
 本実施形態に係る表示装置について、図2を参照して説明する。図2は、本実施形態に係る表示装置1の概略を示すブロック図である。
 図2に示すように、表示装置1は、RGBW画像生成部10、補正部(取得手段、補正手段)20、及び、LCD(Liquid Crystal Display)(表示部)30を備えている。
 LCD30は、赤色、緑色、青色及び白色の4色を用いて画像を表示(以降、単に4色表示とも呼称する)することが可能に構成されている。具体的には、LCD30は、赤色を表示するサブ画素であるR画素、緑色を表示するサブ画素であるG画素、青色を表示するサブ画素であるB画素(3原色をそれぞれ表示する3つのサブ画素)、及び、3原色の何れとも異なる1色として白色を表示するサブ画素であるW画素(3原色の何れとも異なる1色を表示するサブ画素)の4つのサブ画素(いずれも不図示)から構成される画素(不図示)を複数備えていることによって、4色表示を可能にしている。なお、複数の画素は、LCD30にマトリクス状に配置されている。
 RGBW画像生成部10は、3原色である赤色、緑色及び青色(以降、単にRGBとも呼称する)を含む3色表示用のRGB画像データから、3原色及び3原色の何れとも異なる1色である白色(W)を含む4色表示用の画像データを生成する。RGBW画像生成部10は、生成した4色表示用の画像データを補正部20に出力する。
 補正部20は、RGBW画像生成部10から、4色表示用の画像データ(以降、入力画像データとも呼称する)を取得する。なお、入力画像データには、LCD30が備える4つのサブ画素用の階調データ(すなわち、R画素用の階調データ、G画素用の階調データ、B画素用の階調データ、及び、W画素用の階調データ)が画素毎に含まれている。また、R画素用の階調データ、G画素用の階調データ、B画素用の階調データ、及び、W画素用の階調データを含む、1つの画素にて表示されるデータを画素データとも呼称する(特に、入力画像データに含まれるものを入力画素データとも呼称する)。
 補正部20は、取得した入力画像データに含まれる入力画素データ毎に、W画素用の階調データの値(以降、Wの入力階調データとも呼称する)に応じて、入力画像データに含まれるRGB各画素用の階調データ値(以降、RGBの入力階調データとも呼称する)を補正する画像補正処理(ガンマ補正処理)を行う。また、補正部20は、ガンマ補正後の画像データを出力画像データとして出力する。なお、補正部20の詳細、及び、ガンマ補正処理については、図面を変えて後述する。
 ここで、本実施形態に係る表示装置1が備えるLCD30の表示特性について、図3を参照して説明する。図3は、LCD30が表現できる色度範囲をxy色空間において三角形(RGB三角形)で表した、RGBWの入力階調データの値と白色度との関係を示す色度図である。なお、三角形の各頂点R、G及びBは、それぞれ、単色の赤色、緑色及び青色を示している。
 図3に示すように、LCD30の1つの画素において、RGBの入力階調データの値がそれぞれ255階調であってWの入力階調データの値が0階調(図3において、R:255、G:255、B:255、W:0の色度)である場合には、色度図において白色を示している。これに対し、RGBWの入力階調データの値がそれぞれ189階調(図3において、R:189、G:189、B:189、W:189の色度)である場合には、入力階調データの値が255階調である場合に示す色度よりも、頂点Bに近い位置にシフトした白色を示している。
 したがって、RGBWの入力階調データの値がそれぞれ189階調である場合には、RGBの入力階調データの値がそれぞれ255階調であってWの入力階調データの値が0階調である場合よりも、青味がかった白色になる。これは、RGBの入力階調データの値、又は、Wの入力階調データの値が低くなるほど、すなわち、輝度が低くなるほど、画素における色度が青色へシフトするという液晶ディスプレイの特性によるものである。
 なお、本実施形態では、3原色の何れとも異なる1色として、白色を用いる場合を例に挙げて説明するが、本発明は、これに限定されるものではない。例えば、3原色の何れとも異なる1色として、黄色を用いる構成を採用してもよい。
 このとき、RGBW画像生成部10は、3色表示用のRGB画像データから、黄色を含む4色表示用のRGBY画像データを生成すればよい。
 また、補正部20は、3原色の何れとも異なる1色として黄色が用いられる場合には、黄色の入力階調データの値に応じて、RGBの入力階調データの値をガンマ補正することによって、色度を補正すればよい。
 また、LCD30は、3原色の何れとも異なる1色として黄色が用いられる場合には、R画素、G画素及びB画素に加え、黄色を表示するサブ画素をさらに備えることによって、4色表示可能に構成されていればよい。
 なお、本実施形態では、RGBWのそれぞれの入力階調データを用いて、画素に白色を表示する場合を例に挙げて説明するが、本発明はこれに限定されるものではなく、例えば、画素に黄色など、白色以外の色を表示する場合であっても適用可能である。
 (補正部の構成)
 次に、本実施形態に係る補正部20について、図1を参照して説明する。図1は、本実施形態に係る補正部20の構成の詳細を示すブロック図である。
 図1に示すように、補正部20は、上述したLCD30の表示特性を改善するため、画像補正部21、及び、LUT(Lookup Table)記憶部22を備えている。
 画像補正部21は、補正部20に入力されるRGBの入力階調データの値を、Wの入力階調データの値に応じてガンマ補正し、出力画像データとして出力する手段である。
 画像補正部21は、Wの入力階調データの値に応じてRGBの入力階調データの値を補正するために、図1に示すように、LUT読出部23、及び、RGB補正部24を備えている。画像補正部21は、LUT読出部23においてLUT記憶部22に格納されているLUT(ルックアップテーブル)を読み出し、RGB補正部24において、読み出したLUTを参照してRGBの入力階調データの値をガンマ補正する。
 LUT記憶部22は、RGB補正部24において参照されるLUTを格納している。なお、LUTには、RGBの入力階調データの値(階調データの補正前の値)に対する出力画像データに含まれるRGBの各階調データ(以降、RGBの出力階調データとも呼称する)の値(階調データの補正後の値)が定められている。また、LUT記憶部22は、Wの入力階調データの値が取り得る値の数だけ、LUTを格納している。例えば、Wの入力階調データの値が0階調から255階調までの256通りの値を取り得る場合、LUT記憶部22には、256通りのWの入力階調データの値のそれぞれに応じた、256通りのLUTが格納されていればよい。なお、LUTの詳細については後述する。
 LUT読出部23は、Wの入力階調データの値に応じたLUTを、LUT記憶部22から読み出し、RGB補正部24に供給する手段である。具体的には、LUT読出部23は、入力画像データからWの入力階調データを取得し、取得したWの入力階調データが示す階調の値に対応したLUTをLUT記憶部22から読み出して、RGB補正部24に供給する。
 RGB補正部24は、Wの入力階調データの値に応じて、RGBの入力階調データの値を個別にガンマ補正し、RGBの出力階調データを生成する手段である。RGB補正部24は、図1に示すように、Rの入力階調データの値をガンマ補正するR補正部241、Gの入力階調データの値をガンマ補正するG補正部242、及び、Bの入力階調データの値をガンマ補正するB補正部243を有している。
 R補正部241、G補正部242及びB補正部243は、LUT読出部23から供給されたLUTに基づいて、Rの入力階調データの値、Gの入力階調データの値及びBの入力階調データの値をそれぞれガンマ補正し、Rの出力階調データ、Gの出力階調データ及びBの出力階調データを生成する。
 補正部20は、LUT読出部23に入力されたWの入力階調データと、RGB補正部24において生成されたRGBの出力階調データとを含む画素データを複数含む出力画像データを出力する。
 (LUT)
 次に、LUT記憶部22に格納されている、ガンマ補正の際に参照されるLUTの一例について、図4を参照して説明する。図4は、本実施形態に係る補正部20におけるガンマ補正において参照されるLUTの一例を示す図である。LUTは、Wの入力階調データの値に応じて複数定められている。なお、図4では、RGBWの入力階調データの値が0階調から255階調までの256通りの値をとる場合を例に挙げて説明するが、RGBWの入力階調データの値が取り得る値は、これに限定されるものではない。
 図4に示すように、LUTの1列目には、RGBの入力階調データの値(図4において、階調)が、0階調から255階調までの256通り定められている。また、LUTの2列目から4列目までには、LUTの1列目に定められているRGBの入力階調データの値に対する、RGBのそれぞれに対応する出力階調データの値が定められている。なお、LUT記憶部22には、0階調から255階調までの256通りのWの入力階調データの値に対応する、256通りのLUTが格納されている。
 例えば、LUTには、RGBの入力階調データの値が0階調である場合、RGBのそれぞれの出力階調データの値が0階調となり、RGBの入力階調が1階調である場合には、Rの出力階調データの値が1階調、Gの出力階調データの値が2階調、Bの出力階調データの値が0となるように定められている。また、LUTには、RGBの入力階調データの値が189階調である場合には、Rの出力階調データの値が194階調、Gの出力階調データの値が209階調、Bの出力階調データの値が167階調となり、RGBの入力階調データの値が255階調である場合には、RGBのそれぞれの出力階調データの値は255階調となるよう定められている。
 このように、LUT記憶部22に格納されているLUTの各々において、RGBの入力階調データの値が中間階調である場合に、RGBの入力階調データの値に対する出力階調データの値の変化量が大きくなるよう補正値が設定され、RGBの入力階調データの値が高階調、又は、低階調になるに従い、RGBの入力階調データの値に対する出力階調データの値の変化量が小さくなるよう補正値が設定されている。
 さらに具体的には、LUTのそれぞれには、Rの出力階調データの値が入力階調データの値よりも大きな値となり、Bの出力階調データの値が入力階調データの値よりも小さな値となり、Rの出力階調データの値が入力階調データの値よりも大きく、かつ、Gの出力階調データの値よりも小さな値となる補正値が設定されている。
 また、図4に示すLUTには、Wの入力階調データの値が中間階調である場合の、RGBの入力階調データの値に対する出力階調データの値の変化量が、Wの入力階調データの値が高階調、又は、低階調である場合の、RGBの入力階調データの値に対する出力階調データの値の変化量よりも大きくなるよう補正値が設定されている。
 ここで、本実施形態において行われるガンマ補正について、図5を参照して説明する。図5は、RGBの入力階調-出力階調特性を示すガンマ補正のグラフである。図5における実線、破線及び一点鎖線の細線のグラフはそれぞれ、Wの入力階調データの値が0階調である場合の、Rの入力階調データ、Gの入力階調データ、及び、Bの入力階調データのそれぞれの値のガンマ補正のグラフを示している。また、実線、破線及び一点鎖線の太線のグラフは、Wの入力階調データの値が189階調である場合の、Rの入力階調データ、Gの入力階調データ、及び、Bの入力階調データのそれぞれの値のガンマ補正のグラフを示している。なお、図5は、図4に示すLUTのうち、Wの入力階調データの値が0階調及び189階調である場合の、RGBの入力階調データの値に対する出力階調データの値をグラフにしたものである。
 図5に示すように、画像補正部21は、Wの入力階調データの値が低階調及び高階調(例えば、0階調及び255階調)である場合と、中間階調(例えば、189階調)である場合とでは、RGBの入力階調データの値に対する出力階調データの値が異なるようにガンマ補正する。より詳細には、画像補正部21は、図4に示すLUTを参照し、Wの入力階調データの値が中間階調である場合のRGBの入力階調データの値に対する出力階調データの値の変化量が、Wの入力階調データの値が低階調及び高階調である場合のRGBの入力階調データの値に対する出力階調データの値の変化量よりも大きくなるようガンマ補正する。
 上記の構成によれば、画像補正部21は、図4に示すLUTを参照することによって、Wの入力階調データの値に応じて、より適切なガンマ補正を行うことができる。
 このように、画像補正部21は、Gの出力階調データの値がより高い値になるよう補正し、Bの出力階調データの値がより低い値になるよう補正することによって、RGBの入力階調データの値及びWの入力階調データの値が低いことによる、LCD30において表現される白色の青色方向への色度シフトを打ち消すようにガンマ補正する。つまり、画像補正部21は、LCD30において、RGBの混色によって表現される白色の色度が、青色の補色側の色を示すようにRGBの入力階調データの値を補正する。
 (ガンマ補正処理)
 次に、本実施形態に係る補正部20におけるガンマ補正処理の流れについて、図6を参照して説明する。図6は、本実施形態に係る補正部20におけるガンマ補正処理の流れを示すフローチャートである。
 図6に示すように、補正部20は、入力画像データが入力されると、LUT読出部23において入力画像データに含まれる各入力画素データから、Wの入力階調データを取得し、RGB補正部24において入力画像データに含まれるRGBの入力階調データを取得する(ステップS1)。
 LUT読出部23は、Wの入力階調データを取得すると、Wの入力階調データに応じたLUTをLUT記憶部22から読み出す(ステップS2)。また、LUT読出部23は、読み出したLUTをRGB補正部24に供給する。
 RGB補正部24は、LUT読出部23からLUTが供給されると、供給されたLUTを参照し、R補正部241、G補正部242及びB補正部243のそれぞれにおいて、Rの入力階調データの値、Gの入力階調データの値及びBの入力階調データの値をガンマ補正し、RGBの出力階調データを生成する(ステップS3)。
 RGB補正部24においてRGBの出力階調データが生成されると、補正部20は、生成されたRGBの出力階調データと、Wの入力階調データとを含む複数の画素データから出力画像データ生成し、出力する(ステップS4)。
 なお、補正部20は、入力画像データが入力される度に、上述したステップS1からS4までの処理を繰り返し、出力画像データを出力することになる。
 上述のようにガンマ補正を行った場合の、LCD30において表現される色度、及び、LCD30におけるRGBの入力階調に対する輝度特性について、図7及び図8を参照して説明する。図7は、ガンマ補正を行った場合において、LCD30が表現できる色度範囲をxy色空間において三角形で表した、RGBWの入力階調と白色度との関係を示す色度図である。図8は、Wの入力階調データの値に応じたLUTを参照することによりRGBWの色度シフトを打ち消すようRGBの入力階調データの値をガンマ補正した場合におけるガンマカーブ(階調-輝度特性)を示すグラフである。
 上述したようにガンマ補正を行うことにより、図7に示すように、RGBWの入力階調データの値が189階調である場合の白色度(図7において、補正したR:189、G:189、B:189、W:189)も、RGBの入力階調データの値が255階調でありWの入力階調データの値が0階調である場合の白色度(図7において、R:255、G:255、B:255、W:0)と同じ白色度を得ることができる。
 また、図8に示すように、RGBの各ガンマカーブが、それぞれ略同一なガンマカーブとなり、理想的なガンマカーブを得ることができる。
 これによって、3原色のそれぞれの入力階調に対して、3原色の何れとも異なる1色の入力階調毎に応じた最適な補正を容易に行うことができる。
 したがって、補正部20を備える表示装置1におけるLCD30が、3原色及び上記3原色の何れとも異なる1色の4色を用いて画像データを表示可能であり、4色の各入力階調データによって表示している画素における色度が変化する特性を持っている場合にも、4色の各入力階調によらず、LCD30において一定の色度が得られるように、3原色の各階調を補正することができる。
 <実施形態2>
 本発明の他の実施形態について、図9から図12に基づいて説明する。なお、説明の便宜上、実施形態1の構成要素と同様の機能を有する構成要素には同一の番号を付し、その説明を省略する。本実施形態では、主に、実施形態1との相違点について説明するものとする。
 (補正部の構成)
 図9は、本実施形態に係る補正部20’の構成を示すブロック図である。図9に示すように、補正部20’は、画像補正部21’において補正値算出部25をさらに備えていること以外は実施形態1に係る補正部20と同じ構成である。また、本実施形態に係るLUT記憶部22には、後述するように、Wの入力階調データの値が0階調である場合に対応するLUTと、Wの入力階調データの値が16の倍数の値である場合に対応するLUTが格納されている場合を例に挙げて説明している。
 LUT読出部23は、Wの入力階調データの値に応じたLUTを、LUT記憶部22から読み出す手段である。LUT読出部23は、入力画像データからWの入力階調データを取得し、取得したWの入力階調データの値が16の倍数の階調である場合には、入力階調データの値に対応したLUTをLUT記憶部22から読み出す。LUT読出部23は、読み出したLUTを補正値算出部25に供給する。
 また、LUT読出部23は、Wの入力階調データの値が16の倍数の値以外の階調(例えば、8階調など)である場合には、Wの入力階調データの値に最も近い2つの階調に対応するLUTを読み出す。具体的には、LUT読出部23は、Wの入力階調データの値が8階調である場合には、最も近い2つの階調である0階調及び16階調のそれぞれに対応するLUTを読み出す。なお、LUT読出部23は、Wの入力階調データの値が10階調である場合には、最も近い階調である16階調に対応するLUTと、2番目に近い階調である0階調に対応するLUTとを読み出せばよい。LUT読出部23は、読み出した2つのLUTを補正値算出部25に供給する。
 補正値算出部25は、LUT読出部23から供給されたLUTが1つである場合には、供給されたLUTをそのままRGB補正部24に供給する。また、補正値算出部25は、LUT読出部23から供給されたLUTが2つである場合には、RGB補正部24にて行うガンマ補正に用いる値を算出する補正値算出処理を行い、算出した値をRGB補正部24に供給する。なお、補正値算出処理については、図面を替えて後述する。
 なお、本実施形態では、LUT読出部23は、Wの入力階調データの値が16の倍数の値である場合に、読み出したLUTを補正値算出部25に供給する構成を例に挙げて説明したが、本発明は、これに限定されるものではない。例えば、LUT読出部23が、Wの入力階調データの値が16の倍数の値である場合に、読み出したLUTを直接RGB補正部24に供給する構成を採用してもよい。
 (LUT)
 次に、本実施形態におけるLUT記憶部22に格納されている、ガンマ補正の際に参照されるLUTの一例について、図10を参照して説明する。図10は、本実施形態に係る補正部20’におけるガンマ補正において参照されるLUTの一例を示す図である。なお、図10では、RGBWの各階調データの値が0階調から255階調の256通りの値をとる場合に、16階調毎(0階調を含め、16の倍数の階調毎)にLUTを備えている場合を例に挙げて説明するが、これに限定されるものではない。
 図10に示すように、LUTの1列目には、RGBの入力階調データの値(図10において、階調)が、0階調から255階調までの256通り定められている。また、LUTの2列目から4列目までには、LUTの1列目に定められているRGBの入力階調データの値に対する、RGBのそれぞれの出力階調データの値が定められている。なお、LUT記憶部22には、0階調から255階調まで16階調毎のWの入力階調に対応する、16通りのLUTが格納されている。
 例えば、LUTには、RGBの入力階調データの値が0階調である場合、RGBのそれぞれの出力階調データの値が0階調となり、RGBの入力階調データの値が1階調である場合には、Rの出力階調データの値が1階調、Gの出力階調データの値が2階調、Bの出力階調データの値が0階調となるように定められている。また、LUTには、RGBの入力階調データの値が189階調である場合には、Rの出力階調データの値が194階調、Gの出力階調データの値が209階調、Bの出力階調データの値が167階調となり、RGBの入力階調データの値が255階調である場合には、RGBのそれぞれの出力階調データの値が255階調となるよう定められている。
 なお、本実施形態では、LUT記憶部22に格納されているLUTが、Wの入力階調データの値が16階調毎の階調である場合に対応する16通りのLUTである場合を例に挙げて説明したが、本発明は、これに限定されるものではない。例えば、Wの入力階調データの値が8階調毎の階調である場合に対応するLUTを備えていてもよく、Wの入力階調データの値が所定の階調データの値毎の階調である場合に対応するLUTを備えていればよい。
 また、Wの入力階調データの値が低階調及び高階調である場合に対応するLUTの数を少なくし(すなわち、LUTが定められているWの入力階調データの値の間隔が広い(例えば、20階調毎など))、Wの入力階調データの値が中間階調である場合に対応するLUTの数を多く(すなわち、LUTが定められているWの入力階調データの値の間隔が狭い(例えば、10階調毎など))格納している構成を採用してもよい。
 これによって、Wの入力階調データが取り得る値の数だけLUTを定める場合と比較して、LUT記憶部22においてLUTを格納するために必要な記憶領域を減らすことができる。
 ここで、本実施形態において行われるガンマ補正について、図11を参照して説明する。図11は、RGBの入力階調-出力階調特性を示すガンマ補正のグラフである。図11における実線、破線及び一点鎖線の細線のグラフは、Wの入力階調データの値が0階調である場合の、Rの入力階調データ、Gの入力階調データ、及び、Bの入力階調データのそれぞれの値のガンマ補正のグラフを示している。また、実線、破線及び一点鎖線の太線のグラフは、Wの入力階調データの値が16階調である場合のガンマ補正の、Rの入力階調データ、Gの入力階調データ、及び、Bの入力階調データのそれぞれの値のグラフを示している。なお、図11では、図10に示すLUTのうち、Wの入力階調データの値が0階調及び16階調である場合の、RGBの入力階調に対する出力階調をグラフにしたものである。
 図11に示すように、画像補正部21において、Wの入力階調が0階調である場合と、16階調である場合とでは、RGBの入力階調-出力階調特性が異なるようにガンマ補正する。
 より詳細には、画像補正部21において、Wの入力階調データの値が中間階調である場合のRGBの入力階調データの値に対する出力階調データの値の変化量が、Wの入力階調データの値が低階調及び高階調である場合のRGBの入力階調データの値に対する出力階調データの値の変化量よりも大きくなるようガンマ補正する。
 このように、画像補正部21’は、Gの出力階調データの値がより高い階調になるよう補正し、Bの出力階調データの値がより低い階調になるよう補正することにより、RGBの入力階調データの値及びWの入力階調データの値が低いことによる、LCD30の各画素において表現される白色の、青色方向への色度シフトを打ち消すようにガンマ補正する。つまり、画像補正部21’は、LCD30の各画素において、RGBの混色によって表現される白色の色度が、青色の補色側の色を示すようにRGBの入力階調を補正する。
 (補正値算出処理)
 次に、補正値算出部25が、LUT読出部23から供給されたLUTが2つである場合に実行する補正値算出処理について、図12を参照して説明する。図12は、図11に示す入力階調-出力階調特性の一部を拡大したグラフである。
 ここでは、Wの入力階調データの値が8階調である場合の、Gの出力階調データの値を算出する場合を例に挙げて説明する。図12に示すように、RGBの入力階調データの値をTinとし、Tinに対する、Wの入力階調データの値が0階調である場合のGの出力階調データの値をTG0out、Wの入力階調データの値が16階調である場合のGの出力階調データの値をTG16out、Wの入力階調データの値が8階調である場合のGの出力階調データの値をTG8outとする。
 TG8outは、TG0out及びTG16outの値に基づいて算出される。例えば、TG8outは、TG0outとのWの入力階調データの値の差(すなわち、8-0=8)と、TG16outとのWの入力階調データの値の差(すなわち、16-8=8)のそれぞれにTG16outの値とTG0outの値とをそれぞれ掛け合わせた値を、TG0outとTG16outとのWの入力階調データの値の差(すなわち、16-0=16)で割ることによって求められる。具体的には、次式のように表される。
 TG8out=(TG16out×8+TG0out×8)/16・・・式1
 ここで、LUTに定められている、Wの入力階調データの値がW1である場合のRGBの出力階調データの値をTo1、Wの入力階調データの値がW2である場合のRGBの出力階調データの値をTo2とし、LUTに定められていない、Wの入力階調データの値がW1とW2との間の値であるWaである場合のRGBの出力階調データの値をTaとすると、LUTに定められていないWの入力階調データの値におけるRGBの出力階調データの値は、より一般的に、次式のように表される。
 Ta={To2(Wa-W1)+To1(W2-Wa)}/(W2-W1)・・・式2
 なお、本実施形態では、線形関数を用いて、LUTに定められていないWの入力階調データの値におけるRGBの出力階調データの値を算出する構成を例に挙げて説明したが、本発明における補正値算出処理は、これに限定されるものではない。例えば、非線形関数を用いて、LUTに定められていないWの入力階調データの値におけるRGBの出力階調データの値を算出する構成を採用してもよい。
 (ガンマ補正処理)
 次に、本実施形態に係る補正部20’におけるガンマ補正処理について、図13を参照して説明する。図13は、本実施形態に係る補正部20’におけるガンマ補正処理を示すフローチャートである。
 図13に示すように、補正部20’は、入力画像データが入力されると、LUT読出部23において入力画像データに含まれる各入力画素データのWの入力階調データを取得し、RGB補正部24において入力画像データに含まれる各入力画素データのRGBの入力階調データを取得する(ステップS11)。
 LUT読出部23は、Wの入力階調データを取得すると、Wの入力階調データの値に応じたLUTをLUT記憶部22から読み出す(ステップS12)。また、LUT読出部23は、読み出したLUTを補正値算出部25に供給する。
 補正値算出部25は、LUTを読み出すと、上述した補正値算出処理が必要か否かを判定する(ステップS13)。
 なお、判定方法としては、補正値算出部25において、LUT読出部23から供給されたLUTが1つであるか2つであるかを判定する方法を挙げることができる。具体的には、供給されたLUTが1つである場合(すなわち、Wの入力階調データの値が16の倍数の値である場合)には補正値算出処理は不要であると判断し、供給されたLUTが2つである場合(すなわち、Wの入力階調データの値が16の倍数以外の値である場合)には補正値算出処理が必要であると判定する。なお、本発明における判定方法は、これに限定されるものではない。
 補正値算出処理が必要であると判定した場合(ステップS13においてYES)、補正値算出部25は、LUT読出部23から供給された2つのLUTに基づいて、上述した補正値算出処理を実行する(ステップS14)。補正値算出部25は、算出した補正値をRGB補正部24に供給する。
 また、補正値算出部25は、補正値算出処理が必要ないと判定した場合(ステップS13においてNO)、LUT読出部23から供給されたLUTをそのままRGB補正部24に供給する。
 RGB補正部24は、補正値算出部25からLUTが供給されると、供給されたLUTを参照し、R補正部241、G補正部242及びB補正部243のそれぞれにおいて、Rの入力階調データの値、Gの入力階調データの値及びBの入力階調データの値をガンマ補正し、RGBの出力階調データを生成する(ステップS15)。
 RGB補正部24においてRGBの出力階調データの値が生成されると、補正部20’は、生成されたRGBの出力階調データと、Wの入力階調データとを含む画素データを複数含む出力画像データを出力する(ステップS4)。
 なお、補正部20’は、入力画像データが入力される度に、上述したステップS1からS4までの処理を繰り返し、出力画像データを出力することになる。
 上述したようにガンマ補正を行うことにより、RGBWの入力階調データが何れの値の階調である場合にも、RGBの入力階調データの値が255階調でありWの入力階調データの値が0階調である場合の白色度と同じ白色度を得ることができる。
 また、RGBの各ガンマカーブが、それぞれ略同一なガンマカーブとなり、理想的なガンマカーブを得ることができる。
 したがって、補正部20’を備える表示装置1におけるLCD30が、画像データを4色表示可能であり、4色の各入力階調データの値によって、画素において表示している画像の色度が変化する特性を持っている場合にも、4色の各入力階調データの値によらず、LCD30において一定の色度が得られるように、3原色の各階調データの値を補正することができる。
 <実施形態3>
 本発明の他の実施形態について、図14から図17に基づいて説明する。なお、説明の便宜上、実施形態1の構成要素と同様の機能を有する構成要素には同一の番号を付し、その説明を省略する。本実施形態では、主に、実施形態1との相違点について説明するものとする。
 (補正部の構成)
 図14は、本実施形態に係る補正部20”の構成を示すブロック図である。図14に示すように、補正部20”は、画像補正部21、及び、LUT記憶部22に替えて、画像補正部21”を備えていること以外は実施形態1に係る補正部20と同じ構成である。
 また、図14に示す用に、画像補正部21”は、Wの入力階調データの値に応じて、RGBの入力階調データの値をガンマ補正し、RGBの出力階調データを生成するため、第1RGB補正部24a、及び、第2RGB補正部24bを備えている。
 第1RGB補正部24aに供えられている記憶部(不図示)には、Wの入力階調データの値によらず、RGBの入力階調データの値に対する補正値を定める第1LUT(第1のルックアップテーブル)が格納されている。また、第2RGB補正部24bに備えられている記憶部(不図示)には、Wの入力階調データの値に応じて、第1LUTに基づいて補正されたRGBの入力階調データの値をさらに補正する補正値を定める第2LUT(第2のルックアップテーブル)が格納されている。なお、第1LUT、及び、第2LUTの詳細については後述する。
 第1RGB補正部24aは、Wの入力階調データの値によらず、RGBの入力階調データの値を個別にガンマ補正する手段である。第1RGB補正部24aは、RGBの入力階調データの値を個別にガンマ補正するため、Rの入力階調データの値をガンマ補正するR補正部241a、Gの入力階調データの値をガンマ補正するG補正部242a、及び、Bの入力階調データの値をガンマ補正するB補正部243aを有している。
 第1RGB補正部24aは、入力画像データに含まれる各入力画素データのRGBの入力階調データを取得すると、第1LUTからRGBの入力階調データの値に対する補正値を読み出し、R補正部241a、G補正部242a、及び、B補正部243aにおいて、読み出した補正値に基づいてRGBの入力階調データの値をそれぞれガンマ補正する。第1RGB補正部24aは、ガンマ補正したRGBの入力階調データの値をそれぞれ第2RGB補正部24bに供給する。
 第2RGB補正部24bは、Wの入力階調データの値に応じて、第1RGB補正部24aから供給されたRGBの入力階調データの値をさらにガンマ補正する手段である。第2RGB補正部24bは、Rの入力階調データの値をさらにガンマ補正するR補正部241b、Gの入力階調データの値をさらにガンマ補正するG補正部242b、及び、Bの入力階調データの値をさらにガンマ補正するB補正部243bを有している。
 第2RGB補正部24bは、第1RGB補正部24aから、ガンマ補正されたRGBの入力階調データが供給されると、第2LUTから、RGBの入力階調データの値をさらに補正するための、Wの入力階調データの値に応じた補正値を読み出す。第2RGB補正部24bは、R補正部241b、G補正部242b、及び、B補正部243bにおいて、読み出した補正値に基づいてRGBの入力階調データの値をそれぞれガンマ補正する。
 補正部20”は、Wの入力階調データと、第1RGB補正部24a及び第2RGB補正部24bにおいてガンマ補正されたRGBの出力階調データとを含む画素データを複数含む出力画像データを出力する。
 (LUT)
 次に、本実施形態における第1LUT、及び、第2LUTの一例について、図15を参照して説明する。図15は、本実施形態に係る補正部20”における、ガンマ補正において参照されるLUTの一例を示す図である。図15(a)は、第1RGB補正部24aにおけるガンマ補正において参照される第1LUTの一例を示し、(b)は、第2RGB補正部24bにおけるガンマ補正において参照される第2LUTの一例を示している。
 図15(a)に示すように、第1LUTには、RGBの入力階調データの値に対する補正値を定めている。第1LUTの1列目には、RGBの入力階調データの値(図15(a)において、階調)が、0階調から255階調までの256通り定められている。また、LUTの2列目から4列目までには、LUTの1列目に定められているRGBの入力階調データの値に対する、RGBのそれぞれの補正値が定められている。
 また、図15(b)に示すように、第2LUTには、Wの入力階調データの値が0階調から255階調までのそれぞれに応じた、第1RGB補正部24aにおいてガンマ補正されたRGBの入力階調データの値をさらに補正するための補正値が定められている。
 例えば、第2LUTには、Wの入力階調データの値が1階調である場合に、第1RGB補正部24aにおいてガンマ補正されたGの入力階調データの値をさらに補正する補正値として「+1」が定められており、Bの入力階調データの値をさらに補正する補正値として「-1」が定められている。
 また、Wの入力階調データの値が189階調である場合に、第1RGB補正部24aにおいてガンマ補正されたRの入力階調データの値をさらに補正する補正値として「+5」、Gの入力階調データの値をさらに補正する補正値として「+20」、及び、Bの入力階調データの値をさらに補正する補正値として「-22」が定められている。
 すなわち、第2LUTには、図15(b)に示すように、Wの入力階調データの値が中間階調である場合の、RGBの入力階調データの値に対する出力階調データの値の変化量が、Wの入力階調データの値が高階調、又は、低階調である場合の、RGBの入力階調データの値に対する出力階調データの値の変化量よりも大きくなるよう補正値が設定されている。
 次に、本実施形態において行われるガンマ補正について、図16を参照して説明する。図16は、RGBの入力階調-出力階調特性を示すガンマ補正のグラフである。図16における実線、破線及び一点鎖線の細線のグラフは、Wの入力階調データの値が0階調である場合の、Rの入力階調データ、Gの入力階調データ、及び、Bの入力階調データのそれぞれの値のガンマ補正のグラフを示している。また、実線、破線及び一点鎖線の太線のグラフは、Wの入力階調データの値が189階調である場合の、Rの入力階調データ、Gの入力階調データ、及び、Bの入力階調データのそれぞれの値のガンマ補正のグラフを示している。
 なお、図16では、図15に示す第1LUTに定められたRGBの入力階調データの値に対する補正値に、第2LUTに定められている、Wの入力階調データの値が0階調及び189階調である場合の補正値をさらに加えた値を出力階調データの値とした場合の、RGBの入力階調に対する出力階調をグラフにしたものである。
 図16に示すように、画像補正部21”は、Wの入力階調データの値が0階調である場合と、189階調である場合とでは、RGBの入力階調-出力階調特性が異なるようにガンマ補正する。
 より詳細には、画像補正部21”は、図15(b)に示す第2LUTを参照し、Wの入力階調データの値が中間階調である場合のRGBの入力階調データの値に対する出力階調データの値の変化量が、Wの入力階調データの値が低階調及び高階調である場合のRGBの入力階調データの値に対する出力階調データの値の変化量よりも大きくなるようガンマ補正する。
 上記の構成によれば、画像補正部21”は、図15に示す第1LUT及び第2LUTを参照することによって、Wの入力階調データの値に応じて、より適切なガンマ補正を行うことができる。
 このように、画像補正部21”は、Gの出力階調データの値がより高い階調になるよう補正し、Bの出力階調データの値がより低い階調になるよう補正することにより、RGBの入力階調データの値及びWの入力階調データの値が低いことによる、LCD30の各画素において表現される白色の、青色方向への色度シフトを打ち消すようにガンマ補正する。つまり、画像補正部21”は、LCD30の各画素において、RGBの混色によって表現される白色の色度が、青色の補色側の色を示すようにRGBの入力階調を補正する。
 (ガンマ補正処理)
 次に、本実施形態に係る補正部20”におけるガンマ補正処理について、図17を参照して説明する。図17は、本実施形態に係る補正部20”におけるガンマ補正処理を示すフローチャートである。
 図17に示すように、補正部20”は、入力画像データが入力されると、まず、第1RGB補正部24aにおいて、入力画像データに含まれる各入力画素データのRGBの入力階調データを取得する(ステップS21)。
 第1RGB補正部24aは、RGBの入力階調データを取得すると、第1LUTを参照してRGBの入力階調データの値をガンマ補正する(ステップS22)。第1RGB補正部24aは、補正したRGBの入力階調データを第2RGB補正部24bに供給する。
 第2RGB補正部24bは、第1RGB補正部24aにおいてガンマ補正されたRGBの入力階調データが供給されると、補正部20”に入力されているWの入力階調データを取得する(ステップS23)。
 第2RGB補正部24bは、第2LUTを参照し、取得したWの入力階調データの値に応じて、供給されたRGBの入力階調データの値をさらにガンマ補正し、RGBの出力階調データを生成する(ステップS24)。
 第1RGB補正部24a、及び、第2RGB補正部24bにおいてRGBの入力階調データの値をガンマ補正すると、補正部20”は、ガンマ補正後のRGBの出力階調データと、Wの入力階調データとを含む画素データを複数含む出力画像データを出力する(ステップS25)。
 なお、補正部20”は、入力画像データが入力される度に、上述したステップS1からS4までの処理を繰り返し、出力画像データを出力することになる。
 上述したようにガンマ補正を行うことにより、RGBWの入力階調データの値が何れの値である場合にも、RGBの入力階調データの値が255階調でありWの入力階調データの値が0階調である場合の白色度と同じ白色度を得ることができる。
 また、RGBの各ガンマカーブが、それぞれ略同一なガンマカーブとなり、理想的なガンマカーブを得ることができる。
 したがって、補正部20”を備える表示装置1におけるLCD30が、画像データを4色表示可能であり、4色の各入力階調データによって、各画素において表示している画像の色度が変化する特性を持っている場合にも、4色の各入力階調データによらず、LCD30の各画素において一定の色度が得られるように、3原色の各階調を補正することができる。
 上記の構成によれば、補正部20”は、第1LUTに応じて3原色の入力階調データの値を補正した後、第2LUTに応じて、第1LUTに応じて補正した3原色の入力階調データの値をさらに補正する。これによって、LUTを2つ定めるだけで、3原色の入力階調データの値に対して、3原色の何れとも異なる1色の入力階調データの値に応じた補正を行うことができる。したがって、画像補正部21”においてLUTを格納するために必要な記憶領域を減らすことができる。
 〔付記事項〕
 本発明の一態様に係る表示装置は、上記の課題を解決するために、3原色及び3原色の何れとも異なる1色をそれぞれ表示する4つのサブ画素から構成される画素を複数備える表示部と、4つの上記サブ画素用の4つの階調データを上記画素毎に含む画像データを取得する取得手段と、上記画素毎に、上記3原色をそれぞれ表示する3つの上記サブ画素用の3つの上記階調データの値を、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて補正する補正手段と、を備えている、ことを特徴としている。
 また、本発明の一態様に係る補正方法は、上記の課題を解決するために、3原色及び3原色の何れとも異なる1色をそれぞれ表示する4つのサブ画素から構成される画素を複数備える表示部に表示される、4つの上記サブ画素用の4つの階調データを上記画素毎に含む画像データを取得する取得ステップと、上記画素毎に、上記3原色をそれぞれ表示する3つの上記サブ画素用の3つの上記階調データの値を、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて補正する補正ステップと、を含んでいる、ことを特徴としている。
 上記の構成によれば、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データが何れの値であるかに応じて、上記3原色をそれぞれ表示する3つの上記サブ画素用の上記階調データの値を補正する。したがって、上記表示装置における表示部(例えば、液晶ディスプレイなど)が備える上記画素が、4つの上記サブ画素用の4つの上記階調データの値によって表示する色の色度が変化する特性を持っている場合にも、4つの上記階調データの値によらず、一定の色度が得られるように、上記3原色をそれぞれ表示する3つの上記サブ画素用の上記階調データの値を補正することができる。
 なお、上記3原色としては、赤色、緑色及び青色が挙げられる。また、上記3原色の何れとも異なる1色の例としては、白色又は黄色などを挙げることができるが、これに限定されるものではない。
 本発明の一態様に係る表示装置において、上記補正手段は、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じた、上記3原色のそれぞれを表示する3つの上記サブ画素用の3つの上記階調データの値に対する補正値を定めるルックアップテーブルを参照して、上記3原色のそれぞれを表示する3つの上記サブ画素用の3つの上記階調データの値を補正する、ことが好ましい。
 上記の構成によれば、上記表示手段は、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて補正値が予め設定されている上記ルックアップテーブルを参照して、上記3原色をそれぞれ表示する3つの上記サブ画素用の上記階調データの値を補正する。これによって、上記補正手段は、上記3原色をそれぞれ表示する3つの上記サブ画素用の上記階調データの補正前の値に対する補正後の値を、容易に決定することができる。
 本発明の一態様に係る表示装置において、上記ルックアップテーブルは、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて複数定められており、上記ルックアップテーブルの各々において、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの値が中間階調である場合に、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの補正前の値に対する補正後の値の変化量が大きくなるよう補正値が設定され、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの値が高階調、又は、低階調になるに従い、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの補正前の値に対する補正後の値の変化量が小さくなるよう補正値が設定されている、ことが好ましい。
 上記の構成によれば、上記ルックアップテーブルに設定されている補正値は、上記3原色をそれぞれ表示する3つの上記サブ画素用の上記階調データの値が、低階調から中間階調になるにつれて、上記階調データの補正前の値に対する補正後の値の変化が大きくなるよう設定され、中間階調から高階調になるにつれて、上記階調データの補正前の値に対する補正後の値の変化が小さくなるよう設定されている。
 これによって、上記表示装置における表示部が備える画素の特性によって、画素に表示される色度が入力された画像データに含まれる4つの上記サブ画素用(すなわち、1つの上記画素用)の4つの上記階調データのそれぞれの値が示す色度から大きくずれてしまう中間階調では、上記3原色をそれぞれ表示する3つの上記サブ画素用の3つの上記階調データの値を大きく補正することができる。また、画素に表示される色度が、入力された画像データに含まれる1つの上記画素用の4つの上記階調データのそれぞれの値が示す色度から中間階調と比較して大きくずれない低階調、及び、高階調では、上記3原色のそれぞれの階調の補正を、必要以上に補正してしまうことを防ぐことが出来る。
 本発明の一態様に係る表示装置において、上記3原色は、赤色、緑色、及び、青色であり、上記ルックアップテーブルには、上記補正手段における緑色を表示する上記サブ画素用の上記階調データの補正後の値が、補正前の値よりも大きな値となる補正値が設定されており、上記補正手段における青色を表示する上記サブ画素用の上記階調データの補正後の値が、補正前の値よりも小さな値となる補正値が設定されており、かつ、上記補正手段における赤色を表示する上記サブ画素用の上記階調データの補正後の値が、補正前の値よりも大きく、かつ、上記緑色を表示する上記サブ画素用の上記階調データの補正後の値よりも小さな値となる補正値が設定されている、ことが好ましい。
 上記の構成によれば、上記補正手段は、上記ルックアップテーブルを参照することにより、上記緑色及び赤色を表示する上記サブ画素用の階調データの補正後の値を、補正前の値よりも大きくし、上記青色を表示する上記サブ画素用の階調データの補正後の値を、補正前の値よりも小さくするよう補正する。
 したがって、補正後の4つの上記階調データが示す色度は、補正前の4つの上記階調データが示す色度と比較して、青色の色度が薄くなり、かつ、緑色及び赤色の色度が濃くなるよう補正される。さらに、緑色及び赤色の色度が濃くなることによって、緑色及び赤色の混色である、青色の補色の色度が濃くなることが好ましい。
 これによって、4つの上記階調データの値が低くなるにつれて表示する色の色度が青色にシフトしてしまう特性を持つ画素を備える表示部においても、階調の違いによって表示される色の色度が青色にシフトしてしまうことを低減し、一定の色度を得ることができる。
 本発明の一態様に係る表示装置において、上記ルックアップテーブルは、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データが取りうる値の数だけ定められている、ことが好ましい。
 上記の構成によれば、上記表示装置は、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が取りうる数だけ、当該階調データの値に応じた、上記3原色をそれぞれ表示する3つの上記サブ画素用の上記階調データの値に対する補正値を定めるルックアップテーブルを有している。例えば、上記表示装置は、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が0階調から255階調までの256通りの値を取り得る場合には、当該256通りの上記階調データの値のそれぞれに対応した、256通りの上記ルックアップテーブルを有していればよい。
 これによって、上記3原色をそれぞれ表示する3つの上記階調データの値に対して、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値毎に応じた最適な補正を容易に行うことができる。
 本発明の一態様に係る表示装置において、上記ルックアップテーブルは、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データのうち、所定の階調データの値毎に定められている、ことが好ましい。
 上記の構成によれば、上記表示装置は、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの上記所定の値毎に、上記ルックアップテーブルを有している。例えば、上記表示装置は、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データのうち、16階調毎に定められた上記ルックアップテーブルを有していればよい。この場合、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が0階調から255階調までの256通りの値を取り得る場合には、256通りの16分の1である16通りの上記ルックアップテーブルを有していればよい。
 これによって、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が取り得る数だけ上記ルックアップテーブルを定める場合と比較して、上記表示装置において上記ルックアップテーブルを格納するために必要な記憶領域を減らすことができる。
 なお、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が上記所定の値でない場合には、上記所定の値に応じて定められている複数のルックアップテーブルを用いて算出すればよい。
 本発明の一態様に係る表示装置において、上記ルックアップテーブルには、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が中間階調である場合の、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの補正前の値に対する補正後の値の変化量が、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が高階調、又は、低階調である場合の、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの補正前の値に対する補正後の値の変化量よりも大きくなるよう補正値が設定されている、ことが好ましい。
 上記の構成によれば、上記補正手段は、上記ルックアップテーブルを参照することによって、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて、より適切なガンマ補正を行うことができる。
 本発明の一態様に係る表示装置において、上記ルックアップテーブルは、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値によらず、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの値に対する補正値を定める第1のルックアップテーブルと、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて、上記第1のルックアップテーブルに基づいて補正された、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの値をさらに補正する補正値を定める第2のルックアップテーブルと、を含んでいる、ことが好ましい。
 上記の構成によれば、上記表示装置は、上記第1のルックアップテーブルに応じて上記3原色をそれぞれ表示する3つの上記サブ画素用の上記階調データの値を補正した後、上記第2のルックアップテーブルに応じて、上記第1のルックアップテーブルに応じて補正した上記3原色をそれぞれ表示する3つの上記サブ画素用の上記階調データの値をさらに補正する。
 これによって、上記ルックアップテーブルを2つ定めるだけで、上記3原色をそれぞれ表示する3つの上記サブ画素用の上記階調データの値に対して、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じた補正を行うことができる。したがって、上記表示装置において上記ルックアップテーブルを格納するために必要な記憶領域を減らすことができる。
 本発明の一態様に係る表示装置において、上記第2のルックアップテーブルには、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が中間階調である場合の、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データをさらに補正する補正値が、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が高階調、又は、低階調である場合の、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データをさらに補正する補正値よりも大きくなるよう補正値が設定されている、ことが好ましい。
 上記の構成によれば、上記補正手段は、上記ツックアップテーブルを参照することによって、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて、より適切なガンマ補正を行うことができる。
 なお、コンピュータを本発明の一態様に係る表示装置として動作させるためのプログラムであって、上記コンピュータを上記表示装置の各手段として機能させることを特徴とするプログラム、及び、それらのプログラムを記録したコンピュータ読み取り可能な記録媒体も本発明の範疇に含まれる。
 〔プログラム、記録媒体〕
 表示装置1の各ブロックは、集積回路(ICチップ)上に形成された論理回路によってハードウェア的に実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェア的に実現してもよい。
 後者の場合、表示装置1は、各機能を実現するプログラムの命令を実行するCPU、上記プログラムを格納したROM(Read Only Memory)、上記プログラムを展開するRAM(Random Access Memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである表示装置1の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、表示装置1に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。
 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ類、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク類、ICカード(メモリカードを含む)/光カード等のカード類、マスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ類、あるいはPLD(Programmable logic device)やFPGA(Field Programmable Gate Array)等の論理回路類などを用いることができる。
 また、上記プログラムコードは、通信ネットワークを介して表示装置1に供給してもよい。この通信ネットワークは、プログラムコードを伝送可能であればよく、特に限定されない。例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(Virtual Private Network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、この通信ネットワークを構成する伝送媒体も、プログラムコードを伝送可能な媒体であればよく、特定の構成または種類のものに限定されない。例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL(Asymmetric Digital Subscriber Line)回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、IEEE80211無線、HDR(High Data Rate)、NFC(Near Field Communication)、DLNA(Digital Living Network Alliance)、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。
 なお、本発明は上述した本実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。
 本発明に係る表示装置は、テレビジョン受像機、パーソナルコンピュータ、カーナビゲーションシステム、携帯電話、デジタルカメラ、及び、デジタルビデオカメラなどに好適に適用することができる。
 1          表示装置
 10         RGBW画像生成部
 20、20’、20” 補正部(取得手段、補正手段)
 21、21’、21” 画像補正部
 22         LUT記憶部
 23         LUT読出部
 24         RGB補正部
 24a        第1RGB補正部
 24b        第2RGB補正部
 25         補正値算出部
 30         LCD(表示部)
 241、241a、241b R補正部
 242、242a、242b G補正部
 243、243a、243b B補正部

Claims (12)

  1.  3原色及び3原色の何れとも異なる1色をそれぞれ表示する4つのサブ画素から構成される画素を複数備える表示部と、
     4つの上記サブ画素用の4つの階調データを上記画素毎に含む画像データを取得する取得手段と、
     上記画素毎に、上記3原色をそれぞれ表示する3つの上記サブ画素用の3つの上記階調データの値を、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて補正する補正手段と、を備えている、
    ことを特徴とする表示装置。
  2.  上記補正手段は、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じた、上記3原色のそれぞれを表示する3つの上記サブ画素用の3つの上記階調データの値に対する補正値を定めるルックアップテーブルを参照して、上記3原色のそれぞれを表示する3つの上記サブ画素用の3つの上記階調データの値を補正する、ことを特徴とする請求項1に記載の表示装置。
  3.  上記ルックアップテーブルは、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて複数定められており、
     上記ルックアップテーブルの各々において、
      上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの値が中間階調である場合に、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの補正前の値に対する補正後の値の変化量が大きくなるよう補正値が設定され、
      上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの値が高階調、又は、低階調になるに従い、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの補正前の値に対する補正後の値の変化量が小さくなるよう補正値が設定されている、
    ことを特徴とする請求項2に記載の表示装置。
  4.  上記3原色は、赤色、緑色、及び、青色であり、
     上記ルックアップテーブルには、
      上記補正手段における緑色を表示する上記サブ画素用の上記階調データの補正後の値が、補正前の値よりも大きな値となる補正値が設定されており、
      上記補正手段における青色を表示する上記サブ画素用の上記階調データの補正後の値が、補正前の値よりも小さな値となる補正値が設定されており、かつ、
      上記補正手段における赤色を表示する上記サブ画素用の上記階調データの補正後の値が、補正前の値よりも大きく、かつ、上記緑色を表示する上記サブ画素用の上記階調データの補正後の値よりも小さな値となる補正値が設定されている、
    ことを特徴とする請求項2又は3に記載の表示装置。
  5.  上記ルックアップテーブルは、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データが取りうる値の数だけ定められている、
    ことを特徴とする請求項2から4の何れか1項に記載の表示装置。
  6.  上記ルックアップテーブルは、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データのうち、所定の階調データの値毎に定められている、
    ことを特徴とする請求項2から4の何れか1項に記載の表示装置。
  7.  上記ルックアップテーブルには、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が中間階調である場合の、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの補正前の値に対する補正後の値の変化量が、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が高階調、又は、低階調である場合の、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの補正前の値に対する補正後の値の変化量よりも大きくなるよう補正値が設定されている、
    ことを特徴とする請求項2から6の何れか1項に記載の表示装置。
  8.  上記ルックアップテーブルは、
      上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値によらず、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの値に対する補正値を定める第1のルックアップテーブルと、
      上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて、上記第1のルックアップテーブルに基づいて補正された、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データの値をさらに補正する補正値を定める第2のルックアップテーブルと、を含んでいる、
    ことを特徴とする請求項2に記載の表示装置。
  9.  上記第2のルックアップテーブルには、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が中間階調である場合の、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データをさらに補正する補正値が、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値が高階調、又は、低階調である場合の、上記3原色のそれぞれを表示する3つの上記サブ画素用の上記階調データをさらに補正する補正値よりも大きくなるよう補正値が設定されている、
    ことを特徴とする請求項8に記載の表示装置。
  10.  3原色及び3原色の何れとも異なる1色をそれぞれ表示する4つのサブ画素から構成される画素を複数備える表示部に表示される、4つの上記サブ画素用の4つの階調データを上記画素毎に含む画像データを取得する取得ステップと、
     上記画素毎に、上記3原色をそれぞれ表示する3つの上記サブ画素用の3つの上記階調データの値を、上記3原色の何れとも異なる1色を表示する上記サブ画素用の上記階調データの値に応じて補正する補正ステップと、を含んでいる、
    ことを特徴とする補正方法。
  11.  コンピュータを請求項1から9までの何れか1項に記載の表示装置として動作させるためのプログラムであって、上記コンピュータを上記表示装置の各手段として機能させるプログラム。
  12.  請求項11に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2012/065281 2011-06-21 2012-06-14 表示装置、補正方法、プログラム及び記録媒体 WO2012176685A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-137850 2011-06-21
JP2011137850 2011-06-21

Publications (1)

Publication Number Publication Date
WO2012176685A1 true WO2012176685A1 (ja) 2012-12-27

Family

ID=47422524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065281 WO2012176685A1 (ja) 2011-06-21 2012-06-14 表示装置、補正方法、プログラム及び記録媒体

Country Status (1)

Country Link
WO (1) WO2012176685A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024577A1 (ja) * 2012-08-09 2014-02-13 ソニー株式会社 色信号処理回路、色信号処理方法、表示装置、及び、電子機器
WO2014203769A1 (ja) * 2013-06-18 2014-12-24 堺ディスプレイプロダクト株式会社 表示装置
WO2014208254A1 (ja) * 2013-06-24 2014-12-31 大日本印刷株式会社 画像処理装置、表示装置並びに画像処理方法及び画像処理用プログラム
JP2015075637A (ja) * 2013-10-09 2015-04-20 Nltテクノロジー株式会社 制御回路及び当該制御回路を備えた表示装置
JP2016012136A (ja) * 2013-06-24 2016-01-21 大日本印刷株式会社 画像処理装置、表示装置並びに画像処理方法及び画像処理用プログラム
JP2017528745A (ja) * 2014-07-17 2017-09-28 深▲セン▼市華星光電技術有限公司 液晶表示装置及びその駆動方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171907A (ja) * 2005-12-20 2007-07-05 Lg Phillips Lcd Co Ltd 液晶表示装置の駆動装置及び駆動方法
JP2010014743A (ja) * 2008-06-30 2010-01-21 Sanyo Electric Co Ltd 投写型映像表示装置
JP2011237614A (ja) * 2010-05-11 2011-11-24 Sanyo Electric Co Ltd 投写型映像表示装置
WO2012090880A1 (ja) * 2010-12-28 2012-07-05 シャープ株式会社 信号変換回路およびそれを備えた多原色液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171907A (ja) * 2005-12-20 2007-07-05 Lg Phillips Lcd Co Ltd 液晶表示装置の駆動装置及び駆動方法
JP2010014743A (ja) * 2008-06-30 2010-01-21 Sanyo Electric Co Ltd 投写型映像表示装置
JP2011237614A (ja) * 2010-05-11 2011-11-24 Sanyo Electric Co Ltd 投写型映像表示装置
WO2012090880A1 (ja) * 2010-12-28 2012-07-05 シャープ株式会社 信号変換回路およびそれを備えた多原色液晶表示装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024577A1 (ja) * 2012-08-09 2014-02-13 ソニー株式会社 色信号処理回路、色信号処理方法、表示装置、及び、電子機器
JPWO2014024577A1 (ja) * 2012-08-09 2016-07-25 ソニー株式会社 色信号処理回路、色信号処理方法、表示装置、及び、電子機器
WO2014203769A1 (ja) * 2013-06-18 2014-12-24 堺ディスプレイプロダクト株式会社 表示装置
JP2016012136A (ja) * 2013-06-24 2016-01-21 大日本印刷株式会社 画像処理装置、表示装置並びに画像処理方法及び画像処理用プログラム
JP2015029258A (ja) * 2013-06-24 2015-02-12 大日本印刷株式会社 画像処理装置、表示装置並びに画像処理方法及び画像処理用プログラム
WO2014208254A1 (ja) * 2013-06-24 2014-12-31 大日本印刷株式会社 画像処理装置、表示装置並びに画像処理方法及び画像処理用プログラム
TWI642049B (zh) * 2013-06-24 2018-11-21 日商大日本印刷股份有限公司 影像處理裝置、顯示裝置以及影像處理方法及影像處理用程式
US10446092B2 (en) 2013-06-24 2019-10-15 Dai Nippon Printing Co., Ltd. Image processing apparatus, display apparatus, image processing method, and image processing program
JP2015075637A (ja) * 2013-10-09 2015-04-20 Nltテクノロジー株式会社 制御回路及び当該制御回路を備えた表示装置
CN104575402A (zh) * 2013-10-09 2015-04-29 Nlt科技股份有限公司 控制电路和配备有该控制电路的显示装置
CN104575402B (zh) * 2013-10-09 2018-07-27 Nlt科技股份有限公司 控制电路和配备有该控制电路的显示装置
JP2017528745A (ja) * 2014-07-17 2017-09-28 深▲セン▼市華星光電技術有限公司 液晶表示装置及びその駆動方法
KR101932362B1 (ko) 2014-07-17 2018-12-24 센젠 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 액정 디스플레이 장치 및 그 구동 방법

Similar Documents

Publication Publication Date Title
JP4976404B2 (ja) 液晶表示装置
JP5395092B2 (ja) 表示装置
US9318075B2 (en) Image driving using color-compensated image data that has been color-scheme converted
JP4679242B2 (ja) 表示装置
JP5593920B2 (ja) 液晶表示装置
JP5478826B2 (ja) 表示装置
US8599211B2 (en) RGBW display system and method for displaying images thereof
WO2014038517A1 (ja) 多原色表示装置
JP5593921B2 (ja) 液晶表示装置
JP4364281B2 (ja) 表示装置
WO2011102343A1 (ja) 表示装置
WO2012176685A1 (ja) 表示装置、補正方法、プログラム及び記録媒体
US10347198B2 (en) Image displaying methods and display devices
JPWO2007097080A1 (ja) 液晶表示装置
JP2016006482A (ja) 制御信号生成回路,映像表示装置,制御信号生成方法,及びそのプログラム
WO2016072129A1 (ja) フィールドシーケンシャル画像表示装置および画像表示方法
US20110018892A1 (en) Method, device, and program for processing image and image display device
TW201312531A (zh) 多原色液晶顯示器及其色彩訊號轉換裝置與方法
JP6551230B2 (ja) 信号生成装置、及び、画像表示装置
JP2011099961A (ja) 表示装置、表示方法、表示プログラム、及びコンピュータ読み取り可能な記録媒体
JP2011027944A (ja) 映像信号処理装置、映像信号処理方法、プログラム、および表示装置
JP2009003180A (ja) 表示方法及び表示装置
WO2017051768A1 (ja) 表示装置および色空間の拡張方法
WO2008012969A1 (fr) Dispositif d'affichage à couleurs d'origine multiples
TWI399737B (zh) 色彩補償方法、色彩補償電路與顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP