WO2013069148A1 - Cylindrical linear motor - Google Patents

Cylindrical linear motor Download PDF

Info

Publication number
WO2013069148A1
WO2013069148A1 PCT/JP2011/076059 JP2011076059W WO2013069148A1 WO 2013069148 A1 WO2013069148 A1 WO 2013069148A1 JP 2011076059 W JP2011076059 W JP 2011076059W WO 2013069148 A1 WO2013069148 A1 WO 2013069148A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical
linear motor
frame
cylindrical linear
ring
Prior art date
Application number
PCT/JP2011/076059
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 高石
治之 長谷川
徹 片江
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/076059 priority Critical patent/WO2013069148A1/en
Priority to CN201180074801.7A priority patent/CN103947091A/en
Priority to KR1020147014536A priority patent/KR101635691B1/en
Priority to JP2013542784A priority patent/JP5680216B2/en
Priority to TW101112738A priority patent/TWI491147B/en
Publication of WO2013069148A1 publication Critical patent/WO2013069148A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2207/00Specific aspects not provided for in the other groups of this subclass relating to arrangements for handling mechanical energy
    • H02K2207/03Tubular motors, i.e. rotary motors mounted inside a tube, e.g. for blinds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings

Definitions

  • the present invention relates to a cylindrical linear motor.
  • the cylindrical linear motor includes an armature portion as a stator in which a plurality of U-phase, V-phase, and W-phase ring coils are arranged in an axial direction in a cylindrical yoke made of a magnetic material, and the armature A field part as a mover arranged in the axial direction with a plurality of permanent magnets arranged in a shaft direction through a plate-like spacer made of a magnetic material, with N poles and S poles facing each other, And a bearing portion such as a linear bush or a ball bush that is provided at both end portions of the armature portion and supports the shaft so as to be movable in the axial direction.
  • armature portion as a stator in which a plurality of U-phase, V-phase, and W-phase ring coils are arranged in an axial direction in a cylindrical yoke made of a magnetic material
  • the armature A field part as a mover arranged in the axial direction with a plurality of permanent
  • the movable part of the linear motor is attached to two parts of the front and rear mounting parts to collide and absorbs the impact force caused by the collision of the movable part of the linear motor.
  • a buffer member made of spring or urethane cushion to Gensa, with an injection molding machine is disclosed (for example, see Patent Document 1).
  • the linear motor includes a fixed portion and a movable portion, and the fixed portion includes a case that also serves as a yoke, a plurality of salient pole type iron cores that are attached to the upper and lower inner wall surfaces of the case in the axial direction, and the iron core
  • the movable part consists of a winding wound around each, the movable part is composed of a yoke, a plurality of permanent magnets mounted on both sides of the yoke, and an output shaft that transmits the movement of the movable part in the axial direction to the outside.
  • Two shock absorbers made of rubber and other elastic bodies that absorb the kinetic energy when the movable part hits are provided at two locations on the axial end face of the case.
  • a linear motor in which members are arranged is disclosed (for example, see Patent Document 2).
  • JP 2002-355868 A Japanese Patent Application Laid-Open No. 07-232642 (3rd and 4th pages, FIG. 1)
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a cylindrical linear motor having a cushioning member having a small number of parts, low cost, high reliability, little deterioration, and good design. To do.
  • the present invention includes a cylindrical frame, a cylindrical yoke made of a magnetic material fitted in the frame, and an axial arrangement in the yoke.
  • An armature portion having a plurality of ring-shaped coils and bearings fixed to both ends of the frame, and a large-diameter intermediate member inserted into the armature portion and having a plurality of permanent magnets arranged in the axial direction.
  • a small-diameter shaft portion extending in the axial direction from the large-diameter intermediate portion and inserted into the bearing, a field portion formed in a stepped shaft shape, and the small-diameter shaft portion being inserted And a cylindrical or ring-shaped cushioning member disposed coaxially with the small-diameter shaft portion and fixed to a stepped portion of the field magnet portion or an end portion of the frame.
  • a cylindrical linear motor includes a cylindrical or ring-shaped buffer member that is inserted in a small-diameter shaft portion and arranged coaxially with the small-diameter shaft portion, and is fixed to a step portion of a stepped shaft or an end portion of a frame. Since it is provided, the number of parts of the buffer member is small, and there is an effect that the reliability is low and the cost is high.
  • FIG. 1 is a longitudinal sectional view showing Embodiment 1 of a cylindrical linear motor according to the present invention.
  • FIG. 2 is an enlarged view of part A in FIG.
  • FIG. 3 is a longitudinal sectional view showing a state in which the mover of the cylindrical linear motor of Embodiment 1 has moved leftward.
  • FIG. 4 is a partially enlarged longitudinal sectional view showing Embodiment 2 of the cylindrical linear motor according to the present invention.
  • FIG. 5 is a longitudinal sectional view showing Embodiment 3 of the cylindrical linear motor according to the present invention.
  • FIG. 6 is an enlarged view of a portion B in FIG.
  • FIG. 7 is a partially enlarged longitudinal sectional view showing Embodiment 4 of the cylindrical linear motor according to the present invention.
  • FIG. 8 is a partially enlarged longitudinal sectional view showing Embodiment 5 of the cylindrical linear motor according to the present invention.
  • FIG. 9 is a partially enlarged longitudinal sectional view showing Embodiment 6 of the cylindrical linear motor according to the present invention.
  • FIG. 10 is a partially enlarged longitudinal sectional view showing a deformed state of the cushioning material at the time of collision of the cylindrical linear motor according to the sixth embodiment.
  • FIG. 11 is a partially enlarged longitudinal sectional view showing Embodiment 7 of the cylindrical linear motor according to the present invention.
  • FIG. 12 is a partially enlarged longitudinal sectional view showing an eighth embodiment of the cylindrical linear motor according to the present invention.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of a cylindrical linear motor according to the present invention
  • FIG. 2 is an enlarged view of part A of FIG. 1
  • FIG. 3 is a cylindrical shape of the first embodiment. It is a longitudinal cross-sectional view which shows the state which the mover of the linear motor moved to the left.
  • a cylindrical linear motor 91 includes a cylindrical armature portion 10 that serves as a stator, and the armature portion 10 is inserted coaxially with the armature portion 10. And a field portion 20 having an intermediate portion formed in a stepped shaft shape having a large diameter.
  • the armature portion 10 is a cylindrical frame 11 made of a non-magnetic material such as aluminum or resin, a cylindrical yoke 12 made of a magnetic metal fitted in the frame 11, and an axial arrangement in the yoke 12.
  • a cylindrical bobbin 15 around which W-phase coils 13u, 13v, and 13w are wound (the ring-shaped insulating plate 14 and the bobbin 15 may be integrally formed of resin), and a bearing fixed to both ends of the frame 11.
  • a holder 16 and a bearing 17 such as a linear bush or a ball bush held by the bearing holder 16 are provided.
  • the field portion 20 is adjacent to a pipe 21 made of a nonmagnetic material such as stainless steel (SUS304) or aluminum that transmits magnetic flux, and a plurality of thick plate-like permanent magnets 22 arranged in the axial direction in the pipe 21. And a magnetic metal spacer 23 inserted between the matching permanent magnets 22.
  • the permanent magnet 22 is disposed so that the N poles and the S poles face each other with the spacer 23 interposed therebetween.
  • the large diameter portion 24a of the stepped shaft 24 is fitted into both ends of the pipe 21, and the small diameter shaft portion 24b of the stepped shaft 24 extends from the pipe (large diameter intermediate portion) 21 to both sides in the axial direction.
  • the field portion 20 as a mover is formed in a stepped shaft shape having a thick central portion as a whole by fitting the large diameter portion 24a of the stepped shaft 24 to both ends of the pipe 21.
  • the small diameter shaft portion 24 b of the stepped shaft 24 is supported by the bearings 17 at both ends of the armature portion 10 so as to be capable of reciprocating in the axial direction.
  • One (left side in FIG. 1) of the stepped shaft 24 has a ring shape made of a non-magnetic material (aluminum, resin, etc.) at the root of the large diameter portion 24a of the small diameter shaft portion 24b (step portion of the field portion 20).
  • the spring holder 25 is externally fitted.
  • a spiral groove is provided on the outer peripheral portion of the spring holder 25, and a cylindrical or ring-shaped buffer in which the small diameter shaft portion 24b of the stepped shaft 24 is inserted into the spiral groove and is coaxially arranged with the small diameter shaft portion 24b.
  • a coil spring 26 as a member is attached.
  • the spring holder 25 and the coil spring 26 may be attached to the small diameter shaft portion 24b of the other stepped shaft 24 (the right side in FIG. 1).
  • the cylindrical linear motor 91 detects the position of the magnetic pole of the field part (movable element) 20 by a magnetic sensor (Hall element) provided in the armature part (stator) 10 or uses a linear encoder to detect the field.
  • the moving position of the unit 20 is detected, and based on the detected position information, the energization to the U, V, and W phase coils 13u, 13v, and 13w is switched, and the field unit 20 is moved along the armature unit 10 in the axial direction. Drive linearly.
  • the field unit 20 runs out of control when the power is cut off during the acceleration operation of the cylindrical linear motor 91, the control is not performed, or the control command is wrong, as shown in FIG.
  • the left end portion of the coil spring 26 attached to 20 collides with the right end surface of the bearing holder 16 of the armature portion 10, and the coil spring 26 is compressed to absorb the kinetic energy of the field portion 20 and alleviate the impact.
  • the wire diameter and the number of turns of the coil spring 26 are determined according to the kinetic energy of the field magnet portion 20.
  • FIG. FIG. 4 is a partially enlarged longitudinal sectional view showing Embodiment 2 of the cylindrical linear motor according to the present invention.
  • the cylindrical linear motor 92 according to the second embodiment has a ring-shaped buffer member as a ring-shaped cushioning member on the base (step) on the large diameter portion 24 a side of the small diameter shaft portion 24 b of the stepped shaft 24.
  • a soft rubber O-ring 26a is externally fitted.
  • the O-ring 26a is fixed to the root (step) of the small diameter shaft portion 24b of the stepped shaft 24 by its own tightening margin, no holders are required. Even if an O-ring 26a is used in place of the coil spring 26, the same effect as the coil spring 26 can be obtained and the buffer member can be manufactured at low cost.
  • FIG. 5 is a longitudinal sectional view showing Embodiment 3 of the cylindrical linear motor according to the present invention
  • FIG. 6 is an enlarged view of part B of FIG.
  • a cylindrical spring holder 25 a is fitted in the small diameter hole 11 a at the end of the frame 11.
  • An inner flange 25aa is provided at an end portion of the spring holder 25a, and an end portion of a coil spring 26 as a buffer member housed in the spring holder 25a is engaged with the inner flange 25aa.
  • the small diameter shaft portion 24 b of the stepped shaft 24 protrudes to the outside through the coil spring 26.
  • FIG. 7 is a partially enlarged longitudinal sectional view showing Embodiment 4 of the cylindrical linear motor according to the present invention.
  • a cylindrical O-ring holder 25 b is fitted in the small diameter hole 11 a at the end of the frame 11.
  • a large inner diameter portion 25ba is formed at the end of the O ring holder 25b, and an O ring 26b as a buffer member is engaged with the large inner diameter portion 25ba.
  • the small diameter shaft portion 24b of the stepped shaft 24 protrudes outside through the O-ring 26b without contacting the O-ring 26b.
  • FIG. FIG. 8 is a partially enlarged longitudinal sectional view showing Embodiment 5 of the cylindrical linear motor according to the present invention.
  • the cylindrical linear motor 95 according to the fifth embodiment has a cylindrical shape as a cylindrical buffer member at the root (step portion) on the large diameter portion 24 a side of the small diameter shaft portion 24 b of the stepped shaft 24.
  • An elastic body 26c is externally fitted.
  • the cylindrical elastic body 26c is fixed to the small diameter shaft portion 24b of the stepped shaft 24 by its own tightening allowance. Even when the cylindrical elastic body 26c is used in place of the O-ring 26a of the second embodiment, the same effect as the O-ring 26a is obtained.
  • FIG. 9 is a partially enlarged longitudinal sectional view showing a sixth embodiment of the cylindrical linear motor according to the present invention
  • FIG. 10 shows a deformation state of the buffer member at the time of a collision of the cylindrical linear motor of the sixth embodiment. It is a partial expanded longitudinal cross-sectional view shown.
  • a cylindrical elastic body 26 d as a buffer member is fitted in the small diameter hole 11 a at the end of the frame 11.
  • the small-diameter shaft portion 24b of the stepped shaft 24 protrudes outside through the cylindrical elastic body 26d without contacting the cylindrical elastic body 26d.
  • the side surface of the large diameter part 24a of the stepped shaft 24 collides with the right end face of the cylindrical elastic body 26d, and the cylindrical elastic body 26d is compressed to absorb the kinetic energy of the field part 20. And relieve shock. Further, as shown in FIG. 10, the cylindrical elastic body 26d is compressed and bulges inward and press-contacts with the small diameter shaft portion 24b of the stepped shaft 24. Therefore, the impact can be reduced by a frictional force. If the cylindrical elastic body 26d is attached to the armature part (stator) 10 side, the weight of the field part (movable element) 20 does not increase, so that the drive characteristics of the field part 20 are not affected.
  • FIG. 11 is a partially enlarged longitudinal sectional view showing Embodiment 7 of the cylindrical linear motor according to the present invention.
  • a permanent magnet 26 e as a cylindrical or ring-shaped buffer member is fitted in the small diameter hole 11 a at the end of the frame 11.
  • the magnetic pole (S pole) inside the permanent magnet 26e attached to the end of the frame 11 and the magnetic pole (S pole) on the end side of the permanent magnet 22 of the field magnet section 20 are the same magnetic pole. , Repel each other.
  • the small diameter shaft portion 24b of the stepped shaft 24 protrudes outside through the permanent magnet 26e without contacting the permanent magnet 26e.
  • the magnetic pole (S pole) on the end side of the permanent magnet 22 of the field part 20 approaches the magnetic pole (S pole) inside the permanent magnet 26e attached to the end of the frame 11, It can receive a repulsive force in a non-contact manner and can alleviate the impact at the time of collision.
  • the strong permanent magnet 26e is used, the field part 20 can be stopped without contact. Since the permanent magnet 26e is attached to the armature part (stator) 10 side, the weight of the field part (mover) 20 does not increase, and the drive characteristics of the field part 20 are not affected.
  • a cylindrical permanent magnet is used as the permanent magnet 22 of the field magnet portion 20, it can be shared with the permanent magnet 26e attached to the end of the frame 11.
  • FIG. 12 is a partially enlarged longitudinal sectional view showing an eighth embodiment of the cylindrical linear motor according to the present invention.
  • a ring-shaped coil (electromagnet) 26 f as a buffer member is fitted into the yoke 12 extending to the end of the frame 11.
  • the small diameter shaft portion 24b of the stepped shaft 24 protrudes to the outside through the coil 26f without contacting the coil 26f.
  • the magnetic pole (N pole) on the end side of the permanent magnet 22 of the field unit 20 approaches the coil (electromagnet) 26f attached to the end of the frame 11, and the coil (electromagnet) 26f A repulsive force is received in a non-contact manner by the generated magnetic flux, and the impact at the time of collision can be reduced. If the powerful coil (electromagnet) 26f is used, the field part 20 can be stopped without contact. Since the coil (electromagnet) 26f is attached to the armature part (stator) 10 side, the weight of the field part (mover) 20 does not increase, and the drive characteristics of the field part 20 are not affected.
  • the coil 26 f (electromagnet) can be shared with the U, V, and W phase coils 13 u, 13 v, and 13 w of the armature unit 10.
  • the coil (electromagnet) 26f may be a short-circuit coil. In the case of a short-circuit coil, a short-circuit current flows when the magnetic flux of the field part 20 is linked, and can be operated like a dynamic brake.
  • the armature part 10 is a stator and the field part 20 is a mover.
  • the armature part 10 may be a mover and the field part 20 may be a stator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

This cylindrical linear motor is equipped with: an armature unit (10) which has a cylindrical frame (11), a cylindrical yoke (12) which is made of a magnetic body and fitted into the frame (11), multiple ring-shaped coils (13u, 13v, 13w) which are arranged in the axial direction inside the yoke (12), and bearings which are fixed to either end of the frame (11); a magnetic field unit (20) which is inserted into the armature unit (10), and is formed into a stepped shaft shape which comprises a large-diameter intermediate section where multiple permanent magnets (22) are arranged in the axial direction and small-diameter intermediate sections (24b) which extend from the large-diameter intermediate section in both directions in the axial direction and are inserted into the bearings; and a cylindrical or ring-shaped cushioning member (26) through which the small-diameter intermediate section (24b) is inserted, and which is positioned coaxially with the small-diameter intermediate section (24b) and fixed to the step part of the magnetic field unit (20) or to one end of the frame (11).

Description

筒型リニアモータCylindrical linear motor
 本発明は、筒型リニアモータに関する。 The present invention relates to a cylindrical linear motor.
 筒型リニアモータは、磁性体製の筒状のヨーク内に、U相、V相及びW相のリング状のコイルを軸方向に複数組配列した固定子としての電機子部と、前記電機子部内に挿通されるシャフトに、複数の永久磁石を、磁性体製の板状のスペーサを介してN極同士、S極同士を対向させて軸方向に配列した可動子としての界磁部と、前記電機子部の両端部に設けられ前記シャフトを軸方向に直動自在に支持するリニアブッシュ又はボールブッシュ等の軸受部と、を備えている。 The cylindrical linear motor includes an armature portion as a stator in which a plurality of U-phase, V-phase, and W-phase ring coils are arranged in an axial direction in a cylindrical yoke made of a magnetic material, and the armature A field part as a mover arranged in the axial direction with a plurality of permanent magnets arranged in a shaft direction through a plate-like spacer made of a magnetic material, with N poles and S poles facing each other, And a bearing portion such as a linear bush or a ball bush that is provided at both end portions of the armature portion and supports the shaft so as to be movable in the axial direction.
 上記の筒型リニアモータは、加速動作中に電源が切れたとき、制御がきかず暴走したとき、又は、制御指令を間違えたときに、界磁部が軸受部に衝突し、電機子部又は界磁部が破損する危険性がある。また、筒型リニアモータを縦置きで用いる場合、電源が切られると、界磁部が自重により落下して軸受部に衝突する。この衝突を繰り返すと、摩擦破壊、疲労破壊が発生し、筒型リニアモータの破損につながる。 In the above cylindrical linear motor, when the power is cut off during the acceleration operation, when the control runs out of control or when the control command is wrong, the field part collides with the bearing part, and the armature part or field There is a risk of damage to the magnetic part. Further, when the cylindrical linear motor is used in a vertical position, when the power is turned off, the field part falls due to its own weight and collides with the bearing part. If this collision is repeated, frictional failure and fatigue failure occur, leading to damage to the cylindrical linear motor.
 従来、リニアモータを用いて溶融した樹脂の射出動作を行う射出成形機において、金型と、この金型の空隙に連通する中空部を有し、該中空部に受け入れた樹脂原料を加熱して溶融させる加熱手段を備えたバレルと、前記中空部に挿入され、軸方向に進退駆動されるスクリュウと、このスクリュウの後端部に連結された出力軸を有し、溶融した樹脂が前記中空部から金型の空隙に向けて射出されるように前記出力軸を軸方向に動かすリニアモータの可動部と、このリニアモータの可動部を支持し案内するためのリニアガイドを有するマウント部と、ストロークリミット時に前記リニアモータの可動部が衝突しようとする前後のマウント部の夫々2箇所の部位に取り付けられ、前記リニアモータの可動部の衝突により生じる衝撃力を吸収して低減させるスプリング又はウレタンクッションから成る緩衝部材と、を備えた射出成形機が開示されている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, in an injection molding machine that performs an operation of injecting molten resin using a linear motor, a mold and a hollow portion that communicates with a gap of the mold are heated, and a resin raw material received in the hollow portion is heated. A barrel having a heating means for melting, a screw inserted into the hollow portion and driven to advance and retreat in the axial direction, and an output shaft connected to a rear end portion of the screw, and the molten resin is the hollow portion A movable part of a linear motor that moves the output shaft in the axial direction so as to be injected toward the gap of the mold, a mount part having a linear guide for supporting and guiding the movable part of the linear motor, and a stroke At the limit, the movable part of the linear motor is attached to two parts of the front and rear mounting parts to collide and absorbs the impact force caused by the collision of the movable part of the linear motor. A buffer member made of spring or urethane cushion to Gensa, with an injection molding machine is disclosed (for example, see Patent Document 1).
 また、固定部と可動部からなるリニアモータであって、固定部は、継鉄を兼ねるケース、ケースの上下内壁面に軸方向に並べて取付けられた複数個の突極型の鉄心及びこの鉄心の夫々に巻装された巻線からなり、可動部は、継鉄とその両側に取付けられた複数の永久磁石及び可動部の軸方向の移動を外部に伝達する出力軸からなり、出力軸はケースに設けられた貫通孔を貫通して外部に引き出され、ケースの軸方向の端面の2箇所には、可動部がぶつかったときの運動エネルギーを吸収するゴムのような弾性体からなる2つの緩衝部材が配置されているリニアモータが開示されている(例えば、特許文献2参照)。 The linear motor includes a fixed portion and a movable portion, and the fixed portion includes a case that also serves as a yoke, a plurality of salient pole type iron cores that are attached to the upper and lower inner wall surfaces of the case in the axial direction, and the iron core The movable part consists of a winding wound around each, the movable part is composed of a yoke, a plurality of permanent magnets mounted on both sides of the yoke, and an output shaft that transmits the movement of the movable part in the axial direction to the outside. Two shock absorbers made of rubber and other elastic bodies that absorb the kinetic energy when the movable part hits are provided at two locations on the axial end face of the case. A linear motor in which members are arranged is disclosed (for example, see Patent Document 2).
特開2002-355868号公報JP 2002-355868 A 特開平07-232642号公報(第3、4頁、図1)Japanese Patent Application Laid-Open No. 07-232642 (3rd and 4th pages, FIG. 1)
 しかしながら、特許文献1、2に開示された従来の技術によれば、2つの緩衝部材が出力軸の上下又は左右の2箇所に配置されている。そのため、部品点数が多い、という問題がある。また、可動部が2つの緩衝部材のいずれかに先に衝突すると、可動部及び出力軸に曲げ力が働き、出力軸を支持する軸受に偏荷重がかかる、という問題がある。また、モータ外部に緩衝部材を配置するため、緩衝部材の劣化が激しく、また、意匠性を損なう、という問題がある。 However, according to the conventional techniques disclosed in Patent Documents 1 and 2, two buffer members are arranged at two locations on the upper and lower sides or on the left and right sides of the output shaft. Therefore, there is a problem that the number of parts is large. In addition, when the movable portion collides first with either of the two buffer members, there is a problem in that a bending force acts on the movable portion and the output shaft, and an unbalanced load is applied to the bearing that supports the output shaft. Further, since the buffer member is disposed outside the motor, there is a problem that the buffer member is severely deteriorated and the design property is impaired.
 本発明は、上記に鑑みてなされたものであって、部品点数が少なく、低コストで信頼性が高く、劣化が少ないと共に意匠性のよい緩衝部材を備える筒型リニアモータを得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a cylindrical linear motor having a cushioning member having a small number of parts, low cost, high reliability, little deterioration, and good design. To do.
 上述した課題を解決し、目的を達成するために、本発明は、筒状のフレームと、前記フレームに内嵌された磁性体製の筒状のヨークと、前記ヨーク内に軸方向に配列された複数のリング状のコイルと、前記フレームの両端部に固定された軸受と、を有する電機子部と、前記電機子部内に挿通され、複数の永久磁石が軸方向に配列された大径中間部と、前記大径中間部から軸方向両側に延び前記軸受に挿通される小径シャフト部と、を有し、段付シャフト状に形成された界磁部と、前記小径シャフト部が挿通されて該小径シャフト部と同軸に配置され、前記界磁部の段部又は前記フレームの端部に固定された筒状又はリング状の緩衝部材と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention includes a cylindrical frame, a cylindrical yoke made of a magnetic material fitted in the frame, and an axial arrangement in the yoke. An armature portion having a plurality of ring-shaped coils and bearings fixed to both ends of the frame, and a large-diameter intermediate member inserted into the armature portion and having a plurality of permanent magnets arranged in the axial direction. And a small-diameter shaft portion extending in the axial direction from the large-diameter intermediate portion and inserted into the bearing, a field portion formed in a stepped shaft shape, and the small-diameter shaft portion being inserted And a cylindrical or ring-shaped cushioning member disposed coaxially with the small-diameter shaft portion and fixed to a stepped portion of the field magnet portion or an end portion of the frame.
 本発明にかかる筒型リニアモータは、小径シャフト部が挿通されて小径シャフト部と同軸に配置され、段付シャフトの段部又はフレームの端部に固定された筒状又はリング状の緩衝部材を備えるので、緩衝部材の部品点数が少なく、低コストで信頼性が高い、という効果を奏する。 A cylindrical linear motor according to the present invention includes a cylindrical or ring-shaped buffer member that is inserted in a small-diameter shaft portion and arranged coaxially with the small-diameter shaft portion, and is fixed to a step portion of a stepped shaft or an end portion of a frame. Since it is provided, the number of parts of the buffer member is small, and there is an effect that the reliability is low and the cost is high.
図1は、本発明に係る筒型リニアモータの実施の形態1を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing Embodiment 1 of a cylindrical linear motor according to the present invention. 図2は、図1のA部拡大図である。FIG. 2 is an enlarged view of part A in FIG. 図3は、実施の形態1の筒型リニアモータの可動子が左方へ移動した状態を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing a state in which the mover of the cylindrical linear motor of Embodiment 1 has moved leftward. 図4は、本発明に係る筒型リニアモータの実施の形態2を示す部分拡大縦断面図である。FIG. 4 is a partially enlarged longitudinal sectional view showing Embodiment 2 of the cylindrical linear motor according to the present invention. 図5は、本発明に係る筒型リニアモータの実施の形態3を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing Embodiment 3 of the cylindrical linear motor according to the present invention. 図6は、図5のB部拡大図である。FIG. 6 is an enlarged view of a portion B in FIG. 図7は、本発明に係る筒型リニアモータの実施の形態4を示す部分拡大縦断面図である。FIG. 7 is a partially enlarged longitudinal sectional view showing Embodiment 4 of the cylindrical linear motor according to the present invention. 図8は、本発明に係る筒型リニアモータの実施の形態5を示す部分拡大縦断面図である。FIG. 8 is a partially enlarged longitudinal sectional view showing Embodiment 5 of the cylindrical linear motor according to the present invention. 図9は、本発明に係る筒型リニアモータの実施の形態6を示す部分拡大縦断面図である。FIG. 9 is a partially enlarged longitudinal sectional view showing Embodiment 6 of the cylindrical linear motor according to the present invention. 図10は、実施の形態6の筒型リニアモータの衝突時の緩衝材の変形状態を示す部分拡大縦断面図である。FIG. 10 is a partially enlarged longitudinal sectional view showing a deformed state of the cushioning material at the time of collision of the cylindrical linear motor according to the sixth embodiment. 図11は、本発明に係る筒型リニアモータの実施の形態7を示す部分拡大縦断面図である。FIG. 11 is a partially enlarged longitudinal sectional view showing Embodiment 7 of the cylindrical linear motor according to the present invention. 図12は、本発明に係る筒型リニアモータの実施の形態8を示す部分拡大縦断面図である。FIG. 12 is a partially enlarged longitudinal sectional view showing an eighth embodiment of the cylindrical linear motor according to the present invention.
 以下に、本発明にかかる筒型リニアモータの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an embodiment of a cylindrical linear motor according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明に係る筒型リニアモータの実施の形態1を示す縦断面図であり、図2は、図1のA部拡大図であり、図3は、実施の形態1の筒型リニアモータの可動子が左方へ移動した状態を示す縦断面図である。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view showing a first embodiment of a cylindrical linear motor according to the present invention, FIG. 2 is an enlarged view of part A of FIG. 1, and FIG. 3 is a cylindrical shape of the first embodiment. It is a longitudinal cross-sectional view which shows the state which the mover of the linear motor moved to the left.
 図1~図3に示すように、実施の形態1の筒型リニアモータ91は、固定子となる筒型の電機子部10と、電機子部10内に電機子部10と同軸に挿通、配置され、可動子となる、中間部が大径の段付シャフト状に形成された界磁部20と、を有している。 As shown in FIGS. 1 to 3, a cylindrical linear motor 91 according to the first embodiment includes a cylindrical armature portion 10 that serves as a stator, and the armature portion 10 is inserted coaxially with the armature portion 10. And a field portion 20 having an intermediate portion formed in a stepped shaft shape having a large diameter.
 電機子部10は、アルミニウムや樹脂等の非磁性体製の筒状のフレーム11と、フレーム11に内嵌された磁性体金属製の筒状のヨーク12と、ヨーク12内に軸方向に配列された複数のリング状のU相コイル13u、V相コイル13v、W相コイル13wと、U、V、W相コイル13u、13v、13w間を絶縁するリング状絶縁板14と、U、V、W相コイル13u、13v、13wが巻装された筒状のボビン15(リング状絶縁板14とボビン15は、樹脂により一体に形成するとよい。)と、フレーム11の両端部に固定された軸受ホルダ16と、軸受ホルダ16に保持されたリニアブッシュやボールブッシュ等の軸受17と、を備えている。 The armature portion 10 is a cylindrical frame 11 made of a non-magnetic material such as aluminum or resin, a cylindrical yoke 12 made of a magnetic metal fitted in the frame 11, and an axial arrangement in the yoke 12. A plurality of ring-shaped U-phase coils 13u, V-phase coils 13v, and W-phase coils 13w; and ring-shaped insulating plates 14 that insulate between the U, V, and W- phase coils 13u, 13v, and 13w; A cylindrical bobbin 15 around which W- phase coils 13u, 13v, and 13w are wound (the ring-shaped insulating plate 14 and the bobbin 15 may be integrally formed of resin), and a bearing fixed to both ends of the frame 11. A holder 16 and a bearing 17 such as a linear bush or a ball bush held by the bearing holder 16 are provided.
 界磁部20は、磁束を透過させるステンレス鋼(SUS304)やアルミニウム等の非磁性材料製のパイプ21と、パイプ21内に軸方向に配列された複数の厚板状の永久磁石22と、隣り合う永久磁石22間に挿入された磁性体金属製のスペーサ23と、を備えている。永久磁石22は、スペーサ23を挟んでN極同士、S極同士が対向するように配置されている。 The field portion 20 is adjacent to a pipe 21 made of a nonmagnetic material such as stainless steel (SUS304) or aluminum that transmits magnetic flux, and a plurality of thick plate-like permanent magnets 22 arranged in the axial direction in the pipe 21. And a magnetic metal spacer 23 inserted between the matching permanent magnets 22. The permanent magnet 22 is disposed so that the N poles and the S poles face each other with the spacer 23 interposed therebetween.
 パイプ21の両端部には、段付シャフト24の大径部24aが内嵌され、段付シャフト24の小径シャフト部24bは、パイプ(大径中間部)21から軸方向両側に延びている。可動子としての界磁部20は、パイプ21の両端部に段付シャフト24の大径部24aが嵌合されて、全体として、中央部が太い段付シャフト状に形成されている。段付シャフト24の小径シャフト部24bは、電機子部10の両端部の軸受17に軸方向に往復動自在に支持されている。 The large diameter portion 24a of the stepped shaft 24 is fitted into both ends of the pipe 21, and the small diameter shaft portion 24b of the stepped shaft 24 extends from the pipe (large diameter intermediate portion) 21 to both sides in the axial direction. The field portion 20 as a mover is formed in a stepped shaft shape having a thick central portion as a whole by fitting the large diameter portion 24a of the stepped shaft 24 to both ends of the pipe 21. The small diameter shaft portion 24 b of the stepped shaft 24 is supported by the bearings 17 at both ends of the armature portion 10 so as to be capable of reciprocating in the axial direction.
 一方(図1の左側)の段付シャフト24の小径シャフト部24bの大径部24a側付け根部(界磁部20の段部)には、非磁性体(アルミニウム、樹脂等)製のリング状のスプリングホルダー25が外嵌されている。スプリングホルダー25の外周部には、螺旋溝が設けられ、螺旋溝には、段付シャフト24の小径シャフト部24bが挿通されて小径シャフト部24bと同軸に配置された筒状又はリング状の緩衝部材としてのコイルスプリング26が装着されている。なお、図示はしないが、他方(図1の右側)の段付シャフト24の小径シャフト部24bにもスプリングホルダー25及びコイルスプリング26を装着してもよい。 One (left side in FIG. 1) of the stepped shaft 24 has a ring shape made of a non-magnetic material (aluminum, resin, etc.) at the root of the large diameter portion 24a of the small diameter shaft portion 24b (step portion of the field portion 20). The spring holder 25 is externally fitted. A spiral groove is provided on the outer peripheral portion of the spring holder 25, and a cylindrical or ring-shaped buffer in which the small diameter shaft portion 24b of the stepped shaft 24 is inserted into the spiral groove and is coaxially arranged with the small diameter shaft portion 24b. A coil spring 26 as a member is attached. Although not shown, the spring holder 25 and the coil spring 26 may be attached to the small diameter shaft portion 24b of the other stepped shaft 24 (the right side in FIG. 1).
 筒型リニアモータ91は、電機子部(固定子)10に設けられた磁気センサ(ホール素子)により、界磁部(可動子)20の磁極の位置を検出し、又は、リニアエンコーダにより界磁部20の移動位置を検出し、この検出位置情報に基づいて、U、V、W相コイル13u、13v、13wへの通電を切りかえ、界磁部20を電機子部10に沿って軸方向に直線駆動する。 The cylindrical linear motor 91 detects the position of the magnetic pole of the field part (movable element) 20 by a magnetic sensor (Hall element) provided in the armature part (stator) 10 or uses a linear encoder to detect the field. The moving position of the unit 20 is detected, and based on the detected position information, the energization to the U, V, and W phase coils 13u, 13v, and 13w is switched, and the field unit 20 is moved along the armature unit 10 in the axial direction. Drive linearly.
 筒型リニアモータ91の加速動作中に電源が切れたとき、制御がきかず暴走したとき、又は制御指令を間違えたときに、界磁部20が暴走すると、図3に示すように、界磁部20に装着されたコイルスプリング26の左側先端部が電機子部10の軸受ホルダ16の右側端面に衝突し、コイルスプリング26が圧縮されて界磁部20の運動エネルギーを吸収し、衝撃を緩和する。コイルスプリング26の線径やターン数は、界磁部20の運動エネルギーに応じて決定する。 If the field unit 20 runs out of control when the power is cut off during the acceleration operation of the cylindrical linear motor 91, the control is not performed, or the control command is wrong, as shown in FIG. The left end portion of the coil spring 26 attached to 20 collides with the right end surface of the bearing holder 16 of the armature portion 10, and the coil spring 26 is compressed to absorb the kinetic energy of the field portion 20 and alleviate the impact. . The wire diameter and the number of turns of the coil spring 26 are determined according to the kinetic energy of the field magnet portion 20.
 実施の形態1の筒型リニアモータ91は、段付シャフト24の段部に、小径シャフト部24bと同軸に、1つのコイルスプリング26を装着したので、部品点数が少なく、コイルスプリング26に軸対称の反発力が発生するため、小径シャフト部24bに曲げ力が働くことはない。 In the cylindrical linear motor 91 according to the first embodiment, since one coil spring 26 is mounted on the step portion of the stepped shaft 24 coaxially with the small diameter shaft portion 24b, the number of parts is small and the coil spring 26 is axially symmetric. Therefore, no bending force acts on the small diameter shaft portion 24b.
実施の形態2.
 図4は、本発明に係る筒型リニアモータの実施の形態2を示す部分拡大縦断面図である。図4に示すように、実施の形態2の筒型リニアモータ92は、段付シャフト24の小径シャフト部24bの大径部24a側付け根部(段部)に、リング状の緩衝部材としての、柔らかいゴム製のOリング26aが外嵌されている。
Embodiment 2. FIG.
FIG. 4 is a partially enlarged longitudinal sectional view showing Embodiment 2 of the cylindrical linear motor according to the present invention. As shown in FIG. 4, the cylindrical linear motor 92 according to the second embodiment has a ring-shaped buffer member as a ring-shaped cushioning member on the base (step) on the large diameter portion 24 a side of the small diameter shaft portion 24 b of the stepped shaft 24. A soft rubber O-ring 26a is externally fitted.
 Oリング26aは、自らの締め代によって段付シャフト24の小径シャフト部24bの大径部24a側付け根部(段部)に固定されるので、ホルダー類を必要としない。コイルスプリング26に換えてOリング26aを用いても、コイルスプリング26と同様の効果を奏する上に、緩衝部材として低コストである。 Since the O-ring 26a is fixed to the root (step) of the small diameter shaft portion 24b of the stepped shaft 24 by its own tightening margin, no holders are required. Even if an O-ring 26a is used in place of the coil spring 26, the same effect as the coil spring 26 can be obtained and the buffer member can be manufactured at low cost.
実施の形態3.
 図5は、本発明に係る筒型リニアモータの実施の形態3を示す縦断面図であり、図6は、図5のB部拡大図である。図5及び図6に示すように、実施の形態3の筒型リニアモータ93は、フレーム11の端部の小径孔11aに、筒状のスプリングホルダー25aが内嵌されている。スプリングホルダー25aの端部には、内フランジ25aaが設けられ、スプリングホルダー25a内に収納された緩衝部材としてのコイルスプリング26の端部が、内フランジ25aaに係合されている。段付シャフト24の小径シャフト部24bは、コイルスプリング26を通して外部に突出している。
Embodiment 3 FIG.
FIG. 5 is a longitudinal sectional view showing Embodiment 3 of the cylindrical linear motor according to the present invention, and FIG. 6 is an enlarged view of part B of FIG. As shown in FIGS. 5 and 6, in the cylindrical linear motor 93 of the third embodiment, a cylindrical spring holder 25 a is fitted in the small diameter hole 11 a at the end of the frame 11. An inner flange 25aa is provided at an end portion of the spring holder 25a, and an end portion of a coil spring 26 as a buffer member housed in the spring holder 25a is engaged with the inner flange 25aa. The small diameter shaft portion 24 b of the stepped shaft 24 protrudes to the outside through the coil spring 26.
 界磁部20が暴走すると、段付シャフト24の大径部24aの側面がコイルスプリング26の右側端面に衝突し、コイルスプリング26が圧縮されて界磁部20の運動エネルギーを吸収し、衝撃を緩和する。このように、コイルスプリング26を電機子部10の端部に取付けても、界磁部20側に取付けるのと同様の効果を奏する。コイルスプリング26を電機子部(固定子)10側に取付ければ、界磁部(可動子)20の重量は増加しないので、界磁部20の駆動特性に影響を与えることはない。 When the field part 20 runs out of control, the side surface of the large diameter part 24a of the stepped shaft 24 collides with the right end face of the coil spring 26, and the coil spring 26 is compressed to absorb the kinetic energy of the field part 20 and apply an impact. ease. Thus, even if the coil spring 26 is attached to the end portion of the armature portion 10, the same effect as that provided on the field portion 20 side is obtained. If the coil spring 26 is attached to the armature part (stator) 10 side, the weight of the field part (mover) 20 does not increase, so that the drive characteristics of the field part 20 are not affected.
実施の形態4.
 図7は、本発明に係る筒型リニアモータの実施の形態4を示す部分拡大縦断面図である。図7に示すように、実施の形態4の筒型リニアモータ94は、フレーム11の端部の小径孔11aに、筒状のOリングホルダー25bが内嵌されている。Oリングホルダー25bの端部には、大内径部25baが形成され、大内径部25baに緩衝部材としてのOリング26bが係合している。段付シャフト24の小径シャフト部24bは、Oリング26bを通して、Oリング26bに接触せずに、外部に突出している。
Embodiment 4 FIG.
FIG. 7 is a partially enlarged longitudinal sectional view showing Embodiment 4 of the cylindrical linear motor according to the present invention. As shown in FIG. 7, in the cylindrical linear motor 94 of the fourth embodiment, a cylindrical O-ring holder 25 b is fitted in the small diameter hole 11 a at the end of the frame 11. A large inner diameter portion 25ba is formed at the end of the O ring holder 25b, and an O ring 26b as a buffer member is engaged with the large inner diameter portion 25ba. The small diameter shaft portion 24b of the stepped shaft 24 protrudes outside through the O-ring 26b without contacting the O-ring 26b.
 界磁部20が暴走すると、段付シャフト24の大径部24aの側面がOリング26bの右側端面に衝突し、Oリング26bが圧縮されて界磁部20の運動エネルギーを吸収し、衝撃を緩和する。このように、Oリング26bを電機子10の端部に取付けても、界磁部20側に取付けるのと同様の効果を奏する。 When the field part 20 runs away, the side surface of the large diameter part 24a of the stepped shaft 24 collides with the right end face of the O-ring 26b, and the O-ring 26b is compressed to absorb the kinetic energy of the field part 20 and cause an impact. ease. Thus, even if the O-ring 26b is attached to the end portion of the armature 10, the same effect as that provided on the field magnet portion 20 side can be obtained.
実施の形態5.
 図8は、本発明に係る筒型リニアモータの実施の形態5を示す部分拡大縦断面図である。図8に示すように、実施の形態5の筒型リニアモータ95は、段付シャフト24の小径シャフト部24bの大径部24a側付け根部(段部)に筒状の緩衝部材としての筒状弾性体26cが外嵌されている。筒状弾性体26cは、自らの締め代によって段付シャフト24の小径シャフト部24bに固定されている。実施の形態2のOリング26aに換えて筒状弾性体26cを用いても、Oリング26aと同様の効果を奏する。
Embodiment 5. FIG.
FIG. 8 is a partially enlarged longitudinal sectional view showing Embodiment 5 of the cylindrical linear motor according to the present invention. As shown in FIG. 8, the cylindrical linear motor 95 according to the fifth embodiment has a cylindrical shape as a cylindrical buffer member at the root (step portion) on the large diameter portion 24 a side of the small diameter shaft portion 24 b of the stepped shaft 24. An elastic body 26c is externally fitted. The cylindrical elastic body 26c is fixed to the small diameter shaft portion 24b of the stepped shaft 24 by its own tightening allowance. Even when the cylindrical elastic body 26c is used in place of the O-ring 26a of the second embodiment, the same effect as the O-ring 26a is obtained.
実施の形態6.
 図9は、本発明に係る筒型リニアモータの実施の形態6を示す部分拡大縦断面図であり、図10は、実施の形態6の筒型リニアモータの衝突時の緩衝部材の変形状態を示す部分拡大縦断面図である。図9及び図10に示すように、実施の形態6の筒型リニアモータ96は、フレーム11の端部の小径孔11aに、緩衝部材としての筒状弾性体26dが内嵌されている。段付シャフト24の小径シャフト部24bは、筒状弾性体26dを通して、筒状弾性体26dに接触せずに、外部に突出している。
Embodiment 6 FIG.
FIG. 9 is a partially enlarged longitudinal sectional view showing a sixth embodiment of the cylindrical linear motor according to the present invention, and FIG. 10 shows a deformation state of the buffer member at the time of a collision of the cylindrical linear motor of the sixth embodiment. It is a partial expanded longitudinal cross-sectional view shown. As shown in FIGS. 9 and 10, in the cylindrical linear motor 96 of the sixth embodiment, a cylindrical elastic body 26 d as a buffer member is fitted in the small diameter hole 11 a at the end of the frame 11. The small-diameter shaft portion 24b of the stepped shaft 24 protrudes outside through the cylindrical elastic body 26d without contacting the cylindrical elastic body 26d.
 界磁部20が暴走すると、段付シャフト24の大径部24aの側面が筒状弾性体26dの右側端面に衝突し、筒状弾性体26dが圧縮されて界磁部20の運動エネルギーを吸収し、衝撃を緩和する。また、図10に示すように、筒状弾性体26dは、圧縮されて内側に膨らんで段付シャフト24の小径シャフト部24bに圧接するので、摩擦力によっても衝撃を緩和することができる。筒状弾性体26dを電機子部(固定子)10側に取付ければ、界磁部(可動子)20の重量は増加しないので、界磁部20の駆動特性に影響を与えることはない。 When the field part 20 runs away, the side surface of the large diameter part 24a of the stepped shaft 24 collides with the right end face of the cylindrical elastic body 26d, and the cylindrical elastic body 26d is compressed to absorb the kinetic energy of the field part 20. And relieve shock. Further, as shown in FIG. 10, the cylindrical elastic body 26d is compressed and bulges inward and press-contacts with the small diameter shaft portion 24b of the stepped shaft 24. Therefore, the impact can be reduced by a frictional force. If the cylindrical elastic body 26d is attached to the armature part (stator) 10 side, the weight of the field part (movable element) 20 does not increase, so that the drive characteristics of the field part 20 are not affected.
実施の形態7.
 図11は、本発明に係る筒型リニアモータの実施の形態7を示す部分拡大縦断面図である。図11に示すように、実施の形態7の筒型リニアモータ97は、フレーム11の端部の小径孔11aに、筒状又はリング状の緩衝部材としての永久磁石26eが内嵌されている。フレーム11の端部に取付けられた永久磁石26eの内側の磁極(S極)と、界磁部20の永久磁石22の端部側の磁極(S極)とは、同一の磁極になっていて、互いに反発する。段付シャフト24の小径シャフト部24bは、永久磁石26eを通して、永久磁石26eに接触せずに、外部に突出している。
Embodiment 7 FIG.
FIG. 11 is a partially enlarged longitudinal sectional view showing Embodiment 7 of the cylindrical linear motor according to the present invention. As shown in FIG. 11, in the cylindrical linear motor 97 of the seventh embodiment, a permanent magnet 26 e as a cylindrical or ring-shaped buffer member is fitted in the small diameter hole 11 a at the end of the frame 11. The magnetic pole (S pole) inside the permanent magnet 26e attached to the end of the frame 11 and the magnetic pole (S pole) on the end side of the permanent magnet 22 of the field magnet section 20 are the same magnetic pole. , Repel each other. The small diameter shaft portion 24b of the stepped shaft 24 protrudes outside through the permanent magnet 26e without contacting the permanent magnet 26e.
 界磁部20が暴走すると、界磁部20の永久磁石22の端部側の磁極(S極)がフレーム11の端部に取付けられた永久磁石26eの内側の磁極(S極)に近づき、非接触で反発力を受け、衝突時の衝撃を緩和することができる。強力な永久磁石26eを用いれば、非接触で界磁部20を止めることができる。永久磁石26eを電機子部(固定子)10側に取付けるので、界磁部(可動子)20の重量は増加せず、界磁部20の駆動特性に影響を与えることはない。また、界磁部20の永久磁石22として筒状の永久磁石を用いるようにすれば、フレーム11の端部に取付けた永久磁石26eとの共通化が可能である。 When the field part 20 runs away, the magnetic pole (S pole) on the end side of the permanent magnet 22 of the field part 20 approaches the magnetic pole (S pole) inside the permanent magnet 26e attached to the end of the frame 11, It can receive a repulsive force in a non-contact manner and can alleviate the impact at the time of collision. If the strong permanent magnet 26e is used, the field part 20 can be stopped without contact. Since the permanent magnet 26e is attached to the armature part (stator) 10 side, the weight of the field part (mover) 20 does not increase, and the drive characteristics of the field part 20 are not affected. In addition, if a cylindrical permanent magnet is used as the permanent magnet 22 of the field magnet portion 20, it can be shared with the permanent magnet 26e attached to the end of the frame 11.
実施の形態8.
 図12は、本発明に係る筒型リニアモータの実施の形態8を示す部分拡大縦断面図である。図12に示すように、実施の形態8の筒型リニアモータ98は、フレーム11の端部まで延びたヨーク12に、緩衝部材としてのリング状のコイル(電磁石)26fが内嵌されている。段付シャフト24の小径シャフト部24bは、コイル26fを通して、コイル26fに接触せずに、外部に突出している。
Embodiment 8 FIG.
FIG. 12 is a partially enlarged longitudinal sectional view showing an eighth embodiment of the cylindrical linear motor according to the present invention. As shown in FIG. 12, in the cylindrical linear motor 98 according to the eighth embodiment, a ring-shaped coil (electromagnet) 26 f as a buffer member is fitted into the yoke 12 extending to the end of the frame 11. The small diameter shaft portion 24b of the stepped shaft 24 protrudes to the outside through the coil 26f without contacting the coil 26f.
 界磁部20が暴走すると、界磁部20の永久磁石22の端部側の磁極(N極)がフレーム11の端部に取付けられたコイル(電磁石)26fに近づき、コイル(電磁石)26fが発生する磁束により非接触で反発力を受け、衝突時の衝撃を緩和することができる。強力なコイル(電磁石)26fを用いれば、非接触で界磁部20を止めることができる。コイル(電磁石)26fを電機子部(固定子)10側に取付けるので、界磁部(可動子)20の重量は増加せず、界磁部20の駆動特性に影響を与えることはない。コイル26f(電磁石)は、電機子部10の、U、V、W相コイル13u、13v、13wと共通化が可能である。また、コイル(電磁石)26fは、短絡コイルであってもよい。短絡コイルの場合、界磁部20の磁束が鎖交することにより短絡電流が流れ、ダイナミックブレーキのように動作させることができる。 When the field unit 20 runs away, the magnetic pole (N pole) on the end side of the permanent magnet 22 of the field unit 20 approaches the coil (electromagnet) 26f attached to the end of the frame 11, and the coil (electromagnet) 26f A repulsive force is received in a non-contact manner by the generated magnetic flux, and the impact at the time of collision can be reduced. If the powerful coil (electromagnet) 26f is used, the field part 20 can be stopped without contact. Since the coil (electromagnet) 26f is attached to the armature part (stator) 10 side, the weight of the field part (mover) 20 does not increase, and the drive characteristics of the field part 20 are not affected. The coil 26 f (electromagnet) can be shared with the U, V, and W phase coils 13 u, 13 v, and 13 w of the armature unit 10. The coil (electromagnet) 26f may be a short-circuit coil. In the case of a short-circuit coil, a short-circuit current flows when the magnetic flux of the field part 20 is linked, and can be operated like a dynamic brake.
 なお、実施の形態1~8では、電機子部10を固定子、界磁部20を可動子としたが、電機子部10を可動子、界磁部20を固定子としてもよい。 In the first to eighth embodiments, the armature part 10 is a stator and the field part 20 is a mover. However, the armature part 10 may be a mover and the field part 20 may be a stator.
 10 電機子部(固定子)
 11 フレーム
 11a 小径孔
 12 ヨーク
 13u U相コイル
 13v V相コイル
 13w W相コイル
 14 リング状絶縁板
 15 ボビン
 16 軸受ホルダ
 17 軸受
 20 界磁部(可動子)
 21 パイプ
 22 永久磁石
 23 スペーサ
 24 段付シャフト
 24a 大径部
 24b 小径シャフト部
 25 スプリングホルダー
 25a スプリングホルダー
 25aa 内フランジ
 25b Oリングホルダー
 26 コイルスプリング(緩衝部材)
 26a、26b Oリング(緩衝部材)
 26c、26d 筒状弾性体(緩衝部材)
 26e 永久磁石(緩衝部材)
 26f コイル(電磁石、緩衝部材)
 91、92、93、94、95、96、97、98 筒型リニアモータ
10 Armature part (stator)
11 Frame 11a Small-diameter hole 12 Yoke 13u U-phase coil 13v V-phase coil 13w W-phase coil 14 Ring-shaped insulating plate 15 Bobbin 16 Bearing holder 17 Bearing 20 Field part (mover)
21 Pipe 22 Permanent magnet 23 Spacer 24 Stepped shaft 24a Large diameter portion 24b Small diameter shaft portion 25 Spring holder 25a Spring holder 25aa Inner flange 25b O-ring holder 26 Coil spring (buffer member)
26a, 26b O-ring (buffer member)
26c, 26d Cylindrical elastic body (buffer member)
26e Permanent magnet (buffer member)
26f Coil (electromagnet, buffer member)
91, 92, 93, 94, 95, 96, 97, 98 Cylindrical linear motor

Claims (7)

  1.  筒状のフレームと、前記フレームに内嵌された磁性体製の筒状のヨークと、前記ヨーク内に軸方向に配列された複数のリング状のコイルと、前記フレームの両端部に固定された軸受と、を有する電機子部と、
     前記電機子部内に挿通され、複数の永久磁石が軸方向に配列された大径中間部と、前記大径中間部から軸方向両側に延び前記軸受に挿通される小径シャフト部と、を有し、段付シャフト状に形成された界磁部と、
     前記小径シャフト部が挿通されて該小径シャフト部と同軸に前記フレーム内に配置され、前記界磁部の段部又は前記フレームの端部に固定された筒状又はリング状の緩衝部材と、
     を備えることを特徴とする筒型リニアモータ。
    A cylindrical frame, a cylindrical yoke made of a magnetic material fitted into the frame, a plurality of ring-shaped coils arranged in the axial direction in the yoke, and fixed to both ends of the frame An armature portion having a bearing;
    A large-diameter intermediate portion that is inserted into the armature portion and a plurality of permanent magnets are arranged in the axial direction; and a small-diameter shaft portion that extends from the large-diameter intermediate portion to both axial sides and is inserted into the bearing. A field part formed in a stepped shaft shape;
    A cylindrical or ring-shaped cushioning member that is inserted into the frame coaxially with the small-diameter shaft portion and is fixed in the step portion of the field magnet portion or the end portion of the frame.
    A cylindrical linear motor comprising:
  2.  前記緩衝部材は、コイルスプリングであることを特徴とする請求項1に記載の筒型リニアモータ。 2. The cylindrical linear motor according to claim 1, wherein the buffer member is a coil spring.
  3.  前記緩衝部材は、Oリングであることを特徴とする請求項1に記載の筒型リニアモータ。 2. The cylindrical linear motor according to claim 1, wherein the buffer member is an O-ring.
  4.  前記緩衝部材は、筒状弾性体であることを特徴とする請求項1に記載の筒型リニアモータ。 2. The cylindrical linear motor according to claim 1, wherein the buffer member is a cylindrical elastic body.
  5.  前記緩衝部材は、永久磁石であることを特徴とする請求項1に記載の筒型リニアモータ。 2. The cylindrical linear motor according to claim 1, wherein the buffer member is a permanent magnet.
  6.  前記緩衝部材は、電磁石であることを特徴とする請求項1に記載の筒型リニアモータ。 2. The cylindrical linear motor according to claim 1, wherein the buffer member is an electromagnet.
  7.  前記電磁石は、短絡コイルであることを特徴とする請求項6に記載の筒型リニアモータ。 The cylindrical linear motor according to claim 6, wherein the electromagnet is a short-circuit coil.
PCT/JP2011/076059 2011-11-11 2011-11-11 Cylindrical linear motor WO2013069148A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/076059 WO2013069148A1 (en) 2011-11-11 2011-11-11 Cylindrical linear motor
CN201180074801.7A CN103947091A (en) 2011-11-11 2011-11-11 Cylindrical linear motor
KR1020147014536A KR101635691B1 (en) 2011-11-11 2011-11-11 Cylindrical linear motor
JP2013542784A JP5680216B2 (en) 2011-11-11 2011-11-11 Cylindrical linear motor
TW101112738A TWI491147B (en) 2011-11-11 2012-04-11 Cylinder type linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/076059 WO2013069148A1 (en) 2011-11-11 2011-11-11 Cylindrical linear motor

Publications (1)

Publication Number Publication Date
WO2013069148A1 true WO2013069148A1 (en) 2013-05-16

Family

ID=48288770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076059 WO2013069148A1 (en) 2011-11-11 2011-11-11 Cylindrical linear motor

Country Status (5)

Country Link
JP (1) JP5680216B2 (en)
KR (1) KR101635691B1 (en)
CN (1) CN103947091A (en)
TW (1) TWI491147B (en)
WO (1) WO2013069148A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9564029B2 (en) 2014-09-02 2017-02-07 Apple Inc. Haptic notifications
US20170070131A1 (en) * 2015-09-08 2017-03-09 Apple Inc. Linear Actuators for Use in Electronic Devices
US9608506B2 (en) 2014-06-03 2017-03-28 Apple Inc. Linear actuator
US9640048B2 (en) 2009-09-30 2017-05-02 Apple Inc. Self adapting haptic device
US9652040B2 (en) 2013-08-08 2017-05-16 Apple Inc. Sculpted waveforms with no or reduced unforced response
JP6190550B1 (en) * 2017-01-31 2017-08-30 山洋電気株式会社 Linear motor and magnetic shielding structure of linear motor
US9779592B1 (en) 2013-09-26 2017-10-03 Apple Inc. Geared haptic feedback element
US9886093B2 (en) 2013-09-27 2018-02-06 Apple Inc. Band with haptic actuators
US9911553B2 (en) 2012-09-28 2018-03-06 Apple Inc. Ultra low travel keyboard
US9928950B2 (en) 2013-09-27 2018-03-27 Apple Inc. Polarized magnetic actuators for haptic response
EP3318957A1 (en) * 2016-11-03 2018-05-09 Immersion Corporation Electromagnetic haptic actuator with high definition capability
US10013058B2 (en) 2010-09-21 2018-07-03 Apple Inc. Touch-based user interface with haptic feedback
US10039080B2 (en) 2016-03-04 2018-07-31 Apple Inc. Situationally-aware alerts
US10120446B2 (en) 2010-11-19 2018-11-06 Apple Inc. Haptic input device
US10126817B2 (en) 2013-09-29 2018-11-13 Apple Inc. Devices and methods for creating haptic effects
US10236760B2 (en) 2013-09-30 2019-03-19 Apple Inc. Magnetic actuators for haptic response
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US10276001B2 (en) 2013-12-10 2019-04-30 Apple Inc. Band attachment mechanism with haptic response
US10353467B2 (en) 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
US10459521B2 (en) 2013-10-22 2019-10-29 Apple Inc. Touch surface for simulating materials
US10481691B2 (en) 2015-04-17 2019-11-19 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
JP2020039198A (en) * 2018-09-03 2020-03-12 日本パルスモーター株式会社 Vertical linear actuator
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038728A1 (en) * 2019-08-27 2021-03-04 三菱電機株式会社 Linear motor system
CN111113386A (en) * 2020-01-16 2020-05-08 南方科技大学 Electromagnetic drive mechanism
KR102441645B1 (en) 2020-08-19 2022-09-08 (주)글로벌제이티에스 Tublar linear motor
CN112910213A (en) * 2021-01-25 2021-06-04 上海联适导航技术股份有限公司 Linear push rod motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213531A (en) * 2009-03-12 2010-09-24 Bridgestone Corp Generation device in tire
JP2011120405A (en) * 2009-12-04 2011-06-16 Mitsubishi Electric Corp Linear motor
JP2011193641A (en) * 2010-03-15 2011-09-29 Koganei Corp Linear motor and method for manufacturing reciprocating rod

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3368968B2 (en) 1994-02-24 2003-01-20 富士電機株式会社 Electric synchronous machine driven by linear synchronous motor
JPH10215555A (en) * 1997-01-28 1998-08-11 Matsushita Electric Works Ltd Electromagnetic solenoid
JP3953735B2 (en) * 1997-10-04 2007-08-08 ズィー・アンド・ディー・リミテッド Linear motor compressor
JP2002355868A (en) 2001-05-30 2002-12-10 Toshiba Mach Co Ltd Injection molding machine
JP2003188012A (en) * 2001-12-21 2003-07-04 Toda Kogyo Corp Magnet for reciprocating mechanism and reciprocating mechanism using the magnet
AU2005223056B2 (en) * 2004-03-16 2011-06-23 Ocean Power Technologies, Inc. Wave energy converters (WECs) with linear electric generators (LEGs).
JP2006021176A (en) * 2004-07-05 2006-01-26 Kesaei Ide Vibration generator
JP4756472B2 (en) * 2006-05-11 2011-08-24 株式会社安川電機 Manufacturing method of cylindrical linear motor field part and cylindrical linear motor
JP2011075074A (en) * 2009-10-01 2011-04-14 Meiyu-Giken Co Ltd Reciprocating shock absorber using permanent magnet
JP2011115076A (en) * 2009-12-02 2011-06-16 Minoru Nakamura Method for processing and preserving fresh fish and shellfish
JP5428938B2 (en) * 2010-02-25 2014-02-26 ブラザー工業株式会社 Vibration generator
JP5327110B2 (en) * 2010-03-17 2013-10-30 ブラザー工業株式会社 Vibration generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213531A (en) * 2009-03-12 2010-09-24 Bridgestone Corp Generation device in tire
JP2011120405A (en) * 2009-12-04 2011-06-16 Mitsubishi Electric Corp Linear motor
JP2011193641A (en) * 2010-03-15 2011-09-29 Koganei Corp Linear motor and method for manufacturing reciprocating rod

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9934661B2 (en) 2009-09-30 2018-04-03 Apple Inc. Self adapting haptic device
US11605273B2 (en) 2009-09-30 2023-03-14 Apple Inc. Self-adapting electronic device
US10475300B2 (en) 2009-09-30 2019-11-12 Apple Inc. Self adapting haptic device
US12094328B2 (en) 2009-09-30 2024-09-17 Apple Inc. Device having a camera used to detect visual cues that activate a function of the device
US9640048B2 (en) 2009-09-30 2017-05-02 Apple Inc. Self adapting haptic device
US11043088B2 (en) 2009-09-30 2021-06-22 Apple Inc. Self adapting haptic device
US10013058B2 (en) 2010-09-21 2018-07-03 Apple Inc. Touch-based user interface with haptic feedback
US10120446B2 (en) 2010-11-19 2018-11-06 Apple Inc. Haptic input device
US9911553B2 (en) 2012-09-28 2018-03-06 Apple Inc. Ultra low travel keyboard
US9997306B2 (en) 2012-09-28 2018-06-12 Apple Inc. Ultra low travel keyboard
US9652040B2 (en) 2013-08-08 2017-05-16 Apple Inc. Sculpted waveforms with no or reduced unforced response
US9779592B1 (en) 2013-09-26 2017-10-03 Apple Inc. Geared haptic feedback element
US9886093B2 (en) 2013-09-27 2018-02-06 Apple Inc. Band with haptic actuators
US9928950B2 (en) 2013-09-27 2018-03-27 Apple Inc. Polarized magnetic actuators for haptic response
US10126817B2 (en) 2013-09-29 2018-11-13 Apple Inc. Devices and methods for creating haptic effects
US10651716B2 (en) 2013-09-30 2020-05-12 Apple Inc. Magnetic actuators for haptic response
US10236760B2 (en) 2013-09-30 2019-03-19 Apple Inc. Magnetic actuators for haptic response
US10459521B2 (en) 2013-10-22 2019-10-29 Apple Inc. Touch surface for simulating materials
US10276001B2 (en) 2013-12-10 2019-04-30 Apple Inc. Band attachment mechanism with haptic response
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
US10069392B2 (en) 2014-06-03 2018-09-04 Apple Inc. Linear vibrator with enclosed mass assembly structure
US9608506B2 (en) 2014-06-03 2017-03-28 Apple Inc. Linear actuator
US10490035B2 (en) 2014-09-02 2019-11-26 Apple Inc. Haptic notifications
US9830782B2 (en) 2014-09-02 2017-11-28 Apple Inc. Haptic notifications
US9564029B2 (en) 2014-09-02 2017-02-07 Apple Inc. Haptic notifications
US10353467B2 (en) 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
US10481691B2 (en) 2015-04-17 2019-11-19 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US11402911B2 (en) 2015-04-17 2022-08-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US10566888B2 (en) 2015-09-08 2020-02-18 Apple Inc. Linear actuators for use in electronic devices
US20170070131A1 (en) * 2015-09-08 2017-03-09 Apple Inc. Linear Actuators for Use in Electronic Devices
WO2017044618A1 (en) * 2015-09-08 2017-03-16 Apple Inc. Linear actuators for use in electronic devices
US10609677B2 (en) 2016-03-04 2020-03-31 Apple Inc. Situationally-aware alerts
US10039080B2 (en) 2016-03-04 2018-07-31 Apple Inc. Situationally-aware alerts
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US10809805B2 (en) 2016-03-31 2020-10-20 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
EP3620898A1 (en) * 2016-11-03 2020-03-11 Immersion Corporation Electromagnetic haptic actuator with high definition capability
US10404149B2 (en) 2016-11-03 2019-09-03 Immersion Corporation Electromagnetic haptic actuator with high definition capability
EP3318957A1 (en) * 2016-11-03 2018-05-09 Immersion Corporation Electromagnetic haptic actuator with high definition capability
JP6190550B1 (en) * 2017-01-31 2017-08-30 山洋電気株式会社 Linear motor and magnetic shielding structure of linear motor
JP2018125953A (en) * 2017-01-31 2018-08-09 山洋電気株式会社 Linear motor and magnetic shielding structure of the linear motor
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
JP7158661B2 (en) 2018-09-03 2022-10-24 日本パルスモーター株式会社 vertical linear actuator
JP2020039198A (en) * 2018-09-03 2020-03-12 日本パルスモーター株式会社 Vertical linear actuator
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US11763971B2 (en) 2019-09-24 2023-09-19 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device

Also Published As

Publication number Publication date
TW201320559A (en) 2013-05-16
JP5680216B2 (en) 2015-03-04
JPWO2013069148A1 (en) 2015-04-02
KR20140084318A (en) 2014-07-04
CN103947091A (en) 2014-07-23
TWI491147B (en) 2015-07-01
KR101635691B1 (en) 2016-07-01

Similar Documents

Publication Publication Date Title
JP5680216B2 (en) Cylindrical linear motor
JP4911380B2 (en) Tubular linear motor
WO2012039293A1 (en) Linear actuator
EP1835602B1 (en) Moving magnet actuator with counter-cogging end-ring and asymmetrical armature stroke
US20100060393A1 (en) Electromagnetic linear actuator
JP2010127383A (en) Electromagnetic suspension device
JP5042397B1 (en) Cylindrical linear motor
CN112590481B (en) Electric suspension device
JP2007228675A (en) Linear motor
JP7054714B2 (en) Electric suspension device
WO2018166013A1 (en) Linear vibration motor and electronic device
KR101563320B1 (en) High speed solenoid
KR101251921B1 (en) Electric actuator and relay having the same
JP5655999B2 (en) Electromagnetic suspension device
WO2007111031A1 (en) Motor and drive control device
KR101552573B1 (en) High speed solenoid
JP5467436B2 (en) Linear actuator
WO2018166012A1 (en) Linear vibration motor and electronic device
JP5627475B2 (en) Switch operating mechanism
KR101116380B1 (en) Relay
JP7158661B2 (en) vertical linear actuator
KR102563341B1 (en) Motor Including Tension Member
JP5696403B2 (en) Linear actuator
JP2012175850A (en) Cylindrical linear motor
WO2013028131A1 (en) Linear actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147014536

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11875518

Country of ref document: EP

Kind code of ref document: A1