WO2007111031A1 - Motor and drive control device - Google Patents

Motor and drive control device Download PDF

Info

Publication number
WO2007111031A1
WO2007111031A1 PCT/JP2007/050707 JP2007050707W WO2007111031A1 WO 2007111031 A1 WO2007111031 A1 WO 2007111031A1 JP 2007050707 W JP2007050707 W JP 2007050707W WO 2007111031 A1 WO2007111031 A1 WO 2007111031A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
motor
bearing
stator
energizing
Prior art date
Application number
PCT/JP2007/050707
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Koyama
Hirohumi Doi
Kenta Hatano
Tomokuni Katou
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2008507380A priority Critical patent/JP5306808B2/en
Priority to CN2007800101693A priority patent/CN101405929B/en
Priority to DE112007000576T priority patent/DE112007000576T5/en
Publication of WO2007111031A1 publication Critical patent/WO2007111031A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor

Definitions

  • the present invention relates to a motor and a drive control device thereof.
  • Patent Document 1 discloses a conventional noise countermeasure technique for driving a motor.
  • Patent Document 1 reduces noise generated when a member attached to a rotor shaft collides with a bearing when the rotor of a DC (direct current) motor moves in the axial direction during driving.
  • Patent Document 2 discloses a DC brushless motor that generates a rotating magnetic field by sequentially switching a rotor having a plurality of permanent magnets and a stator winding that is energized based on a position detection signal obtained by the rotation. About. In Patent Document 2, it is possible to reduce the vibration and noise generated by the operation by the energization by controlling the energization at a frequency that avoids the resonance of the rotor.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-32706
  • Patent Document 2 Japanese Patent Laid-Open No. 11 113281
  • the number of magnetic poles does not match between the rotor side and the stator side.
  • the rotor side has eight magnetic poles and the stator side has nine current-carrying coils ( In the rotor 8 pole stator 9 pole), the magnetic force generated when the energizing coil is energized generates uneven force to attract the rotor in the radial direction. For this reason, the rotor swings in the radial direction.
  • a motor with a rotor 8-pole stator 9-pole structure can achieve high output, is easy to manufacture and is relatively easy to use.
  • an object of the present invention is to obtain a motor that can absorb the collision with the bearing due to the radial deflection of the rotor, reduce the generation of abnormal noise, and reduce the impact on the bearing.
  • the present invention drives a motor whose rotor swings in the radial direction when driven.
  • a drive control device that can reduce the contact with the bearing and suppress the generation of noise by controlling the drive at a drive frequency high enough to mitigate the collision of the rotor drawn in the radial direction with the bearing. The purpose is to obtain.
  • a motor according to the present invention includes a rotor having a magnet whose outer periphery is magnetized in plural, and a stator having a plurality of energizing coils arranged along the outer periphery of the rotor.
  • a load-side bearing that fixes one end of the rotor in the axial direction
  • an anti-load-side bearing that fixes the other end of the rotor in the radial direction
  • a damping member provided in the radial direction of the anti-load-side bearing
  • FIG. 1 is a cross-sectional view showing the structure of a motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing the eccentricity of the rotor during driving.
  • FIG. 3 is an enlarged view of a portion indicated by symbol B in FIG.
  • FIG. 4 is an enlarged view of a portion indicated by symbol C in FIG.
  • FIG. 5 is a view showing an example of a buffer member.
  • FIG. 6 is a view showing another example of the buffer member.
  • FIG. 7 is a block diagram showing a configuration of a motor drive system according to a second embodiment of the present invention.
  • FIG. 8 is a diagram for explaining the movement of the rotor during driving.
  • FIG. 1 is a cross-sectional view showing the structure of a motor according to Embodiment 1 of the present invention, showing a cross section in the axial direction, and showing a rotor 8-pole-stator 9-pole motor.
  • the motor 1 is roughly configured to include a rotor 3 and a stator 7.
  • the rotor 3 is provided with a permanent magnet 2 magnetized in a plurality of poles along the outer periphery, and a screw hole is provided in the central shaft portion thereof.
  • the permanent magnet 2 is NS magnetized to 8 poles.
  • the screw hole provided in the rotor 3 described above is arranged on the opposite side of the output end of the output shaft 11.
  • the installed screw 10 is inserted and inserted.
  • a stator 7 is a stator (iron core) 7a disposed so as to surround the rotor 3 in a motor cover (motor housing) 9a, and an energization coil is wound around the stator 7.
  • nine stators 7a are disposed so as to surround the rotor 3, and energizing coils are wound around these stators 7a, and NS magnetized to 9 poles by energization.
  • FIG. 2 is a view for explaining the eccentricity of the rotor 3 at the time of driving, and shows a cross section taken along the line AA in FIG.
  • Figures 2 (a) and 2 (c) differ from the motor 1 according to the first embodiment in that the rotor 3 has 12 poles and the stator 7 has 9 current coils.
  • Fig. 2 (b) and Fig. 2 (d) show the motor 1 according to the first embodiment, which shows a rotor 8 pole stator 9 pole motor. .
  • Fig. 2 (a) and Fig. 2 (b) show the situation when the U phase is energized from the V phase.
  • Fig. 2 (c) and Fig. 2 (d) show the situation from the U phase to the W phase. The situation when the phase is energized is shown.
  • Fig. 2 when the energizing coil of the stator is energized, the stator (iron core) is magnetized, and a force that attracts the permanent magnet pole of the rotor is generated.
  • the magnetic field is uniformly generated by energizing the energizing coil.
  • the attracting force acts equally in each direction (indicated by the arrows in Fig. 2 (a) and Fig. 2 (c)), and the rotor is not eccentric.
  • the buffer member 12 is provided in the gap between the bearing holding portion 3a of the rotor 3 and the inner ring 4a of the upper bearing 4 to generate noise. Suppress.
  • the buffer member 12 will be described later.
  • a boss (motor casing) 9b is assembled to the motor cover 9a, and the boss 9b holds a preload member 8 such as a washer. Further, an upper bearing 4 and a lower bearing 5 are attached to both ends of the rotor 3 to hold the rotating shaft.
  • FIG. 3 is an enlarged view of a portion indicated by a symbol B in FIG.
  • the inner ring 5a of the lower bearing 5 is fixed up and down in the axial direction by the step 3b of the rotor 3 and the holding mechanism 6 (fixed in the axial direction).
  • the outer ring 5b of the lower bearing 5 is fixed up and down in the axial direction by the step 9c of the motor cover 9a and the preload member 8 held by the boss 9b (fixed in the axial direction).
  • the outer ring 5b of the lower bearing 5 is fixed to the motor casing that is also configured with the motor cover 9a and the boss 9b.
  • the ball 5c is held between the inner ring 5a and the outer ring 5b of the lower bearing 5.
  • the upper bearing 4 is not fixed up and down in the axial direction, and is held by the rotor 3 and the stator 7 only in the radial direction (radial direction) perpendicular to the axial direction.
  • FIG. 4 is an enlarged view of a portion indicated by a symbol C in FIG. As shown in FIG. 4, the upper bearing 4 is held so as to be sandwiched between the bearing holding portion 3a of the rotor 3 and the bearing holding portion 9d of the motor cover 9a.
  • the upper bearing 4 is shown in the same dimensions as the lower bearing 5 shown in FIG. 3, but the actual size of the lower bearing 5 is larger than that of the upper bearing 4 as shown in FIG.
  • the lower bearing 5 provided on the load shaft (load side) on the output shaft 11 side of the motor 1 is larger than the upper bearing 4 provided on the opposite load side where the output shaft 11 side force is also separated. Is used. By doing so, the durability of the lower bearing 5 to which a higher load than the upper bearing 4 is applied when a load is applied to the motor can be improved.
  • the diameter for absorbing the dimensional variation of parts between the inner ring 4a of the upper bearing 4 and the bearing holding portion 3a of the rotor 3 is absorbed.
  • a directional gap D is provided.
  • the buffer member 12 is provided in the gap D. Even if this cushioning member 1 2 becomes a cushion and the rotor 3 is eccentric during driving and the bearing holding part 3a swings toward the inner ring 4a side of the upper bearing 4, the bearing holding part 3a and the inner ring 4a of the upper bearing 4 It is possible to suppress the generation of abnormal noise that does not collide directly.
  • FIG. 4 shows an example in which the buffer member 12 is formed by providing a gap D between the bearing holding portion 3a (rotor 3 side) of the rotor 3 and the inner ring 4a of the upper bearing 4.
  • the buffer member 12 may be formed by providing a gap D between the bearing holding portion 9d (stator 7 side) of the motor cover 9a and the outer ring 4b of the upper bearing 4.
  • FIG. 5 is a view showing an example of the buffer member 12 shown in FIG. 4, and shows an enlarged view of a portion indicated by reference symbol C in FIG. 1, as in FIG.
  • a groove 3c is formed on the outer periphery of the bearing holding portion 3a of the rotor 3, and an O-ring 12a, which is an elastic member, is fitted into the groove 3c to serve as a buffer member.
  • the O-ring 12a has a cross-sectional diameter that maintains the gap D as shown in FIG.
  • FIG. 6 is a view showing another example of the buffer member 12 shown in FIG. 4, and shows an enlarged view of a portion indicated by reference symbol C in FIG. 1, as in FIG.
  • the panel member has a V-shaped cross section. 12b is disposed along the outer periphery of the bearing holding portion 3a to serve as a buffer member.
  • the panel member 12b is an elastic member having elasticity in the radial direction while maintaining the gap D as shown in FIG.
  • the buffer member 12 in the present invention is an elastic member that can alleviate the impact when the bearing holding portion 3a swings toward the inner ring 4a side of the upper bearing 4 due to the eccentricity of the rotor 3.
  • the configuration is not limited to those shown in FIG. 5 and FIG.
  • the buffer member 12 is installed in the gap D formed between the bearing holding portion 3a of the rotor 3 and the inner ring 4a of the upper bearing 4.
  • the rotor rotates with a magnetic field that is not uniform in the radial direction, and a motor having a gap D between the rotor and the bearing is connected to the rotor.
  • Drive control is performed at a drive frequency high enough to mitigate collisions with bearings.
  • FIG. 7 is a block diagram showing the configuration of the motor drive system according to the second embodiment of the present invention.
  • motor 1 is the motor shown in the first embodiment.
  • the drive device 13 is driven by supplying current to the motor 1 in accordance with a command from the drive control device 14.
  • the drive control device 14 provides the drive device 13 with a drive frequency that is high enough to mitigate the collision between the bearing holding portion 3a of the rotor 3 and the inner ring 4a of the upper bearing 4, that is, in a frequency range that can reduce the number of collisions.
  • Set to control motor 1 drive In the example of FIG. 7, the drive device 13, the drive control device 14, and the motor 1 are shown as separate devices, but the drive device 13 and the drive control device 14 are used as drive circuits. It can be built into the motor 1 or can be built into the external control device (not shown) that controls the drive control device 14.
  • FIG. 8 is a view for explaining the movement of the rotor when the motor of the first embodiment is driven, and rotates the bearing holding portion 3 a of the rotor 3 and the inner ring 4 a of the upper bearing 4.
  • a cross section cut by a plane perpendicular to the axis is shown.
  • a low driving frequency is set so that the rotation of the rotor does not deteriorate (for example, around 200 Hz).
  • the motor 1 of the combination of the rotor 8 pole stator 9 pole shown in the first embodiment is rotated at this drive frequency, the rotor is rotated in 6 directions of 1 rotation as shown in FIG. 3 is attracted and rotated to a hexagonal shape, and at each apex, the inner ring 4a of the upper bearing 4 is contacted to generate an abnormal noise.
  • the rotor 3 When the drive frequency is made higher than the normal drive frequency, the rotor 3 tries to rotate to the next apex by energizing the next energizing coil before reaching each apex. In other words, as the drive frequency is increased, the number of collisions per rotation gradually decreases by 6 times.
  • the drive device 13 has a drive frequency high enough to alleviate the collision between the bearing holding portion 3a of the rotor 3 and the inner ring 4a of the upper bearing 4.
  • Set and rotate motor 1. For example, if the normal driving frequency is about 200 Hz, in the second embodiment, the motor 1 is driven at a driving frequency of about 500 Hz. As a result, the degree of contact with the bearing at each apex is reduced, and the occurrence of abnormal noise can be reduced.
  • the case where the driving frequency is increased until the number of times of collision in one rotation of the rotor 3 reaches SO times as indicated by a dashed line.
  • the drive frequency set by the drive control device 14 is, for example, as shown in FIG. 8, when the rotor 3 collided with Z rotation 6 times due to radial deflection, 5 times Z rotation, 4 times Z rotation, 3 times
  • the motor 1 shown in the first embodiment is driven.
  • the bearing 3 of the rotor 3 and the inner ring 4a of the bearing 4 are controlled by controlling the drive at a driving frequency high enough to mitigate the collision of the rotor 3 attracted in the radial direction with the bearing 4.
  • the number of times of contact is reduced and the generation of abnormal noise can be suppressed.
  • the drive control of the motor 1 according to the first embodiment has been described as an example.
  • the rotor is generated with a nonuniform magnetic field in the radial direction. It is also possible to control the driving of the motor that rotates the motor and does not include the buffer member 12 in the gap D. That is, by controlling the rotation at the drive frequency, the number of contact between the bearing holding portion of the rotor and the bearing can be reduced even in the motor.
  • the motor and the drive control apparatus absorbs the impact of the collision due to the radial deflection of the rotor by the buffer member provided on the side of the bearing, thereby providing wear resistance. It is suitable for use in high-power DC motors such as motors for vehicles that are under load.

Abstract

A motor comprises a rotor (3) having a permanent magnet (2) outer periphery of which is magnetized into multiple poles and a stator (7) having a plurality of energizing coils (7a) disposed along the outer periphery of the rotor (3). The rotor (3) is rotated by a radially inhomogeneous magnetic field produced when a current flows through the energizing coils (7a). The motor further comprises a bearing (5) on the load side to which one end of the rotor (3) is axially fixed, a bearing (4) on the anti-load side to which the other end of the rotor (3) is radially fixed, and a damping member (12) radially installed on the bearing (4) on the anti-load side.

Description

明 細 書  Specification
モータ及び駆動制御装置  Motor and drive control device
技術分野  Technical field
[0001] この発明は、モータ及びその駆動制御装置に関するものである。  [0001] The present invention relates to a motor and a drive control device thereof.
背景技術  Background art
[0002] 従来のモータ駆動時における異音対策技術として、例えば特許文献 1に開示され るものがある。特許文献 1は、 DC (直流)モータの回転子が駆動時に軸方向に移動 する際に、回転子軸に取り付けられた部材が軸受に衝突することにより発生する異音 を低減するものである。  [0002] For example, Patent Document 1 discloses a conventional noise countermeasure technique for driving a motor. Patent Document 1 reduces noise generated when a member attached to a rotor shaft collides with a bearing when the rotor of a DC (direct current) motor moves in the axial direction during driving.
[0003] この特許文献 1に開示されるモータでは、中空筒状のクッション部の中央にボス部 を設け、ボス部の中心穴を通じて回転子軸を突出させている。このクッション部により 、回転子の軸方向の移動に伴ってモータケ一シングの軸受とボス部とが衝突してもそ の衝撃が緩和される。  [0003] In the motor disclosed in Patent Document 1, a boss portion is provided at the center of a hollow cylindrical cushion portion, and a rotor shaft is projected through a center hole of the boss portion. With this cushion portion, even if the bearing of the motor casing collides with the boss portion as the rotor moves in the axial direction, the impact is alleviated.
[0004] また、特許文献 2は、複数極の永久磁石を有する回転子とその回転により得られる 位置検出信号に基づいて通電する固定子卷線を順次切り換え、回転磁界を発生さ せる DCブラシレスモータに関する。この特許文献 2では、回転子の共振を避けた周 波数で通電制御することにより上記通電による運転で発生する振動と騒音を低減す ることがでさる。  Patent Document 2 discloses a DC brushless motor that generates a rotating magnetic field by sequentially switching a rotor having a plurality of permanent magnets and a stator winding that is energized based on a position detection signal obtained by the rotation. About. In Patent Document 2, it is possible to reduce the vibration and noise generated by the operation by the energization by controlling the energization at a frequency that avoids the resonance of the rotor.
[0005] 特許文献 1 :特開 2000— 32706号公報  Patent Document 1: Japanese Patent Laid-Open No. 2000-32706
特許文献 2:特開平 11 113281号公報  Patent Document 2: Japanese Patent Laid-Open No. 11 113281
[0006] 従来の DCモータにおいて、回転子側と固定子側とで磁極数が一致しない構成で あって、例えば回転子側が 8つの磁極を有し、固定子側が 9つの通電コイルを有する 組み合わせ(回転子 8極 固定子 9極)では、通電コイルの通電時に発生する磁界に より、回転子を径方向に引き付ける力が不均等に発生する。このため、回転子が径方 向に振れる。その一方、回転子 8極 固定子 9極の構造のモータは、高出力化が可 能であり、製造が容易で比較的使いやすい。  [0006] In a conventional DC motor, the number of magnetic poles does not match between the rotor side and the stator side. For example, the rotor side has eight magnetic poles and the stator side has nine current-carrying coils ( In the rotor 8 pole stator 9 pole), the magnetic force generated when the energizing coil is energized generates uneven force to attract the rotor in the radial direction. For this reason, the rotor swings in the radial direction. On the other hand, a motor with a rotor 8-pole stator 9-pole structure can achieve high output, is easy to manufacture and is relatively easy to use.
[0007] また、回転子の両端をベアリングで保持する構造において、部品の寸法ばらつきに 対応するため、ベアリングと固定子側又は回転子側との間に径方向の隙間が設けら れる。この隙間があると、例えば車両用モータのような高出力の DCモータに負荷が 力かっても、ベアリングと固定子側又は回転子側との接触が緩和され、ベアリングに 加わる荷重を低減することができる。このため、耐摩耗性の向上及び高寿命化を図る ためには、上記隙間を設ける構造が必要となる。 [0007] Further, in the structure in which both ends of the rotor are held by bearings, the dimensional variation of the parts is reduced. For this purpose, a radial gap is provided between the bearing and the stator or rotor side. If there is a gap, even if a load is applied to a high-power DC motor such as a vehicle motor, the contact between the bearing and the stator or rotor side is relaxed, and the load applied to the bearing can be reduced. it can. For this reason, in order to improve wear resistance and increase the life, a structure in which the gap is provided is necessary.
[0008] し力しながら、回転子 8極—固定子 9極等の組み合わせで構成したモータにおいて 、ベアリングと固定子側又は回転子側との間に径方向の隙間を設ける構成を採用す ると、駆動時に異音が発生することがわ力つた。この要因を本発明の発明者が研究 解析した結果、通電時に発生する径方向に不均等な力により回転子が上記隙間の 分だけ径方向に振れ、ベアリングと固定子側又は回転子側とが接触することが原因 であることが見出された。  [0008] In a motor configured with a combination of rotor 8 poles-stator 9 poles, etc. while applying a force, a configuration in which a radial clearance is provided between the bearing and the stator side or the rotor side is adopted. And, it was amazing that abnormal noise was generated during driving. As a result of research and analysis of this factor by the inventor of the present invention, the rotor swings in the radial direction by the amount of the gap due to the unequal radial force generated when energized, and the bearing and the stator side or the rotor side are The contact was found to be the cause.
[0009] このような回転子の径方向の振れに起因する不具合に対しては、特許文献 1に開 示される回転子の軸方向の移動により発生する異音に対する技術を適用しても効果 を得ることができない。また、上記不具合はモータの構造上の要因により発生するも のであるため、特許文献 2のように通電制御による対策も効果がな!、。  [0009] With respect to such a problem caused by the radial deflection of the rotor, the effect of applying the technology for abnormal noise generated by the axial movement of the rotor disclosed in Patent Document 1 is also effective. Can't get. In addition, since the above problems occur due to structural factors of the motor, countermeasures by energization control as in Patent Document 2 are not effective!
[0010] この発明は、上記のような課題を解決するためになされたもので、径方向に不均等 な磁界により回転子を回転させるモータにおいて、ベアリングの側方に緩衝部材を設 置することにより、回転子の径方向の振れによるベアリングに対する衝突を吸収して 異音の発生を低減し、かつベアリングにかかる衝撃を緩和することができるモータを 得ることを目的とする。  [0010] The present invention has been made to solve the above-described problems, and in a motor that rotates a rotor by a magnetic field that is not uniform in the radial direction, a buffer member is provided on the side of the bearing. Thus, an object of the present invention is to obtain a motor that can absorb the collision with the bearing due to the radial deflection of the rotor, reduce the generation of abnormal noise, and reduce the impact on the bearing.
[0011] また、この発明は、駆動時に回転子が径方向に振れるモータを駆動させるにあたり [0011] Further, the present invention drives a motor whose rotor swings in the radial direction when driven.
、径方向に引き寄せられた回転子のベアリングへの衝突を緩和する程度に高い駆動 周波数で駆動制御することにより、ベアリングに対する接触を低減して異音の発生を 抑制することができる駆動制御装置を得ることを目的とする。 A drive control device that can reduce the contact with the bearing and suppress the generation of noise by controlling the drive at a drive frequency high enough to mitigate the collision of the rotor drawn in the radial direction with the bearing. The purpose is to obtain.
発明の開示  Disclosure of the invention
[0012] この発明に係るモータは、外周が複数に着磁された磁石を有する回転子と、回転 子の外周に沿って配設された複数の通電コイルを有する固定子とを備え、通電コィ ルへの通電により発生する径方向に不均等な磁界で回転子が回転するモータにお いて、回転子の一端側を軸方向に固定する負荷側ベアリングと、回転子の他端側を 径方向に固定する反負荷側ベアリングと、反負荷側ベアリングの径方向に設けた緩 衝部材とを備えたものである。 [0012] A motor according to the present invention includes a rotor having a magnet whose outer periphery is magnetized in plural, and a stator having a plurality of energizing coils arranged along the outer periphery of the rotor. For motors in which the rotor rotates with an uneven magnetic field generated in the radial direction A load-side bearing that fixes one end of the rotor in the axial direction, an anti-load-side bearing that fixes the other end of the rotor in the radial direction, and a damping member provided in the radial direction of the anti-load-side bearing; It is equipped with.
[0013] この発明によれば、緩衝部材により回転子の径方向の振れによる衝突の衝撃が吸 収されることから、異音の発生が低減され、かつベアリングにかかる衝撃を緩和するこ とができるという効果がある。これにより、耐摩耗性を向上させることができ、かつ高寿 命化を図ることができる。  [0013] According to this invention, since the shock of the collision due to the radial deflection of the rotor is absorbed by the buffer member, the occurrence of abnormal noise is reduced and the shock applied to the bearing can be reduced. There is an effect that can be done. As a result, the wear resistance can be improved and the life can be increased.
などの効果がある。  There are effects such as.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]この発明の実施の形態 1によるモータの構造を示す断面図である。 FIG. 1 is a cross-sectional view showing the structure of a motor according to Embodiment 1 of the present invention.
[図 2]駆動時における回転子の偏心を示す断面図である。  FIG. 2 is a cross-sectional view showing the eccentricity of the rotor during driving.
[図 3]図 1中の符号 Bで示す部分の拡大図である。  FIG. 3 is an enlarged view of a portion indicated by symbol B in FIG.
[図 4]図 1中の符号 Cで示す部分の拡大図である。  FIG. 4 is an enlarged view of a portion indicated by symbol C in FIG.
[図 5]緩衝部材の一例を示す図である。  FIG. 5 is a view showing an example of a buffer member.
[図 6]緩衝部材の他の例を示す図である。  FIG. 6 is a view showing another example of the buffer member.
[図 7]この発明の実施の形態 2によるモータ駆動システムの構成を示すブロック図で ある。  FIG. 7 is a block diagram showing a configuration of a motor drive system according to a second embodiment of the present invention.
[図 8]駆動時の回転子の動きを説明するための図である。  FIG. 8 is a diagram for explaining the movement of the rotor during driving.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面に従って説明する。 Hereinafter, in order to describe the present invention in more detail, the best mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態 1.  Embodiment 1.
図 1は、この発明の実施の形態 1によるモータの構造を示す断面図であり、軸方向 断面を示しており、回転子 8極—固定子 9極のモータを示している。モータ 1は、大き く分けると回転子 3及び固定子 7を含んで構成される。回転子 3には、外周に沿って 複数極に着磁された永久磁石 2が設けられ、その中心軸部にはネジ穴が設けられて いる。ここでは、永久磁石 2が 8極に NS着磁される。  FIG. 1 is a cross-sectional view showing the structure of a motor according to Embodiment 1 of the present invention, showing a cross section in the axial direction, and showing a rotor 8-pole-stator 9-pole motor. The motor 1 is roughly configured to include a rotor 3 and a stator 7. The rotor 3 is provided with a permanent magnet 2 magnetized in a plurality of poles along the outer periphery, and a screw hole is provided in the central shaft portion thereof. Here, the permanent magnet 2 is NS magnetized to 8 poles.
[0016] 上述した回転子 3の内部に設けられたネジ穴に対し、出力軸 11の出力端逆側に配 設されたネジ 10が嚙み合い挿入される。回転子 3を回転駆動すると、その回転力が ネジ 10を介して出力軸 11へ伝達され、出力軸 11は回転が阻止されているため、回 転子 3の回転力は軸方向の直動力に変換される。 [0016] The screw hole provided in the rotor 3 described above is arranged on the opposite side of the output end of the output shaft 11. The installed screw 10 is inserted and inserted. When the rotor 3 is rotationally driven, the rotational force is transmitted to the output shaft 11 through the screw 10 and the output shaft 11 is prevented from rotating, so the rotational force of the rotor 3 is converted to the axial direct power. Converted.
[0017] モータカバー(モータ筐体) 9a内で回転子 3を囲むように配設されたステータ (鉄心 ) 7aに通電コイルを卷回したものが固定子 7である。ここでは、回転子 3を囲むように 9 個のステータ 7aが配設され、これらステータ 7aに通電コイルがそれぞれ卷回され、通 電により 9極に NS着磁される。  [0017] A stator 7 is a stator (iron core) 7a disposed so as to surround the rotor 3 in a motor cover (motor housing) 9a, and an energization coil is wound around the stator 7. Here, nine stators 7a are disposed so as to surround the rotor 3, and energizing coils are wound around these stators 7a, and NS magnetized to 9 poles by energization.
[0018] 図 2は、駆動時における回転子 3の偏心を説明するための図であり、図 1中の A— A 線で切った断面を示している。なお、固定子と回転子の関係を視認しゃすくするため 、固定子における通電コイルの記載を省略している。図 2 (a)及び図 2 (c)は本実施 の形態 1によるモータ 1と異なり、回転子 3が 12極の磁極を有し、固定子 7が 9個の通 電コイルを有するモータ(回転子 12極 固定子 9極)を示しており、図 2 (b)及び図 2 ( d)は本実施の形態 1によるモータ 1であり、回転子 8極 固定子 9極のモータを示し ている。  FIG. 2 is a view for explaining the eccentricity of the rotor 3 at the time of driving, and shows a cross section taken along the line AA in FIG. In addition, in order to visually recognize the relationship between the stator and the rotor, the description of the energizing coil in the stator is omitted. Figures 2 (a) and 2 (c) differ from the motor 1 according to the first embodiment in that the rotor 3 has 12 poles and the stator 7 has 9 current coils. Fig. 2 (b) and Fig. 2 (d) show the motor 1 according to the first embodiment, which shows a rotor 8 pole stator 9 pole motor. .
[0019] 図 2 (a)及び図 2 (b)は、 U相から V相へ通電されたときの状況を示しており、図 2 (c )及び図 2 (d)は、 U相から W相へ通電されたときの状況を示している。図 2に示すよう に、固定子の通電コイルに通電するとステータ (鉄心)が磁ィヒされ、回転子の永久磁 極と引き合う力が発生する。このとき、図 2 (a)及び図 2 (c)に示すように、回転子 12極 固定子 9極のモータでは、通電コイルへの通電により磁界が均等に発生するため、 回転子を径方向に引き付ける力が各方向(図 2 (a)及び図 2 (c)中に矢印で示す方向 )に均等に働き、回転子が偏心しない。  [0019] Fig. 2 (a) and Fig. 2 (b) show the situation when the U phase is energized from the V phase. Fig. 2 (c) and Fig. 2 (d) show the situation from the U phase to the W phase. The situation when the phase is energized is shown. As shown in Fig. 2, when the energizing coil of the stator is energized, the stator (iron core) is magnetized, and a force that attracts the permanent magnet pole of the rotor is generated. At this time, as shown in Fig. 2 (a) and Fig. 2 (c), in the rotor 12-pole stator 9-pole motor, the magnetic field is uniformly generated by energizing the energizing coil. The attracting force acts equally in each direction (indicated by the arrows in Fig. 2 (a) and Fig. 2 (c)), and the rotor is not eccentric.
[0020] 一方、本実施の形態 1のモータ 1のように回転子 8極 固定子 9極であると、通電コ ィルへの通電により径方向に不均等な磁界が発生し、回転子 3を径方向の固定子 7 側に引き付ける力が不均等に加わる(図 2 (b)及び図 2 (d)中に矢印で示す方向の力 ) oこれにより、駆動時に回転子 3が径方向に振れてベアリング保持部 3aが上べァリ ング 4の内輪 4aに接触して異音が発生する。  [0020] On the other hand, if the rotor has 8 poles and the stator has 9 poles as in the motor 1 of the first embodiment, non-uniform magnetic fields are generated in the radial direction by energizing the energizing coil, and the rotor 3 The force that attracts the rotor 7 toward the radial stator 7 is applied unevenly (the force indicated by the arrow in Figs. 2 (b) and 2 (d)). The bearing holder 3a swings and contacts the inner ring 4a of the upper bearing 4 to generate noise.
[0021] そこで、本実施の形態 1では、図 1に示すように、回転子 3のベアリング保持部 3aと 上ベアリング 4の内輪 4aとの間の隙間に緩衝部材 12を設けて異音の発生を抑える。 なお、緩衝部材 12については後述する。 Therefore, in the first embodiment, as shown in FIG. 1, the buffer member 12 is provided in the gap between the bearing holding portion 3a of the rotor 3 and the inner ring 4a of the upper bearing 4 to generate noise. Suppress. The buffer member 12 will be described later.
[0022] 図 1の説明に戻ると、モータカバー 9aにはボス(モータ筐体) 9bが組み付けられ、ボ ス 9bはヮッシャ等の予圧部材 8を保持している。また、回転子 3の両端には回転軸を 保持するための上べァリング 4及び下べァリング 5が装着される。  Returning to the description of FIG. 1, a boss (motor casing) 9b is assembled to the motor cover 9a, and the boss 9b holds a preload member 8 such as a washer. Further, an upper bearing 4 and a lower bearing 5 are attached to both ends of the rotor 3 to hold the rotating shaft.
[0023] ここで、下ベアリング 5の保持構造について詳細に説明する。  [0023] Here, the holding structure of the lower bearing 5 will be described in detail.
図 3は、図 1中の符号 Bで示す部分の拡大図である。図 3に示すように、下べアリン グ 5の内輪 5aは、回転子 3の段差部 3bと保持機構 6とにより軸方向の上下に固定さ れる(アキシャル方向の固定)。また、下ベアリング 5の外輪 5bは、モータカバー 9aの 段差部 9cとボス 9bに保持された予圧部材 8とにより軸方向の上下に固定される(アキ シャル方向の固定)。このようにして、下ベアリング 5の外輪 5bは、モータカバー 9aや ボス 9b等力も構成されるモータ筐体に固着される。なお、下ベアリング 5の内輪 5a及 び外輪 5bにはボール 5cが狭持される。  FIG. 3 is an enlarged view of a portion indicated by a symbol B in FIG. As shown in FIG. 3, the inner ring 5a of the lower bearing 5 is fixed up and down in the axial direction by the step 3b of the rotor 3 and the holding mechanism 6 (fixed in the axial direction). Further, the outer ring 5b of the lower bearing 5 is fixed up and down in the axial direction by the step 9c of the motor cover 9a and the preload member 8 held by the boss 9b (fixed in the axial direction). In this manner, the outer ring 5b of the lower bearing 5 is fixed to the motor casing that is also configured with the motor cover 9a and the boss 9b. The ball 5c is held between the inner ring 5a and the outer ring 5b of the lower bearing 5.
[0024] 次に上ベアリング 4の保持構造について詳細に説明する。  Next, the holding structure for the upper bearing 4 will be described in detail.
上ベアリング 4は、下ベアリング 5と異なって軸方向の上下に固定されず、軸方向に 垂直な径方向(ラジアル方向)にのみ回転子 3と固定子 7とにより保持される。  Unlike the lower bearing 5, the upper bearing 4 is not fixed up and down in the axial direction, and is held by the rotor 3 and the stator 7 only in the radial direction (radial direction) perpendicular to the axial direction.
図 4は、図 1中の符号 Cで示す部分の拡大図である。図 4に示すように、上べアリン グ 4は、回転子 3のベアリング保持部 3aとモータカバー 9aのベアリング保持部 9dとに 挟まれるように保持される。  FIG. 4 is an enlarged view of a portion indicated by a symbol C in FIG. As shown in FIG. 4, the upper bearing 4 is held so as to be sandwiched between the bearing holding portion 3a of the rotor 3 and the bearing holding portion 9d of the motor cover 9a.
[0025] なお、図 4において、上ベアリング 4を図 3に示す下ベアリング 5と同様な寸法で記 載したが、実際は図 1に示すように下ベアリング 5の寸法は上ベアリング 4より大き 、。 本発明において、モータ 1の出力軸 11側であって負荷が力かる側 (負荷側)に設け る下ベアリング 5には、出力軸 11側力も離れた反負荷側に設ける上ベアリング 4より 大きいベアリングを用いる。このようにすることで、モータに負荷がかかった際、上べ ァリング 4より高い荷重が加わる下ベアリング 5の耐久性を向上させることができる。  In FIG. 4, the upper bearing 4 is shown in the same dimensions as the lower bearing 5 shown in FIG. 3, but the actual size of the lower bearing 5 is larger than that of the upper bearing 4 as shown in FIG. In the present invention, the lower bearing 5 provided on the load shaft (load side) on the output shaft 11 side of the motor 1 is larger than the upper bearing 4 provided on the opposite load side where the output shaft 11 side force is also separated. Is used. By doing so, the durability of the lower bearing 5 to which a higher load than the upper bearing 4 is applied when a load is applied to the motor can be improved.
[0026] 図 4に示すように、本実施の形態 1によるモータ 1では、上ベアリング 4の内輪 4aと回 転子 3のベアリング保持部 3aとの間に部品の寸法ばらつきを吸収するための径方向 の隙間 Dが設けられる。この隙間 Dを設けることにより、上ベアリング 4の内輪 4a又は 外輪 4bの径方向の寸法ばらつきや、回転子 3のベアリング保持部 3aやモータカバー 9aのベアリング保持部 9dの径方向の寸法ばらつきに対応することができる。 As shown in FIG. 4, in the motor 1 according to the first embodiment, the diameter for absorbing the dimensional variation of parts between the inner ring 4a of the upper bearing 4 and the bearing holding portion 3a of the rotor 3 is absorbed. A directional gap D is provided. By providing this clearance D, the radial dimension variation of the inner ring 4a or outer ring 4b of the upper bearing 4, the bearing holding part 3a of the rotor 3 and the motor cover It is possible to deal with dimensional variations in the radial direction of the bearing holding portion 9d of 9a.
[0027] また、隙間 Dがあると、モータ 1に負荷が力かっても、上ベアリング 4の内輪 4aと回転 子 3のベアリング保持部 3aとの接触が緩和され、上ベアリング 4の内輪 4aに加わる荷 重を低減することができる。このため、耐摩耗性の向上及び高寿命化を図ることがで きる。 [0027] If there is a gap D, even if a load is applied to the motor 1, the contact between the inner ring 4a of the upper bearing 4 and the bearing holding portion 3a of the rotor 3 is relaxed and added to the inner ring 4a of the upper bearing 4. The load can be reduced. For this reason, it is possible to improve wear resistance and extend the life.
[0028] し力しながら、単に隙間 Dを設けるのみでは、上述したように異音が発生する。  [0028] If the gap D is simply provided while applying a force, abnormal noise is generated as described above.
そこで、本発明の第一の特徴として隙間 Dに緩衝部材 12を設ける。この緩衝部材 1 2がクッションとなって、駆動時に回転子 3が偏心してベアリング保持部 3aが上べァリ ング 4の内輪 4a側に振れても、ベアリング保持部 3aと上ベアリング 4の内輪 4aが直接 衝突することがなぐ異音の発生を抑制することができる。  Therefore, as a first feature of the present invention, the buffer member 12 is provided in the gap D. Even if this cushioning member 1 2 becomes a cushion and the rotor 3 is eccentric during driving and the bearing holding part 3a swings toward the inner ring 4a side of the upper bearing 4, the bearing holding part 3a and the inner ring 4a of the upper bearing 4 It is possible to suppress the generation of abnormal noise that does not collide directly.
[0029] また、回転子 3のベアリング保持部 3aが、上ベアリング 4の内輪 4a側に振れた際の 衝撃が緩衝部材 12により緩和されることから、例えば上ベアリング 4の内輪 4aや回転 子 3のベアリング保持部 3aの耐摩耗性を向上させることができる。  [0029] Since the shock when the bearing holding portion 3a of the rotor 3 swings toward the inner ring 4a side of the upper bearing 4 is mitigated by the buffer member 12, for example, the inner ring 4a of the upper bearing 4 and the rotor 3 The wear resistance of the bearing holder 3a can be improved.
[0030] なお、図 4では、回転子 3のベアリング保持部 3a (回転子 3側)と上ベアリング 4の内 輪 4aとの間に隙間 Dを設けて緩衝部材 12を形成する例を示したが、モータカバー 9 aのベアリング保持部 9d (固定子 7側)と上ベアリング 4の外輪 4bとの間に隙間 Dを設 けて緩衝部材 12を形成する構成にしてもよい。  FIG. 4 shows an example in which the buffer member 12 is formed by providing a gap D between the bearing holding portion 3a (rotor 3 side) of the rotor 3 and the inner ring 4a of the upper bearing 4. However, the buffer member 12 may be formed by providing a gap D between the bearing holding portion 9d (stator 7 side) of the motor cover 9a and the outer ring 4b of the upper bearing 4.
[0031] 図 5は、図 4に示す緩衝部材 12の一例を示す図であり、図 4と同様に図 1中の符号 Cで示す部分の拡大図を示している。図 5に示す例では、回転子 3のベアリング保持 部 3aの外周部に溝部 3cを形成し、弾性部材である Oリング 12aを溝部 3cにはめ込ん で緩衝部材としている。この Oリング 12aは、図 5に示すように隙間 Dを維持する断面 径を有している。  FIG. 5 is a view showing an example of the buffer member 12 shown in FIG. 4, and shows an enlarged view of a portion indicated by reference symbol C in FIG. 1, as in FIG. In the example shown in FIG. 5, a groove 3c is formed on the outer periphery of the bearing holding portion 3a of the rotor 3, and an O-ring 12a, which is an elastic member, is fitted into the groove 3c to serve as a buffer member. The O-ring 12a has a cross-sectional diameter that maintains the gap D as shown in FIG.
[0032] これにより、回転子 3の偏心でベアリング保持部 3aが上ベアリング 4の内輪 4a側に 振れても、 Oリング 12aがクッションとなってベアリング保持部 3aと上ベアリング 4の内 輪 4aが直接衝突することがなぐ異音の発生を抑制できる。また、 Oリング 12aが劣化 しても新たな Oリングに交換すればよぐメンテナンスも容易である。  [0032] Thereby, even if the bearing holding portion 3a swings toward the inner ring 4a side of the upper bearing 4 due to the eccentricity of the rotor 3, the O-ring 12a becomes a cushion and the bearing holding portion 3a and the inner ring 4a of the upper bearing 4 Occurrence of abnormal noise that does not collide directly can be suppressed. Even if the O-ring 12a deteriorates, it is easy to maintain it by replacing it with a new O-ring.
[0033] 図 6は、図 4に示す緩衝部材 12の他の例を示す図であり、図 4と同様に図 1中の符 号 Cで示す部分の拡大図を示している。図 6に示す例では、断面 V字状のパネ部材 12bをベアリング保持部 3aの外周に沿って配設して緩衝部材として 、る。パネ部材 1 2bは、図 6に示すように隙間 Dを維持しつつ、径方向に弾性を有する弾性部材であ る。 FIG. 6 is a view showing another example of the buffer member 12 shown in FIG. 4, and shows an enlarged view of a portion indicated by reference symbol C in FIG. 1, as in FIG. In the example shown in Fig. 6, the panel member has a V-shaped cross section. 12b is disposed along the outer periphery of the bearing holding portion 3a to serve as a buffer member. The panel member 12b is an elastic member having elasticity in the radial direction while maintaining the gap D as shown in FIG.
[0034] これにより、回転子 3の偏心でベアリング保持部 3aが上ベアリング 4の内輪 4a側に 振れても、パネ部材 12bがクッションとなってベアリング保持部 3aと上ベアリング 4の 内輪 4aが直接衝突することがなぐ異音の発生を抑制することができる。  [0034] Thereby, even if the bearing holding portion 3a swings to the inner ring 4a side of the upper bearing 4 due to the eccentricity of the rotor 3, the panel member 12b becomes a cushion and the bearing holding portion 3a and the inner ring 4a of the upper bearing 4 directly Generation of abnormal noise that does not collide can be suppressed.
[0035] なお、本発明における緩衝部材 12は、回転子 3の偏心によりベアリング保持部 3a が上ベアリング 4の内輪 4a側に振れた際の衝撃を緩和することができる弾性部材で あれば、図 5及び図 6に示した構成に限定されるものでない。  [0035] It should be noted that the buffer member 12 in the present invention is an elastic member that can alleviate the impact when the bearing holding portion 3a swings toward the inner ring 4a side of the upper bearing 4 due to the eccentricity of the rotor 3. The configuration is not limited to those shown in FIG. 5 and FIG.
[0036] また、図 5及び図 6では、 Oリング 12a及びパネ部材 12bを、上ベアリング 4の内輪 4 aと回転子 3のベアリング保持部 3aとの間に設ける例を示した力 上ベアリング 4の外 輪 4bとモータカバー 9aのベアリング保持部 9dとの間に設ける構成であっても構わな い。  5 and 6, the force shown in the example in which the O-ring 12a and the panel member 12b are provided between the inner ring 4a of the upper bearing 4 and the bearing holding portion 3a of the rotor 3 is shown. The outer ring 4b and the bearing holding portion 9d of the motor cover 9a may be provided.
[0037] 以上のように、この実施の形態 1によれば、回転子 3のベアリング保持部 3aと上ベア リング 4の内輪 4aとの間に形成した隙間 Dに緩衝部材 12を設置したので、モータ 1の 駆動時における回転子 3の径方向の振れによる衝突の衝撃が吸収され、異音の発生 を低減することができ、かつ上ベアリング 4の内輪 4aにかかる衝撃を緩和することが できる。  [0037] As described above, according to the first embodiment, the buffer member 12 is installed in the gap D formed between the bearing holding portion 3a of the rotor 3 and the inner ring 4a of the upper bearing 4. The impact of collision due to the radial vibration of the rotor 3 when the motor 1 is driven can be absorbed, the generation of abnormal noise can be reduced, and the impact on the inner ring 4a of the upper bearing 4 can be mitigated.
[0038] 実施の形態 2.  [0038] Embodiment 2.
本実施の形態 2は、上記実施の形態 1で示したように径方向に不均等な磁界で回 転子が回転し、この回転子とベアリングの間に隙間 Dを有するモータを、回転子のベ ァリングへの衝突を緩和できる程度の高さの駆動周波数で駆動制御するものである。  In the second embodiment, as shown in the first embodiment, the rotor rotates with a magnetic field that is not uniform in the radial direction, and a motor having a gap D between the rotor and the bearing is connected to the rotor. Drive control is performed at a drive frequency high enough to mitigate collisions with bearings.
[0039] 図 7は、この発明の実施の形態 2によるモータ駆動システムの構成を示すブロック図 である。図において、モータ 1は上記実施の形態 1で示したモータである。駆動装置 1 3は、駆動制御装置 14からの指令に従ってモータ 1に電流を供給して駆動させる。駆 動制御装置 14は、回転子 3のベアリング保持部 3aと上ベアリング 4の内輪 4aとの衝 突を緩和できる程度の高さ、即ち衝突回数を低減できる周波数範囲の駆動周波数を 駆動装置 13に設定してモータ 1の駆動を制御する。 [0040] なお、図 7の例では、駆動装置 13、駆動制御装置 14及びモータ 1をそれぞれ別個 の装置とした場合を示しているが、駆動装置 13及び駆動制御装置 14を駆動回路と してモータ 1に組み込んでもよ 、し、駆動制御装置 14を制御する外部の制御装置( 不図示)側に組み込んでもよ ヽ。 FIG. 7 is a block diagram showing the configuration of the motor drive system according to the second embodiment of the present invention. In the figure, motor 1 is the motor shown in the first embodiment. The drive device 13 is driven by supplying current to the motor 1 in accordance with a command from the drive control device 14. The drive control device 14 provides the drive device 13 with a drive frequency that is high enough to mitigate the collision between the bearing holding portion 3a of the rotor 3 and the inner ring 4a of the upper bearing 4, that is, in a frequency range that can reduce the number of collisions. Set to control motor 1 drive. In the example of FIG. 7, the drive device 13, the drive control device 14, and the motor 1 are shown as separate devices, but the drive device 13 and the drive control device 14 are used as drive circuits. It can be built into the motor 1 or can be built into the external control device (not shown) that controls the drive control device 14.
[0041] 図 8は、上記実施の形態 1のモータの駆動時における回転子の動きを説明するた めの図であり、回転子 3のべァリング保持部 3a及び上ベアリング 4の内輪 4aを回転軸 に垂直な面で切った断面を示している。通常の DCモータでは、回転子の回転が悪 化しない程度に低い駆動周波数が設定される (例えば、 200Hz前後)。この駆動周 波数で、上記実施の形態 1で示した回転子 8極 固定子 9極等の組み合わせのモー タ 1を回転させると、図 8に示すように、 1回転のうち 6方向に回転子 3が引き寄せられ て六角形状に回転し、その頂点毎に上ベアリング 4の内輪 4aに接触して異音が発生 する。  FIG. 8 is a view for explaining the movement of the rotor when the motor of the first embodiment is driven, and rotates the bearing holding portion 3 a of the rotor 3 and the inner ring 4 a of the upper bearing 4. A cross section cut by a plane perpendicular to the axis is shown. In a normal DC motor, a low driving frequency is set so that the rotation of the rotor does not deteriorate (for example, around 200 Hz). When the motor 1 of the combination of the rotor 8 pole stator 9 pole shown in the first embodiment is rotated at this drive frequency, the rotor is rotated in 6 directions of 1 rotation as shown in FIG. 3 is attracted and rotated to a hexagonal shape, and at each apex, the inner ring 4a of the upper bearing 4 is contacted to generate an abnormal noise.
[0042] 上記通常の駆動周波数より駆動周波数を高くしていくと、回転子 3は、各頂点に到 達する前に次の通電コイルが通電されて次の頂点に回転しょうとする。つまり、駆動 周波数を上げていくに従って 1回転での衝突回数が 6回力も徐々に減少する。  [0042] When the drive frequency is made higher than the normal drive frequency, the rotor 3 tries to rotate to the next apex by energizing the next energizing coil before reaching each apex. In other words, as the drive frequency is increased, the number of collisions per rotation gradually decreases by 6 times.
[0043] そこで、本実施の形態 2による駆動制御装置 14では、回転子 3のベアリング保持部 3aと上ベアリング 4の内輪 4aとの衝突を緩和できる程度の高さの駆動周波数を駆動 装置 13に設定してモータ 1を回転させる。例えば、上記通常の駆動周波数が 200H z程度であれば、本実施の形態 2では、 500Hz程度の駆動周波数でモータ 1を駆動 させる。この結果、各頂点でベアリングに接触する程度が減り、異音の発生を低減す ることができる。図 8に例では、一点破線で示すように回転子 3の 1回転での衝突回数 力 SO回になるまで駆動周波数を上げた場合を示している。  Therefore, in the drive control device 14 according to the second embodiment, the drive device 13 has a drive frequency high enough to alleviate the collision between the bearing holding portion 3a of the rotor 3 and the inner ring 4a of the upper bearing 4. Set and rotate motor 1. For example, if the normal driving frequency is about 200 Hz, in the second embodiment, the motor 1 is driven at a driving frequency of about 500 Hz. As a result, the degree of contact with the bearing at each apex is reduced, and the occurrence of abnormal noise can be reduced. In the example shown in FIG. 8, the case where the driving frequency is increased until the number of times of collision in one rotation of the rotor 3 reaches SO times as indicated by a dashed line.
[0044] なお、駆動制御装置 14が設定する駆動周波数は、例えば図 8に示すように回転子 3の径方向の振れにより 6回 Z回転で衝突していたところ、 5回 Z回転、 4回 Z回転、 3回 Z回転のように周波数の上昇に伴って回転子 3の 1回転における衝突回数が減 少する周波数範囲(回転子 3のベアリング保持部 3aと上ベアリング 4の内輪 4aとの衝 突を緩和できる程度の周波数範囲)であればょ 、。  It should be noted that the drive frequency set by the drive control device 14 is, for example, as shown in FIG. 8, when the rotor 3 collided with Z rotation 6 times due to radial deflection, 5 times Z rotation, 4 times Z rotation, 3 times The frequency range in which the number of collisions in one rotation of the rotor 3 decreases as the frequency increases, such as Z rotation (impact between the bearing holder 3a of the rotor 3 and the inner ring 4a of the upper bearing 4) If the frequency range is enough to alleviate the collision).
[0045] 以上のように、この実施の形態 2によれば、上記実施の形態 1で示したモータ 1を駆 動するにあたり、径方向に引き寄せられた回転子 3のベアリング 4への衝突を緩和す る程度に高い駆動周波数で駆動制御することにより、回転子 3のベアリング保持部 3a とベアリング 4の内輪 4aとの接触回数が低減され、異音の発生を抑制することができ る。 As described above, according to the second embodiment, the motor 1 shown in the first embodiment is driven. When moving, the bearing 3 of the rotor 3 and the inner ring 4a of the bearing 4 are controlled by controlling the drive at a driving frequency high enough to mitigate the collision of the rotor 3 attracted in the radial direction with the bearing 4. The number of times of contact is reduced and the generation of abnormal noise can be suppressed.
[0046] また、上記実施の形態 2では、上記実施の形態 1によるモータ 1の駆動制御を例に 挙げたが、上記実施の形態 1で示したように径方向に不均等な磁界で回転子を回転 させるモータであって隙間 Dに緩衝部材 12を設けないモータの駆動を制御してもよ い。つまり、上記駆動周波数で回転を制御することにより、当該モータにおいても回 転子のベアリング保持部とベアリングとの接触回数を低減することができる。  In the second embodiment, the drive control of the motor 1 according to the first embodiment has been described as an example. However, as shown in the first embodiment, the rotor is generated with a nonuniform magnetic field in the radial direction. It is also possible to control the driving of the motor that rotates the motor and does not include the buffer member 12 in the gap D. That is, by controlling the rotation at the drive frequency, the number of contact between the bearing holding portion of the rotor and the bearing can be reduced even in the motor.
産業上の利用可能性  Industrial applicability
[0047] 以上のように、この発明に係るモータ及び駆動制御装置は、ベアリングの側方に設 置した緩衝部材により回転子の径方向の振れによる衝突の衝撃が吸収されることで、 耐摩耗性を向上させ、かつ長寿命化を図ることができたため、負荷のかかる車両用 モータのような高出力の DCモータなどに用いるのに適している。 [0047] As described above, the motor and the drive control apparatus according to the present invention absorbs the impact of the collision due to the radial deflection of the rotor by the buffer member provided on the side of the bearing, thereby providing wear resistance. It is suitable for use in high-power DC motors such as motors for vehicles that are under load.

Claims

請求の範囲 The scope of the claims
[1] 外周が複数に着磁された磁石を有する回転子と、前記回転子の外周に沿って配設 された複数の通電コイルを有する固定子とを備え、前記通電コイルへの通電により発 生する径方向に不均等な磁界で前記回転子が回転するモータにおいて、  [1] A rotor having a plurality of magnets whose outer periphery is magnetized, and a stator having a plurality of energizing coils arranged along the outer periphery of the rotor, and generating electricity by energizing the energizing coil. In the motor in which the rotor rotates with a non-uniform magnetic field in the radial direction,
前記回転子の一端側を軸方向に固定する負荷側ベアリングと、  A load-side bearing that fixes one end of the rotor in the axial direction;
前記回転子の他端側を径方向に固定する反負荷側ベアリングと、  An anti-load-side bearing that fixes the other end of the rotor in the radial direction;
前記反負荷側ベアリングの径方向に設けた緩衝部材とを備えたことを特徴とするモ ータ。  A motor comprising a buffer member provided in a radial direction of the anti-load side bearing.
[2] 緩衝部材は、弾性部材であることを特徴とする請求項 1記載のモータ。  [2] The motor according to claim 1, wherein the buffer member is an elastic member.
[3] 弾性部材は、パネ部材であることを特徴とする請求項 2記載のモータ。  3. The motor according to claim 2, wherein the elastic member is a panel member.
[4] 弾性部材は、 Oリングであることを特徴とする請求項 2記載のモータ。  [4] The motor according to claim 2, wherein the elastic member is an O-ring.
[5] 負荷側ベアリングは、反負荷側ベアリングより大きいベアリングを用いることを特徴と する請求項 1記載のモータ。  [5] The motor according to claim 1, wherein the load side bearing is larger than the anti-load side bearing.
[6] 外周が複数に着磁された磁石を有する回転子と、前記回転子の外周に沿って配設 された複数の通電コイルを有する固定子とを備え、前記通電コイルへの通電により発 生する径方向に不均等な磁界で前記回転子が回転するモータを駆動制御する駆動 制御装置において、 [6] A rotor having a plurality of magnets whose outer periphery is magnetized, and a stator having a plurality of energizing coils arranged along the outer periphery of the rotor, and generating electricity by energizing the energizing coil. In a drive control device for driving and controlling a motor in which the rotor rotates with a magnetic field that is uneven in the radial direction,
回転子の径方向の振れによるベアリングへの衝突を緩和できる範囲の駆動周波数 で前記モータの回転を制御することを特徴とする駆動制御装置。  A drive control device that controls the rotation of the motor at a drive frequency within a range in which a collision with a bearing due to a radial deflection of the rotor can be mitigated.
PCT/JP2007/050707 2006-03-24 2007-01-18 Motor and drive control device WO2007111031A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008507380A JP5306808B2 (en) 2006-03-24 2007-01-18 Motor drive control device for in-vehicle equipment
CN2007800101693A CN101405929B (en) 2006-03-24 2007-01-18 Motor and drive control device
DE112007000576T DE112007000576T5 (en) 2006-03-24 2007-01-18 Motor and drive control device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-083691 2006-03-24
JP2006083691 2006-03-24

Publications (1)

Publication Number Publication Date
WO2007111031A1 true WO2007111031A1 (en) 2007-10-04

Family

ID=38540966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050707 WO2007111031A1 (en) 2006-03-24 2007-01-18 Motor and drive control device

Country Status (4)

Country Link
JP (1) JP5306808B2 (en)
CN (1) CN101405929B (en)
DE (1) DE112007000576T5 (en)
WO (1) WO2007111031A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201255A (en) * 2008-02-21 2009-09-03 Nsk Ltd Electric motor and electric power steering arrangement
JP2020085832A (en) * 2018-11-30 2020-06-04 株式会社ジェイテクト Rotary device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2482704B (en) * 2010-08-11 2014-01-15 Protean Electric Ltd Sealing arrangement for an electric motor or generator
DE102010064049A1 (en) 2010-12-23 2012-06-28 Hamilton Bonaduz Ag Pipetting device with linear motor
JP5727973B2 (en) * 2012-07-09 2015-06-03 日立オートモティブシステムズ株式会社 Rotating electric machine
EP2958214B1 (en) * 2013-02-12 2017-06-07 Nissan Motor Co., Ltd Rotating electrical machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288998A (en) * 1994-04-12 1995-10-31 Matsushita Electric Ind Co Ltd Driving method for stepping motor
JPH102329A (en) * 1996-06-18 1998-01-06 Nippon Seiko Kk Bearing device
JP2004210017A (en) * 2002-12-27 2004-07-29 Mitsubishi Electric Corp Electrically driven hydraulic type power steering device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032706A (en) 1998-07-08 2000-01-28 Mitsumi Electric Co Ltd Motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288998A (en) * 1994-04-12 1995-10-31 Matsushita Electric Ind Co Ltd Driving method for stepping motor
JPH102329A (en) * 1996-06-18 1998-01-06 Nippon Seiko Kk Bearing device
JP2004210017A (en) * 2002-12-27 2004-07-29 Mitsubishi Electric Corp Electrically driven hydraulic type power steering device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201255A (en) * 2008-02-21 2009-09-03 Nsk Ltd Electric motor and electric power steering arrangement
JP2020085832A (en) * 2018-11-30 2020-06-04 株式会社ジェイテクト Rotary device
JP7200633B2 (en) 2018-11-30 2023-01-10 株式会社ジェイテクト rotating device

Also Published As

Publication number Publication date
DE112007000576T5 (en) 2009-04-02
JP5306808B2 (en) 2013-10-02
CN101405929B (en) 2011-12-28
CN101405929A (en) 2009-04-08
JPWO2007111031A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
EP1819030B1 (en) Motor/Generator
WO2007111031A1 (en) Motor and drive control device
JP2009539336A (en) Electrical synchronous machine
JP2010200518A (en) Turntable for permanent magnet rotary machine, and manufacturing method for permanent magnet rotary machine
EP3157462A1 (en) Drive system for personal-care appliance and method of operation thereof
JP2007189812A (en) Inner rotor type brushless motor
CN112590481A (en) Electric suspension device
US20210252931A1 (en) Electrically powered suspension system
JP2005318718A (en) Axial gap motor
JP2014003832A (en) Stepping motor, lens device and imaging apparatus
JP5372115B2 (en) Rotating electric machine
US20220278598A1 (en) Motor
JP4909671B2 (en) Axial gap motor
JP5673438B2 (en) Rotor structure of rotating electrical machine
JP6351755B2 (en) Actuator
JP2002136012A (en) Rotating electric machine of permanent magnet type
JP2011182569A (en) Inner rotor type motor
WO2012070514A1 (en) Rotating device using permanent magnet
KR100580524B1 (en) Electric motor with Axial Magnetic Flux
KR100455306B1 (en) Double coil type two-phase brushless dc motor
JP5891428B2 (en) Actuator device
JP6721254B2 (en) Outer rotor type brushless motor
KR102563341B1 (en) Motor Including Tension Member
CN112186922B (en) External rotating surface magnet rotary motor
KR20060096195A (en) Switched reluctance motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07707011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008507380

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780010169.3

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 112007000576

Country of ref document: DE

Date of ref document: 20090402

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07707011

Country of ref document: EP

Kind code of ref document: A1