JP5673438B2 - Rotor structure of rotating electrical machine - Google Patents

Rotor structure of rotating electrical machine Download PDF

Info

Publication number
JP5673438B2
JP5673438B2 JP2011180393A JP2011180393A JP5673438B2 JP 5673438 B2 JP5673438 B2 JP 5673438B2 JP 2011180393 A JP2011180393 A JP 2011180393A JP 2011180393 A JP2011180393 A JP 2011180393A JP 5673438 B2 JP5673438 B2 JP 5673438B2
Authority
JP
Japan
Prior art keywords
rotor
axis direction
elastic member
rotation axis
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011180393A
Other languages
Japanese (ja)
Other versions
JP2013046430A (en
Inventor
服部 宏之
宏之 服部
雅志 松本
雅志 松本
将由 山本
将由 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011180393A priority Critical patent/JP5673438B2/en
Publication of JP2013046430A publication Critical patent/JP2013046430A/en
Application granted granted Critical
Publication of JP5673438B2 publication Critical patent/JP5673438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/028Means for mechanical adjustment of the excitation flux by modifying the magnetic circuit within the field or the armature, e.g. by using shunts, by adjusting the magnets position, by vectorial combination of field or armature sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、ロータコアに磁石が配設された回転電機のロータ構造に関する。   The present invention relates to a rotor structure of a rotating electrical machine in which a magnet is disposed on a rotor core.

ロータコアに磁石が配設された回転電機において、ロータの高回転時に、弱め界磁制御を不要としつつ、ステータを通る磁石の磁束を減少させることで、ステータ巻線に発生する誘起電圧を抑制する技術が提案されている。例えば下記特許文献1では、ロータコアの回転軸方向両端に可動鉄心を設け、可動鉄心の一端(径方向中心側)を支持部材により回動自在に支持し、可動鉄心の他端(径方向外側)をばねにより支持している。ばねは、ロータコアに設けられているフラックスバリアの空間内に収容されるようになっている。ここでのフラックスバリアは、非磁性材により両端に空間が残るようにその一部が埋められていて、この非磁性材によって、ばねの一端が支持されており、ばねの弾性力が可動鉄心に作用し、且つ両側の空間でばねが収容できるようになっている。ロータの回転数が低い状態では、可動鉄心は、ばねの弾性力によってロータコアから離れた状態となっており、ロータの永久磁石から出た磁束は全てステータを通る界磁成分として作用する。一方、ロータの回転数が一定数以上となったところで、可動鉄心は、ロータの回転による遠心力によってロータコアに接触する。これによって、ロータの永久磁石からの磁束の一部が可動鉄心を通るようになるため、界磁成分として作用する磁束が弱められることになり、その分、より高回転にすることが可能となる。   In a rotating electrical machine in which a magnet is disposed on a rotor core, there is a technology that suppresses the induced voltage generated in the stator winding by reducing the magnetic flux of the magnet passing through the stator while eliminating the need for field-weakening control when the rotor rotates at high speed. Proposed. For example, in Patent Document 1 below, movable iron cores are provided at both ends of the rotor core in the rotation axis direction, one end (radial center side) of the movable core is rotatably supported by a support member, and the other end (radially outer side) of the movable core. Is supported by a spring. The spring is accommodated in a space of a flux barrier provided in the rotor core. The flux barrier here is partially filled with a non-magnetic material so that a space remains at both ends, and one end of the spring is supported by the non-magnetic material, and the elastic force of the spring is applied to the movable iron core. It acts and can accommodate a spring in the space on both sides. In a state where the rotational speed of the rotor is low, the movable iron core is separated from the rotor core by the elastic force of the spring, and all the magnetic flux emitted from the permanent magnet of the rotor acts as a field component passing through the stator. On the other hand, when the rotational speed of the rotor reaches a certain number or more, the movable iron core comes into contact with the rotor core by the centrifugal force generated by the rotation of the rotor. As a result, a part of the magnetic flux from the permanent magnet of the rotor passes through the movable iron core, so that the magnetic flux acting as a field component is weakened, and accordingly, it is possible to make higher rotation. .

特開2001−25190号公報JP 2001-25190 A 特開2006−81336号公報JP 2006-81336 A 特開平7−322584号公報Japanese Patent Laid-Open No. 7-322584 特開平7−107718号公報JP-A-7-107718 特開2002−136012号公報JP 2002-136002 A

特許文献1では、可動鉄心とロータ(非磁性材)との間にばねが存在するので、ステータを通る界磁磁束を弱めるために可動鉄心をロータに接近・接触させるためには、ロータ内部にばねを収容する空間が必要となる。このばねの収容空間をロータに設ける必要がある分、ロータの構造が複雑化して製造が困難となる。また、支持部材は、可動鉄心の一端(径方向中心側)を回動自在に支持するため、ばねのように可動鉄心を支持する部材が別途必要となる。   In Patent Document 1, since a spring exists between the movable iron core and the rotor (nonmagnetic material), in order to make the movable iron core approach and contact the rotor in order to weaken the field magnetic flux passing through the stator, A space for accommodating the spring is required. Since it is necessary to provide the spring accommodating space in the rotor, the structure of the rotor becomes complicated and the manufacture becomes difficult. Further, since the support member rotatably supports one end (diameter center side) of the movable iron core, a member for supporting the movable iron core such as a spring is separately required.

本発明は、ロータコアに磁石が配設されたロータ構造の複雑化を招くことなく、弱め界磁制御を不要としつつ、ステータを通る磁石の磁束を減少させることを目的とする。   An object of the present invention is to reduce the magnetic flux of a magnet passing through a stator without making field weakening control unnecessary without complicating a rotor structure in which magnets are disposed on a rotor core.

本発明に係る回転電機のロータ構造は、上述した目的を達成するために以下の手段を採った。   The rotor structure of the rotating electrical machine according to the present invention employs the following means in order to achieve the above-described object.

本発明に係る回転電機のロータ構造は、ステータと対向配置され、ロータコアに磁石が配設されたロータと、ロータの回転軸方向外側端に設けられ、ロータとともに回転する端部部材と、を備え、端部部材は、ロータの停止時における元形状が、径方向中心側から径方向外側へ延びるにつれてロータに対し回転軸方向外側へ離れるように傾斜した形状を呈する非磁性の弾性部材と、弾性部材が元形状であるときに、ロータに対し回転軸方向外側へ離れた状態で弾性部材に保持された磁性体と、を含み、ロータの所定の高回転時には、弾性部材は、遠心力により、磁性体をロータに近づけるように弾性変形することを要旨とする。   A rotor structure of a rotating electrical machine according to the present invention includes a rotor that is disposed opposite to a stator and has a magnet disposed on a rotor core, and an end member that is provided at an outer end in the rotation axis direction of the rotor and rotates together with the rotor. The end member is a non-magnetic elastic member that has a shape in which the original shape when the rotor is stopped is inclined so as to move away from the rotor in the rotational axis direction as it extends radially outward from the radial center side, and elastic When the member is in the original shape, the elastic member is held by the elastic member in a state of being separated to the outer side in the rotation axis direction with respect to the rotor, and at the time of the predetermined high rotation of the rotor, the elastic member is caused by centrifugal force, The gist is to elastically deform the magnetic body so as to approach the rotor.

本発明の一態様では、弾性部材は、磁性体を回転軸方向外側から保持することが好適である。   In one embodiment of the present invention, it is preferable that the elastic member holds the magnetic body from the outer side in the rotation axis direction.

本発明によれば、弾性部材及び磁性体を含む端部部材をロータの回転軸方向外側端に設けることで、ロータ構造の複雑化を招くことなく、弱め界磁制御を不要としつつ、ステータを通る磁石の磁束を減少させることができる。   According to the present invention, the end member including the elastic member and the magnetic body is provided at the outer end in the rotation axis direction of the rotor, so that the magnet passing through the stator is not required to control the field weakening without complicating the rotor structure. The magnetic flux can be reduced.

本発明の実施形態に係るロータ構造を有する回転電機の概略構成を示す図である。It is a figure which shows schematic structure of the rotary electric machine which has the rotor structure which concerns on embodiment of this invention. 本発明の実施形態に係るロータ構造を有する回転電機の動作を説明する図である。It is a figure explaining operation | movement of the rotary electric machine which has the rotor structure which concerns on embodiment of this invention. 本発明の関連技術に係る回転電機の概略構成を示す図である。It is a figure which shows schematic structure of the rotary electric machine which concerns on the related technology of this invention. 本発明の実施形態に係る回転電機の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the rotary electric machine which concerns on embodiment of this invention.

以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1は本発明の実施形態に係るロータ構造を有する回転電機の概略構成を示す図であり、ロータ回転軸(以下単に回転軸とする)と直交する方向から見た内部構成の概略を示す。回転電機は、回転が固定されたステータ12と、ステータ12に対し相対回転可能なロータ14と、を備え、回転軸と直交する径方向においてステータ12とロータ14が所定の微小空隙を空けて対向配置され、ロータ14がステータ12の内周側に配置されている。   FIG. 1 is a diagram showing a schematic configuration of a rotating electrical machine having a rotor structure according to an embodiment of the present invention, and shows an outline of an internal configuration viewed from a direction orthogonal to a rotor rotation axis (hereinafter simply referred to as a rotation axis). The rotating electrical machine includes a stator 12 whose rotation is fixed and a rotor 14 that can rotate relative to the stator 12, and the stator 12 and the rotor 14 face each other with a predetermined minute gap in a radial direction orthogonal to the rotation axis. The rotor 14 is disposed on the inner peripheral side of the stator 12.

ステータ12は、ステータコア21と、ステータコア21にその周方向に沿って配設された複数相(例えば3相)のステータ巻線22と、を含む。ロータ14は、シャフト13に固定されたロータコア31と、ロータコア31にその周方向に沿って配設された複数の永久磁石32と、を含む。各永久磁石32は、ロータコア31の内部に埋設されている。回転電機では、ステータ巻線22に交流電流を流すことで、周方向に回転する回転磁界がステータ12に形成される。そして、ステータ12に発生した回転磁界とロータ14の永久磁石32で発生した界磁束との電磁気相互作用(吸引及び反発作用)により、ロータ14にトルク(磁石トルク)を作用させてロータ14をシャフト13とともに回転駆動することができる。その際には、ステータ12に発生した回転磁界にロータコア31が吸引されることで、ロータ14にはリラクタンストルクも磁石トルクに加えて発生する。このように、回転電機を、ステータ巻線22への供給電力を利用してロータ14に動力を発生させる電動機として機能させることができる。一方、回転電機を、ロータ14の動力を利用してステータ巻線22に電力を発生させる発電機として機能させることもできる。   The stator 12 includes a stator core 21 and a plurality of (for example, three-phase) stator windings 22 disposed on the stator core 21 along the circumferential direction thereof. The rotor 14 includes a rotor core 31 fixed to the shaft 13 and a plurality of permanent magnets 32 disposed on the rotor core 31 along the circumferential direction thereof. Each permanent magnet 32 is embedded in the rotor core 31. In the rotating electrical machine, a rotating magnetic field that rotates in the circumferential direction is formed in the stator 12 by passing an alternating current through the stator winding 22. Then, due to electromagnetic interaction (attraction and repulsion) between the rotating magnetic field generated in the stator 12 and the field magnetic flux generated in the permanent magnet 32 of the rotor 14, torque (magnet torque) is applied to the rotor 14 to cause the rotor 14 to shaft. 13 can be rotationally driven. At that time, the rotor core 31 is attracted to the rotating magnetic field generated in the stator 12, so that reluctance torque is also generated in the rotor 14 in addition to the magnet torque. In this way, the rotating electrical machine can be caused to function as an electric motor that generates power in the rotor 14 using the power supplied to the stator winding 22. On the other hand, the rotating electrical machine can also function as a generator that generates power in the stator winding 22 using the power of the rotor 14.

本実施形態では、ロータ14(ロータコア31)の回転軸方向外側端に端部部材42が設けられており、ロータ14及びシャフト13とともに端部部材42が回転する。図1に示す例では、端部部材42をロータコア31の回転軸方向両端に設けているが、端部部材42をロータコア31の回転軸方向片端だけに設けることも可能である。各端部部材42は、ロータコア31またはシャフト13に取り付けられた、磁束を通さない非磁性の弾性部材44と、弾性部材44に保持された、磁束を通す磁性体46と、を含む。ロータ14の停止時における弾性部材44の元形状は、径方向中心側の端部がロータ14(ロータコア31)の回転軸方向端面14aに接触し、径方向外側の端部がロータ14の回転軸方向端面14aに対し外側へ離れており、径方向中心側から径方向外側へ延びるにつれてロータ14に対し回転軸方向外側へ離れるように傾斜した片持ち梁となる形状を呈する。弾性部材44は、径方向中心側の端部から径方向外側の端部にかけて一体的に作られ、曲げ方向に弾性を有し、元形状に戻ることが可能なように曲げ方向に弾性変形可能である。一体の弾性部材44の材料としては、例えば樹脂やステンレス鋼(SUS)やアルミニウム等を用いることが可能である。磁性体46は、弾性部材44が元形状であるときに(ロータ14の停止時に)、ロータ14に対し回転軸方向外側へ離れた状態で弾性部材44に保持されるように、弾性部材44の径方向外側の端部で保持される。図1に示す例では、弾性部材44は、磁性体46を回転軸方向外側から保持する。弾性部材44の延設方向に関する磁性体46の長さxは、永久磁石32の厚さtよりも長い。   In the present embodiment, the end member 42 is provided at the outer end in the rotation axis direction of the rotor 14 (rotor core 31), and the end member 42 rotates together with the rotor 14 and the shaft 13. In the example shown in FIG. 1, the end members 42 are provided at both ends of the rotor core 31 in the rotation axis direction. However, the end members 42 may be provided only at one end of the rotor core 31 in the rotation axis direction. Each end member 42 includes a nonmagnetic elastic member 44 that does not pass magnetic flux and is attached to the rotor core 31 or the shaft 13, and a magnetic body 46 that is held by the elastic member 44 and passes magnetic flux. The original shape of the elastic member 44 when the rotor 14 is stopped is such that the end portion on the radial center side contacts the rotation axis direction end surface 14 a of the rotor 14 (rotor core 31), and the end portion on the radially outer side is the rotation axis of the rotor 14. It has a shape that becomes a cantilever beam that is separated outward from the direction end face 14a and that is inclined so as to be separated from the rotor 14 outward in the rotational axis direction as it extends radially outward from the radial center. The elastic member 44 is integrally formed from the radially central end to the radially outer end, has elasticity in the bending direction, and can be elastically deformed in the bending direction so that it can return to its original shape. It is. As a material of the integral elastic member 44, for example, resin, stainless steel (SUS), aluminum, or the like can be used. When the elastic member 44 is in the original shape (when the rotor 14 is stopped), the magnetic body 46 is held by the elastic member 44 so as to be separated from the rotor 14 outward in the rotation axis direction. It is held at the radially outer end. In the example shown in FIG. 1, the elastic member 44 holds the magnetic body 46 from the outside in the rotation axis direction. The length x of the magnetic body 46 in the extending direction of the elastic member 44 is longer than the thickness t of the permanent magnet 32.

ロータ14の所定の高回転速度時には、端部部材42に作用する遠心力により、片持ち梁となる一体の弾性部材44が元形状から曲げ方向に弾性変形することで、図2に示すように、弾性部材44の径方向外側の端部は、磁性体46を錘として、径方向外側へ移動するとともに、ロータ14の回転軸方向端面14a(永久磁石32の回転軸方向端面)に近づくように回転軸方向内側へ移動する。これによって、磁性体46がロータ14の回転軸方向端面14aに近づいて接触すると、図2の矢印Bに示すように、永久磁石32のN極からの磁束の一部を磁性体46を介して永久磁石32のS極に戻すための短絡磁路がロータ14の回転軸方向外側端に形成される。その際には、弾性部材44の曲げ剛性(曲げ方向の弾性係数)を調整することで、ロータ14の回転速度に対する磁性体46の位置(ロータ14の回転軸方向端面14aとの距離)の関係を調整することが可能であり、磁性体46がロータ14の回転軸方向端面14aに接触するときの、ロータ14の所定の高回転速度を調整することが可能である。また、磁性体46がロータ14の回転軸方向端面14aに接触する状態(図2に示す状態)において、磁性体46が永久磁石32の回転軸方向端面と対向し、永久磁石32よりも磁性体46が径方向に関して中心側及び外側の両側に張り出すように、弾性部材44により磁性体46を保持する位置を決定する。図2の矢印Bに示すように、ロータ14の回転軸方向外側端付近では、永久磁石32の磁束が磁性体46による短絡磁路を流れて短絡する分、図2の矢印Aに示すように、ステータ巻線22に鎖交する永久磁石32の磁束が減少する。これによって、弱め界磁制御を行うことなく、ステータ巻線22に発生する誘起電圧を抑制することができ、同一電源電圧での高回転化を実現することができる。弱め界磁制御が不要となることで、回転電機の高効率化及び制御の簡素化を実現することができる。   As shown in FIG. 2, when the rotor 14 is at a predetermined high rotational speed, the integral elastic member 44 serving as a cantilever is elastically deformed from the original shape in the bending direction by the centrifugal force acting on the end member 42. The radially outer end of the elastic member 44 moves radially outward with the magnetic body 46 as a weight, and approaches the rotational axis direction end surface 14a of the rotor 14 (the rotational axis direction end surface of the permanent magnet 32). Move inward in the rotation axis direction. As a result, when the magnetic body 46 approaches and contacts the end surface 14a of the rotor 14 in the rotation axis direction, a part of the magnetic flux from the N pole of the permanent magnet 32 is passed through the magnetic body 46 as shown by an arrow B in FIG. A short-circuit magnetic path for returning to the south pole of the permanent magnet 32 is formed at the outer end in the rotation axis direction of the rotor 14. At that time, by adjusting the bending rigidity (elastic coefficient in the bending direction) of the elastic member 44, the relationship between the position of the magnetic body 46 (distance from the end surface 14a in the rotation axis direction of the rotor 14) relative to the rotational speed of the rotor 14 is achieved. It is possible to adjust the predetermined high rotational speed of the rotor 14 when the magnetic body 46 contacts the end surface 14a of the rotor 14 in the rotation axis direction. Further, when the magnetic body 46 is in contact with the end surface 14 a of the rotor 14 in the rotation axis direction (the state shown in FIG. 2), the magnetic body 46 faces the end surface in the rotation axis direction of the permanent magnet 32 and is more magnetic than the permanent magnet 32. The position at which the magnetic body 46 is held by the elastic member 44 is determined so that 46 protrudes to both the central side and the outer side with respect to the radial direction. As indicated by an arrow B in FIG. 2, as indicated by an arrow A in FIG. 2, the magnetic flux of the permanent magnet 32 flows through a short circuit magnetic path by the magnetic body 46 near the outer end in the rotation axis direction of the rotor 14. The magnetic flux of the permanent magnet 32 interlinking with the stator winding 22 is reduced. Thus, the induced voltage generated in the stator winding 22 can be suppressed without performing field-weakening control, and high rotation with the same power supply voltage can be realized. Since the field weakening control is not required, it is possible to achieve high efficiency and simplified control of the rotating electrical machine.

一方、ロータ14の停止時または低回転速度時には、端部部材42に遠心力は作用しない、または端部部材42に作用する遠心力は小さいため、図1に示すように、弾性部材44の径方向外側の端部は、磁性体46を錘として、径方向内側へ移動するとともに、ロータ14の回転軸方向端面14aから離れるように回転軸方向外側へ移動する。つまり、弾性部材44は、ほぼ変形しないで元形状に戻る。元形状では、磁性体46は、ロータ14の回転軸方向端面14aから外側へ離れるため、ロータ14の回転軸方向外側端に短絡磁路は形成されない。これによって、図1の矢印Aに示すように、ロータ14の回転軸方向外側端付近でも永久磁石32の磁束がステータ巻線22に鎖交し、ステータ巻線22に鎖交する永久磁石32の磁束が増加する。これによって、ステータ12とロータ14間に作用するトルクを増加させることができる。   On the other hand, when the rotor 14 is stopped or at a low rotation speed, no centrifugal force acts on the end member 42 or the centrifugal force acting on the end member 42 is small. Therefore, as shown in FIG. The outer end in the direction moves radially inward using the magnetic body 46 as a weight, and moves outward in the rotational axis direction away from the rotational axis end surface 14a of the rotor 14. That is, the elastic member 44 returns to the original shape without substantially deforming. In the original shape, the magnetic body 46 is separated from the end surface 14a of the rotor 14 in the rotation axis direction, and therefore, a short-circuit magnetic path is not formed at the outer end of the rotor 14 in the rotation axis direction. As a result, as indicated by an arrow A in FIG. 1, the magnetic flux of the permanent magnet 32 is linked to the stator winding 22 near the outer end in the rotation axis direction of the rotor 14, and the permanent magnet 32 linked to the stator winding 22 Magnetic flux increases. As a result, the torque acting between the stator 12 and the rotor 14 can be increased.

なお、前述の特許文献1のロータ構造では、図3に示すように、磁性体(可動鉄心)46とロータ14(非磁性体47)との間にばね48が存在し、磁性体46をロータ14に接近・接触させるためには、ロータ14内部にばね48を収容する空間49が必要となる。このばね48の収容空間49をロータ14に設ける必要がある分、ロータ14の構造を変更する必要があり、ロータ14の構造が複雑化して製造が困難となる。これに対して本実施形態では、図4に示すように、磁性体46とロータ14との間にばね48等の他の部品が存在せず、ばね48等の他の部品の収容空間49が不要であるため、ロータ14の構造を変更する必要が無く、端部部材42(弾性部材44及び磁性体46)をロータ14の回転軸方向外側端に取り付けるだけで製造が容易となる。したがって、ロータ構造の複雑化を招くことなく、弱め界磁制御を不要としつつ、ステータ12を通る永久磁石32の磁束を減少させることが可能となる。また、磁性体46を保持し且つ弾性変形する弾性部材44を複数部品とすると、複数部品との間や、複数部品と他部品との間で寸法誤差が生じやすく、回転性能・変形に影響する虞があるのに対して、本実施形態では、弾性部材44を径方向中心側の端部から径方向外側の端部に渡って一体で作ることで、上記影響を低減することができる。   In the rotor structure of Patent Document 1 described above, as shown in FIG. 3, a spring 48 exists between the magnetic body (movable iron core) 46 and the rotor 14 (nonmagnetic body 47). In order to approach and contact 14, a space 49 for housing the spring 48 is required inside the rotor 14. Since it is necessary to provide the accommodation space 49 of the spring 48 in the rotor 14, the structure of the rotor 14 needs to be changed, and the structure of the rotor 14 becomes complicated and difficult to manufacture. On the other hand, in the present embodiment, as shown in FIG. 4, there are no other parts such as the spring 48 between the magnetic body 46 and the rotor 14, and an accommodation space 49 for other parts such as the spring 48 is provided. Since it is unnecessary, there is no need to change the structure of the rotor 14, and manufacturing is facilitated by simply attaching the end member 42 (the elastic member 44 and the magnetic body 46) to the outer end in the rotational axis direction of the rotor 14. Therefore, the magnetic flux of the permanent magnet 32 passing through the stator 12 can be reduced while making field weakening control unnecessary without complicating the rotor structure. Further, if the elastic member 44 that holds the magnetic body 46 and elastically deforms is made of a plurality of parts, a dimensional error is likely to occur between the plurality of parts or between the plurality of parts and other parts, which affects the rotation performance and deformation. In contrast, in the present embodiment, the influence can be reduced by integrally forming the elastic member 44 from the radial center end to the radial outer end.

また、上記特許文献2のロータ構造では、ロータコアに複数のスリットを永久磁石の磁束と略平行に形成し、スリットに磁性体を移動可能に装着しているが、磁性体の可動領域がロータコア内部のため、ロータコア内部に空隙(スリット)を増やす必要があるので、空隙が磁石磁束を妨げることになり、回転電機の性能が低下する。これに対して本実施形態では、磁性体46の可動領域がロータ14(ロータコア31)の外部のため、ロータコア31内部に空隙を増やす必要が無く、回転電機の性能は低下しない。   In the rotor structure disclosed in Patent Document 2, a plurality of slits are formed in the rotor core substantially in parallel with the magnetic flux of the permanent magnet, and a magnetic body is movably mounted in the slit. Therefore, since it is necessary to increase the gap (slit) in the rotor core, the gap interferes with the magnetic flux of the magnet, and the performance of the rotating electrical machine is degraded. On the other hand, in this embodiment, since the movable region of the magnetic body 46 is outside the rotor 14 (rotor core 31), there is no need to increase the gap inside the rotor core 31, and the performance of the rotating electrical machine does not deteriorate.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

12 ステータ、13 シャフト、14 ロータ、21 ステータコア、22 ステータ巻線、31 ロータコア、32 永久磁石、42 端部部材、44 弾性部材、46 磁性体。   12 Stator, 13 Shaft, 14 Rotor, 21 Stator core, 22 Stator winding, 31 Rotor core, 32 Permanent magnet, 42 End member, 44 Elastic member, 46 Magnetic body.

Claims (2)

ステータと対向配置され、ロータコアに磁石が配設されたロータと、
ロータの回転軸方向外側端に設けられ、ロータとともに回転する端部部材と、
を備え、
端部部材は、
ロータの停止時における元形状が、径方向中心側から径方向外側へ延びるにつれてロータに対し回転軸方向外側へ離れるように傾斜した形状を呈する非磁性の弾性部材と、
弾性部材が元形状であるときに、ロータに対し回転軸方向外側へ離れた状態で弾性部材に保持された磁性体と、
を含み、
ロータの所定の高回転時には、弾性部材は、遠心力により、磁性体をロータに近づけるように弾性変形する、回転電機のロータ構造。
A rotor disposed opposite to the stator and having a magnet disposed on the rotor core;
An end member provided at an outer end of the rotor in the rotation axis direction and rotating together with the rotor;
With
The end member is
A non-magnetic elastic member that exhibits a shape in which the original shape at the time of stopping of the rotor is inclined so as to be separated from the rotor outward in the rotational axis direction as it extends radially outward from the radial center;
When the elastic member has an original shape, a magnetic body held by the elastic member in a state separated from the rotor outward in the rotation axis direction;
Including
A rotor structure of a rotating electrical machine in which an elastic member is elastically deformed so as to approach a rotor by a centrifugal force when the rotor rotates at a predetermined high speed.
請求項1に記載の回転電機のロータ構造であって、
弾性部材は、磁性体を回転軸方向外側から保持する、回転電機のロータ構造。
The rotor structure of the rotating electrical machine according to claim 1,
The elastic member is a rotor structure of a rotating electric machine that holds a magnetic body from the outside in the rotation axis direction.
JP2011180393A 2011-08-22 2011-08-22 Rotor structure of rotating electrical machine Active JP5673438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180393A JP5673438B2 (en) 2011-08-22 2011-08-22 Rotor structure of rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180393A JP5673438B2 (en) 2011-08-22 2011-08-22 Rotor structure of rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2013046430A JP2013046430A (en) 2013-03-04
JP5673438B2 true JP5673438B2 (en) 2015-02-18

Family

ID=48009927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180393A Active JP5673438B2 (en) 2011-08-22 2011-08-22 Rotor structure of rotating electrical machine

Country Status (1)

Country Link
JP (1) JP5673438B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965705B2 (en) 2017-11-27 2021-11-10 トヨタ自動車株式会社 Rotating machine with variable magnetic flux mechanism
WO2021015060A1 (en) * 2019-07-19 2021-01-28 アイシン・エィ・ダブリュ株式会社 Variable-magnetic-flux-type dynamo-electric machine
CN110380543B (en) * 2019-08-07 2021-09-21 珠海格力节能环保制冷技术研究中心有限公司 Rotor subassembly, motor, compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025190A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Rotor of motor
JP4494615B2 (en) * 2000-10-26 2010-06-30 本田技研工業株式会社 Permanent magnet rotating electric machine
JP4373865B2 (en) * 2004-07-14 2009-11-25 ファイン カンパニー リミテッド Permanent magnet generator
JP4369377B2 (en) * 2005-02-04 2009-11-18 三菱電機株式会社 Rotating electric machine
JP4291298B2 (en) * 2005-05-13 2009-07-08 三菱電機株式会社 Rotating electric machine

Also Published As

Publication number Publication date
JP2013046430A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5861660B2 (en) Rotating electric machine
WO2010150492A1 (en) Axial motor
JP5920637B2 (en) Rotating electrical machine rotor
JP5265615B2 (en) Permanent magnet embedded rotor
JP5096756B2 (en) Rotating electric machine
JP2021118611A (en) Magnetic geared rotary electric machine
JP6345918B2 (en) Axial gap motor
JP5673438B2 (en) Rotor structure of rotating electrical machine
JP2018166377A (en) Variable field rotary electric machine
WO2017090159A1 (en) Rotary electric machine
JP2013115899A (en) Rotor of permanent magnet type motor, manufacturing method of the same, and permanent magnet type motor
US20190074736A1 (en) Permanent magnet motor with passively controlled variable rotor/stator alignment
WO2017203907A1 (en) Rotary electric machine
JP5738609B2 (en) Variable field rotating electric machine
JP6877944B2 (en) Synchronous reluctance type rotary electric machine
JP5772470B2 (en) Axial gap type rotating electrical machine
JP2012044789A (en) Rotary electric machine and method for manufacturing the same
JP2009171687A (en) Rotating electrical machine
JP2011182569A (en) Inner rotor type motor
JP2021151156A (en) Rotary electric machine
JP5251531B2 (en) Variable characteristic rotating electrical machine
JP2012050292A (en) Permanent magnet embedded rotor
JP5553241B2 (en) Rotating electric machine
JP5219932B2 (en) Rotating electric machine
JP2012060709A (en) Permanent magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5673438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151